WO2024027290A1 - 气浮轴承、转子总成、压缩机和暖通设备 - Google Patents

气浮轴承、转子总成、压缩机和暖通设备 Download PDF

Info

Publication number
WO2024027290A1
WO2024027290A1 PCT/CN2023/095794 CN2023095794W WO2024027290A1 WO 2024027290 A1 WO2024027290 A1 WO 2024027290A1 CN 2023095794 W CN2023095794 W CN 2023095794W WO 2024027290 A1 WO2024027290 A1 WO 2024027290A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrugated
foil
air bearing
section
sections
Prior art date
Application number
PCT/CN2023/095794
Other languages
English (en)
French (fr)
Inventor
刘树清
刘鹏辉
岳宝
贺伟衡
刘胜
陈续朗
Original Assignee
广东美的暖通设备有限公司
重庆美的通用制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 重庆美的通用制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的暖通设备有限公司
Publication of WO2024027290A1 publication Critical patent/WO2024027290A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/024Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • F04D29/057Bearings hydrostatic; hydrodynamic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/042Sliding-contact bearings for exclusively rotary movement for axial load only with flexible leaves to create hydrodynamic wedge, e.g. axial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings

Definitions

  • the present disclosure relates to the technical field of bearings, and in particular to an air bearing, a rotor assembly including the air bearing, a compressor including the air bearing, and HVAC equipment including the air bearing.
  • An air bearing is a dynamic pressure bearing that uses gas in the surrounding environment as a lubricant and a foil as an elastic support element.
  • Foreign countries have commercialized air bearings since the 1970s and are widely used in air refrigeration systems. Air bearings in related technologies have limited load-carrying capacity, are prone to deformation, and have low applicable loads.
  • the related art provides some double-layer corrugated foil structures.
  • the corrugated sections of the double-layer corrugated foil are tangent or abutted.
  • a corrugated foil, a top foil, a stack of corrugated foils and a top foil are provided. structure, in which adjacent corrugated foils and top foils are in contact with each other. Since the load of compressors and other equipment will change during operation, it is difficult to meet the operating requirements under different loads using solutions in related technologies.
  • One object of the present disclosure is to propose an air bearing that has a gap between corrugated sections of the corrugated foil, which can improve the load capacity of the air bearing while meeting the use requirements under low loads.
  • Another object of the present disclosure is to provide a rotor assembly including the aforementioned air bearing.
  • Another object of the present disclosure is to provide a compressor including the aforementioned air bearing or the aforementioned rotor assembly.
  • Another object of the present disclosure is to provide an HVAC equipment, including the aforementioned air bearing or the aforementioned rotor assembly or the aforementioned compressor.
  • An air bearing includes a mounting seat, a corrugated foil and a top foil stacked in sequence, the corrugated foil including a first corrugated foil and a second corrugated foil, the first corrugated foil including a first corrugated section,
  • the second corrugated foil includes a second corrugated section stacked with the first corrugated section.
  • the wave peak of the second corrugated section has a gap with the first corrugated section in the stacking direction. Along the stacking direction, The second corrugated section is closer to the top foil than the first corrugated section.
  • the first corrugated section and the second corrugated section are stacked and have a gap.
  • the pressure transmitted by the top foil is reached, one of the first corrugated section and the second corrugated section will deform first.
  • the deformation amount is greater than the gap value, the first corrugated section and the second corrugated section will jointly support the top foil.
  • the support force has a more stable and gradual process, which is more conducive to maintaining the stability of the air bearing and improving the load-bearing capacity than the existing technology.
  • air bearing according to the above embodiments of the present disclosure may also have the following additional technical features:
  • At least two first corrugated sections in the first corrugated foil have different convex heights.
  • At least two second corrugated sections in the second corrugated foil have different convex heights.
  • the at least two first corrugated sections are staggered along the circumferential direction of the air bearing.
  • the at least two second corrugated sections are staggered along the circumferential direction of the air bearing.
  • the wave peak of the second corrugated section has a gap with a size greater than or equal to 0.03 mm and less than or equal to 0.12 mm in the stacking direction and the first corrugated section.
  • first corrugated sections of the first corrugated foil and one second corrugated section of the second corrugated foil are stacked.
  • one first corrugated section of the first corrugated foil and a plurality of second corrugated sections of the second corrugated foil are stacked;
  • first corrugated sections of the first corrugated foil and a plurality of second corrugated sections of the second corrugated foil are stacked.
  • the first wave foil and the second wave foil are partially stacked.
  • the second wave foil and the first wave foil are partially stacked.
  • the air bearing includes a plurality of the first wave foils arranged in a circumferential direction.
  • the air bearing includes a plurality of second corrugated foils arranged circumferentially.
  • the first corrugated foil further includes first connecting sections, and the first connecting sections and the first corrugated sections are staggeredly connected along the circumferential direction of the air bearing.
  • the second corrugated foil further includes second connecting sections, and the second connecting sections and the second corrugated sections are staggeredly connected along the circumferential direction of the air bearing.
  • first corrugated section and the second corrugated section stacked along the stacking direction have a gap or are in contact with each other in the circumferential direction of the air bearing.
  • the first corrugated foil includes a plurality of segments arranged in a transverse direction and with gaps; or the second corrugated foil includes a plurality of segments arranged in a transverse direction and with gaps, wherein the transverse direction is perpendicular to the stacking direction. And the circumferential direction of the air bearing.
  • At least two first corrugated sections in the first corrugated foil have different thicknesses.
  • At least two second corrugated sections in the second corrugated foil have different thicknesses.
  • the thickness of the first corrugated section is different from the thickness of the second corrugated section.
  • first corrugated section of the first corrugated foil and the second corrugated section of the second corrugated foil both face the mounting seat. bulge.
  • first corrugated section of the first corrugated foil and the second corrugated section of the second corrugated foil are both raised toward the top foil.
  • the top foil includes multiple layers arranged one on top of the other.
  • the top foil has a first portion and a second portion, the first portion and the second portion having different thicknesses.
  • the corrugated foil further includes at least one third corrugated foil, between the first corrugated foil and the second corrugated foil, between the first corrugated foil and the mounting base or the second corrugated foil.
  • the third corrugated foil is disposed between the corrugated foil and the top foil.
  • the mounting base is provided with a positioning groove.
  • one ends of the first corrugated foil and the second corrugated foil are both inserted and fixed in one of the positioning grooves.
  • one ends of the first corrugated foil and the second corrugated foil are respectively inserted into different positioning grooves.
  • a positioning notch is provided on the inner wall of the positioning groove, and a positioning pin embedded in the positioning notch is provided on the mounting base, and the positioning pin is configured to position the corrugated foil.
  • the air bearing is a radial air bearing or an axial air bearing.
  • the rotor assembly includes a rotor, and the rotor assembly further includes: a radial air bearing and/or an axial air bearing, and the radial air bearing is sleeved on The outer circumference of the rotor, the radial air bearing is an air bearing according to the aforementioned, and the mounting seat, the corrugated foil and the top foil of the radial air bearing are along the radial direction of the rotor.
  • the axial air bearing cooperates with the rotor, the axial air bearing is the air bearing according to the aforementioned, the mounting seat of the axial air bearing, the The corrugated foil and the top foil are stacked in sequence along the axial direction of the rotor.
  • a compressor according to an embodiment of the present disclosure includes the aforementioned air bearing; or includes the aforementioned rotor assembly.
  • the heating and ventilation equipment includes the aforementioned air bearing; or includes the aforementioned rotor assembly; or includes the aforementioned compressor.
  • the present disclosure provides an air bearing, a rotor assembly, a compressor and HVAC equipment.
  • the structure of the double-layer corrugated foil in the related art has corrugated sections that are abutting or tangent. When subjected to the force transmitted by the top foil, When pressed, the top of the double-layer corrugated foil will deform at the same time to support the top foil. In this disclosed solution, there is a gap between the wave peak of at least one corrugated section of the first corrugated foil and the corresponding corrugated section of the second corrugated foil. When the second corrugated foil is subjected to the pressure transmitted by the top foil, the second corrugated foil first deforms against the top foil. The foil is used for support.
  • the first wave of foil deformation and the second wave of foil jointly support the top foil.
  • the support force of the top foil has a more stable and gradual process, which is more conducive to maintaining air flotation than the existing technology. Bearing stability and improved load carrying capacity.
  • Figure 1 is a schematic diagram of an air bearing according to some embodiments of the present disclosure.
  • Figure 2 is a partially enlarged schematic diagram of a partial area in Figure 1.
  • Figure 3 is a schematic diagram of an air bearing according to some embodiments of the present disclosure.
  • FIG. 4 is a partially enlarged schematic diagram of a partial area in FIG. 3 .
  • Figure 5 is a schematic diagram of an air bearing according to other embodiments of the present disclosure.
  • FIG. 6 is a partially enlarged schematic diagram of a partial area in FIG. 5 .
  • Figure 7 is a schematic view of the unfolded first wave foil or the second wave foil of the air bearing according to some embodiments of the present disclosure.
  • Figure 8 is a schematic diagram of a rotor assembly according to some embodiments of the present disclosure.
  • Rotor assembly 10 rotor 11, air bearing 12, radial air bearing 12b, axial air bearing 12a, mounting seat 121, positioning groove 1201, positioning notch 1202, positioning pin 1203, first wave foil 122a, no.
  • the core component of the refrigeration system is the refrigeration compressor.
  • the lubricating medium of the sliding bearings in the refrigeration compressor was lubricating oil, but its viscosity is large, which will produce large friction power consumption at high speeds.
  • there are lubricating oil If it exists, long-term use will affect the heat exchange effect of the heat exchanger and reduce the performance of the refrigeration system.
  • Magnetic bearings have the advantages of low friction loss and good stability, but their costs are high and their advantages are not obvious in small and medium-sized compressor applications.
  • Dynamic pressure air bearings have the advantages of high speed, high efficiency and low friction loss, and are very suitable for small and medium-sized compressors.
  • the air bearing of the present disclosure may include a top foil, a corrugated foil and a mounting seat.
  • the top foil and the mounting seat are respectively matched with two relatively rotatable components. When relative rotation occurs between these two components, air suspension will be generated. The effect is to reduce the resistance during rotation. For example, taking the mounting base to be fixed and the top foil to cooperate with the rotating shaft, when the rotating shaft rotates at high speed, the airflow enters between the rotating shaft and the top foil.
  • the corrugated foil has a certain The elastic support force and elastic deformation ability can maintain the stable cooperation between the top foil and the rotating shaft, and use the effect of air suspension to reduce the friction between the rotating shaft and the top foil, thereby maintaining the stable rotation of the rotating shaft.
  • the air bearing of the present disclosure includes an axial air bearing and a radial air bearing.
  • the axial air bearing can be provided at the end of the aforementioned rotating shaft.
  • the top foil and mounting seat can be arranged along the axial direction of the rotating shaft to limit the rotation of the rotating shaft.
  • Axial displacement; radial air bearing It can be sleeved on the rotating shaft, and the top foil and the mounting seat can be arranged along the radial direction of the rotating shaft to limit the radial displacement of the rotating shaft.
  • the air bearing 12 includes a mounting seat 121, a corrugated foil and a top foil 123.
  • the mounting seat 121, the corrugated foil and the top foil 123 are stacked in sequence.
  • the corrugated foil includes a first corrugated foil 122a and a second corrugated foil 122b.
  • the first corrugated foil 122a includes a first corrugated section 1221a.
  • the second corrugated foil 122b includes a second corrugated section 1221b.
  • the second corrugated section 1221b and the first corrugated section 1221a are stacked, and in the stacking direction, there is a gap h between the wave peak of the second corrugated section 1221b and the first corrugated section 1221a.
  • the second corrugated section 1221b is closer to the top foil 123 than the first corrugated section 1221a.
  • the first corrugated section 1221a and the second corrugated section 1221b can be used to jointly support the top foil 123 to improve the supporting effect of the top foil 123, thereby improving the structural strength and load capacity of the air bearing 12.
  • the wave peak of the second corrugated section 1221b and the first corrugated section 1221a have a gap along the stacking direction.
  • the corrugated section provides support for the top foil 123. While ensuring that the air bearing 12 has a large load capacity, it can avoid the problem of gas leakage caused by an excessive gap between the top foil 123 and the rotating shaft, thereby maintaining the stability of the air bearing 12. stability, thereby improving the load-carrying capacity of the air bearing 12.
  • the corrugated sections are abutting or tangent.
  • the top of the double-layer corrugated foil will deform at the same time to support the top foil 123.
  • the support of the corrugated foil to the top foil 123 can be adjusted under different loads, thereby improving the performance of the air bearing 12 Stability under different loads.
  • the supporting force of the top foil 123 has a more stable and gradual process, which is more conducive to maintaining the stability of the air bearing 12 and improving the load-bearing capacity than the existing technology.
  • first corrugated foil 122a and the second corrugated foil 122b refers to the cooperation of the first corrugated foil 122a and the second corrugated foil 122b when the air bearing 12 is not used, for example , it can be when the top foil 123 cooperates with the rotating shaft and the rotating shaft does not rotate; or when the air bearing 12 does not cooperate with the rotating shaft.
  • the first direction AA, the second direction BB and the third direction are described in this disclosure, where the first direction in this disclosure refers to the direction from the installation The direction from the seat 121 to the top foil 123, the second direction refers to the circumferential direction of the air bearing 12, and the third direction refers to the direction perpendicular to the first direction and the second direction.
  • the first direction may be the radial direction of the air bearing 12
  • the second direction may be the circumferential direction of the air bearing 12
  • the third direction may be the axial direction of the air bearing 12
  • the first direction can be The second direction of the axial direction of the air bearing 12 may be the circumferential direction of the air bearing 12
  • the third direction may be the radial direction of the air bearing 12 .
  • the present disclosure mainly takes the first corrugated section 1221a and the second corrugated section 1221b as an example to support the top foil 123.
  • the second corrugated section 1221b is closer to the top foil 123 than the first corrugated section 1221a, and the second corrugated section 1221b is closer to the top foil 123 than the first corrugated section 1221a.
  • the second corrugated section 1221b will first be squeezed and deformed. After the gap is eliminated, the second corrugated section 1221b will be deformed.
  • the second corrugated section 1221b will contact the first corrugated section 1221a, so that the top foil 123 is supported by the combination of the first corrugated section 1221a and the second corrugated section 1221b.
  • the first corrugated section 1221a and the second corrugated section 1221b can also be configured to support the mounting base 121, and the second corrugated section 1221b is closer to the top foil 123 than the first corrugated section 1221a.
  • the top foil When 123 deforms toward the mounting base 121, the first corrugated section 1221a will first be squeezed and deformed. After the gap is eliminated, the wave peak of the second corrugated section 1221b will contact the first corrugated section 1221a, thereby utilizing the first corrugated section 1221a. and the second corrugated section 1221b to support the top foil 123.
  • At least two first corrugated sections 1221a in the first corrugated foil 122a have different convex heights, so that the support height of the top foil 123 can be locally increased to meet different loads. requirements, so that when the loads in the circumferential direction of the air bearing 12 are not completely consistent, the load effect on the rotating shaft can still be satisfied and the rotational stability of the rotating shaft can be improved.
  • At least two first corrugated segments 1221a are arranged in a staggered manner along the circumferential direction of the air bearing 12. That is to say, in the circumferential direction of the air bearing 12, among each adjacent plurality of first corrugated segments 1221a, The height of the first corrugated sections 1221a located on both sides is higher or lower than the height of the first corrugated section 1221a located in the middle. Therefore, the stability of the top foil 123 can be maintained, and the stability can be achieved when the top foil 123 is at different displacements, thereby improving the stability of the air film between the top foil 123 and the rotating shaft.
