WO2023134149A1 - Flux de soudage à l'arc submergé en alliage de titane en tc4, procédé de préparation s'y rapportant et application associée - Google Patents

Flux de soudage à l'arc submergé en alliage de titane en tc4, procédé de préparation s'y rapportant et application associée Download PDF

Info

Publication number
WO2023134149A1
WO2023134149A1 PCT/CN2022/109612 CN2022109612W WO2023134149A1 WO 2023134149 A1 WO2023134149 A1 WO 2023134149A1 CN 2022109612 W CN2022109612 W CN 2022109612W WO 2023134149 A1 WO2023134149 A1 WO 2023134149A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium alloy
arc welding
submerged arc
welding flux
alloy submerged
Prior art date
Application number
PCT/CN2022/109612
Other languages
English (en)
Chinese (zh)
Inventor
徐锴
黄瑞生
冯伟
郭枭
贾立超
尹立孟
武鹏博
陈玉华
邹吉鹏
方乃文
Original Assignee
哈尔滨焊接研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨焊接研究院有限公司 filed Critical 哈尔滨焊接研究院有限公司
Publication of WO2023134149A1 publication Critical patent/WO2023134149A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding

Definitions

  • the invention belongs to the technical field of welding materials, and in particular relates to a TC4 titanium alloy submerged arc welding flux and a preparation method and application thereof.
  • TC4 titanium alloy is an important structural material, because of its excellent comprehensive properties (low density, high specific strength, stable corrosion resistance and high temperature resistance, etc.), it is widely used in aerospace, deep submersibles and weaponry and other fields .
  • the filling welding of TC4 titanium alloy thick-walled components mostly adopts MIG shielded welding and laser wire filling welding.
  • the multi-layer welding process not only restricts the substantial improvement of its efficiency, but also increases the probability of welding defects due to the multi-pass filling during the welding process, and at the same time, repeated heating will also cause the grain coarsening of the structure.
  • ultra-narrow gap welding technology will also cause defects such as poor fusion of side walls, pore slag inclusions, etc., and put forward higher requirements for welding equipment and processes. Therefore, it is urgent to find a welding material that is simple and efficient, has a low probability of defect occurrence, and has high reliability to solve the technical problems in the field of welding thick-walled titanium alloys.
  • the present invention provides a TC4 titanium alloy submerged arc welding flux and its preparation method and application.
  • the present invention provides the following technical solutions:
  • the invention provides a TC4 titanium alloy submerged arc welding flux, which is prepared from a binder and powder, and the powder is composed of BaCl 2 : 4.5%-5.5%, LiF: 1.8%-2.1%, NaF : 4.8% ⁇ 5.1% and the balance of CaF 2 mixed.
  • the binder is high modulus potassium sodium water glass with a modulus of 2.8-3.1 and a potassium-sodium ratio of 3:1.
  • the mass fraction of the binder in the flux is 3%-5%.
  • the powder is formed by mixing BaCl 2 : 5%, LiF : 2%, NaF : 5% and the balance of CaF 2 in mass fraction.
  • the mass percentage of H in the powder is ⁇ 0.003%
  • the mass percentage of N is ⁇ 0.005%
  • the mass percentage of O is ⁇ 0.010%
  • the mass percentage of S is ⁇ 0.003%
  • the mass percentage of P is ⁇ 0.003%.
  • the present invention provides the preparation method of TC4 titanium alloy submerged arc welding flux described in the above scheme, which is carried out in the following steps:
  • Step 1 Mix and dry mix the raw material powders according to the powder ratio for 3 minutes to 5 minutes, then add the binder and continue stirring for 4 minutes to 6 minutes to obtain the mixture;
  • Step 2 drying the mixture obtained in step 1 at low temperature, then sintering at high temperature, cooling to room temperature and then sieving to obtain TC4 titanium alloy submerged arc welding flux.
  • the parameters of the low-temperature drying in step 2 are: the temperature is 180-230° C., and the time is 35 minutes-60 minutes.
  • the parameters of the high-temperature sintering in step 2 are: the temperature is 700-900° C., and the time is 50 min-70 min.
  • the size of the sieve in step 2 is 10-80 mesh.
  • the present invention provides the application of the TC4 titanium alloy submerged arc welding flux described in the above scheme for TC4 titanium alloy submerged arc welding.
  • TC4 titanium alloy submerged arc welding flux is used in conjunction with the TC4 titanium alloy submerged arc welding wire.
  • TC4 titanium alloy submerged arc welding flux and TC4 titanium alloy submerged arc welding wire are used together to carry out the chemical composition and content of weld deposit metal after TC4 titanium alloy submerged arc welding: C: ⁇ 0.04wt%, Al: 5.20wt % ⁇ 5.45wt%, V: 4.20wt% ⁇ 4.80wt%, Fe: 0.10wt% ⁇ 0.20wt%, Li: 0.15wt% ⁇ 0.20wt%, Mn: ⁇ 0.015wt%, P ⁇ 0.01wt%, S ⁇ 0.02wt%, N: ⁇ 0.02wt%, the balance is Ti.
  • the main core means of regulating the structure and properties of titanium alloy submerged arc welding joints is to adjust the microstructure by changing the composition of submerged arc welding wire and flux, so as to optimize the mechanical properties of welded joints.
  • the invention proposes a TC4 titanium alloy submerged arc flux, which supplements the burning loss of elements in the welding process, adds beneficial elements to the weld seam, uses submerged arc welding technology to perform high-efficiency and high-quality welding of thick-walled titanium alloy components, and realizes welding joints The control of tissue performance finally obtains high-quality welded joints.
  • the invention scientifically adjusts the proportions of components of the flux, and optimizes the viscosity, surface tension and fluidity of molten slag.
