WO2023134177A1 - 设有气封部件的燃气轮机 - Google Patents

设有气封部件的燃气轮机 Download PDF

Info

Publication number
WO2023134177A1
WO2023134177A1 PCT/CN2022/116629 CN2022116629W WO2023134177A1 WO 2023134177 A1 WO2023134177 A1 WO 2023134177A1 CN 2022116629 W CN2022116629 W CN 2022116629W WO 2023134177 A1 WO2023134177 A1 WO 2023134177A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
turbine
gas
seal component
hole
Prior art date
Application number
PCT/CN2022/116629
Other languages
English (en)
French (fr)
Inventor
靳普
Original Assignee
永旭腾风新能源动力科技(北京)有限公司
靳普科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 永旭腾风新能源动力科技(北京)有限公司, 靳普科技(北京)有限公司 filed Critical 永旭腾风新能源动力科技(北京)有限公司
Publication of WO2023134177A1 publication Critical patent/WO2023134177A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors

Definitions

  • the invention relates to a gas turbine equipped with a gas sealing component, which belongs to the technical field of gas turbines.
  • a gas turbine equipped with a gas seal component including a rotating shaft, a compressor, a turbine and a combustion chamber, the compressor and the turbine are sleeved and installed on the rotating shaft; the exhaust end of the compressor communicates with the inlet end of the combustion chamber; the combustion chamber The outlet end is provided with a guide vane assembly for introducing the high-temperature gas discharged from the outlet end of the combustion chamber into the turbine; an air seal component is arranged between the guide vane assembly and the turbine, and the air seal component is generally ring-shaped and arranged around the rotating shaft. It is airtightly connected with the guide vane assembly, and an air seal effect can be formed between the air seal part and the turbine;
  • the air seal component is provided with a first air hole, the air inlet of the first air hole is connected to the air source, the air outlet of the first air hole faces the turbine, and the gas from the air source is sprayed to the corresponding receiving surface on the turbine through the first air hole , to form an air curtain seal around the rotating shaft between the air seal component and the turbine.
  • the first air hole can be a straight hole or a stepped hole, the small end of the stepped hole faces the turbine, and the stepped hole can further increase the speed of the incoming airflow, even reaching or exceeding the speed of sound, so as to further increase the pressure The barrier effect of the air curtain.
  • the receiving surface of the turbine facing the first air hole has a groove corresponding to the jet airflow of the first air hole, and the airflow jetted from the first air hole passes through the groove and then flows back toward the air sealing component, which can enhance the effect of the pressure air curtain.
  • the corresponding toothed portion of the turbine has a tooth structure matching the toothed portion, so as to improve the air sealing effect of the toothed portion.
  • the side of the turbine facing the air-sealing component has a groove, and part of the air-sealing component extends into the groove.
  • the cross-sectional area of the second air hole is larger than that of the first air hole, so as to provide a larger air flow to form an axial thrust for the turbine.
  • the number of the second air holes may be more than two, and each second air hole is arranged around the rotation axis; it may be arranged in a single circle or in multiple circles.
  • a plurality of first air holes are arranged in more than two circles around the rotating shaft, and at least part or all of the second air holes are interposed between two circles of the first air holes.
  • the gas sprayed by the component to the turbine blades enters the gas turbine.
  • the gas in the second air hole can be sealed within the air curtain formed by the first air hole as far as possible, so as to prevent the pressure gas ejected from the second air hole from being too fast. Leakage, so that the axial thrust of sufficient strength can be generated on the turbine.
  • the air source for supplying air to the second air holes may be an external air pump or an air compressor.
  • the second support of the guide vane assembly is disposed adjacent to or connected to the combustion chamber, and the first support is disposed away from the combustion chamber.
  • the thrust bearing and radial bearing are selected from gas bearings, liquid film bearings or ball bearings.
  • the gas bearing may be a hydrostatic bearing, a hydrodynamic bearing and/or a hydrostatic and hydrostatic hybrid bearing.
  • the air flow velocity ejected from the first air hole is relatively high (especially after throttling through the stepped hole), and the air from the turbine is guided through the high-speed air flow (in fact, the cavity near the rotating shaft will also have a certain air flow, part of which comes from The air outlet end of the gas bearing, the other part comes from the cooling air drawn from the outlet of the compressor), so that the airflow velocity on both sides of the air curtain increases and the pressure decreases, so as to minimize the pressure difference on both sides of the air curtain and achieve a good air seal Effect.
  • the gas sealing part may have a toothed part to further enhance the gas sealing effect.
  • Figure 2 Enlarged schematic view of region Q in Figure 1.
  • Fig. 5 Schematic diagram of the structure of the gas sealing component provided with a toothed part and a second air hole.
