WO2023134780A1 - 一种铝合金及其制备方法 - Google Patents

一种铝合金及其制备方法 Download PDF

Info

Publication number
WO2023134780A1
WO2023134780A1 PCT/CN2023/075017 CN2023075017W WO2023134780A1 WO 2023134780 A1 WO2023134780 A1 WO 2023134780A1 CN 2023075017 W CN2023075017 W CN 2023075017W WO 2023134780 A1 WO2023134780 A1 WO 2023134780A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
hours
product
casting
keeping
Prior art date
Application number
PCT/CN2023/075017
Other languages
English (en)
French (fr)
Inventor
陈波
晁月雨
张翔
Original Assignee
江苏徐工工程机械研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏徐工工程机械研究院有限公司 filed Critical 江苏徐工工程机械研究院有限公司
Publication of WO2023134780A1 publication Critical patent/WO2023134780A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Definitions

  • the application belongs to the technical field of alloys, and in particular relates to an aluminum alloy and a preparation method thereof.
  • the boom materials of concrete pump trucks are mostly made of steel, such as Q460, Q550, Q690, and BS700.
  • the density of steel is high, generally about 7.85g/cm 3 , so steel booms are usually relatively heavy, which leads to a series of problems such as heavy load on concrete pump trucks, large discharge volume, and limited licensing. In order to solve the above problems, it is necessary to reduce the weight of the jib.
  • Aluminum alloy is the most widely used non-ferrous metal material, and is widely used in aviation, aerospace, automobile, machinery manufacturing, shipbuilding and other industries.
  • the density of aluminum alloy is low, generally about 2.7g/cm 3 , which is one-third of the density of steel.
  • aluminum alloy is used instead of steel, which can significantly reduce the weight of the jib.
  • 6XXX series and 7XXX series aluminum alloys are generally used as the structural material of the arm frame.
  • the 6XXX series aluminum alloy has good formability, but the overall strength is low, less than 350MPa; while the 7XXX series aluminum alloy has high strength, but it is difficult to prepare large-size variable-section profiles through plastic forming and extrusion forming. Therefore, it is necessary to further optimize the material of aluminum alloy to obtain lightweight and high-strength aluminum alloy to meet the working conditions of concrete pump trucks.
  • the application provides an aluminum alloy, comprising the following elements, in mass %, Cu: 4.4-4.7, Li: 2.5-2.6, Mg: 0.8-1.0, Zn: 0.8-1.0, Zr: 0.2-0.25, Sc: 0.8 ⁇ 0.15, and the balance Al and unavoidable impurities.
  • the yield strength of the aluminum alloy is ⁇ 500MPa
  • the tensile strength is ⁇ 625MPa
  • the elongation after fracture is ⁇ 16.5%
  • the overall hardness is ⁇ 155HBW.
  • the elongation after fracture of the aluminum alloy is ⁇ 17%.
  • the overall hardness of the aluminum alloy is ⁇ 158HBW.
  • the yield strength of the aluminum alloy is ⁇ 500MPa
  • the tensile strength is ⁇ 625MPa
  • the elongation after fracture is ⁇ 17%
  • the overall hardness is ⁇ 158HBW.
  • the aluminum alloy has a density ⁇ 2.6 g/cm 3 .
  • the present application also provides products containing the aluminum alloy.
  • the product is a rolled, extruded or forged product.
  • the present application also provides a structural component containing the aluminum alloy or the product.
  • the structural component is a jib, such as a jib of a concrete pump truck.
  • the present application also provides a concrete pump truck containing the aluminum alloy, the product or the structural component.
  • the present application also provides a method for manufacturing an aluminum alloy product, comprising:
  • the casting includes the following elements, in mass%, Cu: 4.4-4.7, Li: 2.5-2.6, Mg: 0.8-1.0, Zn: 0.8-1.0, Zr: 0.2-0.25, Sc : 0.8 ⁇ 0.15, and the balance of Al and unavoidable impurities, optionally, aluminum alloy castings are rolled, extruded or forged;
  • Solution treatment includes: heating the aluminum alloy casting to 490-505°C and keeping it warm for 5.5-6.5 hours;
  • the aging treatment comprising: heating the aluminum alloy casting to 172-178° C. and keeping it warm for 16.5-17 hours.
  • the solution treatment includes: heating the aluminum alloy casting to 495-505° C. and keeping it warm for 5.5-6.5 hours.
  • the solution treatment includes: heating the aluminum alloy casting to 500° C. and keeping the temperature for 5.5-6.5 hours.
  • the solution treatment includes: heating the aluminum alloy casting to 500° C. and keeping the temperature for 6 hours.
  • the aging treatment includes: heating the aluminum alloy casting to 173-177° C. and keeping it warm for 16.5-17 hours.
  • the aging treatment includes: heating the aluminum alloy casting to 174-176° C. and holding the temperature for 16.5-17 hours.
  • the aging treatment includes: heating the aluminum alloy casting to 175° C. and holding the temperature for 17 hours.
  • step 2) the aluminum alloy casting is extruded at 505-510°C.
  • a method of making an aluminum alloy casting comprises:
  • the refining temperature is preferably 710-720°C;
  • the present application also provides an aluminum alloy product obtained by the method for manufacturing an aluminum alloy product.
  • the alloy product is a hollow profile with a width of 20-50mm, a height of 20-50mm, a thickness of 5-10mm, and a length greater than or equal to 5m.
  • the present application also provides a structural component containing or manufactured from the aluminum alloy product.
  • the structural component is a jib, such as a jib of a concrete pump truck.
  • the present application also provides a concrete pump truck containing the aluminum alloy product or the structural component.
  • structural component means a mechanical part whose static and/or dynamic mechanical properties are of particular importance for the performance of the structure and for which structural calculations are typically specified or performed. These are typical components, the fracture of which can seriously threaten the safety of mechanical structures.
