WO2023135769A1 - 評価装置及び評価システム - Google Patents

評価装置及び評価システム Download PDF

Info

Publication number
WO2023135769A1
WO2023135769A1 PCT/JP2022/001229 JP2022001229W WO2023135769A1 WO 2023135769 A1 WO2023135769 A1 WO 2023135769A1 JP 2022001229 W JP2022001229 W JP 2022001229W WO 2023135769 A1 WO2023135769 A1 WO 2023135769A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
evaluation
evaluation value
sensing
values
Prior art date
Application number
PCT/JP2022/001229
Other languages
English (en)
French (fr)
Inventor
喜則 益永
脩 外田
Original Assignee
中国電力株式会社
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社, 株式会社明電舎 filed Critical 中国電力株式会社
Priority to JP2022535785A priority Critical patent/JP7240564B1/ja
Priority to PCT/JP2022/001229 priority patent/WO2023135769A1/ja
Publication of WO2023135769A1 publication Critical patent/WO2023135769A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing

Definitions

  • the present invention relates to an evaluation device and an evaluation system.
  • a method is known in which the operating status of a device can be grasped based on the output of a sensor provided in the device (for example, Patent Document 1).
  • the present invention provides an evaluation device and an evaluation system that make it easier to grasp the relationship between the state of a part of a facility or equipment, the state of the entire facility or equipment including that part, and the state of other parts of the whole. for the purpose.
  • the evaluation apparatus of the present invention is an evaluation apparatus that evaluates the operation status of a plant including a plurality of facilities, and includes a display unit and two reference values.
  • an evaluation unit that derives an evaluation value based on causing the display unit to display the relationship including information indicating the time-series change in the evaluation value accompanying the time-series change in the value, and the two reference values are two of the facilities or one of the facilities.
  • the information indicating chronological changes in the evaluation value includes information indicating at least two points in time.
  • the information indicating the chronological change in the evaluation value includes information indicating the direction of change in the evaluation value between at least two points in time.
  • the evaluation unit causes the display unit to further display information indicating a correspondence relationship between the evaluation value and the threshold value of the evaluation value.
  • an acquisition unit for acquiring sensing values individually output by a plurality of sensors provided in a plurality of facilities included in each facility, and the evaluation unit includes a plurality of sensing values output by the plurality of sensors.
  • a first process for calculating a first evaluation value indicating the stability of the facility based on the sensing value of the facility is performed for each facility, and the Lp norm of the first evaluation value of the plurality of facilities is set to the facility including the plurality of facilities. and performing a second process of calculating a second evaluation value of the sensing item for each group of the first evaluation values classified by type of sensing value, and calculating the second evaluation value corresponding to the sensing item in one facility.
  • a third process for calculating a third evaluation value indicating the stability of the one facility is performed for each facility, and the Lp norm of the third evaluation value of a plurality of facilities indicates the stability of the plant.
  • a fourth process for calculating a fourth evaluation value is performed, the first value being the weighting value of the Lp norm in the second process, the second value being the weighting value of the Lp norm in the third process, and the fourth Unlike the third value that is the Lp norm weighting value in the process, the sensing value in the first process functions as the reference value, the first evaluation value in the first process functions as the evaluation value, The first evaluation value in the second process functions as the reference value, the second evaluation value in the second process functions as the evaluation value, and the second evaluation value in the third process functions as the reference value.
  • the third evaluation value in the third process functions as the evaluation value, the third evaluation value in the fourth process functions as the reference value, and the fourth evaluation value in the fourth process functions as the evaluation value.
  • the first value is greater than the second value and the third value, and the second value is greater than the third value.
  • the evaluation unit performs the second processing for each of the plurality of sensing items for some or all of the plurality of facilities, and performs the second processing for each of the plurality of sensing items.
  • the third evaluation value is calculated as the Lp norm of the second evaluation values of the plurality of sensing items.
  • the evaluation unit performs the second processing for one sensing item on some or all of the plurality of facilities,
  • the third evaluation value is calculated as the Lp norm of the second evaluation value of the one sensing item.
  • the senor detects at least one of temperature, vibration, water pressure and water level of installed equipment.
  • the evaluation device according to any one of claims 1 to 9, and a terminal provided with a notification unit that performs notification related to evaluation of the operation status of the plant.
  • the present invention it becomes easier to grasp the relationship between the state of a part of a facility or equipment, the state of the entire facility or equipment including that part, and the state of other parts of the whole.
  • FIG. 1 is a diagram showing a main configuration example of an evaluation system according to an embodiment.
  • FIG. 2 is a block diagram showing a configuration example of the evaluation device.
  • FIG. 3 is a graph showing an example of the relationship between sensing values and evaluation values.
  • FIG. 4 is a graph showing an example of the relationship between time-series changes in sensing values and time-series changes in evaluation values.
  • FIG. 5 is a diagram showing an example of a correspondence relationship between a plurality of facilities included in the plant 2, items sensed in the facilities, facilities to be sensed, and the like.
  • FIG. 6 is a graph schematically showing an example of calculation of a total plant evaluation value based on two evaluation values.
  • FIG. 1 is a diagram showing a main configuration example of an evaluation system according to an embodiment.
  • FIG. 2 is a block diagram showing a configuration example of the evaluation device.
  • FIG. 3 is a graph showing an example of the relationship between sensing values and evaluation values.
  • FIG. 4 is a graph showing an
  • FIG. 10 is a graph for explaining examples when different comprehensive evaluation values are calculated.
  • FIG. 11 is a diagram showing an example of notification regarding evaluation of the operating status of the plant.
  • FIG. 11 is a diagram showing an example of notification regarding evaluation of the operating status of the plant.
  • FIG. 12 is a graph showing an example of changing the upper limit of variance according to season.
  • FIG. 13 is a graph showing time-series changes in the evaluation value of one piece of equipment.
  • FIG. 14 is a graph showing time series changes in the evaluation value of one piece of equipment different from FIG.
  • FIG. 15 is a graph showing time-series changes in the overall evaluation value of the facility having the two facilities described with reference to FIGS. 13 and 14.
  • FIG. 16 is a two-dimensional graph showing the overall evaluation values shown in FIG. 15, with the evaluation values shown in FIG. 13 on the horizontal axis and the evaluation values shown in FIG. 14 on the vertical axis.
  • FIG. 17 is a two-dimensional graph showing a distribution of comprehensive evaluation values r different from FIG. FIG.
  • FIG. 18 is a three-dimensional graph showing the distribution of comprehensive evaluation values.
  • FIG. 19 is a three-dimensional graph showing the distribution of comprehensive evaluation values from an angle different from that in FIG.
  • FIG. 20 is a three-dimensional graph showing the distribution of comprehensive evaluation values from an angle different from that in FIG.
  • FIG. 21 is a diagram showing an example of a three-dimensional graph showing a part of the distribution of comprehensive evaluation values on the r12b side where the comprehensive evaluation value r is higher.
  • FIG. 22 is a diagram showing an example of a three-dimensional graph showing a part of the distribution of comprehensive evaluation values on the r12b side where the comprehensive evaluation value r is higher.
  • FIG. 23 is a schematic diagram showing an example of the relationship between data analysis by the k-means method and comprehensive evaluation values.
  • FIG. 1 is a diagram showing a main configuration example of an evaluation system 1 according to an embodiment.
  • the evaluation system 1 is a system that evaluates the operating status of the plant 2 .
  • the evaluation system 1 includes a plurality of sensors 4a, 4b, 4c, 4d, .
  • the plant 2 includes a plurality of facilities 3a, 3b, .
  • the facilities 3a, 3b, . . . function individually, so that the plant 2 functions as a whole.
  • the specific form of the facilities 3a, 3b, . . . will correspond to the purpose of the plant 2.
  • the number of facilities 3 may be three or more.
  • the facility 3a shown in FIG. 1 includes a plurality of facilities 9a, 9b, .
  • the facility 3b shown in FIG. 1 includes a plurality of facilities 9c, 9d, .
  • the facility 3a is a power generator, the specific forms of the facilities 9a, 9b, .
  • Each facility 3 thus includes a plurality of facilities 9 .
  • a more detailed specific example of the equipment 9 will be described later with reference to FIG.
  • the facilities 3a, 3b, . . . include a plurality of sensors 4a, 4b, 4c, 4d, . That is, the plurality of sensors 4a, 4b, 4c, 4d, . A plurality of sensors 4a, 4b, 4c, 4d, . The specific aspects of each of the sensors 4a, 4b, 4c, 4d, . When the sensors 4a, 4b, 4c, 4d, .
  • one sensor 4 is provided for one facility 9, but a plurality of sensors 4 may be provided for one facility 9.
  • a sensor 4 may be provided so as to be detectable by the sensor 4 .
  • Items common to the plurality of facilities 9 include, for example, the weather, temperature, humidity, etc. of the area where the plant 2 is located.
  • the plant 2 includes a plurality of facilities 3 each including a plurality of installations 9 and a plurality of sensors 4 .
  • the facility 3a is provided with a communication unit 5a.
  • a communication unit 5b is provided in the facility 3b.
  • the communication units provided in each facility 3 such as the communication units 5a and 5b are not distinguished, they may be referred to as the communication unit 5 in some cases.
  • the communication unit 5 transmits the output of the sensor 4 to the evaluation device 10.
  • the communication unit 5 according to the embodiment has a circuit or the like for functioning as a NIC (Network Interface Controller) compatible with a predetermined communication protocol. Examples of the communication protocol include TCP/IP (Transmission Control Protocol/Internet Protocol), but the applicable communication protocol is not limited to this and can be changed as appropriate.
  • the communication unit 5 transmits data generated according to the output of the sensor 4 to the evaluation device 10 through communication with the evaluation device 10 .
  • the output data includes information indicating sensing values detected by the sensor 4 .
  • a sensing value is a value derived according to the state of the equipment 9 provided with the sensor 4 . For example, if the sensor 4 is a temperature sensor, the sensing value indicates temperature (eg temperature in degrees Celsius). Moreover, when the sensor 4 is a vibration sensor, the sensing value indicates the magnitude of vibration. In addition, the specific content of the sensing value will depend on the specific mode of the sensor 4 .
  • one communication unit 5 is shown for one facility 3. However, some or all of the plurality of sensors 4a, 4b, . . . Arrangements may be provided for communicating with. Further, although not shown, when the output of the sensor 4 is analog, an analog/digital conversion circuit for generating output data that can be transmitted via digital communication by the communication unit 5 is provided between the sensor 4 and the communication unit 5 or It is provided in the sensor 4 .
  • the configuration included in the evaluation system 1 according to the embodiment is the sensor 4 and the communication unit 5.
  • Facility 3 and facility 9 are illustrated to explain the configuration in which sensor 4 is provided in plant 2 .
  • the evaluation device 10 evaluates the operation status of the plant 2. As shown in FIG. 1, the evaluation device 10 includes a communication unit 11, an acquisition unit 12, an evaluation unit 13, and a notification unit .
  • the communication unit 11 has a circuit etc. for functioning as a NIC corresponding to the communication protocol of the communication unit 5 .
  • the communication unit 11 communicates with the communication unit 5 and receives output data.
  • the communication line between the communication section 5 and the communication section 11 is a wireless communication line using electromagnetic waves such as radio waves.
  • the acquisition unit 12 acquires sensing values individually output by a plurality of 4a, 4b, 4c, 4d, . Specifically, the acquisition unit 12 acquires the sensing value by acquiring the output data received by the communication unit 11 .
  • the evaluation unit 13 evaluates the operation status of the plant 2 based on the sensing values acquired by the acquisition unit 12 .
  • the reporting unit 14 reports the evaluation of the operation status of the plant 2 evaluated by the evaluating unit 13 .
  • the evaluation device 10 is an information processing device provided to function as the communication unit 11, the acquisition unit 12, the evaluation unit 13, and the notification unit 14. A configuration example of such an information processing apparatus will be described with reference to FIG.
  • FIG. 2 is a block diagram showing a configuration example of the evaluation device 10.
  • the evaluation device 10 includes a communication section 11 , a storage section 31 , a calculation section 32 , an input section 33 and an output section 34 .
  • the storage unit 31 stores software programs and data read in various processes performed by the evaluation device 10 .
  • the storage unit 31 includes a storage device such as a hard disk drive (HDD), a solid state drive (SSD), or a flash memory, and stores the data in the storage device. do.
  • HDD hard disk drive
  • SSD solid state drive
  • flash memory stores the data in the storage device. do.
  • the terminal 20 also includes a communication unit, a storage unit, and a storage unit that can function in the same manner as the communication unit 11, the storage unit 31, the calculation unit 32, the input unit 33, and the output unit 34 included in the evaluation device 10. It is an information processing apparatus including a unit, a calculation unit, an input unit, and an output unit.
  • the terminal 20 is, for example, a portable terminal such as a smart phone or a tablet, but is not limited to this, and may be a stationary PC (Personal Computer).
  • an evaluation program 31a, sensing data 31b, and evaluation criteria data 31c are illustrated as examples of programs and the like.
  • the evaluation program 31 a is a software program for causing the calculation unit 32 to function as the acquisition unit 12 and the evaluation unit 13 .
  • the sensing data 31b is cumulative data obtained by accumulating output data acquired over time.
  • the evaluation criteria data 31c is data referred to when evaluating based on the sensing data 31b.
  • the calculation unit 32 includes a calculation device such as a CPU (Central Processing Unit), functions as the acquisition unit 12 and the evaluation unit 13 by calculation processing using the above-described programs, etc., and performs various types of processing. Further, in the embodiment, the calculation unit 32 generates and updates the sensing data 31b in accordance with acquisition of output data. As a result, the calculation unit 32 can acquire a sensing value at an arbitrary timing in the past from the sensing data 31b.
  • a calculation device such as a CPU (Central Processing Unit)
  • CPU Central Processing Unit
  • the input unit 33 has a configuration for receiving input operations from the administrator of the evaluation device 10 .
  • a configuration includes, for example, a keyboard, a mouse, etc., but is not limited to this, and various input devices can be employed.
  • the output unit 34 performs various outputs according to the content of processing performed by the calculation unit 32 .
  • the output unit 34 includes, for example, a display output unit 34a, an audio output unit 34b, and the like.
  • the display output unit 34a has one or more display devices such as a liquid crystal display and an organic EL (Electro Luminescence) display, and displays an image according to the processing performed by the calculation unit 32.
  • the audio output unit 34b has a configuration capable of outputting audio, such as a speaker, and outputs audio according to the processing performed by the calculation unit 32.
  • the display output unit 34 a and the audio output unit 34 b function as the notification unit 14 .
  • Conversion processing is processing for converting a sensing value into an evaluation value.
  • FIG. 3 is a graph showing an example of the relationship between sensing values and evaluation values.
  • the distribution of the sensing values is shown by a histogram, and the evaluation values corresponding to the sensing values are shown by a line graph.
  • the sensing values exemplified in FIG. 3 are normal sensing values adopted as the basis for deriving the evaluation value.
  • the evaluation value is determined based on the distribution of normal sensing values indicated by the histogram.
  • a normal value range for the sensing value can be derived by kernel density estimation based on the distribution.
  • the sensing values exemplified in FIG. 3 are distributed within the range of 25 to 50.
  • tau ( ⁇ ) be the median value of the sensing values indicated by the dashed-dotted line C1
  • sigma ( ⁇ ) be the variance of the sensing values.
  • the lower limit E1 of the normal range of sensing values can be expressed as ⁇ - ⁇ .
  • the upper limit E2 of the normal value range of the sensing value can be expressed as ⁇ + ⁇ .
  • the evaluation value of the embodiment is expressed as a percentage, and the higher the value, the greater the possibility that some kind of abnormality has occurred in the equipment 9.
  • the evaluation value is derived as a value exceeding zero.
  • FIG. 3 illustrates a setting in which the evaluation value gradually increases as the sensing value decreases from ⁇ - ⁇ to ⁇ -3 ⁇ . Further, FIG. 3 shows ⁇ 3 ⁇ as the lower evaluation limit E3. Also, when the sensing value exceeds the upper limit E2, the evaluation value is derived as a value exceeding zero.
  • FIG. 3 illustrates a setting in which the evaluation value gradually increases as the sensing value increases from ⁇ + ⁇ to ⁇ +3 ⁇ . In addition, FIG. 3 shows ⁇ +3 ⁇ as the evaluation upper limit E4.
  • the evaluation value increases according to the degree of deviation of the sensing value from the normal value range. is set to That is, the larger the evaluation value, the more the sensing value deviates from the normal value range, and the higher the possibility that some abnormality has occurred in the facility 9 provided with the sensor 4 that outputs the sensing value. It is suggested.
  • the evaluation value saturates at the maximum (100).
  • the evaluation value of the embodiment is a value that indicates the operating status of the facility 9.
  • the evaluation value of the embodiment is derived as a percentage from the most stable state (0) including the normal operation of the equipment 9 to the most alarming state (100) including the abnormal operation of the equipment 9.
  • the evaluation unit 13 converts the sensing values into evaluation values based on the median value ( ⁇ ) and variance ( ⁇ ).
  • the process of converting the sensing values into the evaluation values in this way functions as "the first process of calculating the first evaluation value indicating the stability of the facility 9 based on the plurality of sensing values output by the plurality of sensors 4". .
  • Data indicating the median ( ⁇ ) and the variance ( ⁇ ) are individually provided for each of the plurality of sensors 4 . Such data is included in the evaluation criteria data 31c.
  • the sensing values shown in FIG. 3 are examples of the amount of vibration of the bearing provided in the generator, the sensing values are not limited to this example. For example, when the sensor 4 is a temperature sensor, the temperature of the sensing target is obtained as the sensing value.
  • the sensor 4 is a pressure sensor
  • a value indicating the detected pressure is obtained as the sensing value.
  • a sensing value corresponding to a specific correspondence of the sensor 4 is obtained without being limited to these.
  • the median value ( ⁇ ) of the sensing values is a value corresponding to the combination of the detection item of each sensor 4 and the detection target.
  • the variance ( ⁇ ) is a value corresponding to the combination of the detection item of each sensor 4 and the detection target.
  • the evaluation unit 13 individually performs a process of converting sensing values into evaluation values for each of the plurality of sensors 4 .
  • the setting of the lower limit E1 and upper limit E2 of the normal value range and the evaluation lower limit E3 and evaluation upper limit E4 based on the median value ( ⁇ ) and variance ( ⁇ ) of the sensing values is merely an example and is limited to this. However, coefficients and specific formulas can be changed as appropriate.
  • FIG. 4 is a graph showing an example of the relationship between time-series changes in sensing values and time-series changes in evaluation values.
  • the sensing values shown in FIG. 4 and the sensing values shown in FIG. 3 are sensed by the same equipment 9 .
  • the sensing value in the time period before time period T1 is within the normal value range of 25 to 50, and is generally stable at a value significantly below 50.
  • the evaluation value for this time period is a relatively low value even if it is 0 or a value exceeding 0.
  • the sensing value significantly exceeds 50, then falls below 25, remains below 25 for a while, and then rises to suddenly exceed 50. changing erratically.
  • the evaluation value in such time period T1 significantly exceeds 0, suggesting the possibility that some abnormality has occurred in the facility 9 provided with the sensor 4 that outputs the sensing value.
  • the sensing value In most of the blank time period T2 that occurs after the time period T1, the sensing value is 0, but it was determined that there was some abnormality in the equipment 9 based on the evaluation value in the time period T1. Due to this, the facility 9 or the plant 2 including the facility 9 was stopped. During shutdown of the plant 2, no evaluation value is derived either. The output of sensing values and the derivation of evaluation values are restarted by restarting the plant 2 including the equipment 9 after the blank time period T2. In the example shown in FIG. 4, the sensing value and the evaluation value temporarily fluctuate immediately after restarting operation, but are stable thereafter.
  • Output of sensing values and derivation of evaluation values are performed for each sensing value of the plurality of sensors 4a, 4b, 4c, 4d, .
  • derivation processing for deriving the evaluation value for each sensing value as the first evaluation value is defined as the first processing. That is, the evaluation unit 13 performs the first process for each piece of equipment 9 based on multiple sensing values output by the multiple sensors 4 .
  • the first evaluation value is an evaluation value that indicates the stability of the equipment 9 .
  • the evaluation unit 13 of the embodiment periodically performs the first process according to a predetermined process cycle.
  • the time length of the processing cycle is arbitrary, but it is desirable that it be a short period (for example, less than 1 second) so that when an abnormality occurs in the equipment 9, the evaluation value immediately indicates the abnormality.
  • FIG. 5 is a diagram showing an example of a correspondence relationship between a plurality of facilities 3 included in the plant 2, items sensed by the facilities 3, facilities 9 to be sensed, and the like.
  • FIG. 5 exemplifies the correspondence relationship when the plant 2 is a hydroelectric power plant, it is not limited to this.
  • Each item shown in FIG. 5 corresponds to the plant 2 .
  • the sensing value of the processing part P01 in FIG. 5 becomes the evaluation value of the processing part P03 by the processing of the processing part P02, which is the first processing.
  • the plant 2 includes generators, water turbines and waterway facilities 3 ( Figure 1).
  • the generator is connected to the water wheel and generates power according to the rotation of the water wheel.
  • a water wheel rotates according to the flow of water supplied using a water channel.
  • Conduit refers to the supply and discharge of the water concerned.
  • the generator is connected to the water wheel and generates power according to the rotation of the water wheel.
  • a water wheel rotates according to the flow of water supplied using a water channel. Conduit refers to the supply and discharge of the water concerned.
  • the generator senses one or more sensing items, such as temperature and vibration. In water turbines, sensing is performed for items such as water pressure and vibration. In a waterway, sensing is performed for the water level item. In this way, a sensing item is a group of sensing values, and is classified according to the type of sensing value.
  • each facility 3 includes a plurality of facilities 9.
  • a plurality of facilities 9 are subject to sensing for each sensing item.
  • the equipment 9 in FIG. 5 is an example and is not limited to this. It suffices if there is at least one facility 9 to be sensed for each sensing item.
  • FIG. 5 shows, as equipment 9 for temperature sensing in the generator, a stator coil, cooling water for water-cooling the generator, and cooling air for air-cooling the generator. and are exemplified. Further, FIG. 5 illustrates two main bearings (upper bearing and lower bearing) among a plurality of bearings that rotatably support the turbine shaft of the generator as equipment 9 for sensing vibrations in the generator. ing. Moreover, FIG. 5 exemplifies an iron pipe that guides water supplied to the water turbine and a casing that houses the water turbine as equipment 9 for sensing water pressure in the water turbine. Sensing the water pressure refers to sensing the water pressure inside these facilities 9 . Moreover, FIG.
  • FIG. 5 exemplifies one main bearing among the bearings that rotatably supports the water turbine and an upper cover as equipment 9 for sensing vibrations in the water turbine.
  • the upper cover is a structure provided to cover the casing of the water turbine from above.
  • FIG. 5 illustrates, as equipment 9 for sensing the water level in the waterway, a dam that stores and discharges water to be supplied to the water turbine, and a water outlet into which the water discharged from the water turbine flows. Sensing the water level refers to sensing the water level of the water that flows into these facilities 9 and is stored.
  • a sensing value can be obtained from the plant 2 for each item sensed by the sensor 4 of each facility 9.
  • the sensor 4 that outputs the sensing value is a temperature sensor.
  • the sensor 4 that outputs the sensing value is a vibration sensor. Sensors 4 corresponding to other sensing values are similarly provided for other sensing values.
  • the sensing values se01 to se03 are the sensing values of the temperature item.
  • the sensing value se01 changes according to the temperature of the generator stator.
  • the sensing value se02 changes according to the temperature of the cooling water of the generator.
  • the sensing value se03 changes according to the temperature of the cooling air for the generator.
  • the sensing value se04 and the sensing value se05 are the sensing values of the vibration item.
  • the sensing value se04 changes according to the vibration of the upper bearing of the generator.
  • the sensing value se05 changes according to the vibration of the lower bearing of the generator.
  • the sensing value se06 and the sensing value se07 are the sensing values of the water pressure item.
  • the sensing value se06 changes according to the water pressure of the iron pipes of the water turbine.
  • the sensing value se07 changes according to the water pressure in the casing of the water turbine.
  • the sensing value se08 and the sensing value se09 are the sensing values of the vibration item.
  • the sensing value se08 changes according to the vibration of the bearings of the water turbine.
  • the sensing value se09 changes according to the vibration of the upper cover of the water turbine.
  • the sensing value se10 and the sensing value se11 are the sensing values of the water level item.
  • the sensing value se10 changes according to the water level of the dam of the channel.