  • 100 rotating shaft; 200, compressor; 300, turbine; 400, combustion chamber; 500, bearing assembly; 600, bearing seat assembly; 700, guide vane assembly; 710, first support; 720, blade group; 730 , the second support; 800, the air seal component; 210, the first air hole; 220, the toothed part; 230, the second air hole.
  • a gas turbine provided with a gas seal component, comprising a rotating shaft 100, a compressor 200, a turbine 300 and a combustion chamber 400, as shown in Figure 1, wherein the compressor 200 and the turbine 300 are sleeved on the rotating shaft 100;
  • the exhaust end of the combustion chamber 200 communicates with the inlet end of the combustion chamber 500;
  • the combustion chamber 400 is arranged around the rotating shaft 100, and the outlet end of the combustion chamber 400 is provided with a guide vane assembly 700 for introducing the high-temperature gas discharged from the outlet end of the combustion chamber 400 into the turbine 300;
  • An air seal component 800 is provided between the guide vane assembly 700 and the turbine 300.
  • the air seal component 800 is generally annular and arranged around the rotating shaft 100.
  • the air seal component and the guide vane assembly 700 are airtightly connected. An air seal effect can be formed between them.
  • It can also include a bearing assembly 500 and a bearing seat assembly 600 sleeved on the rotating shaft 100 , the bearing assembly 500 is located in the bearing seat assembly 600 ; the combustion chamber 400 can be installed on the bearing seat assembly 600 corresponding to the end of the turbine 300 .
  • the gas flow rate ejected from the first air hole 210 is relatively high (especially after throttling through the stepped hole), and the gas from the turbine 300 is guided through the high-speed air flow (actually, the cavity near the rotating shaft 100 also has a certain amount of air flow, its One part comes from the gas outlet end of the gas bearing, and the other part comes from the cooling air drawn from the outlet of the compressor), so that the air velocity on both sides of the air curtain increases and the pressure decreases, so as to minimize the pressure difference on both sides of the air curtain and achieve good air seal effect.
  • the number of the first air holes 210 may be one, or more than two; when the number is more than two, each first air hole 210 may be arranged around the axis, and may be evenly arranged. It can be set as a single turn as shown in Figure 2, or it can be set in multiple turns.
  • the air source for supplying air to the first air hole 210 may be an external air pump, or the air compressor 200, or an air supply device of the air bearing assembly.
  • the side of the air sealing component 800 facing the turbine 300 may have a toothed portion 220 to form a tooth seal with the turbine to further enhance the air sealing effect, as shown in FIG. 3 .
  • the tooth-shaped portion 220 may be a high-low tooth structure, a flat tooth structure, an oblique flat tooth structure, a side tooth structure, and the like.
  • the turbine 300 may have a convex edge corresponding to the tooth-shaped portion 220 , and the convex edge has a protrusion or a tooth structure matching the tooth-shaped portion 220 to improve the air-sealing effect of the tooth-shaped portion 220 .
  • the side of the turbine 300 facing the air sealing component 800 has a groove, and part of the air sealing component 800 extends into the groove.
  • the guide vane assembly 700 includes a first support 710 , a second support 730 and a vane set 720 with an axial air passage between the two supports, between the air seal component 800 and the first support 710 Airtight connection.
  • the turbine 300 may rotate relative to the combustor 400 and the vane assembly 700 .
  • the second support 730 of the guide vane assembly is disposed adjacent to or connected to the combustion chamber 400 , and the first support 710 is disposed away from the combustion chamber 400 .
  • the bearing assembly 500 includes a thrust bearing and a radial bearing, the thrust bearing and the radial bearing are located between the compressor 200 and the turbine 300; there is a predetermined radial clearance between the radial bearing and the rotating shaft; the thrust bearing and the There is a predetermined axial gap between the thrust discs.
  • the gas bearing When the gas bearing is a dynamic pressure bearing, it has the following structure: including the bearing body, the bearing body and the rotating shaft have a predetermined radial clearance in the radial direction (when the bearing is a radial bearing), the inner diameter surface of the bearing body or the mounting bearing body of the rotating shaft A dynamic pressure generating groove is provided at the position; or: the bearing body and the thrust plate are installed opposite to each other in the axial direction of the rotating shaft and have a predetermined axial clearance (when the bearing is a thrust bearing), and the bearing body faces the end surface of the thrust plate or the thrust plate A dynamic pressure generating groove is provided on the end surface facing the bearing body.
  • a gas turbine provided with a gas seal component, comprising a rotating shaft 100, a compressor 200, a turbine 300 and a combustion chamber 400, as shown in Figure 1, wherein the compressor 200 and the turbine 300 are sleeved on the rotating shaft 100;
  • the exhaust end of the combustion chamber 200 communicates with the inlet end of the combustion chamber 500;
