WO2023134178A1 - 一种具有平衡轴向力结构的燃气轮机 - Google Patents

一种具有平衡轴向力结构的燃气轮机 Download PDF

Info

Publication number
WO2023134178A1
WO2023134178A1 PCT/CN2022/116631 CN2022116631W WO2023134178A1 WO 2023134178 A1 WO2023134178 A1 WO 2023134178A1 CN 2022116631 W CN2022116631 W CN 2022116631W WO 2023134178 A1 WO2023134178 A1 WO 2023134178A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
thrust
turbine
air supply
supply hole
Prior art date
Application number
PCT/CN2022/116631
Other languages
English (en)
French (fr)
Inventor
靳普
Original Assignee
永旭腾风新能源动力科技(北京)有限公司
靳普科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 永旭腾风新能源动力科技(北京)有限公司, 靳普科技(北京)有限公司 filed Critical 永旭腾风新能源动力科技(北京)有限公司
Publication of WO2023134178A1 publication Critical patent/WO2023134178A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/051Axial thrust balancing

Definitions

  • the invention relates to a gas turbine with a balanced axial force structure, belonging to the technical field of gas turbines.
  • the gas turbine uses continuously flowing gas as the working medium to drive the impeller to rotate at high speed, and converts the energy of the fuel into useful work.
  • It is a rotating impeller heat engine. It mainly includes three major parts: compressor, combustion chamber and turbine: the compressor sucks in air from the external atmosphere, and compresses it step by step to pressurize it, and the air temperature also increases accordingly; the compressed air is compressed to the combustion chamber and the nozzle
  • the incoming fuel is mixed and burned to generate high-temperature and high-pressure gas; then it enters the turbine to expand and do work, and the turbine drives the compressor and the external load rotor to rotate at high speed, which can realize the partial conversion of the chemical energy of the gas or liquid fuel into mechanical work and heat energy , and can output electric energy by connecting a generator.
  • the airflow will generate an axial force on the rotor blades and discs, thereby generating an axial force.
  • the thrust bearing will bear the axial force from the gas turbine rotor . It can be known from gas dynamics that the axial force on the gas turbine compressor rotor is forward, while the axial force on the turbine rotor is backward. Under the maximum operating condition, the turbine rotor on the gas turbine generator needs to bear the backward axial force, but the compressor rotor needs to bear the greater forward axial force.
  • the present invention provides a gas turbine with a balanced axial force structure.
  • the present invention assists in balancing the axial force of the gas turbine by additionally providing air supplement holes at the nose cone, thrust bearing or turbine.
  • a gas turbine with a balanced axial force structure including a rotating shaft, a compressor, a turbine and a combustion chamber, wherein the compressor and the turbine are sleeved on the rotating shaft; the exhaust end of the compressor communicates with the inlet end of the combustion chamber; The outlet end of the combustion chamber communicates with the inlet end of the turbine;
  • the rotating shaft is provided with a nose cone, the nose cone is located on the side of the compressor away from the turbine, and the side of the nose cone facing away from the compressor has a nose cone thrust surface; the side of the nose cone facing away from the compressor is also provided with Thrust seat, the thrust seat has a seat body surface opposite to the nose cone thrust surface, and there is a nose cone gap between the seat body surface and the nose cone thrust surface; the radial central area of the thrust seat is provided with a first air supply hole axially penetrating.
  • the air inlet of the first air supply hole communicates with the air source, the air outlet of the first air supply hole communicates with the nose cone gap, and the air source can supply air to the nose cone gap through the first air supply hole to form a thrust on the nose cone.
  • the gas turbine further includes a bearing assembly, and the bearing assembly includes at least one gas thrust bearing and a thrust plate.
  • the gas thrust bearing is selected from hydrostatic bearings, dynamic pressure bearings and/or hydrostatic and hydrostatic hybrid bearings.
  • the gas thrust bearing has an air inlet, the air inlet of the air inlet communicates with the air source, the air outlet of the air inlet faces the thrust disk, and the cross-sectional area of the first air supply hole is larger than the air inlet of the air thrust bearing.
  • the cross-sectional area of the hole (section refers to the section perpendicular to the direction of hole extension, such as when the first air supply hole and the air intake hole are round holes, the aperture of the first air supply hole is greater than the aperture of the air intake hole). Setting the first air supply hole with a larger hole diameter can provide sufficient gas flow, and then can provide enough thrust to balance the axial force of the gas turbine rotor.
  • the air intake hole can be a straight hole, or a stepped hole with a cross-sectional area ranging from large to small.
  • the stepped hole can further increase the velocity of the incoming airflow, even reaching or exceeding the speed of sound, so as to further enhance the thrust.
  • the number of the air intake holes may be one or multiple; when the number is multiple, the air intake holes may be arranged around the axis, for example uniformly arranged.
  • gas thrust bearings (more than two, including two), wherein the gas thrust bearing on the same side as the thrust plate and the nose cone is provided with a second air supply hole, and the air intake of the second air supply hole
  • the port is in communication with the gas source, the gas outlet of the second air supply hole faces the thrust plate, and the cross-sectional area of the second air supply hole is larger than the cross-sectional area of the gas inlet hole gas outlet of the gas thrust bearing.
  • the number of the second air supply holes may be one or more.
  • the second air supply holes can be arranged around the axis, for example, evenly arranged.
  • the arrangement form of the air intake holes and the second air supply holes may be arranged around the rotor axis, or the air intake holes may be arranged around the second air supply holes, for example: a second air supply hole is provided In the gas thrust bearing, multiple air intake holes are arranged in multiple circles around the rotating shaft, and the number of second air supply holes is multiple and located between two adjacent circles of air intake holes (the air intake holes are multiplexed as air seals).
  • a gas thrust bearing provided with second air supply holes
  • the second air supply holes are arranged around the rotating shaft, and each second air supply hole is surrounded by a plurality of air intake holes.
  • the thrust bearing can also have air grooves for evenly distributed air intake, the air inlet of the air inlet hole is set at the bottom of the air groove, and the air inlet of the second air supply hole is set at the boss of the air groove
  • such an arrangement can make the gas in each path not interfere with each other before being ejected from the outlet.
  • the second air supply hole can be arranged obliquely, the air inlet of the second air supply hole is relatively far away from the rotation axis, and the air outlet of the second air supply hole is relatively toward the rotation axis.
  • the nose cone has an air groove, and the bottom surface of the air groove is the nose cone thrust surface, and an air cavity capable of holding a certain amount of gas is formed between the air groove and the seat surface of the thrust seat, and part of the gas can be sealed to slow down the gas flow. The rate of overflow from the edge, thereby ensuring the thrust effect.
  • the shape of the air groove can be circular, oval, rectangular, etc.
  • the thrust seat has a plurality of first air seal holes arranged around the first air supply hole; the air outlet of the first air seal holes faces the nose cone thrust surface of the nose cone, and the sectional area of the first air seal holes The area is smaller than the cross-sectional area of the first air supply hole, and the gas from the gas source can be sprayed to the nose cone through the first air seal hole to form an air curtain around the first air supply hole.
  • the number of the first air-sealing hole may be one or multiple; when there are multiple first air-sealing holes, a plurality of first air-sealing holes are arranged around the first air supply hole.
  • the first air seal hole can be a straight through hole, or a stepped hole with a cross-sectional area from large to small.
  • the stepped hole can further increase the velocity of the incoming airflow, even reaching or exceeding the speed of sound, so as to further enhance the airflow. barrier effect of the curtain.
  • the outlet end of the combustion chamber is provided with a guide vane assembly for introducing the high-temperature gas discharged from the outlet end of the combustion chamber into the turbine, and a turbine thrust component is provided between the guide vane assembly and the turbine; the turbine thrust component is provided with The third air supply hole, the air inlet of the third air supply hole is connected to the air source, the air outlet of the third air supply hole faces the turbine, and the gas from the air source can be sprayed to the turbine through the third air supply hole, forming an axial thrust on the turbine, It is beneficial to balance the axial force and make the gas turbine run stably.
  • the number of the third air supply holes may be one or multiple; when there are multiple, the third air supply holes may be arranged around the axis.