  • the sensing value se11 changes according to the water level of the outlet of the channel.
  • the evaluation value x1 is derived from the sensing value se01
  • the evaluation value x2 is derived from the sensing value se02
  • the evaluation value x3 is derived from the sensing value se03.
  • These evaluation values x 1 , x 2 and x 3 are respectively derived by the first processing performed by the evaluation unit 13 .
  • the evaluation values x 1 , x 2 , . . . , x n are, for example, the sensing values Se01, . , is derived from the sensing value sen. That is, n corresponds to, for example, the number of facilities 9 that are targets of one sensing item in one facility 3 .
  • n 3 (evaluation values x 1 , x 2 , x 3 ) from the viewpoint of sensing the temperature item in the generator shown in FIG.
  • the evaluation unit 13 calculates a comprehensive evaluation value r based on the multiple evaluation values x 1 , x 2 , . . . , xn .
  • a method of calculating the comprehensive evaluation value r will be described below with reference to FIGS. 5 and 6. FIG.
  • FIG. 6 is a graph schematically showing a calculation example of the comprehensive evaluation value r based on the two evaluation values x 1 and x 2 .
  • the evaluation of the plant 2 is represented by the comprehensive evaluation value r.
  • the evaluation unit 13 calculates a comprehensive evaluation value r based on the following formula (1).
  • x can be expressed as in Equation (2).
  • p in Equation (1) is a weighted value of the Lp norm, and is set to a real number of 1 or more.
  • the comprehensive evaluation value r calculated based on the formulas (1) and (2) is greater than or equal to the maximum value of the multiple evaluation values referred to in the calculation.
  • the overall evaluation value r is equal to the one evaluation value according to Equation (1).
  • the multiple evaluation values are greater than 0, according to Equation (1), the total evaluation value r is a value exceeding each of the multiple evaluation values greater than 0.
  • n in formulas (1) and (2) corresponds to the number of evaluation values.
  • p in Expression (1) is appropriately set to a value (for example, a first value u, a second value v, and a third value w, which will be described later) according to the evaluation stage.
  • the “maximum evaluation value” of the two evaluation values x 1 and x 2 is the evaluation value x 2
  • the difference between the overall evaluation value r and the evaluation value x 2 is 10. .
  • the comprehensive evaluation value r is a value exceeding the two evaluation values x 1 and x 2 .
  • the larger the evaluation value the greater the possibility that some abnormality has occurred in the object from which the evaluation value was derived.
  • the evaluation unit 13 lowers the evaluation of the operation status of the plant 2 below the evaluation indicated by the evaluation value of a single piece of equipment 9 .
  • the evaluation unit 13 when the "evaluation value” is large, the “evaluation” decreases, and when the "evaluation value” is small, the “evaluation” increases.
  • the “maximum evaluation value” of the two evaluation values x 1 and x 2 is the evaluation value x 2
  • the difference between the overall evaluation value r and the evaluation value x 2 is 30. ing.
  • p the comprehensive evaluation value r and the "maximum evaluation value" are closer to each other. Description will be made below with reference to FIG.
  • the “maximum evaluation value” of the two evaluation values x 1 and x 2 is the evaluation value x 2
  • the difference between the overall evaluation value r and the evaluation value x 2 is 0.2197415. It has become.
  • FIG. 7, 8, and FIG. 10, which will be described later, are diagrams corresponding to the range of the limited area L where the evaluation values x1 and x2 are 0 or more among the areas shown in FIG. In the embodiment, the evaluation values x 1 , x 2 , .
  • the comprehensive evaluation value r is 20.0.
  • the comprehensive evaluation value r is 14.1.
  • the comprehensive evaluation value r is 10.7.
  • the comprehensive evaluation value r is 10.0.
  • the values of the comprehensive evaluation values r are rounded off to the second decimal place in FIG.
  • the relationship between the evaluation value and the comprehensive evaluation value r changes according to the value of the weighting value (p). That is, the larger the weighting value (p) exceeds 1, the smaller the difference between the "maximum evaluation value” and the comprehensive evaluation value r. Also, the closer the weighting value (p) is to 1, the greater the difference between the "maximum evaluation value” and the overall evaluation value r.
  • each of the multiple evaluation values is not 0, it may be desired to have the synergistic effect of these evaluation values appear in the overall evaluation value r.
  • the weighting value (p) is set to 1 or a value closer to 1, the total evaluation value r can be calculated as a significantly larger value than each of the plurality of evaluation values.
  • Such a way of thinking can be applied, for example, to the calculation of the comprehensive evaluation value r of the entire plant 2 based on the evaluation values of each of the plurality of facilities 3 .
  • the weighting value (p) is set to a larger value.
  • the comprehensive evaluation value r of the temperature of the facility 9 sensed by the generator it is sufficient to know whether there is a facility 9 out of the normal temperature range and the degree of deviation from the normal temperature range.
  • the evaluation value is 0 if the temperature is within the normal temperature range, it is possible to determine whether or not there is equipment 9 outside the normal temperature range depending on whether the overall evaluation value r is 0 or not.
  • the "degree of deviation from the normal temperature range" can be grasped from the magnitude of the comprehensive evaluation value r. Such a concept can be applied to the calculation of the comprehensive evaluation value r of the sensing item.
  • the evaluation unit 13 performs the process of calculating the comprehensive evaluation value r multiple times based on the above formulas (1) and (2). Specifically, the evaluation unit 13 performs a first process, a second process, a third process, and a fourth process. As described above, the first process is the process of converting the sensing value into the evaluation value by the conversion process described above. In the second process, the overall evaluation value r calculated in the first process is selected for each sensing item, and the selected overall evaluation value r calculated in the first process is used as the evaluation value x 1 , x 2 , . . . , xn .
  • the first evaluation values are classified for each type of sensing value in the facility 3 including the plurality of facilities 9 and treated as a group of the first evaluation values.
  • temperature and vibration are sensing items in a generator, for example. Therefore, the generator temperature evaluation values x 1 , x 2 and x 3 and the generator vibration evaluation values x 1 and x 2 are classified and treated as different groups.
  • water pressure and vibration are sensing items for water turbines. Therefore, the evaluation values x 1 and x 2 of the water pressure of the water turbine and the evaluation values x 1 and x 2 of the vibration of the water turbine are classified and treated as different groups.
  • the sensing item for waterways is the water level, and there are no other sensing items. Therefore, the channel water level evaluation values x 1 and x 2 are grouped.
  • the comprehensive evaluation value r calculated in the second process is selected for each facility 3, and the selected comprehensive evaluation value r calculated in the second process is used as the evaluation value x 1 , x 2 , . . . , xn .
  • all the comprehensive evaluation values r calculated in the third process are used as the evaluation values x 1 , x 2 , .
  • the value before the second processing is represented by processing part P03 in FIG.
  • the second process is represented by process part P04 in FIG.
  • the value after the second processing is represented by processing part P05 in FIG.
  • the evaluation unit 13 evaluates the evaluation value of the processing part P03 of FIG. is subjected to the second processing.
  • the evaluation unit 13 processes the evaluation values x 1 , x 2 and x 3 derived from the temperature sensing values se01, se02 and se03 of the generator shown in FIG. Therefore, n in this case is 3.
  • the evaluation unit 13 processes the evaluation values x 1 and x 2 derived from the sensed vibration values se04 and se05 of the generator shown in FIG. Therefore, n in this case is two.
  • the evaluation unit 13 processes the evaluation values x 1 and x 2 derived from the sensing values se06 and se07 of the water pressure in the water turbine shown in FIG. Therefore, n in this case is two.
  • the evaluation unit 13 processes the evaluation values x 1 and x 2 derived from the sensed vibration values se08 and se09 of the water turbine shown in FIG. Therefore, n in this case is two.
  • the evaluation unit 13 processes the evaluation values x 1 and x 2 derived from the sensing values se10 and se11 of the water level in the channel shown in FIG. Therefore, n in this case is two.
  • the third process is a process of calculating the comprehensive evaluation value r indicating the stability of each facility 3 .
  • the evaluation unit 13 individually performs the third process for the generator, water turbine, and waterway.
  • the evaluation unit 13 treats the comprehensive evaluation value r of the hydraulic pressure of the water turbine calculated in the second process as the evaluation value x1 in the third process. In addition, the evaluation unit 13 treats the comprehensive evaluation value r of vibration of the water turbine as the evaluation value x2 in the third process. Therefore, n in this case is two.
  • the evaluation unit 13 treats the comprehensive evaluation value r of the water level of the channel calculated in the second process as the evaluation value x1 in the third process. Therefore, n in this case is 1.
  • the value before the fourth processing is represented by processing part P11 in FIG.
  • the fourth process is represented by process part P12 in FIG.
  • the value after the fourth processing is represented by processing part P13.
  • the plant 2 includes generators, water turbines, and water channels as a plurality of facilities 3 .
  • the evaluation unit 13 treats the overall evaluation value r of the generator calculated in the third process as the evaluation value x1 .
  • the evaluation unit 13 also treats the overall evaluation value r of the water turbine calculated in the third process as the evaluation value x2 .
  • the evaluation unit 13 treats the comprehensive evaluation value r of the waterway calculated in the third process as the evaluation value x3 . Therefore, n in this case is 3.
  • a comprehensive evaluation value r shown in the processing part P13 of FIG. 5 indicates the stability of the plant 2 .
  • a first value u that is the weighting value (p) in the second process, a second value v that is the weighting value (p) in the third process, and a third value w that is the weighting value (p) in the fourth process are predetermined respectively.
  • Data indicating the first value u, the second value v, and the third value w are included in the evaluation criteria data 31c.
  • the first value u that is the weighting value (p) in the second process, the second value v that is the weighting value (p) in the third process, and the third value v that is the weighting value (p) in the fourth process The value w is different.
  • the weighting of the overall evaluation value r for each sensing item in the stability evaluation of the plant 2 and the weighting of the overall evaluation value r for each facility 3 are made different from the weighting of the overall evaluation value r of the plant 2. be able to.
  • the relationship between the first value u, the second value v, and the third value w in the embodiment is u>v>w.
  • the value of p is 1 or a value close to 1 (for example, less than 2), the more evaluation values that are not 0, the larger the comprehensive evaluation value r is relative to the “maximum evaluation value”.
  • the comprehensive evaluation value r of the plant 2 is calculated by the fourth process.
  • the evaluation values x 1 , x 2 .
  • the comprehensive evaluation value r of one facility 3 is calculated by the third process.
  • the evaluation value of each sensing item at the stage of calculating the comprehensive evaluation value r of one facility 3 is higher than the evaluation value of each facility 3 at the stage of calculating the comprehensive evaluation value r of the plant 2.
  • the overall evaluation value r that more appropriately considers the evaluation value referred to in each calculation process and the "strength of relationship with the evaluation of the entire plant 2" can be calculated in each of the second, third and fourth processes.
  • w may be a value closer to 1 (eg, 5) or a value greater than 25. Other values may be smaller or larger.
  • the relationship between the first value u, the second value v, and the third value w does not necessarily have a relationship of u>v>w. When the relationship with the evaluation of the entire plant 2 is stronger, etc., u, v , w may be set.
  • the evaluation unit 13 performs the above-described conversion processing as the first processing. As a result, as shown in processing part P03, evaluation values corresponding to each of the sensing values se01 to se11 are derived.
  • the evaluation values of the processing part P03 are treated as evaluation values x 1 , x 2 , . . . , x n of the second processing.
  • a comprehensive evaluation value r for each sensing item of facility 3 is calculated.
  • the range related to the calculation process of each total evaluation value r is indicated by a thick rectangle within the range from the processing part P03 to the processing part P05. ing.
  • the thick-line rectangles are individually indicated for each sensing item of the temperature of the generator, the vibration of the generator, the water pressure of the water turbine, the vibration of the water turbine, and the water level of the water channel.
  • the comprehensive evaluation value r calculated in the second processing is the evaluation values x 1 , x 2 , . , xn .
  • a comprehensive evaluation value r for each facility 3 is calculated as shown in processing part P09.
  • the range related to the calculation process of each comprehensive evaluation value r is indicated by a thick rectangle within the range from the processing part P07 to the processing part P09. ing.
  • the heavy-line rectangles are individually shown for each facility 3 of the generator, the water turbine, and the waterway.
  • the comprehensive evaluation value r calculated in the third processing is the evaluation values x 1 , x 2 , . , xn .
  • the comprehensive evaluation value r of the plant 2 is calculated as shown in processing part P13.
  • the range related to the calculation of the comprehensive evaluation value r of the plant 2 performed in the fourth process is indicated by a thick rectangle within the range from the process part P11 to the process part P13.
  • the processing related to the calculation of the comprehensive evaluation value r of the plant 2 is not limited to obtaining the comprehensive evaluation value r as a comprehensive index of the stability of the plant 2. It can also be used as a process for specifying specific contents.
  • evaluation example 2 different from evaluation example 1 described with reference to FIGS. 5 to 9 will be described with reference to FIG.
  • FIG. 10 is a graph for explaining an example in which comprehensive evaluation values r1, r2, r3, and r4, which are different comprehensive evaluation values r, are calculated.
  • evaluation values x 1 and x 2 are evaluation values of two facilities 3 .
  • the evaluation value x1 is the evaluation value corresponding to the overall evaluation value r of the generator calculated in the third process
  • the evaluation value x2 corresponds to the overall evaluation value r of the water turbine calculated in the third process. Assume that it is an evaluation value.
  • the comprehensive evaluation value r4 is calculated in the fourth process, there is a high possibility that the plant 2 has a complex problem such as some kind of abnormality occurring in both the generator and the water turbine.
  • the evaluation value x1 is the evaluation value corresponding to the overall evaluation value r of the generator calculated in the third process
  • the evaluation value x2 is the overall evaluation of the turbine calculated in the third process. Assume that it is an evaluation value corresponding to the value r.
  • the comprehensive evaluation value r2 is calculated, there is a high possibility that some abnormality has occurred in the generator.
  • the comprehensive evaluation value r3 is calculated, there is a high possibility that some abnormality has occurred in the water turbine.
  • the facility 3 in which the abnormality actually occurs differs between when the comprehensive evaluation value r2 is calculated and when the comprehensive evaluation value r3 is calculated.
  • both the comprehensive evaluation value r2 and the comprehensive evaluation value r3 are approximately 90.0, and there is almost no difference. This is because when viewed from the viewpoint of "the level at which the abnormality of one facility 3 should be dealt with", the time when the comprehensive evaluation value r2 is calculated is equivalent to the time when the comprehensive evaluation value r3 is calculated. .
  • the overall evaluation value r4 described above is about 103.4, which is greater than the overall evaluation values r2 and r3 (about 90.0). This is because when the comprehensive evaluation value r4 is calculated, it is at the "level at which it is necessary to deal with anomalies in a plurality of facilities 3", so the comprehensive evaluation at "a level at which it is sufficient to deal with anomalies in one facility 3". It is calculated as a value larger than the value r2 and the comprehensive evaluation value r3. The difference between the comprehensive evaluation value r4, the comprehensive evaluation value r2, and the comprehensive evaluation value r3 is similar to the concept of the comprehensive evaluation value r of the plant 2 in Evaluation Example 1 described above.
  • the evaluation unit 13 evaluates the value of n, that is, the evaluation values x 1 , x 2 , .
  • An evaluation value r can be calculated.
  • the estimation of the cause of abnormality is not limited to three facilities, and can be performed in smaller units.
  • the evaluation values x 1 , x 2 It can be estimated whether there is a problem related to the event.
  • the evaluation value x1 is the evaluation value corresponding to the overall evaluation value r of the temperature of the generator calculated in the second process
  • the evaluation value x2 is the evaluation value calculated in the second process. Assume that it is an evaluation value corresponding to the overall evaluation value r of the vibration of the generator.
  • the comprehensive evaluation value r2 when the comprehensive evaluation value r2 is calculated, there is a high possibility that some abnormality has occurred in the generator that generates heat (for example, bearings, etc.) and that heat is being generated. Also, when the comprehensive evaluation value r3 is calculated, there is some abnormality in the structure that causes vibration in the generator (for example, a rotating mechanism such as a turbine shaft of the generator or a water wheel that is another facility 3 connected to the turbine). is likely to occur. In a similar way of thinking, by setting the evaluation values x 1 , x 2 , . can be estimated.
  • the specific configurations and numbers of the facilities 3, sensing items, and equipment 9 of the plant 2 illustrated in the explanations with reference to FIGS. 5 to 10 are merely examples for explanation.
  • the specific configuration of the plant 2 is not limited to this example, and can be made according to the actual state of the plant 2 .
  • the comprehensive evaluation value r may be a value that exceeds the upper limit of the percentage (100). This makes it easier to grasp the degree of abnormality when the plant 2 is abnormal.
  • FIG. 11 is a diagram showing an example of notification relating to evaluation of the operating status of the plant 2.
  • the display output contents by the display output unit 34a include a first display area D1 and a second display area D2.
  • sensing values indicated by the outputs of a plurality of sensors 4a, 4b, 4c, 4d, . . . are displayed.
  • the sensing value indicated by the output from each of the 18 sensors 4 is displayed in analog meter form, but this is an example of display form and is limited to this. not.
  • the number and type of sensing values displayed in the first display area D1, the display format in the first display area D1 and the second display area D2, the layout, and other specific aspects are arbitrary.
  • a scroll bar or the like is additionally provided to enable selection of the sensing value to be displayed in the first display area D1. .
  • the second display area D2 includes a plant stability display portion M1 and a trend graph display portion M2.
  • a display corresponding to the comprehensive evaluation value r indicating the stability of the operating state of the plant 2 is performed. Specifically, for example, the latest value of the comprehensive evaluation value r indicating the soundness of the plant 2 is reflected in the plant stability display section M1. That is, the total evaluation value r calculated as the fourth evaluation value is displayed on the plant stability display section M1. As exemplified in FIG. 11, the plant stability display section M1 is displayed to be larger and more conspicuous than each sensing value included in the first display area D1.
  • the evaluation value is displayed in the form of an analog meter called "stability meter" in the plant stability display section M1, but this is an example of a form of display and is not limited to this. can be changed as appropriate.
  • the "warning level” is indicated when the comprehensive evaluation value r reaches 100[%].
  • the "alarm level” indicates whether an alarm is issued by the audio output unit 34b or the like to indicate that some kind of abnormality has occurred that threatens the stable operation of the plant 2, or the level of abnormality is such that an alarm is issued even if the alarm is not issued. It shows what happened.
  • the analog meter of the plant stability display unit M1 exemplifies 120 [%] as a value exceeding 100 [%], but the exceeding value is not essential, and the value exceeding 100 [%] The value may be less than 120[%] or may be more than 120[%]. Conversely, it paradoxically indicates that the plant 2 is in an ideal stable state when the total stability is less than 100[%] and the fluctuation is small.
  • the character string "real time” is attached in the plant stability display portion M1.
  • Such a character string is such that the overall evaluation value r displayed by the plant stability display unit M1 is for a short period of time (for example, (less than 1 second).
  • the character strings "alarm level” and “real time” are not essential, and the specific contents of the character strings can be changed as appropriate.
  • the display of the plant stability display section M1 makes it easier for those who check the display contents (managers, workers, etc. in the plant 2) to grasp the operating status of the plant 2.
  • an additional display indicating whether the evaluation value displayed on the plant stability display part M1 is based on the evaluation value of a single facility 3 or the evaluation value of a plurality of facilities 3 is further provided by the plant It may be performed in the stability display section M1 or in the vicinity of the plant stability display section M1. This makes it easier to intuitively grasp the facility 3 that should be dealt with when the plant 2 has an abnormality.
  • the trend graph display section M2 shows time-series changes within a certain period of time in the plant stability display section M1.
  • the evaluation unit 13 causes the storage unit 31 to store at least data indicating evaluation values derived within the certain period of time, and refers to the data when displaying the trend graph display unit M2.
  • the trend graph display section M2 shows a line graph of changes in the values of the plant stability display section M1 during the period from the time point when the display is performed to 48 hours before.
  • the specific display mode of M2 can be changed as appropriate.
  • the calculation unit 32 functions as the evaluation unit 13 and performs processing related to determination of display content (display data generation processing), but is not limited to this.
  • the evaluation unit 13 may derive the evaluation value, and a dedicated configuration independent of the evaluation unit 13 may perform processing related to determination of notification content based on the evaluation value.
  • the display output content by the display output unit 34a may further include content that is not included in the first display area D1 and the second display area D2.
  • the display contents shown in FIG. 11 further include a real-time evaluation value display portion A1, an object name display portion A2, and a trend display portion A3 in addition to the first display area D1 and the second display area D2.
  • a list of some or all of the evaluation values of each sensing item of the equipment 9 exceeding 0 is displayed.
  • the evaluation value of the sensing item from which the higher evaluation value was derived may be preferentially displayed, or the higher comprehensive evaluation value r (third evaluation value) is derived.
  • the evaluation value of each other sensing item provided in the facility 3 that has been selected may be preferentially displayed.
  • the object name display area A2 displays information (such as a character string) indicating which equipment 9 and which item the sensing evaluation values listed in the real-time evaluation value display area A1 are obtained from.
  • the trend display area A3 a display is performed showing the chronological change in the evaluation value selected and displayed as the real-time evaluation value display area A1 within a certain period.
  • the evaluation unit 13 causes the storage unit 31 to store, as the sensing data 31b, data indicating the sensing evaluation value derived at least within the certain period of time, and refers to the sensing data 31b when displaying the trend display unit A3.
  • the display content of the first display area D1 may be associated with the estimation of the cause of the abnormality described with reference to FIG. For example, when there is a high possibility that an abnormality has occurred in a specific facility 3 included in the plant 2, the sensing value of the sensor 4 provided in the facility 9 included in the specific facility 3 has priority over the first display area D1. may be displayed as To give a specific example, when the overall evaluation value r2 is calculated in Evaluation Example 2 described above, the sensing value of the sensor 4 provided in the generator is preferentially displayed in the first display area D1. Further, when the comprehensive evaluation value r3 is calculated in the evaluation example 2 described above, the sensing value of the sensor 4 provided in the water turbine is preferentially displayed in the first display area D1.
  • the comprehensive evaluation value r that can be reflected in the display content of the plant stability display section M1 is not limited to the comprehensive evaluation value r as the fourth evaluation value.
  • the display mode of the comprehensive evaluation value r of the entire plant 2, the display mode of the comprehensive evaluation value r for each facility 3, and the display mode of the comprehensive evaluation value r for each sensing item of the facility 3 can be switched. may be provided.
  • a setting input section for such switching may be further provided in the display output contents of the display output section 34a, or a real-time evaluation value displayed in the real-time evaluation value display section A1 or the first display area D1 may be clicked.
  • the display may be switched to display in units of facilities 3 including facilities 9 provided with sensors 4 that output sensing values corresponding to the real-time values, or in units of sensing items of facilities 3 .
  • the notification by the output unit 34 included in the evaluation device 10 has been described as an example, but the notification may be performed by the terminal 20 (see FIG. 1).
  • the terminal 20 has a communication section 21 and a notification section 22 .
  • the communication unit 21 has the same configuration as the communication unit 11, and evaluates the data corresponding to the display content of the display output unit 34a and the data corresponding to the audio output content of the audio output unit 34b by communicating with the communication unit 11. Acquired from the device 10 .
  • the notification unit 22 has the same configuration as the output unit 34, and performs display output similar to that of the display output unit 34a described above and audio output similar to that of the audio output unit 34b.
  • the terminal 20 includes the notification unit 22 that performs notification related to evaluation of the operation status of the plant 2 .
  • the notification unit 22 includes the same configuration as the display output unit 34a as a configuration for displaying information related to evaluation of the operating status of the plant 2 .