  • the top foil 123 when there is no load, the top foil 123 will be supported by a higher part of the corrugated sections, and when the top foil 123 moves a certain displacement toward the mounting base 121, it will be supported by more first corrugated sections 1221a, and When the top foil 123 continues to move toward the mounting base 121 for a certain distance, the top foil 123 can be supported by a plurality of corrugated foils.
  • the second corrugated foil 122b can also be arranged so that at least two second corrugated sections 1221b have different convex heights. Furthermore, at least two second corrugated sections 1221b can be staggeredly arranged along the circumferential direction of the air bearing 12 .
  • the first corrugated section 1221a with a higher protrusion height (relative to other first corrugated sections 1221a) and the first corrugated section 1221a with a higher protrusion height can be The tall second corrugated sections 1221b (relative to the other second corrugated sections 1221b) are stacked, and the first corrugated section 1221a (relative to the other first corrugated sections 1221a) with a lower convex height and the second corrugated section 1221a with a lower convex height are arranged in a stack.
  • the two corrugated sections 1221b are stacked; it is also possible to arrange the first corrugated section 1221a with a lower protruding height (relative to the other first corrugated sections 1221a) and the second corrugated section with a higher protruding height.
  • the corrugated sections 1221b are stacked, and the first corrugated section 1221a (relative to the other first corrugated sections 1221a) with a higher convex height and the second corrugated section 1221a with a lower convex height are arranged in a stack.
  • the two corrugated sections 1221b (relative to the other second corrugated sections 1221b) are stacked.
  • other layout forms can also be used to meet different operating environment requirements.
  • first corrugated section 1221a and the second corrugated section 1221b are arranged to have different heights, etc.
  • the convex height H1 of the first corrugated section 1221a is smaller than the convex height H2 of the second corrugated section 1221b to construct a gap.
  • a gap along the stacking direction can be easily constructed between the corrugated peak of the second corrugated section 1221b and the first corrugated section 1221a, and the first corrugated foil 122a
  • the structure of the first wave foil 122a and the second wave foil 122b is simple, convenient for production, and the structural strength and stability of the first wave foil 122a and the second wave foil 122b are improved.
  • the plurality of first corrugated sections 1221a of the present disclosure can be connected to the first connecting section 1222a
  • the plurality of second corrugated sections 1221b can be connected to the second connecting section 1222b
  • the first connecting section 1222a can be connected to the second connecting section 1222a.
  • the segments 1222b are stacked, and by setting the first connecting segment 1222a and the second connecting segment 1222b to have different thicknesses, a gap is formed between the wave peak of the second corrugated segment 1221b and the first corrugated segment 1221a.
  • other methods can be used to construct the aforementioned gaps in the present disclosure.
  • the above description is for the convenience of understanding the present disclosure and is not intended to limit the scope of the present disclosure.
  • the protrusion height described in this disclosure refers to the height of the corresponding structure in the cross section of the corresponding structure relative to the line connecting its two ends, where the line is along the circumference of the air bearing 12
  • the connection is an arc line centered on the axis of the air bearing 12; for the axial air bearing 12a, the connection is perpendicular to the air bearing 12a. 12 axis line.
  • the aforementioned two-end connection line may also be a straight line connecting both ends.
  • the convex height of the first corrugated section 1221a refers to the height of the wave peak of the cross section of the first corrugated section 1221a relative to the line connecting the two ends of the first corrugated section 1221a.
  • the size of the aforementioned gap can also be set to less than 0.03 mm (for example, 0.01 mm) or greater than 0.12 mm (for example, 0.2 mm), etc., and can be adjusted according to actual usage conditions.
  • a plurality of first corrugated sections 1221a in the first corrugated foil 122a and one second corrugated section 1221b of the second corrugated foil 122b are stacked. This can further enhance the support effect of the top foil 123 under different loads, thereby effectively improving the stability and load capacity of the air bearing 12 .
  • first corrugated sections 1221a and one second corrugated section 1221b there is a gap between the wave peak of the second corrugated section 1221b and at least one first corrugated section 1221a.
  • multiple first corrugated sections can be 1221a has a gap with the wave peak of the second corrugated section 1221b; a gap can also be provided between one of the plurality of first corrugated sections 1221a and the wave peak of the second corrugated section 1221b.
  • both the first corrugated section 1221a and the second corrugated section 1221b can be arranged in a protruding form toward the top foil 123, thereby facilitating the stacking of multiple first corrugated sections 1221a and one second corrugated section 1221b.
  • first corrugated section 1221a in the first corrugated foil 122a and multiple second corrugated sections 1221b of the second corrugated foil 122b can also be stacked.
  • both the first corrugated section 1221a and the second corrugated section 1221b can be configured to protrude toward the bearing seat, thereby facilitating the stacking of multiple second corrugated sections 1221b and one first corrugated section 1221a.
  • first corrugated sections 1221a of the first corrugated foil 122a and a plurality of second corrugated sections 1221b of the second corrugated foil 122b can also be stacked. Therefore, under different loads of the air bearing 12, the first wave foil 122a and the second wave foil 122b can provide relatively stable support for the top foil 123, improve the stability of the air bearing 12, and effectively maintain the top foil.
  • the first wave foil 122a and the second wave foil 122b are partially stacked. That is to say, the projection of the first wave foil 122a toward the second wave foil 122b along the stacking direction covers a part of the second wave foil 122b, and the size of the first wave foil 122a in the circumferential direction of the air bearing 12 is smaller than that of the second wave foil 122b. size of. That is to say, the first wave foil 122a and the second wave foil 122b cooperate to form a partial double-layer structure, which can effectively ensure the local support ability of the first wave foil 122a and the second wave foil 122b to the top foil 123, so that the rotation axis can be rotated.
  • one first wave foil 122a can be provided to achieve a local enhancement effect on the second wave foil 122b, and multiple first wave foils 122a can also be provided to achieve multiple enhancements to the second wave foil 122b. Enhance everywhere.
  • the second wave foil 122b can also be arranged to be partially stacked with the first wave foil 122a. That is to say, the second wave foil 122b covers the first wave foil 122a along the stacking direction toward the projection of the first wave foil 122a.
  • the size of the second wave foil 122b along the circumferential direction of the air bearing 12 is smaller than the size of the first wave foil 122a.
  • the air bearing 12 includes a plurality of first wave foils 122a arranged in the circumferential direction.
  • the plurality of first wave foils 122a can be configured individually to optimize the performance of the air bearing 12.
  • a plurality of first wave foils 122a can be stacked with the same second wave foil 122b; or the plurality of first wave foils 122a and the second wave foils 122b can have different shapes along the circumferential direction of the air bearing 12. Location cascade. In this way, the supporting effect of the first corrugated foil 122a and the second corrugated foil 122b on the top foil 123 can be further improved, the stability of the air film between the top foil 123 and the rotating shaft can be maintained, and the load capacity of the air bearing 12 can be improved.
  • the plurality of first wave foils 122a are all fixedly connected to the mounting base 121 and oriented in the same direction along the circumferential direction of the air bearing 12.
  • direction extends.
  • the plurality of first corrugated foils 122a all extend in the same (clockwise or counterclockwise) direction along the second direction. This facilitates control of the deformation directions of the plurality of first wave foils 122a and improves the stability of the air bearing 12 during operation.
  • At least two of the plurality of first wave foils 122a may also be arranged to extend in opposite directions. At least two of the plurality of first wave foils 122a extend in opposite (clockwise and counterclockwise) directions along the second direction.
  • the ratio of the size of the first wave foil 122a along the circumferential direction of the air bearing 12 to the size of the second wave foil 122b along the circumferential direction of the air bearing 12 ranges from 10% to 90%. Within, for example, the ratio can be set to 12%, 25%, 50%, 75%, etc. Thus, the combination of the first corrugated foil 122a and the second corrugated foil 122b can be used to provide locally greater support for the top foil 123.
  • the size ratio of the first wave foil 122a and the second wave foil 122b along the second direction refers to the size ratio of the single first wave foil 122a and the second wave foil 122b along the second direction. Of course, the above ratio can also be set to less than 10% or greater than 90%.
  • the ratio of the size of the second wave foil 122b in the circumferential direction of the air bearing 12 to the size of the top foil 123 in the circumferential direction of the air bearing 12 is in the range of 80% to 95%.
  • the ratio can be set to 82%, 90%, 94%, etc. This allows the top foil 123 to provide stable support to the rotating shaft and avoid partial overlap of the top foil 123 due to deformation of the top foil 123, ensuring stable rotation of the rotating shaft, and further improving the load capacity of the air bearing 12.
  • the air bearing 12 includes a plurality of second wave foils 122b arranged circumferentially.
  • the plurality of second wave foils 122b can be configured individually to optimize the performance of the air bearing 12.
  • the plurality of second wave foils 122b can be stacked with the same first wave foil 122a; or the plurality of second wave foils 122b can be different from the first wave foil 122a in the circumferential direction of the air bearing 12. Location cascade. In this way, the supporting effect of the first corrugated foil 122a and the second corrugated foil 122b on the top foil 123 can be further improved, the stability of the air film between the top foil 123 and the rotating shaft can be maintained, and the load capacity of the air bearing 12 can be improved.
  • the air bearing 12 may also include a plurality of first corrugated foils 122a arranged in the circumferential direction and a plurality of second corrugated foils 122b arranged in the circumferential direction. Wherein, a plurality of first corrugated foils 122a and a plurality of second corrugated foils 122b can be stacked.
  • a plurality of first corrugated foils 122a and a plurality of second corrugated foils 122b can respectively correspond to each other; 122a and a plurality of second corrugated foils 122b are staggered along the circumferential direction of the air bearing 12; at least two first corrugated foils 122a are stacked with one second corrugated foil 122b, and at least one first corrugated foil 122a is stacked with another second corrugated foil 122a.
  • the corrugated foils 122b are stacked; at least two second corrugated foils 122b are stacked with one first corrugated foil 122a, and at least one second corrugated foil 122b is stacked with one first corrugated foil 122a, and so on.
  • at least two second corrugated foils 122b are stacked with one first corrugated foil 122a
  • at least one second corrugated foil 122b is stacked with one first corrugated foil 122a, and so on.
  • other arrangements can also be adopted in the present disclosure.
  • the above descriptions are only some specific implementations of the present disclosure and are not intended to limit the scope of the present disclosure.
  • the first corrugated foil 122a further includes first connecting sections 1222a.
  • the first connecting sections 1222a and the first corrugated sections 1221a are staggered along the circumferential direction of the air bearing 12 to facilitate the first corrugated foil.
  • the foil 122a is laminated with other structures (such as the second wave foil 122b), which improves the stability of the first wave foil 122a and facilitates the stable deformation of the first wave foil 122a. Thereby ensuring the load capacity of the air bearing 12.
  • the second corrugated foil 122b may further include second connecting sections 1222b, and the second connecting sections 1222b and the second corrugated sections 1221b are staggeredly connected along the circumferential direction of the air bearing 12.
  • the first corrugated foil 122a includes the first connecting section 1222a and the second corrugated foil 122b includes the second connecting section 1222b
  • the second connecting section 1222b and the first connecting section 1222a are stacked.
  • the combination of the first wave foil 122a and the second wave foil 122b can provide support for the top foil 123.
  • the corrugated foil 122b can simultaneously provide support for the top foil 123, thereby maintaining the dynamic balance of the top foil 123, thereby improving the load capacity of the air bearing 12 and improving the stability of the air bearing 12 during operation.
  • the circumferential size of the first connecting section 1222a along the air bearing 12 is larger than that of the corresponding second connecting section 1222b along the air bearing. 12 circumferential dimensions.
  • the second connecting section 1222b is stacked with the first connecting section 1222a.
  • the circumferential size of the first connecting section 1222a along the air bearing 12 is smaller than that of the corresponding second connecting section 1222b along the air bearing.
  • the mutually stacked first corrugated section 1221 a and the second corrugated section 1221 b have gaps in the circumferential direction of the air bearing 12 .
  • mutual interference when the first wave foil 122a and the second wave foil 122b are deformed can be avoided, and the force exerted by the first wave foil 122a and the second wave foil 122b on the top foil 123 can be more stable, so that the force on the top foil 123 can be improved.
  • the stable support of the top foil 123 avoids problems such as air leakage caused by excessive local support force of the top foil 123, and improves the operational stability of the air bearing 12.
  • the first corrugated section 1221a and the second corrugated section 1221b stacked on each other can also be in contact with each other in the circumferential direction of the air bearing 12.
  • the contact between the sides of the first corrugated section 1221a and the second corrugated section 1221b can be used to increase the deformation resistance of the first corrugated foil 122a and the second corrugated foil 122b, thereby improving the supporting effect of the top foil 123 and preventing the top foil from being
  • the gap between 123 and the rotating shaft is too large, causing instability of the air film or gas leakage.
  • each first corrugated segment 1221a has a gap from the crest of the corresponding second corrugated segment 1221b. Therefore, the first wave foil 122a and the second wave foil 122b can have uniform supporting force for the top foil 123, improve the uniformity of deformation of the top foil 123, thereby improving the air film formed between the top foil 123 and the rotating shaft. stability.
  • the peak gaps of different corrugated sections in the first corrugated foil 122a and corresponding corrugated sections of the second corrugated foil 122b may be the same or different.
  • a portion of the first corrugated section 1221a has a gap with the corrugated peak of the corresponding second corrugated section 1221b, and another portion of the first corrugated section 1221a is in contact with the corrugated peak of the corresponding second corrugated section 1221b. In this way, the problem of large local loads in the circumferential direction of the air bearing 12 during operation can be comprehensively considered.
  • the second wave foil 122b will be first used to support the top foil 123 alone, and when the load increases, the first wave foil 122a and the second wave foil 122b will be used to support the top foil 123 , which can meet the different operating conditions of the air bearing 12 and improve the stability of the air bearing 12.
  • the first corrugated foil 122a has multiple sections arranged with gaps along the transverse direction (ie, the aforementioned third direction), which is perpendicular to the direction from the mounting base 121 to the top foil 123 And the circumferential direction of the air bearing 12.
  • the transverse direction ie, the aforementioned third direction
  • multiple sections of the corrugated foil along the transverse direction can be adjusted separately to adapt to different working conditions and different types of rotating shafts, thereby improving the stability of the air bearing 12.
  • the corresponding first corrugated sections 1221a in the transverse direction can be set to have different heights. Therefore, multiple sections of the corrugated foil in the transverse direction can be set to different heights to achieve different load capacities of the air bearing 12 in the transverse direction, improve the stability of the air bearing 12, and improve the relationship between the rotating shaft and the air bearing 12. Air film stability.
  • the first corrugated sections 1221a in different sections are displaced along the circumferential direction of the air bearing 12. The uniformity of support to the top foil 123 can be further improved.
  • the first corrugated sections 1221a in different sections have different thicknesses.
  • one end of the plurality of sections of the first wave foil 122a is connected along the transverse direction.
  • the first wave foil 122a can be constructed as a whole to facilitate the production and fabrication of the first wave foil 122a.
  • multiple sections of the first wave foil 122a can be connected to each other along one end of the circumferential direction; the first wave foil 122a can also be connected to each other.
  • the plurality of sections of a corrugated foil 122a are connected to each other at both ends along the circumferential direction.
  • the second corrugated foil 122b may also be provided to include multiple sections arranged in a transverse direction and having gaps.