  • CaF2 is mainly used to suppress the transition of harmful elements such as H, O, N to the weld, control the content of S and P in the weld, which is beneficial to reduce the melting point of the flux, and ensure the purity of the weld metal and the process performance of the flux ;
  • CaF 2 can also increase the gas permeability of slag, reduce the viscosity of slag, and make the slag removal performance better; The fluidity of the slag is improved, and the weld pool is isolated and protected in time; but too much CaF 2 will cause the electrical conductivity to be too high and the viscosity of the slag to decrease, which will affect the stability of the slag formation process, thereby affecting the weld formation.
  • the welding slag generated by adding BaCl 2 to the flux can evenly cover the surface of the weld metal, reduce the cooling rate of the weld metal, control the content of ⁇ ' martensite, and obtain good weld formation.
  • An appropriate content of BaCl2 can ensure that the slag has an appropriate melting point and density, and can remove harmful impurities such as sulfur and phosphorus in the weld to ensure the purity of the weld, thereby ensuring the impact toughness of the weld.
  • BaCl 2 has a lower melting point than BaF 2 , which can reduce the welding heat input during the welding process, thereby ensuring the refinement of the weld microstructure.
  • the addition of BaCl2 significantly reduces the content of O and N in the weld, thus ensuring the impact toughness of the weld.
  • Adding LiF to the flux can also reduce the melting point of the flux and improve the process performance of the flux; in addition, by strictly controlling the content of metal Li in the flux, the transformation temperature of the ⁇ phase in the weld metal can be significantly increased, and the residual ⁇ phase can be refined. Thereby, the ductility and toughness of the weld metal can be improved.
  • Adding NaF and LiF to the flux can combine with H in the weld to form HF gas overflow, which is beneficial to reduce the partial pressure of H in the arc atmosphere, thereby dehydrogenating and reducing the generation of hydrogen-induced cracks.
  • Adding an appropriate amount of high modulus potassium sodium water glass to the flux can improve the arc stability and increase the alkalinity of the flux.
  • the content of high modulus potassium sodium water glass in water glass is greater than 5%, the hydrogen content in the weld tends to increase significantly, so the mass fraction of high modulus potassium sodium water glass in the flux is controlled at 3% to 5%.
  • a kind of TC4 titanium alloy submerged arc welding flux of the present embodiment is prepared from binder and powder, wherein powder is composed of BaCl 2 : 4.5%, LiF: 2.0%, NaF: 4.9% and the CaF of balance 2 mixed, the binder is high modulus potassium sodium water glass, the modulus is 2.8 to 3.1, the potassium-sodium ratio is 3:1, the mass fraction of the binder in the flux is 4%, and the powder
  • the mass percentage content of H in the material is ⁇ 0.003%
  • the mass percentage content of N is ⁇ 0.005%
  • the mass percentage content of O is ⁇ 0.010%
  • the mass percentage content of S is ⁇ 0.003%
  • the mass percentage content of P is ⁇ 0.003%.
  • Described flux preparation method is carried out as follows:
  • Step 1 Mix and dry mix the raw material powders according to the powder ratio for 4 minutes, then add the binder and continue stirring for 5 minutes to obtain the mixture;
  • Step 2 Dry the mixture obtained in step 1 at low temperature at 200°C for 45 minutes, then sinter at 800°C for 60 minutes at high temperature, cool to room temperature and pass through an 80-mesh sieve to obtain TC4 titanium alloy submerged arc welding flux.
  • a kind of TC4 titanium alloy submerged arc welding flux of the present embodiment is prepared from binder and powder, wherein the powder consists of BaCl 2 : 5%, LiF: 2.1%, NaF: 5.1% and the CaF of the balance 2 mixed, the binder is high modulus potassium sodium water glass, the modulus is 2.8 to 3.1, the potassium-sodium ratio is 3:1, the mass fraction of the binder in the flux is 4%, and the powder
  • the mass percentage content of H in the material is ⁇ 0.003%
  • the mass percentage content of N is ⁇ 0.005%
  • the mass percentage content of O is ⁇ 0.010%
  • the mass percentage content of S is ⁇ 0.003%
  • the mass percentage content of P is ⁇ 0.003%.
  • Described flux preparation method is carried out as follows:
  • Step 1 Mix and dry mix the raw material powders according to the powder ratio for 4 minutes, then add the binder and continue stirring for 5 minutes to obtain the mixture;
  • Step 2 Dry the mixture obtained in step 1 at low temperature at 200°C for 45 minutes, then sinter at 800°C for 60 minutes at high temperature, cool to room temperature and pass through an 80-mesh sieve to obtain TC4 titanium alloy submerged arc welding flux.
  • the TC4 titanium alloy submerged arc welding flux of Embodiment 1 ⁇ 2 is used for TC4 titanium alloy submerged arc welding, and the specific process is as follows:
  • the TC4 titanium alloy submerged arc welding flux of Examples 1-2 is used in conjunction with the TC4 titanium alloy submerged arc welding wire with a diameter of 4.0mm for multi-layer multilayer submerged arc welding.
  • the base material is a TC4 titanium alloy plate with a specification of 300mm ⁇ 200mm ⁇ 30mm, process V-shaped groove, single-side groove angle is 30°, groove blunt edge is 5mm, groove root gap is 10mm, a total of 12 weldings are completed to complete the test plate welding, and the interlayer temperature is controlled within 100°C.
  • AC welding power supply Table 1 is the welding process parameters
  • Table 2 is the chemical composition of the weld deposited metal
  • Table 3 is the test results of the mechanical properties of the welded joint.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

