WO2023134304A1 - 光学信息采集装置和光学信息采集方法 - Google Patents

光学信息采集装置和光学信息采集方法 Download PDF

Info

Publication number
WO2023134304A1
WO2023134304A1 PCT/CN2022/133269 CN2022133269W WO2023134304A1 WO 2023134304 A1 WO2023134304 A1 WO 2023134304A1 CN 2022133269 W CN2022133269 W CN 2022133269W WO 2023134304 A1 WO2023134304 A1 WO 2023134304A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical information
image
period
information collection
Prior art date
Application number
PCT/CN2022/133269
Other languages
English (en)
French (fr)
Inventor
王冬生
魏江涛
张颂来
陈辰
Original Assignee
深圳盈达信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳盈达信息科技有限公司 filed Critical 深圳盈达信息科技有限公司
Publication of WO2023134304A1 publication Critical patent/WO2023134304A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10821Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10544Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum
    • G06K7/10821Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices
    • G06K7/10881Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation by scanning of the records by radiation in the optical part of the electromagnetic spectrum further details of bar or optical code scanning devices constructional details of hand-held scanners
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/64Computer-aided capture of images, e.g. transfer from script file into camera, check of taken image quality, advice or proposal for image composition or decision on when to take image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/741Circuitry for compensating brightness variation in the scene by increasing the dynamic range of the image compared to the dynamic range of the electronic image sensors