  • the corresponding second corrugated sections 1221b in the transverse direction can be set to have different heights. Therefore, multiple sections of the corrugated foil in the transverse direction can be set to different heights to achieve different load capacities of the air bearing 12 in the transverse direction, improve the stability of the air bearing 12, and improve the relationship between the rotating shaft and the air bearing 12. Air film stability.
  • the second corrugated sections 1221b in different sections are displaced along the circumferential direction of the air bearing 12.
  • the uniformity of support to the top foil 123 can be further improved.
  • the second corrugated sections 1221b in different sections have different thicknesses.
  • one end of the plurality of sections of the second wave foil 122b is connected along the transverse direction.
  • the second wave foil 122b can be constructed as a whole to facilitate the production and fabrication of the second wave foil 122b.
  • multiple sections of the second wave foil 122b can be connected to each other along one end of the circumferential direction; the second wave foil 122b can also be connected to one another. Both ends of the multiple sections of the two-wave foil 122b are connected to each other in the circumferential direction.
  • At least two first corrugated sections 1221a in the first corrugated foil 122a have different thicknesses.
  • the stability of the air bearing 12 can be maintained when different areas of the air bearing 12 have different loads.
  • First corrugated sections 1221a with increasing or decreasing thickness can be provided at intervals of a certain number of first corrugated sections 1221a; or thicker first corrugated sections 1221a and thinner first corrugated sections 1221a can be provided along the circumference of the air bearing 12 Arranged alternately.
  • At least two second corrugated sections 1221b in the second corrugated foil 122b have different thicknesses.
  • the stability of the air bearing 12 can be maintained when different areas of the air bearing 12 have different loads.
  • second corrugated sections 1221b with increasing or decreasing thickness can be provided at intervals of a certain number of second corrugated sections 1221b; or thicker second corrugated sections 1221b and thinner second corrugated sections 1221b can be provided along the air bearing 12 Alternately arranged circumferentially.
  • the thickness of the first corrugated section 1221a is different from the thickness of the second corrugated section 1221b. Therefore, the first corrugated section 1221a and the second corrugated section 1221b can be used to provide different supporting forces to further improve the stability and application range of the air bearing 12.
  • the thickness of the first corrugated section 1221a is greater than the thickness of the second corrugated section 1221b.
  • the second wave foil 122b can deform quickly to facilitate the deformation of the top foil 123; and when the movement displacement of the top foil 123 toward the mounting base 121 is large, The combination of the first wave foil 122a and the second wave foil 122b can provide greater supporting force, thereby reducing the tendency of the top foil 123 to continue toward the mounting seat 121, thereby maintaining the air film between the top foil 123 and the rotating shaft. , to achieve stable rotation of the rotating shaft.
  • first corrugated foil 122a and a corresponding portion of the second corrugated foil 122b may have different thicknesses.
  • first wave foil 122a and/or the second wave foil 122b provide support to the top foil 123, the stability of the support for the top foil 123 can be improved to facilitate the formation of a stable air film between the top foil 123 and the rotating shaft.
  • the first corrugated section 1221a of the first corrugated foil 122a and the second corrugated section 1221b of the second corrugated foil 122b both protrude toward the mounting seat 121 .
  • the first wave foil 122a is disposed between the second wave foil 122b and the mounting base 121.
  • the top foil 123 When the top foil 123 deforms, it will first exert force on the first wave foil 122a. Since the first wave foil 122a and the second wave foil 122b are stacked, the top foil 123 exerts force on the second wave foil 122b. , will also be conducted to the first wave foil 122a, thereby providing support for the top foil 123.
  • first corrugated section 1221a of the first corrugated foil 122a and the second corrugated section 1221b of the second corrugated foil 122b can both be raised toward the top foil 123 .
  • the first wave foil 122a is provided between the second wave foil 122b and the mounting base 121.
  • the top foil 123 will first exert force on the second wave foil 122b. Since the first wave foil 122a and the second wave foil 122b are stacked, the top foil 123 exerts force on the second wave foil 122b. , will also be conducted to the first wave foil 122a, thereby providing support for the top foil 123.
  • a single-layer top foil 123 or a multi-layer top foil 123 can be provided.
  • the multi-layer top foil 123 can be arranged in a stack, as shown in the figure, to increase the stiffness of the top foil 123 and reduce the difference in deformation of the top foil 123.
  • the present disclosure exponentially increases the friction area between the sheets, thereby greatly improving the friction damping of the air bearing 12 and improving the stability of the bearing.
  • the top foil 123 has a first portion and a second portion, the first portion and the second portion Available in different thicknesses.
  • Each area of the top foil 123 can have different support strengths to thicken the top foil 123 for areas with higher loads in the air bearing 12, thereby improving the load-bearing capacity of the air bearing 12 to reach all parts of the air bearing 12. More balanced, thereby improving a more stable air film.
  • the wave foil may further include a third wave foil, the third wave foil may include one or more, and the third wave foil may be disposed between the first wave foil 122a and the second wave foil 122b. , or a third wave foil is provided between the first wave foil 122a and the mounting base 121, or a third wave foil is provided between the second wave foil 122b and the top foil 123.
  • the first corrugated foil 122a is disposed between the second corrugated foil 122b and the mounting base 121, between the first corrugated foil 122a and the second corrugated foil 122b, and/or between the first corrugated foil 122a and the mounting base 121.
  • a third wave foil is provided between the second wave foil 122b and the top foil 123.
  • both the first corrugated foil 122a and the second corrugated foil 122b have one end fixedly connected to the mounting base 121 and extend in the same direction along the circumferential direction of the air bearing 12. And the other end can movably cooperate with the mounting base 121 and the top foil 123 . Therefore, the deformation directions of multiple corrugated foils can be well controlled, the support effect and stability of the top foil 123 can be improved, and the load-bearing capacity of the air bearing 12 can be improved.
  • a positioning groove 1201 is provided on the inner side of the mounting base 121.
  • the inner side of the mounting base 121 is the surface of the mounting base 121 opposite to the top foil 123.
  • the ends of the first corrugated foil 122a and the second corrugated foil 122b are The plug is fixed in a positioning groove 1201.
  • the corrugated foil can be stably installed on the mounting base 121, effectively improving the stability of the corrugated foil.
  • the installation efficiency of multiple corrugated foils can be improved.
  • the ends of the first corrugated foil 122a and the second corrugated foil 122b can also be inserted into different positioning grooves 1201 respectively. In this way, the mutual interference between multiple corrugated foils can be reduced, the deformation mode of the corrugated foils can be controlled, and the stability and load capacity of the air bearing 12 can be improved.
  • a connecting piece extending toward the mounting base 121 in the first direction can be provided at one end of the first corrugated foil 122a and the second corrugated foil 122b, and the connecting piece is inserted into the positioning groove 1201 to realize the installation of the corrugated foil.
  • positioning pins 1203 can be provided in the present disclosure to fix the corrugated foil, that is to say, the positioning pins 1203 are used to position the aforementioned connecting pieces.
  • a positioning groove 1201 is provided on the inner circumferential surface of the mounting base 121
  • a positioning notch 1202 is provided on the inner wall of the positioning groove 1201
  • an embedded groove 1202 is provided on the mounting base 121.
  • the positioning pin 1203 of the positioning notch 1202 is configured to position the corrugated foil. Therefore, the installation efficiency and stability of the top foil 123 and the corrugated foil can be improved.
  • positioning grooves 1201 can also be provided to position the top foil 123.
  • a connecting piece extending in the first direction toward the mounting base 121 can be provided at one end of the top foil 123, and inserted into the positioning groove 1201 through the connecting piece. Installation of the top foil 123 is achieved.
  • One end of the corrugated foil and one end of the top foil 123 are fixedly connected to the mounting base 121 , and the top foil 123 and the corrugated foil extend in opposite directions along the circumferential direction of the air bearing 12 .
  • the corrugated foil of the present disclosure may include multiple layers.
  • the movable ends of the two corrugated foils may be extended in the same direction along the circumferential direction of the air bearing 12, or the two layers of corrugated foil may be The movable ends respectively extend in opposite directions along the circumferential direction of the air bearing 12 .
  • the air bearing 12 of the embodiment of the present disclosure may be an axial air bearing 12a or a radial air bearing 12b.
  • the mounting seat 121, the corrugated foil and the top foil 123 are stacked in the axial direction.
  • the mounting seat 121, the corrugated foil and the top foil 123 are sleeved from the outside to the inside in the radial direction.
  • the rotating shaft can be sleeved on the top foil.
  • the top foil 123 will be forced to move toward the mounting seat 121, and an air film will be formed between the rotating shaft and the top foil 123.
  • the support function of the corrugated foil can be used to realize the connection between the rotating shaft and the top foil 123. The dynamic balance of the air film between them improves the stability of the shaft during rotation.
  • the present disclosure also provides a rotor assembly 10.
  • the rotor assembly 10 according to an embodiment of the present disclosure includes a rotor 11 and the air bearing 12 in the previous embodiment.
  • the stability of the rotor assembly 10 during operation can be improved, and the damping during the rotation of the rotor 11 can be reduced.
  • the rotor assembly 10 may include a radial air bearing 12b.
  • the radial air bearing 12b is sleeved on the outer circumference of the rotor 11.
  • the radial air bearing 12b is the air bearing 12 according to the previous embodiment.
  • the mounting seat 121, corrugated foil and top foil 123 of the floating bearing 12b are stacked sequentially from outside to inside along the radial direction of the rotor 11. During use, when the rotor assembly 10 rotates, the top foil 123 will be pushed toward the bearing seat, and an air film will be formed on the surface of the top foil 123.
  • the top foil 123 will be prompted to expand outward and press against
  • the corrugated foil will provide support for the top foil 123 so that there is an appropriate distance between the corrugated foil and the rotating shaft to maintain the stability of the air film between the top foil 123 and the rotating shaft.
  • the stable rotation of the rotor 11 can be maintained and the radial movement of the rotor 11 can be reduced.
  • the rotor assembly 10 may also include an axial air bearing 12a, which cooperates with the rotor 11.
  • the axial air bearing 12a is the air bearing 12 according to the previous embodiment.
  • the mounting seat 121, corrugated foil and top foil 123 of the bearing 12a are stacked in sequence along the axial direction of the rotor 11.
  • the top foil 123 will be pushed toward the bearing seat, and an air film will be formed on the surface of the top foil 123.
  • the top foil 123 will press against the corrugated foil.
  • the corrugated foil will Provide support to the top foil 123 so that there is an appropriate distance between the corrugated foil and the rotating shaft to maintain the stability of the air film between the top foil 123 and the rotating shaft.
  • the present disclosure also provides a compressor, which includes the aforementioned air bearing 12 .
  • the present disclosure also provides a compressor, which includes the aforementioned rotor assembly 10 .
  • the present disclosure also provides an HVAC equipment, which includes the aforementioned air bearing 12 .
  • the present disclosure also provides an HVAC equipment, which includes the aforementioned rotor assembly 10 .
  • the present disclosure also provides an HVAC equipment, which includes the aforementioned compressor.
  • the present disclosure provides an air bearing 12 and the rotor assembly 10 of the air bearing 12, a compressor and HVAC equipment.
  • the first corrugated section 1221a and the second corrugated foil of the first corrugated foil 122a of the air bearing 12 are provided.
  • the single-layer corrugated foil supporting corrugated foil is easy to deform, and the structure
  • the damping is high and can well dissipate the energy brought by the vibration of the rotor 11, ensuring To ensure the stability of the rotor 11; when heavy load or impact occurs, the second corrugated section 1221b and the first corrugated section 1221a are pressed down to the same wave height. At this time, they are jointly supported by the first corrugated section 1221a and the second corrugated section 1221b.
  • the first wave foil 122a or the second wave foil 122b in the present disclosure is designed to be segmented along the third direction.
  • the foil is divided into several sections along the third direction, where the two sections on both sides are wide, the sections in the middle are short, and the sections in the middle are evenly distributed.
  • This structure achieves the stiffness of the corrugated foil in the middle sections. Small, the stiffness of the corrugated foils on both sides is large, realizing axial variable stiffness.
  • the deformation of the foils on both sides is smaller than the deformation of the middle, which can reduce the leakage of gas from both ends, thus improving the efficiency of the foil.
  • the air film pressure in the middle of the foil improves the overall bearing capacity of the radial foil gas dynamic pressure bearing.
  • both ends of the top foil 123 are integral structures and are not divided into segments, while ensuring the integrity of the corrugated foil.
  • a multi-layer top foil 123 (for example, a double layer) can be used to increase the stiffness of the top foil 123 and reduce the difference in radial deformation of the top foil 123 (the traditional top foil 123 has a large deformation amount between two wave heights).
  • the traditional single-layer top foil 123 solution causes the gap between the top foil 123 and the rotor 11 to become larger between the two wave heights, affecting the wedge-shaped extrusion effect, resulting in small local pressure and low overall bearing capacity
  • the multi-layer top foil 123 in the present disclosure effectively solves this problem and improves the overall bearing capacity of the foil by reducing the difference between the deformation amounts of the top foil 123 at the peak and trough positions.
  • the present disclosure proposes an air bearing 12.
  • the air bearing 12 has a circumferential structure and axially variable stiffness, and has non-equal height double wave foils, double top foils 123, etc.
  • the air bearing 12 includes a mounting seat 121, It consists of the first wave foil 122a, the second wave foil 122b, the multi-layer top foil 123, the positioning pin 1203 and other parts.
  • the mounting seat 121 is a precision-machined bearing sleeve with two positioning grooves 1201 and positioning notches 1202 on the top for fixing the corrugated foil and the top foil 123.
  • the material of the corrugated foil in the present disclosure can be beryllium bronze, nickel-based alloy, high-strength stainless steel and other foils.
  • the long-shaped foil is subjected to wire cutting or laser cutting for axial segmentation. During wire cutting, the foil is It is divided into several sections in the middle. The foils on both sides are wide and the foil sections in the middle are narrow. There is also an uncut section at both ends of the foil to ensure the integrity of the foil and facilitate installation after subsequent molding. Cut the wires respectively.
  • a good foil is a corrugated foil, in which one of the first corrugated foil 122a and the second corrugated foil 122b may have an arched corrugated structure and the other may have a corrugated structure.
  • the air bearing 12 of the present disclosure can be an axial air bearing 12a or a radial air bearing 12b.
  • the radial air bearing 12b two long strips of corrugated foil can be rolled into circular rings.
  • the top foil 123 can be beryllium bronze, nickel-based alloy, high-strength stainless steel, etc.
  • the inner wall of the top foil 123 is sprayed with a wear-resistant self-lubricating material, and the material can include molybdenum disulfide, polytetrafluoroethylene, PM304, PS304, etc.
  • the corrugated foil is fixed on the mounting base 121 through the positioning groove 1201 and the positioning pin 1203, and one end of the top foil 123 is fixed on the mounting base 121 through the cooperation of the positioning groove 1201 and the positioning pin 1203, wherein multiple The corrugated foil is fixed to the mounting base 121 and extends in the same direction as the circumferential direction of the air bearing 12.
  • the top foil 123 may include two stacked ones. One of the two top foils 123 is stacked on multiple corrugated foils, and one end is fixedly connected to the mounting base. 121. The other end extends in the direction opposite to the extension direction of the corrugated foil.
  • One end of the other of the two top foils 123 is fixedly connected to the mounting base 121, and the other end extends in the same direction as the extending direction of the corrugated foil. This fixed This method can ensure the fit degree of the corrugated foil on the inner wall of the mounting base 121, and avoid affecting the bearing performance and life due to poor foil fit.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In this disclosure, unless otherwise explicitly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified limitations. For those of ordinary skill in the art, the specific meanings of the above terms in this disclosure can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features may be in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • references to the terms “one embodiment,” “some embodiments,” “an example,” “specific examples,” or “some examples” or the like means that specific features are described in connection with the embodiment or example. , structures, materials, or features are included in at least one embodiment or example of the present disclosure. In this specification, the schematic expressions of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Support Of The Bearing (AREA)

