WO2023132237A1 - めっき鋼板 - Google Patents

めっき鋼板 Download PDF

Info

Publication number
WO2023132237A1
WO2023132237A1 PCT/JP2022/047088 JP2022047088W WO2023132237A1 WO 2023132237 A1 WO2023132237 A1 WO 2023132237A1 JP 2022047088 W JP2022047088 W JP 2022047088W WO 2023132237 A1 WO2023132237 A1 WO 2023132237A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
concentration
plating layer
less
layer
Prior art date
Application number
PCT/JP2022/047088
Other languages
English (en)
French (fr)
Inventor
卓哉 光延
浩史 竹林
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2023132237A1 publication Critical patent/WO2023132237A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment

Definitions

  • the present invention relates to plated steel sheets.
  • Patent Document 1 teaches addressing such LME cracking by improving the spot welding method. More specifically, in Patent Literature 1, after the energization between the welding electrodes is completed, the welding electrodes are kept under pressure (extending the post-welding holding time Ht), and the post-welding holding time Ht is Adjusting the thickness as a function of t allows the molten zinc-based coating to solidify before the electrode is opened, so that the molten zinc-based coating does not enter the grain boundaries of the steel sheet at locations where welding residual stress is high, preventing cracking. can be suppressed.
  • Patent Document 2 teaches that cracks are suppressed by controlling the plating structure in the vicinity of spot welds after spot welding. More specifically, in Patent Document 2, a spot-welded member having a spot-welded portion formed by sandwiching and spot-welding a plate set in which a plurality of steel sheets are superimposed by a pair of electrodes, wherein the plurality of sheets At least one of the steel sheets is a high-strength zinc-based plated steel sheet having a tensile strength of 780 MPa or more, and the Al content in the coating of the high-strength zinc-based plated steel sheet is 0.5% by mass or more,
  • the thermal shock region outside the corona bond end of the spot welded portion includes an FeAl alloy layer having an average thickness of 0.3 ⁇ m or more at the interface between the base steel plate of the high-strength zinc-based plated steel plate and the plating
  • Patent Document 2 in order to suppress the penetration of Zn into the base steel sheet, the Al content in the coating is set to 0.5% by mass or more, so that the heat input during welding causes the separation of the steel sheet and the steel sheet. It is taught that it is important to form a high melting point FeAl alloy layer at the interface with the plating.
  • Patent Documents 1 and 2 suppression of LME cracking is studied from the viewpoint of improving the spot welding method and controlling the plating structure near the spot welded portion after spot welding.
  • Patent Documents 1 and 2 sufficient studies are not necessarily made from the viewpoint of improving the plating structure in the plated steel sheet before spot welding. Therefore, in the inventions described in these patent documents, there is still room for improvement regarding the improvement of LME resistance.
  • an object of the present invention is to provide a plated steel sheet with improved LME resistance that can suppress or reduce the occurrence of LME cracking during spot welding by means of a novel configuration.
  • the present inventors focused on the structure of the plating layer in the plated steel sheet in particular. As a result, the present inventors have found that in a plating layer containing a relatively small amount of Al, the Al concentration at the center of the plating layer is within a predetermined range with respect to the Al concentration near the interface between the base steel sheet and the plating layer. The inventors have found that the LME resistance of a plated steel sheet can be remarkably improved by controlling it, and have completed the present invention.
  • the present invention that has achieved the above object is as follows.
  • the chemical composition contains 0.30 to 1.50% Al in mass%, and when the plating layer is measured by GDS, the "Al concentration at the center of the plating layer" / "Fe concentration is The plated steel sheet according to (1) above, wherein the ratio of "the Al concentration at the position of the plated layer that is 50% of the base steel sheet" is 0.20 to 1.50.