Definitions

  • the present application relates to the field of optical information collection, in particular to an optical information collection device and an optical information collection method.
  • the barcode commonly referred to in the industry includes one-dimensional code and two-dimensional code, which refers to a plurality of bars and spaces with different widths/widths arranged according to certain coding rules to express a set of graphic identifiers for information .
  • a common barcode is a parallel line pattern formed by black bars (referred to as bars) and white bars (referred to as empty) with very different reflectivities
  • a two-dimensional code is a regular two-dimensional pattern formed by stacking black blocks and white blocks. Since the "bar" and "empty" in the barcode symbol have different reflectivity to light, the barcode scanner receives reflected light signals with different strengths and correspondingly generates electrical pulses with different potential levels.
  • the width of "bar” and "empty” in the barcode symbol determines the length of the electrical pulse signal with different potential levels.
  • the optical signal received by the scanner needs to be photoelectrically converted into an electrical signal and amplified by an amplifier circuit. Due to the certain size of the scanning light spot, the blurring of the edge of the barcode printing and some other reasons, the barcode electrical signal amplified by the circuit is a smooth undulating signal, which is called “analog electrical signal”.
  • the “analog electrical signal” needs to be shaped into a normal "digital signal”. According to the encoding rules corresponding to the code system, the decoder can read and translate the "digital signal" into digital and character information. Bar codes can mark the country of production, manufacturer, product name, production date, book classification number, mail start and end location, category, date and many other information, so it is widely used in many fields such as commodity circulation, book management, postal management, banking system be widely used.
  • barcodes are now printed on various products (or packaging, the same below), so as to facilitate the control of product production and sales, and barcodes can also be printed on materials of various materials and colors.
  • the color is no longer limited to the original black and white, but has rich colors with different product colors.
  • the purpose of the creation of this application is to provide an optical information collection device that supplements the light with multi-color fill lights in the first period of time, and supplements the light with the fill light corresponding to the image with the highest contrast in the first period of time in the second period and optical information collection methods.
  • the present application provides an optical information collection device, which is characterized in that it includes: a camera for collecting images; a plurality of supplementary light lights, the color of the supplementary light of the plurality of supplementary light lights is different; a control unit, the control unit passes through Triggering and controlling the camera to capture images, and controlling multiple fill lights to fill in the light when the camera captures images, and the fill light time of the multiple fill lights includes a first period and a second period, in the first period A plurality of said fill lights fill in light sequentially, the control unit respectively calculates and compares the contrast of multiple frames of images collected by the camera when a plurality of said fill lights fill in light, and the image with the largest contrast corresponds to The fill light performs fill light in the second period.
  • control unit only calculates the contrast at specific locations in the image.
  • the specific position is a position occupied by optical characters.
  • an aiming unit is included for projecting an aiming pattern having a central light spot at least partially overlapping the specific position.
  • the fill light for the first fill light is the last fill light for the previous triggered image capture .
  • the preset time of the first period is less than or equal to the preset time of the second period.
  • the present application provides a method for collecting optical information, which is characterized in that it includes the following steps: S1: control the camera to collect images and control the supplementary lights of various colors to supplement the light sequentially in the first period; S2: calculate and compare the The contrast of the captured image when the fill light of the color fills in the light; S3: the fill light corresponding to the image with the largest contrast performs fill light in the second period.
  • control unit only calculates the contrast of the position of the optical character in the image.
  • control unit when there are multiple optical characters in the image, in S2, the control unit only calculates the position of the optical character overlapping with the aiming center of the aiming pattern contrast.
  • the supplementary light for the first supplementary light is the last supplementary light for the previous triggered image acquisition.
  • FIG. 1 is a perspective view of an optical information collection device according to an embodiment of the present application
  • Fig. 2 is a schematic diagram of another viewing angle of the optical information collection device in Fig. 1, showing the components therein through the window;
  • Fig. 3 is a schematic diagram of a partial structure of an optical information collection device according to an embodiment of the present application, and shows an aiming pattern projected by an aiming unit;
  • Fig. 4 is a schematic diagram of the optical information/optical characters projected by the optical information collection device according to the embodiment of the present application and aiming at the aiming pattern;
  • Fig. 5 is a timing diagram of the supplementary light of the supplementary light of the optical information collection device of the embodiment of the present application.
  • FIG. 6 is a schematic diagram of image processing by an optical information acquisition device according to an embodiment of the present application.
  • FIG. 7 is a flowchart of a method for collecting optical information by an optical information collecting device according to an embodiment of the present application.
  • a cycle period of the fill lights of multiple colors is also relatively short, and the fill light time allocated to each color fill light is even less.
  • the fill light time allocated to each color fill light is even less.
  • the bar code that is being read usually only one color of the fill light is the best among the fill lights of multiple colors, while the other fill lights are not optimal, due to the angle and distance of reading the bar code, the reading
  • the fetched barcode is printed by a special industry, etc. When the barcode is not successfully read in the first cycle, it will be a waste of time to continue to use multi-color fill lights to fill in the light.
  • the present application provides a new optical information collection device and optical information collection method, and adopts new methods and technical means to solve these problems.
  • an embodiment of the optical information collection device 1 of the present application is a scanning gun, which includes a housing 2 with a housing cavity, a trigger 3 arranged on the housing 2, a transparent scanning window 4 and supplementary light window5.
  • the trigger 3 is used for the user to trigger the scanning gun to collect optical information.
  • FIG. 2 shows a camera 6 and an aiming unit 7 arranged in the scanning window 4 , and a plurality of supplementary lights 8 arranged in the supplementary light window 5 .
  • the supplementary light colors of the plurality of supplementary light lamps 8 are different, and various types of supplementary light lamps 8 with different colors such as white light, red light, green light, blue light, and yellow light can be selected according to actual needs.
  • An implementation of the present application In the example, there are six supplementary lights 8 arranged in a line, a pair of white supplementary lights 8 are located on both sides, a pair of red supplementary lights 8 is located in the center, a pair of blue supplementary lights 8 is located in a pair of white supplementary lights.
  • a pair of supplementary light 8 of any color is used alone for supplementary light, and the illumination field formed in the entire field of view of the camera 6 is symmetrical about the center of the supplementary light window 5, and the illumination field more uniform.
  • the aiming unit 7 can be a common LED (light-emitting diode (light emitting diode) aiming unit 7, also can be laser aiming unit 7, these two kinds of aiming units 7 generally need to match specific lens, to produce the aiming pattern 9 of specific shape, preferably be laser aiming in the present embodiment, it cooperates
  • the diffractive optical lens produces an aiming pattern 9 with a central spot 10 and a rectangular frame 11 configured to coincide with (or close to) the center of the field of view of the camera 6, and the rectangular frame 11 is configured to be aligned with the center of the camera 6 6’s fields of view coincide or roughly coincide (usually the rectangular frame 11 is smaller than the field of view of the camera 6).
  • FIG. 3 is a block diagram of the partial structure (or logic) of the optical information collection device 1 according to the embodiment of the present application.
  • the components drawn therein do not necessarily represent its actual shape, structure or size, but are only for illustration.
  • the main components of the optical information acquisition device 1 in FIG. 3 also include a control unit 12 and a storage unit 13, the control unit 12 is electrically connected to other components, and controls other components by outputting control instructions, and the storage unit 13 is used to store the control program for calling by the control unit 12 .