  • the turbine thrust component is generally annular and arranged around the shaft, the turbine thrust component is airtightly connected with the guide vane assembly, and an air seal effect can be formed between the turbine thrust component and the turbine (the turbine thrust component doubles as an air seal component);
  • the turbine thrust component is provided with a second air seal hole, the air inlet of the second air seal hole is connected to the air source, the air outlet of the second air seal hole faces the turbine, and the turbine has a receiving surface corresponding to the second air seal hole;
  • the cross-sectional area of the second air-sealing hole is smaller than the cross-sectional area of the third air-supplementing hole.
  • the number of the second air-sealing holes may be one or multiple; when the number is multiple, the second air-sealing holes may be arranged around the axis, for example, evenly arranged.
  • the arrangement form of the second air seal hole and the third air supply hole may be arranged around the rotor axis, or the second air seal hole may be arranged around the third air supply hole, for example: a plurality of first air supply holes
  • the second air-seal holes are arranged in multiple circles around the rotating shaft, and the third air-supply holes are multiple and located between two adjacent circles of the second air-seal holes.
  • the third air supply holes are arranged around the rotating shaft, and each third air supply hole is surrounded by a plurality of second air seal holes.
  • the second air-tight hole can be a straight hole, or a stepped hole with a cross-sectional area from large to small, and the stepped hole can further increase the velocity of the incoming airflow, even reaching or exceeding the speed of sound, so as to further increase the pressure The barrier effect of the air curtain.
  • the receiving surface of the turbine facing the second air seal hole has a groove corresponding to the jet flow of the second air seal hole, and the air flow injected by the second air seal hole passes through the groove and then flows back toward the thrust part of the turbine, which can Enhanced pressure air curtain effect.
  • the side of the turbine thrust component facing the turbine has a tooth-shaped portion, forming a tooth seal with the turbine, so as to further enhance the air sealing effect.
  • the tooth profile can be a high-low tooth structure, a flat tooth structure, an oblique flat tooth structure, a side tooth structure, and the like.
  • the corresponding toothed portion of the turbine may have a convex edge, and the convex edge has a protrusion or a tooth structure matching the toothed portion, so as to improve the air sealing effect of the toothed portion.
  • the side of the turbine facing the turbine thrust component has a groove, and part of the turbine thrust component extends into the groove.
  • the guide vane assembly includes a first support, a second support, and a blade set with an axial air passage between the two support, and the airtight connection between the turbine thrust component and the first support .
  • the turbine may rotate relative to the combustor and vane assembly.
  • the air source for supplying air to the first air supply hole, the air intake hole, the second air supply hole, the third air supply hole, the first air seal hole, and the second air seal hole can be an external air pump (which can provide different Pressure and flow of gas, suitable for different working conditions), or a compressor (can save the cost of additional external gas source).
  • the nose cone can be set independently of the stop nut of the compressor (the stop nut is used to fix the compressor on the rotating shaft), or it can be set integrally with the stop nut of the compressor to double as a stop Function.
  • the air inlet of the compressor can be opened on the side of the gas turbine casing, which is a side air intake.
  • combustion chamber is arranged around the rotating shaft and installed on the bearing seat assembly corresponding to the turbine end.
  • the gas turbine with a balanced axial force structure of the present invention assists in balancing the axial direction of the gas turbine by additionally setting air supply holes (first air supply hole, second air supply hole, and third air supply hole) at the nose cone, thrust bearing or turbine. force.
  • the working principle is: the air source supplies air to the gap between the seat body surface and the thrust surface of the nose cone through the first air supply hole to form a thrust on the nose cone. Since the first air supply hole is opened in the central area, the airflow ejected from the first air supply hole Able to provide sufficient thrust against the head before spilling over the edge, thereby balancing the axial force of the gas turbine rotor.
  • the air source blows the airflow to the thrust plate through the second air supply hole, which can further increase the thrust at the thrust plate, thereby providing sufficient thrust to balance the axial force of the gas turbine rotor.
  • the air source blows the airflow to the turbine through the third air supply hole, forming an axial thrust on the turbine, which is beneficial to balance the axial force and make the gas turbine run stably.
  • the gas bearing mentioned in this article is a hydrostatic bearing, it has the following structure: it includes a bearing body and a bearing sleeve nested from outside to inside, and the bearing sleeve and the rotating shaft have a predetermined radial clearance in the radial direction (the bearing is radial bearing), or the bearing sleeve and the thrust plate are installed opposite to each other in the axial direction of the rotating shaft and have a predetermined axial clearance (when the bearing is a thrust bearing); the outer peripheral surface of the bearing sleeve is provided with an annular air cavity, and the bearing sleeve is provided with A through hole that runs through the annular air cavity and the gap (radial gap or axial gap); the bearing body is provided with an air hole that connects the annular air cavity with an external air source; in order to facilitate processing and not affect the gas pressure in the gap, the The through hole may be a variable diameter hole, that is, the diameter of the through hole is larger on the side away from the gap and smaller on the side close
  • the gas bearing mentioned in this article is a dynamic pressure bearing
  • it has the following structure: it includes a bearing body, the bearing body and the rotating shaft have a predetermined radial clearance in the radial direction (when the bearing is a radial bearing), the inner diameter surface of the bearing body or The position where the bearing body is installed on the rotating shaft is provided with a dynamic pressure generating groove; or: the bearing body and the thrust plate are installed opposite to each other in the axial direction of the rotating shaft and have a predetermined axial clearance (when the bearing is a thrust bearing), and the bearing body faces the thrust plate The end face of the thrust plate or the end face of the thrust plate facing the bearing body is provided with a dynamic pressure generating groove.
  • Fig. 1 Structural schematic diagram of gas turbine (embodiment 1).
  • Fig. 2 Schematic diagram of the structure of the first thrust bearing (embodiment 1).
  • Figure 3 Schematic diagram of the structure of the nose cone.
  • Figure 4 Schematic diagram of the structure of the nose cone and thrust seat.
  • Fig. 5 Structural schematic diagram of a gas turbine (embodiment 2).
  • Fig. 6 Schematic diagram of the structure of the first thrust bearing (embodiment 2).
  • Fig. 7 Schematic diagram of the structure of the first thrust bearing (embodiment 2) with air grooves.
  • Fig. 8 Schematic diagram of the structure of the first thrust bearing (embodiment 2) (the second air supply hole is arranged obliquely).
  • Fig. 9 Schematic diagram of the structure of a gas turbine (embodiment 3).
  • Figure 10 Schematic diagram of the structure of the turbine thrust components.
  • Figure 11 Schematic diagram of the structure of the turbine thrust component (with the second air seal hole).
  • Fig. 12 Schematic diagram of the structure of the turbine thrust component (with the second air seal hole and toothed portion).
  • 100 rotating shaft; 200, compressor; 300, turbine; 400, combustion chamber; 500, bearing assembly; 510, first radial bearing; 520, second radial bearing; 530, first thrust bearing; 540, The second thrust bearing; 531, air intake hole; 532, the second air supply hole; 600, bearing seat assembly; 700, nose cone; 710, nose cone thrust surface; 720, air groove; 800, thrust seat; 810, first Air supply hole; 820, first air seal hole; 900, turbine thrust component; 910, third air supply hole; 920, second air seal hole; 930, toothed portion.
  • Embodiment 1 Gas turbine with balanced axial force structure
  • a gas turbine with a balanced axial force structure comprising a rotating shaft 100, a compressor 200, a turbine 300 and a combustion chamber 400, as shown in Figure 1, wherein the compressor 200 and the turbine 300 are sleeved on the rotating shaft 100;
  • the exhaust end of the engine 200 communicates with the inlet end of the combustion chamber 500;
  • the outlet end of the combustion chamber 400 communicates with the inlet end of the turbine 300;
  • the rotating shaft 100 is provided with a nose cone 700, the nose cone 700 is located on the side of the compressor 200 away from the turbine 300, and the side of the nose cone 700 facing away from the compressor 200 has a nose cone thrust surface 710;
  • the side of the compressor 200 is also provided with a thrust seat 800, the thrust seat 800 has a seat body surface opposite to the nose cone thrust surface 710, and there is a nose cone gap between the seat body surface and the nose cone thrust surface; the radial direction of the thrust seat 800
