WO2023134135A1 - 一种两轮电动车的锂电池管理方法 - Google Patents

一种两轮电动车的锂电池管理方法 Download PDF

Info

Publication number
WO2023134135A1
WO2023134135A1 PCT/CN2022/103855 CN2022103855W WO2023134135A1 WO 2023134135 A1 WO2023134135 A1 WO 2023134135A1 CN 2022103855 W CN2022103855 W CN 2022103855W WO 2023134135 A1 WO2023134135 A1 WO 2023134135A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric vehicle
control unit
lithium battery
vehicle control
information
Prior art date
Application number
PCT/CN2022/103855
Other languages
English (en)
French (fr)
Inventor
刘会辉
李青
石毓林
徐斌
Original Assignee
江苏新日电动车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏新日电动车股份有限公司 filed Critical 江苏新日电动车股份有限公司
Publication of WO2023134135A1 publication Critical patent/WO2023134135A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J43/00Arrangements of batteries
    • B62J43/10Arrangements of batteries for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J50/00Arrangements specially adapted for use on cycles not provided for in main groups B62J1/00 - B62J45/00
    • B62J50/20Information-providing devices
    • B62J50/21Information-providing devices intended to provide information to rider or passenger
    • B62J50/22Information-providing devices intended to provide information to rider or passenger electronic, e.g. displays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to the technical field of lithium batteries, in particular to a lithium battery management method for two-wheeled electric vehicles.
  • Two-wheeled electric vehicles greatly facilitate people's short-distance travel.
  • Two-wheeled electric vehicles use batteries as power sources.
  • Commonly used batteries include lead-acid batteries and lithium batteries.
  • Lithium batteries have high operating voltage, small size, light weight, high energy density, no memory effect, no pollution, and small self-discharge. and long cycle life, etc., are gradually replacing lead-acid batteries.
  • lithium batteries need to be equipped with a BMS management system to protect lithium batteries from overcharge, overdischarge, and overcurrent. Security protection, balance protection and SOC calculation and other security protection.
  • the two-wheeled electric vehicles will be equipped with lithium batteries with fixed voltage specifications and a BMS management system that matches the voltage specifications of lithium batteries.
  • a BMS management system that matches the voltage specifications of lithium batteries.
  • To increase the mileage of two-wheeled electric vehicles replace the lithium battery of the original electric vehicle with a lithium battery with a higher voltage specification, and this replacement is likely to bring safety hazards, such as excessive discharge current may exceed that of the two-wheeled electric vehicle
  • the original overcurrent protection measures, or the BMS management system cannot perform normal balanced protection on the replaced lithium battery, so that the voltage of each battery of the lithium battery is inconsistent, thereby reducing the service life of the lithium battery.
  • the BMS management system of the lithium battery of the existing two-wheeled electric vehicle can only protect the lithium battery. After the voltage specification of the lithium battery is replaced, the two-wheeled electric vehicle can still run normally. Safety brings hidden dangers.
  • the present invention provides a lithium battery management method for two-wheel electric vehicles.
  • the technical problem to be solved is that after the voltage specification of the lithium battery is replaced in the existing two-wheel electric vehicles using lithium batteries, the two-wheel Electric vehicles can still run normally, and there are potential safety hazards.
  • a lithium battery management method for a two-wheeled electric vehicle including a trigger unit, an electric vehicle control unit, a BMS management unit, and a motor drive unit, specifically including the following steps:
  • the trigger unit sends a trigger signal to the electric vehicle control unit when the lithium battery of the two-wheeled electric vehicle is reinstalled;
  • the electric vehicle control unit After receiving the trigger signal, the electric vehicle control unit sends request information for obtaining battery information to the BMS management unit;
  • the BMS management unit After the BMS management unit receives the request information sent by the electric vehicle control unit, the BMS management unit sends the information of the lithium battery to the electric vehicle control unit; If the BMS management unit does not receive the lithium battery information sent by the BMS control unit within the first time after sending the request signal, the electric vehicle control unit limits the motor current input to the two-wheeled electric vehicle through the motor drive unit; If the electric vehicle control unit receives the lithium battery information sent by the BMS control unit within the first time after sending the request signal to the BMS management unit, the two-wheeled electric vehicle is normally ridden.
  • step S3 if the electric vehicle control unit does not receive the received request information sent by the BMS management unit after sending the request signal to the BMS management unit for the first time, the electric vehicle control The unit re-sends request information to the BMS management unit; when the electric vehicle control unit does not receive the accepted request information sent by the BMS management unit after N times of sending request information to the BMS management unit, the electric vehicle The control unit limits the motor current input to the two-wheeled electric vehicle through the motor drive unit, and N is a positive integer greater than 1.
  • step S3 if the BMS management unit of the lithium battery does not receive the request information sent by the electric vehicle control unit within the second time after the lithium battery is installed and powered, the BMS management unit limits the lithium battery.
  • the output current of the battery sends the first alarm information to the electric vehicle control unit, and the electric vehicle control unit displays the first alarm information on the display unit after receiving the first alarm information.
  • step S4 if the BMS management unit does not receive the accepted information sent by the electric vehicle control unit after sending the lithium battery information to the electric vehicle control unit, then the BMS management unit sends the electric vehicle control unit a new The control unit sends the information of the lithium battery, and when the BMS management unit does not receive the received information sent by the electric vehicle control unit after sending the information of the lithium battery to the electric vehicle control unit M times, the BMS management unit limits the lithium battery The electric vehicle control unit sends the second alarm information to the electric vehicle control unit, and the electric vehicle control unit displays the second alarm information on the display unit after receiving the second alarm information.
  • the request information for obtaining battery information includes obtaining lithium battery voltage specification information, maximum operating current information, power information, voltage judgment value, current judgment value, and power judgment value.
  • the BMS management unit compares the voltage specification value of the lithium battery itself with the voltage judgment value, compares the maximum current working value of the lithium battery itself with the current judgment value, and compares the power value of the lithium battery itself with the power The judgment value is compared, if the comparison result is different, the BMS management unit limits the output current of the lithium battery and sends a third alarm message to the electric vehicle control unit, and the electric vehicle control unit receives the third alarm After the message, the third alarm message is displayed on the display unit.