  • the communication unit 11 communicates with the communication unit 5 and the communication unit 21, but the configuration for communicating with the communication unit 5 and the configuration for communicating with the communication unit 21 may be separate configurations. .
  • the evaluation value may be 0, but the temperature that is the same as the air temperature is affected by the surrounding temperature. , especially depending on the season. Therefore, it may be conditioned in advance so that the upper limit or lower limit of the variance is changed depending on the season. In this case, data corresponding to the conditioning is included in advance in the evaluation criteria data 31c.
  • the evaluation device 10 is provided in advance with a software program and a circuit (such as a timer circuit) that functions as a calendar that can specify the season.
  • FIG. 12 is a graph showing an example of changing the upper limit of variance according to the season.
  • FIG. 12 assumes that the temperature is sensed by the sensor 4, which is a temperature sensor.
  • a first upper limit E21 that is farther from the evaluation upper limit E4 and a second upper limit E22 that is closer to the evaluation upper limit E4 are individually set. Both the first upper limit E21 and the second upper limit E22 function as the upper limit E2 described above. That is, the variation amount SC between the first upper limit E21 and the second upper limit E22 is the seasonal variation amount of the upper limit E2.
  • FIG. 10 describes the comprehensive evaluation value r at a certain point in time
  • the evaluation unit 13 causes the notification unit 14 to display information based on the chronological change in the comprehensive evaluation value r that changes with the passage of time. You may make it perform to the part 34a.
  • the display output will be described below with reference to FIGS. 13 to 22.
  • FIG. 13 is a graph showing chronological changes in the evaluation value of one piece of equipment 9 .
  • FIG. 14 is a graph showing time series changes in the evaluation value of one piece of equipment 9 different from FIG.
  • the evaluation value represented by the graph shown in FIG. 13 is either the evaluation value x1 or the evaluation value x2 described with reference to FIG.
  • the evaluation value represented by the graph shown in FIG. 14 is the other of the evaluation value x1 and the evaluation value x2 described with reference to FIG.
  • the comprehensive evaluation value r derived based on the evaluation value x1 and the evaluation value x2 is represented by the graph shown in FIG. 15, for example.
  • the passage of time indicated by the symbols of times Ta, Tb, Tc, Td, and Te is shown by the flow from one end side to the other end side in the horizontal axis direction, and the evaluation value or The vertical axis indicates the comprehensive evaluation value r.
  • the comprehensive evaluation value r is not constant and changes with the passage of time.
  • the distribution r11 shown in FIG. 16 is obtained.
  • a distribution r11 is a set of comprehensive evaluation values r at multiple time points.
  • the distribution r11 has a substantially stable value within a range close to 0 in the vertical axis direction, but shows that the values vary from less than 20 to more than 80 in the horizontal axis direction.
  • the overall evaluation value r can be expressed as a distribution (for example, distribution r11) on a two-dimensional graph with one of the evaluation values x1 and x2 as the vertical axis and the other as the horizontal axis, as shown in FIG. 13 to 16, the vertical and horizontal axes indicate the evaluation value of the facility 9, and the overall evaluation value r is that of the facility 3 having the facility 9, but the present invention is not limited to this.
  • the vertical axis and the horizontal axis may indicate the evaluation value of the facility 3, and the overall evaluation value r may be that of the plant 2 having the facility 3 in question.
  • the two facilities 3 have a rating value x1 and a rating value x2 , which act as two reference values.
  • the comprehensive evaluation value r is for the plant 2 having the two facilities 3 .
  • FIG. 17 is a two-dimensional graph showing a distribution r12 of comprehensive evaluation values r different from FIG.
  • the distribution r12 shown in FIG. 17 is derived in the same manner as the distribution r11 in that it is the distribution of the comprehensive evaluation value r in a certain time period.
  • the distribution r12 is different from the distribution r11 in that the comprehensive evaluation value r, which had taken a value near the value r12a at the start of the certain time period, changes to the value r12b as time elapses within the time period. It shows that it rose to the side.
  • the two-dimensional graphs as shown in FIGS. 16 and 17 can be further represented as three-dimensional graphs with the comprehensive evaluation value r as the third axis (height axis).
  • a three-dimensional graph corresponding to the two-dimensional graph shown in FIG. 17 will be described below with reference to FIGS. 18 to 22.
  • FIG. 18 is a three-dimensional graph showing the distribution r12 of the comprehensive evaluation value r.
  • the comprehensive evaluation value r at each point in the distribution r12 tends to increase from the value r12a side to the value r12b side. Therefore, when the distribution r12 is represented by a three-dimensional graph, as shown in FIG. 18, the height relative to the origin (0) in the height axis direction is higher on the value r12b side than on the value r12a side. ing. In this way, in the three-dimensional graph, the increase in the comprehensive evaluation value r can be represented in the height axis direction.
  • 3D graphs are not limited to confirmation from a single point of view, but can be confirmed from multiple points of view.
  • An example in which the distribution r12 shown in FIGS. 17 and 18 is viewed from an angle different from that in FIG. 18 will be described below with reference to FIGS. 19 and 20.
  • FIG. 19 and 20 are three-dimensional graphs showing the distribution r12 of the comprehensive evaluation value r from an angle different from that of FIG.
  • the graph shown in FIG. 19 shows the distribution r12 viewed from the origin side of the vertical and horizontal axes in the three-dimensional graph.
  • the graph shown in FIG. 20 shows the distribution r12 viewed from the opposite side of the origin of the vertical and horizontal axes in the three-dimensional graph.
  • the three-dimensional graph can also show a part of the set of comprehensive evaluation values r such as the distribution r12. Therefore, the three-dimensional graph can be used to pick out areas that show more important information about the condition of the plant 2 .
  • a three-dimensional graph showing a portion of the distribution r12 on the r12b side where the comprehensive evaluation value r is higher will be described below with reference to FIGS. 21 and 22.
  • FIGS. 21 and 22 are diagrams showing an example of a three-dimensional graph showing a part of the distribution r12 of the comprehensive evaluation value r on the value r12b side where the value of the comprehensive evaluation value r is higher.
  • FIGS. 21 and 22 show an excerpt from the distribution r12 in the three-dimensional graph described with reference to FIGS. there is
  • the relationship between a set of comprehensive evaluation values r such as the distribution r12 and the threshold value of the comprehensive evaluation value r is represented as the positional relationship between objects in the three-dimensional space.
  • can. 21 and 22 illustrate threshold values Th1, Th2, Th3, Th4, Th5, Th6, and Th7.
  • the comprehensive evaluation value r indicated by the threshold Th1 is 60. That is, if the height in the height axis direction is higher than the threshold Th1, it indicates that the comprehensive evaluation value r exceeds 60.
  • the comprehensive evaluation value r indicated by the threshold Th2 is 70.
  • the comprehensive evaluation value r indicated by the threshold Th3 is 80.
  • the comprehensive evaluation value r indicated by the threshold Th4 is 90.
  • the comprehensive evaluation value r indicated by the threshold Th5 is 100.
  • the comprehensive evaluation value r indicated by the threshold Th6 is 110.
  • each of the thresholds Th1, Th2, Th3, Th4, Th5, Th6, and Th7 is drawn as an arc-shaped object having width in the radial direction.
  • the comprehensive evaluation value r indicated by the threshold Th7 is 120.
  • the specific values of the thresholds Th1, Th2, Th3, Th4, Th5, Th6, and Th7 as well as the shape, size, and position of the object are merely examples and are not limited to these, and can be changed as appropriate.
  • the total evaluation values at multiple points of time included in the set of total evaluation values r such as the distribution r12 Objects showing the overall evaluation value r at the time when r becomes equal to or exceeds the threshold for the first time can be specially drawn.
  • the comprehensive evaluation value r it is possible to further draw the chronological order of the plurality of objects.
  • an object Ob1 indicates an object indicating the first comprehensive evaluation value r at a time equal to or greater than the threshold Th3 among the comprehensive evaluation values r at multiple time points included in the distribution r12.
  • An object Ob2 indicates the first comprehensive evaluation value r at a time equal to or greater than the threshold Th4 among the comprehensive evaluation values r at a plurality of time points included in the distribution r12.
  • an object indicating the first comprehensive evaluation value r at a time equal to or greater than the threshold Th5 among the comprehensive evaluation values r at a plurality of time points included in the distribution r12 is shown as an object Ob3.
  • the temporal anteroposterior relationship of the objects Ob1, Ob2, and Ob3 is indicated by an arrow-shaped object Ar.
  • Object Ar indicates that the tip side of the arrow is later in time. That is, FIG. 12 shows that the comprehensive evaluation value r has changed from the object Ob1 side to the object Ob3 side via the object Ob2.
  • the evaluation unit 13 causes the display output unit 34a of the notification unit 14 to display the two-dimensional graphs and three-dimensional graphs described with reference to FIGS. 16 to 22 and various objects. Further, the notification unit 22 can also perform display output similar to that of the display output unit 34a.
  • the evaluation unit 13 causes the notification unit 14 to make a special notification.
  • the special notification may be, for example, an audio notification, a drawing such as blinking of part or all of the screen described with reference to FIG. 11, or both.
  • an operation for example, a click operation, etc.
  • the evaluate unit 13 The two-dimensional graph described with reference to FIG.
  • the display output unit 34a In the display by the display output unit 34a, a set (for example, distribution r12) of comprehensive evaluation values r exceeding the certain threshold is displayed.
  • a set for example, distribution r12
  • comprehensive evaluation values r exceeding the certain threshold is displayed.
  • the evaluation unit 13 may perform a multi-stage operation such that the three-dimensional graph described with reference to FIG. 18 is displayed on the display output unit 34a.
  • objects for example, objects Ob1, Ob2, and Ob3
  • a drawing that indicates the temporal context of these objects (for example, , object Ar) is displayed on the display output unit 34a.
  • the relationship between the operation by the confirmer and the response of the evaluation unit 13 to the operation illustrated above is merely an example and is not limited to this, and can be changed as appropriate.
  • the display output section 34a may perform drawing as described with reference to FIG.
  • the three-dimensional graph described with reference to FIG. 18 is being displayed, the three-dimensional graph can be displayed at another angle as described with reference to FIGS. It may be provided so that it can be switched to drawing when viewed from above.
  • the three-dimensional graph described with reference to FIG. 22 is displayed, the three-dimensional graph can be viewed from another angle as described with reference to FIG.
  • objects for example, objects Ob1, Ob2, and Ob3 indicating the comprehensive evaluation value r at the first point in time when the threshold is exceeded or the threshold is exceeded, and a drawing indicating the temporal context of these objects (For example, object Ar) is limited to FIG. 22, but similar rendering may be performed in each of the two-dimensional graph and three-dimensional graph described with reference to FIGS. 17 to 21.
  • estimation of the cause of the abnormality described with reference to FIG. 10 may be further combined with data analysis such as clustering.
  • data analysis such as clustering.
  • FIG. 23 is a schematic diagram showing an example of the relationship between the data analysis by the k-means method and the comprehensive evaluation value r.
  • the evaluation value x1 on the horizontal axis is the vibration evaluation value of the generator
  • the evaluation value x2 on the vertical axis is the temperature evaluation value of the generator. , but not limited to this.
  • the k-means method is a method of non-hierarchical clustering, in which a predetermined number of clusters are assigned to an existing data group, an optimization problem is solved by computation, and the existing data group is divided into the predetermined number of partial data. This is a method of classifying cases into (case classes). Since the algorithm for the optimization problem is the same as a known one, a detailed explanation is omitted.
  • FIG. 23 exemplifies case class Ga, case class Gb, and case class Gc as classification results.
  • the case class Ga includes comprehensive evaluation values ra, rb, rc, rd, and re.
  • the case class Gb includes comprehensive evaluation values rf, rg, and rh.
  • the case class Gc includes comprehensive evaluation values ri, rj, rk, and rl.
  • the comprehensive evaluation values ra, rb, rc, rd, re, rf, rg, rh, ri, rj, rk, and rl are calculated based on the evaluation values x 1 and x 2 when an abnormality occurred in the plant 2 in the past. is the overall evaluation value r. That is, the existing data group in this case is the comprehensive evaluation value r (for example, the fourth evaluation value) calculated when an abnormality occurred in the plant 2 in the past.
  • the case class Ga is a case class when a failure occurs in the bearing of the generator.
  • the center of the cluster is set so as to include comprehensive evaluation value r calculated when abnormality occurs in the temperature of the generator indicated by evaluation value x2 in the existing data group.
  • a case class Gb is a case class when a failure occurs in the water turbine.
  • the center of the cluster is set so as to include the total evaluation value r calculated when abnormality occurs in the vibration of the generator indicated by the evaluation value x1 among the existing data groups.
  • a case class Gc is a case class in which both the bearing and the water turbine have failed.
  • the center of the cluster is set so as to include the total evaluation value r calculated when both the vibration and temperature of the generator are abnormal among the existing data groups.
  • the initial positions of the clusters are random in the process of allocating a predetermined number of clusters for classification, the classification tends to be highly dependent on the random value. For this reason, the initial position of the cluster should be manually set so that the correlation between the specific abnormality that actually occurred in the plant 2 and the comprehensive evaluation value r when the abnormality occurred is stronger. , more accurate classification can be performed. Similarly, by setting the number of clusters (predetermined number) to correspond to the types of failures to be classified, more accurate classification can be performed.
  • the accuracy of estimating the specific content of the abnormality in the event that some abnormality occurs in the plant 2 can be further improved.
  • the latest comprehensive evaluation value r is included in one of the case classes Ga, Gb, and Gc, it is more strongly suggested that an abnormality corresponding to that case class has occurred.
  • FIG. 23 shows boundary lines La, Lb, and Lf that classify existing data groups in a larger framework than case classes Ga, Gb, and Gc.
  • a boundary line La is a boundary line between a comprehensive evaluation value r indicating a tendency of failure in the bearings of the generator and a comprehensive evaluation value r indicating a tendency of failure in the water turbine.
  • a boundary line Lb is a boundary line between a comprehensive evaluation value r indicating a tendency of failure in the bearing of the generator and a comprehensive evaluation value r indicating a tendency of failure in the bearing and the water turbine.
  • a boundary line Lf is a boundary line between a comprehensive evaluation value r indicating a tendency of failure of the water turbine and a comprehensive evaluation value r indicating a tendency of failure of the bearing of the generator and the water turbine. Since the comprehensive evaluation value r shown in FIG. 23 is included in the range surrounded by the boundary lines La and Lb, the possibility that the bearing of the generator has failed is more likely than other failures. It is suggested relatively strongly.
  • the boundary lines La, Lb, and Lf may be derived from the positional relationship between the centers of the case classes Ga, Gb, and Gc, or by other methods.
  • Other methods may be non-hierarchical clustering other than the k-means method, hierarchical clustering such as Ward's method, or other clustering methods.
  • the derivation of the case classes Ga, Gb, and Gc is not limited to the k-means method, and other methods may be used.
  • a so-called machine-learning algorithm may be incorporated into the data analysis that performs classification again by adding the comprehensive evaluation value r, which is newly calculated over time, to the target of data analysis.
  • the storage unit 31 further stores software programs and data for such data analysis.
  • the computing unit 32 reads and executes the software program and data, and further analyzes the data.
  • the evaluation device 10 is an evaluation device that evaluates the operation status of the plant 2 including the plurality of facilities 3 .
  • the evaluation device 10 has a display unit ( display output unit 34a, notification unit 22 ) and an evaluation value (eg, a comprehensive evaluation value r) and causes the display unit to display the relationship between the two reference values and the evaluation value in a three-dimensional graph.
  • the evaluation unit 13 causes the display unit to display a relationship (for example, distributions r11 and r12) including information indicating time-series changes in the evaluation values associated with time-series changes in the two reference values.
  • the two reference values are values related to the operating status of two facilities 3 or two facilities 9 included in one facility 3 .
  • a value indicating the state of a part of the facility 3 or the device 4 e.g., evaluation value x 1
  • a value indicating the state of the entire facility 3 or the device 4 including that portion e.g., comprehensive evaluation value r
  • the relationship between the state of other parts of the whole e.g., the evaluation value x 2
  • the information indicating the chronological change in the evaluation value includes information indicating at least two points in time (for example, objects Ob1, Ob2, etc.). This makes it easier to grasp the relationship between the state of a part of the facility 3 or the equipment 4 at multiple points in time, the state of the entire facility 3 or the equipment 4 including that part, and the state of other parts of the whole.
  • the information indicating the chronological change in the evaluation value includes information indicating the direction of change in the evaluation value between at least two points in time (eg, object Ar). This makes it easier to grasp the temporal context of the state of the facility 3 or the equipment 4 at multiple points in time. Therefore, it becomes easier to grasp changes in the state of the facility 3 or the equipment 4 over time.
  • the evaluation unit 13 further provides information indicating the correspondence relationship between the evaluation value (for example, comprehensive evaluation value r) and the threshold value of the evaluation value (for example, threshold values Th1, Th2, Th3, Th4, Th5, Th6, and Th7). It is displayed on the display unit (display output unit 34a, notification unit 22). This makes it easier to manage the state of the facility 3 or the equipment 4 with the threshold as a reference or guideline.
  • the evaluation value for example, comprehensive evaluation value r
  • the threshold value of the evaluation value for example, threshold values Th1, Th2, Th3, Th4, Th5, Th6, and Th7.
  • the evaluation device 10 also includes an acquisition unit 12 that acquires sensing values individually output by a plurality of sensors 4 provided in a plurality of facilities 9 included in each facility 3 .
  • the evaluation unit 13 performs a first process, a second process, a third process, and a fourth process.
  • the person who confirms the overall evaluation value r such as the fourth evaluation value can grasp the overall stability of the plant 2 more than in the case of simply acquiring the sensing values and notifying them in an enumerated manner. easier.
  • a first value u that is the weighting value (p) in the second process, a second value v that is the weighting value (p) in the third process, and a third value that is the weighting value (p) in the fourth process w and are different.
  • the weighting of the overall evaluation value r for each sensing item in the stability evaluation of the plant 2 and the weighting of the overall evaluation value r for each facility 3 are made different from the weighting of the overall evaluation value r of the plant 2. be able to.
  • the weighting value is set to a larger value, for example.
  • the "presence or absence of abnormality" and the "degree of abnormality” indicated by the evaluation values referred to in the calculation can be represented by the comprehensive evaluation value r.
  • the third evaluation value by setting an intermediate weighting value between the weighting value in the second process and the weighting value in the fourth process, the relationship with the evaluation of the entire plant 2 is stronger than the second evaluation value.
  • the third evaluation value can be calculated as a value that is weaker in relation to the evaluation of the entire plant 2 than the fourth evaluation value. In this way, in deriving the index for grasping the overall stability of the plant 2, weighting according to the strength of the relationship with the evaluation of the plant 2 as a whole can be arbitrarily performed. Therefore, it is possible to further assist the confirmation person in grasping the status of the plant 2 .
  • the first value u is greater than the second value v and the third value w.
  • the second value v is greater than the third value w.
  • the fourth evaluation value that directly indicates the evaluation of the entire plant 2 can be calculated as a value in which the multiple factors of the evaluation value are more likely to appear than the second evaluation value and the third evaluation value.
  • the 3rd evaluation value stronger than the 2nd evaluation value with the evaluation of the whole plant 2 can be calculated as a value in which the compound factor of an evaluation value appears more easily than a 2nd evaluation value.
  • the evaluation unit 13 performs the second processing for each of the plurality of sensing items for some or all of the plurality of facilities 9 (for example, generators and water turbines), and the second processing is performed for each of the plurality of sensing items.
  • a third evaluation value is calculated as the Lp norm of the second evaluation values of the plurality of sensing items.
  • the evaluation unit 13 performs the second processing for one sensing item on some or all of the plurality of facilities 3 (for example, waterways), and performs the second processing on the third processing of the facility 3 for which the second processing is performed for one sensing item.
  • the third evaluation value is calculated as the Lp norm of the second evaluation value of the one sensing item.
  • the sensor 4 detects the temperature, humidity, pressure, vibration, water level, capacity, flow rate, operating speed, and opening/closing state of the opening/closing portion (for example, the inlet valve) of the installed equipment 9. detect at least one of them. This makes it possible to use more diverse information as information relating to the operating status of the plant 2 .
  • some or all of the plurality of sensors 4 and the acquisition unit 12 are connected via wireless communication. This makes it easier to relax the installation conditions of the evaluation device 10 with respect to the plant 2 . In addition, it becomes easier to relax physical constraints for providing the sensor 4 . That is, since the sensor 4 and the evaluation device 10 do not necessarily have to be directly connected, the degree of freedom regarding the installation of the sensor 4 and the evaluation device 10 is further improved.
  • the evaluation value is derived as a percentage from the most stable state including the normal operation of the facility 9 to the state including the abnormal operation of the facility 3, such as the above-described alarm level warning situation. It is a value that indicates the operating status of the facility 3 that has been set. As a result, the operational status of the plant 2 can be grasped with more intuitive numerical information represented within the range from 0 to 100.
  • the "stable state” does not only refer to an ideal operating state without any problems, but as long as the state is maintained, the equipment 9 and the facility 3 including the equipment 9 can continue to operate without problems. Refers to general condition. Hereinafter, when the equipment 9 or the like is described, the equipment 9 and the facility 3 including the equipment 9 are referred to.
  • the "most alarming state" is set as the management level of the plant 2. For example, like the alarm level, an alarm indicating the need for immediate action to eliminate the abnormality is notified by voice or the like. This corresponds to the operation status of the equipment 9, etc., but is not limited to this.
  • the voice notification of the warning is not essential, and it is natural that the operation status of the facility 9, etc., which is considered to be the "most alarming state", is changed based on a temporary or newly occurring accident or the like.
  • the evaluation device 10 of the embodiment includes a notification unit 14 that performs notification related to evaluation of the operating status of the plant 2 .
  • a notification unit 14 that performs notification related to evaluation of the operating status of the plant 2 .
  • the notification unit 14 also includes a display output unit 34a that displays information related to evaluation of the operating status of the plant 2.
  • a manager, an operator, or the like of the plant 2 can easily check the information related to the evaluation of the operation status of the plant 2 at any timing by visually recognizing the display output unit 34a.
  • the evaluation device 10 is not limited to an information processing device, and may be a dedicated device provided to perform at least the functions of the acquisition unit 12 and the evaluation unit 13 among the functions described above.
  • the route for transmitting the output of the sensor 4 to the evaluation device 10 is not limited to wireless communication between the communication units 5 and 11 .
  • a part or all of the communication line between the communication section 5 and the communication section 11 may include a wired communication circuit, or may include a public communication line network such as the Internet. Also, part or all of the route may be a dedicated direct connection bus.
  • the order of increase/decrease of the evaluation value is 1st order, but the order of increase/decrease of the evaluation value is arbitrary. Also, the relationship between the level of the evaluation value and the level of the evaluation of the evaluation target (the plant 2, the facility 3, and the sensing items of the facility 3) may be reversed from the above description.
  • the sensor 4 detects is not limited to the temperature, vibration, water pressure, and water level of the equipment 9.
  • the sensor 4 may detect at least one of the humidity of the facility 9, the pressure (not limited to water pressure), the capacity, the flow rate, the operating speed of the movable structure, and the opening/closing status of the opening/closing portion.
  • the sensor 4 may detect at least one of the humidity of the facility 9, the pressure (not limited to water pressure), the capacity, the flow rate, the operating speed of the movable structure, and the opening/closing status of the opening/closing portion.
  • other sensing items may also be detected.
  • evaluation system 2 plant 3 facility 4 sensor 9 facility 10 evaluation device 5, 11, 21 communication unit 12 acquisition unit 13 evaluation unit 14, 22 notification unit 20 terminal r comprehensive evaluation values Th1, Th2, Th3, Th4, Th5, Th6, Th7 threshold x 1 , x 2 evaluation value

