WO2023134256A1 - 气体动压径向轴承、压缩机和发动机 - Google Patents

气体动压径向轴承、压缩机和发动机 Download PDF

Info

Publication number
WO2023134256A1
WO2023134256A1 PCT/CN2022/127223 CN2022127223W WO2023134256A1 WO 2023134256 A1 WO2023134256 A1 WO 2023134256A1 CN 2022127223 W CN2022127223 W CN 2022127223W WO 2023134256 A1 WO2023134256 A1 WO 2023134256A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
corrugated
layer
corrugated foil
section
Prior art date
Application number
PCT/CN2022/127223
Other languages
English (en)
French (fr)
Inventor
胡余生
陈彬
贾金信
孔祥茹
苏久展
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2023134256A1 publication Critical patent/WO2023134256A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/024Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings

Definitions

  • the present application relates to the technical field of bearings, in particular to an aerodynamic radial bearing, a compressor and an engine.
  • the gas dynamic pressure radial bearing is a kind of dynamic pressure gas bearing with elastic support.
  • the high-speed rotation of the rotating shaft drives the gas flow between the bearing and the rotating shaft. When the pressure is large enough, the high-speed rotating shaft can be suspended.
  • the high-pressure air film squeezes the bearing, and both the top layer foil and the supporting corrugated foil produce elastic deformation, which increases the air film gap and ensures the stable operation of the bearing.
  • a gas dynamic pressure radial bearing is disclosed in the prior art.
  • the radial bearing is composed of a single-layer arch foil + a single-layer flat foil.
  • the arch foil has a three-stage structure, with high arch foils on both sides and a low arch foil in the middle. Foil, when the load is small, the high-arch foils at both ends provide the bearing capacity first, and when the load is large, the three-section arch foils provide the bearing capacity together.
  • This design plays an effective role in adjusting the stiffness of the bearing.
  • the subsection causes the contact area of the flat foil to decrease under low load, only 2/3 of the contact area, resulting in a decrease in the overall load-carrying performance of the radial bearing.
  • the technical problem to be solved in the present application is to provide an aerodynamic radial bearing, a compressor and an engine, which can increase the damping of the bearing, improve the overall rigidity of the bearing, and improve the bearing capacity of the bearing.
  • an aerodynamic radial bearing which includes a bearing seat, a second layer of corrugated foil, a first layer of corrugated foil and a flat foil, the second layer of corrugated foil and the first layer of corrugated foil are stacked, and It is arranged between the bearing seat and the flat foil, the corrugated foil of the second layer is arranged corresponding to the crests of the corrugated foil of the first layer, and there is a preset gap between the crests of the corrugated foil of the second layer and the corrugated foil of the first layer.
  • the second layer of corrugated foil is arranged on a side close to the flat foil
  • the first layer of corrugated foil is arranged on a side close to the bearing seat
  • the stiffness of the second layer of corrugated foil is smaller than that of the first layer of corrugated foil
  • both the second layer of corrugated foil and the first layer of corrugated foil include a flat section and an arc section, the flat section of the second layer of corrugated foil is supported on the flat section of the first layer of corrugated foil, and the second layer of corrugated foil
  • the width of the flat section of the foil along the circumferential direction is smaller than the width of the flat section of the first layer of corrugated foil along the circumferential direction, and the chord length of the arc section of the second layer of corrugated foil is greater than that of the arc section of the first layer of corrugated foil.
  • the flat foil is used to contact the rotating shaft.
  • the flat foil includes a first layer of flat foil, a second layer of flat foil and a third layer of flat foil,
  • the circumferential extending direction of the first layer of flat foil and the second layer of flat foil is opposite to the rotating direction of the rotating shaft, and the circumferential extending direction of the second layer of flat foil is the same as the rotating direction of the rotating shaft.
  • the first layer of flat foil, the second layer of flat foil and the third layer of flat foil are all circumferentially surrounding structures.
  • the circumferential extension of the second layer of flat foil is 3/5-4/5 of the entire circumference.
  • the circumferential extension of the second flat foil is 2/3 of the entire circumference.
  • the circumferential end of the flat foil of the second layer is a slope structure, and the inclined surface of the slope structure faces the flat foil of the third layer.
  • both the second layer of corrugated foils and the first layer of corrugated foils include at least three corrugated foil segments arranged in sequence along the axial direction, wherein the flat segments and arc-shaped segments of the corrugated foil segments located at both axial ends are along the The circumferential direction is arranged correspondingly, and the wave crests of the corrugated foil segments located in the middle and the wave crests of the corrugated foil segments located at both axial ends are alternately arranged along the circumferential direction.
  • the corrugated foil section includes a first corrugated foil section, a second corrugated foil section, a third corrugated foil section and a fourth corrugated foil section, wherein the first corrugated foil section and the fourth corrugated foil section are located at the At both axial ends, the second corrugated foil segment and the third corrugated foil segment are located between the first corrugated foil segment and the fourth corrugated foil segment, and the flat and arc segments of the first corrugated foil segment and the fourth corrugated foil segment are along the The circumferential direction is arranged correspondingly, the flat section and the arc section of the second corrugated foil segment and the third corrugated foil segment are arranged correspondingly along the circumferential direction, and the crests of the first corrugated foil segment and the second corrugated foil segment are alternately arranged along the circumferential direction.
  • the first corrugated foil segment, the second corrugated foil segment, the third corrugated foil segment and the fourth corrugated foil segment are arranged at intervals along the axial direction, the first corrugated foil segment, the second corrugated foil segment, the fourth corrugated foil segment
  • the three wave foil sections and the fourth wave foil section include a fixed end and a free end, and the fixed ends of the first wave foil section, the second wave foil section, the third wave foil section and the fourth wave foil section are connected to the bearing housing together,
  • the circumferential length of the first corrugated foil segment and the fourth corrugated foil segment is greater than the circumferential length of the second corrugated foil segment and the third corrugated foil segment, and the free ends of the first corrugated foil segment and the fourth corrugated foil segment are fixed by connecting rods connection, the free ends of the second corrugated foil section and the third corrugated foil section are fixedly connected by connecting rods.
  • the inner surface of the flat foil is sprayed with a high temperature resistant lubricating coating.
  • a compressor including a gas dynamic pressure radial bearing, where the gas dynamic pressure radial bearing is the above gas dynamic pressure radial bearing.
  • an engine including the above-mentioned aerodynamic radial bearing or the above-mentioned compressor.
  • the gas dynamic pressure radial bearing provided by this application includes a bearing seat, a second layer of corrugated foil, a first layer of corrugated foil and a flat foil, and the second layer of corrugated foil and the first layer of corrugated foil are stacked and arranged on the bearing seat and the flat foil Between, the corrugated foils of the second layer and the crests of the corrugated foils of the first layer are set correspondingly, and there is a preset gap between the crests of the corrugated foils of the second layer and the corrugated foils of the first layer.