  • the chemical composition contains 0.30 to 1.50% Al in mass%, and when the plating layer is measured by GDS, the "Al concentration at the center of the plating layer" / "Fe concentration is The plated steel sheet according to (1) above, wherein the ratio of "Al concentration at the position of the plated layer that is 50% of the base steel sheet” is 0.30 to 1.50.
  • GI hot-dip galvanized
  • a plated steel sheet includes a base steel sheet and a plating layer formed on the surface of the base steel sheet,
  • the plating layer is mass%, Al: 0.10-1.50% and Fe: 0.01-2.00% and further Mg: 0-1.500%, Si: 0 to 1.000%, Ni: 0 to 1.000%, Ca: 0 to 4.000%, Sb: 0 to 0.500%, Pb: 0 to 0.500%, Cu: 0 to 1.000%, Sn: 0 to 1.000%, Ti: 0 to 1.000%, Cr: 0 to 1.000%, Nb: 0 to 1.000%, Zr: 0 to 1.000%, Mn: 0 to 1.000%, Mo: 0 to 1.000%, Ag: 0 to 1.000%, Li: 0 to 1.000%, La: 0 to 0.500%, Ce: 0 to 0.500%, B: 0 to 0.500%, Y: 0 to 0.500%,
  • LME cracking is caused by the tensile stress generated by welding, such as the pressure applied by the electrode or It is caused by tensile stress acting on the steel plate caused by many factors such as expansion and contraction of the weld zone and springback when the electrode is released. Therefore, the present inventors focused on the structure of the coating layer in the plated steel sheet in order to suppress or reduce the penetration of zinc into the steel sheet, and from the viewpoint of making the structure of the coating layer more appropriate. Study was carried out.
  • the present inventors found that adding aluminum (Al) in a relatively small amount, ie, 0.10 to 1.50% by mass, in a coating layer mainly composed of zinc (Zn) is effective in reducing the amount of Zn inside the steel sheet. It was found that it is effective from the viewpoint of suppressing or reducing the invasion of When the amount of Al added increases, the composition of the plating layer approaches the Zn—Al eutectic composition, so the melting point of the plating layer decreases. Therefore, excessive addition of Al is highly likely to act disadvantageously from the viewpoint of suppressing or reducing the penetration of molten Zn into the steel sheet and improving the LME resistance.
  • the present inventors have determined that the Al concentration distribution in the coating layer is such that the Al concentration at the center of the coating layer is the Al concentration near the interface between the base steel sheet and the coating layer, and more specifically, the Fe concentration is the base steel sheet. It was found that the LME resistance of the plated steel sheet can be significantly improved by controlling the Al concentration at the plated layer position, which is 50% of the ratio, to be 0.10 to 1.50. A more detailed description will be given below with reference to the drawings.
  • FIG. 1 is a diagram showing the results of GDS analysis of a plated steel sheet
  • FIG. 1(a) shows the results of GDS analysis of an Al-containing plated steel sheet manufactured by a conventional method
  • FIG. 4 shows the results of GDS analysis of the plated steel sheet according to the embodiment.
  • the Al concentration peak is relatively high, in the Al-containing plated steel sheet produced by the usual method, a larger amount of Al in the coating layer is consumed to form the Fe—Al barrier layer, resulting in a relatively high Al concentration peak. A thick Fe--Al barrier layer is formed. Therefore, in FIG. 1(a), the Al concentration decreases greatly as it progresses from the vicinity of the interface between the base steel sheet and the coating layer to the coating surface side, and then becomes a substantially constant and very low value, and the Fe concentration decreases. It can be seen that the Al concentration shows a low value of about 0.1% at the plating layer center corresponding to the intermediate position between the plating layer position and the plating surface, which is 50% of .
  • the Al phase present in the coating layers other than the Fe--Al barrier layer plays a very important role in suppressing or reducing the intrusion of molten Zn into the steel sheet.
  • the present inventors controlled the total amount of Al added to a relatively low amount of 1.50% by mass or less to suppress the deterioration of the LME resistance due to the decrease in the melting point of the plating layer.
  • the ratio of "Al concentration at the center of the coating layer” / "Al concentration at the coating layer position where the Fe concentration is 50% of the base steel sheet” is controlled within the range of 0.10 to 1.50 by doing so, the effect of adding Al to the coating layer is sufficiently exerted to suppress or reduce the penetration of molten Zn into the steel sheet, and in relation to this, the LME resistance of the coated steel sheet is significantly improved. I found that it can be done.