Flux de soudage à l'arc submergé en alliage de titane TC4, préparé à partir d'un adhésif et d'une poudre, la poudre étant formée par mélange, en fraction massique, de 4,5 % à 5,5 % de BaCl2, de 1,8 % à 2,1 % de LiF, de 4,8 % à 5,1 % de NaF et le reste étant CAF2. Le procédé de préparation du flux de soudage à l'arc submergé en alliage de titane TC4 comprend : le mélange et l'agitation à sec de poudre de matière première selon une proportion de poudre, puis l'ajout d'un adhésif et la poursuite de l'agitation pour obtenir un mélange; et le séchage du mélange obtenu à basse température, puis son frittage à une température élevée, son refroidissement à température ambiante et son tamisage pour obtenir le flux de soudage à l'arc submergé en alliage de titane TC4. Selon le flux de soudage, la proportion de chaque composant du flux de soudage est réglée, la viscosité, la tension de surface et la fluidité de laitier en fusion sont optimisées et, lorsque le flux de soudage est utilisé conjointement avec un fil de soudage à l'arc submergé en alliage de titane TC4 pour le soudage à l'arc submergé, une bonne performance de processus de soudage et une bonne performance mécanique sont obtenues. La présente invention concerne également une application du flux de soudage à l'arc submergé.
PCT/CN2022/109612 2022-01-11 2022-08-02 Flux de soudage à l'arc submergé en alliage de titane en tc4, procédé de préparation s'y rapportant et application associée WO2023134149A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210025891.0 2022-01-11
CN202210025891.0A CN114260616A (zh) 2022-01-11 2022-01-11 一种tc4钛合金埋弧焊剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023134149A1 true WO2023134149A1 (fr) 2023-07-20