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

評価装置は、複数の施設を含むプラントの稼働状況に係る評価を行う評価装置であって、表示部と、2つの参照値に基づいて評価値を導出して、2つの参照値と、評価値と、の関係を表示部に三次元グラフで表示させる評価部と、を備え、評価部は、2つの参照値の時系列変化に伴う評価値の時系列変化を示す情報を含む関係を表示部に表示させ、2つの参照値は、2つの施設、又は、1つの施設が含む2つの設備、の稼働状況に係る値であり、三次元グラフは、2つの参照値の一方を三軸の一つとし、2つの参照値の他方を三軸の他の一つとし、評価値を三軸の残りの一つとする。

Description

評価装置及び評価システム
 本発明は、評価装置及び評価システムに関する。
 機器に設けられたセンサの出力に基づいて機器の稼働状況を把握可能な方法が知られている(例えば、特許文献1)。
特開2019-178625号公報
 プラントでも、プラントに含まれる各種の施設が備える機器にセンサを設けてプラントの稼働状況を把握したいという需要がある。一方、発電所等の大規模なプラントでは、プラントに含まれる各種の施設の稼働状況が互いに関与し合うことで一体的な動作が成立する。このようなプラントでは、万が一何らかの異常が生じた場合、その異常が施設全体又は機器全体の一部分に起因するということが多い傾向がある。また、当該一部分の異常が当該全体の他の部分に影響を与えることがある。しかしながら、当該一部分の状態と、施設又は機器の全体の状態及び当該全体における他の部分の状態と、の関係を把握することは特許文献1の方法では困難だった。
 本発明では、施設又は機器の一部分の状態と、当該一部分を含む施設又は機器の全体の状態及び当該全体における他の部分の状態と、の関係をより把握しやすい評価装置及び評価システムを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の評価装置は、複数の施設を含むプラントの稼働状況に係る評価を行う評価装置であって、表示部と、2つの参照値に基づいて評価値を導出して、前記2つの参照値と、前記評価値と、の関係を前記表示部に三次元グラフで表示させる評価部と、を備え、前記評価部は、前記2つの参照値の時系列変化に伴う前記評価値の時系列変化を示す情報を含む前記関係を前記表示部に表示させ、前記2つの参照値は、2つの前記施設、又は、1つの前記施設が含む2つの設備、の稼働状況に係る値であり、前記三次元グラフは、前記2つの参照値の一方を三軸の一つとし、前記2つの参照値の他方を三軸の他の一つとし、前記評価値を三軸の残りの一つとする。
 本発明の望ましい態様として、前記評価値の時系列変化を示す情報は、少なくとも2つの時点を示す情報を含む。
 本発明の望ましい態様として、前記評価値の時系列変化を示す情報は、少なくとも2つの時点間の前記評価値の変化の方向を示す情報を含む。
 本発明の望ましい態様として、前記評価部は、前記評価値と前記評価値の閾値との対応関係を示す情報をさらに前記表示部に表示させる。
 本発明の望ましい態様として、各施設に含まれる複数の設備に設けられた複数のセンサが個別に出力するセンシング値を取得する取得部を備え、前記評価部は、前記複数のセンサが出力する複数のセンシング値に基づいて設備の安定度を示す第1評価値を算出する第1処理を設備毎に行い、複数の設備の前記第1評価値のLpノルムとして、当該複数の設備を含む施設における、センシング値の種別毎に分類された前記第1評価値のグループ毎のセンシング項目の第2評価値を算出する第2処理を行い、1つの施設におけるセンシング項目に対応する前記第2評価値のLpノルムとして、当該1つの施設の安定度を示す第3評価値を算出する第3処理を施設毎に行い、複数の施設の前記第3評価値のLpノルムとして、前記プラントの安定度を示す第4評価値を算出する第4処理を行い、前記第2処理におけるLpノルムの重み付け値である第1値と、前記第3処理におけるLpノルムの重み付け値である第2値と、前記第4処理におけるLpノルムの重み付け値である第3値とは異なり、前記第1処理における前記センシング値は前記参照値として機能し、前記第1処理における前記第1評価値は前記評価値として機能し、前記第2処理における前記第1評価値は前記参照値として機能し、前記第2処理における前記第2評価値は前記評価値として機能し、前記第3処理における前記第2評価値は前記参照値として機能し、前記第3処理における前記第3評価値は前記評価値として機能し、前記第4処理における前記第3評価値は前記参照値として機能し、前記第4処理における前記第4評価値は前記評価値として機能する。
 本発明の望ましい態様として、前記第1値は、前記第2値及び前記第3値より大きく、前記第2値は、前記第3値より大きい。
 本発明の望ましい態様として、前記評価部は、前記複数の施設の一部又は全部について前記第2処理を複数のセンシング項目毎に行い、前記第2処理が複数のセンシング項目毎に行われた施設の前記第3処理では、当該複数のセンシング項目の前記第2評価値のLpノルムとして前記第3評価値を算出する。
 本発明の望ましい態様として、前記評価部は、前記複数の施設の一部又は全部について前記第2処理を1つのセンシング項目について行い、前記第2処理が1つのセンシング項目について行われた施設の前記第3処理では、当該1つのセンシング項目の前記第2評価値のLpノルムとして前記第3評価値を算出する。
 本発明の望ましい態様として、前記センサは、設けられた設備の温度、振動、水圧及び水位のうち少なくとも1つを検知する。
 本発明の望ましい態様として、請求項1から9のいずれか一項に記載の評価装置と、前記プラントの稼働状況の評価に係る報知を行う報知部を備える端末とを備える。
 本発明によれば、施設又は機器の一部分の状態と、当該一部分を含む施設又は機器の全体の状態及び当該全体における他の部分の状態と、の関係をより把握しやすくなる。
図1は、実施形態に係る評価システムの主要構成例を示す図である。 図2は、評価装置の構成例を示すブロック図である。 図3は、センシング値と評価値との関係の一例を示すグラフである。 図4は、センシング値の時系列変化と評価値の時系列変化との関係の一例を示すグラフである。 図5は、プラント2に含まれる複数の施設と、施設でセンシングされる項目と、センシングの対象となる設備と、対応関係の一例を示す図である。 図6は、2つの評価値に基づいたプラントの総合評価値の算出例を模式的に示すグラフである。 図7は、2つの評価値に基づいたプラント2の総合評価値rの算出においてp=1とした例を模式的に示すグラフである。 図8は、2つの評価値に基づいたプラント2の総合評価値rの算出においてp=10とした例を模式的に示すグラフである。 図9は、評価値x=10,x=10である場合において、p=1であるときの総合評価値と、p=2であるときの総合評価値と、p=10であるときの総合評価値と、p=無限大(∞)であるときの総合評価値とを比較した表である。 図10は、それぞれ異なる総合評価値が算出された場合の事例を説明するためのグラフである。 図11は、プラントの稼働状況の評価に係る報知の一例を示す図である。 図12は、季節に応じた分散の上限の変更例を示すグラフである。 図13は、ある1つの設備の評価値の時系列変化を示すグラフである。 図14は、図13とは異なる1つの設備の評価値の時系列変化を示すグラフである。 図15は、図13及び図14を参照して説明した2つの設備を有する施設の総合評価値の時系列変化を示すグラフである。 図16は、図13に示す評価値を横軸とし、図14に示す評価値を縦軸として図15に示す総合評価値を示した二次元グラフである。 図17は、図16とは異なる総合評価値rの分布を示す二次元グラフである。 図18は、総合評価値の分布を示す三次元グラフである。 図19は、総合評価値の分布を図18とは異なる角度から示す三次元グラフである。 図20は、総合評価値の分布を図18とは異なる角度から示す三次元グラフである。 図21は、総合評価値の分布のうち、総合評価値rの値がより高い値r12b側の一部を示す三次元グラフの一例を示す図である。 図22は、総合評価値の分布のうち、総合評価値rの値がより高い値r12b側の一部を示す三次元グラフの一例を示す図である。 図23は、k-means法によるデータ分析と総合評価値との関係の一例を示す模式図である。
 次に、本発明の実施形態を、図面を参照して詳細に説明する。図1は、実施形態に係る評価システム1の主要構成例を示す図である。評価システム1は、プラント2の稼働状況を評価するシステムである。
 図1に示すように、評価システム1は、プラント2に設けられた複数のセンサ4a,4b,4c,4d,…と、評価装置10と、端末20とを含む。プラント2は、複数の施設3a,3b,…を備える。施設3a,3b,…はそれぞれが機能することで、全体としてプラント2が機能する。具体例を挙げると、プラント2が水力発電所である場合、施設3a,3b,…は、発電機、水車、…のような水力発電所が備える施設である。施設3a,3b,…の具体的形態は、プラント2の目的に応じたものになる。施設3a,3b,…を特に区別せず包括的に説明する場合、施設3と記載することがある。施設3の数は3以上であってもよい。
 図1に示す施設3aは、複数の設備9a,9b,…を含む。また、図1に示す施設3bは、複数の設備9c,9d,…を含む。設備9a,9b,9c,9d…は、各施設3を構成する設備である。例えば、施設3aが発電機である場合、設備9a,9b,…の具体的形態は、回転子コイル、冷却器、…のような発電機が備える設備である。設備9a,9b,9c,9d,…を特に区別せず包括的に説明する場合、設備9と記載することがある。このように、各施設3は、複数の設備9を含む。より詳細な設備9の具体例については、後述する図5を参照した説明で行う。
 また、施設3a,3b,…は、複数のセンサ4a,4b,4c,4d,…を含む。すなわち、実施形態における複数のセンサ4a,4b,4c,4d,…は、評価システム1に含まれる構成であり、かつ、プラント2に含まれる構成でもある。複数のセンサ4a,4b,4c,4d,…は、複数の設備9a,9b,9c,9d…に個別に設けられたセンサである。センサ4a,4b,4c,4d,…の各々の具体的態様及び検出対象となる事項は、設備9a,9b,…の具体的態様に応じたものになる。センサ4a,4b,4c,4d,…を特に区別せず包括的に説明する場合、センサ4と記載することがある。
 詳細なセンサ4の具体例については、後述する図5を参照した説明で行う。なお、図1では、1つの設備9に1つのセンサ4が設けられているが、1つの設備9に複数のセンサ4が設けられてもよいし、複数の設備9に共通する事項を1つのセンサ4で検出可能にセンサ4が設けられてもよい。複数の設備9に共通する事項として、例えばプラント2がある地域の天候、気温、湿度等が挙げられる。
 プラント2全体として見た場合の複数のセンサ4a,4b,4c,4d,…の数は5以上であってもよい。ただし、プラント2は、複数の施設3がそれぞれ、複数の設備9及び複数のセンサ4を含む。
 実施形態では、図1に示すように、施設3aに通信部5aが設けられる。また、施設3bに通信部5bが設けられる。通信部5a,5bのような各施設3に設けられる通信部を区別しない場合、通信部5と記載することがある。
 通信部5は、センサ4の出力を評価装置10に伝送する。実施形態に係る通信部5は、予め定められた通信プロトコルに対応したNIC(Network interface controller)として機能するための回路等を有する。係る通信プロトコルとして、例えばTCP/IP(Transmission Control Protocol/Internet Protocol)が挙げられるが、採用可能な通信プロトコルこれに限られるものでなく、適宜変更可能である。通信部5は、評価装置10との通信を介してセンサ4の出力に応じて生成されたデータを評価装置10に送信する。
 以下、出力データと記載した場合、センサ4の出力に応じて生成されたデータをさす。出力データは、センサ4が検出したセンシング値を示す情報を含む。センシング値は、センサ4が設けられた設備9の状態に応じて導出された値である。例えば、センサ4が温度センサ位である場合、センシング値は、温度(例えば、摂氏の温度)を示す。また、センサ4が振動センサである場合、センシング値は、振動の大きさを示す。その他、センシング値の具体的内容は、センサ4の具体的態様に応じたものになる。
 なお、図1では、1つの施設3に対して1つの通信部5が図示されているが、複数のセンサ4a,4b,…の一部又は全部に対して個別に通信部5と同様に機能する通信のための構成が設けられていてもよい。また、図示しないが、センサ4の出力がアナログである場合、通信部5によるデジタル通信を介して伝送可能な出力データを生成するためのアナログ/デジタル変換回路がセンサ4と通信部5の間又はセンサ4に設けられる。
 なお、プラント2の構成のうち、実施形態に係る評価システム1に含まれる構成は、センサ4と通信部5である。施設3及び設備9は、プラント2においてセンサ4が設けられる構成を説明するために図示されている。
 評価装置10は、プラント2の稼働状況に係る評価を行う。図1に示すように、評価装置10は、通信部11と、取得部12と、評価部13と、報知部14とを備える。通信部11は、通信部5の通信プロトコルに対応するNICとして機能するための回路等を有する。通信部11は、通信部5と通信を行い、出力データを受信する。実施形態では、通信部5と通信部11との間の通信回線は、電波等の電磁波を利用した無線の通信回線である。このように、実施形態では、複数のセンサ4a,4b,4c,4d,…と取得部12とは、通信部5及び通信部11による無線通信を介して接続される。
 取得部12は、複数の4a,4b,4c,4d,…が個別に出力するセンシング値を取得する。具体的には、取得部12は、通信部11が受信した出力データを取得することでセンシング値を取得する。評価部13は、取得部12が取得したセンシング値に基づいてプラント2の稼働状況を評価する。報知部14は、評価部13が評価したプラント2の稼働状況の評価に係る報知を行う。
 実施形態に係る評価装置10は、通信部11、取得部12、評価部13及び報知部14としての機能を奏するよう設けられた情報処理装置である。係る情報処理装置の構成例について、図2を参照して説明する。
 図2は、評価装置10の構成例を示すブロック図である。評価装置10は、通信部11と、記憶部31と、演算部32と、入力部33と、出力部34とを備える。記憶部31は、評価装置10が行う各種の処理で読み出されるソフトウェア・プログラム及びデータを記憶する。以下、プログラム等と記載した場合、係るソフトウェア・プログラム及びデータをさす。具体的には、記憶部31は、例えばハードディスクドライブ(HDD:Hard Disk Drive)やソリッドステートドライブ(SSD:Solid State Drive)、フラッシュメモリのような記憶装置を含み、係る記憶装置に当該データを記憶する。
 なお、図示しないが、端末20(図1参照)も、評価装置10が備える、通信部11、記憶部31、演算部32、入力部33及び出力部34と同様に機能可能な通信部、記憶部、演算部、入力部及び出力部を備える情報処理装置である。具体的には、端末20は、例えばスマートフォンやタブレットのような携帯型の端末であるが、これに限られるものでなく、据え置き型のPC(Personal Computer)であってもよい。
 図2では、プログラム等の一例として、評価プログラム31a、センシングデータ31b及び評価基準データ31cが例示されている。評価プログラム31aは、演算部32を取得部12、評価部13として機能させるためのソフトウェア・プログラムである。センシングデータ31bは、時間の経過に応じて取得された出力データを累積した累積データである。評価基準データ31cは、センシングデータ31bに基づいた評価に際して参照されるデータである。
 演算部32は、CPU(Central Processing Unit)等の演算装置を含み、上述のプログラム等を利用した演算処理によって取得部12、評価部13として機能し、各種の処理を行う。また、実施形態では、演算部32は、出力データの取得に応じてセンシングデータ31bを生成、更新する。これによって、演算部32は、センシングデータ31bから、過去の任意のタイミングにおけるセンシング値を取得可能になる。
 入力部33は、評価装置10の管理者からの入力操作を受け付けるための構成を有する。係る構成として、例えばキーボード、マウス等が挙げられるが、これに限られるものでなく、各種の入力装置を採用可能である。
 出力部34は、演算部32が行った処理内容に応じた各種の出力を行う。出力部34は、例えば表示出力部34a、音声出力部34b等を構成に含む。表示出力部34aは、例えば液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ等の表示装置を1つ以上有し、演算部32が行った処理内容に応じた画像を表示する。音声出力部34bは、例えばスピーカ等、音声を出力可能な構成を有し、演算部32が行った処理内容に応じた音声を出力する。表示出力部34a、音声出力部34bは、報知部14として機能する。
 以下、評価部13の処理内容について順次説明する。まず、評価部13は、変換処理を行う。変換処理は、センシング値を評価値に変換する処理である。
 以下、図3と図4を参照し、変換処理について説明する。図3は、センシング値と評価値との関係の一例を示すグラフである。図3では、センシング値の分布をヒストグラムで示し、センシング値に応じた評価値を線グラフで示している。
 図3で例示するセンシング値は、評価値を導出する根拠として採用された正常時のセンシング値である。評価値は、ヒストグラムが示す正常時のセンシング値の分布に基づいて決定される。当該センシング値の正常値範囲は、当該分布に基づいたカーネル密度推定によって導出できる。
 具体的には、図3で例示するセンシング値は、ほとんどが25から50の範囲内に分布している。ここで、一点鎖線C1が示すセンシング値の中央値をタウ(τ)とし、センシング値の分散をシグマ(σ)とする。この場合、センシング値の正常値範囲の下限E1はτ-σとして表せる。また、この場合、センシング値の正常値範囲の上限E2はτ+σとして表せる。下限E1から上限E2までのセンシング値の正常値範囲から外れたセンシング値が検出された場合、当該センシング値を出力するセンサ4が設けられた設備9に何らかの異常が生じている可能性が示唆される。
 実施形態の評価値は、百分率で表され、値が大きいほど、設備9に何らかの異常が生じている可能性が大きくなる。例えば、センシング値が下限E1を下回ると、評価値は0を超えた値として導出される。図3では、センシング値がτ-σからτ-3σに向かって下がるに従って評価値が漸増する設定が例示されている。また、図3ではτ-3σを評価下限E3として示している。また、センシング値が上限E2を上回ると、評価値は0を超えた値として導出される。図3では、センシング値がτ+σからτ+3σに向かって上がるに従って評価値が漸増する設定が例示されている。また、図3ではτ+3σを評価上限E4として示している。このように、実施形態では、評価下限E3から下限E1までの範囲内及び上限E2から評価上限E4までの範囲内では、センシング値の正常値範囲からの乖離の度合いに応じて評価値が大きくなるように設定されている。すなわち、評価値が大きくなるほど、センシング値が正常値範囲から乖離していることが示され、当該センシング値を出力するセンサ4が設けられた設備9に何らかの異常が生じている可能性がより強く示唆される。評価下限E3以下のセンシング値又は評価上限E4以上のセンシング値が得られた場合、評価値は最大(100)で飽和する。
 このように、実施形態の評価値は、設備9の稼働状況を示す値である。実施形態の評価値は、設備9の正常動作時を含む最も安定した状態(0)から設備9の異常動作時を含む最も警戒すべき状態(100)までの範囲を百分率として導出される。
 評価部13は、中央値(τ)と分散(σ)とに基づいて、センシング値を評価値に変換する。このようにセンシング値を評価値に変換する処理が、「複数のセンサ4が出力する複数のセンシング値に基づいて設備9の安定度を示す第1評価値を算出する第1処理」として機能する。中央値(τ)及び分散(σ)を示すデータは、複数のセンサ4の各々に個別に設けられる。係るデータは、評価基準データ31cに含まれる。なお、図3に示すセンシング値は、発電機に設けられた軸受の振動量を例としているが、センシング値はこの例に限られるものでない。例えば、センサ4が温度センサである場合、センシング対象の温度がセンシング値として得られる。また、センサ4が圧力センサである場合、検出された圧力を示す値がセンシング値として得られる。これらに限られず、センサ4の具体的対応に応じたセンシング値が得られる。センシング値の中央値(τ)は、各センサ4の検出項目と検出対象との組み合わせに対応した値になる。分散(σ)は、各センサ4の検出項目と検出対象との組み合わせに対応した値になる。評価部13は、複数のセンサ4の各々について、センシング値を評価値に変換する処理を個別に行う。
 なお、センシング値の中央値(τ)と分散(σ)とに基づいた正常値範囲の下限E1及び上限E2並びに評価下限E3及び評価上限E4の設定はあくまで一例であってこれに限られるものでなく、係数や具体的な式については適宜変更可能である。
 図4は、センシング値の時系列変化と評価値の時系列変化との関係の一例を示すグラフである。ここでは、図4に示すセンシング値と、図3に示すセンシング値とは、同じ設備9でセンシングしたものとして説明を行う。
 図4に示すように、時間帯T1以前の時間帯におけるセンシング値は25から50の正常値範囲内であり、概ね50を有意に下回る値で安定している。係る時間帯の評価値は、0又は0を超える値であっても比較的低い値である。これに対し、時間帯T1に入るとセンシング値が有意に50を上回った後、25を下回るように下降し、しばらく25以下を示した後に急激に50を上回る瞬間を生じるように上昇する等、不安定に変化している。このような時間帯T1の評価値は、0を有意に上回り、当該センシング値を出力するセンサ4が設けられた設備9に何らかの異常が生じている可能性を示唆している。
 なお、時間帯T1の後に生じている空白時間帯T2の大半は、センシング値が0となっているが、これは時間帯T1における評価値に基づいて設備9に何らかの異常があると判断されたことによって当該設備9又は当該設備9を含むプラント2が停止されたことによる。プラント2の停止中は、評価値も導出されない。空白時間帯T2を経て当該設備9を含むプラント2が再稼働することで、センシング値の出力及び評価値の導出が再開されている。図4に示す例では、再稼働直後には一時的にセンシング値及び評価値の揺らぎがあるものの、その後安定している。
 センシング値の出力及び評価値の導出は、複数のセンサ4a,4b,4c,4d,…の各々のセンシング値毎に行われる。ここで、実施形態では、センシング値毎の評価値を第1評価値として導出する導出処理を第1処理とする。すなわち、評価部13は、複数のセンサ4が出力した複数のセンシング値に基づいて、第1処理を設備9毎に行う。第1評価値は、設備9の安定度を示す評価値となる。
 また、実施形態の評価部13は、第1処理を予め定められた処理周期に従って周期的に行う。処理周期の時間長は任意であるが、設備9に異常が生じた場合にすみやかに評価値によって当該異常が示唆される程度の短期間(例えば、1秒未満)周期であることが望ましい。
(評価例1)
 以下、実施形態におけるプラント2の評価に関する一連の処理の例を評価例1とし、図5から図9を参照して説明する。図5は、プラント2に含まれる複数の施設3と、施設3でセンシングされる項目と、センシングの対象となる設備9と、対応関係の一例を示す図である。図5は、プラント2が水力発電所である場合の対応関係を例示しているが、これに限られるものでない。図5に示す各事項は、プラント2に応じたものになる。
 図5の処理パートP01のセンシング値は、第1処理である処理パートP02の処理により、処理パートP03の評価の値になる。
 図5に示すように、プラント2(図1参照)には、発電機、水車及び水路の施設3(図1)が含まれる。発電機は、水車と連結されて水車の回転に応じて発電する。水車は、水路を利用して供給される水の流れに応じて回転する。水路は、当該水の供給及び供給後の放流に関する。
 発電機は、水車と連結されて水車の回転に応じて発電する。水車は、水路を利用して供給される水の流れに応じて回転する。水路は、当該水の供給及び供給後の放流に関する。発電機では、1つ以上のセンシング項目、例えば温度、振動についてセンシングが行われる。水車では、水圧、振動の項目についてセンシングが行われる。水路では、水位の項目について、センシングが行われる。このように、センシング項目とは、センシング値のグループであり、センシング値の種別毎に分類される。
 上述したように、各施設3は、複数の設備9を含む。実施形態では、図5に示すようにセンシング項目毎に複数の設備9がセンシングの対象になる。図5の設備9は例示であり、これに限られるものでない。センシングの項目毎にセンシングの対象になる設備9は、1つ以上あればよい。
 具体的には、図5は、発電機において温度がセンシングされる設備9として、固定子コイルと、発電機を水冷冷却する冷却器の冷却水と、発電機を空冷冷却する冷却器の冷却風とを例示している。また、図5は、発電機において振動がセンシングされる設備9として、発電機のタービン軸を回転可能に軸支する複数の軸受のうち主要な2つの軸受(上部軸受及び下部軸受)を例示している。また、図5は、水車において水圧がセンシングされる設備9として、水車に供給された水を導く鉄管と、水車を収めるケーシングと、を例示している。水圧のセンシングとは、これらの設備9の内部の水圧をセンシングすることをさす。また、図5は、水車において振動がセンシングされる設備9として、水車を回転可能に軸支する軸受のうち主要な1つの軸受と、上カバーと、を例示している。上カバーは、上側から水車のケーシングに蓋をするように設けられた構造物である。また、図5は、水路において水位がセンシングされる設備9として、水車に供給される水を備蓄及び放流するダムと、水車から放流された水が流れ込む放水口と、を例示している。水位のセンシングとは、これらの設備9に流入して貯留されている水の水位をセンシングすることをさす。
 このように、プラント2からは、各設備9のセンサ4がセンシングする項目毎にセンシング値が得られる。センシングの項目が温度である場合、当該センシング値を出力するセンサ4は温度センサである。センシングの項目が振動である場合、当該センシング値を出力するセンサ4は振動センサである。他のセンシング値についても同様に、センシング値に対応したセンサ4が設けられる。
 センシング値se01からセンシング値se03は、温度の項目のセンシング値である。センシング値se01は、発電機の固定子の温度に応じて変化する。センシング値se02は、発電機の冷却水の温度に応じて変化する。センシング値se03は、発電機の冷却風の温度に応じて変化する。
 センシング値se04及びセンシング値se05は、振動の項目のセンシング値である。センシング値se04は、発電機の上部軸受の振動に応じて変化する。センシング値se05は、発電機の下部軸受の振動に応じて変化する。
 センシング値se06及びセンシング値se07は、水圧の項目のセンシング値である。センシング値se06は、水車の鉄管の水圧に応じて変化する。センシング値se07は、水車のケーシングの水圧に応じて変化する。
 センシング値se08及びセンシング値se09は、振動の項目のセンシング値である。センシング値se08は、水車の軸受の振動に応じて変化する。センシング値se09は、水車の上カバーの振動に応じて変化する。
 センシング値se10及びセンシング値se11は、水位の項目のセンシング値である。センシング値se10は、水路のダムの水位に応じて変化する。センシング値se11は、水路の放水口の水位に応じて変化する。
 例えば、図5では、評価値xは、センシング値se01から導出され、評価値xは、センシング値se02から導出され、評価値xは、センシング値se03から導出される。これらの評価値x,x,xはそれぞれ、評価部13が行う第1処理によって導出される。
 このように、評価値x,x,…,xは、例えば、1つの施設3において1つのセンシングの項目の対象となるn個の設備9の各々でセンシングされたセンシング値Se01,…,センシング値senから導出される。すなわち、nは、例えば1つの施設3における1つのセンシングの項目の対象となる設備9の数に対応する。具体例を挙げると、図5に示す発電機における温度の項目のセンシングという観点では、n=3(評価値x,x,x)である。
 次に、評価部13は、複数の評価値x,x,…,xに基づいて総合評価値rを算出する。以下、総合評価値rの算出方法について、図5及び図6を参照して説明する。
 図6は、2つの評価値x,xに基づいた総合評価値rの算出例を模式的に示すグラフである。図6を参照した説明では、総合評価値rによってプラント2の評価が表されるものとする。
 評価部13は、以下の式(1)に基づいて、総合評価値rを算出する。ここで、xは、式(2)のように表せる。式(1)及び式(2)におけるx,x,…,xは、例えば、図5の評価値x,x,xである。また、式(1)におけるpは、Lpノルムの重み付け値であり、1以上の実数が設定される。
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000002
 