Abstract

一种气浮轴承,气浮轴承包括依次层叠的安装座(121)、波箔和顶箔(123),波箔包括第一波箔(122a)和第二波箔(122b),第一波箔(122a)包括第一波纹段(1221a),第二波箔(122b)包括与第一波纹段(1221a)层叠设置的第二波纹段(1221b),第二波纹段(1221b)的波峰在层叠方向上与第一波纹段(1221a)具有间隙,沿层叠方向,第二波纹段(1221b)相较于第一波纹段(1221a)更靠近顶箔(123)。还包括一种转子总成、压缩机和暖通设备。

Description

气浮轴承、转子总成、压缩机和暖通设备
相关申请的交叉引用
本公开要求于2022年07月30日提交中国专利局、申请号为202210912666.9、申请名称为“气浮轴承、转子总成、压缩机和暖通设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及轴承技术领域,特别涉及一种气浮轴承、包括该气浮轴承的转子总成、包括该气浮轴承的压缩机和包括该气浮轴承的暖通设备。
背景技术
气浮轴承是以周围环境中的气体作为润滑剂并采用箔片作为弹性支承元件的一种动压轴承,国外从20世纪70年代就已经将空气轴承商品化并广泛应用于空气制冷系统中。相关技术中的气浮轴承承载能力有限,且容易发生变形,适用载荷较低。
相关技术中提供了一些双层波箔的结构,一些方案中将双层波箔的波纹段相切或抵接,另一些方案中提供了一种波箔、顶箔、波箔和顶箔层叠的结构,其中相邻的波箔和顶箔之间相互抵接,由于压缩机等设备在运行过程中,其负载会发生变化,采用相关技术中的方案难以满足不同负载下的运行需求。
申请内容
本公开的一个目的在于提出一种气浮轴承,在波箔的波纹段之间设置了间隙,能够在提高气浮轴承的荷载能力的同时,满足低负载下的使用需求。
本公开的另一目的在于提出一种转子总成,包括前述的气浮轴承。
本公开的再一目的在于提出一种压缩机,包括前述的气浮轴承或前述的转子总成。
本公开的再一目的在于提出一种暖通设备,包括前述的气浮轴承或前述的转子总成或前述的压缩机。
根据本公开实施例的气浮轴承,包括依次层叠的安装座、波箔和顶箔,所述波箔包括第一波箔和第二波箔,所述第一波箔包括第一波纹段,所述第二波箔包括与所述第一波纹段层叠设置的第二波纹段,所述第二波纹段的波峰在层叠方向上与所述第一波纹段具有间隙,沿所述层叠方向,所述第二波纹段相较于所述第一波纹段更靠近所述顶箔。
根据本公开实施例的气浮轴承,通过第一波纹段和第二波纹段层叠并具有间隙,在受 到顶箔传递的压力时,第一波纹段和第二波纹段中的一个会首先发生变形,当形变量大于间隙值时,第一波纹段和第二波纹段将共同进行支撑,对顶箔的支撑力有更稳定的渐进过程,相比现有技术更有利于维持气浮轴承的稳定性和提高承载能力。
另外,根据本公开上述实施例的气浮轴承,还可以具有如下附加的技术特征:
可选地,所述第一波箔中的至少两个第一波纹段凸起高度不同。
可选地,所述第二波箔中的至少两个第二波纹段凸起高度不同。
可选地,所述至少两个第一波纹段沿所述气浮轴承的周向交错排布。
可选地,所述至少两个第二波纹段沿所述气浮轴承的周向交错排布。
可选地,所述第二波纹段的波峰在层叠方向上与所述第一波纹段之间具有尺寸大于等于0.03毫米且小于等于0.12毫米的间隙。
可选地,所述第一波箔的多个所述第一波纹段与所述第二波箔中的一个第二波纹段层叠设置。
可选地,所述第一波箔的一个所述第一波纹段与所述第二波箔的多个所述第二波纹段层叠设置;
可选地,所述第一波箔的多个所述第一波纹段与所述第二波箔的多个所述第二波纹段层叠设置。
可选地,所述第一波箔与所述第二波箔的局部层叠设置。
可选地,所述第二波箔与所述第一波箔的局部层叠设置。
可选地,所述气浮轴承包括沿周向排布的多个所述第一波箔。
可选地,所述气浮轴承包括沿周向排布的多个所述第二波箔。
可选地,所述第一波箔还包括第一连接段,所述第一连接段与所述第一波纹段沿所述气浮轴承的周向交错相接。
可选地,所述第二波箔还包括第二连接段,所述第二连接段与所述第二波纹段沿所述气浮轴承的周向交错相接。
可选地,沿所述层叠方向层叠的第一波纹段和所述第二波纹段在所述气浮轴承的周向上具有间隙或相互接触。
可选地,所述第一波箔包括沿横向排布且具有间隙的多段;或所述第二波箔包括沿横向排布且具有间隙的多段,其中,所述横向垂直于所述层叠方向以及所述气浮轴承的周向。
可选地,所述第一波箔中的至少两个第一波纹段厚度不同。
可选地,所述第二波箔中的至少两个第二波纹段厚度不同。
可选地,所述第一波纹段的厚度与所述第二波纹段的厚度不同。
可选地,所述第一波箔的第一波纹段和所述第二波箔的第二波纹段均朝向所述安装座 凸起。
可选地,所述第一波箔的第一波纹段和所述第二波箔的第二波纹段均朝向所述顶箔凸起。
可选地,所述顶箔包括层叠布置的多层。
可选地,所述顶箔具有第一部分和第二部分,所述第一部分和所述第二部分具有不同的厚度。
可选地,所述波箔还包括至少一个第三波箔,所述第一波箔和所述第二波箔之间、所述第一波箔与所述安装座之间或所述第二波箔与所述顶箔之间设有所述第三波箔。
可选地,所述安装座的上设有定位槽。
可选地,所述第一波箔和所述第二波箔的一端均插接固定于一个所述定位槽内。
可选地,所述第一波箔和所述第二波箔的一端分别插接于不同的所述定位槽内。
可选地,所述定位槽的内侧壁上设有定位缺口,所述安装座上设有嵌入所述定位缺口的定位销,所述定位销配置为定位所述波箔。
可选地,所述气浮轴承为径向气浮轴承或轴向气浮轴承。
根据本公开实施例的转子总成,所述转子总成包括转子,所述转子总成还包括:径向气浮轴承和/或轴向气浮轴承,所述径向气浮轴承套设于所述转子的外周,所述径向气浮轴承为根据前述的气浮轴承,所述径向气浮轴承的所述安装座、所述波箔和所述顶箔沿所述转子的径向由外到内依次层叠;所述轴向气浮轴承与所述转子配合,所述轴向气浮轴承为根据前述的气浮轴承,所述轴向气浮轴承的所述安装座、所述波箔和所述顶箔沿所述转子的轴向依次层叠。
根据本公开实施例的压缩机,包括根据前述的气浮轴承;或包括前述的转子总成。
根据本公开实施例的暖通设备,包括前述的气浮轴承;或包括前述的转子总成;或包括前述的压缩机。
本公开提供了一种气浮轴承、转子总成、压缩机和暖通设备,相对而言,相关技术的双层波箔的结构,其波纹段抵接或相切,当受到顶箔传递的压力时,双层波箔的顶部会同时形变对顶箔进行支撑。而本公开方案通过第一波箔的至少一个波纹段的波峰与所述第二波箔的对应波纹段具有间隙,第二波箔受到顶箔传递的压力时,第二波箔首先形变对顶箔进行支撑,当形变量大于间隙值时,第一波箔形变与第二波箔共同进行支撑,对顶箔的支撑力有更稳定的渐进过程,相比现有技术更有利于维持气浮轴承的稳定性和提高承载能力。
附图说明
图1是本公开一些实施例的气浮轴承的示意图。
图2是图1中局部区域的局部放大示意图。
图3是本公开一些实施例的气浮轴承的示意图。
图4是图3中局部区域的局部放大示意图。
图5是本公开另一些实施例的气浮轴承的示意图。
图6是图5中局部区域的局部放大示意图。
图7是本公开一些实施例的气浮轴承的第一波箔或第二波箔的展开示意图。
图8是本公开一些实施例的转子总成的示意图。
附图标记:
转子总成10,转子11,气浮轴承12,径向气浮轴承12b,轴向气浮轴承12a,安装座121,定位槽1201,定位缺口1202,定位销1203,第一波箔122a,第一波纹段1221a,第一连接段1222a,第二波箔122b,第二波纹段1221b,第二连接段1222b,顶箔123。
具体实施方式
我国是全球最大的制冷产品生产、消费和出口国,制冷能耗占社会总能耗的15%。在夏季高峰时期,空调等制冷负荷的增长不仅给电网带来了沉重负担,也产生了大量的温室气体排放。为此,推进绿色高效制冷已成为各国促进节能减排、应对气候变化的重要且迫切的需要。
当下“碳中和、碳达峰”背景下,必须发展低碳制冷设备。制冷系统的核心部件是制冷压缩机,在以往的制冷压缩机中滑动轴承的润滑介质是润滑油,但其黏度较大,在高转速下会产生较大的摩擦功耗,此外有润滑油的存在,长期使用会影响换热器的换热效果,制冷系统性能下降。磁悬浮轴承具有摩擦损耗低,稳定性好的优点,但其成本较高,在中小型压缩机应用中优势不明显。动压气浮轴承具有高转速、高效率,摩擦损耗低的优点,非常适用于中小型压缩机。
本公开的气浮轴承可以包括顶箔、波箔和安装座,顶箔和安装座分别与相对可转动的两个部件相配合,在这两个部件之间发生相对转动时,会产生气悬浮的效果,从而降低转动过程中的阻力,例如,以安装座固定、顶箔与转轴配合为例,在转轴发生高速转动时,气流进入到转轴与顶箔之间,同时由于波箔具有一定的弹性支撑力以及弹性形变的能力,可以维持顶箔与转轴的稳定配合,并利用空气悬浮的作用降低转轴与顶箔之间的摩擦力,从而维持转轴的稳定转动。
本公开的气浮轴承包括轴向气浮轴承和径向气浮轴承,轴向气浮轴承可以设于前述转轴的端部,顶箔和安装座可以沿转轴的轴向布置,以限制转轴的轴向位移;径向气浮轴承 可以套设于转轴上,顶箔和安装座可以沿转轴的径向布置,以限制转轴的径向位移。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
如图1和图2,根据本公开实施例的气浮轴承12,包括安装座121、波箔和顶箔123,安装座121、波箔以及顶箔123依次层叠。波箔包括第一波箔122a和第二波箔122b,第一波箔122a包括第一波纹段1221a,第二波箔122b包括第二波纹段1221b,第二波纹段1221b与第一波纹段1221a层叠设置,且在层叠方向上,第二波纹段1221b的波峰与第一波纹段1221a具有间隙h。另外,沿层叠方向,第二波纹段1221b相较于第一波纹段1221a更靠近顶箔123。在气浮轴承12的使用过程中当顶箔123存在向安装座121的变形时,会首先触发第一波纹段1221a和第二波纹段1221b中的一个变形,当气浮轴承12的荷载较大时间隙消灭,从而可以利用第一波纹段1221a和第二波纹段1221b共同支撑顶箔123,以提高对顶箔123的支撑作用,从而提高气浮轴承12的结构强度和载荷能力。
根据本公开实施例的气浮轴承12,第二波纹段1221b的波峰与第一波纹段1221a具有沿层叠方向的间隙,气浮轴承12的载荷不同时,能够在不同的载荷下采用不同数量的波纹段为顶箔123提供支撑,在保证气浮轴承12具有较大的载荷能力的同时,能够避免顶箔123与转轴之间的间隙过大导致气体泄露的问题,以维持气浮轴承12的稳定性,从而提高气浮轴承12的承载能力。
与相关技术相比,现有双层波箔的结构,其波纹段抵接或相切,当受到顶箔123传递的压力时,双层波箔的顶部会同时形变对顶箔123进行支撑。而本公开通过在第二波纹段1221b的波峰与第一波纹段1221a之间设置沿层叠方向的间隙,能够在不同的载荷下,调整波箔对顶箔123的支撑情况,提高气浮轴承12在不同载荷下的稳定性。对顶箔123的支撑力有更稳定的渐进过程,相比现有技术更有利于维持气浮轴承12的稳定性和提高承载能力。
其中,需要说明的是,上述关于第一波箔122a与第二波箔122b的描述,是指该气浮轴承12没有被使用时第一波箔122a与第二波箔122b的配合情况,例如,可以是顶箔123与转轴配合且转轴未转动时;或者气浮轴承12未与转轴配合时。
另外,还需要说明的是,本公开中描述有第一方向A-A、第二方向B-B以及第三方向(参照图1中垂直纸面的方向),其中本公开中的第一方向是指从安装座121到顶箔123的方向,第二方向是指气浮轴承12的周向,第三方向是指垂直于第一方向和第二方向的方向。以径向气浮轴承12b为例,第一方向可以为气浮轴承12的径向,第二方向可以为气浮轴承12的周向,第三方向可以为气浮轴承12的轴向。以轴向气浮轴承12a为例,第一方向可以为 气浮轴承12的轴向,第二方向可以为气浮轴承12的周向,第三方向可以为气浮轴承12的径向。