  • step S4 after receiving the battery information sent by the BMS management unit, the electric vehicle control unit determines to compare the voltage specification value of the lithium battery itself with the voltage judgment value, and compare the maximum current of the lithium battery itself The working value is compared with the current judgment value and the power value of the lithium battery itself is compared with the power judgment value. If the comparison result is different, the electric vehicle control unit limits the input to the motor of the two-wheeled electric vehicle through the motor drive unit. Current size.
  • the BMS management unit monitors whether the lithium battery has a fault alarm. If there is a fault alarm, the BMS management unit sends the corresponding fault alarm information to the electric vehicle control unit and adjusts the lithium battery. power output, the electric vehicle control unit displays the failure alarm information on the display unit.
  • the BMS management unit sends the battery status information and power output status information to the electric vehicle control unit, and the electric vehicle control unit displays the battery status information and power output status information on the display unit display, the electric vehicle control unit judges whether the power of the lithium battery is lower than the power judgment value according to the battery state information and judges whether the temperature of the lithium battery is greater than the temperature judgment threshold, if the power of the lithium battery is lower than the power judgment value, and/or the lithium battery If the temperature is greater than the temperature judgment value, the electric vehicle control unit sends a request to reduce the output power to the BMS management unit, and the BMS management unit reduces the output power of the lithium battery after receiving the output power reduction request.
  • the electric vehicle control unit when the power of the lithium battery is lower than 20%, the electric vehicle control unit sends a request to reduce the output power to 50% of the original output power to the BMS management unit.
  • the electric vehicle control unit when the temperature of the lithium battery is greater than 45°C, the electric vehicle control unit sends a request to the BMS management unit to reduce the output power to 80% of the original output power; when the temperature of the lithium battery is greater than 55°C , the electric vehicle control unit sends a request to reduce the output power to 50% of the original output power to the BMS management unit; when the temperature of the lithium battery is greater than 60°C, the electric vehicle control unit sends a stop request to the BMS management unit PTO request.
  • the present invention has the beneficial effects that: when the lithium battery of the two-wheeled electric vehicle is reinstalled, the method of the present invention judges whether the electric vehicle control unit and the BMS management unit can normally establish communication to determine whether the two-wheeled electric vehicle Whether the lithium battery has been changed, if changed, reduce the current input to the motor of the two-wheeled electric vehicle to avoid potential safety hazards; in addition, after the electric vehicle control unit and the BMS management unit of the present invention can establish communication, the BMS management According to the battery information sent by the electric vehicle control unit, the unit judges whether the voltage specification, maximum operating current and power of its own lithium battery meet the requirements.
  • the BMS management unit limits the output current of the lithium battery to ensure the safety of the two-wheeled electric vehicle.
  • the installed lithium battery meets the requirements and has not been changed to avoid potential safety hazards and ensure the safety of riders; finally, the BMS management unit monitors the power of the lithium battery and adjusts the power output of the lithium battery to make the lithium battery There will be no over-discharge phenomenon, and the lithium battery can be prevented from working in a high temperature environment by monitoring the temperature of the lithium battery.
  • Fig. 1 is a flowchart of the present invention in an embodiment.
  • a lithium battery management method for a two-wheeled electric vehicle includes a trigger unit, an electric vehicle control unit, a BMS management unit and a motor drive unit, specifically including the following steps:
  • the trigger unit sends a trigger signal to the electric vehicle control unit when the lithium battery of the two-wheel electric vehicle is reinstalled;
  • the electric vehicle control unit After receiving the trigger signal, the electric vehicle control unit sends a request message for obtaining battery information to the BMS management unit;
  • the BMS management unit After the BMS management unit receives the request information sent by the electric vehicle control unit, the BMS management unit sends the information of the lithium battery to the electric vehicle control unit; if the electric vehicle control unit sends the request signal to the BMS management unit The information of the lithium battery sent by the BMS control unit is not received within the first time, then the electric vehicle control unit limits the motor current size input to the two-wheeled electric vehicle through the motor drive unit; if the electric vehicle control unit is sending to the BMS management unit After receiving the lithium battery information sent by the BMS control unit within the first time after sending the request signal, the two-wheeled electric vehicle will ride normally.
  • step S1 reinstalling the lithium battery of the electric vehicle means that the power output connector of the lithium battery is unplugged from the power input socket on the electric vehicle and plugged in again.
  • the electric vehicle control unit starts to establish a communication connection with the BMS management unit after receiving the trigger signal. If the electric vehicle control unit and the BMS management unit cannot establish a communication connection according to the preset, it is considered that the lithium battery of the electric vehicle has been replaced. , the electric vehicle control unit reduces the magnitude of the motor current input to the two-wheeled electric vehicle through the motor drive unit.
  • step S3 if the electric vehicle control unit does not receive the received request information sent by the BMS management unit after sending the request signal to the BMS management unit for the first time, the electric vehicle control unit sends the request to the BMS management unit again information; when the electric vehicle control unit does not receive the accepted request information sent by the BMS management unit after sending the request information to the BMS management unit N times, the electric vehicle control unit limits the input to the two-wheeled electric vehicle through the motor drive unit.
  • Motor current, N is a positive integer greater than 1. In a certain embodiment, N is 2.
  • step S3 if the BMS management unit of the lithium battery does not receive the request information sent by the electric vehicle control unit within the second time after the lithium battery is installed and powered, the BMS management unit limits the output current of the lithium battery and The first alarm information is sent to the electric vehicle control unit, and the electric vehicle control unit displays the first alarm information on the display unit after receiving the first alarm information.
  • the BMS management unit of the lithium battery will limit the output current of the lithium battery to prevent the electric vehicle from riding normally. , thereby avoiding the mutual replacement of lithium batteries of electric vehicles and ensuring the riding safety of users.
  • step S4 if the BMS management unit has sent the information of the lithium battery to the electric vehicle control unit If the accepted information sent by the electric vehicle control unit is not received, the BMS management unit re-sends the lithium battery information to the electric vehicle control unit.