  • the central area is provided with a first air supply hole 810 axially penetrating through it.
  • the air inlet of the first air supply hole 810 is connected to the air source, and the air outlet of the first air supply hole 810 is connected to the nose cone gap.
  • the air source can pass through the first air supply hole. 810 supplies air to the nose cone gap to form a thrust on the nose cone 700. Since the first air supply hole 810 is located in the central area, the airflow ejected from the first air supply hole 810 can provide sufficient thrust to the nose cone 700 before overflowing the edge, thereby balancing Axial force on gas turbine rotor.
  • the gas turbine also includes a bearing assembly 500 and a bearing housing assembly 600, the bearing assembly 500 is located in the bearing housing assembly 600; the bearing assembly 500 includes a first radial bearing 510, a second radial bearing 520, a first thrust bearing 530, The second thrust bearing 540 and the thrust plate, the thrust plate is located between the first thrust bearing 530 and the second thrust bearing 540 .
  • the first thrust bearing 530 is a gas bearing, which has an air inlet 531.
  • the cross-sectional area of the air supply hole 810 is greater than the cross-sectional area of the air intake hole 531 (the cross section refers to the section perpendicular to the direction of hole extension, such as when the first air supply hole 810 and the air intake hole 531 are round holes, the aperture of the first air supply hole is larger than the intake hole. pore size).
  • the cross-sectional area of the air inlet hole of the gas bearing is often not very large, or even set in the shape of a throttle hole, so the air supply is limited, which limits its capacity.
  • the thrust provided (about 200-300 N).
  • the air intake hole 531 can be a straight hole, or a stepped hole with a cross-sectional area ranging from large to small.
  • the stepped hole can further increase the velocity of the incoming airflow, even reaching or exceeding the speed of sound, so as to further enhance the thrust.
  • the number of the air inlet 531 may be one or multiple; when there are more than one air inlet 531, the air inlet 531 may be arranged around the axis, for example uniformly arranged.
  • the air source for supplying air to the first air supply hole 810 and the air intake hole 531 can be an external air pump (capable of providing air with different pressures and flow rates, adapting to different working conditions), or an air compressor 200 (which can save additional Set the cost of the external air source).
  • the nose cone 700 can also have an air groove 720, and the groove bottom surface of the air groove 720 is the nose cone thrust surface 710. As shown in Figure 3, a space capable of holding a certain amount of gas is formed between the air groove 720 and the seat surface of the thrust seat 800. The air cavity can seal part of the gas to slow down the rate of gas overflow from the edge, thereby ensuring the thrust effect.
  • the air groove 720 can be one or more.
  • the shape of the air groove 720 can be circular, oval, rectangular, etc.
  • the thrust seat 800 may also have a plurality of first air seal holes 820 arranged around the first air supply hole 810 , as shown in FIG. 4 , the air outlets of the first air seal holes 820 face the nose cone thrust surface of the nose cone 700 710, the cross-sectional area of the first air seal hole 820 is smaller than the cross-sectional area of the first air supply hole 810; the gas from the gas source can be sprayed to the nose cone 700 (such as the nose cone thrust surface 710) through the first air seal hole 820 to surround
  • the first air supply hole 810 forms an air curtain, and after forming a barrier air curtain, the thrust provided by the nose cone 700 can reach 1800 N; due to the obstruction of the formed air curtain, the gas that is about to overflow from the edge of the first air supply hole 810 will be dispersed into multiple Small airflows, and due to the turbulence and friction of the airflow in the air curtain, these small airflows form more intense eddies, the speed is reduced, and the kinetic energy consumption is converted
  • the first air seal hole 820 can be a straight through hole, or a stepped hole with a cross-sectional area from large to small (as shown in Figure 4, from the air inlet hole to the air outlet hole, the cross-sectional area is from large to small), the stepped hole
  • the velocity of the incoming airflow can be further increased, even reaching or exceeding the speed of sound, so as to further enhance the barrier effect of the air curtain.
  • the nose cone 700 can be set independently from the stop nut of the compressor 200 (the stop nut is used to fix the compressor on the rotating shaft), or it can be set integrally with the stop nut of the compressor 200 to serve as a stop Function.
  • the air inlet of the compressor 200 can be opened on the side of the gas turbine housing, which is a side air intake.
  • the combustion chamber 400 is arranged around the rotating shaft 100 and installed on the bearing seat assembly 600 corresponding to the end of the turbine 300 .
  • the rotating shaft, compressor, turbine, bearing block assembly and thrust seat are integrally installed in the housing (only part of the housing is shown in FIG. 1 ).
  • Embodiment 2 Gas turbine with balanced axial force structure
  • a gas turbine with a balanced axial force structure comprising a rotating shaft 100, a compressor 200, a turbine 300 and a combustion chamber 400, as shown in Figure 1, wherein the compressor 200 and the turbine 300 are sleeved on the rotating shaft 100;
  • the exhaust end of the engine 200 communicates with the inlet end of the combustion chamber 500;
  • the outlet end of the combustion chamber 400 communicates with the inlet end of the turbine 300;
  • the rotating shaft 100 is provided with a nose cone 700, the nose cone 700 is located on the side of the compressor 200 away from the turbine 300, and the side of the nose cone 700 facing away from the compressor 200 has a nose cone thrust surface 710;
  • the side of the compressor 200 is also provided with a thrust seat 800, the thrust seat 800 has a seat body surface opposite to the nose cone thrust surface 710, and there is a nose cone gap between the seat body surface and the nose cone thrust surface; the radial direction of the thrust seat 800
  • the central area is provided with a first air supply hole 810 axially penetrating through it.
  • the air inlet of the first air supply hole 810 is connected to the air source, and the air outlet of the first air supply hole 810 is connected to the nose cone gap.
  • the air source can pass through the first air supply hole. 810 supplies air to the nose cone gap to form a thrust on the nose cone 700. Since the first air supply hole 810 is located in the central area, the airflow ejected from the first air supply hole 810 can provide sufficient thrust to the nose cone 700 before overflowing the edge, thereby balancing Axial force on gas turbine rotor.
  • the gas turbine also includes a bearing assembly 500 and a bearing housing assembly 600, the bearing assembly 500 is located in the bearing housing assembly 600; the bearing assembly 500 includes a first radial bearing 510, a second radial bearing 520, a first thrust bearing 530, The second thrust bearing 540 and the thrust plate, the thrust plate is located between the first thrust bearing 530 and the second thrust bearing 540 .
  • the first thrust bearing 530 (thrust bearing on the same side as the thrust disc and the nose cone 700) is provided with an air inlet 531 and a second air supply hole 532, as shown in Figures 5 and 6, the air inlet 531
  • the air inlet of the air inlet is connected with the air source, the air outlet of the air inlet 531 faces the thrust plate, the air inlet of the second air supply hole 532 communicates with the air source, and the air outlet of the second air supply hole 532 faces the thrust disk; the first air supply hole
  • the cross-sectional area of 810 is larger than the cross-sectional area of the air inlet 531
  • the cross-sectional area of the second supplementary air hole 532 is larger than the cross-sectional area of the air outlet of the air inlet 531 .
  • the provision of the second air supply hole 532 can further increase the thrust at the thrust plate, which is more conducive to providing sufficient thrust to balance the axial force of the gas turbine rotor.
  • the number of the second air supply holes 532 may be one or multiple; when the number is multiple, the second air supply holes 532 may be arranged around the axis, for example uniformly arranged.
  • the arrangement form of the air intake holes 531 and the second air supply holes 532 can be arranged around the axis of the rotor 100, or the air intake holes 531 can be arranged around the second air supply holes 532, for example: multiple air intake holes 531 are arranged in multiple circles around the rotating shaft, and the number of second air supply holes 532 is multiple and located between two adjacent circles of air inlet holes 531 (the air inlet holes are multiplexed as air seals).
  • the second air supply holes 532 are arranged around the rotating shaft, and each second air supply hole 532 is surrounded by a plurality of air intake holes 531 .
  • Described first thrust bearing 530 also can have the air groove 533 that is used for evenly distributed air intake, as shown in Figure 7, the air inlet of air inlet 531 is offered at the groove bottom of air groove 533, and the second air supply hole 532 The air inlet is opened on the boss 534 of the air groove 533, so that the air in each path will not interfere with each other before the outlet is ejected.