  • the gas dynamic pressure radial bearing adopts a stacked structure to form a double-layer corrugated foil, and the double-layer corrugated foil is bonded together as a flat section of the trough to form a common support, and there is a preset gap between the arc-shaped sections of the crest, so that When the load is low, the top layer of corrugated foils in the first layer of corrugated foils and the second layer of corrugated foils that are in contact with the flat foil provide the bearing capacity. Since the entire top layer of corrugated foils can contact the flat foil, the contact between the corrugated foils and the flat foil The contact area ensures the bearing capacity of a single corrugated foil. As the load increases, the top corrugated foil contacts with the bottom corrugated foil after a certain deformation. and the stability of the bearing system.
  • Fig. 1 is a schematic structural diagram of an aerodynamic radial bearing according to an embodiment of the present application
  • Fig. 2 is a schematic diagram of a bearing structure of an aerodynamic radial bearing according to an embodiment of the present application
  • Fig. 3 is the enlarged structure schematic diagram of the I place of Fig. 2;
  • Fig. 4 is a schematic structural diagram of the first layer of corrugated foil of the aerodynamic radial bearing according to an embodiment of the present application
  • FIG. 5 is a schematic perspective view of a three-dimensional structure of a corrugated foil of an aerodynamic radial bearing according to an embodiment of the present application.
  • the gas dynamic pressure radial bearing includes a bearing housing 1, a second layer of corrugated foil 4, a first layer of corrugated foil 3 and a flat foil, and a second layer of corrugated foil 4 It is stacked with the first layer of corrugated foil 3, and is arranged between the bearing housing 1 and the flat foil. There is a preset gap 203 between the crests of the corrugated foil 3 .
  • the gas dynamic pressure radial bearing adopts a stacked structure to form double-layer corrugated foils, and the flat sections of the double-layer corrugated foils as wave troughs are bonded together to form a common support, and there is a preset gap 203 between the arc-shaped sections as wave crests , so that under low load, the first layer of corrugated foil 3 and the top layer of corrugated foil of the second layer of corrugated foil 4 provide bearing capacity, since the entire top layer of corrugated foil can be in contact with the flat foil, thus ensuring the corrugated The contact area between the foil and the flat foil ensures the bearing capacity of a single corrugated foil.
  • the top corrugated foil contacts with the bottom corrugated foil after a certain deformation.
  • the two corrugated foils jointly provide the bearing capacity, thereby further increasing the gas dynamic pressure.
  • the corrugated foil close to the flat foil is used as the top corrugated foil, and the corrugated foil far away from the flat foil is used as the bottom corrugated foil.
  • the second layer of corrugated foil 4 is arranged on the side close to the flat foil, the first layer of corrugated foil 3 is arranged on the side close to the bearing seat 1, and the stiffness of the second layer of corrugated foil 4 is smaller than that of the first layer of corrugated foil. Stiffness of foil 3.
  • the top corrugated foil can be used to provide low load bearing capacity.
  • the double-layer corrugated foil can be used to provide bearing capacity.
  • the stiffness of the bottom corrugated foil is greater, it can carry a larger load and can form a better supporting effect on the top corrugated foil. The difference provides better load-bearing performance and further improves the stability of the bearing system.
  • the height of the gap 203 is 20%-35% of the peak height of the corrugated foil 4 of the second layer. As an embodiment, the height of the gap 203 is 27% of the peak height of the corrugated foil 4 of the second layer.
  • the second layer of corrugated foil 4 and the first layer of corrugated foil 3 both include a flat section and an arc section, the flat section of the second layer of corrugated foil 4 is supported on the flat section of the first layer of corrugated foil 3,
  • the width of the flat section of the second layer of corrugated foil 4 along the circumferential direction is smaller than the width of the flat section of the first layer of corrugated foil 3 along the circumferential direction, and the chord length of the arc section of the second layer of corrugated foil 4 is greater than that of the first layer of corrugated foil The chord length of the arc segment of 3.
  • the first layer of corrugated foil 3 and the second layer of corrugated foil 4 are made of metal foils through the mold corresponding to the structure through pressing and holding pressure to form the structure shown in Figure 4, and then rolled by special tooling.
  • the structure shown in Figure 5 is formed by winding and heat treatment to ensure that the flat section between each arch fits the inner surface of the bearing seat 1, thereby ensuring the consistency and feasibility of bearing preparation.
  • the design parameters of the first layer of corrugated foil 3 and the second layer of corrugated foil 4 are different in chord length and section value, which can be reasonably set according to the design positions of the two, so that the first layer of corrugated foil 3 and the second layer of corrugated foil 4 The flat sections fit together without interference.
  • the arch height of the second layer of corrugated foil 4 is greater than that of the first layer of corrugated foil 3, and there is a gap 203 in each segment of the arch to ensure that the arc sections of the first layer of corrugated foil 3 and the second layer of corrugated foil 4 overlap, and Interference will not occur due to the unreasonable design of the width of the flat section.
  • the implementation of the design scheme of the two-layer corrugated foil can increase the bearing damping and the deformation degree of the arch foil, and improve the bearing performance of the arch foil.
  • the flat foil is used to be in contact with the rotating shaft 8.
  • the flat foil includes a first layer of flat foil 5, a second layer of flat foil 6 and a third layer of The flat foil 7 , the first flat foil 5 and the second flat foil 6 extend in the opposite direction to the rotating shaft 8 , and the second flat foil 6 extends in the same circumferential direction as the rotating shaft 8 rotates.
  • the first layer of flat foil 5, the second layer of flat foil 6, and the third layer of flat foil 7 all have a full-circumference structure, so the structural consistency of each foil can be guaranteed during the preparation and bending of the bearing.
  • the consistency of the overall structure of the gas dynamic pressure bearing ensures the consistency of the installation of the gas dynamic pressure bearing and improves the bearing performance of the gas dynamic pressure bearing.
  • the circumferential extension of the second layer of flat foil 6 is 3/5-4/5 of the entire circumference.
  • the circumferential extension of the second flat foil 6 is 2/3 of the entire circumference.
  • the circumferential end of the flat foil 6 of the second layer is a slope structure, and the inclined surface of the slope structure faces the flat foil 7 of the third layer.
  • the second layer of flat foil 6 is opposite to the direction of the first layer of flat foil 5 and the third layer of flat foil 7.
  • the design of this reverse rotation is determined based on the running direction of the rotating shaft 8. 8 will form a wedge-shaped area 202 when it starts running, and the design shape and surrounding way of the middle layer are designed based on this point.
  • the eccentric movement of the rotating shaft 8 during the high-speed rotation and forward movement causes the intersection of the rotating shaft 8 and the gas dynamic pressure radial bearing at the first layer of flat foil 5, the second layer of flat foil 6 and the third layer of flat foil 7
  • a wedge-shaped area is formed at the position, and a high-pressure lubricating gas film is formed after the viscous gas enters the wedge-shaped area, providing bearing capacity for the bearing-rotating shaft system.
  • the second layer of flat foil 6 rotates with the rotating shaft 8, and the wedge-shaped angle at the tail end and the contact area of the third layer of flat foil 7 undergo wedge-shaped deformation, as shown in Figure 3, 202 is the elastic deformation of the third layer of flat foil 7 with the rotation of the rotating shaft 8 The resulting wedge-shaped area.