  • the control unit 12 when the user sends a trigger signal through the trigger 3, the control unit 12 is triggered to control the aiming unit 7 to project an aiming pattern 9 to aim at the target optical character M (such as a barcode or text, etc.) , so that the target optical character M is located in the rectangular frame 11 of the aiming pattern 9 , and the central light spot 10 is aimed at the target optical character M, so that the target optical character M is just located in the center of the field of view of the camera 6 .
  • the control unit 12 then sends an instruction to control the camera 6 to capture the image of the target optical character M. While the camera 6 is collecting images, the control unit 12 controls a plurality of the supplementary lights 8 to provide supplementary light.
  • the supplementary light time of a plurality of said supplementary lights 8 is pre-set to include a first period and a second period. In the first period, a plurality of said supplementary lights 8 are supplemented sequentially.
  • the initial sequence of the fill light 8 fill light is: white light, red light, blue light.
  • the first period is usually set to be shorter, and the first period can be set to 300-600ms, for example, the first period is 300ms, white,
  • the supplementary light time of red and blue three kinds of color light supplementary lights 8 is 100ms.
  • the camera 6 can collect 5 frames of images, and due to the use of automatic exposure control
  • the algorithm adjusts the exposure parameters.
  • optical information that is easy to read such as simple barcodes, low-density QR codes, and simple alphanumeric symbols, etc., it can usually be successfully read in the first period of time. If the optical information is successfully read, Then the control unit 12 controls to end the reading process until the next reading process is triggered by the next trigger.
  • the control unit 12 controls to end the optical information reading process; In the first period, the control unit 12 controls a plurality of the supplementary lights 8 to fill in the light sequentially, and the first supplementary light 8 is the last supplementary light when the entire reading process is completed last time 8. Since the optical information reading was successful when the blue light 8 was filling the light last time, the next trigger will be the first light supplement of the blue light 8, and the order of the light 8 in the first period is blue. color, red, white.
  • Fig. 5 shows the supplementary light sequence diagram of the supplementary light 8 of various colors when the optical information collection device 1 collects optical information that is difficult to read.
  • the supplementary light 8 of white, red and blue To fill in light sequentially, the control unit 12 calculates and compares the contrast of all images in the first period to obtain the image with the highest contrast, and uses the fill light 8 that was used to capture the image with the highest contrast to perform supplementary light in the second period.
  • the second period of time is usually set to a longer time, such as 600-5000ms, the camera 6 can have a longer time for automatic exposure in the second period of time to collect images, and theoretically can obtain an image with greater contrast, so that in the first Optical information that is difficult to read during the time period can also be successfully read.
  • the control unit 12 calculates the contrast of all images collected in the first period , when the contrast of the image collected when the red light supplementary light 8 is supplemented is obtained, the control unit 12 controls the red supplementary light 8 to continue supplementary light in the second period until the reading is successful or timeout.
  • the control unit 12 controls a plurality of supplementary light lamps 8 to supplement light sequentially, and the sequence of supplementary light is red, blue, and white.
  • the image contrast calculation method in the prior art usually calculates the contrast of the entire image, which is inefficient, and the contrast is not the contrast of the target optical character M in the entire image.
  • the recognition of optical characters mainly depends on the contrast between the "bar” and "space” of the barcode. When the contrast between “bar” and “space” is greater, the barcode is relatively easier to read; when the "bar” The smaller the contrast between "" and “empty”, the more difficult it is to read the barcode. Referring to FIG.
  • the calculation process of the image contrast is also optimized, that is, for the images (P1, P2) collected by the camera 6, the control unit 12 only Calculating the contrast of a specific position in the image (P1, P2), ideally, the specific position is exactly the position occupied by the target optical character M, which may be achieved by the following method: said control unit 12 (or a separate image processing unit, Not shown, the same below) Segment the entire image (P1, P2), cut out the suspicious part Y in the image (P1, P2) that may be the target optical character M, and calculate the contrast of the suspicious part Y, if the entire image If only one suspicious part Y is cut out in the image, the contrast of the suspicious part Y is very likely to be the contrast of the target optical character M, which is more accurate and efficient; Each suspicious part Y may be the target optical character M, and the contrast of the target optical character M cannot be accurately obtained.
  • the contrast ratio of the target optical character M in multiple suspicious parts Y can be obtained by the following method: Due to the user's operating habits, the central light spot 10 of the aiming pattern 9 is usually aligned with the target optical character M, so that the central light spot 10 is consistent with the target optical character M. At least a part of the target optical character M overlaps, and when there are multiple suspicious parts Y in the entire image (P1, P2) that may be the target optical character M, only the suspicious part Y that overlaps with the target center spot 10 is cut out It is the target optical character M, and only the contrast of the suspicious part Y is calculated.
  • the automatic exposure is performed only according to the brightness of the target optical character M during the automatic exposure process, without considering the brightness of the surrounding background of the target optical character M.
  • the impact of the aiming pattern 9 on the contrast calculation also needs to be considered.
  • the aiming pattern 9 in the image (P1) is generally brighter (the aiming pattern 9 in P1 is black, which is only used as an example, the brightness of the aiming pattern 9 in the actual image is larger, in In the binarized image, it is usually the part with the highest brightness), and may even be the part with the highest brightness in the entire image, and when the central spot 10 overlaps with the target optical character M, it will further affect the contrast of the target optical character M Therefore, it is necessary to filter out the aiming pattern 9 in the image: in the acquisition period of a frame image (P1), the aiming pattern 9 may not be projected during the image acquisition time, and the aiming pattern 9 may be projected during the image transmission processing time 9, so that it is possible to aim through the aiming pattern 9, and at the same time avoid image overexposure caused by the aiming pattern 9 being too bright; or project the aiming pattern 9 when capturing a frame of image (P1), and then capture
  • the scanning window and the supplementary light window are combined into one window, and multiple supplementary light lights and the camera are set in the same window; further, multiple The supplementary light, the camera and the aiming unit can be integrated into a module, which is usually called a scan engine or a scan head.
  • supplementary lights of different colors can be used to fill in the light at the same time, such as red light and blue light. light color in order to obtain an image with greater contrast.
  • FIG. 7 it is a flowchart of a method for collecting optical information by the optical information collection device 1 of the foregoing embodiment of the present application, including the following steps:
  • the initial order of the fill light 8 of multiple colors is: white light, red light, blue light.
  • the camera 6 can collect multiple frames of images during the fill light time of each color fill light 8,
  • S2 Calculate and compare the contrast of the images collected when the fill light 8 of multiple colors fills in the light.
  • the second period of time is usually set to a longer time.
  • the camera 6 can collect images in the second period of time, it has a longer time for automatic exposure. In theory, an image with greater contrast can be obtained, making it difficult to recognize The optical information read can also be successfully read.
  • the optical information collection device 1 and the optical information collection method of the present application when the camera 6 collects images, a plurality of supplementary lights 8 of different colors are used to supplement the light, and the supplementary light time is divided into a first period and a second period.
  • the optical information collection device 1 and the optical information collection method of the present application are not only suitable for the collection of optical information on materials of different materials/colors, but also can successfully read the simple optical information that is easy to read in the first period of time, and for For some special optical characters that are difficult to read (such as DPM code, Direct Part Mark), targeted supplementary lighting in the second period also has a good reading effect and improves the reading efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Artificial Intelligence (AREA)
  • Toxicology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Character Input (AREA)
  • Image Input (AREA)