  • structural components include those that make up the boom.
  • the yield strength is determined according to GB/T 228.1-2010 Tensile Tests for Metallic Materials Part 1: Test Method at Room Temperature.
  • the tensile strength is determined according to GB/T 228.1-2010 Tensile Tests for Metallic Materials Part 1: Test Method at Room Temperature.
  • the elongation after fracture is determined according to GB/T 228.1-2010 Tensile test of metal materials Part 1: Test method at room temperature.
  • the overall hardness is determined according to GB/T 231.1-2018 Brinell hardness test for metallic materials Part 1: Test method.
  • the metallographic microstructure is determined according to GB/T 13298-2015 metal microstructure examination method.
  • alloy density is determined in accordance with ASD-STAN PREN 6018-1990 Aerospace Series Test Methods for Metallic Materials Determination of Density According to Displacement Method (Issue P 1).
  • the content of alloying elements is determined according to GB/T 20975.25-2020 Chemical Analysis Methods of Aluminum and Aluminum Alloys Part 25: Determination of Element Content by Inductively Coupled Plasma Atomic Emission Spectrometry.
  • the element content is easy to cause burning loss of Li element during the smelting process, and the structure of the aluminum alloy after smelting is also prone to segregation, and the strength of the aluminum alloy becomes lower and the plasticity becomes worse.
  • the inventors also found that the content of Zr in the aluminum alloy is 0.2-0.25% by weight, and the content of Sc is 0.8-0.15% by weight, which can make the aluminum alloy have satisfactory grain refinement effect, phase distribution and properties including strength, hardness and plasticity. Comprehensive performance.
  • the aluminum alloy provided by this application is a light, high-strength aluminum alloy with a density ⁇ 2.6g/cm 3 , a yield strength ⁇ 500MPa, and a tensile strength ⁇ 625MPa, and the aluminum alloy also has good plasticity and hardness.
  • the elongation after breaking is ⁇ 16.5%, the overall hardness is ⁇ 155HBW, and its comprehensive mechanical properties are good.
  • the average grain size of the aluminum alloy is about 34.5-35.5 ⁇ m, and the second phase is uniformly distributed in the grain and at the grain boundary.
  • the aluminum alloy has good forming and processing properties and high weldability.
  • the aluminum alloy can be used instead of steel on the concrete pump truck boom, which can significantly reduce the self-weight of the boom while meeting the mechanical performance requirements of the boom, and achieve the effect of energy saving and emission reduction.
  • Fig. 1 shows the metallographic structure of the aluminum alloy obtained in Example 1 of the present application
  • Fig. 2 shows the metallographic structure of the aluminum alloy obtained in Example 2 of the present application
  • Fig. 3 shows the metallographic structure of the aluminum alloy obtained in Example 3 of the present application
  • Fig. 4 shows the metallographic structure of the aluminum alloy obtained in Example 4 of the present application
  • Fig. 5 shows the metallographic structure of the aluminum alloy obtained in Example 5 of the present application.
  • Fig. 6 shows the hollow profile prepared in Example 6 of the present application.
  • the aluminum alloy castings in the examples of the present application are prepared by a preparation method comprising the following steps:
  • Refining put in refining agent, such as C 2 Cl 6 , and refine at least twice at a refining temperature of 710-720°C.
  • the aluminum alloy in this example is calculated by mass fraction, and its element composition is Cu: 4.62%, Li: 2.57%, Mg: 0.98%, Zr: 0.23%, Zn: 0.21%, Sc: 0.13%, and the balance is Al.
  • the ingredients are distributed according to the above alloy composition, and then smelting, refining, pouring and forming are carried out to obtain aluminum alloy castings.
  • Aluminum alloy castings are solution treated in a vacuum resistance furnace, heated to 500°C, held for 6 hours, taken out and quenched in water, then aged in a vacuum resistance furnace, heated to 175°C, held for 17 hours to obtain aluminum alloy castings.
  • Alloy Sample 1 Alloy samples 2-5 were obtained by changing the temperature and holding time of solution treatment and aging treatment.
  • the aluminum alloy sample obtained by the above method was observed for metallographic microstructure, and the mechanical performance parameters such as density, tensile strength, yield strength, elongation after fracture, and hardness were detected.
  • the metallographic microstructure of aluminum alloy sample 1 is shown in Figure 1.
  • the average grain size of the alloy is 34.6 ⁇ m, and the second phase is evenly distributed in the grain and at the grain boundary.
  • the density of aluminum alloy sample 1 is 2.58g/cm 3 , the tensile strength is 627MPa, the yield strength is 505MPa, the elongation after fracture is 17.0%, and the overall hardness ranges from 158 to 160HBW.
  • the mechanical properties of aluminum alloy samples 2-5 are shown in Table 1.
  • the aluminum alloy in this example is calculated by mass fraction, and its element composition is Cu: 4.39%, Li: 2.49%, Mg: 0.79%, Zr: 0.22%, Zn: 0.24%, Sc: 0.14%, and the balance is Al.
  • the ingredients are distributed according to the above alloy composition, and then smelting, refining, pouring and forming are carried out to obtain aluminum alloy castings.
  • the aluminum alloy castings were solid solution treated in a vacuum resistance furnace, heated to 500°C, kept for 6 hours, and then water-cooled and quenched after taking them out. Then the aluminum alloy castings were subjected to aging treatment in a vacuum resistance furnace, heated to 175°C and held for 17 hours.