  • the BMS management unit sends the lithium battery information to the electric vehicle control unit M times, it does not receive
  • the BMS management unit limits the output current of the lithium battery, and sends the second alarm information to the electric vehicle control unit, and the electric vehicle control unit sends the second alarm after receiving the second alarm information.
  • the information is displayed on the display unit.
  • the above content in this embodiment is to determine whether the lithium battery of the electric vehicle has been replaced by judging whether the electric vehicle control unit and the BMS management unit can communicate normally, that is, establish a handshake. In a certain situation, both the electric vehicle control unit and the BMS management unit can establish communication normally, and at this time it is necessary to further determine whether the lithium battery on the electric vehicle has been replaced.
  • the request information for obtaining battery information in step S1 includes obtaining the voltage specification information, maximum operating current information, power information, voltage judgment value, current judgment value, and power judgment value of the lithium battery.
  • the BMS management unit receives the request information, it compares the voltage specification value of the lithium battery itself with the voltage judgment value, compares the maximum current working value of the lithium battery itself with the current judgment value, and compares the power value of the lithium battery itself with the power If the comparison results are different, the BMS management unit limits the output current of the lithium battery and sends a third alarm message to the electric vehicle control unit, and the electric vehicle control unit sends the third alarm message after receiving the third alarm message. Three alarm messages are displayed on the display unit.
  • the difference in the comparison results means that at least one of the lithium battery’s own voltage specification value and voltage judgment value, the lithium battery’s own maximum current operating value and current judgment value, and the lithium battery’s own power value and power judgment value are different.
  • the third alarm information should reflect all different parameters. For example, when the voltage specification value and the maximum operating current are different, the BMS management unit sends an alarm message indicating that the lithium battery voltage specification and maximum operating current are abnormal to the electric vehicle control unit.
  • step S4 the electric vehicle control unit receives the BMS management After the battery information sent by the unit is judged, the voltage specification value of the lithium battery itself is compared with the voltage judgment value, the maximum current working value of the lithium battery itself is compared with the current judgment value, and the power value of the lithium battery itself is compared with the power judgment value. comparison, if the comparison results are different, the electric vehicle control unit limits the magnitude of the motor current input to the two-wheeled electric vehicle through the motor drive unit. In actual use, the second judgment of the battery information sent by the BMS management system through the electric vehicle control unit can ensure that when the information of the lithium battery is incorrect, the electric vehicle cannot be ridden normally.
  • the above content in this embodiment is to determine whether the electric vehicle control unit and the BMS management unit can normally establish communication and by judging whether the voltage specification, maximum operating current value and power of the lithium battery are the same as the judgment value to judge the lithium battery of the electric vehicle has been replaced.
  • the BMS management unit monitors whether the lithium battery has a fault alarm. If there is a fault alarm, the BMS management unit will The alarm information is sent to the electric vehicle control unit and the power output of the lithium battery is adjusted, and the electric vehicle control unit displays the failure alarm information on the display unit.
  • the BMS management unit sends the battery status information and the power output status information to the electric vehicle control unit, and the electric vehicle control unit displays the battery status information and the power output status information on the display unit, and the electric vehicle
  • the vehicle control unit judges whether the power of the lithium battery is lower than the power judgment value according to the battery state information and judges whether the temperature of the lithium battery is greater than the temperature judgment threshold, if the power of the lithium battery is lower than the power judgment value, and/or the temperature of the lithium battery is greater than temperature judgment value, the electric vehicle control unit sends a request to reduce the output power to the BMS management unit, and the BMS management unit reduces the output power of the lithium battery after receiving the request to reduce the output power.
  • the electric vehicle control unit sends a request to reduce the output power to 50% of the original output power to the BMS management unit.
  • the power judgment value can be adjusted, for example, it can be 15% or 25%.
  • the output power of the lithium battery can also be reduced to 45% or 55% of the original output power.
  • the electric vehicle control unit when the temperature of the lithium battery is greater than 45°C, the electric vehicle control unit sends a request to the BMS management unit to reduce the output power to 80% of the original output power; when the temperature of the lithium battery is greater than 55°C, the electric vehicle The control unit sends a request to reduce the output power to 50% of the original output power to the BMS management unit; when the temperature of the lithium battery is greater than 60°C, the electric vehicle control unit sends a request to stop power output to the BMS management unit.
  • the temperature judgment value can be adjusted according to actual needs, and the ratio of the reduced output power of the lithium battery to the original output power can be adjusted according to actual needs.
  • the method of the present invention judges whether the lithium battery of the two-wheeled electric vehicle has been changed by judging whether the electric vehicle control unit and the BMS management unit can normally establish communication when the lithium battery of the two-wheeled electric vehicle is reinstalled. Reduce the current size of the motor input to the two-wheeled electric vehicle to avoid potential safety hazards; in addition, after the electric vehicle control unit and the BMS management unit of the present invention can establish communication, the BMS management unit judges itself according to the battery information sent by the electric vehicle control unit.
  • the BMS management unit will limit the output current of the lithium battery, so as to ensure that the lithium battery installed in the two-wheeled electric vehicle meets the requirements when it is running normally , no changes, to avoid potential safety hazards and ensure the safety of riders; finally, the BMS management unit monitors the power of the lithium battery and adjusts the power output of the lithium battery so that the lithium battery will not be over-discharged. Monitoring the temperature of the lithium battery can prevent the lithium battery from working in a high temperature environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种两轮电动车的锂电池管理方法,包括触发单元在两轮电动车的锂电池重新安装时向电动车控制单元发送触发信号;电动车控制单元接收到触发信号后向BMS管理单元发送请求获取电池信息的请求信息;如果电动车控制单元没有接收到BMS管理单元发送的已接收请求信息,则电动车控制单元通过电机驱动单元限制输入到两轮电动车的电机电流大小;当BMS管理单元接收到电动车控制单元发送的请求信息后,BMS管理单元将锂电池的信息发送给电动车控制单元;如果电动车控制单元在向BMS管理单元发送所述请求信号后的第一时间内没有接收到BMS控制单元发送的锂电池的信息,则电动车控制单元通过电机驱动单元限制输入到两轮电动车的电机电流大小;如果电动车控制单元在向BMS管理单元发送请求信号后的第一时间内接收到BMS控制单元发送的锂电池的信息,则两轮电动车正常骑行。此方法能避免产生安全隐患,保障骑行者的安全。