  • 201 is the air film between the rotating shaft and the radial gas dynamic pressure bearing. This structure can increase the bearing damping for the radial gas dynamic pressure bearing, improve the wear resistance and impact resistance of the bearing during the start-stop phase, and increase the self-adaptability of the bearing.
  • both the second layer of corrugated foil 4 and the first layer of corrugated foil 3 include at least three corrugated foil segments arranged in sequence along the axial direction, wherein the flat sections and arc-shaped segments of the corrugated foil segments located at both axial ends The segments are correspondingly arranged along the circumferential direction, and the peaks of the corrugated foil segments located in the middle and the corrugated foil segments located at both axial ends are alternately arranged along the circumferential direction.
  • the corrugated foil section includes three sections, wherein the first section and the third section are located at both ends, the second section is located in the middle, the first section and the third section have the same length along the axial direction, and the second section is along the
  • the length in the axial direction is the same as the sum of the lengths of the first section and the third section in the axial direction, so that the smallest deformation of the top foil in the axial direction occurs at the axial edge of the bearing, which can reduce the axial edge of the top foil.
  • the stiffness of the corrugated foil can increase the local deformation at the axial edge of the top foil, thereby allowing the bearing to have a greater eccentricity and improving the load-bearing performance of the bearing.
  • the corrugated foil section includes a first corrugated foil section 101, a second corrugated foil section 102, a third corrugated foil section 103 and a fourth corrugated foil section 104, wherein the first corrugated foil section 101 and the fourth corrugated foil section Section 104 is located at both axial ends of the bearing housing 1, the second corrugated foil section 102 and the third corrugated foil section 103 are located between the first corrugated foil section 101 and the fourth corrugated foil section 104, the first corrugated foil section 101 and the third corrugated foil section
  • the flat section and the arc-shaped section of the four-wave foil section 104 are arranged correspondingly along the circumferential direction, the flat section and the arc-shaped section of the second corrugated foil section 102 and the third corrugated foil section 103 are arranged correspondingly along the circumferential direction, and the first corrugated foil section 101
  • the wave crests of the second corrugated foil segment 102 and the wave crests are alternately arranged
  • the first corrugated foil segment 101, the second corrugated foil segment 102, the third corrugated foil segment 103 and the fourth corrugated foil segment 104 are arranged at intervals along the axial direction, the first corrugated foil segment 101, the second corrugated foil segment
  • the corrugated foil segment 102, the third corrugated foil segment 103 and the fourth corrugated foil segment 104 include fixed ends and free ends, the first corrugated foil segment 101, the second corrugated foil segment 102, the third corrugated foil segment 103 and the fourth corrugated foil segment
  • the fixed ends of the segments 104 are jointly connected to the bearing housing 1, and the circumferential lengths of the first corrugated foil segment 101 and the fourth corrugated foil segment 104 are greater than the circumferential lengths of the second corrugated foil segment 102 and the third corrugated foil segment 103.
  • the free ends of the first corrugated foil segment 101 and the fourth corrugated foil segment 104 are fixedly connected by connecting rods, and the free ends of the second corrugated foil segment 102 and the third corrugated foil segment 103 are fixedly connected by connecting rods.
  • a high-pressure lubricating gas film 201 is formed in the gap 203 between the gas dynamic pressure radial bearing and the rotating shaft 8, and the gas pressure in the central area of the radial bearing is higher than the gas pressure at both ends of the radial bearing.
  • the foil arch structure will cause the top foil to produce penetrating deformation against the direction of the arch, causing the high pressure in the center to leak to both ends. This phenomenon is called end leakage.
  • the embodiment of the present application adopts the structures shown in Fig. 4 and Fig. 5, and the first layer of corrugated foil 3 and the second layer of corrugated foil 4 are designed as a four-stage structure, which are respectively the first corrugated foil section 101, the second corrugated foil section 101, and the second corrugated foil section 101.
  • the first corrugated foil section 101 and the fourth corrugated foil section 104 are connected together, and the middle second corrugated foil section 102 and the third corrugated foil section 103 are connected together to form a supporting arch foil similar to a "back" structure.
  • the corrugated foil units of the first corrugated foil section 101 and the fourth corrugated foil section 104 and the corrugated foil units of the second corrugated foil section 102 and the third corrugated foil section 103 are staggered to form a variable stiffness arch foil.
  • One end of the first corrugated foil section 101, the second corrugated foil section 102, the third corrugated foil section 103 and the fourth corrugated foil section 104 are fixed, the other end is free, and the first corrugated foil section 101 and the fourth corrugated foil section 104 are free.
  • the ends are fixedly connected together, the free ends of the second corrugated foil segment 102 and the third corrugated foil segment 103 are fixedly connected together, the first corrugated foil segment 101, the second corrugated foil segment 102, the third corrugated foil segment 103 and the fourth corrugated foil segment
  • the fixed end of the corrugated foil segment 104 is jointly connected to the bearing seat 1 through the fixed installation part.
  • the first corrugated foil section 101 , the second corrugated foil section 102 , the third corrugated foil section 103 and the fourth corrugated foil section 104 have the same design parameters for the crown height, chord length and flat section of the corrugated foils.
  • the embodiment of the wave foil with variable stiffness can effectively improve the end leakage phenomenon existing in the radial bearing, and improve the bearing performance of the gas dynamic pressure radial bearing.
  • the four-section corrugated foil of the gas dynamic pressure radial bearing has two sections of outer supporting corrugated foils at both ends of the axial direction and two sections of inner supporting corrugated foils located in the middle.
  • the stiffness difference between the middle and both ends can be designed according to the operation requirements of the motor to improve the resistance of the bearing. Impact resistance, which is beneficial to improve the bearing stability of the bearing system. Designing a double-layer corrugated foil structure can effectively increase the stiffness and load-bearing performance of the supporting corrugated foil.
  • the bearing seat 1 is used to install and support the protective gas dynamic pressure radial bearing.
  • the locking pin 2 is used for fixing.
  • the fixing method of the double-layer corrugated foil is not limited to this one.
  • first layer of corrugated foil 3 the second layer of corrugated foil 4
  • first layer of flat foil 5 the second layer of flat foil 6
  • third layer of flat foil 7 are fixed on the bearing seat 1, and the other end is free, so as to ensure that the foil Disc bearings have room for deformation and slippage.
  • the inner surface of the flat foil is sprayed with a high-temperature-resistant lubricating coating, which can reduce friction and wear-resisting lubrication during the high-speed start-stop phase of the motor.
  • the compressor includes a gas dynamic pressure radial bearing, and the gas dynamic pressure radial bearing is the above gas dynamic pressure radial bearing.
  • the engine includes the above-mentioned gas dynamic pressure radial bearing or the above-mentioned compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Support Of The Bearing (AREA)