  • the combustion chamber 400 is arranged around the rotating shaft 100, and the outlet end of the combustion chamber 400 is provided with a guide vane assembly 700 for introducing the high-temperature gas discharged from the outlet end of the combustion chamber 400 into the turbine 300;
  • An air seal component 800 is provided between the guide vane assembly 700 and the turbine 300.
  • the air seal component 800 is generally annular and arranged around the rotating shaft 100.
  • the air seal component and the guide vane assembly 700 are airtightly connected. An air seal effect can be formed between them.
  • It can also include a bearing assembly 500 and a bearing seat assembly 600 sleeved on the rotating shaft 100 , the bearing assembly 500 is located in the bearing seat assembly 600 ; the combustion chamber 400 can be installed on the bearing seat assembly 600 corresponding to the end of the turbine 300 .
  • the air seal component 800 is provided with a first air hole 210. As shown in FIG.
  • the first air hole 210 sprays to the corresponding receiving surface on the turbine 300 to form an air curtain seal around the rotating shaft between the air sealing component and the turbine. All the gas sprayed from the first air holes 210 to the turbine 300 can form a pressure air curtain, which can prevent the gas sprayed from the guide vane assembly 700 to the blades of the turbine 300 from entering the interior of the gas turbine.
  • the gas flow rate ejected from the first air hole 210 is relatively high (especially after throttling through the stepped hole), and the gas from the turbine 300 is guided through the high-speed air flow (actually, the cavity near the rotating shaft 100 also has a certain amount of air flow, its One part comes from the gas outlet end of the gas bearing, and the other part comes from the cooling air drawn from the outlet of the compressor), so that the air velocity on both sides of the air curtain increases and the pressure decreases, so as to minimize the pressure difference on both sides of the air curtain and achieve good air seal effect.
  • the number of the first air holes 210 may be one, or more than two; when the number is more than two, each first air hole 210 may be arranged around the axis, and may be evenly arranged. It can be set as a single turn as shown in Figure 2, or it can be set in multiple turns.
  • the first air hole 210 can be a straight through hole, or a stepped hole with a cross-sectional area from large to small (as shown in Figure 2, from the air inlet to the air outlet, the cross-sectional area is from large to small), the aperture of the stepped hole
  • the small end faces the turbine, and the stepped hole can further increase the speed of the incoming airflow, even reaching or exceeding the speed of sound, so as to further enhance the barrier effect of the pressure air curtain.
  • the air source for supplying air to the first air hole 210 may be an external air pump, or the air compressor 200, or an air supply device of the air bearing assembly.
  • the receiving surface of the turbine 300 facing the first air hole 210 has a groove corresponding to the jet airflow of the first air hole 210, the airflow jetted by the first air hole 210 passes through the groove and then flows back toward the air sealing component 800, which can enhance the pressure air curtain Effect.
  • the air seal component 800 is also provided with a second air hole 230. As shown in FIG.
  • the pressurized gas can be sprayed to the turbine 300 through the second air hole 230 to form an axial thrust on the turbine 300, which is beneficial to balance the axial force and make the gas turbine run stably.
  • the cross-sectional area of the second air hole 230 is larger than the cross-sectional area of the first air hole 210 so as to provide a larger air flow to form an axial thrust for the turbine 300 .
  • the number of the second air holes 230 can be one or more than two; when there are more than two, the second air holes 230 can be arranged around the axis; they can be arranged in a single circle or in multiple circles.
  • the plurality of first air holes 210 are arranged in more than two circles around the rotating shaft 100 , and at least part or all of the second air holes 230 are interposed between two circles of the first air holes 210 , as shown in FIG. 4 .
  • the first air hole 210 can prevent the gas sprayed from the guide vane assembly 700 to the blades of the turbine 300 from entering the interior of the gas turbine; In order to prevent the pressure gas ejected from the second air hole 230 from leaking too quickly, so that the turbine 300 can generate an axial thrust of sufficient strength.
  • the air source for supplying air to the second air hole 230 may be an external air pump or the air compressor 200 .
  • the turbine 300 may have a convex edge corresponding to the tooth-shaped portion 220 , and the convex edge has a protrusion or a tooth structure matching the tooth-shaped portion 220 to improve the air-sealing effect of the tooth-shaped portion 220 .
  • the side of the turbine 300 facing the air sealing component 800 has a groove, and part of the air sealing component 800 extends into the groove.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种设有气封部件(200)的燃气轮机,包括转轴(100)、压气机(800)、涡轮(300)和燃烧室(400),压气机(800)和涡轮(300)均套设安装于转轴(100)上;压气机(800)的排气端与燃烧室(400)的入口端连通;燃烧室(400)的出口端设有导叶组件(700);导叶组件(700)与涡轮(300)之间设有气封部件(200),气封部件(200)与导叶组件(700)气密连接;气封部件(200)上设有第一气孔(210),第一气孔(210)的进气口与气源连接,第一气孔(210)的出气口朝向涡轮(300),来自气源的气通过第一气孔(210)喷向涡轮(300)上对应的接受面,以在气封部件(200)与涡轮(300)之间围绕转轴(100)形成气帘密封。第一气孔(210)可以是阶梯孔,阶梯孔的孔径小端朝向涡轮(300)。该燃气轮机通过在导叶组件(700)和涡轮(300)之间设置气封部件(200),以阻隔燃烧室高温燃气进入到燃气轮机内部,有利于燃气轮机的稳定运行。