另外,本公开主要以第一波纹段1221a和第二波纹段1221b支撑顶箔123为例进行说明,其中,第二波纹段1221b相对于第一波纹段1221a更靠近顶箔123,而且第二波纹段1221b的波峰与第一波纹段1221a之间的具有间隙,此时,在顶箔123具有朝向安装座121的变形时,第二波纹段1221b首先会受到挤压变形,在间隙消灭后,第二波纹段1221b将会与第一波纹段1221a抵接,从而利用第一波纹段1221a和第二波纹段1221b组合来支撑顶箔123。另外,本公开中也可以设置成第一波纹段1221a和第二波纹段1221b支撑安装座121,且第二波纹段1221b相较于第一波纹段1221a更靠近顶箔123,此时在顶箔123朝向安装座121变形时,第一波纹段1221a首先会受到挤压变形,在间隙消灭后,第二波纹段1221b的波峰将会与第一波纹段1221a抵接,从而利用第一波纹段1221a和第二波纹段1221b的组合来支撑顶箔123。
在本公开的一些实施例中,第一波箔122a中的至少两个第一波纹段1221a凸起高度不同,这样,可以实现对顶箔123的支撑高度局部增加的形式,以满足不同的载荷要求,便于在气浮轴承12的周向各处的载荷不完全一致时,依然能够满足对转轴的载荷效果,提高转轴的转动稳定性。
进一步地,至少两个第一波纹段1221a沿气浮轴承12的周向高低交错排布,也就是说在沿气浮轴承12的周向上,每相邻的多个第一波纹段1221a中,位于两侧的第一波纹段1221a的高度高于或低于位于中间的第一波纹段1221a的高度。从而可以维持顶箔123的稳定性,在顶箔123位于不同的位移时,都能实现稳定,以提高顶箔123与转轴之间的气膜稳定性。其中,在没有载荷作用时,顶箔123会由较高的一部分波纹段进行支撑,而在顶箔123朝向安装座121移动一定位移时,会由更多的第一波纹段1221a进行支撑,而在顶箔123继续朝向安装座121移动一定位移时,能够通过多个波箔对顶箔123提供支撑。
同样地,也可以将第二波箔122b设置成至少两个第二波纹段1221b凸起高度不同。进一步地,可以将至少两个第二波纹段1221b沿所述气浮轴承12的周向交错排布。
在第一波箔122a和第二波箔122b中均存在高低不同的波纹段时,可以将凸起高度较高的第一波纹段1221a(相对于其他第一波纹段1221a)和凸起高度较高的第二波纹段1221b(相对于其他第二波纹段1221b)层叠设置,将凸起高度较低的第一波纹段1221a(相对于其他第一波纹段1221a)和凸起高度较低的第二波纹段1221b(相对于其他第二波纹段1221b)层叠设置;也可以将凸起高度较低的第一波纹段1221a(相对于其他第一波纹段1221a)和凸起高度较高的第二波纹段1221b(相对于其他第二波纹段1221b)层叠设置,将凸起高度较高的第一波纹段1221a(相对于其他第一波纹段1221a)和凸起高度较低的第 二波纹段1221b(相对于其他第二波纹段1221b)层叠设置。当然,也可以采用其他的布置形式,以满足不同的运行环境需求。
本公开中,可以采用不同的方式来在第一波箔122a中的第一波纹段1221a与第二波箔122b的第二波纹段1221b的波峰之间形成间隙,例如,将第一波纹段1221a和第二波纹段1221b设置成具有不同的高度等。
如图2,在本公开的一些实施例中,第一波纹段1221a的凸起高度H1小于第二波纹段1221b的凸起高度H2,以构造出间隙。通过对第一波纹段1221a和第二波纹段1221b高度的设置,可以方便地在第二波纹段1221b的波峰与第一波纹段1221a之间构造出沿层叠方向的间隙,而且第一波箔122a和第二波箔122b的结构简单,方便生产,同时提高了第一波箔122a和第二波箔122b的结构强度和稳定性。
另外,本公开的多个第一波纹段1221a之间可以连接第一连接段1222a,多个第二波纹段1221b之间可以连接第二连接段1222b,可以将第一连接段1222a与第二连接段1222b层叠,通过将第一连接段1222a与第二连接段1222b设置为不同的厚度,使第二波纹段1221b的波峰与第一波纹段1221a之间形成间隙。当然,本公开中也可以采用其他的方式来构造出前述的间隙,上述描述是为了方便理解本公开,并非是为了限制本公开的保护范围。
另外,还需要说明的是,本公开所述的凸起高度,是指对应结构的横截面中对应结构相对于其两端连线的高度,其中,该连线为沿气浮轴承12的周向的连线,例如,对于径向气浮轴承12b,该连线为以气浮轴承12的轴线为中心的圆弧线;对于轴向气浮轴承12a,该连线为垂直于气浮轴承12的轴线的线。另外,前述两端连线也可以为两端连接的直线。
例如,第一波纹段1221a的凸起高度,是指第一波纹段1221a的横截面的波峰相对于第一波纹段1221a的两端连线的高度。
在本公开的一些实施例中,第二波纹段1221b的波峰在层叠方向上与第一波纹段1221a之间具有尺寸在大于等于0.03毫米且小于等于0.12毫米的间隙,其中,该间隙可以为0.03毫米、0.05毫米、0.07毫米、0.10毫米或0.12毫米等。从而人可以避免了间隙尺寸过大导致第二波纹段1221b的支撑强度不足的问题,也能够在第二波纹段1221b向安装座121移动到合适的位置后,就能够与第一波纹段1221a接触,以增强对顶箔123的支撑效果,有效地提高了气浮轴承12的稳定性和承载能力。
当然,前述的间隙的尺寸,也可以设置成小于0.03毫米(例如0.01毫米)或大于0.12毫米(例如0.2毫米)等,可以根据实际的使用工况进行调整。
在本公开的一些实施例中,第一波箔122a中的多个第一波纹段1221a与第二波箔122b的一个第二波纹段1221b层叠设置。从而可以进一步地增强在不同的负载下,对顶箔123的支撑效果,从而可以有效地提高气浮轴承12的稳定性和负载能力。
其中,在相互对应的多个第一波纹段1221a和一个第二波纹段1221b中,第二波纹段1221b的波峰与至少一个第一波纹段1221a具有间隙,例如,可以使多个第一波纹段1221a均与第二波纹段1221b的波峰均具有间隙;也可以将多个第一波纹段1221a中的一个与第二波纹段1221b的波峰之间设置间隙。这样可以根据施加的使用对顶箔123的支撑作用进行调节,从而进一步地优化气浮轴承12的负载能力。
另外,可以将第一波纹段1221a和第二波纹段1221b均设置成朝向顶箔123凸起的形式,从而方便多个第一波纹段1221a与一个第二波纹段1221b层叠。
同样地,也可以将第一波箔122a中的一个第一波纹段1221a与第二波箔122b的多个第二波纹段1221b层叠设置。另外,可以将第一波纹段1221a和第二波纹段1221b均设置成朝向轴承座凸起的形式,从而方便多个第二波纹段1221b与一个第一波纹段1221a层叠。
当然,与上述描述的方案不同的是,还可以将第一波箔122a的多个第一波纹段1221a与第二波箔122b的多个第二波纹段1221b层叠设置。从而在气浮轴承12的不同载荷下,通过第一波箔122a和第二波箔122b均能够为顶箔123提供较为稳定地支撑,提高气浮轴承12的稳定性,并能够有效地维持顶箔123与转轴之间的气膜。
可选地,如图3和图4,第一波箔122a与第二波箔122b的局部层叠设置。也就是说,第一波箔122a沿层叠方向朝第二波箔122b的投影覆盖第二波箔122b的一部分,第一波箔122a沿气浮轴承12的周向的尺寸小于第二波箔122b的尺寸。也就是说,第一波箔122a和第二波箔122b配合形成局部双层结构,可以有效地保证第一波箔122a和第二波箔122b的局部对顶箔123的支撑能力,从而在转轴转动过程中具有局部负载较大时,能够提高转轴转动的稳定性,可以增强对转轴的支撑效果,从而提高气浮轴承12的承载能力。进一步地,本公开中可以设置一个第一波箔122a,以实现对第二波箔122b的局部增强的效果,还可以设置多个第一波箔122a,以实现对第二波箔122b的多处进行增强。
同样地,也可以将第二波箔122b设置成与第一波箔122a的局部层叠设置,也就是说,第二波箔122b沿层叠方向朝第一波箔122a的投影覆盖第一波箔122a的一部分,第二波箔122b沿气浮轴承12的周向的尺寸小于第一波箔122a的尺寸。
另外,如图5和图6,在本公开的一些实施例中,气浮轴承12包括沿周向排布的多个第一波箔122a。可以对多个第一波箔122a进行分别设置,以优化气浮轴承12的性能。
其中,多个第一波箔122a可以与同一个第二波箔122b层叠设置;也可以将,多个第一波箔122a分别与第二波箔122b上沿气浮轴承12的周向的不同位置层叠。这样,能够进一步地提高第一波箔122a和第二波箔122b的配合对顶箔123的支撑效果,维持顶箔123与转轴之间的气膜稳定性,提高气浮轴承12的荷载能力。
如图5,多个第一波箔122a均与安装座121固定连接,并沿气浮轴承12的周向朝相同 的方向延伸。具体而言,多个第一波箔122a均沿第二方向朝相同(顺时针方向或逆时针方向)的方向延伸。从而方便控制多个第一波箔122a的变形方向,提高气浮轴承12运行过程中的稳定性。
当然,也可以将多个第一波箔122a中的至少两个设置成朝向相反的方向延伸。多个第一波箔122a中的至少两个沿第二方向朝相反(顺时针方向和逆时针方向)的方向延伸。
在本公开的一些实施例中,第一波箔122a沿气浮轴承12的周向的尺寸与第二波箔122b沿气浮轴承12的周向的尺寸的比值在10%到90%的范围内,例如,该比值可以设为12%、25%、50%、75%等。从而可以利用第一波箔122a和第二波箔122b的组合,为顶箔123提供局部更大的支撑。其中,此处第一波箔122a和第二波箔122b沿第二方向的尺寸比例,是指单个第一波箔122a与第二波箔122b沿第二方向的尺寸比例。当然,上述比值也可以设为小于10%或大于90%。
在本公开的一些实施例中,第二波箔122b沿气浮轴承12的周向的尺寸与顶箔123沿气浮轴承12的周向的尺寸的比值在80%到95%的范围内。例如,该比值可以设为82%、90%、94%等。使得顶箔123可以对转轴提供稳定地支撑,且避免由于顶箔123的变形等原因,导致顶箔123局部重叠等,保证了转轴的稳定转动,并进一步地提高气浮轴承12的荷载能力。
在本公开的另一些实施例中,气浮轴承12包括沿周向排布的多个第二波箔122b。可以对多个第二波箔122b进行分别设置,以优化气浮轴承12的性能。
其中,多个第二波箔122b可以与同一个第一波箔122a层叠设置;也可以将,多个第二波箔122b分别与第一波箔122a上沿气浮轴承12的周向的不同位置层叠。这样,能够进一步地提高第一波箔122a和第二波箔122b的配合对顶箔123的支撑效果,维持顶箔123与转轴之间的气膜稳定性,提高气浮轴承12的荷载能力。
另外,气浮轴承12也可以包括沿周向排布的多个第一波箔122a和沿周向排布的多个第二波箔122b。其中,可以将多个第一波箔122a与多个第二波箔122b层叠设置,例如,可以将多个第一波箔122a与多个第二波箔122b分别对应;多个第一波箔122a与多个第二波箔122b沿气浮轴承12的周向错位布置;至少两个第一波箔122a与一个第二波箔122b层叠,且至少一个第一波箔122a与另一个第二波箔122b层叠;至少两个第二波箔122b与一个第一波箔122a层叠,且至少一个第二波箔122b与一个第一波箔122a层叠等。当然,本公开中也可以采用其他的布置形式,上述描述仅是本公开的一些具体实施方式,并非是对本公开保护范围的限制。