Abstract

提供一种光学信息采集装置和光学信息采集方法,光学信息采集装置的特征在于,包括摄像头,用以采集图像;多个补光灯,多个所述补光灯的补光颜色不同;控制单元,所述控制单元经触发控制摄像头采集图像,并控制多个所述补光灯在所述摄像头采集图像时补光,且多个所述补光灯的补光时间包括第一时段和第二时段,在第一时段多个所述补光灯依序补光,所述控制单元分别计算并比较所述摄像头在多个所述补光灯补光时采集的多帧图像的对比度,且以对比度最大的图像对应的补光灯在第二时段进行补光。使得本申请的光学信息采集装置和光学信息采集方法对于一些难以识读的特殊光学字符,在第二时段有针对性进行补光,具有良好的识读效果,提高识读效率。

Description

光学信息采集装置和光学信息采集方法 技术领域
本申请涉及光学信息采集领域,尤指一种光学信息采集装置和光学信息采集方法。
背景技术
业界通常所说的条码(barcode) 包括一维码和二维码,是指将宽度/宽度不等的多个条和空,按照一定的编码规则排列,用以表达一组信息的图形标识符。常见的条形码是由反射率相差很大的黑条(简称条)和白条(简称空)排成的平行线图案,二维码则是由黑块和白块堆叠而成的规则二维图案。由于条码符号中“条”、“空”对光线具有不同的反射率,从而使条码扫描器接受到强弱不同的反射光信号,相应地产生电位高低不同的电脉冲。而条码符号中“条”、“空”的宽度则决定电位高低不同的电脉冲信号的长短。扫描器接收到的光信号需要经光电转换成电信号并通过放大电路进行放大。由于扫描光点具有一定的尺寸、条码印刷时的边缘模糊性以及一些其他原因,经过电路放大的条码电信号是一种平滑的起伏信号,这种信号被称为“模拟电信号”。“模拟电信号”需经整形变成通常的“数字信号”。根据码制所对应的编码规则,译码器便可将“数字信号”识读译成数字、字符信息。条码可以标出物品的生产国、制造厂家、商品名称、生产日期、图书分类号、邮件起止地点、类别、日期等许多信息,因而在商品流通、图书管理、邮政管理、银行系统等许多领域都得到广泛的应用。
技术问题
就比如,现在各种各样的产品(或包装,下同)上都印刷了条码,从而便于产品生产和销售中的管控,条码也得以印刷在各种不同的材质、颜色的材料上,条码的颜色也不再限于最初的黑白色,而是随着产品颜色的不同而具有了丰富的色彩。
技术解决方案
本申请创作的目的在于提供一种在第一时段通过多种颜色的补光灯补光,且在第二时段通过第一时段中对比度最大的图像对应的补光灯补光的光学信息采集装置和光学信息采集方法。
为实现上述目的,本申请采用以下技术手段:
本申请提供一种光学信息采集装置,其特征在于,包括:摄像头,用以采集图像;多个补光灯,多个所述补光灯的补光颜色不同;控制单元,所述控制单元经触发控制摄像头采集图像,并控制多个所述补光灯在所述摄像头采集图像时补光,且多个所述补光灯的补光时间包括第一时段和第二时段,在第一时段多个所述补光灯依序补光,所述控制单元分别计算并比较所述摄像头在多个所述补光灯补光时采集的多帧图像的对比度,且以对比度最大的图像对应的补光灯在第二时段进行补光。
可选地,所述控制单元仅计算图像中特定位置的对比度。
可选地,所述特定位置为光学字符占据的位置。
可选地,包括瞄准单元,用以投射具有中心光斑的瞄准图案,所述中心光斑与所述特定位置至少部分重叠。
可选地,当所述控制单元经再次触发控制多个所述补光灯依序补光时,第一个补光的补光灯为前一次经触发采集图像时最后补光的补光灯。
可选地,第一时段的预设时间小于等于第二时段的预设时间。
有益效果
本申请提供一种光学信息采集方法,其特征在于,包括以下步骤:S1:控制摄像头采集图像并控制多种颜色的补光灯在第一时段依序补光;S2:计算并比较在多种颜色的补光灯补光时采集的图像的对比度;S3:以对比度最大的图像对应的补光灯在第二时段进行补光。
可选地, S2中,所述控制单元仅计算图像中光学字符所在位置的对比度。
可选地, S1中,还包括投射瞄准图案瞄准光学字符,当图像中存在多个光学字符时,在S2中,所述控制单元仅计算与所述瞄准图案的瞄准中心重叠的光学字符所在位置的对比度。
可选地, S3之后,当多个所述补光灯经下一次触发依序补光时,第一个补光的补光灯为前一次经触发采集图像时最后补光的补光灯。
附图说明
图1为本申请一种实施例光学信息采集装置的立体图;
图2为图1中的光学信息采集装置另一视角的示意图,并透过窗口示出了其中的元器件;
图3为本申请实施例光学信息采集装置部分结构的示意图,并示出了通过瞄准单元投射的瞄准图案;
图4为本申请实施例光学信息采集装置投射瞄准图案瞄准光学信息/光学字符的示意图;
图5为本申请实施例光学信息采集装置的补光灯补光的时序图;
图6为本申请实施例光学信息采集装置处理图像的示意图;
图7为本申请实施例光学信息采集装置采集光学信息的一种方法的流程图。
具体实施方式的附图标号说明:
本发明的实施方式
在读取条码时,通常需要补光灯补光,由于不同的材质或颜色的材料对光的吸收率和反射率不同,为了使得印刷在不同材质上的条码可以被快速读取,业内开发了多种颜色的补光灯技术,如红光、白光、绿光和黄光等。进一步又有开发人员将多种颜色的补光灯集成到同一个读取器上,多种颜色的补光灯循环补光,使得一个读取器就可以读取印刷在不同材料上不同颜色的条码。
然而,为了快速解码,多种颜色的补光灯的一个循环周期也比较短,分配到每一种颜色的补光灯的补光时间就更少了。对于正在识读的条码,多种颜色的补光灯中通常只有一种颜色的补光灯是最佳的,而其它的补光灯不是最佳的,由于读取条码的角度和距离、读取的条码由特殊工业印刷等原因,在第一个循环周期没有成功读取条码时,后续继续采用多种颜色的补光灯循环补光就比较浪费时间。