Description

设有气封部件的燃气轮机 技术领域
本发明涉及一种设有气封部件的燃气轮机,属于燃气轮机技术领域。
背景技术
燃气轮机以连续流动的气体为工质带动叶轮高速旋转,将燃料的能量转变为有用功,是一种旋转叶轮式热力发动机。其主要包括压气机、燃烧室、涡轮三大部件:压气机从外界大气环境吸入空气,并压缩使之增压,同时空气温度也相应提高;压缩空气被压送到燃烧室与喷入的燃料混合燃烧生成高温高压的气体;然后再进入到涡轮中膨胀做功,推动涡轮带动压气机和外负荷转子高速旋转,可实现气体或液体燃料的化学能部分转化为机械功和热能,并可通过连接发电机输出电能。
涡轮是转子部件,而涡轮对应的燃烧室出口部分是定子部件,涡轮与燃烧室出口部分之间需设有间隙以便于相对转动,然而该间隙的存在使得燃烧室出口处的高温气体(温度可高达900℃)容易从间隙进入到燃气轮机内部,影响燃机稳定运行。
发明内容
针对上述现有技术,本发明提供了一种设有气封部件的燃气轮机。本发明通过在燃烧室出口处与涡轮之间设置气封部件,以阻隔燃烧室高温燃气进入到燃气轮机内部。
本发明是通过以下技术方案实现的:
一种设有气封部件的燃气轮机,包括转轴、压气机、涡轮和燃烧室,压气机和涡轮均套设安装于转轴上;压气机的排气端与燃烧室的入口端连通;燃烧室的出口端设有用于将燃烧室出口端排出的高温气体导入涡轮的导叶组件;所述导叶组件与涡轮之间设有气封部件,气封部件大体呈环形并围绕转轴设置,气封部件与导叶组件气密连接,气封部件与涡轮之间可形成气封效果;
所述气封部件上设有第一气孔,第一气孔的进气口与气源连接,第一气孔的出气口朝向涡轮,来自气源的气通过第一气孔喷向涡轮上对应的接受面,以在气封部件与涡轮之间围绕转轴形成气帘密封。
进一步地,所述第一气孔的数量可以是两个以上,各第一气孔绕转轴设置,可以均匀设置;可以单圈设置,也可以多圈设置。
进一步地,所述第一气孔可以是直通孔,也可以是阶梯孔,阶梯孔的孔径小端朝向涡轮,阶梯孔可使进入的气流速度进一步增大,甚至达到或超过音速,以进一步增强压力气幕的阻 隔效果。
进一步地,所述为第一气孔供气的气源,可以是外部气泵,也可以是压气机。当所述燃气轮机还包括气体轴承组件时,所述气源可以为气体轴承组件的供气装置。
进一步地,所述涡轮朝向第一气孔的接受面具有对应第一气孔喷射气流的凹槽,第一气孔喷射的气流经由该凹槽后朝向气封部件反向回流,可增强压力气幕效果。
进一步地,所述气封部件朝向涡轮3的一侧可以具有齿形部,与涡轮之间形成齿密封,以进一步增强气封效果。所述齿形部可以是高低齿结构、平齿结构、斜平齿结构、侧齿结构等。
进一步地,所述涡轮对应齿形部具有配合齿形部的齿结构,以提高齿形部的气封效果。更进一步地,涡轮朝向气封部件的一侧具有凹槽,部分气封部件延伸到该凹槽内。
进一步地,所述气封部件上还可以设有第二气孔,第二气孔的进气口与压气机或外部供气装置连接,第二气孔的出气口朝向涡轮,压力气可通过第二气孔喷向涡轮,对涡轮形成轴向推力,有利于平衡轴向力,使燃气轮机稳定运行。
进一步地,所述第二气孔的截面积大于第一气孔的截面积,以便于能够提供更大的气流量对涡轮形成轴向推力。
进一步地,所述第二气孔的数量可以是两个以上,各第二气孔绕转轴排布;可以单圈设置,也可以多圈设置。
进一步地,多个第一气孔围绕转轴呈两圈以上排布,至少部分或全部的第二气孔夹设在其中两圈第一气孔之间,此时,第一气孔一方面可以阻挡从导叶组件喷向涡轮叶片的燃气进入到燃气轮机内部,另一方面还可以尽量将第二气孔的气封闭在第一气孔形成的气幕范围内,以尽量防止第二气孔喷出的压力气的过快泄露,使得对涡轮能够产生足够强度的轴向推力。
进一步地,所述为第二气孔供气的气源,可以是外部气泵,也可以是压气机。
进一步地,所述导叶组件,包括第一支座、第二支座和位于两个支座之间的具有轴向气道的叶片组,气封部件与第一支座之间气密连接。燃气轮机运行过程中,涡轮可相对于燃烧室和导叶组件转动。
更进一步地,所述导叶组件的第二支座临近燃烧室设置或与燃烧室连接,第一支座远离燃烧室设置。
进一步地,所述轴承组件包括至少一个推力轴承和至少一个径向轴承。所述径向轴承与转轴之间具有预定的径向间隙;所述推力轴承与推力盘之间具有预定的轴向间隙。
所述推力轴承、径向轴承,选自气体轴承、液膜轴承或滚珠轴承。所述气体轴承可以是 静压轴承、动压轴承和/或动静压混合轴承。