Abstract

一种气体动压径向轴承、压缩机和发动机。该气体动压径向轴承包括轴承座(1)、第二层波箔(4)、第一层波箔(3)和平箔,第二层波箔(4)和第一层波箔(3)叠置,并设置在轴承座(1)和平箔之间,第二层波箔(4)和第一层波箔(3)的波峰对应设置,且第二层波箔(4)和第一层波箔(3)的波峰之间具有预设间隙(203)。

Description

气体动压径向轴承、压缩机和发动机
相关申请
本申请要求2022年01月14日申请的,申请号为202210044080.5,名称为“气体动压径向轴承、压缩机和发动机”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及轴承技术领域,具体涉及一种气体动压径向轴承、压缩机和发动机。
背景技术
气体动压径向轴承是一种弹性支承的动压气体轴承,转轴高速旋转带动轴承和转轴之间的气体流动,粘性气体进入楔形区域产生流体动压效应,形成高压气膜,当动压气膜压力足够大时即可悬浮高速旋转的转轴。在转轴高速旋转时,高压气膜挤压轴承,顶层箔片和支承波箔均产生弹性形变,增大气膜间隙,保证轴承稳定运行。
现有技术中公开了一种气体动压径向轴承,该径向轴承是由单层拱箔+单层平箔组成,拱箔呈三段式结构,两边为高拱箔,中间为低拱箔,在载荷小时先由两端高拱箔提供承载力,载荷较大时由三段拱箔一起提供承载力。该设计对轴承刚度起有效调节作用。但是分段造成低载荷时和平箔的接触面积减小,只有2/3的接触面积,导致径向轴承的整体承载性能下降。
发明内容
因此,本申请要解决的技术问题在于提供一种气体动压径向轴承、压缩机和发动机,能够增大轴承的阻尼,提高轴承的整体刚度,提高轴承的承载性能。
为了解决上述问题,本申请提供一种气体动压径向轴承,包括轴承座、第二层波箔、第一层波箔和平箔,第二层波箔和第一层波箔叠置,并设置在轴承座和平箔之间,第二层波箔和第一层波箔的波峰对应设置,且第二层波箔和第一层波箔的波峰之间具有预设间隙。
在一个实施例中,第二层波箔设置在靠近平箔的一侧,第一层波箔设置在靠近轴承座的一侧,第二层波箔的刚度小于第一层波箔的刚度。
在一个实施例中,第二层波箔和第一层波箔均包括平段和弧形段,第二层波箔的平段支撑在第一层波箔的平段上,第二层波箔的平段沿周向方向的宽度小于第一层波箔的平段 沿周向方向的宽度,第二层波箔的弧形段弦长大于第一层波箔的弧形段弦长。
在一个实施例中,平箔用于与转轴接触,沿着径向由外而内的方向,平箔包括依次贴设的第一层平箔、第二层平箔和第三层平箔,第一层平箔和第二层平箔的周向延伸方向与转轴的转动方向相反,第二层平箔的周向延伸方向与转轴的转动方向相同。
在一个实施例中,第一层平箔、第二层平箔和第三层平箔均为整周式环绕结构。
在一个实施例中,第二层平箔的周向延伸长度为整个圆周的3/5~4/5。
在一个实施例中,第二层平箔的周向延伸长度为整个圆周的2/3。
在一个实施例中,第二层平箔的周向末端为斜坡结构,且斜坡结构的倾斜面朝向第三层平箔。
在一个实施例中,第二层波箔和第一层波箔均包括至少三个沿轴向方向依次设置的波箔段,其中位于轴向两端的波箔段的平段和弧形段沿周向对应设置,位于中间的波箔段的波峰与位于轴向两端的波箔段的波峰沿周向交错排布。
在一个实施例中,波箔段包括第一波箔段、第二波箔段、第三波箔段和第四波箔段,其中第一波箔段和第四波箔段位于轴承座的轴向两端,第二波箔段和第三波箔段位于第一波箔段和第四波箔段之间,第一波箔段和第四波箔段的平段和弧形段沿周向对应设置,第二波箔段和第三波箔段的平段和弧形段沿周向对应设置,第一波箔段和第二波箔段的波峰沿周向交错排布。
在一实施例中,第一波箔段、第二波箔段、第三波箔段和第四波箔段沿轴向方向依次间隔设置,第一波箔段、第二波箔段、第三波箔段和第四波箔段包括固定端和自由端,第一波箔段、第二波箔段、第三波箔段和第四波箔段的固定端共同连接在轴承座上,第一波箔段和第四波箔段的周向长度大于第二波箔段和第三波箔段的周向长度,第一波箔段和第四波箔段的自由端通过连接杆固定连接,第二波箔段和第三波箔段的自由端通过连接杆固定连接。
在一个实施例中,平箔的内表面喷涂有耐高温润滑涂层。
根据本申请的另一方面,提供了一种压缩机,包括气体动压径向轴承,该气体动压径向轴承为上述的气体动压径向轴承。
根据本申请的另一方面,提供了一种发动机,包括上述的气体动压径向轴承或上述的压缩机。
本申请提供的气体动压径向轴承,包括轴承座、第二层波箔、第一层波箔和平箔,第二层波箔和第一层波箔叠置,并设置在轴承座和平箔之间,第二层波箔和第一层波箔的波峰对应设置,且第二层波箔和第一层波箔的波峰之间具有预设间隙。该气体动压径向轴承 采用叠置式结构形成双层波箔,且双层波箔作为波谷的平段贴合在一起,形成共同支撑,作为波峰的弧形段之间具有预设间隙,从而在低载荷时先由第一层波箔和第二层波箔中与平箔接触的顶层波箔提供承载力,由于整个顶层波箔均能够与平箔接触,因此保证了波箔与平箔的接触面积,保证了单个波箔的承载力,随着载荷增加,顶层波箔发生一定变形之后和底层波箔接触,两层波箔共同提供承载力,从而进一步提高气体动压轴承的承载性能和轴承系统的稳定性。