  • the metallographic microstructure of the aluminum alloy sample obtained by the above method was observed. As shown in Figure 2, the average grain size of the alloy is 35.4 ⁇ m, and the second phase is uniformly distributed in the grain and at the grain boundary.
  • the density of the aluminum alloy sample is 2.58g/cm 3 , the tensile strength is 606MPa, the yield strength is 490MPa, the elongation after fracture is 17.5%, and the overall hardness ranges from 155 to 157HBW. It can be seen that with the decrease of the content of Cu, Li, and Mg elements, the strength and hardness of the aluminum alloy samples decrease, but the plasticity slightly improves.
  • the aluminum alloy in this example is calculated by mass fraction, and its element composition is Cu: 4.71%, Li: 2.61%, Mg: 1.01%, Zr: 0.23%, Zn: 0.22%, Sc: 0.11%, and the balance is Al.
  • the ingredients are distributed according to the above alloy composition, and then smelting, refining, pouring and forming are carried out to obtain aluminum alloy castings.
  • the aluminum alloy casting is solid-solution treated in a vacuum resistance furnace, heated to 500°C, kept for 6 hours, and then water-cooled and quenched after taking it out. Then the aluminum alloy castings were subjected to aging treatment in a vacuum resistance furnace, heated to 175°C and held for 17 hours.
  • the metallographic microstructure of the aluminum alloy sample obtained by the above method was observed. As shown in Figure 3, the average grain size of the alloy is 35.3 ⁇ m, and the second phase is uniformly distributed in the grain and at the grain boundary.
  • the density of the aluminum alloy sample is 2.59g/cm 3 , the tensile strength is 645MPa, the yield strength is 517MPa, the elongation after fracture is 16.0%, and the overall hardness ranges from 165 to 168HBW. It can be seen that with the increase of the content of Cu, Li, and Mg elements, the strength and hardness of the aluminum alloy samples are significantly improved, but the plasticity is reduced.
  • the aluminum alloy in this embodiment is calculated by mass fraction, and its elemental composition is Cu: 4.45%, Li: 2.57%, Mg: 0.92%, Zr: 0.19%, Zn: 0.26%, Sc: 0.07%, and the balance is Al.
  • the ingredients are distributed according to the above alloy composition, and then smelting, refining, pouring and forming are carried out to obtain aluminum alloy castings.
  • the aluminum alloy castings were solid solution treated in a vacuum resistance furnace, heated to 500°C, kept for 6 hours, and then water-cooled and quenched after taking them out. Then the aluminum alloy castings were subjected to aging treatment in a vacuum resistance furnace, heated to 175°C and held for 17 hours.
  • the metallographic microstructure of the aluminum alloy sample obtained by the above method was observed. As shown in Figure 4, the average grain size of the alloy is 47.6 ⁇ m, and the second phase is uniformly distributed in the grain and at the grain boundary.
  • the density of the aluminum alloy sample is 2.58g/cm 3 , the tensile strength is 586MPa, the yield strength is 462MPa, the elongation after fracture is 15.5%, and the overall hardness ranges from 140 to 148HBW. It can be seen that with the decrease of the content of Zr and Sc elements, the grain refinement effect of the structure decreases, and the strength, hardness and plasticity of the aluminum alloy samples decrease significantly.
  • the aluminum alloy in this embodiment is calculated by mass fraction, and its elemental composition is Cu: 4.42%, Li: 2.53%, Mg: 0.94%, Zr: 0.26%, Zn: 0.23%, Sc: 0.16%, and the balance is Al.
  • the ingredients are distributed according to the above alloy composition, and then smelting, refining, pouring and forming are carried out to obtain aluminum alloy castings.
  • the aluminum alloy castings were solid solution treated in a vacuum resistance furnace, heated to 500°C, kept for 6 hours, and then water-cooled and quenched after taking them out. Then the aluminum alloy castings were subjected to aging treatment in a vacuum resistance furnace, heated to 175°C and held for 17 hours.
  • the metallographic microstructure of the aluminum alloy sample obtained by the above method was observed. As shown in Figure 5, the average grain size of the alloy is 31.2 ⁇ m, and the second phase is uniformly distributed in the grain and at the grain boundary.
  • the density of the aluminum alloy sample is 2.58g/cm 3 , the tensile strength is 618MPa, the yield strength is 492MPa, the elongation after fracture is 16.5%, and the overall hardness ranges from 154 to 157HBW. It can be seen that with the increase of the content of Zr and Sc elements, the size of the precipitated phase at the grain boundary is larger, and the grain refinement effect of the structure is not much different from that of Example 1, but the strength, hardness and plasticity of the aluminum alloy sample slightly down.
  • the alloy composition in Example 1 is used for batching, and then smelted, refined, cast into bar ingots, extruded through an aluminum extrusion machine, cooled through water, and heat treated to prepare a width of 20-50mm, a height of 20-50mm, and a thickness of Hollow profiles with a length of 5 to 10 mm and a length of more than 5 m ( Figure 6).
  • the ingot temperature is controlled at 505-510°C.
  • the process parameters of the heat treatment are the same as those of the aluminum alloy sample 1 in Example 1.
  • the extruded aluminum alloy is solution treated in a vacuum resistance furnace, heated to 500°C, kept for 6 hours, taken out and quenched in water, then aged in a vacuum resistance furnace, heated to 175°C , keep warm for 17h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Extrusion Of Metal (AREA)