针对上述问题,业内人员提出了根据材料的材质/颜色的不同,预先建立材料的材质/颜色与补光灯颜色的对照表,在读取条码时,先通过图像识别技术识别材料的材质/颜色,然后通过对应颜色的补光灯补光。然而这只是抓住了问题的表象,因为即使是相同的材质或颜色的材料,由于结构或生产工艺等不同,其对光的吸收率和反射率也是不尽相同的,而且对有些外观近似的材料需要通过专业的分析仪器才能分析出来,比如很多颜色近似的合金成分不同,颜色近似的合成塑料成分也不同,或颜色近似的人造玻璃成分也不同,而对于成分相同的纸张,有的更加致密有的更加对光的吸收率和反射率也不同,更不是通过图像识别技术就可以区分材质的,即使建立了对照表也容易出错:总之,由于材料的种类繁多,相同颜色的不同材料对相同颜色的补光也会有不同的吸收率和反射率,而且预先建立的对照表也不可能涵盖所有的材料,而仅仅通过图像识别技术也难以识别材料的种类,预先建立材料与补光灯颜色的对照表不能从根本上解决问题。
本申请针对以上问题,提供一种新的光学信息采集装置和光学信息采集方法,采用新的方法和技术手段以解决这些问题。
为便于更好的理解本申请的目的、结构、特征以及功效等,现结合附图和具体实施方式对本申请作进一步说明。
参照图1所示,本申请光学信息采集装置1的一种实施例为扫描枪,包括具有收容腔的外壳2,以及设置在所述外壳2上的触发器3、透明的扫描窗口4和补光窗口5。所述触发器3用以供用户触发扫描枪采集光学信息。
补充参照图2所示,示出了设置在所述扫描窗口4中的摄像头6和瞄准单元7,以及设置在所述补光窗口5中的多个补光灯8。
多个所述补光灯8的补光颜色不同,可根据实际需求选择白光、红光、绿光、蓝光、黄光等不同颜光补光灯8中的多种,本申请的一种实施例中,包括一字排列的六个补光灯8,一对白光补光灯8分别位于两侧,一对红光补光灯8位于中央,一对蓝光补光灯8位于一对白光补光灯8和一对红光补光灯8之间,使得一对白光补光灯8、一对红光补光灯8和一对蓝光补光灯8均关于所述补光窗口5的中心左右对称,单独使用任一种颜色的一对补光灯8进行补光,在所述摄像头6的整个视场形成的照明场都是关于所述补光窗口5的中心左右对称的,照明场更加均匀。
请补充参考图3所示,所述瞄准单元7可以是普通的LED(light-emitting diode,发光二极管)瞄准单元7,也可以是激光瞄准单元7,这两种瞄准单元7通常需要配合特定的透镜,以产生特定形状的瞄准图案9,本实施例中优选为激光瞄准,其配合衍射光学透镜产生具有中心光斑10和矩形框11的瞄准图案9,所述中心光斑10配置为与所述摄像头6的视场中心重合(或靠近),所述矩形框11配置为与所述摄像头6的视场重合或大致重合(通常矩形框11小于摄像头6的视场)。
请继续参考图3,为本申请实施例的光学信息采集装置1的部分结构(或逻辑)的框图,其中绘制的元器件不一定代表其实际的形状、结构或尺寸,而只是作为示意。图3中的所述光学信息采集装置1主要元件还包括控制单元12和存储单元13,所述控制单元12电性连接其它元器件,以输出控制指令对其它元器件进行控制,所述存储单元13用于存储控制程序,以供所述控制单元12调用。
请参考图4所示,当用户通过所述触发器3发出触发信号时,所述控制单元12经触发控制所述瞄准单元7投射瞄准图案9瞄准目标光学字符M(比如条码或文字等字符),使得目标光学字符M位于瞄准图案9的矩形框11内,中心光斑10对准目标光学字符M,使得目标光学字符M正好位于所述摄像头6视场的中央。所述控制单元12进而发送指令控制所述摄像头6采集目标光学字符M的图像。在所述摄像头6采集图像的同时,所述控制单元12控制多个所述补光灯8补光。
多个所述补光灯8的补光时间预先被设定包括第一时段和第二时段,在第一时段,多个所述补光灯8依序补光,本申请中多个所述补光灯8补光的初始顺序为:白光、红光、蓝光。在每种颜色的所述补光灯8补光时,所述摄像头6均可以采集多帧图像,每一帧图像的采集周期包括图像采集时间和图像传输处理时间,所述控制单元12同步计算每一帧图像的对比度,且所述摄像头6根据自动曝光控制算法进行自动曝光,从而可以根据前一帧图像的对比度调整曝光参数,以期望下一帧图像有更大的对比度。具体来说,若所述摄像头6的帧率为50HZ,为了提高识读效率,第一时段通常设置得较短,可将第一时段设置为300-600ms,比如第一时段为300ms,白、红、蓝三种颜光补光灯8的补光时间均为100ms,在每一种颜光补光灯8补光时,所述摄像头6可以采集到5帧图像,且由于采用自动曝光控制算法调整曝光参数,理论上,对于容易识读的光学信息,比如简单条形码、低密度二维码、简单文字数字符号等,通常在第一时段就可以成功识读,若光学信息成功识读,则所述控制单元12控制结束本次识读过程,直至经下一次触发开始下一次识读过程。
对于容易识读的光学信息,若在第一时段的蓝光补光灯8补光时已经识读成功,则所述控制单元12控制结束本次光学信息识读过程;下一次经触发时,在第一时段,所述控制单元12控制多个所述补光灯8依序补光,且第一个补光的补光灯8为上一次结束整个识读过程时最后补光的补光灯8,由于前一次在蓝光补光灯8补光时,光学信息识读成功,则下一次触发由蓝光补光灯8第一个补光,第一时段补光灯8的补光顺序为蓝色、红色、白色。
由于第一时段时间较短,对一些难以识读的光学信息,如高密度条码和二维码、DPM码、复杂文字符号等,在第一时段通常无法读取成功。图5示出了所述光学信息采集装置1采集难以识读的光学信息时,多种颜色的补光灯8的补光时序图,在第一时段白、红、蓝三色补光灯8依序补光,所述控制单元12计算并比较第一时段所有图像的对比度,从而获得对比度最大的图像,且以采集对比度最大的图像时的补光灯8在第二时段进行补光。第二时段通常设置为更长的时间,比如600-5000ms,所述摄像头6在第二时段采集图像可以有更长的时间进行自动曝光,理论上可以获得对比度更大的图像,使得在第一时段难以识读的光学信息也可以成功识读。