附图说明
图1为本申请一个实施例的气体动压径向轴承的结构示意图;
图2为本申请一个实施例的气体动压径向轴承的承载结构示意图;
图3为图2的I处的放大结构示意图;
图4为本申请一个实施例的气体动压径向轴承的第一层波箔的结构示意图;
图5为本申请一个实施例的气体动压径向轴承的波箔的立体结构示意图。
附图标记表示为:
1、轴承座;2、锁紧销钉;3、第一层波箔;4、第二层波箔;5、第一层平箔;6、第二层平箔;7、第三层平箔;8、转轴;101、第一波箔段;102、第二波箔段;103、第三波箔段;104、第四波箔段;201、气膜;202、楔形区域;203、间隙。
具体实施方式
结合参见图1至图5所示,根据本申请的实施例,气体动压径向轴承包括轴承座1、第二层波箔4、第一层波箔3和平箔,第二层波箔4和第一层波箔3叠置,并设置在轴承座1和平箔之间,第二层波箔4和第一层波箔3的波峰对应设置,且第二层波箔4和第一层波箔3的波峰之间具有预设间隙203。
该气体动压径向轴承采用叠置式结构形成双层波箔,且双层波箔的作为波谷的平段贴合在一起,形成共同支撑,作为波峰的弧形段之间具有预设间隙203,从而在低载荷时先由第一层波箔3和第二层波箔4中与平箔接触的顶层波箔提供承载力,由于整个顶层波箔均能够与平箔接触,因此保证了波箔与平箔的接触面积,保证了单个波箔的承载力,随着载荷增加,顶层波箔发生一定变形之后和底层波箔接触,两层波箔共同提供承载力,从而进一步提高气体动压轴承的承载性能和轴承系统的稳定性。在本实施例中,以靠近平箔的波箔为顶层波箔,以远离平箔的波箔为底层波箔。
在一个实施例中,第二层波箔4设置在靠近平箔的一侧,第一层波箔3设置在靠近轴 承座1的一侧,第二层波箔4的刚度小于第一层波箔3的刚度。在本实施例中,由于两层波箔之间存在高度差,波峰位置具有间隙203,且顶层波箔的刚度小于底层波箔的刚度,因此可以利用顶层波箔提供低载荷承载力,当载荷较大时,则可以利用双层波箔提供承载力,同时由于底层波箔的刚度更大,因此能够承载更大的载荷,可以对顶层波箔形成更加良好的支撑作用,利用两者刚度的不同提供更加良好的承载性能,进一步提高轴承系统的稳定性。
在一个实施例中,间隙203的高度为第二层波箔4的波峰高度的20%~35%,作为一个实施例,间隙203的高度为第二层波箔4的波峰高度的27%。
在一个实施例中,第二层波箔4和第一层波箔3均包括平段和弧形段,第二层波箔4的平段支撑在第一层波箔3的平段上,第二层波箔4的平段沿周向方向的宽度小于第一层波箔3的平段沿周向方向的宽度,第二层波箔4的弧形段弦长大于第一层波箔3的弧形段弦长。
在本实施例中,第一层波箔3和第二层波箔4由金属箔片通过该结构对应的模具通过压制、保压成型如图4所示的结构,之后再通过特制工装进行卷绕、热处理成型图5的结构,确保每个拱之间的平段贴合轴承座1的内表面,以此保证轴承制备的一致性及可行性。第一层波箔3和第二层波箔4的设计参数弦长和平段值均不同,可以根据两者的设计位置进行合理设置,使得第一层波箔3和第二层波箔4的平段部分贴合,同时不产生干涉现象。此外,第二层波箔4的拱高大于第一层波箔3,每一段拱形均存在间隙203,保证第一层波箔3和第二层波箔4的弧形段叠置,且不会由于平段的宽度设计不合理而发生干涉。两层波箔的设计方案的实施可增加轴承阻尼及拱箔的变形程度,提高拱箔的承载性能。
在一个实施例中,平箔用于与转轴8接触,沿着径向由外而内的方向,平箔包括依次贴设的第一层平箔5、第二层平箔6和第三层平箔7,第一层平箔5和第二层平箔6的周向延伸方向与转轴8的转动方向相反,第二层平箔6的周向延伸方向与转轴8的转动方向相同。
第一层平箔5、第二层平箔6和第三层平箔7均为整周式环绕结构,因此在轴承的制备、弯折过程中,能够保证各个箔片的结构一致性,保证气体动压轴承的整体结构的一致性,进而保证气体动压轴承安装的一致性,提高气体动压轴承的承载性能。
在一个实施例中,第二层平箔6的周向延伸长度为整个圆周的3/5~4/5。作为一个实施例,第二层平箔6的周向延伸长度为整个圆周的2/3。第二层平箔6的周向末端为斜坡结构,且斜坡结构的倾斜面朝向第三层平箔7。
在本实施例中,第二层平箔6相对于第一层平箔5和第三层平箔7的环绕方向相反, 这个反向环绕的设计是基于转轴8的运转方向决定的,在转轴8起始运转时会形成一个楔形区域202,该中间层的设计形状以及环绕方式均基于该点的基础进行设计,在转轴8起始运转时,顶层平箔随转轴8启动,在中间层斜坡结构处,会产生一个微变形,通过设计该微变形可增大径向轴承的阻尼,从而提高整体刚度,增加承载性能。