Abstract

本申请涉及一种铝合金,包含以下元素,以质量%计,Cu:4.4~4.7,Li:2.5~2.6,Mg:0.8~1.0,Zn:0.8~1.0,Zr:0.2~0.25,Sc:0.8~0.15,和余量Al及不可避免的杂质。该铝合金的密度低、综合力学性能好,并且成形及加工性能良好、可焊性较高。同一强度水平上,该铝合金可在混凝土泵车臂架上代替钢材使用。

Description

一种铝合金及其制备方法
本申请是以CN申请号为202211489897.X,申请日为2022年11月25日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本申请属于合金技术领域,具体涉及一种铝合金及其制备方法。
背景技术
目前,混凝土泵车的臂架材质多采用钢材,例如Q460、Q550、Q690、BS700。钢的密度大,一般为7.85g/cm3左右,因此钢制臂架通常比较重,并由此导致混凝土泵车的负荷大,排放量大,上牌受限等一系列问题。为解决上述问题,需要对臂架进行减重。
铝合金是应用最为广泛的一类有色金属材料,在航空、航天、汽车、机械制造、船舶等工业中大量应用。铝合金的密度较低,一般为2.7g/cm3左右,是钢密度的三分之一。相同结构的臂架,在同等强度下,使用铝合金代替钢,可明显降低臂架重量。
针对臂架这一结构部位,以铝合金取代钢材有以下几点优势:①铝合金密度低;②成形性好:既可以通过铸造直接浇注出所需零部件形状,也可以通过塑性变形实现向复杂结构的转变;③焊接性好:铝合金的焊接方法多种多样,如电弧焊、搅拌摩擦焊、激光焊接等,可以满足大尺寸铝合金件的制造要求。
现有技术中,一般采用6XXX系、7XXX系铝合金作为臂架的结构用材。6XXX系铝合金成形性能好,但整体强度较低,不足350MPa;而7XXX系铝合金强度高,但通过塑性成形、挤压成形制备大尺寸变截面型材的难度大。因此,需要进一步优化铝合金的材质,获得轻质、高强的铝合金,以满足混凝土泵车的使用工况需求。
发明内容
本申请提供一种铝合金,包含以下元素,以质量%计,Cu:4.4~4.7,Li:2.5~2.6,Mg:0.8~1.0,Zn:0.8~1.0,Zr:0.2~0.25,Sc:0.8~0.15,和余量Al及不可避免的杂质。
在一个实施方案中,所述的铝合金的屈服强度≥500MPa,抗拉强度≥625MPa,断后伸长率≥16.5%,整体硬度≥155HBW。在一个实施方案中,所述的铝合金的断后伸长率≥17%。在一个实施方案中,所述的铝合金的整体硬度为≥158HBW。
在一个实施方案中,所述的铝合金的屈服强度≥500MPa,抗拉强度≥625MPa,断后伸长率≥17%,整体硬度≥158HBW。
在一个实施方案中,所述的铝合金的密度≤2.6g/cm3
本申请还提供含有所述铝合金的产品。在一个实施方案中,所述的产品为轧制、挤压或锻造产品。
本申请还提供含有所述的铝合金或所述的产品的结构部件。在一个实施方案中,所述结构部件为臂架,例如混凝土泵车的臂架。
本申请还提供含有所述铝合金、所述产品或所述结构部件的混凝土泵车。
本申请还提供一种制造铝合金产品的方法,包括:
1)制备铝合金铸件,所述铸件包含以下元素,以质量%计,Cu:4.4~4.7,Li:2.5~2.6,Mg:0.8~1.0,Zn:0.8~1.0,Zr:0.2~0.25,Sc:0.8~0.15,和余量Al及不可避免的杂质,可选地,对铝合金铸件进行扎制、挤压或锻造;
2)对铝合金铸件进行固溶处理,所述固溶处理包括:将铝合金铸件加热至490~505℃,保温5.5~6.5小时;
3)对铝合金铸件进行淬火处理;
4)对铝合金铸件进行时效处理,所述时效处理包括:将铝合金铸件加热至172~178℃,保温16.5~17小时。
在一个实施方案中,所述固溶处理包括:将铝合金铸件加热至495~505℃,保温5.5~6.5小时。
在一个实施方案中,所述固溶处理包括:将铝合金铸件加热至500℃,保温5.5~6.5小时。
在一个实施方案中,所述固溶处理包括:将铝合金铸件加热至500℃,保温6小时。
在一个实施方案中,所述时效处理包括:将铝合金铸件加热至173~177℃,保温16.5~17小时。
在一个实施方案中,所述时效处理包括:将铝合金铸件加热至174~176℃,保温16.5~17小时。
在一个实施方案中,所述时效处理包括:将铝合金铸件加热至175℃,保温17小时。
在一个实施方案中,在步骤2)前,包括对铝合金铸件在505~510℃进行挤压。
在一个实施方案中,制备铝合金铸件的方法包括:
1)按化学成分配料,将各类中间铸锭(例如高纯Al锭、Al-Cu铸锭、高纯Mg 锭、高纯锂、Al-Zr铸锭、Al-Sc铸锭)融化,优选地在温度到达700℃时加入高纯Mg锭,优选地在升温至720℃时加入高纯锂;
2)放入精炼剂(例如C2Cl6),精炼,至少精炼2次,精炼温度优选为710~720℃;
3)浇注成形,优选在715-720℃浇注成形。
本申请还提供由所述的制造铝合金产品的方法获得的铝合金产品。在一个实施方案中,所述的合金产品为空心型材,其宽度为20~50mm、高度为20~50mm、厚度为5~10mm、长度大于或等于5m。