举例来说,对于难以识读的光学信息,在第一时段以白光、红光、蓝光依次补光却没有识读成功光学信息时,所述控制单元12计算第一时段采集的所有图像的对比度,当获得红光补光灯8补光时采集的图像的对比度最大时,则在所述控制单元12控制红光补光灯8在第二时段持续补光,直至识读成功或超时。在下一次经触发时,在第一时段,所述控制单元12控制多个补光灯8依序补光,且补光顺序为红色、蓝色、白色。
现有技术中图像对比度的计算方法,通常是计算整幅图像的对比度,效率较低,而且该对比度也不是整幅图像中目标光学字符M的对比度。而光学字符的识别,比如条码的识别,主要依靠的是条码的“条”与“空”的对比度,当“条”与“空”的对比度越大,条码相对越容易识读;当“条”与“空”的对比度越小,条码相对越难识读。参考图6所示,本实施例中,为了进一步提高识读效率,对图像对比度的计算过程也进行了优化,即针对所述摄像头6采集的图像(P1,P2),所述控制单元12仅计算图像(P1,P2)中特定位置的对比度,最理想的情况是,特定位置刚好是目标光学字符M占据的位置,可能通过以下方法实现:所述控制单元12(或单独的图像处理单元,未图示,下同)对整幅图像(P1,P2)进行分割,切割出图像(P1,P2)中可能是目标光学字符M的可疑部分Y,并且计算可疑部分Y的对比度,如果整幅图像中仅切割出一个可疑部分Y,则该可疑部分Y的对比度就极有可能是目标光学字符M的对比度,更加准确且更有效率;而当整幅图像(P1,P2)中切割出多个可疑部分Y都有可能是目标光学字符M,则无法准确获取目标光学字符M的对比度。进一步可以通过以下方法获取多个可疑部分Y中目标光学字符M的对比度:由于用户的操作习惯,通常会将瞄准图案9的中心光斑10对准目标光学字符M,使得所述中心光斑10与所述目标光学字符M的至少一部分重叠,当整幅图像(P1,P2)中有多个可疑部分Y都可能是目标光学字符M时,仅切割出与所述目标中心光斑10重叠的可疑部分Y即为目标光学字符M,仅计算该可疑部分Y的对比度。
进一步,由于仅需要获得目标光学字符M的对比度,则在自动曝光的过程中,仅根据目标光学字符M的亮度来进行自动曝光,而不考虑目标光学字符M周围背景的亮度。
进一步,还需要考虑所述瞄准图案9对对比度计算的影响。请继续参考图6所示,图像(P1)中由于所述瞄准图案9通常亮度较大(P1中的瞄准图案9是黑色,其仅作为示例,实际图像中瞄准图案9的亮度较大,在二值化的图像中通常是亮度最大的部分),甚至可能是整幅图像中亮度最大的部分,而且当所述中心光斑10与目标光学字符M重叠时,更会对目标光学字符M的对比度造成影响,因此,需要过滤掉图像中的瞄准图案9:可以在一帧图像(P1)的采集周期中,在图像采集时间内不投射所述瞄准图案9,在图像传输处理时间内投射瞄准图案9,从而既可以通过所述瞄准图案9瞄准,同时也避免所述瞄准图案9过亮导致的图像过曝;或者在采集一帧图像(P1)时投射瞄准图案9,在采集下一帧图像(P2)时不投射所述瞄准图案9,而仅计算下一帧图像的对比度。
一种实施例中(未图示,下同),所述扫描窗口和所述补光窗口合为一个窗口,多个所述补光灯与所述摄像头设置于同一个窗口中;进一步,多个所述补光灯可与所述摄像头、所述瞄准单元可以集成为一个模块,该模块通常叫做扫描引擎或扫描头。
一种实施例中(未图示,下同),在第一时段,可以通过不同颜色的补光灯同时补光,比如通过红光和蓝光补光灯同时补光,以提供更丰富的补光颜色,以期获得对比度更大的图像。
一种实施例中(未图示,下同),当中心光斑不与目标光学字符重叠时,或者由于光学字符密度很大,导致多个不同的光学字符同时与中心光斑的一部分重叠时,可以首先确定中心光斑的中心坐标,然后确定与该中心坐标距离最近的光学字符为目标光学字符。
如图7所示,为本申请前述实施例的光学信息采集装置1一种采集光学信息的方法的流程图,包括以下步骤:
S1:控制摄像头6采集图像并控制多种颜色的补光灯8在第一时段依序补光。
多种颜色的补光灯8的初始补光顺序为:白光、红光、蓝光。所述摄像头6在每一种颜色补光灯8的补光时间,均能采集到多帧图像,
S2:计算并比较在多种颜色的补光灯8补光时采集的图像的对比度。
S3:以对比度最大的图像对应的补光灯8在第二时段进行补光。
第二时段通常设置为更长的时间,所述摄像头6在第二时段采集图像可以时,有更长的时间进行自动曝光,理论上可以获得对比度更大的图像,使得在第一时段难以识读的光学信息也可以成功识读。
本申请的光学信息采集装置和光学信息采集方法具有以下有益效果:
本申请的光学信息采集装置1和光学信息采集方法,在摄像头6采集图像时通过多个不同颜色的补光灯8进行补光,且将补光时间分为第一时段和第二时段,在第一时段通过多个所述补光灯8依序补光,并计算所述摄像头6采集的多帧图像的对比度,在第二时段通过对比度最大的图像对应的补光灯8进行补光,使得本申请的光学信息采集装置1和光学信息采集方法不仅适用于不同材质/颜色的材料上光学信息的采集,对容易识读的简单光学信息,在第一时段即可成功识读,而且对于一些难以识读的特殊光学字符(如DPM码,Direct Part Mark),在第二时段有针对性进行补光,也有良好的识读效果,提高识读效率。
以上详细说明仅为本申请之较佳实施例的说明,非因此局限本申请之专利范围,所以,凡运用本创作说明书及图示内容所为之等效技术变化,均包含于本创作之专利范围内。