 式(1)及び式(2)に基づいて算出される総合評価値rは、当該算出で参照される複数の評価値の最大値以上になる。以下、総合評価値rに係る説明において「評価値の最大値」と記載した場合、式(1)及び式(2)に基づいた総合評価値rの算出で参照される複数の施設3の各々の評価値(x,x,…,x)のうち最大値であるものをさす。例えば、ある1つの評価値のみ0より大きく、他の評価値が全て0である場合、式(1)によれば、総合評価値rは当該ある1つの評価値と等しくなる。一方、複数の評価値が0より大きい場合、式(1)によれば、総合評価値rは、評価値が0より大きい複数の各々の評価値を超えた値になる。
 式(1)及び式(2)におけるnは評価値の数に対応する。また、後述するが、式(1)におけるpは適宜、評価段階に応じた値(例えば、後述する第1値u、第2値v、第3値w)が設定される。以下、理解を容易にする目的で、図6では、n=2かつp=2である場合を例として説明を行う。
 図6に示すように、n=2かつp=2であり、評価値xが30であり、評価値xが40である場合、評価部13は、式(1)によって総合評価値r=50を算出する。図6に示す算出例では、2つの評価値x,xのうち「評価値の最大値」が評価値xであり、総合評価値rと評価値xとの差は10である。このように、2つの評価値x,xの値が共に0より大きい場合、総合評価値rは、2つの評価値x,xを超えた値になる。ここで、実施形態では、評価値が大きいほど当該評価値を導出された対象に何らかの異常が生じている可能性が大きくなる。従って、評価部13は、評価値が大きい設備9が複数ある場合にプラント2の稼働状況の評価を単一の設備9の評価値が示す評価よりも下げることになる。なお、実施形態では、「評価値」が大きいと「評価」が下がり、「評価値」が小さいと「評価」が上がるので、「評価値」の大小と、「評価」の上下とは、負の相関関係がある。
 pの値が1に近いほど、総合評価値rは「評価値の最大値」に対して相対的に大きくなる傾向がある。より具体的には、pの値が1又は1に近似する値(例えば、2未満)である場合、0でない評価値が導出された施設3の数が多くなるほど、「評価値の最大値」に対して総合評価値rは相対的に大きくなる。このような場合の例を、図7を参照して説明する。
 図7は、2つの評価値x,xに基づいたプラント2の総合評価値rの算出においてp=1とした例を模式的に示すグラフである。n=2かつp=1であり、評価値xが30であり、評価値xが40である場合、評価部13は、式(1)によって総合評価値r=70を算出する。図7に示す算出例では、2つの評価値x,xのうち「評価値の最大値」が評価値xであり、総合評価値rと評価値xとの差は30になっている。
 図8は、2つの評価値x,xに基づいたプラント2の総合評価値rの算出においてp=10とした例を模式的に示すグラフである。pの値が大きいほど、総合評価値rと「評価値の最大値」とは近似した値になる傾向がある。以下、図8を参照して説明する。
 n=2かつp=10であり、2つの評価値x,xのうち一方の評価値xが30であり、他方の評価値xが40である場合、評価部13は、式(1)によってr=40.2197415を算出する。図8に示す算出例では、2つの評価値x,xのうち「評価値の最大値」が評価値xであり、総合評価値rと評価値xとの差は0.2197415になっている。
 なお、図7、図8及び後述する図10は、図6に示す領域のうち、評価値x,xが0以上である限定領域Lの範囲に対応する図である。実施形態では、評価値x,x,…,xは、0以上の値を取るため、実質的に、限定領域Lよりも負の値側にある領域は利用されない。
 図9では、n=2として、評価値xが10であり、xが10であり、異なるpの値のそれぞれの総合評価値rを上述の式(1)に基づいて算出して、記載している。p=1である場合、総合評価値rが、20.0である。p=2である場合、総合評価値rが14.1である。p=10である場合、総合評価値rが10.7である。p=無限大(∞)である場合、総合評価値rが10.0である。なお、pの値が異なることによる総合評価値rの比較を単純化する目的で、図9では、総合評価値rの値の小数点第二位を四捨五入している。
 図6から図9を参照して説明したように、重み付け値(p)の値に応じて、評価値と総合評価値rとの関係が変化する。すなわち、重み付け値(p)が1を超えてより大きいほど、「評価値の最大値」と総合評価値rとの差は小さくなる。また、重み付け値(p)が1に近いほど、「評価値の最大値」と総合評価値rとの差は大きくなる。
 例えば、複数の評価値がそれぞれ0ではないとして、これらの評価値の相乗効果が総合評価値rに現れるようにしたい場合がある。この場合、重み付け値(p)を1又は1により近い値とすることで、複数の評価値の各々の値よりも総合評価値rを有意に大きな値として算出できる。このような考え方は、例えば複数の施設3の各々の評価値に基づいたプラント2全体の総合評価値rの算出に適用できる。すなわち、プラント2に含まれる複数の施設3に異常が生じた場合、複数の施設3のうちの1つの施設3に異常が生じた場合に比して、プラント2全体の異常を示す総合評価値rをより大きな値として算出しやすくなる。従って、複数の施設3のうち1つの施設3に異常が生じた事態と、複数の施設3のそれぞれに異常が生じたという事態とが、総合評価値rの大きさで判別できる。その結果、総合評価値rの大きさで、複数の施設3のそれぞれに異常が生じたという事態が把握できる。
 一方、複合的な要因を考慮しない場合、重み付け値(p)をより大きい値とする。例えば、発電機においてセンシングされた設備9の温度の総合評価値rでは、正常温度範囲から外れた設備9の有無と、正常温度範囲からの外れ度合とが分かればよい。この場合では、正常温度範囲内であれば評価値が0になるので、総合評価値rが0であるか否かによって正常温度範囲から外れた設備9の有無が判別できる。また、総合評価値rの大きさによって「正常温度範囲からの外れ度合」が把握できる。センシング項目の総合評価値rの算出には、このような考え方を適用できる。
 このような考え方に基づき、後述する第2処理と、第3処理と、第4処理とは、同じ式(1)及び式(2)を利用するが、それぞれ異なる重み付け値(p)が設定されている。
 評価部13は、上述の式(1)及び式(2)に基づいて、総合評価値rの算出処理を複数回行う。具体的には、評価部13は、第1処理と、第2処理と、第3処理と、第4処理とを行う。上述したように、第1処理は、上述の変換処理によってセンシング値を評価値に変換する処理である。第2処理では、第1処理で算出された総合評価値rをセンシング項目毎に選び、選ばれた第1処理で算出された総合評価値rを上記式(1)の評価値x,x,…,xとする。
 言い換えれば、第2処理では、複数の設備9を含む施設3におけるセンシング値の種別毎に第1評価値が分類されて第1評価値のグループとして扱われる。図5では、例えば発電機では温度と振動がセンシング項目となっている。従って、発電機の温度の評価値x,x,xと、発電機の振動の評価値x,xとが分類されて異なるグループとして扱われる。また、水車では水圧と振動がセンシング項目となっている。従って、水車の水圧の評価値x,xと、水車の振動の評価値x,xとが分類されて異なるグループとして扱われる。なお、水路ではセンシング項目が水位となっており、他のセンシング項目がない。従って、水路の水位の評価値x,xがグループ化される。
 第3処理では、第2処理で算出された総合評価値rを施設3毎に選び、選ばれた第2処理で算出された総合評価値rを上記式(1)の評価値x,x,…,xとする。第4処理は、第3処理で算出された全ての総合評価値rを上記式(1)の評価値x,x,…,xとする。
 まず、図5を参照して、第2処理の概要について説明する。第2処理前の値は、図5の処理パートP03で表される。第2処理は、図5の処理パートP04で表される。第2処理の後の値は、図5の処理パートP05で表される。図5に示す例の場合、評価部13は、発電機の温度、発電機の振動、水車の水圧、水車の振動、水路の水位、のセンシング項目毎の、図5の処理パートP03の評価値に対して、第2処理を行う。第2処理における重み付け値(p)は、第1値uである。このことを、図5では処理パートP04の「Lpノルム(p=u)」で示している。
 まず、発電機の温度についての第2処理を説明する。評価部13は、図5に示す発電機における温度のセンシング値se01,se02,se03の各々から導出された評価値x,x,xを処理の対象とする。従って、この場合のnは、3である。評価部13は、係る評価値x,x,xと、n=3と、p=uと、を上述の式(1)及び式(2)に当てはめて総合評価値rを算出する。
 次に、発電機の振動についての第2処理を説明する。評価部13は、図5に示す発電機における振動のセンシング値se04,se05の各々から導出された評価値x,xを処理の対象とする。従って、この場合のnは、2である。評価部13は、係る評価値x,xと、n=2と、p=uと、を上述の式(1)及び式(2)に当てはめて総合評価値rを算出する。
 次に、水車の水圧についての第2処理を説明する。評価部13は、図5に示す水車における水圧のセンシング値se06,se07の各々から導出された評価値x,xを処理の対象とする。従って、この場合のnは、2である。評価部13は、係る評価値x,xと、n=2と、p=uと、を上述の式(1)及び式(2)に当てはめて総合評価値rを算出する。
 次に、水車の振動についての第2処理を説明する。評価部13は、図5に示す水車における振動のセンシング値se08,se09の各々から導出された評価値x,xを処理の対象とする。従って、この場合のnは、2である。評価部13は、係る評価値x,xと、n=2と、p=uと、を上述の式(1)及び式(2)に当てはめて総合評価値rを算出する。
 次に、水路の水位についての第2処理を説明する。評価部13は、図5に示す水路における水位のセンシング値se10,se11の各々から導出された評価値x,xを処理の対象とする。従って、この場合のnは、2である。評価部13は、係る評価値x,xと、n=2と、p=uと、を上述の式(1)及び式(2)に当てはめて総合評価値rを算出する。
 次に、第3処理の概要について説明する。第3処理及び第3処理前後の値の関係は、例えば図5の処理パートP07から処理パートP09までの範囲内で表される。上述の通り、第3処理は、施設3毎の安定度を示す総合評価値rを算出する処理である。図5に示す例の場合、評価部13は、発電機と、水車と、水路、について個別に第3処理を行う。第3処理における重み付け値(p)は、第2値vである。このことを、図5では処理パートP08の「Lpノルム(p=v)」で示している。
 次に、図5を参照して、施設3毎の第3処理を説明する。まず、発電機についての第3処理を説明する。評価部13は、第2処理で算出された発電機の温度の総合評価値rを、当該第3処理における評価値xとして扱う。また、評価部13は、発電機の振動の総合評価値rを、当該第3処理における評価値xとして扱う。従って、この場合のnは、2である。このように、第2処理で算出された総合評価値rが第3処理における評価値x,x,…,xとして扱われることを、図5では処理パートP06のイコール(=)で示している。評価部13は、係る評価値x,xと、n=2と、p=vと、を上述の式(1)及び式(2)に当てはめて総合評価値rを算出する。
 次に、水車についての第3処理を説明する。評価部13は、第2処理で算出された水車の水圧の総合評価値rを、当該第3処理における評価値xとして扱う。また、評価部13は、水車の振動の総合評価値rを、当該第3処理における評価値xとして扱う。従って、この場合のnは、2である。評価部13は、係る評価値x,xと、n=2と、p=vと、を上述の式(1)及び式(2)に当てはめて総合評価値rを算出する。
 次に、水路についての第3処理を説明する。評価部13は、第2処理で算出された水路の水位の総合評価値rを、当該第3処理における評価値xとして扱う。従って、この場合のnは、1である。評価部13は、係る評価値xと、n=1と、p=vと、を上述の式(1)及び式(2)に当てはめて総合評価値rを算出する。なお、n=1である場合、総合評価値rは、評価値xと同値になる。
 次に、第4処理の概要について説明する。第4処理前の値は、図5の処理パートP11で表される。第4処理は、図5の処理パートP12で表される。第4処理後の値は、処理パートP13で表される。第4処理における重み付け値(p)は、第3値wである。このことを、図5では処理パートP12の「Lpノルム(p=w)」で示している。
 図5に示す例の場合、プラント2は、複数の施設3としての発電機と水車と水路とを含む。評価部13は、第3処理で算出された発電機の総合評価値rを評価値xとして扱う。また、評価部13は、第3処理で算出された水車の総合評価値rを評価値xとして扱う。また、評価部13は、第3処理で算出された水路の総合評価値rを評価値xとして扱う。従って、この場合のnは、3である。評価部13は、係る評価値x,x,xと、n=3と、p=wと、を上述の式(1)及び式(2)に当てはめて総合評価値rを算出する。図5の処理パートP13に示す総合評価値rは、プラント2の安定度を示す。
 第2処理における重み付け値(p)である第1値uと、第3処理における重み付け値(p)である第2値vと、第4処理における重み付け値(p)である第3値wと、は、それぞれ予め定められている。第1値u、第2値v及び第3値wを示すデータは、評価基準データ31cに含まれる。ここで、第2処理における重み付け値(p)である第1値uと、第3処理における重み付け値(p)である第2値vと、第4処理における重み付け値(p)である第3値wと、は異なる。これによって、プラント2の安定度の評価におけるセンシング項目毎の総合評価値rの重み付けと、施設3毎の総合評価値rの重み付けとを、プラント2の総合評価値rの重み付けと異なるものとすることができる。
 実施形態における第1値uと第2値vと第3値wとの関係は、u>v>wである。pの値が1又は1に近似する値(例えば、2未満)である場合、0でない評価値が多くなるほど、「評価値の最大値」よりも総合評価値rは相対的に大きくなる。ここで、評価値x,x,…,xに0でないものが複数含まれる場合とは、理想的(0)でない評価値によって何らかの異常が示唆される可能性がある評価対象が複数発生している場合である。
 まず、第4処理によってプラント2の総合評価値rが算出される事象例を挙げる。係る事象例では、当該総合評価値rの算出で参照される評価値x,x,…,xには、複数の施設3の状況が反映される。ここで、複数の施設3で何らかの異常が生じ、複数の施設3の各々の評価値x,x,…,xに0でないものが複数含まれる場合を想定する。この場合、複数の施設3のうち1つの施設3で異常が生じている他の場合に比して、プラント2はより深刻な状況となっている可能性が高い。この場合、当該他の場合に比してより総合評価値rを大きくすることで、プラント2の状況の深刻さを表すことが望ましい。従って、実施形態では、プラント2の総合評価値rの算出における重み付け値をより小さな重み付け値(例えば、p=w)としている。これによって、この場合により大きい総合評価値rが算出されるようになる。その結果、複数の施設3で何らかの異常が生じている場合、プラント2の深刻な状況が適切に表されるようにすることができる。
 次に、第3処理によって1つの施設3の総合評価値rが算出される事象例を挙げる。係る事象例では、当該総合評価値rの算出で参照される評価値x,x,…,xには、当該施設3における複数のセンシング項目毎の観点での当該施設3の状況が反映される。ここで、複数のセンシング項目の観点で異常とみなせる状況が生じ、複数の評価値x,x,…,xに0でないものが複数含まれる場合を想定する。この場合、1つのセンシング項目の観点に限って異常が生じている他の場合よりも注視すべきではあるが、あくまで1つの施設3に関するものである。ここで、1つの施設3の総合評価値rを算出する段階での各センシング項目の評価値は、プラント2の総合評価値rを算出する段階での各施設3の評価値よりも「プラント2全体の評価との関連性の強さ」が弱いと考えられる。そこで、実施形態では、各施設3の総合評価値rの算出における重み付け値(例えば、p=v)を、プラント2の総合評価値rの算出における重み付け値(例えば、p=w)よりも大きくしている。
 次に、第2処理によってある施設3における1つのセンシング項目の総合評価値rが算出される事象例を挙げる。係る事象例では、当該総合評価値rの算出で参照される評価値x,x,…,xには、当該施設3において当該1つのセンシング項目に該当するセンシングが行われる複数の設備9の状況が反映される。ここで、複数の設備9に異常が生じ、複数の評価値x,x,…,xに0でないものが複数含まれる場合を想定する。この場合、1つのセンシング項目の観点に限って異常が生じている他の場合よりも注視すべきではあるが、あくまで1つの施設3内における1つのセンシング項目に関するものである。ここで、センシング項目毎の総合評価値rを算出する段階で参照される「センシング値を変換して得られた評価値」は、各施設3の総合評価値rを算出する段階でのセンシング項目毎の評価値よりも「プラント2全体の評価との関連性の強さ」が弱いと考えられる。そこで、実施形態では、センシング項目の総合評価値rの算出における重み付け値(例えば、p=u)を、各施設3の総合評価値rの算出における重み付け値(例えば、p=v)よりも大きくしている。
 このように、重み付け値(p)の設定によって、各々の算出処理において参照される評価値と「プラント2全体の評価との関連性の強さ」とがより適切に考慮された総合評価値rの算出を第2処理、第3処理及び第4処理の各々で行うことができる。実施形態では、例えばu=100、v=50、w=25であるが、これに限られるものでない。例えば、wをより1に近い値(例えば、5等)としてもよいし、25より大きな値であってもよい。他の値についても、より小さな値であってもよいし、より大きな値であってもよい。また、第1値uと第2値vと第3値wとの関係が、u>v>wとなる関係は必須でなく、例えばプラント2のうち特定の施設3や特定のセンシング項目が、プラント2全体の評価との関連性がより強い場合等において、u>v>wの関係が成立しない第1値uと第2値vと第3値wとの関係となるようにu,v,wの各々の値が設定されてもよい。
 センシング値からプラント2の総合評価値rが算出されるまでの流れを、図5を参照して説明する。まず、処理パートP01で示すように、各設備9で個別にセンサ4がセンシングを行い、センシング値se01からse11を出力する。取得部12は、係るセンシング値se01からse11を取得する。
 処理パートP02で示すように、評価部13は、第1処理として、上述の変換処理を行う。これによって、処理パートP03に示すように、センシング値se01からse11の各々に応じた評価値が導出される。
 処理パートP03の評価値は、第2処理の評価値x,x,…,xとして扱われる。処理パートP04で示すように、評価部13は、p=uとした第2処理を行う。これによって、処理パートP05で示すように、施設3のセンシング項目毎の総合評価値rが算出される。図5では、第2処理で行われるセンシング項目毎の総合評価値rの算出において各総合評価値rの算出処理に関わる範囲を処理パートP03から処理パートP05までの範囲内の太線の矩形で示している。係る太線の矩形は、発電機の温度、発電機の振動、水車の水圧、水車の振動、水路の水位のそれぞれのセンシング項目毎に、個別に示されている。
 処理パートP06を挟んで表される処理パートP05と処理パートP07との関係で示すように、第2処理で算出された総合評価値rは、第3処理の評価値x,x,…,xとして扱われる。処理パートP08で示すように、評価部13は、p=vとした第3処理を行う。これによって、処理パートP09で示すように、施設3毎の総合評価値rが算出される。図5では、第3処理で行われる施設3毎の総合評価値rの算出において各総合評価値rの算出処理に関わる範囲を処理パートP07から処理パートP09までの範囲内の太線の矩形で示している。係る太線の矩形は、発電機、水車、水路のそれぞれの施設3毎に個別に示されている。
 処理パートP10を挟んで表される処理パートP09と処理パートP11との関係で示すように、第3処理で算出された総合評価値rは、第4処理の評価値x,x,…,xとして扱われる。処理パートP12で示すように、評価部13は、p=wとした第4処理を行う。これによって、処理パートP13で示すように、プラント2の総合評価値rが算出される。図5では、第4処理で行われるプラント2の総合評価値rの算出に関わる範囲を処理パートP11から処理パートP13までの範囲内の太線の矩形で示している。