本申请还提供含有所述铝合金产品或由所述铝合金产品制造的结构部件。在一个实施方案中,所述结构部件为臂架,例如混凝土泵车的臂架。
本申请还提供含有所述铝合金产品或所述结构部件的混凝土泵车。
在本申请中,“结构部件”是指这样的机械零件,该机械零件的静态和/或动态机械性能对于结构的性能特别重要,并且对该机械零件通常规定或执行结构计算。这些是典型的部件,其断裂可能严重威胁机械结构的安全。对于混凝土泵车,结构部件包括组成臂架的部件。
除非另有说明,否则与合金的化学组成有关的所有信息均以基于合金总重量的重量百分比表示。
除非另有说明,否则屈服强度根据GB/T 228.1-2010金属材料拉伸试验第1部分:室温试验方法测定。
除非另有说明,否则抗拉强度根据GB/T 228.1-2010金属材料拉伸试验第1部分:室温试验方法测定。
除非另有说明,否则断后伸长率根据GB/T 228.1-2010金属材料拉伸试验第1部分:室温试验方法测定。
除非另有说明,否则整体硬度根据GB/T 231.1-2018金属材料布氏硬度试验第1部分:试验方法测定。
除非另有说明,否则金相显微组织根据GB/T 13298-2015金属显微组织检验方法测定。
除非另有说明,否则合金密度根据ASD-STAN PREN 6018-1990 Aerospace Series Test Methods for Metallic Materials Determination of Density According to Displacement Method(Issue P 1)测定。
除非另有说明,否则合金元素含量根据GB/T 20975.25-2020铝及铝合金化学分析方法第25部分:元素含量的测定电感耦合等离子体原子发射光谱法测定。
发明人发现通过提高其Li元素的含量可使铝合金获得更低密度,但过高的Li元 素含量在熔炼过程中易产生Li元素的烧损,熔炼后铝合金的组织也易出现偏析现象,铝合金的强度变低、塑性变差。发明人发现铝合金中Cu含量为4.4~4.7重量%,Li含量为2.5~2.6重量%,Mg含量为0.8~1.0重量%,可使铝合金具有令人满意的密度和包括强度、硬度和塑性的综合力学性能。发明人还发现铝合金中Zr含量为0.2~0.25重量%,Sc含量为0.8~0.15重量%,可使铝合金具有令人满意的晶粒细化效果、相分布以及包括强度、硬度和塑性的综合性能。
本申请提供的铝合金是一种轻质、高强度的铝合金,其密度≤2.6g/cm3,屈服强度≥500MPa,抗拉强度≥625MPa,并且该铝合金还具有良好的塑性和硬度,断后伸长率≥16.5%,整体硬度≥155HBW,其综合力学性能好。
该铝合金的平均晶粒尺寸为约34.5~35.5μm,第二相均匀分布在晶内和晶界处。
该铝合金的成形及加工性能良好、可焊性较高。
同一强度水平上,该铝合金可在混凝土泵车臂架上代替钢材使用,在满足臂架力学性能使用要求的同时显著降低臂架的自重,达到节能减排效果。
附图说明
图1示出了本申请实施例1所得铝合金的金相组织;
图2示出了本申请实施例2所得铝合金的金相组织;
图3示出了本申请实施例3所得铝合金的金相组织;
图4示出了本申请实施例4所得铝合金的金相组织;
图5示出了本申请实施例5所得铝合金的金相组织;
图6示出了本申请实施例6制备的空心型材。
具体实施方式
下面将结合实施例对本申请的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本申请,而不应视为限定本申请的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用原料、设备或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
本申请实施例中的铝合金铸件通过包括以下步骤的制备方法制备而成:
(1)熔炼:按化学成分配料,将各类中间铸锭(例如高纯Al锭、Al-Cu铸锭、高纯Mg锭、高纯锂、Al-Zr铸锭、Al-Sc铸锭)放入熔炼炉中融化,其中Mg在温度到达700℃时加入,锂在升温至720℃时加入。
(2)精炼:放入精炼剂,例如C2Cl6,精炼,至少精炼2次,精炼温度710~720℃。
(3)浇注:精炼后,控制熔体温度,在715-720℃浇注成形。
本申请实施例中所用检测方法如下:
实施例1
本实施例中的铝合金,以质量分数计算,其元素组成为Cu:4.62%、Li:2.57%、Mg:0.98%、Zr:0.23%、Zn:0.21%、Sc:0.13%、余量为Al。按上述合金成分配料,然后进行熔炼、精炼、浇注成形,得到铝合金铸件。采用真空电阻炉对铝合金铸件进行固溶处理,加热至500℃,保温6h,取出后水冷淬火,随后在真空电阻炉中对铝合金铸件进行时效处理,加热至175℃,保温17h,得到铝合金样品1。改变固溶处理和时效处理的温度和保温时间,得到铝合金样品2-5。
对上述方法获得的铝合金样品进行金相显微组织观察,并检测密度以及抗拉强度、屈服强度、断后伸长率、硬度等力学性能参数。