Description

一种两轮电动车的锂电池管理方法 技术领域
本发明涉及锂电池技术领域,具体涉及一种两轮电动车的锂电池管理方法。
背景技术
在人们的日常生活中,两轮电动车极大地方便了人们的短距离出行。两轮电动车使用电池作为动力源,常用的电池包括铅酸蓄电池和锂电池,其中锂电池因其工作电压高、体积小、重量轻、能量密度大、无记忆效应、无污染、自放电小和循环寿命长等优点,正在逐渐替代铅酸蓄电池,但是锂电池由于其安全性差和存在爆炸等缺陷,需要为锂电池配置BMS管理系统来对锂电池进行过充保护、过放保护、过流保护、均衡保护和SOC计算等安全保护。
在两轮电动车生产完成后,两轮电动车都会配置有固定电压规格的锂电池以及与锂电池电压规格相匹配的BMS管理系统,但是在生活中存在私自更换锂电池电压规格的情况即为了增加两轮电动车的行驶里程,将原厂电动车的锂电池更换为更高电压规格的锂电池,而这种更换容易带来安全隐患,例如过大的放电电流可能超过了两轮电动车的原本过流保护措施,又或者BMS管理系统不能对更换后的锂电池进行正常的均衡保护,使锂电池的每节电池的电压不一致,进而减少锂电池的使用寿命。而现有两轮电动车的锂电池的BMS管理系统只能对锂电池进行保护,两轮电动车在更换锂电池的电压规格后,两轮电动车仍能正常行驶,给骑行者的骑行安全带来隐患。
发明内容
鉴于背景技术的不足,本发明是提供了一种两轮电动车的锂电池管理方法,所要解决的技术问题是现有采用锂电池的两轮电动车在更换锂电池的电压规格后,两轮电动车仍能正常行驶,存在安全隐患。
为解决以上技术问题,本发明提供了如下技术方案:一种两轮电动车的锂电池管理方法,包括触发单元、电动车控制单元、BMS管理单元和电机驱动单元,具体包括以下步骤:
S1:所述触发单元在所述两轮电动车的锂电池重新安装时向所述电动车控制单元发送触发信号;
S2:所述电动车控制单元接收到所述触发信号后向所述BMS管理单元发送请求获取电池信息的请求信息;
S3:如果电动车控制单元在向所述BMS管理单元发送所述请求信号后没有接收到所述BMS管理单元发送的已接收请求信息,则电动车控制单元通过所述电机驱动单元限制输入到两轮电动车的电机电流大小;
S4:当BMS管理单元接收到所述电动车控制单元发送的请求信息后,所述BMS管理单元将所述锂电池的信息发送给所述电动车控制单元;如果电动车控制单元在向所述BMS管理单元发送所述请求信 号后的第一时间内没有接收到BMS控制单元发送的锂电池的信息,则电动车控制单元通过所述电机驱动单元限制输入到两轮电动车的电机电流大小;如果电动车控制单元在向所述BMS管理单元发送所述请求信号后的第一时间内接收到BMS控制单元发送的锂电池的信息,则两轮电动车正常骑行。
作为进一步的技术方案,步骤S3中,如果电动车控制单元在第一次向所述BMS管理单元发送所述请求信号后没有接收到所述BMS管理单元发送的已接收请求信息,则电动车控制单元重新向所述BMS管理单元发送请求信息;当所述电动车控制单元向所述BMS管理单元N次发送请求信息后都没有接收到所述BMS管理单元发送的已接受请求信息,则电动车控制单元通过所述电机驱动单元限制输入到两轮电动车的电机电流大小,N为大于1的正整数。
作为进一步的技术方案,步骤S3中,如果锂电池的BMS管理单元在锂电池安装后供电的第二时间内没有接收到电动车控制单元发送的请求信息,则所述BMS管理单元限制所述锂电池的输出电流并向所述电动车控制单元发送第一报警信息,所述电动车控制单元接收到第一报警信息后将第一报警信息在显示单元上显示。
作为进一步的技术方案,步骤S4中,如果BMS管理单元在向所述电动车控制单元发送完锂电池的信息后没有接收到电动车控制单元发送的已接受信息,则BMS管理单元重新向电动车控制单元发送锂电池的信息,当所述BMS管理单元向所述电动车控制单元M次发送锂电池的信息后都没有接收到电动车控制单元发送的已接收信息,则BMS管理单元限制锂电池的输出电流大小,并向电动车控制单元发送第二报警信息,所述电动车控制单元接收到第二报警信息后将第二报警信息在显示单元上显示。
作为进一步的技术方案,所述获取电池信息的请求信息包括获取锂电池的电压规格信息、最大工作电流信息、功率信息、电压判定值、电流判定值和功率判定值,步骤S4中,当所述BMS管理单元接收到所述请求信息后将锂电池自身的电压规格值与电压判定值进行比较、将锂电池自身的最大电流工作值与电流判断值进行比较和将锂电池自身的功率值与功率判定值进行比较,如果出现比较结果不一样,则BMS管理单元限制所述锂电池的输出电流大小并向所述电动车控制单元发送第三报警信息,所述电动车控制单元接收到第三报警信息后将第三报警信息在显示单元上显示。
作为进一步的技术方案,步骤S4中,所述电动车控制单元在接收到BMS管理单元发送的电池信息后判定将锂电池自身的电压规格值与电压判定值进行比较、将锂电池自身的最大电流工作值与电流判断值进行比较和将锂电池自身的功率值与功率判定值进行比较,如果出现比较结果不一样,则电动车控制单元通过所述电机驱动单元限制输入到两轮电动车的电机电流大小。
作为进一步的技术方案,当电动车在正常行驶时,BMS管理单元监控锂电池是否有故障报警,如果存在故障报警,则BMS管理单元将对应的故障报警信息发送给电动车控制单元并调整锂电池的动力输出,电动车控制单元将所述故障报警信息在显示单元上显示。