高速电机运转起始阶段,转轴8高速旋转前进过程中的偏心运动导致转轴8和气体动压径向轴承在第一层平箔5、第二层平箔6和第三层平箔7的相交位置处形成楔形区域,带有粘性的气体进入楔形区域后形成高压润滑气膜,为轴承-转轴系统提供承载力。第二层平箔6随转轴8旋转,其尾端的楔形角和第三层平箔7接触区域发生楔形形变如图3所示,202为第三层平箔7随转轴8的旋转发生弹性形变后所形成的楔形区域。201为转轴与径向气体动压轴承之间的气膜。该结构能够为径向气体动压轴承增加轴承阻尼,并提高轴承在启停阶段的抗磨损及冲击能力,增加轴承的自适用性。
在一个实施例中,第二层波箔4和第一层波箔3均包括至少三个沿轴向方向依次设置的波箔段,其中位于轴向两端的波箔段的平段和弧形段沿周向对应设置,位于中间的波箔段的波峰与位于轴向两端的波箔段的波峰沿周向交错排布。
在一个实施例中,波箔段包括三段,其中第一段和第三段位于两端,第二段位于中间,第一段和第三段沿轴向方向的长度相同,第二段沿轴向方向的长度与第一段和第三段沿轴向方向的长度之和相同,使得沿轴向的最小顶箔变形出现在轴承的轴向边缘位置,能够减小顶箔轴向边缘处波箔的刚度,即可增大顶箔轴向边缘处的局部变形,从而允许轴承具有更大的偏心率,提高轴承的承载性能。
在一个实施例中,波箔段包括第一波箔段101、第二波箔段102、第三波箔段103和第四波箔段104,其中第一波箔段101和第四波箔段104位于轴承座1的轴向两端,第二波箔段102和第三波箔段103位于第一波箔段101和第四波箔段104之间,第一波箔段101和第四波箔段104的平段和弧形段沿周向对应设置,第二波箔段102和第三波箔段103的平段和弧形段沿周向对应设置,第一波箔段101和第二波箔段102的波峰沿周向交错排布。
在一个实施例中,第一波箔段101、第二波箔段102、第三波箔段103和第四波箔段104沿轴向方向依次间隔设置,第一波箔段101、第二波箔段102、第三波箔段103和第四波箔段104包括固定端和自由端,第一波箔段101、第二波箔段102、第三波箔段103和第四波箔段104的固定端共同连接在轴承座1上,第一波箔段101和第四波箔段104的周向长度大于第二波箔段102和第三波箔段103的周向长度,第一波箔段101和第四波箔段104的自由端通过连接杆固定连接,第二波箔段102和第三波箔段103的自由端通过连接杆固定连接。
电机高速运转时,在气体动压径向轴承和转轴8的间隙203形成高压润滑气膜201,径向轴承的中心区域的气体压强高于径向轴承两端的气体压强,整体式的径向波箔拱形结构会使顶层箔片逆着拱形的方向产生贯穿式的变形,造成中心的高压向两端泄漏,这种现象为端泄现象。
而本申请实施例采用如图4和图5所示的结构,第一层波箔3和第二层波箔4设计成四段式的结构,分别为第一波箔段101、第二波箔段102、第三波箔段103和第四波箔段104。第一波箔段101和第四波箔段104连接在一起,中间的第二波箔段102和第三波箔段103连接在一起,形成类似于“回”型结构的支撑拱箔,第一波箔段101、第四波箔段104的波箔单元和第二波箔段102、第三波箔段103的波箔单元的波峰错开,形成变刚度拱箔。第一波箔段101、第二波箔段102、第三波箔段103和第四波箔段104的一端固定,另一端自由,第一波箔段101和第四波箔段104的自由端固定连接在一起,第二波箔段102和第三波箔段103的自由端固定连接在一起,第一波箔段101、第二波箔段102、第三波箔段103和第四波箔段104的固定端通过固定安装部共同连接至轴承座1上。第一波箔段101、第二波箔段102、第三波箔段103和第四波箔段104波箔的拱高、弦长、平段的设计参数均相同。该变刚度波箔的实施方案可有效改善径向轴承存在的端泄现象,提高气体动压径向轴承承载性能。
气体动压径向轴承的四段式波箔,位于轴向两端的两段外支撑波箔和位于中间的两段内支撑波箔,可根据电机运行要求设计中间和两端的刚度差,提升轴承的抗冲击性,利于提高轴承系统的承载稳定性。设计双层波箔结构,能够有效增加支撑波箔的刚度和承载性能。
结合参见图1所示,轴承座1用于安装、支撑保护气体动压径向轴承。在本实施例中,气体动压径向轴承的双层波箔的固定端插入轴承座1的卡槽之后,使用锁紧销钉2进行固定。该双层波箔的固定方式不局限于这一种。此外,还需要利用锁紧销钉2或者其他的结构轴向固定气体动压径向轴承,避免气体动压径向轴承发生轴向窜动。
第一层波箔3、第二层波箔4、第一层平箔5、第二层平箔6、第三层平箔7的一端固定在轴承座1上,另一端自由,从而保证箔片轴承具有变形和滑移的空间。
在一个实施例中,平箔的内表面喷涂有耐高温润滑涂层,能够在电机高速运转的启停阶段起减摩耐磨润滑作用。
根据本申请的实施例,压缩机包括气体动压径向轴承,该气体动压径向轴承为上述的气体动压径向轴承。
根据本申请的实施例,发动机包括上述的气体动压径向轴承或上述的压缩机。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。以上仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本申请的保护范围。