Family

ID=80832758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109612 WO2023134149A1 (fr) 2022-01-11 2022-08-02 Flux de soudage à l'arc submergé en alliage de titane en tc4, procédé de préparation s'y rapportant et application associée

Country Status (2)

Country Link
CN (1) CN114260616A (fr)
WO (1) WO2023134149A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114260616A (zh) * 2022-01-11 2022-04-01 哈尔滨焊接研究院有限公司 一种tc4钛合金埋弧焊剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675056A (en) * 1986-08-01 1987-06-23 The Lincoln Electric Company Submerged arc welding flux
CN1490119A (zh) * 2002-10-15 2004-04-21 中国航空工业第一集团公司北京航空制 一种用于钛合金非熔化极氩弧焊的焊剂
CN104646866A (zh) * 2015-01-16 2015-05-27 航天材料及工艺研究所 一种钛合金焊接活性剂及焊接方法
CN106271218A (zh) * 2016-08-10 2017-01-04 中国船舶重工集团公司第七二五研究所 一种用于海洋工程高强钢焊接的烧结焊剂及其制备方法
CN109530975A (zh) * 2018-12-29 2019-03-29 天津市金桥焊材集团有限公司 一种高碱高强高韧埋弧烧结焊剂
CN109807495A (zh) * 2017-11-20 2019-05-28 内蒙古工业大学 一种高效的钛合金a-tig焊接用活性剂
CN114260616A (zh) * 2022-01-11 2022-04-01 哈尔滨焊接研究院有限公司 一种tc4钛合金埋弧焊剂及其制备方法和应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2140227C3 (de) * 1970-08-12 1975-02-27 Nippon Steel Corp. Fülldrahtelektrode zum UP-SchweiBen von Stahl
SU860971A1 (ru) * 1980-01-11 1981-09-07 Предприятие П/Я М-5147 Сварочный флюс
JP2687976B2 (ja) * 1987-04-30 1997-12-08 大同特殊鋼株式会社 Ti又はTi系合金のろう付用Ti系ろう付材料
JP3419062B2 (ja) * 1994-02-24 2003-06-23 日本軽金属株式会社 アルミニウム材のろう付け方法
KR100369963B1 (ko) * 2000-10-10 2003-01-30 주식회사 인텍케미칼 저온 용접용 융제
JP5744816B2 (ja) * 2012-11-01 2015-07-08 株式会社神戸製鋼所 サブマージアーク溶接用ボンドフラックス
US20160096234A1 (en) * 2014-10-07 2016-04-07 Siemens Energy, Inc. Laser deposition and repair of reactive metals
CN104668817B (zh) * 2015-01-28 2017-01-11 辽宁工程技术大学 一种粉煤灰活性氩弧焊剂及其应用
CN106624458B (zh) * 2016-12-06 2019-06-04 中国航空工业集团公司北京航空材料研究院 一种用于6mm以下厚度钛合金气体保护焊的活性焊剂
US20190308283A1 (en) * 2018-04-04 2019-10-10 The Boeing Company Welded titanium structure utilizing dissimilar titanium alloy filler metal for enhanced fatigue life