  • the second air supply hole 532 can be arranged obliquely, the air inlet of the second air supply hole 532 is relatively far away from the rotating shaft 100 , and the air outlet of the second air supply hole 532 is relatively toward the rotating shaft 100 , as shown in FIG. 8 .
  • the air source for supplying air to the first air supply hole 810, the air intake hole 531, and the second air supply hole 532 can be an external air pump (capable of providing air with different pressures and flow rates, adapting to different working conditions), or compressed air machine 200 (can save the cost of additionally setting an external gas source).
  • Embodiment 3 Gas turbine with balanced axial force structure
  • a gas turbine with a balanced axial force structure comprising a rotating shaft 100, a compressor 200, a turbine 300 and a combustion chamber 400, as shown in Figure 1, wherein the compressor 200 and the turbine 300 are sleeved on the rotating shaft 100;
  • the exhaust end of the engine 200 communicates with the inlet end of the combustion chamber 500;
  • the outlet end of the combustion chamber 400 communicates with the inlet end of the turbine 300;
  • the rotating shaft 100 is provided with a nose cone 700, the nose cone 700 is located on the side of the compressor 200 away from the turbine 300, and the side of the nose cone 700 facing away from the compressor 200 has a nose cone thrust surface 710;
  • the side of the compressor 200 is also provided with a thrust seat 800, the thrust seat 800 has a seat body surface opposite to the nose cone thrust surface 710, and there is a nose cone gap between the seat body surface and the nose cone thrust surface; the radial direction of the thrust seat 800
  • the central area is provided with a first air supply hole 810 axially penetrating through it.
  • the air inlet of the first air supply hole 810 is connected to the air source, and the air outlet of the first air supply hole 810 is connected to the nose cone gap.
  • the air source can pass through the first air supply hole. 810 supplies air to the nose cone gap to form a thrust on the nose cone 700. Since the first air supply hole 810 is located in the central area, the airflow ejected from the first air supply hole 810 can provide sufficient thrust to the nose cone 700 before overflowing the edge, thereby balancing Axial force on gas turbine rotor.
  • the gas turbine also includes a bearing assembly 500 and a bearing housing assembly 600, the bearing assembly 500 is located in the bearing housing assembly 600; the bearing assembly 500 includes a first radial bearing 510, a second radial bearing 520, a first thrust bearing 530, The second thrust bearing 540 and the thrust plate, the thrust plate is located between the first thrust bearing 530 and the second thrust bearing 540 .
  • the first thrust bearing 530 is a gas bearing, which has an air inlet 531. As shown in FIG. The cross-sectional area of the supplementary air hole 810 is greater than that of the air intake hole 531 . By providing the first air supply hole 810 with a larger diameter, sufficient gas flow can be provided, and thus sufficient thrust can be provided to balance the axial force of the gas turbine rotor.
  • the air intake hole 531 can be a straight hole, or a stepped hole with a cross-sectional area ranging from large to small.
  • the stepped hole can further increase the velocity of the incoming airflow, even reaching or exceeding the speed of sound, so as to further enhance the thrust.
  • the number of the air inlet 531 may be one or multiple; when there are more than one air inlet 531, the air inlet 531 may be arranged around the axis, for example uniformly arranged.
  • the outlet end of the combustion chamber 400 is provided with a guide vane assembly for introducing the high-temperature gas discharged from the outlet end of the combustion chamber 300 into a turbine, and a turbine thrust member 900 is provided between the guide vane assembly and the turbine 300, as shown in FIG. 9 ;
  • the turbine thrust component 900 is provided with a third air supply hole 910, as shown in Figure 10, the air inlet of the third air supply hole 910 is connected to the air source, the air outlet of the third air supply hole 910 faces the turbine, and the air from the air source It can be sprayed to the turbine through the third air supply hole 910 to form an axial thrust on the turbine, which is beneficial to balance the axial force and make the gas turbine run stably.
  • the number of the third air supply holes 910 may be one or multiple; when there are multiple third air supply holes 910 may be arranged around the axis.
  • the turbine thrust component 900 is generally annular and arranged around the shaft 100.
  • the turbine thrust component 900 is airtightly connected with the guide vane assembly, and an air seal effect can be formed between the turbine thrust component 900 and the turbine 300 (the turbine thrust component 900 doubles as an air seal component );
  • the turbine thrust component 900 is provided with a second air seal hole 920, as shown in Figure 11, the air inlet of the second air seal hole 920 is connected to the air source, and the gas outlet of the second air seal hole 920 faces the turbine 300, the gas from the gas source can be sprayed to the turbine 300 through the second air seal hole 920, the turbine 300 has a receiving surface corresponding to the second air seal hole 920, and the cross-sectional area of the second air seal hole 920 is smaller than that of the third air supplement hole 910 cross-sectional area.
  • the gas sprayed from the second gas seal hole 920 to the turbine 300 can form a pressure air curtain, which can prevent the gas sprayed from the guide vane assembly to the blades of the turbine 300 from entering the interior of the gas turbine.
  • the air flow velocity ejected from the second air seal hole 920 is relatively high (especially after throttling through the stepped hole), and the gas from the turbine 300 is guided through the high-speed air flow (actually, the cavity near the rotating shaft 100 also has a certain amount of air flow , part of which comes from the gas outlet of the gas bearing, and the other part comes from the cooling air drawn from the outlet of the compressor), so that the air velocity on both sides of the air curtain increases and the pressure decreases, so as to minimize the pressure difference on both sides of the air curtain, To achieve a good air sealing effect.
  • the number of the second air seal hole 920 may be one or multiple; when the number is multiple, the second air seal hole 920 may be arranged around the axis, for example uniformly arranged.
  • the arrangement of the second air seal holes 920 and the third air supply holes 910 can be arranged around the axis of the rotor, or the second air seal holes 920 can be arranged around the third air supply holes 910, for example: multiple The second air-seal holes 920 are arranged in multiple circles around the rotating shaft, and the number of the third air-supply holes 910 is multiple and located between two adjacent circles of the second air-seal holes 920 .
  • the third air supply holes 910 are arranged around the rotating shaft, and each third air supply hole 910 is surrounded by a plurality of second air seal holes 920 .
  • the second air seal hole 920 can be a straight through hole, or a stepped hole with a cross-sectional area from large to small (as shown in Figure 11, from the air inlet to the air outlet, the cross-sectional area is from large to small), the stepped hole
  • the speed of the incoming airflow can be further increased, even reaching or exceeding the speed of sound, so as to further enhance the barrier effect of the pressure air curtain.
  • the air source for supplying air to the first air supply hole 810, the air intake hole 531, the third air supply hole 910, and the second air seal hole 920 can be an external air pump (can provide air of different pressures and flow rates, and can be adapted to different working conditions. condition), it can also be the compressor 200 (which can save the cost of additionally setting an external gas source).
  • the receiving surface of the turbine 300 facing the second air seal hole 920 has a groove corresponding to the jet flow of the second air seal hole 920 , and the air flow injected by the second air seal hole 920 flows back toward the turbine thrust member 900 after passing through the groove , can enhance the pressure air curtain effect.
  • the side of the turbine thrust component 900 facing the turbine 300 may have a toothed portion 930 to form a tooth seal with the turbine to further enhance the air sealing effect, as shown in FIG. 12 .
  • the tooth-shaped portion 930 may be a high-low tooth structure, a flat tooth structure, an oblique flat tooth structure, a side tooth structure, and the like.
  • the turbine wheel 300 may have a convex edge corresponding to the tooth-shaped portion 930 , and the convex edge has a protrusion or a tooth structure matching the tooth-shaped portion 930 to improve the air-sealing effect of the tooth-shaped portion 930 .
  • the side of the turbine 300 facing the turbine thrust part 900 has a groove, and part of the turbine thrust part 900 extends into the groove.
  • the guide vane assembly includes a first support, a second support and a blade set with an axial air passage between the two supports, and the turbine thrust component 900 is airtightly connected to the first support.
  • the turbine 300 may rotate relative to the combustor 400 and the vane assembly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种具有平衡轴向力结构的燃气轮机,包括转轴(100)、压气机(200)、涡轮(300)和燃烧室(400);转轴(100)上设有头锥(700),头锥(700)位于压气机(200)的远离涡轮(300)一侧,且头锥(700)背向压气机(200)的一侧具有头锥推力面(710);头锥(700)背向压气机(200)的一侧设有推力座(800),推力座(800)具有与头锥推力面(710)相对设置的座体面,座体面与头锥推力面(710)之间具有头锥间隙;推力座(800)设置有轴向贯通的第一补气孔(810),第一补气孔(810)的进气口与气源连通,第一补气孔(810)的出气口与头锥(700)间隙连通,气源通过第一补气孔(810)向头锥(700)间隙供气以对头锥(700)形成推力。这种具有平衡轴向力结构的燃气轮机,通过在头锥、推力轴承或涡轮处额外设置补气孔,对头锥、推力盘、涡轮形成轴向推力,辅助平衡燃气轮机的轴向力,使燃气轮机稳定运行。