作为进一步的技术方案,当电动车在正常行驶时,BMS管理单元将电池状态信息和动力输出状态信息发送给电动车控制单元,电动车控制单元将电池状态信息和动力输出状态信息在显示单元上显示,电动车控制单元根据电池状态信息判断锂电池的电量是否低于电量判定值时和判断锂电池的温度是否大于温度判定阈值,如果锂电池的电量低于电量判定值,和/或锂电池的温度大于温度判定值,则电动车控制单元向所述BMS管理单元发送降低输出功率请求,所述BMS管理单元接收到所述降低输出功率请求后降低锂电池的输出功率。
作为进一步的技术方案,当锂电池的电量低于20%时,所述电动车控制单元向所述BMS管理单元发送降低输出功率至原输出功率50%的请求。
作为进一步的技术方案,当锂电池的温度大于45℃时,所述电动车控制单元向所述BMS管理单元发送降低输出功率至原输出功率80%的请求;当锂电池的温度大于55℃时,所述电动车控制单元向所述BMS管理单元发送降低输出功率至原输出功率50%的请求;当锂电池的温度大于60℃时,所述电动车控制单元向所述BMS管理单元发送停止动力输出的请求。
本发明与现有技术相比所具有的有益效果是:本发明方法在两轮电动车的锂电池重新安装时通过判断电动车控制单元和BMS管理单元是否能正常建立通信来判断两轮电动车的锂电池是否被更改过,如果更改过则降低输入到两轮电动车的电机的电流大小,避免产生安全隐患;另外本发明的电动车控制单元和BMS管理单元在能建立通信后,BMS管理单元根据电动车控制单元发送的电池信息判断自身锂电池的规格的电压规格、最大工作电流和功率是否符合要求,如果不符合则BMS管理单元限制锂电池的输出电流,以此确保两轮电动车在正常行驶时,其安装的锂电池符合要求、没有更改,避免产生安全隐患,保障骑行者的安全;最后BMS管理单元通过对锂电池的电量进行监控,调整锂电池的动力输出,使锂电池不会出现过放现象,另外通过对锂电池的温度进行监控可以避免锂电池在高温环境中工作。
附图说明
图1为实施例中的本发明的流程图。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
如图1所示,一种两轮电动车的锂电池管理方法,包括触发单元、电动车控制单元、BMS管理单元和电机驱动单元,具体包括以下步骤:
S1:触发单元在两轮电动车的锂电池重新安装时向电动车控制单元发送触发信号;
S2:电动车控制单元接收到触发信号后向BMS管理单元发送请求获取电池信息的请求信息;
S3:如果电动车控制单元在向BMS管理单元发送所述请求信号后没有接收到BMS管理单元发送的已接收请求信息,则电动车控制单元通过所述电机驱动单元限制输入到两轮电动车的电机电流大小;
S4:当BMS管理单元接收到电动车控制单元发送的请求信息后,BMS管理单元将锂电池的信息发送给所述电动车控制单元;如果电动车控制单元在向BMS管理单元发送请求信号后的第一时间内没有接收到BMS控制单元发送的锂电池的信息,则电动车控制单元通过所述电机驱动单元限制输入到两轮电动车的电机电流大小;如果电动车控制单元在向BMS管理单元发送请求信号后的第一时间内接收到BMS控制单元发送的锂电池的信息,则两轮电动车正常骑行。
其中,在步骤S1中,电动车的锂电池重新安装是指锂电池的电源输出接头从电动车上的电源输入座上拔下后又重新插上去。
在实际使用时,如果要更换电动车上的锂电池,则需要先将原本电动车上的锂电池取下,然后再电动车上安装新的锂电池,因此本发明通过在电动车上的锂电池重新安装时电动车控制单元接收到触发信号后开始与BMS管理单元建立通信连接,如果电动车控制单元与BMS管理单元不能按照预设建立通信连接,则认为电动车的锂电池已被更换过,电动车控制单元通过电机驱动单元降低输入到两轮电动车的电机电流大小。
在实际使用时,电动车控制单元向BMS管理单元发送请求信息时,BMS管理单元可能因为某些干扰没有接收到请求信息,为避免这种情况对电动车的骑行产生影响,具体地,本实施例中,步骤S3中,如果电动车控制单元在第一次向BMS管理单元发送请求信号后没有接收到BMS管理单元发送的已接收请求信息,则电动车控制单元重新向BMS管理单元发送请求信息;当电动车控制单元向BMS管理单元N次发送请求信息后都没有接收到BMS管理单元发送的已接受请求信息,则电动车控制单元通过所述电机驱动单元限制输入到两轮电动车的电机电流大小,N为大于1的正整数。在某种实施方式中,N为2。
本实施例中,步骤S3中,如果锂电池的BMS管理单元在锂电池安装后供电的第二时间内没有接收到电动车控制单元发送的请求信息,则BMS管理单元限制锂电池的输出电流并向电动车控制单元发送第一报警信息,电动车控制单元接收到第一报警信息后将第一报警信息在显示单元上显示。在实际使用时,通过这样设置,当电动车上装配的锂电池被拆下来装配到别的电动车上后,锂电池的BMS管理单元会通过限制锂电池的输出电流使电动车不能正常骑行,进而避免电动车的锂电池出现互相更换的情况,确保用户的骑行安全。