 なお、プラント2の総合評価値rの算出に係る処理は、プラント2の安定度の総合的な指標としての総合評価値rを得るだけに留まらず、プラント2に何らかの異常がある場合に異常の具体的内容を特定するための処理としても利用できる。以下、図5から図9を参照して説明した評価例1とは別の評価例2について、図10を参照して説明する。
(評価例2)
 図10は、それぞれ異なる総合評価値rである総合評価値r1,r2,r3,r4が算出された場合の事例を説明するためのグラフである。図10を参照した説明では、評価値x,xは、2つの施設3の評価値である。
 プラント2の総合評価値r1は、x=10,x=10の場合の総合評価値rであり、約11.5である。プラント2の総合評価値r2は、x=90,x=10の場合の総合評価値rであり、約90.0(90.00030843)である。プラント2の総合評価値r3は、x=20,x=90の場合の総合評価値rであり、約90.0(90.0097525)である。プラント2の総合評価値r4は、x=90,x=90の場合の総合評価値rであり、約103.4(103.3828519)である。このように、総合評価値r1と、総合評価値r2と、総合評価値r3と、総合評価値r4とは、それぞれ異なる評価値x,xから算出されたものである。すなわち、総合評価値r1が算出される場合と、総合評価値r2が算出される場合と、総合評価値r3が算出される場合と、総合評価値r4が算出される場合とでは、当該2つの施設3の状況がそれぞれ異なる。なお、図10を参照した説明は、p=5であるものとするが、これはあくまで例であってpの値をこれに限定するものでない。
 例えば、評価値xが第3処理で算出された発電機の総合評価値rに対応する評価値であり、評価値xが第3処理で算出された水車の総合評価値rに対応する評価値であるとする。この場合、第4処理で総合評価値r4が算出されたとき、発電機と水車の両方に何らかの異常が現れるような、複合的な問題がプラント2に生じている可能性が高い。
 上述の例と同様に、評価値xが第3処理で算出された発電機の総合評価値rに対応する評価値であり、評価値xが第3処理で算出された水車の総合評価値rに対応する評価値であるとする。ここで、総合評価値r2が算出されたとき、発電機に何らかの異常が生じている可能性が高い。また、総合評価値r3が算出されたとき、水車に何らかの異常が生じている可能性が高い。このように、総合評価値r2が算出されたときと、総合評価値r3が算出されたときでは、実際に異常が生じている施設3が異なる。一方、総合評価値rの値の大きさが示唆するプラント2の安定度の度合いの観点では、総合評価値r2及び総合評価値r3はともに約90.0であり、差はほとんどない。これは、「1つの施設3の異常に対処すればよいレベル」という観点で見た場合、総合評価値r2が算出されたときと、総合評価値r3が算出されたときが同等であることによる。
 言い換えれば、「約90.0」という総合評価値r2及び総合評価値r3の大きさだけで見た場合、総合評価値r2が算出されたときと総合評価値r3が算出されたときとは区別されない。実際には、総合評価値r2が算出されたとき、発電機に何らかの対処をすべきと考えられる。また、総合評価値r3が算出されたとき、水車に何らかの対処をすべきと考えられる。そこで、評価例2では、総合評価値rの値の大きさの観点で同等であっても実際に対処すべき対象が異なる場合を考慮し、総合評価値rの値の決定要因が何であったのかを補足的に示す情報提供が行われることが望ましい。係る情報提供の具体例については、後述する図11を参照した説明で例示する。
 なお、上述の総合評価値r4は、約103.4であり、総合評価値r2及び総合評価値r3(約90.0)よりも大きい。これは、総合評価値r4が算出されたときが「複数の施設3の異常に対処が必要なレベル」であることから、「1つの施設3の異常に対処すればよいレベル」である総合評価値r2及び総合評価値r3よりも大きな値として算出されているものである。このような総合評価値r4の大きさと総合評価値r2及び総合評価値r3の大きさとの差は、上述の評価例1におけるプラント2の総合評価値rの大きさに関する考え方と同様である。
 なお、上述の例と同様の評価値x,xに基づいて総合評価値r1が算出された場合については、総合評価値r2,総合評価値r3,総合評価値r4が算出された場合に比してプラント2の安定度に大きな問題はないといえる。
 以上、図10を参照した説明におけるnの値の例はn=2であったが、これに限られるものでない。実際には、評価部13は、nの値、すなわち、プラント2に含まれる施設3の種類に応じた評価値x,x,…,xに基づいたより多元的な情報に基づいた総合評価値rの算出を行える。
 また、異常の原因の推定は、施設3単位に限られるものでなく、より細かな単位でも行える。例えば、評価値x,x,…,xを第2処理で算出された総合評価値rに対応する評価値とすることで、施設3毎の異常の推定においてどのセンシング項目に対応する事象に関する問題が生じているかを推定できる。より具体的な例を挙げると、評価値xが第2処理で算出された発電機の温度の総合評価値rに対応する評価値であり、評価値xが第2処理で算出された発電機の振動の総合評価値rに対応する評価値であるとする。この場合、総合評価値r2が算出されたとき、発電機において熱を生じる構成(例えば、軸受等)に何らかの異常が生じて発熱している可能性が高い。また、総合評価値r3が算出されたとき、発電機において振動が生じる構成(例えば、発電機のタービン軸やタービンに連結されている他の施設3である水車等、回転する機構)に何らかの異常が生じている可能性が高い。同様の考え方で、評価値x,x,…,xを第1処理で導出された評価値とすることで、施設3のセンシング項目毎の異常の推定においてどの設備9に関する問題が生じているかを推定できる。
 なお、図5から図10までの各図を参照した説明において例示されたプラント2の施設3、センシング項目及び設備9について、その具体的構成及び数についてはあくまで説明のための例に過ぎず、プラント2の具体的構成をこの例に限定するものでなく、プラント2の実態に応じたものとすることができる。
 なお、総合評価値rは、百分率の上限(100)を超える値となってもよい。これによって、プラント2の異常時にその異常の度合いがより把握されやすくなる。
 次に、プラント2の稼働状況の評価に係る報知について説明する。図11は、プラント2の稼働状況の評価に係る報知の一例を示す図である。表示出力部34aによる表示出力内容は、第1表示領域D1と、第2表示領域D2と、を含む。
 第1表示領域D1では、複数のセンサ4a,4b,4c,4d,…の出力が示すセンシング値が表示される。図11に示す第1表示領域D1では、18のセンサ4の各々からの出力が示すセンシング値がアナログメータ形式で表示されているが、これは表示の一形態例であってこれに限られるものでない。第1表示領域D1に表示されるセンシング値の数及び種類並びに第1表示領域D1及び第2表示領域D2における表示形式、レイアウト等の具体的な態様については任意である。また、第1表示領域D1に一括表示できない数のセンサ4がプラント2に設けられている場合、第1表示領域D1に表示させるセンシング値を選択可能とするためのスクロールバー等が追加で設けられる。
 第2表示領域D2は、プラント安定度表示部M1と、トレンドグラフ表示部M2とを含む。プラント安定度表示部M1では、プラント2の稼働状況の安定度を示す総合評価値rに対応した表示が行われる。具体的には、プラント安定度表示部M1には、例えば、プラント2の健全度を示す総合評価値rの最新の値が反映される。すなわち、第4評価値として算出された総合評価値rがプラント安定度表示部M1に表示される。図11で例示するように、第1表示領域D1に含まれる1つ1つのセンシング値に比して、プラント安定度表示部M1は、より大きくより目立つよう表示される。
 なお、図11では、プラント安定度表示部M1において評価値が「安定度メータ」という名称のアナログメータ形式で表示されているが、これは表示の一形態例であってこれに限られるものでなく、適宜変更可能である。図11に示すプラント安定度表示部M1では、総合評価値rが100[%]になった場合に「警報レベル」であることが示されている。「警報レベル」は、プラント2の安定的な稼働を脅かす何らかの異常が生じたことを示す警報が音声出力部34b等によって発せられるか、発せられないとしても警報が発せられる程のレベルの異常が生じたことを示すものである。なお、プラント安定度表示部M1のアナログメータは、100[%]を超える値として120[%]が例示されているが、当該超える値は必須ではないし、100[%]を超える値であって120[%]未満の値であってもよいし、120[%]を超える値であってもよい。逆に、総合安定度が100[%]より小さくて、変動が少ない場合にプラント2の理想的な安定状況であることを逆説的に示している。
 また、図11では、プラント安定度表示部M1において「リアルタイム」という文字列が付されている。係る文字列は、当該プラント安定度表示部M1によって表示されている総合評価値rが、上述の評価値と同様、プラント2の安定度が実質的にリアルタイムで確認できる程度の短期間(例えば、1秒未満)周期で更新されていることを表している。「警報レベル」や「リアルタイム」の文字列は必須でないし、文字列の具体的内容については適宜変更可能である。
 プラント安定度表示部M1の表示によって、表示内容の確認者(プラント2における管理者、作業者等)にとって、プラント2の稼働状況が把握しやすくなる。なお、プラント安定度表示部M1に表示された評価値が単一の施設3の評価値によるものか、複数の施設3の評価値によるものであるのか否かを示す付加的な表示がさらにプラント安定度表示部M1又はプラント安定度表示部M1近傍で行われるようにしてもよい。これによって、プラント2に異常が生じている場合に対処すべき施設3をより直観的に把握しやすくなる。
 トレンドグラフ表示部M2は、プラント安定度表示部M1の一定期間内の時系列変化を示す。実施形態では、評価部13は、少なくとも当該一定期間内に導出された評価値を示すデータを記憶部31に記憶させ、トレンドグラフ表示部M2の表示に際して当該データを参照する。図11では、トレンドグラフ表示部M2は、表示が行われている時点から48時間前までの期間におけるプラント安定度表示部M1の値の変化が線グラフで示されているが、トレンドグラフ表示部M2の具体的な表示態様は適宜変更可能である。
 実施形態では、演算部32が評価部13として機能するとともに表示内容の決定に係る処理(表示データの生成処理)を行うが、これに限られるものでない。評価部13が評価値の導出を行い、評価値に基づいた報知内容の決定に係る処理を評価部13から独立した専用の構成が行うようにしてもよい。
 図11に示すように、表示出力部34aによる表示出力内容は、第1表示領域D1、第2表示領域D2に含まれない内容をさらに含んでいてもよい。図11に示す表示内容は、第1表示領域D1、第2表示領域D2に加えて、さらに、リアルタイム評価値表示部A1、対象名表示部A2、トレンド表示部A3を含んでいる。リアルタイム評価値表示部A1には、0を超える設備9の各センシング項目の評価値の一部又は全部が一覧表示される。リアルタイム評価値表示部A1には、より高い評価値が導出されたセンシング項目の評価値が優先して表示されるようにしてもよいし、より高い総合評価値r(第3評価値)が導出された施設3に設けられた他の各センシング項目の評価値が優先して表示されるようにしてもよい。対象名表示部A2には、リアルタイム評価値表示部A1で一覧表示されたセンシング評価値がどの設備9のどの項目で得られた値であるのかを示す情報(文字列等)が表示される。トレンド表示部A3では、リアルタイム評価値表示部A1として選定して表示された評価値の一定期間内の時系列変化を示す表示が行われる。実施形態では、評価部13は、少なくとも当該一定期間内に導出されたセンシング評価値を示すデータをセンシングデータ31bとして記憶部31に記憶させ、トレンド表示部A3の表示に際してセンシングデータ31bを参照する。
 第1表示領域D1の表示内容は、図10を参照して説明した異常の原因の推定と関連付けられていてもよい。例えば、プラント2に含まれる特定の施設3に異常が生じている可能性が高い場合、当該特定の施設3に含まれる設備9に設けられたセンサ4のセンシング値が第1表示領域D1により優先して表示されるようにしてもよい。具体例を挙げると、上述の評価例2において総合評価値r2が算出されたとき、発電機に設けられたセンサ4のセンシング値がより優先的に第1表示領域D1に表示される。また、上述の評価例2において総合評価値r3が算出されたとき、水車に設けられたセンサ4のセンシング値がより優先的に第1表示領域D1に表示される。
 また、プラント安定度表示部M1の表示内容に反映可能な総合評価値rは、第4評価値としての総合評価値rに限られない。例えば、プラント2全体の総合評価値rの表示モードと、施設3単位での総合評価値rの表示モードと、施設3のセンシング項目単位での総合評価値rの表示モードと、を切り替え可能に設けられてもよい。このような切り替えのための設定入力部を表示出力部34aによる表示出力内容にさらに設けるようにしてもよいし、リアルタイム評価値表示部A1や第1表示領域D1に表示されているリアルタイム値をクリック操作することで、当該リアルタイム値に対応するセンシング値を出力するセンサ4が設けられた設備9を含む施設3単位又は施設3のセンシング項目単位の表示に切り替わるようにしてもよい。
 以上、評価装置10が備える出力部34による報知を例とした説明を行ってきたが、報知は端末20(図1参照)によって行われてもよい。図1に示すように、端末20は、通信部21と、報知部22とを備える。通信部21は、通信部11と同様の構成であり、通信部11と通信を行うことで表示出力部34aの表示内容に対応したデータや音声出力部34bの音声出力内容に対応したデータを評価装置10から取得する。報知部22は、出力部34と同様の構成であり、上述のように説明された表示出力部34aと同様の表示出力や音声出力部34bと同様の音声出力を行う。このように、端末20は、プラント2の稼働状況の評価に係る報知を行う報知部22を備える。また、報知部22は、プラント2の稼働状況の評価に係る情報を表示する構成として、表示出力部34aと同様の構成を含む。
 図1では、通信部11が通信部5及び通信部21と通信を行っているが、通信部5と通信を行う構成と通信部21と通信を行う構成とは別個の構成であってもよい。
 なお、温度の基準の1つとして気温がある。このため、気温と同一の温度(例えば、20[℃])である場合に評価値が0となるものとする場合があるが、気温と同一の温度は周囲の温度に影響を受けるものであり、特に季節によって大きく変化する。このため、季節によって分散の上限又は下限が変更されるようあらかじめ条件付けがされていてもよい。この場合、当該条件付けに対応したデータが予め評価基準データ31cに含まれている。また、季節を特定可能なカレンダーとして機能するソフトウェア・プログラムや回路(タイマー回路等)が予め評価装置10に設けられる。
 図12は、季節に応じた分散の上限の変更例を示すグラフである。図12は、温度センサであるセンサ4によって温度がセンシングされる場合を想定している。図12では、評価上限E4に対してより遠い値の第1上限E21とより近い値の第2上限E22とが個別に設定されている。第1上限E21と第2上限E22は、ともに上述の上限E2として機能する。すなわち、第1上限E21と第2上限E22との間の変動量SCが、上限E2の季節変動量である。なお、図12では第1上限E21と第2上限E22の2つのみ端的に示しているが、季節を特定可能なカレンダーとして機能するソフトウェア・プログラムや回路(タイマー回路等)等に応じて、評価部13が第1上限E21と第2上限E22との間で多段階的又は無段階的に適用される上限E2を変更するようにしてもよい。
(評価例3)
 図10ではある一時点の総合評価値rについて説明したが、評価部13は、時間の経過に伴い変化する総合評価値rの時系列変化に基づいた情報の表示出力を報知部14の表示出力部34aに行わせるようにしてもよい。以下、当該表示出力について、図13から図22を参照して説明する。
 図13は、ある1つの設備9の評価値の時系列変化を示すグラフである。図14は、図13とは異なる1つの設備9の評価値の時系列変化を示すグラフである。図15は、図13及び図14を参照して説明した2つの設備9を有する施設3の総合評価値rの時系列変化を示すグラフである。図16は、図13に示す評価値を横軸とし、図14に示す評価値を縦軸として図15に示す総合評価値rを示した二次元グラフである。
 図13に示すグラフで表される評価値を、図5を参照して説明した評価値x又は評価値xの一方とする。また、図14に示すグラフで表される評価値を、図5を参照して説明した評価値x又は評価値xの他方とする。この場合、評価値xと評価値xとに基づいて導出される総合評価値rは、例えば図15に示すグラフで表される。図13から図15に示すグラフでは、時刻Ta,Tb,Tc,Td,Teの符号で示す時刻の経過を横軸方向の一端側から他端側に向かう流れで示し、各時刻における評価値又は総合評価値rを縦軸で示している。
 図15で示すように、総合評価値rは一定でなく、時刻の経過に伴って変化する。このような総合評価値rを、図13に示す評価値を横軸とし、図14に示す評価値を縦軸とした二次元グラフ上で表現すると、図16に示す分布r11のようになる。分布r11は、複数時点の総合評価値rの集合である。分布r11は、縦軸方向について0に近い範囲内でほぼ安定した値になっているが、横軸方向について20未満から80を超える範囲まで値のばらつきが生じたことを示している。
 図13から図16を参照して示したように、評価値xと評価値xを2つの参照値とすると、当該2つの参照値に基づいて導出された評価値である総合評価値rは、図16に示すように、評価値xと評価値xのうち一方を縦軸とし、他方を横軸とする二次元グラフ上の分布(例えば、分布r11)として表現できる。なお、図13から図16では、縦軸及び横軸が設備9の評価値を示し、総合評価値rが当該設備9を有する施設3のものとなっているが、これに限られるものでない。縦軸及び横軸が設備3の評価値を示し、総合評価値rが当該施設3を有するプラント2のものであってもよい。この場合、2つの参照値として機能する評価値xと評価値xが、2つの施設3のものである。そして、総合評価値rが、当該2つの施設3を有するプラント2のものである。
 図17は、図16とは異なる総合評価値rの分布r12を示す二次元グラフである。図17に示す分布r12は、ある時間帯における総合評価値rの分布であるという点で分布r11と同様にして導出されたものである。分布r12は、分布r11と異なり、当該ある時間帯の開始時点で値r12a付近の値を取っていた総合評価値rが、当該時間帯内における時間の経過に伴って総合評価値rが値r12b側に上昇していったことを示している。
 図16及び図17に示すような二次元グラフは、さらに、総合評価値rを第三の軸(高さ軸)とする三次元グラフとして表現できる。以下、図17に示す二次元グラフに対応する三次元グラフについて、図18から図22を参照して説明する。
 図18は、総合評価値rの分布r12を示す三次元グラフである。図17に示すように、分布r12に含まれる各時点の総合評価値rは、値r12a側から値r12b側に向かって値が大きくなる傾向を示している。従って、分布r12を三次元グラフで表現した場合、図18に示すように、高さ軸方向の原点(0)に対する高さが、値r12a側に比して値r12b側の方がより高くなっている。このように、三次元グラフでは、総合評価値rの高まりを高さ軸方向で表現できる。
 三次元グラフは、一つの視点からの確認に限られず、複数の視点から確認を行える。以下、図17、図18で示した分布r12を図18とは異なる角度から確認した場合の例について、図19及び図20を参照して説明する。
 図19及び図20は、総合評価値rの分布r12を図18とは異なる角度から示す三次元グラフである。図19に示すグラフは、三次元グラフにおける縦軸及び横軸の原点側から分布r12を見た場合を示している。図20に示すグラフは、三次元グラフにおける縦軸及び横軸の原点の反対側から分布r12を見た場合を示している。
 また、三次元グラフでは、分布r12のような総合評価値rの集合のうち一部を示すこともできる。従って、プラント2の状態についてより重要な情報を示す範囲を抜粋するように三次元グラフを活用できる。以下、分布r12のうち、総合評価値rの値がより高い値r12b側の一部を示す三次元グラフについて、図21及び図22を参照して説明する。