Description

一种具有平衡轴向力结构的燃气轮机 技术领域
本发明涉及一种具有平衡轴向力结构的燃气轮机,属于燃气轮机技术领域。
背景技术
燃气轮机以连续流动的气体为工质带动叶轮高速旋转,将燃料的能量转变为有用功,是一种旋转叶轮式热力发动机。其主要包括压气机、燃烧室、透平三大部件:压气机从外界大气环境吸入空气,并逐级压缩使之增压,同时空气温度也相应提高;压缩空气被压送到燃烧室与喷入的燃料混合燃烧生成高温高压的气体;然后再进入到透平中膨胀做功,推动透平带动压气机和外负荷转子高速旋转,可实现气体或液体燃料的化学能部分转化为机械功和热能,并可通过连接发电机输出电能。
燃气轮机在运行过程中,气流会对转子叶片及轮盘产生轴向力作用,从而产生轴向上的力,而为了防止转子发生轴向上的移动,推力轴承会承受来自燃气轮机转子的轴向力。由气体动力学可知:燃气轮机压气机转子上的轴向力是向前的,而涡轮转子上的轴向力是向后的。在最大工况下,燃气轮机发生器上涡轮转子需要承受向后的轴向力,然而压气机转子需要承受更大的向前的轴向力。即便压气机转子和涡轮转子连成一体后转子上的两个方向相反的轴向力相互抵消了一部分,但仍是一个数值相当大的向前的轴向力。因此,有必要设置减荷装置,以减少转子作用在止推轴承上的轴向负荷。
发明内容
针对上述现有技术,本发明提供了一种具有平衡轴向力结构的燃气轮机,本发明通过在头锥、推力轴承或涡轮处额外设置补气孔,来辅助平衡燃气轮机的轴向力。
本发明是通过以下技术方案实现的:
一种具有平衡轴向力结构的燃气轮机,包括转轴、压气机、涡轮和燃烧室,其中,压气机和涡轮均套设安装于转轴上;压气机的排气端与燃烧室的入口端连通;燃烧室的出口端与涡轮的入口端连通;
所述转轴上设有头锥,头锥位于压气机的远离涡轮一侧,且头锥背向压气机的一侧具有头锥推力面;所述头锥背向压气机的一侧还设有推力座,推力座具有与头锥推力面相对设置的座体面,座体面与头锥推力面之间具有头锥间隙;推力座的径向中心区域设置有轴向贯通的第一补气孔,第一补气孔的进气口与气源连通,第一补气孔的出气口与头锥间隙连通,气源可通过第一补气孔向头锥间隙供气以对头锥形成推力。
进一步地,所述燃气轮机还包括轴承组件,所述轴承组件包括至少一个气体推力轴承及推力盘。所述气体推力轴承选自静压轴承、动压轴承和/或动静压混合轴承。
进一步地,所述气体推力轴承上具有进气孔,进气孔的进气口与气源连通,进气孔的出气口朝向推力盘,第一补气孔的截面积大于气体推力轴承的进气孔的截面积(截面指垂直于孔延伸方向的截面,比如第一补气孔、进气孔均为圆孔时,第一补气孔的孔径大于进气孔的孔径)。设置孔径较大的第一补气孔,能够提供足够的气体流量,进而能够提供足够的推力以使燃气轮机转子的轴向力平衡。
进一步地,所述进气孔可以是直通孔,也可以是截面积从大到小的阶梯孔,阶梯孔可使进入的气流速度进一步增大,甚至达到或超过音速,以进一步增强推力。
进一步地,所述进气孔的数量可以是一个,也可以是多个;当数量为多个时,进气孔可绕轴线设置,例如均匀设置。
进一步地,所述气体推力轴承为多个(两个以上,包括两个),其中相对于推力盘与头锥同侧的气体推力轴承上设有第二补气孔,第二补气孔的进气口与气源连通,第二补气孔的出气口朝向推力盘,第二补气孔的截面积大于气体推力轴承的进气孔出气口的截面积。设置第二补气孔,能够进一步增加推力盘处的推力,从而更有利于提供足够的推力来使燃气轮机转子的轴向力平衡。
进一步地,所述第二补气孔的数量可以是一个,也可以是多个。当数量为多个时,第二补气孔可绕轴线设置,例如均匀设置。
进一步地,所述进气孔与第二补气孔的排布形式可以是均为绕转子轴线排布,也可以是进气孔绕第二补气孔排布,比如:设有第二补气孔的气体推力轴承中,多个进气孔围绕转轴呈多圈排布,第二补气孔的数量为多个并且位于相邻两圈进气孔之间(进气孔复用为气封)。再比如:设有第二补气孔的气体推力轴承中,第二补气孔围绕转轴排布,各第二补气孔周围围绕有多个进气孔。
进一步地,所述推力轴承还可具有用于均布进气的空气槽,进气孔的进气口开设在空气槽的槽底,第二补气孔的进气口开设在空气槽的凸台上,如此设置可以使得各路的气在出口喷出前互不干扰。
进一步地,所述第二补气孔可倾斜设置,第二补气孔的进气口相对远离转轴,第二补气孔的出气口相对朝向转轴。
进一步地,所述头锥具有气槽,气槽的槽底面为头锥推力面,气槽与推力座的座体面之间形成能够容纳一定量气体的气腔,可以封住部分气体以减缓气体从边缘溢出的速率,进而 保证推力效果。所述气槽可以是一个,也可以是多个。所述气槽的形状可以是圆形、椭圆形、矩形等。
进一步地,所述推力座上具有围绕所述第一补气孔设置的多个第一气封孔;第一气封孔的出气口朝向头锥的头锥推力面,第一气封孔的截面积小于第一补气孔的截面积,来自气源的气可以通过第一气封孔喷向头锥,以围绕第一补气孔形成气幕。所述第一气封孔的数量可以是一个,也可以是多个;当为多个时,多个第一气封孔围绕第一补气孔设置。
进一步地,所述第一气封孔可以是直通孔,也可以是截面积从大到小的阶梯孔,阶梯孔可使进入的气流速度进一步增大,甚至达到或超过音速,以进一步增强气幕的阻隔效果。
进一步地,所述燃烧室的出口端设有用于将燃烧室出口端排出的高温气体导入涡轮的导叶组件,导叶组件与涡轮之间设有涡轮推力部件;所述涡轮推力部件上设有第三补气孔,第三补气孔的进气口与气源连接,第三补气孔的出气口朝向涡轮,来自气源的气可通过第三补气孔喷向涡轮,对涡轮形成轴向推力,有利于平衡轴向力,使燃气轮机稳定运行。
进一步地,所述第三补气孔的数量可以是一个,也可以是多个;当为多个时,第三补气孔可以绕轴线排布。
进一步地,所述涡轮推力部件大体呈环形并围绕转轴设置,涡轮推力部件与导叶组件气密连接,涡轮推力部件与涡轮之间可形成气封效果(涡轮推力部件兼作气封部件);所述涡轮推力部件上设有第二气封孔,第二气封孔的进气口与气源连接,第二气封孔的出气口朝向涡轮,涡轮具有对应第二气封孔的接受面;第二气封孔的截面积小于第三补气孔的截面积。
进一步地,所述第二气封孔的数量可以是一个,也可以是多个;当数量为多个时,第二气封孔可绕轴线设置,例如均匀设置。
进一步地,所述第二气封孔与第三补气孔的排布形式可以是均为绕转子轴线排布,也可以是第二气封孔绕第三补气孔排布,比如:多个第二气封孔围绕转轴呈多圈排布,第三补气孔的数量为多个并且位于相邻两圈第二气封孔之间。再比如:第三补气孔围绕转轴排布,各第三补气孔周围围绕有多个第二气封孔。
进一步地,所述第二气封孔可以是直通孔,也可以是截面积从大到小的阶梯孔,阶梯孔可使进入的气流速度进一步增大,甚至达到或超过音速,以进一步增强压力气幕的阻隔效果。
进一步地,所述涡轮朝向第二气封孔的接受面具有对应第二气封孔喷射气流的凹槽,第二气封孔喷射的气流经由该凹槽后朝向涡轮推力部件反向回流,可增强压力气幕效果。
进一步地,所述涡轮推力部件朝向涡轮的一侧具有齿形部,与涡轮之间形成齿密封,以进一步增强气封效果。齿形部可以是高低齿结构、平齿结构、斜平齿结构、侧齿结构等。
进一步地所述涡轮对应齿形部可以具有凸沿,凸沿具有配合齿形部的凸起或齿结构,以提高齿形部的气封效果。更进一步地,涡轮朝向涡轮推力部件的一侧具有凹槽,部分涡轮推力部件延伸到该凹槽内。
进一步地,所述导叶组件,包括第一支座、第二支座和位于两个支座之间的具有轴向气道的叶片组,涡轮推力部件与第一支座之间气密连接。燃气轮机运行过程中,涡轮可相对于燃烧室和导叶组件转动。
进一步地,所述为第一补气孔、进气孔、第二补气孔、第三补气孔、第一气封孔、第二气封孔供气的气源,可以是外部气泵(能够提供不同压力和流量的气,适配不同工况),也可以是压气机(能够节约额外设置外接气源的成本)。
进一步地,所述头锥可以独立于压气机的限位螺母(限位螺母用于将压气机固定在转轴上)单独设置,也可与压气机的限位螺母一体设置,以兼做限位功能。
进一步地,所述压气机的进气口可开设于燃气轮机壳体侧面,为侧向进气。
进一步地,所述燃烧室环绕转轴设置,并对应涡轮端安装于轴承座组件上。
本发明的具有平衡轴向力结构的燃气轮机,通过在头锥、推力轴承或涡轮处额外设置补气孔(第一补气孔、第二补气孔、第三补气孔),来辅助平衡燃气轮机的轴向力。工作原理为:气源通过第一补气孔向座体面与头锥推力面之间的间隙供气,以对头锥形成推力,由于第一补气孔开设在中心区域,第一补气孔喷出的气流能够在从边缘溢出前对头提供足够的推力,进而平衡燃气轮机转子的轴向力。气源通过第二补气孔将气流吹向推力盘,能够进一步增加推力盘处的推力,从而更有利于提供足够的推力来使燃气轮机转子的轴向力平衡。气源通过第三补气孔将气流吹向涡轮,对涡轮形成轴向推力,有利于平衡轴向力,使燃气轮机稳定运行。
当本文中提及的气体轴承为静压轴承时,具有以下结构:包括由外向内嵌套设置的轴承本体和轴承套,轴承套与转轴在径向上具有预定的径向间隙(轴承为径向轴承时),或轴承套与推力盘在转轴的轴向上对置安装且具有预定的轴向间隙(轴承为推力轴承时);轴承套的外周面设有环形气腔,轴承套上设有贯通环形气腔与间隙(径向间隙或轴向间隙)的通孔;轴承本体上设有将环形气腔与外接气源连通的气孔;为便于加工且不影响间隙内的气体压力,所述通孔可以为变径孔,即通孔远离间隙一侧的直径大,靠近间隙一侧的直径小。
当本文中提及的气体轴承为动压轴承时,具有以下结构:包括轴承本体,轴承本体与转轴在径向上具有预定的径向间隙(轴承为径向轴承时),轴承本体的内径面或转轴的安装轴承本体的部位设置有动压发生槽;或:轴承本体与推力盘在转轴的轴向上对置安装且具有预定 的轴向间隙(轴承为推力轴承时),轴承本体朝向推力盘的端面或推力盘朝向轴承本体的端面设置有动压发生槽。