Claims (20)

  1. 一种光学信息采集装置,其特征在于,包括:
    摄像头,用以采集图像;
    多个补光灯,多个所述补光灯的补光颜色不同;
    控制单元,所述控制单元经触发控制所述摄像头采集图像,并控制多个所述补光灯在所述摄像头采集图像时补光,且多个所述补光灯的补光时间包括第一时段和第二时段,在第一时段多个所述补光灯依序补光,所述控制单元分别计算并比较所述摄像头在多个所述补光灯补光时采集的多帧图像的对比度,且以对比度最大的图像对应的补光灯在第二时段进行补光。
  2. 如权利要求1所述的光学信息采集装置,其特征在于:所述控制单元仅计算图像中特定位置的对比度。
  3. 如权利要求2所述的光学信息采集装置,其特征在于:所述特定位置为光学字符占据的位置。
  4. 如权利要求2所述的光学信息采集装置,其特征在于:包括瞄准单元,用以投射具有中心光斑的瞄准图案,所述中心光斑与所述特定位置至少部分重叠。
  5. 如权利要求1所述的光学信息采集装置,其特征在于:包括瞄准单元,用以投射瞄准图案,在一帧图像的采集周期中,在图像采集时间不投射所述瞄准图案,在图像传输处理时间投射所述瞄准图案。
  6. 如权利要求1所述的光学信息采集装置,其特征在于:包括瞄准单元,用以投射瞄准图案,在采集一帧图像时投射所述瞄准图案,在采集下一帧图像时不投射所述瞄准图案,仅计算下一帧图像的对比度。
  7. 如权利要求1所述的光学信息采集装置,其特征在于:当所述控制单元经再次触发控制多个所述补光灯在第一时段依序补光时,第一个补光的补光灯为前一次经触发采集图像时最后补光的补光灯。
  8. 如权利要求1所述的光学信息采集装置,其特征在于:第一时段的预设时间小于等于第二时段的预设时间。
  9. 如权利要求1所述的光学信息采集装置,其特征在于:当第一时段光学信息识读成功,则结束本次识读过程。
  10. 如权利要求1所述的光学信息采集装置,其特征在于:所述摄像头根据前一帧图像的对比度调整曝光参数。
  11. 如权利要求1所述的光学信息采集装置,其特征在于:通过第二时段补光的补光灯在下一次采集图像时第一个进行补光。
  12. 一种光学信息采集方法,其特征在于,包括以下步骤:
    S1:控制摄像头采集图像并控制多种颜色的补光灯在第一时段依序补光;
    S2:计算并比较在多种颜色的补光灯补光时采集的图像的对比度;
    S3:以对比度最大的图像对应的补光灯在第二时段进行补光。
  13. 如权利要求11所述的光学信息采集方法,其特征在于:S2中,所述控制单元仅计算图像中光学字符所在位置的对比度。
  14. 如权利要求12所述的光学信息采集方法,其特征在于:S1中,还包括投射瞄准图案瞄准光学字符,当图像中存在多个光学字符时,在S2中,所述控制单元仅计算与所述瞄准图案的瞄准中心重叠的光学字符所在位置的对比度。
  15. 如权利要求11所述的光学信息采集方法,其特征在于:S3之后,当多个所述补光灯经下一次触发依序补光时,第一个补光的补光灯为前一次经触发采集图像时最后补光的补光灯。
  16. 如权利要求11所述的光学信息采集方法,其特征在于:在所述摄像头采集图像数投射瞄准图案,在一帧图像的采集周期中,在图像采集时间不投射所述瞄准图案,在图像传输处理时间投射所述瞄准图案。
  17. 如权利要求11所述的光学信息采集方法,其特征在于:在所述摄像头采集图像数投射瞄准图案,在采集一帧图像时投射所述瞄准图案,在采集下一帧图像时不投射所述瞄准图案,仅计算下一帧图像的对比度。
  18. 如权利要求11所述的光学信息采集方法,其特征在于:第一时段的预设时间小于等于第二时段的预设时间。
  19. 如权利要求11所述的光学信息采集方法,其特征在于:当第一时段光学信息识读成功,则结束本次识读过程。
  20. 如权利要求11所述的光学信息采集方法,其特征在于:所述摄像头根据前一帧图像的对比度调整曝光参数。
PCT/CN2022/133269 2022-01-12 2022-11-21 光学信息采集装置和光学信息采集方法 WO2023134304A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210032808.2 2022-01-12
CN202210032808.2A CN114374785A (zh) 2022-01-12 2022-01-12 光学信息采集装置和光学信息采集方法