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4675056A (en) * 1986-08-01 1987-06-23 The Lincoln Electric Company Submerged arc welding flux
CN1490119A (zh) * 2002-10-15 2004-04-21 中国航空工业第一集团公司北京航空制 一种用于钛合金非熔化极氩弧焊的焊剂
CN104646866A (zh) * 2015-01-16 2015-05-27 航天材料及工艺研究所 一种钛合金焊接活性剂及焊接方法
CN106271218A (zh) * 2016-08-10 2017-01-04 中国船舶重工集团公司第七二五研究所 一种用于海洋工程高强钢焊接的烧结焊剂及其制备方法
CN109807495A (zh) * 2017-11-20 2019-05-28 内蒙古工业大学 一种高效的钛合金a-tig焊接用活性剂
CN109530975A (zh) * 2018-12-29 2019-03-29 天津市金桥焊材集团有限公司 一种高碱高强高韧埋弧烧结焊剂
CN114260616A (zh) * 2022-01-11 2022-04-01 哈尔滨焊接研究院有限公司 一种tc4钛合金埋弧焊剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAI, MINGHUI: "A New Flux for Submerged Arc Welding of Titanium", RARE METAL ALLOY PROCESSING, no. 4, 1 May 1981 (1981-05-01), pages 65 - 66, XP009547297, ISSN: 1002-185X *
PEI, DAI: "Research on Submerged Arc Welding of Industrial Pure Titanium and TiAl6V4 Titanium Alloy", WELDING & JOINING, no. 2, 2 March 1981 (1981-03-02), pages 42 - 43, XP009547296, ISSN: 1001-1382 *

Also Published As

Publication number Publication date
CN114260616A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
CN103846577B (zh) 一种x100管线钢埋弧焊用焊剂及其制备方法
CN108161277B (zh) 用于铝-钢埋弧焊焊接的高熵药芯焊丝及其制备方法
CN103447715B (zh) 一种镍基合金埋弧焊用烧结焊剂及制备方法
CN105215576A (zh) 一种镍基带极埋弧堆焊烧结焊剂及制造方法
CN103273222B (zh) 一种高强度高韧性无后热焊接的烧结焊剂
JP5627493B2 (ja) サブマージアーク溶接方法
CN106624460B (zh) 一种船用低温钢埋弧焊烧结焊剂
CN101994015A (zh) 大规格高性能钛及钛合金锭的熔铸方法
WO2023134149A1 (fr) Flux de soudage à l'arc submergé en alliage de titane en tc4, procédé de préparation s'y rapportant et application associée
CN105195924A (zh) 一种镍基带极电渣堆焊烧结焊剂及制造方法
CN103706967A (zh) 一种焊接剂以及焊接方法
CN102672369A (zh) 一种x100级管线钢高焊速埋弧焊用高韧性烧结焊剂
CN103273213A (zh) 一种高强度高韧性埋弧焊丝
CN105033499A (zh) 一种用于稀土镁合金钎焊的耐热镁合金钎料及其制备方法
CN103567656A (zh) 一种铝合金用钎焊材料
CN108057964A (zh) 镍基丝极埋弧焊用烧结焊剂
CN111790999A (zh) 一种25Mn奥氏体钢用金属粉芯埋弧焊丝焊剂组合
CN102528309B (zh) 带状电极电渣堆焊用焊剂及其制备方法
CN106425166A (zh) 一种含Nb不锈钢单层带极电渣堆焊焊带及焊剂
CN114346522B (zh) 一种氢能用可使用交流电的不锈钢埋弧焊丝焊剂及焊接工艺
CN110052739B (zh) 一种高强高韧埋弧横焊焊剂及其制备方法和应用
CN113579549B (zh) 一种金属粉芯型药芯焊丝
CN104874939A (zh) 一种高稳定性水下湿法焊条用药皮
CN114850724A (zh) 一种奥氏体低温钢埋弧焊用高碱性烧结焊剂及其制备方法
CN111761253B (zh) 全位置焊接奥氏体超低温钢用无缝药芯焊丝及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919786

Country of ref document: EP

Kind code of ref document: A1