本发明的设有气封部件的燃气轮机,通过在燃烧室出口处与涡轮之间设置气封部件,以阻隔燃烧室高温燃气进入到燃气轮机内部。工作原理为:来自气源的气通过第一气孔喷向涡轮,形成压力气幕,从而可阻挡从导叶组件喷向涡轮叶片的燃气进入到燃气轮机内部。第一气孔喷出的气流速较高(尤其是经由阶梯孔节流之后),来自涡轮的气经由该高速气流引导(实际上,转轴附近的腔体也会有一定的气流,其一部分来自于气体轴承的出气端,另一部分来自于压气机出口引来的冷却气),使得气幕两侧的气流速度提高而压力降低,以尽量减小气幕两侧的压力差,实现良好的气封效果。气封部件可以具有齿形部,以进一步增强气封效果。
本发明的设有气封部件的燃气轮机,还可以在气封部件上设有第二气孔,当燃气轮机的涡轮出气口处压力大于压气机的进气口压力时(例如用于涡喷发动机的情况下;或者涡轮端还设置有自由涡轮负载的情况下),转轴、压气机和涡轮等构成的转子受到朝向压气机进气口的轴向力,第二气孔的气流推力能够提供朝向涡轮出气口的推力补偿,以尽量使上述转子在轴向上保持平衡和稳定,利于燃气轮机稳定运行。
本发明使用的各种术语和短语具有本领域技术人员公知的一般含义。提及的术语和短语如有与公知含义不一致的,以本发明所表述的含义为准。
附图说明
图1:设有气封部件的燃气轮机的结构示意图。
图2:图1中区域Q的放大示意图。
图3:气封部件设有齿形部的结构示意图。
图4:气封部件设有第二气孔的结构示意图。
图5:气封部件设有齿形部、第二气孔的结构示意图。
其中,100、转轴;200、压气机;300、涡轮;400、燃烧室;500、轴承组件;600、轴承座组件;700、导叶组件;710、第一支座;720、叶片组;730、第二支座;800、气封部件;210、第一气孔;220、齿形部;230、第二气孔。
具体实施方式
下面结合实施例对本发明作进一步的说明。然而,本发明的范围并不限于下述实施例。本领域的专业人员能够理解,在不背离本发明的精神和范围的前提下,可以对本发明进行各种变化和修饰。
实施例1 设有气封部件的燃气轮机
一种设有气封部件的燃气轮机,包括转轴100、压气机200、涡轮300和燃烧室400,如 图1所示,其中,压气机200和涡轮300均套设安装于转轴100上;压气机200的排气端与燃烧室500的入口端连通;燃烧室400环绕转轴100设置,燃烧室400的出口端设有用于将燃烧室400出口端排出的高温气体导入涡轮300的导叶组件700;所述导叶组件700与涡轮300之间设有气封部件800,气封部件800大体呈环形并围绕转轴100设置,气封部件与导叶组件700气密连接,气封部件与涡轮300之间可形成气封效果。
还可包括套设安装于转轴100上的轴承组件500和轴承座组件600,轴承组件500位于轴承座组件600内;燃烧室400可对应涡轮300端安装于轴承座组件600上。
所述气封部件800上设有第一气孔210,如图2所示,第一气孔210的进气口与气源连接,第一气孔210的出气口朝向涡轮300,来自气源的气可通过第一气孔210喷向涡轮300上对应的接受面,以在气封部件与涡轮之间围绕转轴形成气帘密封。所有第一气孔210喷至涡轮300的气能够形成压力气幕,能够阻挡从导叶组件700喷向涡轮300叶片的燃气进入到燃气轮机内部。第一气孔210喷出的气流速较高(尤其是经由阶梯孔节流之后),来自涡轮300的气经由该高速气流引导(实际上,转轴100附近的腔体也会有一定的气流,其一部分来自于气体轴承的出气端,另一部分来自于压气机出口引来的冷却气),使得气幕两侧的气流速度提高而压力降低,以尽量减小气幕两侧的压力差,实现良好的气封效果。
所述第一气孔210的数量可以是一个,也可以是两个以上;当数量为两个以上时,各第一气孔210可绕轴线设置,可以均匀设置。可以如图2所示的单圈设置,也可以多圈设置。
所述第一气孔210可以是直通孔,也可以是截面积从大到小的阶梯孔(如图2所示,从进气口到出气口,截面积从大到小),阶梯孔的孔径小端朝向涡轮,阶梯孔可使进入的气流速度进一步增大,甚至达到或超过音速,以进一步增强压力气幕的阻隔效果。
所述为第一气孔210供气的气源,可以是外部气泵,也可以是压气机200,也可以是气体轴承组件的供气装置。
所述涡轮300朝向第一气孔210的接受面具有对应第一气孔210喷射气流的凹槽,第一气孔210喷射的气流经由该凹槽后朝向气封部件800反向回流,可增强压力气幕效果。
所述气封部件800朝向涡轮300的一侧可以具有齿形部220,与涡轮之间形成齿密封,以进一步增强气封效果,如图3所示。齿形部220可以是高低齿结构、平齿结构、斜平齿结构、侧齿结构等。
所述涡轮300对应齿形部220可以具有凸沿,凸沿具有配合齿形部220的凸起或齿结构,以提高齿形部220的气封效果。具体地,涡轮300朝向气封部件800的一侧具有凹槽,部分气封部件800延伸到该凹槽内。