铝合金样品1的金相显微组织如图1所示,合金平均晶粒尺寸为34.6μm,第二相均匀分布在晶内和晶界处。铝合金样品1的密度为2.58g/cm3,抗拉强度为627MPa,屈服强度为505MPa,断后伸长率为17.0%,整体硬度范围为158~160HBW。铝合金样品2-5的力学性能见表1。
表1 不同热处理工艺参数获得的铝合金的力学性能参数
实施例2
本实施例中的铝合金,以质量分数计算,其元素组成为Cu:4.39%、Li:2.49%、Mg:0.79%、Zr:0.22%、Zn:0.24%、Sc:0.14%、余量为Al。按上述合金成分配料,然后进行熔炼、精炼、浇注成形,得到铝合金铸件。采用真空电阻炉对铝合金铸件进行固溶处理,加热至500℃,保温6h,取出后水冷淬火。随后在真空电阻炉中对铝合金铸件进行时效处理,加热至175℃,保温17h。
对上述方法获得的铝合金样品进行金相显微组织观察,如图2所示,合金平均晶粒尺寸为35.4μm,第二相均匀分布在晶内和晶界处。铝合金样品的密度为2.58g/cm3,抗拉强度为606MPa,屈服强度为490MPa,断后伸长率为17.5%,整体硬度范围为155~157HBW。可以看到,随着Cu、Li、Mg元素含量的降低,铝合金样品的强度、硬度性能降低,但塑性稍有提升。
实施例3
本实施例中的铝合金,以质量分数计算,其元素组成为Cu:4.71%、Li:2.61%、Mg:1.01%、Zr:0.23%、Zn:0.22%、Sc:0.11%、余量为Al。按上述合金成分配料,然后进行熔炼、精炼、浇注成形,得到铝合金铸件。采用真空电阻炉对铝合金铸件进行固溶理,加热至500℃,保温6h,取出后水冷淬火。随后在真空电阻炉中对铝合金铸件进行时效处理,加热至175℃,保温17h。
对上述方法获得的铝合金样品进行金相显微组织观察,如图3所示,合金平均晶粒尺寸为35.3μm,第二相均匀分布在晶内和晶界处。铝合金样品的密度为2.59g/cm3,抗拉强度为645MPa,屈服强度为517MPa,断后伸长率为16.0%,整体硬度范围为165~168HBW。可以看到,随着Cu、Li、Mg元素含量的增高,铝合金样品的强度、硬度性能有明显提升,但塑性降低。
实施例4
本实施例中的铝合金,以质量分数计算,其元素组成为Cu:4.45%、Li:2.57%、 Mg:0.92%、Zr:0.19%、Zn:0.26%、Sc:0.07%、余量为Al。按上述合金成分配料,然后进行熔炼、精炼、浇注成形,得到铝合金铸件。采用真空电阻炉对铝合金铸件进行固溶处理,加热至500℃,保温6h,取出后水冷淬火。随后在真空电阻炉中对铝合金铸件进行时效处理,加热至175℃,保温17h。
对上述方法获得的铝合金样品进行金相显微组织观察,如图4所示,合金平均晶粒尺寸为47.6μm,第二相均匀分布在晶内和晶界处。铝合金样品的密度为2.58g/cm3,抗拉强度为586MPa,屈服强度为462MPa,断后伸长率为15.5%,整体硬度范围为140~148HBW。可以看到,随着Zr、Sc元素含量的减少,组织的晶粒细化效果有所降低,铝合金样品的强度、硬度、塑性下降明显。
实施例5
本实施例中的铝合金,以质量分数计算,其元素组成为Cu:4.42%、Li:2.53%、Mg:0.94%、Zr:0.26%、Zn:0.23%、Sc:0.16%、余量为Al。按上述合金成分配料,然后进行熔炼、精炼、浇注成形,得到铝合金铸件。采用真空电阻炉对铝合金铸件进行固溶处理,加热至500℃,保温6h,取出后水冷淬火。随后在真空电阻炉中对铝合金铸件进行时效处理,加热至175℃,保温17h。
对上述方法获得的铝合金样品进行金相显微组织观察,如图5所示,合金平均晶粒尺寸为31.2μm,第二相均匀分布在晶内和晶界处。铝合金样品的密度为2.58g/cm3,抗拉强度为618MPa,屈服强度为492MPa,断后伸长率为16.5%,整体硬度范围为154~157HBW。可以看到,随着Zr、Sc元素含量的增多,晶界处析出相尺寸较大,组织的晶粒细化效果同实施例1相较差别不大,但铝合金样品的强度、硬度、塑性稍有下降。
实施例6
以实施例1中的合金成分配料,然后进行熔炼、精炼、浇注成棒材铸锭,通过铝挤压机进行挤压、穿水冷却、热处理,制备宽度20~50mm、高度20~50mm、厚度5~10mm、长度超过5m的空心型材(图6)。挤压时,铸锭温度控制在505~510℃。热处理的工艺参数与实施例1中铝合金样品1的热处理工艺参数相同。采用真空电阻炉对挤压成型的铝合金进行固溶处理,加热至500℃,保温6h,取出后水冷淬火,随后在真空电阻炉中对挤压成型的铝合金进行时效处理,加热至175℃,保温17h。
最后应当说明的是:以上实施例仅用以说明本申请的技术方案而非对其限制;尽管参照较佳实施例对本申请进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本申请的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本申请技术方案的精神,其均应涵盖在本申请请求保护的技术方案范围当中。