Publications (1)

Publication Number Publication Date
WO2023134304A1 true WO2023134304A1 (zh) 2023-07-20

Family

ID=81143158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133269 WO2023134304A1 (zh) 2022-01-12 2022-11-21 光学信息采集装置和光学信息采集方法

Country Status (2)

Country Link
CN (2) CN114374785A (zh)
WO (1) WO2023134304A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374785A (zh) * 2022-01-12 2022-04-19 深圳盈达信息科技有限公司 光学信息采集装置和光学信息采集方法
CN115577726A (zh) * 2022-11-11 2023-01-06 无锡盈达聚力科技有限公司 成像装置和成像方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102750508A (zh) * 2011-01-31 2012-10-24 手持产品公司 具有闪光校正瞄准器和交替照明的终端
JP2016004503A (ja) * 2014-06-19 2016-01-12 富士重工業株式会社 車外環境認識装置
CN111460848A (zh) * 2020-04-01 2020-07-28 福州符号信息科技有限公司 能够识别多种材质条码及彩色条码的识读设备及识别方法
CN111541873A (zh) * 2020-05-08 2020-08-14 北京嘀嘀无限科技发展有限公司 车辆监控的控制方法、系统及计算机可读存储介质
CN114374785A (zh) * 2022-01-12 2022-04-19 深圳盈达信息科技有限公司 光学信息采集装置和光学信息采集方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7478753B2 (en) * 2004-08-31 2009-01-20 Symbol Technologies, Inc. System and method for aiming an optical code scanning device
US7261238B1 (en) * 2006-05-26 2007-08-28 Symbol Technologies, Inc. Method of locating imaged bar codes for an imaging-based bar code reader
JP6799279B2 (ja) * 2017-03-27 2020-12-16 カシオ計算機株式会社 画像取得装置、画像取得方法、及びプログラム
CN110852127A (zh) * 2019-10-26 2020-02-28 深圳盈达信息科技有限公司 条码识读方法及终端
CN113515966B (zh) * 2021-08-10 2024-03-15 海伯森技术(深圳)有限公司 一种多谱光照明的扫码方法、装置、存储介质及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102750508A (zh) * 2011-01-31 2012-10-24 手持产品公司 具有闪光校正瞄准器和交替照明的终端
JP2016004503A (ja) * 2014-06-19 2016-01-12 富士重工業株式会社 車外環境認識装置
CN111460848A (zh) * 2020-04-01 2020-07-28 福州符号信息科技有限公司 能够识别多种材质条码及彩色条码的识读设备及识别方法
CN111541873A (zh) * 2020-05-08 2020-08-14 北京嘀嘀无限科技发展有限公司 车辆监控的控制方法、系统及计算机可读存储介质
CN114374785A (zh) * 2022-01-12 2022-04-19 深圳盈达信息科技有限公司 光学信息采集装置和光学信息采集方法

Also Published As

Publication number Publication date
CN114374785A (zh) 2022-04-19
CN116939336A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
WO2023134304A1 (zh) 光学信息采集装置和光学信息采集方法
WO2017157034A1 (zh) 一种二维码的识别方法及装置、存储介质
CN108073845B (zh) 光学标记的读取器
US20080149720A1 (en) Barcode environment enhancement
CA2288758C (en) Optical scanner and image reader for reading images and decoding optical information including one and two dimensional symbologies at variable depth of field
US7344080B2 (en) Imaging-based bar code reader utilizing stitching method and swipe guide
CN103714307B (zh) 具有多核处理器的符号读取器以及其运行系统和方法
JPH10501360A (ja) ラベルイメージキャプチャ用自動電子カメラ
US20090078774A1 (en) Graphical User Interface for Use in Programming a Barcode Reader
CN112115728B (zh) 扫描装置的补光灯控制方法
CN113748007A (zh) 回收物品的数字标记
US11878327B2 (en) Methods and arrangements for sorting items, useful in recycling
CN107122690A (zh) 具有闪光校正瞄准器和交替照明的终端
WO2014187474A1 (en) Identifying one- or two-dimensional bar codes via weighted image data combination
US20090224187A1 (en) Counting device for small series
CN105844197B (zh) 一种用于dpm码阅读器的双镜头图像采集与处理装置
CN110569683A (zh) 条码检测方法及条码检测系统
CN111460848A (zh) 能够识别多种材质条码及彩色条码的识读设备及识别方法
WO2016103285A1 (en) System and method for reading direct part marking (dpm) codes on objects
CN109598173B (zh) 一种扫描装置及其扫描方法
US20090050701A1 (en) Reader with Optical Character Recognition
CN108280378B (zh) 一种二维码扫描装置及二维码扫描方法
US8091789B2 (en) Barcode imaging system and source of electromagnetic radiation therefor
JP2007011654A (ja) エンボス文字読取方法
JP2007079675A (ja) 文字認識方法、文字認識用プログラム及び文字読取装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919937

Country of ref document: EP

Kind code of ref document: A1