所述导叶组件700,包括第一支座710、第二支座730和位于两个支座之间的具有轴向气道的叶片组720,气封部件800与第一支座710之间气密连接。燃气轮机运行过程中,涡轮300可相对于燃烧室400和导叶组件700转动。
所述导叶组件的第二支座730临近燃烧室400设置或与燃烧室400连接,第一支座710远离燃烧室400设置。
所述轴承组件500包括推力轴承和径向轴承,推力轴承、径向轴承位于压气机200和涡轮300之间;所述径向轴承与转轴之间具有预定的径向间隙;所述推力轴承与推力盘之间具有预定的轴向间隙。
所述推力轴承、径向轴承,选自气体轴承、液膜轴承或滚珠轴承。所述气体轴承可以是静压轴承、动压轴承和/或动静压混合轴承。
所述转轴100、压气机200、涡轮300、燃烧室400和轴承座组件600整体安装于壳体内(图1中仅示出部分壳体)。
当气体轴承为静压轴承时,具有以下结构:包括由外向内嵌套设置的轴承本体和轴承套,轴承套与转轴在径向上具有预定的径向间隙(轴承为径向轴承时),或轴承套与推力盘在转轴的轴向上对置安装且具有预定的轴向间隙(轴承为推力轴承时);轴承套的外周面设有环形气腔,轴承套上设有贯通环形气腔与间隙(径向间隙或轴向间隙)的通孔;轴承本体上设有将环形气腔与外接气源连通的气孔;为便于加工且不影响间隙内的气体压力,所述通孔可以为变径孔,即通孔远离间隙一侧的直径大,靠近间隙一侧的直径小。
当气体轴承为动压轴承时,具有以下结构:包括轴承本体,轴承本体与转轴在径向上具有预定的径向间隙(轴承为径向轴承时),轴承本体的内径面或转轴的安装轴承本体的部位设置有动压发生槽;或:轴承本体与推力盘在转轴的轴向上对置安装且具有预定的轴向间隙(轴承为推力轴承时),轴承本体朝向推力盘的端面或推力盘朝向轴承本体的端面设置有动压发生槽。
当气体轴承为动静压混合轴承时,其结构同时具有静压轴承和动压轴承的特征。
实施例2 设有气封部件的燃气轮机
一种设有气封部件的燃气轮机,包括转轴100、压气机200、涡轮300和燃烧室400,如图1所示,其中,压气机200和涡轮300均套设安装于转轴100上;压气机200的排气端与燃烧室500的入口端连通;燃烧室400环绕转轴100设置,燃烧室400的出口端设有用于将燃烧室400出口端排出的高温气体导入涡轮300的导叶组件700;所述导叶组件700与涡轮300之间设有气封部件800,气封部件800大体呈环形并围绕转轴100设置,气封部件与导叶 组件700气密连接,气封部件与涡轮300之间可形成气封效果。
还可包括套设安装于转轴100上的轴承组件500和轴承座组件600,轴承组件500位于轴承座组件600内;燃烧室400可对应涡轮300端安装于轴承座组件600上。
所述气封部件800上设有第一气孔210,如图2所示,第一气孔210的进气口与气源连接,第一气孔210的出气口朝向涡轮300,来自气源的气可通过第一气孔210喷向涡轮300上对应的接受面,以在气封部件与涡轮之间围绕转轴形成气帘密封。所有第一气孔210喷至涡轮300的气能够形成压力气幕,能够阻挡从导叶组件700喷向涡轮300叶片的燃气进入到燃气轮机内部。第一气孔210喷出的气流速较高(尤其是经由阶梯孔节流之后),来自涡轮300的气经由该高速气流引导(实际上,转轴100附近的腔体也会有一定的气流,其一部分来自于气体轴承的出气端,另一部分来自于压气机出口引来的冷却气),使得气幕两侧的气流速度提高而压力降低,以尽量减小气幕两侧的压力差,实现良好的气封效果。
所述第一气孔210的数量可以是一个,也可以是两个以上;当数量为两个以上时,各第一气孔210可绕轴线设置,可以均匀设置。可以如图2所示的单圈设置,也可以多圈设置。
所述第一气孔210可以是直通孔,也可以是截面积从大到小的阶梯孔(如图2所示,从进气口到出气口,截面积从大到小),阶梯孔的孔径小端朝向涡轮,阶梯孔可使进入的气流速度进一步增大,甚至达到或超过音速,以进一步增强压力气幕的阻隔效果。
所述为第一气孔210供气的气源,可以是外部气泵,也可以是压气机200,也可以是气体轴承组件的供气装置。
所述涡轮300朝向第一气孔210的接受面具有对应第一气孔210喷射气流的凹槽,第一气孔210喷射的气流经由该凹槽后朝向气封部件800反向回流,可增强压力气幕效果。
所述气封部件800还设有第二气孔230,如图4所示,第二气孔230的进气口与压气机200或外部供气装置连接,第二气孔230的出气口朝向涡轮300,压力气可通过第二气孔230喷向涡轮300,对涡轮300形成轴向推力,有利于平衡轴向力,使燃气轮机稳定运行。