同样地,为了避免干扰对影响电动车控制单元接收BMS管理单元发送的锂电池的信息的接收,本实施例中,步骤S4中,如果BMS管理单元在向电动车控制单元发送完锂电池的信息后没有接收到电动车控制单元发送的已接受信息,则BMS管理单元重新向电动车控制单元发送锂电池的信息,当BMS 管理单元向电动车控制单元M次发送锂电池的信息后都没有接收到电动车控制单元发送的已接收信息,则BMS管理单元限制锂电池的输出电流大小,并向电动车控制单元发送第二报警信息,电动车控制单元接收到第二报警信息后将第二报警信息在显示单元上显示。
本实施例中的以上内容都是通过判断电动车控制单元和BMS管理单元是否能正常通信即建立握手来判断电动车的锂电池是否被更换过。在某种情况中,电动车控制单元和BMS管理单元都是能正常建通信的,此时需要进一步的判断电动车上的锂电池是否被更换过。
具体地,本实施例中,步骤S1中的获取电池信息的请求信息包括获取锂电池的电压规格信息、最大工作电流信息、功率信息、电压判定值、电流判定值和功率判定值,步骤S4中,当BMS管理单元接收到请求信息后将锂电池自身的电压规格值与电压判定值进行比较、将锂电池自身的最大电流工作值与电流判断值进行比较和将锂电池自身的功率值与功率判定值进行比较,如果出现比较结果不一样,则BMS管理单元限制所述锂电池的输出电流大小并向电动车控制单元发送第三报警信息,电动车控制单元接收到第三报警信息后将第三报警信息在显示单元上显示。
其中出现比较结果不一样是指锂电池自身的电压规格值与电压判定值、锂电池自身的最大电流工作值与电流判断值和锂电池自身的功率值与功率判定值中至少存在一个不一样,第三报警信息应体现出所有不一样的参数,例如电压规格值和最大工作电流均不一样时,BMS管理单元向电动车控制单元发送锂电池电压规格和最大工作电流异常的报警信息。
由于BMS管理单元可以通过调整其输出电流大小来限制电动车的转速,因电动车控制单元可以通过电机驱动单元来调节电动车的转速大小,在步骤S4中,电动车控制单元在接收到BMS管理单元发送的电池信息后判定将锂电池自身的电压规格值与电压判定值进行比较、将锂电池自身的最大电流工作值与电流判断值进行比较和将锂电池自身的功率值与功率判定值进行比较,如果出现比较结果不一样,则电动车控制单元通过电机驱动单元限制输入到两轮电动车的电机电流大小。在实际使用时,通过电动车控制单元对BMS管理系统发送电池的信息进行二次判断可以确保当锂电池的信息不对时,电动车不能正常骑行。
本实施例中的以上内容是通过判断电动车控制单元与BMS管理单元是否能正常建立通信和通过判断锂电池的电压规格、最大工作电流值和功率是否与判定值一样来判断电动车的锂电池是否被更换过。
在实际使用时,为了锂电池的使用安全,在本实施例中,当电动车在正常行驶时,BMS管理单元监控锂电池是否有故障报警,如果存在故障报警,则BMS管理单元将对应的故障报警信息发送给电动车控制单元并调整锂电池的动力输出,电动车控制单元将所述故障报警信息在显示单元上显示。
进一步地,当电动车在正常行驶时,BMS管理单元将电池状态信息和动力输出状态信息发送给电 动车控制单元,电动车控制单元将电池状态信息和动力输出状态信息在显示单元上显示,电动车控制单元根据电池状态信息判断锂电池的电量是否低于电量判定值时和判断锂电池的温度是否大于温度判定阈值,如果锂电池的电量低于电量判定值,和/或锂电池的温度大于温度判定值,则电动车控制单元向BMS管理单元发送降低输出功率请求,BMS管理单元接收到降低输出功率请求后降低锂电池的输出功率。
具体地,当锂电池的电量低于20%时,电动车控制单元向BMS管理单元发送降低输出功率至原输出功率50%的请求。在某种实施方式中,在保障锂电池使用安全的情况下,可以调整电量判定值,例如可以为15%或者25%。在某种实施方式中,也可以将锂电池的输出功率降低至原输出功率的45%或者55%。
具体地,当锂电池的温度大于45℃时,电动车控制单元向所述BMS管理单元发送降低输出功率至原输出功率80%的请求;当锂电池的温度大于55℃时,所述电动车控制单元向所述BMS管理单元发送降低输出功率至原输出功率50%的请求;当锂电池的温度大于60℃时,所述电动车控制单元向所述BMS管理单元发送停止动力输出的请求。在某种实施方式中,温度判定值可以根据实际需要调整,降低后的锂电池输出功率与原输出功率的比值可以根据实际需要调整。综上,本发明方法在两轮电动车的锂电池重新安装时通过判断电动车控制单元和BMS管理单元是否能正常建立通信来判断两轮电动车的锂电池是否被更改过,如果更改过则降低输入到两轮电动车的电机的电流大小,避免产生安全隐患;另外本发明的电动车控制单元和BMS管理单元在能建立通信后,BMS管理单元根据电动车控制单元发送的电池信息判断自身锂电池的规格的电压规格、最大工作电流和功率是否符合要求,如果不符合则BMS管理单元限制锂电池的输出电流,以此确保两轮电动车在正常行驶时,其安装的锂电池符合要求、没有更改,避免产生安全隐患,保障骑行者的安全;最后BMS管理单元通过对锂电池的电量进行监控,调整锂电池的动力输出,使锂电池不会出现过放现象,另外通过对锂电池的温度进行监控可以避免锂电池在高温环境中工作。
上述依据本发明为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