Claims (20)

  1. 一种铝合金,包含以下元素,以质量%计,Cu:4.4~4.7,Li:2.5~2.6,Mg:0.8~1.0,Zn:0.8~1.0,Zr:0.2~0.25,Sc:0.8~0.15,和余量Al及不可避免的杂质。
  2. 权利要求1的铝合金,其屈服强度≥500MPa,抗拉强度≥625MPa,断后伸长率≥16.5%,整体硬度为≥155HBW。
  3. 权利要求2的铝合金,其断后伸长率≥17%。
  4. 含有权利要求1-3任意一项的铝合金的产品。
  5. 权利要求4所述的产品,其为轧制、挤压或锻造产品。
  6. 含有权利要求1-3任意一项的铝合金或权利要求4或5的产品的结构部件。
  7. 权利要求6的结构部件,其中所述结构部件为臂架。
  8. 含有权利要求1-3任意一项的铝合金、权利要求4或5的产品或权利要求6或7的结构部件的混凝土泵车。
  9. 制造铝合金产品的方法,包括:
    1)制备铝合金铸件,所述铸件包含以下元素,以质量%计,Cu:4.4~4.7,Li:2.5~2.6,Mg:0.8~1.0,Zn:0.8~1.0,Zr:0.2~0.25,Sc:0.8~0.15,和余量Al及不可避免的杂质,可选地,对铝合金铸件进行扎制、挤压或锻造;
    2)对铝合金铸件进行固溶处理,所述固溶处理包括:将铝合金铸件加热至490~505℃,保温5.5~6.5小时;
    3)对铝合金铸件进行淬火处理;
    4)对铝合金铸件进行时效处理,所述时效处理包括:将铝合金铸件加热至172~178℃,保温16.5~17小时。
  10. 权利要求9的方法,其中所述固溶处理包括:将铝合金铸件加热至495~505℃,保温5.5~6.5小时。
  11. 权利要求10的方法,其中所述固溶处理包括:将铝合金铸件加热至500℃,保温5.5~6.5小时。
  12. 权利要求11的方法,其中所述固溶处理包括:将铝合金铸件加热至500℃,保温6小时。
  13. 权利要求9-12任意一项的方法,其中所述时效处理包括:将铝合金铸件加热至173~177℃,保温16.5~17小时。
  14. 权利要求13的方法,其中所述时效处理包括:将铝合金铸件加热至174~176℃,保温16.5~17小时。
  15. 权利要求14的方法,其中所述时效处理包括:将铝合金铸件加热至175℃,保温17小时。
  16. 权利要求9-12任意一项的方法,其中步骤2)前,包括对铝合金铸件在505~510℃进行挤压。
  17. 权利要求9-16任意一项的方法获得的铝合金产品。
  18. 含有权利要求17的铝合金产品或由权利要求17的铝合金产品制造的结构部件。
  19. 权利要求18的结构部件,其中所述结构部件为臂架。
  20. 含有权利要求17的铝合金产品或权利要求18或19的结构部件的混凝土泵车。
PCT/CN2023/075017 2022-11-25 2023-02-08 一种铝合金及其制备方法 WO2023134780A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211489897.XA CN115821132A (zh) 2022-11-25 2022-11-25 一种铝合金及其制备方法
CN202211489897.X 2022-11-25

Publications (1)

Publication Number Publication Date
WO2023134780A1 true WO2023134780A1 (zh) 2023-07-20