所述第二气孔230的截面积大于第一气孔210的截面积,以便于能够提供更大的气流量对涡轮300形成轴向推力。
当燃气轮机的涡轮300出气口处压力大于压气机200的进气口压力时(例如用于涡喷发动机的情况下;或者涡轮端还设置有自由涡轮负载的情况下),转轴100、压气机200和涡轮300等构成的转子受到朝向压气机200进气口的轴向力,第二气孔230的气流推力能够提供朝向涡轮300出气口的推力补偿,以尽量使上述转子在轴向上保持平衡和稳定,利于燃气轮机稳定运行。
所述第二气孔230的数量可以是一个,也可以是两个以上;当为两个以上时,各第二气孔230可以绕轴线排布;可以单圈设置,也可以多圈设置。
所述多个第一气孔210围绕转轴100呈两圈以上排布,至少部分或全部的第二气孔230夹设在其中两圈第一气孔210之间,如图4所示。此时,第一气孔210一方面可以阻挡从导叶组件700喷向涡轮300叶片的燃气进入到燃气轮机内部,另一方面还可以尽量将第二气孔230的气封闭在第一气孔210形成的气幕范围内,以尽量防止第二气孔230喷出的压力气的过快泄露,使得对涡轮300能够产生足够强度的轴向推力。
所述为第二气孔230供气的气源,可以是外部气泵,也可以是压气机200。
所述气封部件800朝向涡轮300的一侧可以具有齿形部220,以进一步增强气封效果,如图5所示。齿形部220可以是高低齿结构、平齿结构、斜平齿结构、侧齿结构等。
所述涡轮300对应齿形部220可以具有凸沿,凸沿具有配合齿形部220的凸起或齿结构,以提高齿形部220的气封效果。具体地,涡轮300朝向气封部件800的一侧具有凹槽,部分气封部件800延伸到该凹槽内。
上述虽然结合实施例对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 一种设有气封部件的燃气轮机,其特征在于:包括转轴、压气机、涡轮和燃烧室,压气机和涡轮均套设安装于转轴上;压气机的排气端与燃烧室的入口端连通;燃烧室的出口端设有导叶组件;所述导叶组件与涡轮之间设有气封部件,气封部件与导叶组件气密连接;
    所述气封部件上设有第一气孔,第一气孔的进气口与气源连接,第一气孔的出气口朝向涡轮,来自气源的气通过第一气孔喷向涡轮上对应的接受面,以在气封部件与涡轮之间围绕转轴形成气帘密封。
  2. 根据权利要求1所述的设有气封部件的燃气轮机,其特征在于:所述第一气孔的数量是两个以上,各所述第一气孔绕转轴设置。
  3. 根据权利要求1所述的设有气封部件的燃气轮机,其特征在于:所述第一气孔是阶梯孔,阶梯孔的孔径小端朝向所述涡轮。
  4. 根据权利要求1所述的设有气封部件的燃气轮机,其特征在于:所述气源是压气机;
    或:当所述燃气轮机还包括气体轴承组件时,所述气源为气体轴承组件的供气装置。
  5. 根据权利要求1所述的设有气封部件的燃气轮机,其特征在于:所述涡轮朝向第一气孔的接受面具有对应第一气孔喷射气流的凹槽。
  6. 根据权利要求1所述的设有气封部件的燃气轮机,其特征在于:所述气封部件朝向涡轮的一侧具有齿形部,与涡轮之间形成齿密封。
  7. 根据权利要求6所述的设有气封部件的燃气轮机,其特征在于:所述涡轮对应齿形部具有配合齿形部的齿结构;
    和/或:所述涡轮朝向气封部件的一侧具有凹槽,部分气封部件延伸到该凹槽内。
  8. 根据权利要求1所述的设有气封部件的燃气轮机,其特征在于:所述气封部件上设有第二气孔,第二气孔的进气口与压气机或外部供气装置连接,第二气孔的出气口朝向涡轮,压力气通过第二气孔喷向涡轮,对涡轮形成轴向推力。
  9. 根据权利要求8所述的设有气封部件的燃气轮机,其特征在于:所述第二气孔的截面积大于第一气孔的截面积;
    和/或:所述第二气孔的数量是两个以上,各所述第二气孔绕转轴排布;
    和/或:多个所述第一气孔围绕转轴呈两圈以上排布,至少部分所述第二气孔夹设在其中两圈第一气孔之间。
  10. 根据权利要求1所述的设有气封部件的燃气轮机,其特征在于:所述导叶组件,包括第一支座、第二支座和位于两个支座之间的具有轴向气道的叶片组,所述气封部件与第一支座之间气密连接。
PCT/CN2022/116629 2022-01-11 2022-09-01 设有气封部件的燃气轮机 WO2023134177A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210026838.2 2022-01-11
CN202210026838.2A CN114320489A (zh) 2022-01-11 2022-01-11 设有气封部件的燃气轮机