 図21及び図22は、総合評価値rの分布r12のうち、総合評価値rの値がより高い値r12b側の一部を示す三次元グラフの一例を示す図である。図21及び図22では、図18から図20を参照して説明した三次元グラフにおける分布r12のうち、縦軸、横軸及び高さ軸方向の値が60以上の範囲を抜粋して示している。
 図21及び図22に示すように、三次元グラフでは、分布r12のような総合評価値rの集合と、総合評価値rの閾値と、の関係を三次元空間におけるオブジェクト同士の位置関係として表現できる。図21及び図22では、閾値Th1,Th2,Th3,Th4,Th5,Th6,Th7を例示している。閾値Th1が示す総合評価値rの値は、60である。すなわち、閾値Th1よりも高さ軸方向の高さが高ければ、総合評価値rの値が60を超えたことを示す。閾値Th2が示す総合評価値rの値は、70である。閾値Th3が示す総合評価値rの値は、80である。閾値Th4が示す総合評価値rの値は、90である。閾値Th5が示す総合評価値rの値は、100である。閾値Th6が示す総合評価値rの値は、110である。
 図21及び図22では、閾値Th1,Th2,Th3,Th4,Th5,Th6,Th7の各々が、径方向に幅を有する円弧帯状のオブジェクトとして描画されている。閾値Th7が示す総合評価値rの値は、120である。閾値Th1,Th2,Th3,Th4,Th5,Th6,Th7の具体的な値ならびにオブジェクトの形状、大きさ及び位置はあくまで一例であってこれに限られるものでなく、適宜変更可能である。
 さらに、三次元グラフ上では、閾値Th1,Th2,Th3,Th4,Th5,Th6,Th7のうち一部又は全部について、分布r12のような総合評価値rの集合に含まれる複数時点の総合評価値rのうち、閾値以上になった又は閾値を超えた初の時点の総合評価値rを示すオブジェクトを特筆的に描画できる。加えて、三次元グラフ上では、このように特筆的に描画された総合評価値rを示すオブジェクトが複数である場合、当該複数のオブジェクトの時間的前後関係を示す描画をさらに行える。
 図22では、分布r12に含まれる複数時点の総合評価値rのうち、閾値Th3以上になった初の時点の総合評価値rを示すオブジェクトをオブジェクトOb1として示している。また、分布r12に含まれる複数時点の総合評価値rのうち、閾値Th4以上になった初の時点の総合評価値rを示すオブジェクトをオブジェクトOb2として示している。また、分布r12に含まれる複数時点の総合評価値rのうち、閾値Th5以上になった初の時点の総合評価値rを示すオブジェクトをオブジェクトOb3として示している。そして、オブジェクトOb1,Ob2,Ob3の時間的前後関係を、矢印状のオブジェクトArで示している。オブジェクトArは、矢印の先端側が時間的により後であることを示している。すなわち、図12では、オブジェクトOb1側からオブジェクトOb2を経てオブジェクトOb3側に総合評価値rが推移したことを示している。
 評価部13は、図16から図22を参照して説明した二次元グラフ及び三次元グラフならびに各種のオブジェクトの表示出力を報知部14の表示出力部34aに行わせる。また、報知部22も、当該表示出力部34aと同様の表示出力を行える。
 実施形態では、どのようなオペレーションのアルゴリズムに従って図16から図22を参照して説明した各種の表示形態が実現されるのかについては任意であるが、以下に一例を示す。例えば、総合評価値rがある閾値(例えば、閾値Th3,Th4,Th5のいずれか)を超えた場合、評価部13は、特別な報知を報知部14に行わせる。当該特別な報知は、例えば音声報知によってもよいし、図11を参照して説明した画面における画面の一部又は全部の点滅等の描画によってもよいし、その両方であってもよい。このような特別な報知が行われた後、プラント安定度表示部M1又はトレンドグラフ表示部M2に対して、確認者による操作(例えば、クリック操作等)が行われた場合、評価部13は、図17を参照して説明した二次元グラフ又は図18を参照して説明した三次元グラフを表示出力部34aに表示させる。係る表示出力部34aによる表示では、当該ある閾値を超えた総合評価値rの集合(例えば、分布r12)が表示される。なお、係る表示出力部34aによる表示で図17を参照して説明した二次元グラフが表示された場合、当該二次元グラフに対して確認者による操作(例えば、クリック操作等)が行われた場合に評価部13が図18を参照して説明した三次元グラフを表示出力部34aに表示させるような多段階オペレーションを経てもよい。
 図18を参照して説明した三次元グラフが表示出力部34aによって表示されている状態で、さらに確認者による操作(例えば、クリック操作等)が行われた場合、評価部13は、図22に示すように、閾値以上になった又は閾値を超えた初の時点の総合評価値rを示すオブジェクト(例えば、オブジェクトOb1,Ob2,Ob3)や、これらのオブジェクトの時間的前後関係を示す描画(例えば、オブジェクトAr)を含む三次元グラフを表示出力部34aに表示させる。
 以上、例示した確認者による操作と、操作に対する評価部13のレスポンスと、の関係はあくまで一例であってこれに限られるものでなく、適宜変更可能である。例えば、プラント安定度表示部M1又はトレンドグラフ表示部M2に対する操作が行われた時点で一足飛びに図22を参照して説明したような描画が表示出力部34aによって行われるようにしてもよい。また、図18を参照して説明した三次元グラフが表示されている状態では、確認者による操作に応じて、図19及び図20を参照して説明したように、三次元グラフを別の角度から見た場合の描画に切り替えられるように設けられていてもよい。同様に、図22を参照して説明した三次元グラフが表示されている状態では、確認者による操作に応じて、図21を参照して説明したように、三次元グラフを別の角度から見た場合の描画に切り替えられるように設けられていてもよい。また、実施形態では、閾値以上になった又は閾値を超えた初の時点の総合評価値rを示すオブジェクト(例えば、オブジェクトOb1,Ob2,Ob3)や、これらのオブジェクトの時間的前後関係を示す描画(例えば、オブジェクトAr)が図22に限られているが、図17から図21を参照して説明した二次元グラフ及び三次元グラフの各々で同様の描画が行われてもよい。
 また、図10を参照して説明した異常の原因の推定には、クラスタリングのようなデータ分析をさらに組み合わせてもよい。以下、図23を参照して、データ分析の一例について説明する。
 図23は、k-means法によるデータ分析と総合評価値rとの関係の一例を示す模式図である。図23を参照した説明では、横軸の評価値xが発電機の振動の評価値であり、縦軸の評価値xが発電機の温度の評価値である場合を例として説明するが、これに限られるものでない。
 k-means法は、非階層型クラスタリングの一手法であり、既存のデータ群に対して所定数のクラスタを割り当て、最適化問題を演算によって解き、当該既存のデータ群を当該所定数の部分データ(事例クラス)に分類する手法である。当該最適化問題のアルゴリズムは既知のものと同様であるため、具体的な説明を割愛する。
 図23では、分類の結果として、事例クラスGaと、事例クラスGbと、事例クラスGcとを例示している。事例クラスGaは、総合評価値ra,rb,rc,rd,reを含む。事例クラスGbは、総合評価値rf,rg,rhを含む。事例クラスGcは、総合評価値ri,rj,rk,rlを含む。総合評価値ra,rb,rc,rd,re,rf,rg,rh,ri,rj,rk,rlは、過去にプラント2に異常が生じた時の評価値x,xに基づいて算出された総合評価値rである。すなわち、この場合の既存のデータ群は、過去にプラント2に異常が生じた場合に算出された総合評価値r(例えば、第4評価値)である。
 事例クラスGaは、発電機の軸受に故障が生じた場合の事例クラスである。事例クラスGaは、既存のデータ群のうち、評価値xが示す発電機の温度に異常が生じた場合に算出された総合評価値rを含むようクラスタの中心が設定されている。事例クラスGbは、水車に故障が生じた場合の事例クラスである。事例クラスGbは、既存のデータ群のうち、評価値xが示す発電機の振動に異常が生じた場合に算出された総合評価値rを含むようクラスタの中心が設定されている。事例クラスGcは、軸受と水車の両方に故障が生じた場合の事例クラスである。事例クラスGcは、既存のデータ群のうち、発電機の振動と温度の両方に異常が生じた場合に算出された総合評価値rを含むようクラスタの中心が設定されている。
 なお、k-means法は、分類を行うために所定数のクラスタを割り当てる処理でクラスタの初期位置をランダムとした場合、そのランダム値に大きく依存した分類が行われる傾向がある。このため、実際にプラント2に生じていた具体的な異常と、当該異常が生じていた時の総合評価値rと、の相関がより強くなるように、クラスタの初期位置を手動で設定することで、より高精度な分類を行える。また、クラスタの数(所定数)についても同様に、分類すべき故障の種類に対応したものとすることで、より高精度な分類を行える。
 このようなデータ分析を上述の多段階的なプラント2の総合評価値rの算出に組み合わせることで、プラント2に何らかの異常が生じた場合における具体的な異常の内容の推定の精度をより高められる。例えば、最新の総合評価値rがいずれかの事例クラスGa,Gb,Gc内に含まれる総合評価値rであれば、その事例クラスに対応する異常が生じていることがより強く示唆される。
 また、図23に示すように、最新の総合評価値rが事例クラスGa,Gb,Gcのいずれにも含まれない場合であっても、最新の総合評価値rと事例クラスGa,Gb,Gcの各々との関係に基づいて、どのような異常が生じているかの推定の事例毎の確からしさを導出できる。例えば、図23では、事例クラスGa,Gb,Gcよりも大きな枠組みで既存のデータ群を分類する境界線La,Lb,Lfが示されている。境界線Laは、発電機の軸受に故障が生じている傾向を示す総合評価値rと、水車に故障が生じている傾向を示す総合評価値rと、の境界線である。境界線Lbは、発電機の軸受に故障が生じている傾向を示す総合評価値rと、当該軸受及び水車に故障が生じている傾向を示す総合評価値rと、の境界線である。境界線Lfは、水車に故障が生じている傾向を示す総合評価値rと、発電機の軸受及び当該水車に故障が生じている傾向を示す総合評価値rと、の境界線である。図23に示す総合評価値rは、境界線Laと境界線Lbで囲われた範囲内に含まれることから、発電機の軸受に故障が生じている可能性が他の故障の可能性よりも相対的に強めに示唆されることになる。
 境界線La,Lb,Lfは、事例クラスGa,Gb,Gcの中心同士の位置関係によって導出されるものであってもよいし、他の手法によってもよい。他の手法は、k-means法以外の非階層型クラスタリングであってもよいし、ウォード法のような階層型クラスタリングであってもよいし、その他のクラスタリング手法であってもよい。また、事例クラスGa,Gb,Gcの導出についても、k-means法によるものに限られず、他の手法によってもよい。
 さらに、時間の経過に応じて新たに算出される総合評価値rをデータ分析の対象に加えて再度分類を行う所謂機械学習的なアルゴリズムを当該データ分析に組み込んでもよい。
 図23を参照して説明したようなデータ分析を実施形態に適用する場合、記憶部31は、係るデータ分析のためのソフトウェア・プログラム及びデータをさらに記憶する。演算部32は、係るソフトウェア・プログラム及びデータを読み出して実行処理し、係るデータ分析をさらに行う。
 以上、実施形態によれば、評価装置10は、複数の施設3を含むプラント2の稼働状況に係る評価を行う評価装置である。評価装置10は、表示部(表示出力部34a、報知部22)と、2つの参照値(例えば、評価値xと評価値x)に基づいて導出される評価値(例えば、総合評価値r)を導出して当該表示部に当該2つの参照値と当該評価値との関係を三次元グラフで表示させる評価部13と、を備える。評価部13は、当該2つの参照値の時系列変化に伴う当該評価値の時系列変化を示す情報を含む関係(例えば、分布r11,r12)を当該表示部に表示させる。当該2つの参照値は、2つの施設3、又は、1つの施設3が含む2つの設備9、の稼働状況に係る値である。これによって、施設3又は機器4の一部分の状態を示す値(例えば、評価値x)と、当該一部分を含む施設3又は機器4の全体の状態を示す値(例えば、総合評価値r)及び当該全体における他の部分の状態(例えば、評価値x)と、の関係を三次元グラフ上で把握できる。従って、施設3又は機器4の一部分の状態と、当該一部分を含む施設3又は機器4の全体の状態及び当該全体における他の部分の状態と、の関係をより把握しやすくなる。
 また、評価値(例えば、総合評価値r)の時系列変化を示す情報は、少なくとも2つの時点(例えば、オブジェクトOb1,Ob2等)を示す情報を含む。これによって、複数時点における施設3又は機器4の一部分の状態と、当該一部分を含む施設3又は機器4の全体の状態及び当該全体における他の部分の状態と、の関係をより把握しやすくなる。
 また、評価値(例えば、総合評価値r)の時系列変化を示す情報は、少なくとも2つの時点間の評価値の変化の方向を示す情報(例えば、オブジェクトAr)を含む。これによって、複数時点における施設3又は機器4の状態の時間的な前後関係をより把握しやすくなる。従って、時間の経過に伴う施設3又は機器4の状態の変化をより把握しやすくなる。
 また、評価部13は、評価値(例えば、総合評価値r)と当該評価値の閾値(例えば、閾値Th1,Th2,Th3,Th4,Th5,Th6,Th7)との対応関係を示す情報をさらに表示部(表示出力部34a、報知部22)に表示させる。これによって、当該閾値を基準又は目安とした施設3又は機器4の状態の管理がより容易になる。
 また、評価装置10は、各施設3に含まれる複数の設備9に設けられた複数のセンサ4が個別に出力するセンシング値を取得する取得部12を含む。評価部13は、第1処理と、第2処理と、第3処理と、第4処理とを行う。これによって、単純なセンシング値の取得及びその羅列的な報知のみである場合に比して、第4評価値等の総合評価値rの確認者がプラント2の全体的な安定度をより把握しやすくなる。また、第2処理における重み付け値(p)である第1値uと、第3処理における重み付け値(p)である第2値vと、第4処理における重み付け値(p)である第3値wと、が異なる。これによって、プラント2の安定度の評価におけるセンシング項目毎の総合評価値rの重み付けと、施設3毎の総合評価値rの重み付けとを、プラント2の総合評価値rの重み付けと異なるものとすることができる。このため、第4評価値のように、プラント2全体の評価を直接的に示すものについて、例えば重み付け値を1又はより1に近い値とすることで、算出で参照される評価値の相乗効果が総合評価値rに現れるようにすることができる。従って、第4評価値によるプラント2全体の評価において複数の施設3の状況による複合的な要因の有無を表せる。一方、第2評価値のように、プラント2全体の評価との関連性の強さの観点で複合的な要因を考慮する必要性がより低いものについては、例えば重み付け値をより大きな値とすることで、算出で参照される評価値が示す「異常の有無」と「異常の度合い」を総合評価値rで表せる。第3評価値についても、第2処理における重み付け値と第4処理に重み付け値との中間的な重み付け値を設定することで、第2評価値よりもプラント2全体の評価との関連性が強く、第4評価値よりもプラント2全体の評価との関連性が弱い値として第3評価値を算出できる。このように、プラント2の全体的な安定度を把握するための指標の導出において、プラント2全体の評価との関連性の強さに応じた重み付けを任意に行える。よって、確認者に対するプラント2の状況の把握をより支援できる。
 また、第1値uは、第2値v及び第3値wより大きい。また、第2値vは、第3値wより大きい。これによって、プラント2全体の評価を直接的に示す第4評価値を、第2評価値及び第3評価値よりも評価値の複合的な要因がより現れやすい値として算出できる。また、プラント2全体の評価との関連性が第2評価値よりも強い第3評価値を、第2評価値よりも評価値の複合的な要因がより現れやすい値として算出できる。
 また、評価部13は、複数の設備9の一部又は全部(例えば、発電機及び水車)について第2処理を複数のセンシング項目毎に行い、第2処理が複数のセンシング項目毎に行われた施設3の第3処理では、当該複数のセンシング項目の第2評価値のLpノルムとして第3評価値を算出する。また、評価部13は、複数の施設3の一部又は全部(例えば、水路)について第2処理を1つのセンシング項目について行い、第2処理が1つのセンシング項目について行われた施設3の第3処理では、当該1つのセンシング項目の第2評価値のLpノルムとして第3評価値を算出する。これによって、施設3に含まれる設備9の数に応じた処理をより的確に行える。
 また、図5の例で示すように、センサ4は、設けられた設備9の温度、湿度、圧力、振動、水位、容量、流量、動作速度及び開閉部(例えば、入口弁)の開閉状況のうち少なくとも1つを検知する。これによって、より多様な情報をプラント2の稼働状況に係る情報として利用可能になる。
 また、複数のセンサ4の一部又は全部と取得部12とは無線通信を介して接続される。これによって、プラント2に対する評価装置10の設置条件をより緩和しやすくなる。また、センサ4を設けるための物理的な制約条件をより緩和しやすくなる。すなわち、センサ4と評価装置10とが必ずしも直結されている必要がなくなることで、センサ4及び評価装置10の設置に係る自由度がより向上する。
 また、評価値は、例えば、設備9の正常動作時を含む最も安定した状態から、上述の警報レベルで警戒すべき状況のように施設3の異常動作時を含む状態までの範囲を百分率として導出された施設3の稼働状況を示す値である。これによって、0から100までの範囲内で表されたより直観的な数値情報でプラント2の稼働状況を把握できる。なお、「安定した状態」は、何の問題もない理想的な稼働状況のみをさすものでなく、その状態が維持される限り問題なく設備9及び当該設備9を含む施設3が稼働し続けられる状態全般をさす。以下、設備9等と記載した場合、設備9及び当該設備9を含む施設3をさす。また、「最も警戒すべき状態」は、プラント2の管理レベルとして設定されるものであり、例えば警報レベルのように異常を解消するための即時対処が必要なことを示す警報が音声等で報知される設備9等の稼働状況がこれに該当するが、これに限られるものでない。警報の音声報知は必須でないし、一時的又は新たに生じた事故等の事例に基づいて「最も警戒すべき状態」とされる設備9等の稼働状況が変更されることは当然あってよい。
 また、実施形態の評価装置10は、プラント2の稼働状況の評価に係る報知を行う報知部14を備える。これによって、端末20を保有していない者でも報知内容を認知する機会を得られる。
 また、報知部14は、プラント2の稼働状況の評価に係る情報を表示する表示出力部34aを含む。これによって、プラント2の管理者や作業者等は、表示出力部34aを視認することでプラント2の稼働状況の評価に係る情報を任意のタイミングで容易に確認できる。
 なお、上記の実施形態はあくまで一例であり、本発明の技術的特徴を逸脱しない範囲内において適宜変更可能である。例えば、評価装置10は、情報処理装置に限られるものでなく、上述の機能のうち少なくとも取得部12、評価部13の機能を奏するよう設けられた専用の装置であってもよい。
 センサ4の出力を評価装置10に伝送するための経路は、通信部5と通信部11とによる無線通信を介したものに限られない。通信部5と通信部11との間の通信回線の一部又は全部は、有線の通信回路を含んでいてもよいし、インターネット等の公共の通信回線網を含んでいてもよい。また、当該経路の一部又は全部は、専用に設けられた直結用のバスであってもよい。
 また、図3では評価値の増減の次数が1次である場合を例としているが、評価値の増減の次数は任意である。また、評価値の高低と評価対象(プラント2、施設3、施設3のセンシング項目)の評価の高低との関係は上述の説明と逆でもよい。
 また、センサ4が検知するのは、設備9の温度、振動、水圧、水位に限られない。例えば、センサ4は、設けられた設備9の湿度、水圧に限られない圧力、容量、流量、可動構成の動作速度及び開閉部の開閉状況のうち少なくとも1つを検知するものであってもよいし、他のセンシング項目を検知するものであってもよい。
1 評価システム
2 プラント
3 施設
4 センサ
9 設備
10 評価装置
5,11,21 通信部
12 取得部
13 評価部
14,22 報知部
20 端末
r 総合評価値
Th1,Th2,Th3,Th4,Th5,Th6,Th7 閾値
,x 評価値