当本文中提及的气体轴承为动静压混合轴承时,其结构同时具有静压轴承和动压轴承的特征。本发明不再做过多的赘述。
本发明使用的各种术语和短语具有本领域技术人员公知的一般含义。提及的术语和短语如有与公知含义不一致的,以本发明所表述的含义为准。
附图说明
图1:燃气轮机(实施例1)的结构示意图。
图2:第一推力轴承(实施例1)的结构示意图。
图3:头锥的结构示意图。
图4:头锥与推力座的结构示意图。
图5:燃气轮机(实施例2)的结构示意图。
图6:第一推力轴承(实施例2)的结构示意图。
图7:具有空气槽的第一推力轴承(实施例2)的结构示意图。
图8:第一推力轴承(实施例2)(第二补气孔倾斜设置)的结构示意图。
图9:燃气轮机(实施例3)的结构示意图。
图10:涡轮推力部件的结构示意图。
图11:涡轮推力部件(设有第二气封孔)的结构示意图。
图12:涡轮推力部件(设有第二气封孔和齿形部)的结构示意图。
其中,100、转轴;200、压气机;300、涡轮;400、燃烧室;500、轴承组件;510、第一径向轴承;520、第二径向轴承;530、第一推力轴承;540、第二推力轴承;531、进气孔;532、第二补气孔;600、轴承座组件;700、头锥;710、头锥推力面;720、气槽;800、推力座;810、第一补气孔;820、第一气封孔;900、涡轮推力部件;910、第三补气孔;920、第二气封孔;930、齿形部。
具体实施方式
下面结合实施例对本发明作进一步的说明。然而,本发明的范围并不限于下述实施例。本领域技术人员能够理解,在不背离本发明的精神和范围的前提下,可以对本发明进行各种变化和修饰。
实施例1具有平衡轴向力结构的燃气轮机
一种具有平衡轴向力结构的燃气轮机,包括转轴100、压气机200、涡轮300和燃烧室 400,如图1所示,其中,压气机200和涡轮300均套设安装于转轴100上;压气机200的排气端与燃烧室500的入口端连通;燃烧室400的出口端与涡轮300的入口端连通;
所述转轴100上设有头锥700,头锥700位于压气机200的远离涡轮300一侧,且头锥700背向压气机200的一侧具有头锥推力面710;所述头锥700背向压气机200的一侧还设有推力座800,推力座800具有与头锥推力面710相对设置的座体面,座体面与头锥推力面之间具有头锥间隙;推力座800的径向中心区域设置有轴向贯通的第一补气孔810,第一补气孔810的进气口与气源连通,第一补气孔810的出气口与头锥间隙连通,气源可通过第一补气孔810向头锥间隙供气以对头锥700形成推力,由于第一补气孔810开设在中心区域,第一补气孔810喷出的气流能够在从边缘溢出前对头锥700提供足够的推力,进而平衡燃气轮机转子的轴向力。
所述燃气轮机还包括轴承组件500和轴承座组件600,轴承组件500位于轴承座组件600内;所述轴承组件500包括第一径向轴承510、第二径向轴承520、第一推力轴承530、第二推力轴承540和推力盘,推力盘位于第一推力轴承530和第二推力轴承540之间。
所述第一推力轴承530为气体轴承,其具有进气孔531,如图2所示,进气孔531的进气口与气源连通,进气孔531的出气口朝向推力盘,第一补气孔810的截面积大于进气孔531的截面积(截面指垂直于孔延伸方向的截面,比如第一补气孔810、进气孔531均为圆孔时,第一补气孔的孔径大于进气孔的孔径)。通常为了使轴承气膜稳定和保证气源的压力稳定,气体轴承的进气孔的截面积往往不会很大,甚至设置成节流孔状,因此供气量有限,这就限制了其能够提供的推力(大约200~300牛)。通过设置孔径较大的第一补气孔810,能够提供足够的气体流量,进而能够提供足够的推力以使燃气轮机转子的轴向力平衡。
所述进气孔531可以是直通孔,也可以是截面积从大到小的阶梯孔,阶梯孔可使进入的气流速度进一步增大,甚至达到或超过音速,以进一步增强推力。
所述进气孔531的数量可以是一个,也可以是多个;当数量为多个时,进气孔531可绕轴线设置,例如均匀设置。
所述为第一补气孔810、进气孔531供气的气源,可以是外部气泵(能够提供不同压力和流量的气,适配不同工况),也可以是压气机200(能够节约额外设置外接气源的成本)。
所述头锥700还可以具有气槽720,气槽720的槽底面为头锥推力面710,如图3所示,气槽720与推力座800的座体面之间形成能够容纳一定量气体的气腔,可以封住部分气体以减缓气体从边缘溢出的速率,进而保证推力效果。所述气槽720可以是一个,也可以是多个。所述气槽720的形状可以是圆形、椭圆形、矩形等。
所述推力座800上还可以具有围绕第一补气孔810设置的多个第一气封孔820,如图4所示,第一气封孔820的出气口朝向头锥700的头锥推力面710,第一气封孔820的截面积小于第一补气孔810的截面积;来自气源的气可以通过第一气封孔820喷向头锥700(例如头锥推力面710),以围绕第一补气孔810形成气幕,形成阻隔气幕后,头锥700处提供的推力可达1800牛;由于形成的气幕的阻挡,第一补气孔810将要从边缘溢出的气体会分散成多个小的气流,并且由于气幕中气流的扰动和摩擦,使得这些小的气流形成更加强烈的涡流,速度降低,动能消耗转变为热能,从而达到防止或减小泄露的目的。所述第一气封孔820的数量可以是一个,也可以是多个;,当为多个时,多个第一气封孔820围绕第一补气孔810设置。
所述第一气封孔820可以是直通孔,也可以是截面积从大到小的阶梯孔(如图4所示,从进气孔到出气孔,截面积从大到小),阶梯孔可使进入的气流速度进一步增大,甚至达到或超过音速,以进一步增强气幕的阻隔效果。
所述头锥700可以独立于压气机200的限位螺母(限位螺母用于将压气机固定在转轴上)单独设置,也可与压气机200的限位螺母一体设置,以兼做限位功能。
所述压气机200的进气口可开设于燃气轮机壳体侧面,为侧向进气。
所述燃烧室400环绕转轴100设置,并对应涡轮300端安装于轴承座组件600上。
所述转轴、压气机、涡轮、轴承座组件、推力座整体安装于壳体内(图1中仅示出部分壳体)。
实施例2具有平衡轴向力结构的燃气轮机
一种具有平衡轴向力结构的燃气轮机,包括转轴100、压气机200、涡轮300和燃烧室400,如图1所示,其中,压气机200和涡轮300均套设安装于转轴100上;压气机200的排气端与燃烧室500的入口端连通;燃烧室400的出口端与涡轮300的入口端连通;
所述转轴100上设有头锥700,头锥700位于压气机200的远离涡轮300一侧,且头锥700背向压气机200的一侧具有头锥推力面710;所述头锥700背向压气机200的一侧还设有推力座800,推力座800具有与头锥推力面710相对设置的座体面,座体面与头锥推力面之间具有头锥间隙;推力座800的径向中心区域设置有轴向贯通的第一补气孔810,第一补气孔810的进气口与气源连通,第一补气孔810的出气口与头锥间隙连通,气源可通过第一补气孔810向头锥间隙供气以对头锥700形成推力,由于第一补气孔810开设在中心区域,第一补气孔810喷出的气流能够在从边缘溢出前对头锥700提供足够的推力,进而平衡燃气轮机转子的轴向力。
所述燃气轮机还包括轴承组件500和轴承座组件600,轴承组件500位于轴承座组件600内;所述轴承组件500包括第一径向轴承510、第二径向轴承520、第一推力轴承530、第二推力轴承540和推力盘,推力盘位于第一推力轴承530和第二推力轴承540之间。
所述第一推力轴承530(相对于推力盘与头锥700同侧的推力轴承)上设有进气孔531,以及第二补气孔532,如图5、图6所示,进气孔531的进气口与气源连通,进气孔531的出气口朝向推力盘,第二补气孔532的进气口与气源连通,第二补气孔532的出气口朝向推力盘;第一补气孔810的截面积大于进气孔531的截面积,第二补气孔532的截面积大于进气孔531出气口的截面积。设置第二补气孔532,能够进一步增加推力盘处的推力,从而更有利于提供足够的推力来使燃气轮机转子的轴向力平衡。
所述第二补气孔532的数量可以是一个,也可以是多个;当数量为多个时,第二补气孔532可绕轴线设置,例如均匀设置。
所述进气孔531与第二补气孔532的排布形式可以是均为绕转子100轴线排布,也可以是进气孔531绕第二补气孔532排布,比如:多个进气孔531围绕转轴呈多圈排布,第二补气孔532的数量为多个并且位于相邻两圈进气孔531之间(进气孔复用为气封)。再比如:第二补气孔532围绕转轴排布,各第二补气孔532周围围绕有多个进气孔531。
所述第一推力轴承530还可具有用于均布进气的空气槽533,如图7所示,进气孔531的进气口开设在空气槽533的槽底,第二补气孔532的进气口开设在空气槽533的凸台534上,如此设置可以使得各路的气在出口喷出前互不干扰。
所述第二补气孔532可倾斜设置,第二补气孔532的进气口相对远离转轴100,第二补气孔的532出气口相对朝向转轴100,如图8所示。
所述为第一补气孔810、进气孔531、第二补气孔532供气的气源,可以是外部气泵(能够提供不同压力和流量的气,适配不同工况),也可以是压气机200(能够节约额外设置外接气源的成本)。
实施例3具有平衡轴向力结构的燃气轮机