在本公开的一些实施例中,第一波箔122a还包括第一连接段1222a,第一连接段1222a与第一波纹段1221a沿气浮轴承12的周向交错相接,以方便第一波箔122a与其他结构(例如第二波箔122b)层叠,提高了第一波箔122a的稳定性,方便第一波箔122a的稳定变形, 从而确保气浮轴承12的载荷能力。
另外,可以将第二波箔122b还包括第二连接段1222b,第二连接段1222b与第二波纹段1221b沿气浮轴承12的周向交错相接。
其中,在第一波箔122a包括第一连接段1222a且第二波箔122b包括第二连接段1222b时,第二连接段1222b与第一连接段1222a层叠设置。在气浮轴承12使用过程中,当顶箔123朝向安装座121发生位移时,第一波箔122a和第二波箔122b的组合可以为顶箔123提供支撑,第一波箔122a和第二波箔122b可以同时提供对顶箔123的支撑力,从而维持顶箔123的动态平衡,从而提高气浮轴承12的载荷能力,提高气浮轴承12运行过程中的稳定性。
进一步地,在第一波纹段1221a和第二波纹段1221b均朝向顶箔123凸起时,第一连接段1222a沿气浮轴承12的周向尺寸大于对应的第二连接段1222b沿气浮轴承12的周向尺寸。此时的第二连接段1222b与第一连接段1222a层叠,通过对连接段的尺寸关系限制,能够方便第一波箔122a和第二波箔122b的相对变形,以保证第一波箔122a和第二波箔122b之间的变形不发生干涉,而使得顶箔123可以稳定地变形以及与转轴之间形成稳定的气膜。
同样地,在第一波纹段1221a和第二波纹段1221b均朝向顶箔123轴承座凸起时,第一连接段1222a沿气浮轴承12的周向尺寸小于对应的第二连接段1222b沿气浮轴承12的周向尺寸。
如图2所示,在本公开的一些实施例中,相互层叠的第一波纹段1221a和第二波纹段1221b在气浮轴承12的周向上具有间隙。这样,可以避免第一波箔122a和第二波箔122b发生变形时的相互干扰,可以将第一波箔122a和第二波箔122b对顶箔123施加的力较为稳定,这样就可以提高对顶箔123的稳定支撑,避免了顶箔123的局部支撑力过大导致漏气等问题,提高了气浮轴承12的运行稳定性。
当然,本公开中也可以将相互层叠的第一波纹段1221a和第二波纹段1221b在气浮轴承12的周向上相接触。这样,可以利用第一波纹段1221a和第二波纹段1221b侧部的接触,增加第一波箔122a和第二波箔122b的变形阻力,从而可以提高对顶箔123的支撑效果,避免顶箔123与转轴之间的间隙过大导致气膜不稳定或气体泄露的问题。
在本公开的一些实施例中,每个第一波纹段1221a均与对应的第二波纹段1221b的波峰具有间隙。从而可以使得第一波箔122a和第二波箔122b具有对顶箔123的均匀的支撑力,提高顶箔123各处变形的均匀性,从而提高顶箔123与转轴之间形成的气膜的稳定性。当然,第一波箔122a中的不同波纹段与第二波箔122b的对应波纹段的波峰间隙可以相同,也可以不同。
在本公开的一些实施例中,一部分第一波纹段1221a与对应的第二波纹段1221b的波峰具有间隙,且另一部分第一波纹段1221a与对应的第二波纹段1221b的波峰接触。这样,可以综合考虑气浮轴承12在运行过程中,周向的局部荷载较大的问题,在第一波箔122a和第二波箔122b的一些相对位置,在转轴转速较小时,就会有较好的支撑作用,而在另一些对应位置,会首先利用第二波箔122b进行单独支撑顶箔123,并在载荷增大时利用第一波箔122a和第二波箔122b支撑顶箔123,可以满足气浮轴承12的不同使用工况,提高气浮轴承12的稳定性。
如图7,在本公开的一些实施例中,第一波箔122a具有沿横向(即前述的第三方向)排布的且具有间隙的多段,横向垂直于从安装座121到顶箔123的方向以及气浮轴承12的周向。这样可以方便对波箔沿横向的多段进行分别调节,以适应于不同工况以及不同类型的转轴,提高气浮轴承12的稳定性。
进一步地,第一波箔122a沿横向的相邻两段中,可以将沿横向对应的第一波纹段1221a设置成具有不同的高度。从而可以将波箔在横向上的多段设置为不同的高度,以实现气浮轴承12沿横向具有不同的载荷能力,提高气浮轴承12的稳定性,并提高转轴与气浮轴承12之间的气膜的稳定性。可选地,第一波箔122a中沿横向的相邻段中,不同段中的第一波纹段1221a沿气浮轴承12的周向错位。可以进一步地提高对顶箔123支撑的均匀性。另外,可选地,第一波箔122a中沿横向的相邻段中,不同段中的第一波纹段1221a具有不同的厚度。可选地,第一波箔122a沿横向的多段的一端相连。可以将第一波箔122a构造出一个整体,方便第一波箔122a的生产和制作,其中,本公开中,可以将第一波箔122a的多段沿周向的一端相互连接;也可以将第一波箔122a的多段沿周向的两端均相互连接。
另外,也可以将第二波箔122b设置成包括沿横向排布且具有间隙的多段。第二波箔122b沿横向的相邻两段中,可以将沿横向对应的第二波纹段1221b设置成具有不同的高度。从而可以将波箔在横向上的多段设置为不同的高度,以实现气浮轴承12沿横向具有不同的载荷能力,提高气浮轴承12的稳定性,并提高转轴与气浮轴承12之间的气膜的稳定性。可选地,第二波箔122b中沿横向的相邻段中,不同段中的第二波纹段1221b沿气浮轴承12的周向错位。可以进一步地提高对顶箔123支撑的均匀性。另外,可选地,第二波箔122b中沿横向的相邻段中,不同段中的第二波纹段1221b具有不同的厚度。可选地,第二波箔122b沿横向的多段的一端相连。可以将第二波箔122b构造出一个整体,方便第二波箔122b的生产和制作,其中,本公开中,可以将第二波箔122b的多段沿周向的一端相互连接;也可以将第二波箔122b的多段沿周向的两端均相互连接。
在本公开的一些实施例中,第一波箔122a中的至少两个第一波纹段1221a的厚度不同。可以在气浮轴承12的不同区域具有不同的负载时,能够维持气浮轴承12的稳定性。例如 可以每间隔一定数量的第一波纹段1221a设置厚度增加或厚度减小的第一波纹段1221a;或较厚的第一波纹段1221a与较薄的第一波纹段1221a沿气浮轴承12的周向交替布置。
在本公开的一些实施例中,第二波箔122b中的至少两个第二波纹段1221b的厚度不同。可以在气浮轴承12的不同区域具有不同的负载时,能够维持气浮轴承12的稳定性。例如可以每间隔一定数量的第二波纹段1221b设置厚度增加或厚度减小的第二波纹段1221b;或较厚的第二波纹段1221b与较薄的第二波纹段1221b沿气浮轴承12的周向交替布置。
在本公开的一些实施例中,第一波纹段1221a的厚度与第二波纹段1221b的厚度不同。从而可以利用第一波纹段1221a和第二波纹段1221b提供不同的支撑力,以进一步地提高该气浮轴承12的稳定性和适用范围。
例如,第一波纹段1221a的厚度大于第二波纹段1221b的厚度。这样,在顶箔123朝向安装座121的运动位移较小时,第二波箔122b能够快速地变形,以方便顶箔123的变形;而当顶箔123朝向安装座121的运动位移较大时,第一波箔122a和第二波箔122b的组合能够提供更大的支撑力,从而减小了顶箔123继续朝安装座121一定的趋势,从而维持了顶箔123与转轴之间的气膜,实现转轴的稳定转动。
另外,还可以将第一波箔122a的至少一部分与第二波箔122b上的对应部分具有不同的厚度。可以在第一波箔122a和/或第二波箔122b对顶箔123提供支撑时,提高对顶箔123支撑的稳定性,方便顶箔123与转轴之间形成稳定的气膜。
在本公开的一些实施例中,第一波箔122a的第一波纹段1221a和第二波箔122b的第二波纹段1221b均朝向安装座121凸起。第一波箔122a设于的第二波箔122b和安装座121之间。在使用过程中,顶箔123发生变形时,首先会对第一波箔122a施力,由于第一波箔122a和第二波箔122b层叠布置,顶箔123对第二波箔122b的施力,也将会传导至第一波箔122a上,从而为顶箔123提供支撑。
另外,还可以将第一波箔122a的第一波纹段1221a和第二波箔122b的第二波纹段1221b均朝向顶箔123凸起。第一波箔122a设于第二波箔122b和安装座121之间。在使用过程中,顶箔123发生变形时,首先会对第二波箔122b施力,由于第一波箔122a和第二波箔122b层叠布置,顶箔123对第二波箔122b的施力,也将会传导至第一波箔122a上,从而为顶箔123提供支撑。
本公开中可以设置单层顶箔123或多层顶箔123,多层顶箔123可以层叠布置,如图所示,提高顶箔123的刚度,减小顶箔123变形量的差异。本公开通过增加波箔的数量,成倍的增加了片与片之间的摩擦面积,从而极大的提高了气浮轴承12的摩擦阻尼,提高了轴承的稳定性。
在本公开的一些实施例中,顶箔123具有第一部分和第二部分,第一部分和第二部分 具有不同的厚度。顶箔123的各个区域可以具有不同的支撑强度,以针对气浮轴承12中载荷较高的区域进行顶箔123加厚,从而提高气浮轴承12的承载能力,以达到气浮轴承12各处较为平衡,从而提高较为稳定的气膜。
在本公开的一些实施例中,波箔还可以包括第三波箔,第三波箔可以包括一个或多个,可以在第一波箔122a和第二波箔122b之间设置第三波箔,或在第一波箔122a与安装座121之间设置第三波箔,还可以在第二波箔122b与顶箔123之间设置第三波箔。举例而言,第一波箔122a设于第二波箔122b和安装座121之间,第一波箔122a和第二波箔122b之间、第一波箔122a与安装座121之间和/或第二波箔122b与顶箔123之间设有第三波箔。
如图2和图6,在本公开的一些实施例中,第一波箔122a和第二波箔122b均为一端与安装座121固定连接,并沿气浮轴承12的周向朝相同的方向延伸,且另一端与安装座121和顶箔123均可活动地配合。从而可以很好地控制多个波箔的变形方向,提高对顶箔123的支撑效果和稳定性,以提高气浮轴承12的承载能力。
可选地,安装座121的内侧面上设有定位槽1201,安装座121的内侧面为安装座121上与顶箔123相对的表面,第一波箔122a和第二波箔122b的端部插接固定于一个定位槽1201内。通过定位槽1201能够实现波箔稳定地安装于安装座121上,有效地提高波箔的稳定性。而通过同一个定位槽1201安装多个波箔,可以提高多个波箔的安装效率。
当然,本公开中,也可以将第一波箔122a和第二波箔122b的端部分别插接不同的定位槽1201内。这样,能够降低多个波箔之间的相互干扰,实现对波箔变形方式的控制,提高气浮轴承12的稳定性和载荷能力。
其中,可以在第一波箔122a和第二波箔122b的一端设置沿第一方向朝向安装座121延伸的连接片,通过连接片插接到定位槽1201内,实现对波箔的安装。
另外,为了进一步地提高波箔安装的稳定性,本公开中可以设置定位销1203来对波箔的固定,也就是说利用定位销1203来定位前述的连接片。如图2和图6,在本公开的一些实施例中,安装座121的内周面上设有定位槽1201,定位槽1201的内侧壁上设有定位缺口1202,安装座121上设有嵌入定位缺口1202的定位销1203,定位销1203配置为定位波箔。从而可以提高顶箔123和波箔的安装效率和稳定性。
本公开中也可以设置定位槽1201来定位顶箔123,同样地,可以在顶箔123的一端设置沿第一方向朝向安装座121延伸的连接片,通过连接片插接到定位槽1201内,实现对顶箔123的安装。波箔的一端和顶箔123的一端与均安装座121固定连接,且顶箔123与波箔沿气浮轴承12的周向朝相反的方向延伸。另外,本公开的波箔可以包括多层,以两层波箔为例,可以将两层波箔的活动端均沿气浮轴承12的周向朝相同的方向延伸,也可以将两层波箔的活动端分别沿气浮轴承12的周向朝相反的方向延伸。