Family

ID=85531519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075017 WO2023134780A1 (zh) 2022-11-25 2023-02-08 一种铝合金及其制备方法

Country Status (2)

Country Link
CN (1) CN115821132A (zh)
WO (1) WO2023134780A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2215805C2 (ru) * 2001-12-17 2003-11-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Сплав на основе алюминия и изделие, выполненное из него
CN108823519A (zh) * 2018-07-02 2018-11-16 鼎镁(昆山)新材料科技有限公司 一种高Mg含量中强高延变形铝锂合金及其热处理方法
CN110218920A (zh) * 2019-06-28 2019-09-10 上海交通大学 一种复合添加多种稀土元素的高强韧性变形铝锂合金及其制备方法
CN110423926A (zh) * 2019-07-29 2019-11-08 中国航发北京航空材料研究院 一种耐热铝锂合金及其制备方法
CN113981280A (zh) * 2021-11-01 2022-01-28 北京理工大学 一种低密度高强高弹性模量的铝锂合金及制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207254A (ja) * 1993-01-07 1994-07-26 Arishiumu:Kk 高強度Al−Li系合金鋳物の製造方法
FR2947282B1 (fr) * 2009-06-25 2011-08-05 Alcan Rhenalu Alliage aluminium cuivre lithium a resistance mecanique et tenacite ameliorees
CN105755409B (zh) * 2014-12-15 2018-03-09 中国航空工业集团公司北京航空材料研究院 一种改善铝锂合金薄板耐损伤性能的热处理方法
CN106591632B (zh) * 2016-12-07 2018-08-28 中国航空工业集团公司北京航空材料研究院 一种改善铝锂合金综合性能的热处理工艺
DE202017100517U1 (de) * 2017-01-31 2018-05-03 Aleris Rolled Products Germany Gmbh Al-Cu-Li-Mg-Mn-Zn Knetlegierungsprodukt
CN110423927A (zh) * 2019-07-17 2019-11-08 中南大学 一种超高强铝锂合金及其制备方法
CN111996426B (zh) * 2020-08-30 2021-11-23 中南大学 一种高强Al-Cu-Mg-Mn铝合金及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2215805C2 (ru) * 2001-12-17 2003-11-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Сплав на основе алюминия и изделие, выполненное из него
CN108823519A (zh) * 2018-07-02 2018-11-16 鼎镁(昆山)新材料科技有限公司 一种高Mg含量中强高延变形铝锂合金及其热处理方法
CN110218920A (zh) * 2019-06-28 2019-09-10 上海交通大学 一种复合添加多种稀土元素的高强韧性变形铝锂合金及其制备方法
CN110423926A (zh) * 2019-07-29 2019-11-08 中国航发北京航空材料研究院 一种耐热铝锂合金及其制备方法
CN113981280A (zh) * 2021-11-01 2022-01-28 北京理工大学 一种低密度高强高弹性模量的铝锂合金及制备方法

Also Published As

Publication number Publication date
CN115821132A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
CN104959393B (zh) 一种高质量航空叶片用铝合金热挤压棒材的制造方法
Liu et al. The microstructure, tensile properties, and creep behavior of as-cast Mg–(1–10)% Sn alloys
CN108300907B (zh) 一种Al-Mn-Si-Mg合金材料及其制备方法
CN107447150B (zh) 一种耐蚀结构铝合金及制备方法
CN105671384A (zh) 铝合金及其制备方法
CN102796925A (zh) 一种压力铸造用的高强韧压铸铝合金
CN108977710B (zh) 一种挤压铸造镁合金材料及其制备方法
CN108977677B (zh) 一种低压铸造过程中铝合金的变质处理方法
CN107675038B (zh) 一种轻质铸造Al-Si-Li-Cu合金材料及其制备方法
CN107587012A (zh) 一种轻质铸造Al‑Si‑Li合金材料及其制备方法
JP2007100205A (ja) 冷延用アルミニウム合金板状鋳塊および成形用アルミニウム合金板の製造方法
CN114231802A (zh) 锻造铝合金轮毂用稀土铝合金棒材及其制备方法
CN110551928A (zh) 一种5654铝合金焊丝线坯的生产方法
CN105401005A (zh) 一种Al-Si合金材料及其生产方法
CN114457266A (zh) 超高强韧铸造铝合金及其成型方法
CN107699747B (zh) 一种高Cu含量Al-Si-Li-Cu铸造合金及其制备方法
EP4407057A1 (en) High-strength and high-toughness al-cu series cast aluminum alloy, preparation method therefor, and use of same in wheel hub manufacturing
CN109182804A (zh) 一种高强度铝铜系铝合金制备方法
WO2023134780A1 (zh) 一种铝合金及其制备方法
CN112359235A (zh) 一种铝合金飞机行李架型材生产工艺
CN108672980B (zh) 一种gh4169合金焊丝短流程制备方法
CN112981197B (zh) 一种无粗晶的变形铝合金及其制备方法和制品
CN115418535A (zh) 铝合金材料及其制备方法和应用、铝合金制品
CA3135702C (en) Aluminium casting alloy
CN114289874A (zh) 一种高强焊缝的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23740120

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)