一种具有平衡轴向力结构的燃气轮机,包括转轴100、压气机200、涡轮300和燃烧室400,如图1所示,其中,压气机200和涡轮300均套设安装于转轴100上;压气机200的排气端与燃烧室500的入口端连通;燃烧室400的出口端与涡轮300的入口端连通;
所述转轴100上设有头锥700,头锥700位于压气机200的远离涡轮300一侧,且头锥700背向压气机200的一侧具有头锥推力面710;所述头锥700背向压气机200的一侧还设有推力座800,推力座800具有与头锥推力面710相对设置的座体面,座体面与头锥推力面之 间具有头锥间隙;推力座800的径向中心区域设置有轴向贯通的第一补气孔810,第一补气孔810的进气口与气源连通,第一补气孔810的出气口与头锥间隙连通,气源可通过第一补气孔810向头锥间隙供气以对头锥700形成推力,由于第一补气孔810开设在中心区域,第一补气孔810喷出的气流能够在从边缘溢出前对头锥700提供足够的推力,进而平衡燃气轮机转子的轴向力。
所述燃气轮机还包括轴承组件500和轴承座组件600,轴承组件500位于轴承座组件600内;所述轴承组件500包括第一径向轴承510、第二径向轴承520、第一推力轴承530、第二推力轴承540和推力盘,推力盘位于第一推力轴承530和第二推力轴承540之间。
所述第一推力轴承530为气体轴承,其具有进气孔531,如图2所示,进气孔531的进气口与气源连通,进气孔531的出气口朝向推力盘,第一补气孔810的截面积大于进气孔531的截面积。通过设置孔径较大的第一补气孔810,能够提供足够的气体流量,进而能够提供足够的推力以使燃气轮机转子的轴向力平衡。
所述进气孔531可以是直通孔,也可以是截面积从大到小的阶梯孔,阶梯孔可使进入的气流速度进一步增大,甚至达到或超过音速,以进一步增强推力。
所述进气孔531的数量可以是一个,也可以是多个;当数量为多个时,进气孔531可绕轴线设置,例如均匀设置。
所述燃烧室400的出口端设有用于将燃烧室300出口端排出的高温气体导入涡轮的导叶组件,导叶组件与涡轮300之间设有涡轮推力部件900,如图9所示;所述涡轮推力部件900上设有第三补气孔910,如图10所示,第三补气孔910的进气口与气源连接,第三补气孔910的出气口朝向涡轮,来自气源的气可通过第三补气孔910喷向涡轮,对涡轮形成轴向推力,有利于平衡轴向力,使燃气轮机稳定运行。
所述第三补气孔910的数量可以是一个,也可以是多个;当为多个时,第三补气孔910可以绕轴线排布。
所述涡轮推力部件900大体呈环形并围绕转轴100设置,涡轮推力部件900与导叶组件气密连接,涡轮推力部件900与涡轮300之间可形成气封效果(涡轮推力部件900兼作气封部件);所述涡轮推力部件900上设有第二气封孔920,如图11所示,第二气封孔920的进气口与气源连接,第二气封孔920的出气口朝向涡轮300,来自气源的气可通过第二气封孔920喷向涡轮300,涡轮300具有对应第二气封孔920的接受面,第二气封孔920的截面积小于第三补气孔910的截面积。第二气封孔920喷至涡轮300的气能够形成压力气幕,能够阻挡从导叶组件喷向涡轮300叶片的燃气进入到燃气轮机内部。第二气封孔920喷出的气流速 较高(尤其是经由阶梯孔节流之后),来自涡轮300的气经由该高速气流引导(实际上,转轴100附近的腔体也会有一定的气流,其一部分来自于气体轴承的出气端,另一部分来自于压气机出口引来的冷却气),使得气幕两侧的气流速度提高而压力降低,以尽量减小气幕两侧的压力差,实现良好的气封效果。
所述第二气封孔920的数量可以是一个,也可以是多个;当数量为多个时,第二气封孔920可绕轴线设置,例如均匀设置。
所述第二气封孔920与第三补气孔910的排布形式可以是均为绕转子轴线排布,也可以是第二气封孔920绕第三补气孔910排布,比如:多个第二气封孔920围绕转轴呈多圈排布,第三补气孔910的数量为多个并且位于相邻两圈第二气封孔920之间。再比如:第三补气孔910围绕转轴排布,各第三补气孔910周围围绕有多个第二气封孔920。
所述第二气封孔920可以是直通孔,也可以是截面积从大到小的阶梯孔(如图11所示,从进气口到出气口,截面积从大到小),阶梯孔可使进入的气流速度进一步增大,甚至达到或超过音速,以进一步增强压力气幕的阻隔效果。
所述为第一补气孔810、进气孔531、第三补气孔910、第二气封孔920供气的气源,可以是外部气泵(能够提供不同压力和流量的气,适配不同工况),也可以是压气机200(能够节约额外设置外接气源的成本)。
所述涡轮300朝向第二气封孔920的接受面具有对应第二气封孔920喷射气流的凹槽,第二气封孔920喷射的气流经由该凹槽后朝向涡轮推力部件900反向回流,可增强压力气幕效果。
所述涡轮推力部件900朝向涡轮300的一侧可以具有齿形部930,与涡轮之间形成齿密封,以进一步增强气封效果,如图12所示。齿形部930可以是高低齿结构、平齿结构、斜平齿结构、侧齿结构等。
所述涡轮300对应齿形部930可以具有凸沿,凸沿具有配合齿形部930的凸起或齿结构,以提高齿形部930的气封效果。具体地,涡轮300朝向涡轮推力部件900的一侧具有凹槽,部分涡轮推力部件900延伸到该凹槽内。
所述导叶组件,包括第一支座、第二支座和位于两个支座之间的具有轴向气道的叶片组,涡轮推力部件900与第一支座之间气密连接。燃气轮机运行过程中,涡轮300可相对于燃烧室400和导叶组件转动。
给本领域技术人员提供上述实施例,以完全公开和描述如何实施和使用所主张的实施方案,而不是用于限制本文公开的范围。对于本领域技术人员而言显而易见的修饰将在所附权 利要求的范围内。
上述虽然结合实施例对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 一种具有平衡轴向力结构的燃气轮机,其特征在于:包括转轴、压气机、涡轮和燃烧室,其中,压气机和涡轮均套设安装于转轴上;压气机的排气端与燃烧室的入口端连通;燃烧室的出口端与涡轮的入口端连通;
    所述转轴上设有头锥,头锥位于压气机的远离涡轮一侧,且头锥背向压气机的一侧具有头锥推力面;所述头锥背向压气机的一侧还设有推力座,推力座具有与头锥推力面相对设置的座体面,座体面与头锥推力面之间具有头锥间隙;推力座的径向中心区域设置有轴向贯通的第一补气孔,第一补气孔的进气口与气源连通,第一补气孔的出气口与头锥间隙连通,气源通过第一补气孔向头锥间隙供气以对头锥形成推力。
  2. 根据权利要求1所述的具有平衡轴向力结构的燃气轮机,其特征在于:所述燃气轮机还包括轴承组件,所述轴承组件包括至少一个气体推力轴承及推力盘;
    所述第一补气孔的截面积大于所述气体推力轴承的进气孔的截面积。
  3. 根据权利要求2所述的具有平衡轴向力结构的燃气轮机,其特征在于:所述气体推力轴承为多个,其中相对于推力盘与头锥同侧的气体推力轴承上设有第二补气孔,第二补气孔的进气口与气源连通,第二补气孔的出气口朝向推力盘;
    第二补气孔的截面积大于所述气体推力轴承的进气孔出气口的截面积。
  4. 根据权利要求3所述的具有平衡轴向力结构的燃气轮机,其特征在于:所述设有第二补气孔的气体推力轴承中,多个进气孔围绕转轴呈多圈排布,所述第二补气孔的数量为多个并且位于相邻两圈进气孔之间;
    或:所述设有第二补气孔的气体推力轴承中,第二补气孔围绕转轴排布,各第二补气孔周围围绕有多个进气孔。
  5. 根据权利要求3所述的具有平衡轴向力结构的燃气轮机,其特征在于:所述第二补气孔倾斜设置,第二补气孔的进气口相对远离转轴,第二补气孔的出气口相对朝向转轴。
  6. 根据权利要求1所述的具有平衡轴向力结构的燃气轮机,其特征在于:所述头锥具有气槽,气槽的槽底面为所述头锥推力面,气槽与推力座的座体面之间形成气腔。
  7. 根据权利要求1所述的具有平衡轴向力结构的燃气轮机,其特征在于:所述推力座上具有围绕所述第一补气孔设置的多个第一气封孔;第一气封孔的出气口朝向头锥的头锥推力面,第一气封孔的截面积小于第一补气孔的截面积。
  8. 根据权利要求2所述的具有平衡轴向力结构的燃气轮机,其特征在于:所述第一补气孔的气源是压气机;
    和/或,与所述气体推力轴承的进气孔连通的供气装置为外部气泵。
  9. 根据权利要求1所述的具有平衡轴向力结构的燃气轮机,其特征在于:所述燃烧室的出口端设有导叶组件,导叶组件与涡轮之间设有涡轮推力部件;所述涡轮推力部件上设有第三补气孔,第三补气孔的进气口与气源连接,第三补气孔的出气口朝向涡轮,来自气源的气通过第三补气孔喷向涡轮,对涡轮形成轴向推力。
  10. 根据权利要求9所述的具有平衡轴向力结构的燃气轮机,其特征在于:所述涡轮推力部件上设有第二气封孔,第二气封孔的出气口朝向涡轮,涡轮具有对应第二气封孔的接受面;第二气封孔的截面积小于第三补气孔的截面积;
    和/或,所述涡轮推力部件朝向涡轮的一侧具有齿形部,与涡轮之间形成齿密封。
PCT/CN2022/116631 2022-01-11 2022-09-01 一种具有平衡轴向力结构的燃气轮机 WO2023134178A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210026841.4A CN114294255A (zh) 2022-01-11 2022-01-11 一种具有平衡轴向力结构的燃气轮机
CN202210026841.4 2022-01-11