本公开实施例的气浮轴承12可以为轴向气浮轴承12a或径向气浮轴承12b。
其中,以轴向气浮轴承12a为例,安装座121、波箔以及顶箔123沿轴向层叠布置。
另外,以径向气浮轴承12b为例,安装座121、波箔以及顶箔123沿径向由外到内套接,在径向气浮轴承12b的使用过程中,转轴可以套接于顶箔123内侧,转轴在转动过程中,会迫使顶箔123朝向安装座121发生位移,而在转轴与顶箔123之间形成气膜,而利用波箔的支撑作用,能够实现转轴与顶箔123之间气膜的动态平衡,从而提高转轴转动过程中的稳定性。
本公开还提供了一种转子总成10,根据本公开实施例的转子总成10包括转子11以及前述实施例中的气浮轴承12。通过设置前述的气浮轴承12,能够提高转子总成10运行过程中的稳定性,并降低转子11转动过程中的阻尼。
其中转子总成10可以包括径向气浮轴承12b,径向气浮轴承12b套设于转子11的外周,径向气浮轴承12b为根据前述实施例所述的气浮轴承12,径向气浮轴承12b的安装座121、波箔和顶箔123沿转子11的径向由外到内依次层叠。在使用过程中,在转子总成10转动过程中,将会推动顶箔123朝向轴承座移动,并在顶箔123的表面上形成气膜,同时会促使顶箔123向外扩大,并抵压波箔,另外,波箔会对顶箔123提供支撑,以便于波箔与转轴之间具有适当的距离,以维持顶箔123与转轴之间气膜的稳定性。同时也能够维持转子11的稳定转动,降低转子11的径向窜动。
另外,转子总成10还可以包括轴向气浮轴承12a,轴向气浮轴承12a与转子11配合,轴向气浮轴承12a为根据前述实施例所述的气浮轴承12,轴向气浮轴承12a的安装座121、波箔和顶箔123沿转子11的轴向依次层叠。在使用过程中,在转子总成10转动过程中,将会推动顶箔123朝向轴承座移动,并在顶箔123的表面上形成气膜,顶箔123抵压波箔,另外,波箔会对顶箔123提供支撑,以便于波箔与转轴之间具有适当的距离,以维持顶箔123与转轴之间气膜的稳定性。
本公开还提供了一种压缩机,该压缩机包括了前述的气浮轴承12。
本公开还提供了一种压缩机,该压缩机包括前述的转子总成10。
本公开还提供了一种暖通设备,该暖通设备包括前述的气浮轴承12。
本公开还提供了一种暖通设备,该暖通设备包括前述的转子总成10。
本公开还提供了一种暖通设备,该暖通设备包括前述的压缩机。
本公开提供了一种气浮轴承12以及该气浮轴承12的转子总成10、压缩机和暖通设备,气浮轴承12的第一波箔122a的第一波纹段1221a和第二波箔122b的第二波纹段1221b的波峰之间具有间隙;在轻载时仅第一波箔122a和第二波箔122b中的一个进行支撑工作,此时单层波箔支撑波箔容易变形,结构阻尼高,能很好的消散转子11振动带来的能量,确 保转子11的稳定性;在重载或遭受冲击时,第二波纹段1221b和第一波纹段1221a被压低至的波高一致,此时由第一波纹段1221a和第二波纹段1221b共同支撑,此时能实现大的支撑刚度,保证波箔不会被压塌和发生不可逆变形,并且能提高转子11的临界转速,保证转子11高速运行的稳定性和抗冲击能力。
为了降低气浮轴承12的气体泄漏,以及实现气浮轴承12支撑刚度在轴向上的合理布局,本公开中的第一波箔122a或第二波箔122b设为沿第三方向分段设计,如图7所示,将箔片沿第三方向分为若干段,其中两边的两段宽,中间的若干段短,并且中间若干段均匀分布,该结构实现了中间若干段的波箔刚度小,两侧波箔刚度大,实现轴向变刚度,在气浮轴承12工作时,两侧的箔片变形量相对于中间的变形量小,能减小气体从两端的泄漏,从而提高箔片中间的气膜压力,从而提高径向箔片气体动压轴承的整体承载力。
本公开中顶箔123的两端均为整体结构,没有被分割成段,同时可以保证波箔的整体性。
本公开中可以采用多层顶箔123(例如双层),提高顶箔123的刚度,减小顶箔123在径向变形量的差异(传统顶箔123在两个波高之间的变形量大,容易向外凹陷),传统单层顶箔123方案导致两波高之间的顶箔123与转子11之间的间隙变大,影响楔形挤压效果,导致局部压力较小,而整体承载力低,本公开中的多层顶箔123有效解决了该问题,通过减小顶箔123在波峰和波谷位置变形量之间的差异从而提高了箔片整体的承载力。
本公开中通过增加波箔的数量,成倍的增加了片与片之间的摩擦面积,从而极大的提高了气浮轴承12的摩擦阻尼,提高了轴承的稳定性。
本公开提出了一种气浮轴承12,该气浮轴承12具有整周式结构,且轴向变刚度,具有非等高双波箔、双顶箔123等,该气浮轴承12包括安装座121、第一波箔122a、第二波箔122b、多层顶箔123、定位销1203等零件组成。安装座121如图1所示,是一个精加工的轴承套,其上方开有两道定位槽1201和定位缺口1202,用于固定波箔和顶箔123。
本公开中的波箔的材料可以为铍青铜、镍基合金、高强度不锈钢等箔片,将长条形箔片,进行线割、或激光切割进行轴向分段,线割时将箔片中间分成若干段,两侧箔片宽,中间若干段箔片窄,并且箔片的两端分别留有一段未被切割,保证箔片的整体性,以及后续成型后方便安装,分别将线割好的箔片压制波箔,其中第一波箔122a和第二波箔122b中的一个可以具有拱形波结构、另一个可以具有波浪形结构。本公开的气浮轴承12可以为轴向气浮轴承12a,也可以为径向气浮轴承12b,对于径向气浮轴承12b,可以分别将两片长条形的波箔卷成圆环。顶箔123可以为铍青铜、镍基合金、高强度不锈钢等箔片,其中顶箔123内壁喷涂有耐磨自润滑材料,其材料可以有二硫化钼、聚四氟乙烯、PM304、PS304等。
通过定位槽1201和定位销1203将波箔的一端固定在安装座121上,并且将顶箔123的一端通过定位槽1201和定位销1203的配合固定在安装座121上,其中,可以将多个波箔与安装座121固定并沿气浮轴承12的周向同向延伸,顶箔123可以包括层叠的两个,两个顶箔123中的一个层叠于多个波箔上,且一端固定连接安装座121、另一端沿与波箔的延伸方向相反的方向延伸,两个顶箔123中的另一个的一端固定连接安装座121,且另一端沿与波箔的延伸方向相同的方向延伸,该固定方式能保证波箔在安装座121内壁的贴合程度,避免因箔片贴合不好影响轴承性能和寿命。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种气浮轴承,包括依次层叠的安装座、波箔和顶箔,所述波箔包括第一波箔和第二波箔,所述第一波箔包括第一波纹段,所述第二波箔包括与所述第一波纹段层叠设置的第二波纹段,所述第二波纹段的波峰在层叠方向上与所述第一波纹段具有间隙,沿所述层叠方向,所述第二波纹段相较于所述第一波纹段更靠近所述顶箔。
  2. 根据权利要求1所述的气浮轴承,其中,所述第一波箔中的至少两个第一波纹段凸起高度不同;和/或
    所述第二波箔中的至少两个第二波纹段凸起高度不同。
  3. 根据权利要求2所述的气浮轴承,其中,所述至少两个第一波纹段沿所述气浮轴承的周向交错排布;
    和/或,所述至少两个第二波纹段沿所述气浮轴承的周向交错排布。
  4. 根据权利要求1所述的气浮轴承,其中,所述第二波纹段的波峰在层叠方向上与所述第一波纹段之间具有尺寸大于等于0.03毫米且小于等于0.12毫米的间隙。
  5. 根据权利要求1所述的气浮轴承,其中,所述第一波箔的多个所述第一波纹段与所述第二波箔中的一个第二波纹段层叠设置;
    或,所述第一波箔的一个所述第一波纹段与所述第二波箔的多个所述第二波纹段层叠设置;
    或,所述第一波箔的多个所述第一波纹段与所述第二波箔的多个所述第二波纹段层叠设置。
  6. 根据权利要求1所述的气浮轴承,其中,所述第一波箔与所述第二波箔的局部层叠设置;
    或,所述第二波箔与所述第一波箔的局部层叠设置;
    或,所述气浮轴承包括沿周向排布的多个所述第一波箔;
    或,所述气浮轴承包括沿周向排布的多个所述第二波箔。
  7. 根据权利要求1所述的气浮轴承,其中,所述第一波箔还包括第一连接段,所述第一连接段与所述第一波纹段沿所述气浮轴承的周向交错相接;
    和/或,所述第二波箔还包括第二连接段,所述第二连接段与所述第二波纹段沿所述气浮轴承的周向交错相接。
  8. 根据权利要求1所述的气浮轴承,其中,相互层叠的第一波纹段和所述第二波纹段在所述气浮轴承的周向上具有间隙或相互接触。
  9. 根据权利要求1所述的气浮轴承,其中,所述第一波箔包括沿横向排布且具有间隙的多段;或所述第二波箔包括沿横向排布且具有间隙的多段,
    其中,所述横向垂直于所述层叠方向以及所述气浮轴承的周向。
  10. 根据权利要求1-5中任一项所述的气浮轴承,其中,
    所述第一波箔中的至少两个第一波纹段厚度不同;和/或
    所述第二波箔中的至少两个第二波纹段厚度不同;和/或
    所述第一波纹段的厚度与所述第二波纹段的厚度不同。
  11. 根据权利要求1所述的气浮轴承,其中,所述第一波箔的第一波纹段和所述第二波箔的第二波纹段均朝向所述安装座凸起;或所述第一波箔的第一波纹段和所述第二波箔的第二波纹段均朝向所述顶箔凸起。
  12. 根据权利要求1所述的气浮轴承,其中,所述顶箔包括层叠布置的多层。
  13. 根据权利要求1所述的气浮轴承,其中,所述顶箔具有第一部分和第二部分,所述第一部分和所述第二部分具有不同的厚度。
  14. 根据权利要求1所述的气浮轴承,其中,所述波箔还包括至少一个第三波箔,所述第一波箔和所述第二波箔之间、所述第一波箔与所述安装座之间或所述第二波箔与所述顶箔之间设有所述第三波箔。
  15. 根据权利要求1所述的气浮轴承,其中,所述安装座的上设有定位槽,
    其中,所述第一波箔和所述第二波箔的一端均插接固定于一个所述定位槽内;或
    所述第一波箔和所述第二波箔的一端分别插接于不同的所述定位槽内。
  16. 根据权利要求15所述的气浮轴承,其中,所述定位槽的内侧壁上设有定位缺口,所述安装座上设有嵌入所述定位缺口的定位销,所述定位销配置为定位所述波箔。
  17. 根据权利要求1-16任一项所述的气浮轴承,其中,所述气浮轴承为径向气浮轴承或轴向气浮轴承。
  18. 一种转子总成,所述转子总成包括转子,所述转子总成还包括:
    径向气浮轴承,所述径向气浮轴承套设于所述转子的外周,所述径向气浮轴承为根据权利要求1-16中任一项所述的气浮轴承,所述径向气浮轴承的所述安装座、所述波箔和所述顶箔沿所述转子的径向由外到内依次层叠;和/或
    轴向气浮轴承,所述轴向气浮轴承与所述转子配合,所述轴向气浮轴承为根据权利要求1-16中任一项所述的气浮轴承,所述轴向气浮轴承的所述安装座、所述波箔和所述顶箔沿所述转子的轴向依次层叠。
  19. 一种压缩机,包括根据权利要求1-17中任一项所述的气浮轴承;或包括根据权利要求18所述的转子总成。
  20. 一种暖通设备,包括根据权利要求1-17中任一项所述的气浮轴承;或包括根据权利要求18所述的转子总成;或包括根据权利要求19所述的压缩机。
PCT/CN2023/095794 2022-07-30 2023-05-23 气浮轴承、转子总成、压缩机和暖通设备 WO2024027290A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210912666.9 2022-07-30
CN202210912666.9A CN115076221B (zh) 2022-07-30 2022-07-30 气浮轴承、转子总成、压缩机和暖通设备