Claims (14)

  1. 一种气体动压径向轴承,其特征在于,包括轴承座(1)、第二层波箔(4)、第一层波箔(3)和平箔,所述第二层波箔(4)和所述第一层波箔(3)叠置,并设置在所述轴承座(1)和所述平箔之间,所述第二层波箔(4)和所述第一层波箔(3)的波峰对应设置,且所述第二层波箔(4)和所述第一层波箔(3)的波峰之间具有预设间隙(203)。
  2. 根据权利要求1所述的气体动压径向轴承,其特征在于,所述第二层波箔(4)设置在靠近所述平箔的一侧,所述第一层波箔(3)设置在靠近所述轴承座(1)的一侧,所述第二层波箔(4)的刚度小于所述第一层波箔(3)的刚度。
  3. 根据权利要求1所述的气体动压径向轴承,其特征在于,所述第二层波箔(4)和所述第一层波箔(3)均包括平段和弧形段,所述第二层波箔(4)的平段支撑在所述第一层波箔(3)的平段上,所述第二层波箔(4)的平段沿周向方向的宽度小于所述第一层波箔(3)的平段沿周向方向的宽度,所述第二层波箔(4)的弧形段弦长大于所述第一层波箔(3)的弧形段弦长。
  4. 根据权利要求1所述的气体动压径向轴承,其特征在于,所述平箔用于与转轴(8)接触,沿着径向由外而内的方向,所述平箔包括依次贴设的第一层平箔(5)、第二层平箔(6)和第三层平箔(7),所述第一层平箔(5)和所述第二层平箔(6)的周向延伸方向与所述转轴(8)的转动方向相反,所述第二层平箔(6)的周向延伸方向与所述转轴(8)的转动方向相同。
  5. 根据权利要求4所述的气体动压径向轴承,其特征在于,所述第一层平箔(5)、所述第二层平箔(6)和所述第三层平箔(7)均为整周式环绕结构。
  6. 根据权利要求5所述的气体动压径向轴承,其特征在于,所述第二层平箔(6)的周向延伸长度为整个圆周的3/5~4/5。
  7. 根据权利要求6所述的气体动压径向轴承,其特征在于,所述第二层平箔(6)的周向延伸长度为整个圆周的2/3。
  8. 根据权利要求6所述的气体动压径向轴承,其特征在于,所述第二层平箔(6)的周向末端为斜坡结构,且所述斜坡结构的倾斜面朝向所述第三层平箔(7)。
  9. 根据权利要求1至8中任一项所述的气体动压径向轴承,其特征在于,所述第二层波箔(4)和所述第一层波箔(3)均包括至少三个沿轴向方向依次设置的波箔段,其中位于轴向两端的所述波箔段的平段和弧形段沿周向对应设置,位于中间的所述波箔段的波峰与位于轴向两端的所述波箔段的波峰沿周向交错排布。
  10. 根据权利要求9所述的气体动压径向轴承,其特征在于,所述波箔段包括第一波箔段(101)、第二波箔段(102)、第三波箔段(103)和第四波箔段(104),其中所述第一波箔段(101)和所述第四波箔段(104)位于所述轴承座(1)的轴向两端,所述第二波箔段(102)和所述第三波箔段(103)位于所述第一波箔段(101)和所述第四波箔段(104)之间,所述第一波箔段(101)和所述第四波箔段(104)的平段和弧形段沿周向对应设置,所述第二波箔段(102)和所述第三波箔段(103)的平段和弧形段沿周向对应设置,所述第一波箔段(101)和所述第二波箔段(102)的波峰沿周向交错排布。
  11. 根据权利要求10所述的气体动压径向轴承,其特征在于,所述第一波箔段(101)、第二波箔段(102)、第三波箔段(103)和第四波箔段(104)沿轴向方向依次间隔设置,所述第一波箔段(101)、第二波箔段(102)、第三波箔段(103)和第四波箔段(104)包括固定端和自由端,所述第一波箔段(101)、第二波箔段(102)、第三波箔段(103)和第四波箔段(104)的固定端共同连接在所述轴承座(1)上,所述第一波箔段(101)和所述第四波箔段(104)的周向长度大于所述第二波箔段(102)和所述第三波箔段(103)的周向长度,所述第一波箔段(101)和所述第四波箔段(104)的自由端通过连接杆固定连接,所述第二波箔段(102)和所述第三波箔段(103)的自由端通过连接杆固定连接。
  12. 根据权利要求1所述的气体动压径向轴承,其特征在于,所述平箔的内表面喷涂有耐高温润滑涂层。
  13. 一种压缩机,包括气体动压径向轴承,其特征在于,所述气体动压径向轴承为权利要求1至12中任一项所述的气体动压径向轴承。
  14. 一种发动机,其特征在于,包括权利要求1至12中任一项所述的气体动压径向轴承或权利要求13所述的压缩机。
PCT/CN2022/127223 2022-01-14 2022-10-25 气体动压径向轴承、压缩机和发动机 WO2023134256A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210044080.5A CN114382775A (zh) 2022-01-14 2022-01-14 气体动压径向轴承、压缩机和发动机
CN202210044080.5 2022-01-14

Publications (1)

Publication Number Publication Date
WO2023134256A1 true WO2023134256A1 (zh) 2023-07-20

Family

ID=81201211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127223 WO2023134256A1 (zh) 2022-01-14 2022-10-25 气体动压径向轴承、压缩机和发动机

Country Status (2)

Country Link
CN (1) CN114382775A (zh)
WO (1) WO2023134256A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116608203A (zh) * 2023-07-20 2023-08-18 山东华东风机有限公司 一种径向双波箔空气轴承
CN116733837A (zh) * 2023-08-15 2023-09-12 江苏海拓宾未来工业科技集团有限公司 空气动压箔片轴承、包括其的悬浮离心鼓风机及加工工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114382775A (zh) * 2022-01-14 2022-04-22 珠海格力电器股份有限公司 气体动压径向轴承、压缩机和发动机
CN115076219B (zh) * 2022-07-20 2022-11-15 天津飞旋科技股份有限公司 一种叠片式箔片动压轴承及轴系