Publications (1)

Publication Number Publication Date
WO2023134177A1 true WO2023134177A1 (zh) 2023-07-20

Family

ID=81027524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116629 WO2023134177A1 (zh) 2022-01-11 2022-09-01 设有气封部件的燃气轮机

Country Status (2)

Country Link
CN (1) CN114320489A (zh)
WO (1) WO2023134177A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114320489A (zh) * 2022-01-11 2022-04-12 永旭腾风新能源动力科技(北京)有限公司 设有气封部件的燃气轮机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101600854A (zh) * 2006-09-14 2009-12-09 索拉透平公司 用于涡轮发动机的密封结构
CN205744004U (zh) * 2014-12-30 2016-11-30 通用电气公司 燃气涡轮机
CN112392553A (zh) * 2019-08-14 2021-02-23 波兰航空有限责任公司 用于减少燃气涡轮发动机内的流泄漏的密封件
CN114320489A (zh) * 2022-01-11 2022-04-12 永旭腾风新能源动力科技(北京)有限公司 设有气封部件的燃气轮机
CN216767482U (zh) * 2022-01-11 2022-06-17 永旭腾风新能源动力科技(北京)有限公司 设有气封部件的燃气轮机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101600854A (zh) * 2006-09-14 2009-12-09 索拉透平公司 用于涡轮发动机的密封结构
CN205744004U (zh) * 2014-12-30 2016-11-30 通用电气公司 燃气涡轮机
CN112392553A (zh) * 2019-08-14 2021-02-23 波兰航空有限责任公司 用于减少燃气涡轮发动机内的流泄漏的密封件
CN114320489A (zh) * 2022-01-11 2022-04-12 永旭腾风新能源动力科技(北京)有限公司 设有气封部件的燃气轮机
CN216767482U (zh) * 2022-01-11 2022-06-17 永旭腾风新能源动力科技(北京)有限公司 设有气封部件的燃气轮机

Also Published As

Publication number Publication date
CN114320489A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2023134178A1 (zh) 一种具有平衡轴向力结构的燃气轮机
WO2010001656A1 (ja) ガスタービンの冷却空気供給構造およびガスタービン
EP1512844B1 (en) Gas turbine installation and cooling air supplying method
US4277222A (en) Turbine engine compressor
US20050132706A1 (en) Device for supplying secondary air in a gas turbine engine
US7225624B2 (en) Method and apparatus for increasing the pressure of cooling fluid within a gas turbine engine
WO2023134177A1 (zh) 设有气封部件的燃气轮机
JPS62276226A (ja) ガスタービン・エンジンの冷却空気転送手段
US20110127456A1 (en) Rotating valve assembly for high temperature and high pressure operation
US20080240904A1 (en) Method of Pumping Gaseous Matter via a Supersonic Centrifugal Pump
US5697767A (en) Integrated turbine and pump assembly
CN110454240A (zh) 一种部分进气轴流式超临界二氧化碳透平膨胀机
CN111140401B (zh) 一种用于液体火箭发动机的球型涡轮壳体及涡轮泵
GB803994A (en) Improvements in power units of the gas turbine type
US5167486A (en) Turbo-machine stage having reduced secondary losses
CN115355106A (zh) 燃烧室抽气循环液体火箭发动机
CN216767482U (zh) 设有气封部件的燃气轮机
US3365892A (en) Turbomachine
US5197851A (en) Axial flow turbopump with integrated boosting
CN216950952U (zh) 一种具有平衡轴向力结构的燃气轮机
WO2023134176A1 (zh) 燃气轮机
CN218206861U (zh) 一种转子系统及燃气轮机
WO2022105206A1 (zh) 平衡轴向力的多推力盘燃气轮机
CN210919164U (zh) 一种超临界二氧化碳透平膨胀机多段碳环迷宫密封结构
KR102113893B1 (ko) 터보차저를 구동하기 위한 장치와 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919814

Country of ref document: EP

Kind code of ref document: A1