Publications (1)

Publication Number Publication Date
WO2023134178A1 true WO2023134178A1 (zh) 2023-07-20

Family

ID=80976372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116631 WO2023134178A1 (zh) 2022-01-11 2022-09-01 一种具有平衡轴向力结构的燃气轮机

Country Status (2)

Country Link
CN (1) CN114294255A (zh)
WO (1) WO2023134178A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114294255A (zh) * 2022-01-11 2022-04-08 永旭腾风新能源动力科技(北京)有限公司 一种具有平衡轴向力结构的燃气轮机
CN115324730A (zh) * 2022-08-16 2022-11-11 星辰萌想科技(北京)有限公司 一种转子系统及燃气轮机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100158668A1 (en) * 2008-12-23 2010-06-24 Marcus Joseph Ottaviano Centrifugal compressor forward thrust and turbine cooling apparatus
CN104019051A (zh) * 2014-04-29 2014-09-03 北京化工大学 一种可调控型离心压缩机平衡盘密封
CN109252960A (zh) * 2018-10-21 2019-01-22 至玥腾风科技投资集团有限公司 一种燃气轮机发电机组
CN111042921A (zh) * 2019-12-27 2020-04-21 迅玲腾风汽车动力科技(北京)有限公司 一种多级涡轮式微型燃气轮机
CN212615549U (zh) * 2020-07-03 2021-02-26 刘云龙 一种离心压缩机平衡盘密封装置
CN112502832A (zh) * 2020-12-14 2021-03-16 至玥腾风科技集团有限公司 具有平衡轴向力结构的微型燃气轮机
CN214577383U (zh) * 2020-11-18 2021-11-02 靳普 一种斜向推力轴承式微型燃气轮机
CN114294255A (zh) * 2022-01-11 2022-04-08 永旭腾风新能源动力科技(北京)有限公司 一种具有平衡轴向力结构的燃气轮机
CN216950952U (zh) * 2022-01-11 2022-07-12 永旭腾风新能源动力科技(北京)有限公司 一种具有平衡轴向力结构的燃气轮机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100158668A1 (en) * 2008-12-23 2010-06-24 Marcus Joseph Ottaviano Centrifugal compressor forward thrust and turbine cooling apparatus
CN104019051A (zh) * 2014-04-29 2014-09-03 北京化工大学 一种可调控型离心压缩机平衡盘密封
CN109252960A (zh) * 2018-10-21 2019-01-22 至玥腾风科技投资集团有限公司 一种燃气轮机发电机组
CN111042921A (zh) * 2019-12-27 2020-04-21 迅玲腾风汽车动力科技(北京)有限公司 一种多级涡轮式微型燃气轮机
CN212615549U (zh) * 2020-07-03 2021-02-26 刘云龙 一种离心压缩机平衡盘密封装置
CN214577383U (zh) * 2020-11-18 2021-11-02 靳普 一种斜向推力轴承式微型燃气轮机
CN112502832A (zh) * 2020-12-14 2021-03-16 至玥腾风科技集团有限公司 具有平衡轴向力结构的微型燃气轮机
CN114294255A (zh) * 2022-01-11 2022-04-08 永旭腾风新能源动力科技(北京)有限公司 一种具有平衡轴向力结构的燃气轮机
CN216950952U (zh) * 2022-01-11 2022-07-12 永旭腾风新能源动力科技(北京)有限公司 一种具有平衡轴向力结构的燃气轮机

Also Published As

Publication number Publication date
CN114294255A (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
WO2023134178A1 (zh) 一种具有平衡轴向力结构的燃气轮机
JP4091874B2 (ja) ガスタービンエンジンの二次エア供給装置
JP5460294B2 (ja) 遠心圧縮機前方スラスト及びタービン冷却装置
EP1512844B1 (en) Gas turbine installation and cooling air supplying method
US7624580B2 (en) Device for supplying secondary air in a gas turbine engine
WO2010001656A1 (ja) ガスタービンの冷却空気供給構造およびガスタービン
WO2022105214A1 (zh) 双轴发电燃气轮机
US4177638A (en) Single shaft gas turbine engine with radial exhaust diffuser
JP5135981B2 (ja) 遠心圧縮機
IT8922053A1 (it) Dispositivo per l'alimentazione di aria di raffreddamento per palette di rotore di turbine a gas.
JPS62276226A (ja) ガスタービン・エンジンの冷却空気転送手段
US4040249A (en) Single shaft gas turbine engine with axially mounted disk regenerator
WO2023134177A1 (zh) 设有气封部件的燃气轮机
JPH0424523B2 (zh)
US5167486A (en) Turbo-machine stage having reduced secondary losses
GB803994A (en) Improvements in power units of the gas turbine type
GB666416A (en) Gas turbine power plant for jet propulsion
CN216950952U (zh) 一种具有平衡轴向力结构的燃气轮机
CN216767482U (zh) 设有气封部件的燃气轮机
WO2013031343A1 (ja) 複圧式遠心ターボ機械
WO2023134176A1 (zh) 燃气轮机
CN218206861U (zh) 一种转子系统及燃气轮机
CN116641912A (zh) 一种迷宫气封结构电动离心风机
WO2022105206A1 (zh) 平衡轴向力的多推力盘燃气轮机
JP2019167833A (ja) 排気タービン装置及び排気タービン装置を備えた過給機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919815

Country of ref document: EP

Kind code of ref document: A1