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080064579A (ko) * 2007-01-05 2008-07-09 삼성테크윈 주식회사 에어 포일 베어링
CN101839281A (zh) * 2010-05-27 2010-09-22 西安交通大学 一种具有分段组合复合支承的箔片动压径向气体轴承
US20140140645A1 (en) * 2012-11-19 2014-05-22 Honeywell International Inc. Rotor support structures including anisotropic foil bearings or anisotropic bearing housings and methods for controlling non-synchronous vibrations of rotating machinery using the same
CN104603480A (zh) * 2012-09-06 2015-05-06 西门子公司 径向气体箔片轴承
WO2015113532A1 (de) * 2014-01-29 2015-08-06 Schaeffler Technologies AG & Co. KG Aerodynamisches luftlager und verfahren zu dessen herstellung
CN213628487U (zh) * 2020-09-27 2021-07-06 北京派瑞华氢能源科技有限公司 一种弹性箔片动压气体轴承及空气压缩机
CN113107962A (zh) * 2020-01-09 2021-07-13 珠海格力电器股份有限公司 动压气体径向轴承
CN214788550U (zh) * 2021-04-16 2021-11-19 河北金士顿科技有限责任公司 能够提高轴系稳定运行能力的径向箔片动压空气轴承
CN215058864U (zh) * 2020-03-23 2021-12-07 珠海格力电器股份有限公司 气体轴承、压缩机及空调机组
CN114382775A (zh) * 2022-01-14 2022-04-22 珠海格力电器股份有限公司 气体动压径向轴承、压缩机和发动机
CN216788977U (zh) * 2022-01-14 2022-06-21 珠海格力电器股份有限公司 气体动压径向轴承、压缩机和发动机

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080064579A (ko) * 2007-01-05 2008-07-09 삼성테크윈 주식회사 에어 포일 베어링
CN101839281A (zh) * 2010-05-27 2010-09-22 西安交通大学 一种具有分段组合复合支承的箔片动压径向气体轴承
CN104603480A (zh) * 2012-09-06 2015-05-06 西门子公司 径向气体箔片轴承
US20140140645A1 (en) * 2012-11-19 2014-05-22 Honeywell International Inc. Rotor support structures including anisotropic foil bearings or anisotropic bearing housings and methods for controlling non-synchronous vibrations of rotating machinery using the same
WO2015113532A1 (de) * 2014-01-29 2015-08-06 Schaeffler Technologies AG & Co. KG Aerodynamisches luftlager und verfahren zu dessen herstellung
CN113107962A (zh) * 2020-01-09 2021-07-13 珠海格力电器股份有限公司 动压气体径向轴承
CN215058864U (zh) * 2020-03-23 2021-12-07 珠海格力电器股份有限公司 气体轴承、压缩机及空调机组
CN213628487U (zh) * 2020-09-27 2021-07-06 北京派瑞华氢能源科技有限公司 一种弹性箔片动压气体轴承及空气压缩机
CN214788550U (zh) * 2021-04-16 2021-11-19 河北金士顿科技有限责任公司 能够提高轴系稳定运行能力的径向箔片动压空气轴承
CN114382775A (zh) * 2022-01-14 2022-04-22 珠海格力电器股份有限公司 气体动压径向轴承、压缩机和发动机
CN216788977U (zh) * 2022-01-14 2022-06-21 珠海格力电器股份有限公司 气体动压径向轴承、压缩机和发动机

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116608203A (zh) * 2023-07-20 2023-08-18 山东华东风机有限公司 一种径向双波箔空气轴承
CN116608203B (zh) * 2023-07-20 2023-10-03 山东华东风机有限公司 一种径向双波箔空气轴承
CN116733837A (zh) * 2023-08-15 2023-09-12 江苏海拓宾未来工业科技集团有限公司 空气动压箔片轴承、包括其的悬浮离心鼓风机及加工工艺
CN116733837B (zh) * 2023-08-15 2023-11-21 江苏海拓宾未来工业科技集团有限公司 空气动压箔片轴承、包括其的悬浮离心鼓风机及加工工艺

Also Published As

Publication number Publication date
CN114382775A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2023134256A1 (zh) 气体动压径向轴承、压缩机和发动机
US6158893A (en) High load capacity compliant foil hydrodynamic journal bearing
US7553086B2 (en) Hydrodynamic journal bearing
CN114458687B (zh) 弹性箔片动压气浮径向轴承、电机、空气压缩机
JP2020197287A (ja) 動圧空気軸受
CN113669363A (zh) 一种圆角弹性箔片支撑结构的推力动压气体轴承
CN216788977U (zh) 气体动压径向轴承、压缩机和发动机
CN113719530A (zh) 气体止推轴承、压缩机和空调系统
WO2024027290A1 (zh) 气浮轴承、转子总成、压缩机和暖通设备
CN113417934A (zh) 一种悬臂结构弹性箔片动压气浮止推轴承
CN211398265U (zh) 径向气体轴承、压缩机和空调机组
CN216951265U (zh) 径向波箔、动压气浮径向轴承、电机、空气压缩机
CN217682813U (zh) 气浮轴承、转子总成、压缩机和暖通设备
CN113107963A (zh) 径向气体轴承、压缩机和空调机组
CN217682811U (zh) 气浮轴承、转子总成、压缩机和暖通设备
CN216143065U (zh) 一种悬臂结构弹性箔片动压气浮止推轴承
CN105179462A (zh) 一种波箔型空气动压轴承
CN109737140A (zh) 一种柔性组件及动压止推气体轴承
CN114215842B (zh) 气体动压轴承、压缩机和发动机
CN211398262U (zh) 动压气体径向轴承以及动力设备
CN114110014A (zh) 气体动压轴承、压缩机和发动机
CN210003664U (zh) 一种多级弹性支撑组件及动压气体径向轴承
CN207539189U (zh) 带有固有结构预楔形空间的弹性支承箔片动压气体轴承
CN109780051A (zh) 一种柔性组件及动压径向气体轴承
CN215928114U (zh) 气体止推轴承、压缩机和空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919890

Country of ref document: EP

Kind code of ref document: A1