  1. 一种两轮电动车的锂电池管理方法,其特征在于,包括触发单元、电动车控制单元、BMS管理单元和电机驱动单元,具体包括以下步骤:
    S1:所述触发单元在所述两轮电动车的锂电池重新安装时向所述电动车控制单元发送触发信号;
    S2:所述电动车控制单元接收到所述触发信号后向所述BMS管理单元发送请求获取电池信息的请求信息;
    S3:如果电动车控制单元在向所述BMS管理单元发送所述请求信息后没有接收到所述BMS管理单元发送的已接收请求信息,则电动车控制单元通过所述电机驱动单元限制输入到两轮电动车的电机电流大小;
    S4:当BMS管理单元接收到所述电动车控制单元发送的请求信息后,所述BMS管理单元将所述锂电池的信息发送给所述电动车控制单元;如果电动车控制单元在向所述BMS管理单元发送所述请求信号后的第一时间内没有接收到BMS控制单元发送的锂电池的信息,则电动车控制单元通过所述电机驱动单元限制输入到两轮电动车的电机电流大小;如果电动车控制单元在向所述BMS管理单元发送所述请求信号后的第一时间内接收到BMS控制单元发送的锂电池的信息,则两轮电动车正常骑行。
  2. 根据权利要求1所述的一种两轮电动车的锂电池管理方法,其特征在于,步骤S3中,如果电动车控制单元在第一次向所述BMS管理单元发送所述请求信号后没有接收到所述BMS管理单元发送的已接收请求信息,则电动车控制单元重新向所述BMS管理单元发送请求信息;当所述电动车控制单元向所述BMS管理单元N次发送请求信息后都没有接收到所述BMS管理单元发送的已接受请求信息,则电动车控制单元通过所述电机驱动单元限制输入到两轮电动车的电机电流大小,N为大于1的正整数。
  3. 根据权利要求1所述的一种两轮电动车的锂电池管理方法,其特征在于,步骤S3中,如果锂电池的BMS管理单元在锂电池安装后供电的第二时间内没有接收到电动车控制单元发送的请求信息,则所述BMS管理单元限制所述锂电池的输出电流并向所述电动车控制单元发送第一报警信息,所述电动车控制单元接收到第一报警信息后将第一报警信息在显示单元上显示。
  4. 根据权利要求1所述的一种两轮电动车的锂电池管理方法,其特征在于,步骤S4中,如果BMS管理单元在向所述电动车控制单元发送完锂电池的信息后没有接收到电动车控制单元发送的已接受信息,则BMS管理单元重新向电动车控制单元发送锂电池的信息,当所述BMS管理单元向所述电动车控制单元M次发送锂电池的信息后都没有接收到电动车控制单元发送的已接收信息,则BMS管理单元限制锂电池的输出电流大小,并向电动车控制单元发送第二报警信息,所述电动车控制单元接收到第二报警信息后将第二报警信息在显示单元上显示。
  5. 根据权利要求1所述的一种两轮电动车的锂电池管理方法,其特征在于,所述获取电池信 息的请求信息包括获取锂电池的电压规格信息、最大工作电流信息、功率信息、电压判定值、电流判定值和功率判定值,步骤S4中,当所述BMS管理单元接收到所述请求信息后将锂电池自身的电压规格值与电压判定值进行比较、将锂电池自身的最大电流工作值与电流判断值进行比较和将锂电池自身的功率值与功率判定值进行比较,如果出现比较结果不一样,则BMS管理单元限制所述锂电池的输出电流大小并向所述电动车控制单元发送第三报警信息,所述电动车控制单元接收到第三报警信息后将第三报警信息在显示单元上显示。
  6. 根据权利要求5所述的一种两轮电动车的锂电池管理方法,其特征在于,步骤S4中,所述电动车控制单元在接收到BMS管理单元发送的电池信息后判定将锂电池自身的电压规格值与电压判定值进行比较、将锂电池自身的最大电流工作值与电流判断值进行比较和将锂电池自身的功率值与功率判定值进行比较,如果出现比较结果不一样,则电动车控制单元通过所述电机驱动单元限制输入到两轮电动车的电机电流大小。
  7. 根据权利要求1所述的一种两轮电动车的锂电池管理方法,其特征在于,当电动车在正常行驶时,BMS管理单元监控锂电池是否有故障报警,如果存在故障报警,则BMS管理单元将对应的故障报警信息发送给电动车控制单元并调整锂电池的动力输出,电动车控制单元将所述故障报警信息在显示单元上显示。
  8. 根据权利要求1所述的一种两轮电动车的锂电池管理方法,其特征在于,当电动车在正常行驶时,BMS管理单元将电池状态信息和动力输出状态信息发送给电动车控制单元,电动车控制单元将电池状态信息和动力输出状态信息在显示单元上显示,电动车控制单元根据电池状态信息判断锂电池的电量是否低于电量判定值时和判断锂电池的温度是否大于温度判定阈值,如果锂电池的电量低于电量判定值,和/或锂电池的温度大于温度判定值,则电动车控制单元向所述BMS管理单元发送降低输出功率请求,所述BMS管理单元接收到所述降低输出功率请求后降低锂电池的输出功率。
  9. 根据权利要求8所述的一种两轮电动车的锂电池管理方法,其特征在于,当锂电池的电量低于20%时,所述电动车控制单元向所述BMS管理单元发送降低输出功率至原输出功率50%的请求。
  10. 根据权利要求8所述的一种两轮电动车的锂电池管理方法,其特征在于,当锂电池的温度大于45℃时,所述电动车控制单元向所述BMS管理单元发送降低输出功率至原输出功率80%的请求;当锂电池的温度大于55℃时,所述电动车控制单元向所述BMS管理单元发送降低输出功率至原输出功率50%的请求;当锂电池的温度大于60℃时,所述电动车控制单元向所述BMS管理单元发送停止动力输出的请求。
PCT/CN2022/103855 2022-01-11 2022-07-05 一种两轮电动车的锂电池管理方法 WO2023134135A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210025924.1 2022-01-11
CN202210025924.1A CN114347853B (zh) 2022-01-11 2022-01-11 一种两轮电动车的锂电池管理方法