Claims (10)

  1.  複数の施設を含むプラントの稼働状況に係る評価を行う評価装置であって、
     表示部と、
     2つの参照値に基づいて評価値を導出して、前記2つの参照値と、前記評価値と、の関係を前記表示部に三次元グラフで表示させる評価部と、を備え、
     前記評価部は、前記2つの参照値の時系列変化に伴う前記評価値の時系列変化を示す情報を含む前記関係を前記表示部に表示させ、
     前記2つの参照値は、2つの前記施設、又は、1つの前記施設が含む2つの設備、の稼働状況に係る値であり、
     前記三次元グラフは、
     前記2つの参照値の一方を三軸の一つとし、
     前記2つの参照値の他方を三軸の他の一つとし、
     前記評価値を三軸の残りの一つとする
     評価装置。
  2.  前記評価値の時系列変化を示す情報は、少なくとも2つの時点を示す情報を含む
     請求項1に記載の評価装置。
  3.  前記評価値の時系列変化を示す情報は、少なくとも2つの時点間の前記評価値の変化の方向を示す情報を含む
     請求項2に記載の評価装置。
  4.  前記評価部は、前記評価値と前記評価値の閾値との対応関係を示す情報をさらに前記表示部に表示させる
     請求項1から3のいずれか一項に記載の評価装置。
  5.  各施設に含まれる複数の設備に設けられた複数のセンサが個別に出力するセンシング値を取得する取得部を備え、
     前記評価部は、
      前記複数のセンサが出力する複数のセンシング値に基づいて設備の安定度を示す第1評価値を算出する第1処理を設備毎に行い、
      複数の設備の前記第1評価値のLpノルムとして、当該複数の設備を含む施設における、センシング値の種別毎に分類された前記第1評価値のグループ毎のセンシング項目の第2評価値を算出する第2処理を行い、
      1つの施設におけるセンシング項目に対応する前記第2評価値のLpノルムとして、当該1つの施設の安定度を示す第3評価値を算出する第3処理を施設毎に行い、
      複数の施設の前記第3評価値のLpノルムとして、前記プラントの安定度を示す第4評価値を算出する第4処理を行い、
     前記第2処理におけるLpノルムの重み付け値である第1値と、前記第3処理におけるLpノルムの重み付け値である第2値と、前記第4処理におけるLpノルムの重み付け値である第3値とは異なり、
     前記第1処理における前記センシング値は前記参照値として機能し、前記第1処理における前記第1評価値は前記評価値として機能し、
     前記第2処理における前記第1評価値は前記参照値として機能し、前記第2処理における前記第2評価値は前記評価値として機能し、
     前記第3処理における前記第2評価値は前記参照値として機能し、前記第3処理における前記第3評価値は前記評価値として機能し、
     前記第4処理における前記第3評価値は前記参照値として機能し、前記第4処理における前記第4評価値は前記評価値として機能する、
     請求項1から4のいずれか一項に記載の評価装置。
  6.  前記第1値は、前記第2値及び前記第3値より大きく、
     前記第2値は、前記第3値より大きい
     請求項5に記載の評価装置。
  7.  前記評価部は、
     前記複数の施設の一部又は全部について前記第2処理を複数のセンシング項目毎に行い、
     前記第2処理が複数のセンシング項目毎に行われた施設の前記第3処理では、当該複数のセンシング項目の前記第2評価値のLpノルムとして前記第3評価値を算出する
     請求項5又は6に記載の評価装置。
  8.  前記評価部は、
     前記複数の施設の一部又は全部について前記第2処理を1つのセンシング項目について行い、
     前記第2処理が1つのセンシング項目について行われた施設の前記第3処理では、当該1つのセンシング項目の前記第2評価値のLpノルムとして前記第3評価値を算出する
     請求項5又は6に記載の評価装置。
  9.  前記センサは、設けられた設備の温度、振動、水圧及び水位のうち少なくとも1つを検知する
     請求項5から8のいずれか一項に記載の評価装置。
  10.  請求項1から9のいずれか一項に記載の評価装置と、前記プラントの稼働状況の評価に係る報知を行う報知部を備える端末とを備える
     評価システム。
PCT/JP2022/001229 2022-01-14 2022-01-14 評価装置及び評価システム WO2023135769A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022535785A JP7240564B1 (ja) 2022-01-14 2022-01-14 評価装置及び評価システム
PCT/JP2022/001229 WO2023135769A1 (ja) 2022-01-14 2022-01-14 評価装置及び評価システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/001229 WO2023135769A1 (ja) 2022-01-14 2022-01-14 評価装置及び評価システム

Publications (1)

Publication Number Publication Date
WO2023135769A1 true WO2023135769A1 (ja) 2023-07-20

Family

ID=85569498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001229 WO2023135769A1 (ja) 2022-01-14 2022-01-14 評価装置及び評価システム

Country Status (2)

Country Link
JP (1) JP7240564B1 (ja)
WO (1) WO2023135769A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004054418A (ja) * 2002-07-17 2004-02-19 Yaskawa Electric Corp プラントの能力診断方法
JP2016045799A (ja) * 2014-08-25 2016-04-04 富士電機株式会社 予測モデル生成装置、予測モデル生成方法及びプログラム
JP2017167607A (ja) * 2016-03-14 2017-09-21 オムロン株式会社 設定支援装置、設定支援方法、情報処理プログラム、および記録媒体
JP2019153045A (ja) * 2018-03-02 2019-09-12 株式会社日立製作所 データ処理装置及びデータ処理方法
WO2020183766A1 (ja) * 2019-03-12 2020-09-17 株式会社日立製作所 データ分類装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5538597B2 (ja) * 2013-06-19 2014-07-02 株式会社日立製作所 異常検知方法及び異常検知システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004054418A (ja) * 2002-07-17 2004-02-19 Yaskawa Electric Corp プラントの能力診断方法
JP2016045799A (ja) * 2014-08-25 2016-04-04 富士電機株式会社 予測モデル生成装置、予測モデル生成方法及びプログラム
JP2017167607A (ja) * 2016-03-14 2017-09-21 オムロン株式会社 設定支援装置、設定支援方法、情報処理プログラム、および記録媒体
JP2019153045A (ja) * 2018-03-02 2019-09-12 株式会社日立製作所 データ処理装置及びデータ処理方法
WO2020183766A1 (ja) * 2019-03-12 2020-09-17 株式会社日立製作所 データ分類装置

Also Published As

Publication number Publication date
JP7240564B1 (ja) 2023-03-15
JPWO2023135769A1 (ja) 2023-07-20

Similar Documents

Publication Publication Date Title
JP4832609B1 (ja) 異常予兆診断装置および異常予兆診断方法
JP5753286B1 (ja) 情報処理装置、診断方法、およびプログラム
CN103576641B (zh) 用于监视操作过程单元中的资产的系统和方法
JP5081999B1 (ja) 異常予兆診断結果の表示方法
JP5081998B1 (ja) 異常予兆診断装置及び異常予兆診断方法
EP2477086A1 (en) Anomaly detection and diagnostic method, anomaly detection and diagnostic system, and anomaly detection and diagnostic program
CN112136161B (zh) 用于智能报警分组的系统和方法
CN107710089B (zh) 工厂设备诊断装置以及工厂设备诊断方法
EP3260703A1 (en) Predicting a surge event in a compressor of a turbomachine
EP3584657B1 (en) Risk assessment device, risk assessment method, and risk assessment program
KR101233264B1 (ko) 섹터 그래프 기반 플랜트 및 건축물 설비 운영상태 감시 장치 및 방법
JP6482817B2 (ja) プラント監視支援システム及びプラント監視支援方法
JP2012118981A (ja) タービン性能診断システム及び方法
CN106603299A (zh) 一种服务健康指数的生成方法及装置
JP5368388B2 (ja) 災害危機管理装置、被害レベル計算方法、およびプログラム
WO2017071639A1 (en) Energy consumption alerting method, energy consumption alerting system and platform
JPWO2018051568A1 (ja) プラント異常診断装置及びプラント異常診断システム
WO2023135769A1 (ja) 評価装置及び評価システム
JP6915693B2 (ja) システム分析方法、システム分析装置、および、プログラム
JP7108806B2 (ja) 評価装置及び評価システム
CN117391675A (zh) 一种数据中心基础设施运维管理方法
JP2018205992A (ja) 機器診断システム
JP7453049B2 (ja) 異常予兆監視システム、異常予兆監視方法、及びプログラム
JP2021076597A (ja) 過渡速度動作中の振動傾向を決定することによるロータ異常の検出
CN111899119A (zh) 一种面向燃煤电厂的智能报警抑制方法及系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022535785

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920294

Country of ref document: EP

Kind code of ref document: A1