Publications (1)

Publication Number Publication Date
WO2024027290A1 true WO2024027290A1 (zh) 2024-02-08

Family

ID=83242004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095794 WO2024027290A1 (zh) 2022-07-30 2023-05-23 气浮轴承、转子总成、压缩机和暖通设备

Country Status (2)

Country Link
CN (1) CN115076221B (zh)
WO (1) WO2024027290A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115076221B (zh) * 2022-07-30 2024-02-23 广东美的暖通设备有限公司 气浮轴承、转子总成、压缩机和暖通设备
CN117967690A (zh) * 2024-03-29 2024-05-03 珠海格力电器股份有限公司 一种轴向气浮动压轴承、电机及空压机

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5584582A (en) * 1994-12-15 1996-12-17 Air Products And Chemicals, Inc. Bump foil design for improved damping and load capacity from compliant foil gas bearings
US20060062500A1 (en) * 2004-09-22 2006-03-23 Ronald Struziak Bump foil hydrodynamic thrust bearing
CN112814998A (zh) * 2020-03-23 2021-05-18 珠海格力电器股份有限公司 气体轴承、压缩机及空调机组
CN113107963A (zh) * 2020-01-09 2021-07-13 珠海格力电器股份有限公司 径向气体轴承、压缩机和空调机组
CN114458687A (zh) * 2021-12-30 2022-05-10 珠海格力电器股份有限公司 弹性箔片动压气浮径向轴承、电机、空气压缩机
CN216951265U (zh) * 2022-01-14 2022-07-12 珠海格力电器股份有限公司 径向波箔、动压气浮径向轴承、电机、空气压缩机
CN115076220A (zh) * 2022-07-30 2022-09-20 广东美的暖通设备有限公司 气浮轴承、转子总成、压缩机和暖通设备
CN115076221A (zh) * 2022-07-30 2022-09-20 广东美的暖通设备有限公司 气浮轴承、转子总成、压缩机和暖通设备
CN217682809U (zh) * 2022-07-30 2022-10-28 广东美的暖通设备有限公司 气浮轴承、转子总成、压缩机和暖通设备
CN217682811U (zh) * 2022-07-30 2022-10-28 广东美的暖通设备有限公司 气浮轴承、转子总成、压缩机和暖通设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106763151A (zh) * 2017-01-05 2017-05-31 湖南大学 一种具有高承载能力的推力空气箔片轴承
CN215762786U (zh) * 2021-09-30 2022-02-08 珠海格力电器股份有限公司 气体止推轴承、压缩机和空调系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5584582A (en) * 1994-12-15 1996-12-17 Air Products And Chemicals, Inc. Bump foil design for improved damping and load capacity from compliant foil gas bearings
US20060062500A1 (en) * 2004-09-22 2006-03-23 Ronald Struziak Bump foil hydrodynamic thrust bearing
CN113107963A (zh) * 2020-01-09 2021-07-13 珠海格力电器股份有限公司 径向气体轴承、压缩机和空调机组
CN112814998A (zh) * 2020-03-23 2021-05-18 珠海格力电器股份有限公司 气体轴承、压缩机及空调机组
CN114458687A (zh) * 2021-12-30 2022-05-10 珠海格力电器股份有限公司 弹性箔片动压气浮径向轴承、电机、空气压缩机
CN216951265U (zh) * 2022-01-14 2022-07-12 珠海格力电器股份有限公司 径向波箔、动压气浮径向轴承、电机、空气压缩机
CN115076220A (zh) * 2022-07-30 2022-09-20 广东美的暖通设备有限公司 气浮轴承、转子总成、压缩机和暖通设备
CN115076221A (zh) * 2022-07-30 2022-09-20 广东美的暖通设备有限公司 气浮轴承、转子总成、压缩机和暖通设备
CN217682809U (zh) * 2022-07-30 2022-10-28 广东美的暖通设备有限公司 气浮轴承、转子总成、压缩机和暖通设备
CN217682811U (zh) * 2022-07-30 2022-10-28 广东美的暖通设备有限公司 气浮轴承、转子总成、压缩机和暖通设备

Also Published As

Publication number Publication date
CN115076221A (zh) 2022-09-20
CN115076221B (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
WO2024027290A1 (zh) 气浮轴承、转子总成、压缩机和暖通设备
RU2362921C2 (ru) Радиальный ленточный подшипник
WO2016184416A1 (zh) 一种超高速涡轮增压器
JP6113444B2 (ja) フォイル軸受
WO2023134256A1 (zh) 气体动压径向轴承、压缩机和发动机
CN111486171B (zh) 一种具有波纹箔片预紧力的高承载径向箔片轴承
JP5840423B2 (ja) フォイル軸受
CN215928134U (zh) 分离式空气箔片止推轴承
CN217682811U (zh) 气浮轴承、转子总成、压缩机和暖通设备
CN105179462B (zh) 一种波箔型空气动压轴承
CN217682809U (zh) 气浮轴承、转子总成、压缩机和暖通设备
CN217682813U (zh) 气浮轴承、转子总成、压缩机和暖通设备
CN217682810U (zh) 气浮轴承、转子总成、压缩机和暖通设备
CN212389648U (zh) 一种轴向止推箔片动压空气轴承
WO2024027289A1 (zh) 轴向轴承、压缩机和暖通设备
CN209908981U (zh) 一种弹性支撑组件及动压气体径向轴承
CN216951265U (zh) 径向波箔、动压气浮径向轴承、电机、空气压缩机
CN216788977U (zh) 气体动压径向轴承、压缩机和发动机
CN217682807U (zh) 气浮轴承、转子总成、压缩机和暖通设备
WO2020195488A1 (ja) スラストフォイル軸受、フォイル軸受ユニット、ターボ機械及びフォイル
CN217682808U (zh) 气浮轴承、转子总成、压缩机和暖通设备
CN217682815U (zh) 气浮轴承、转子总成、压缩机和暖通设备
CN220185601U (zh) 一种螺旋槽式动压气体止推箔片轴承
CN112943790A (zh) 一种免焊接空气动压止推轴承
CN217682812U (zh) 气浮轴承、转子总成、压缩机和暖通设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849000

Country of ref document: EP

Kind code of ref document: A1