Publications (1)

Publication Number Publication Date
WO2023134135A1 true WO2023134135A1 (zh) 2023-07-20

Family

ID=81108479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103855 WO2023134135A1 (zh) 2022-01-11 2022-07-05 一种两轮电动车的锂电池管理方法

Country Status (2)

Country Link
CN (1) CN114347853B (zh)
WO (1) WO2023134135A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114347853B (zh) * 2022-01-11 2023-02-03 江苏新日电动车股份有限公司 一种两轮电动车的锂电池管理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170032994A (ko) * 2015-09-16 2017-03-24 최범진 배터리 안전 교환을 위한 배터리 관리 장치 및 배터리의 안전 교환 방법
CN108416925A (zh) * 2018-03-07 2018-08-17 北京新能源汽车股份有限公司 电池包的控制方法、电池包控制器、服务器及汽车
CN111114377A (zh) * 2013-11-28 2020-05-08 松下电器(美国)知识产权公司 信息输出方法、信息提示装置以及信息输出系统
CN112622692A (zh) * 2020-12-17 2021-04-09 浙江钱江摩托股份有限公司 一种用于电动车的电池包认证方法
CN112659972A (zh) * 2021-01-05 2021-04-16 东风商用车有限公司 一种动力电池与整车适配的信号处理系统及方法
CN114347853A (zh) * 2022-01-11 2022-04-15 江苏新日电动车股份有限公司 一种两轮电动车的锂电池管理方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101692583B (zh) * 2009-09-21 2012-07-18 惠州市亿能电子有限公司 一种纯电动公交车用电池管理系统
JP5641024B2 (ja) * 2012-08-07 2014-12-17 トヨタ自動車株式会社 電池管理システムおよび電池の交換方法
KR101614202B1 (ko) * 2013-08-28 2016-04-21 주식회사 엘지화학 전류 측정 릴레이 장치
WO2015126035A1 (ko) * 2014-02-20 2015-08-27 주식회사 엘지화학 전압 측정을 통한 배터리 랙 파손 방지 장치, 시스템 및 방법
US9931956B2 (en) * 2015-12-30 2018-04-03 Thunder Power New Energy Vehicle Development Company Limited Battery management system
EP3248825A1 (de) * 2016-05-27 2017-11-29 E.ON Czech Holding AG Batteriemodul für ein zweirädriges elektrofahrzeug .
KR102145651B1 (ko) * 2016-08-26 2020-08-18 주식회사 엘지화학 배터리 관리 시스템
US10322688B2 (en) * 2016-12-30 2019-06-18 Textron Innovations Inc. Controlling electrical access to a lithium battery on a utility vehicle
CN106891762B (zh) * 2017-02-21 2017-12-26 河南豫清新能源产业有限公司 一种电动汽车蓄电池维护中替换失效电池的方法
CN107579308B (zh) * 2017-08-31 2019-08-27 江苏大学 一种电动汽车电池包热管理及温度均衡控制方法
CN108649635A (zh) * 2018-05-19 2018-10-12 智车优行科技(北京)有限公司 电池信息的获取方法和系统
KR102190351B1 (ko) * 2018-11-30 2020-12-11 재상전자주식회사 전기이륜차의 배터리 교환 시스템 및 방법
CN109378884B (zh) * 2018-11-30 2021-04-27 湖南中联重科智能高空作业机械有限公司 基于电池管理系统的故障分级及交互控制系统及方法
CN110001841B (zh) * 2019-04-24 2021-05-14 江苏新日电动车股份有限公司 一种电动二轮车智能系统
CN110949178A (zh) * 2019-12-13 2020-04-03 重庆美顺电子科技有限公司 一种智能化锂电池并联管理控制系统及方法
CN112319305A (zh) * 2020-10-10 2021-02-05 蔚来汽车科技(安徽)有限公司 车辆的安全监控方法、监控系统和装置
CN113071370B (zh) * 2021-03-24 2022-12-30 浙江合众新能源汽车有限公司 一种电动汽车低压锂电池的管理方法及整车电源切换方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111114377A (zh) * 2013-11-28 2020-05-08 松下电器(美国)知识产权公司 信息输出方法、信息提示装置以及信息输出系统
KR20170032994A (ko) * 2015-09-16 2017-03-24 최범진 배터리 안전 교환을 위한 배터리 관리 장치 및 배터리의 안전 교환 방법
CN108416925A (zh) * 2018-03-07 2018-08-17 北京新能源汽车股份有限公司 电池包的控制方法、电池包控制器、服务器及汽车
CN112622692A (zh) * 2020-12-17 2021-04-09 浙江钱江摩托股份有限公司 一种用于电动车的电池包认证方法
CN112659972A (zh) * 2021-01-05 2021-04-16 东风商用车有限公司 一种动力电池与整车适配的信号处理系统及方法
CN114347853A (zh) * 2022-01-11 2022-04-15 江苏新日电动车股份有限公司 一种两轮电动车的锂电池管理方法

Also Published As

Publication number Publication date
CN114347853B (zh) 2023-02-03
CN114347853A (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
CN107662499B (zh) 纯电动汽车整车故障下电控制方法及系统
CN102431465B (zh) 一种纯电动车电池系统的保护控制方法
WO2023134135A1 (zh) 一种两轮电动车的锂电池管理方法
KR20220064411A (ko) 고·중출력형 전동차를 위한 다중 모듈 지능형 구동시스템 및 그 고·중출력형 전동차
KR20220062225A (ko) 차량 배터리 관리 시스템 및 방법
CN111231767A (zh) 一种应用于新能源电动汽车上的电池充电保护系统及方法
CN110949178A (zh) 一种智能化锂电池并联管理控制系统及方法
TW201305012A (zh) 電動自行車的控制系統及方法
CN206807024U (zh) 一种兼具多级保护的集装箱多簇并联储能系统
CN105564262A (zh) 一种电动汽车电池充电均衡恢复的充电机及方法
CN111605440A (zh) 一种车用燃料电池运行功率控制系统及方法
CN205211873U (zh) 一种汽车启动锂离子蓄电池组装置
CN112510324B (zh) 一种叉车锂电池组并联拓扑结构及充放电控制方法
TW202214455A (zh) 充電管理方法、系統及充電電池
CN218958603U (zh) 一种锂电池组防爆启动电路
CN110931904B (zh) 一种锂电池充放电控制方法
CN205070472U (zh) 一种智能动态均衡电源管理系统
CN111063953A (zh) 一种纯电动汽车直流充电末端充电方法
CN112874303B (zh) 一种新能源汽车安全监控方法
CN108501751A (zh) 一种动力电池充电管理方法及系统
CN113555926A (zh) 一种多路充电dc柜及控制方法
CN209104301U (zh) 一种电动汽车动力电池管理系统
CN112583066A (zh) 一种叉车磷酸铁锂电池充电方法
CN106100012A (zh) 电池、终端以及充电方法
CN205753564U (zh) 一种微分锂电池组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919772

Country of ref document: EP

Kind code of ref document: A1