  • Al in the plated layer acts as follows and welds enter during spot welding. It is believed that this suppresses or reduces the intrusion of Zn, which has been liquefied by heat, into the steel sheet along the grain boundaries.
  • the Fe—Al barrier layer formed at the interface between the base steel sheet and the coating layer in the plated steel sheet is relatively fragile, the steel sheet may be damaged due to the pressure applied by the electrode during spot welding. It is considered that the material is relatively easily ruptured by the applied stress.
  • the plating layer is formed on the surface of the base steel plate, for example, on at least one, preferably both surfaces of the base steel plate.
  • the plating layer has the following chemical composition.
  • Al is an element that is effective in suppressing the intrusion of molten Zn into the steel sheet along the grain boundaries.
  • the Al content is set to 0.10% or more.
  • Al content is 0.12% or more, 0.15% or more, 0.18% or more, 0.20% or more, 0.25% or more, 0.30% or more, 0.35% or more, 0.40% Above, it may be more than 0.60%, 0.62% or more, 0.65% or more, or 0.70% or more.
  • the composition of the plating layer approaches the Zn—Al eutectic composition, so that the melting point of the plating layer decreases.
  • the Al content is set to 1.50% or less.
  • Al content is 1.45% or less, 1.40% or less, 1.30% or less, 1.20% or less, 1.10% or less, 1.00% or less, 0.90% or less, or 0.80% It may be below.
  • Fe for example, dissolves out of the base steel sheet into the plating bath, or reacts with Al during the plating process to form an Fe—Al barrier layer at the interface between the base steel sheet and the plating layer. It is an element that is unavoidably contained in the layer. Therefore, in the plated steel sheet according to the embodiment of the present invention, the Fe content in the plated layer is 0.01% or more. Fe content is 0.05% or more, 0.10% or more, 0.15% or more, 0.20% or more, 0.25% or more, 0.30% or more, 0.40% or more, or 0.50% or more.
  • the Fe content in the plating layer is set to 2.00% or less.
  • Fe content is 1.80% or less, 1.60% or less, 1.50% or less, 1.30% or less, 1.20% or less, 1.00% or less, 0.90% or less, 0.80% Below, it may be 0.70% or less or 0.60% or less.
  • the basic chemical composition of the plating layer is as above. Furthermore, the plating layer is optionally Mg: 0 to 1.500%, Si: 0 to 1.000%, Ni: 0 to 1.000%, Ca: 0 to 4.000%, Sb: 0 to 0.500%, Pb: 0-0.500%, Cu: 0-1.000%, Sn: 0-1.000%, Ti: 0-1.000%, Cr: 0-1.000%, Nb: 0-1.000%, Zr: 0-1.000%, Mn: 0-1.000%, Mo: 0-1.000%, Ag: 0-1.000%, Li: 0-1 .000%, La: 0-0.500%, Ce: 0-0.500%, B: 0-0.500%, Y: 0-0.500%, P: 0-0.500%, and Sr: At least one of 0 to 0.500% may be contained.
  • the total content of these optional elements is 5.000% or less from the viewpoint of sufficiently exhibiting the action and function of the above-mentioned basic components constituting the plating layer, especially Al.
  • Optional elements totaling no more than 4.500%, no more than 4.000%, no more than 3.500%, no more than 3.000%, no more than 2.500%, no more than 2.000%, no more than 1.500% or 1 It may be 0.000% or less.
  • Mg is an effective element for improving the corrosion resistance of the plating layer.
  • the Mg content may be 0%, the Mg content is preferably 0.001% or more in order to obtain such effects.
  • the Mg content may be 0.010% or more, 0.050% or more, or 0.100% or more.
  • the Mg content is preferably 1.500% or less.
  • Mg content may be 1.200% or less, 1.000% or less, 0.800% or less, 0.500% or less, 0.240% or less, 0.220% or less, or 0.200% or less .
  • Si is an effective element for improving the corrosion resistance of the plating layer.
  • the Si content may be 0%, Si may be contained in the plating layer in an amount of 0.0001% or more or 0.001% or more, as required.
  • excessive Si content may reduce the plating adhesion of the plating layer. Therefore, the Si content is preferably 1.000% or less.
  • the Si content may be 0.800% or less, 0.500% or less, 0.100% or less, or 0.050% or less.
  • Ni is an effective element for improving the corrosion resistance of the plating layer.
  • the Ni content may be 0%, the Ni content is preferably 0.001% or more in order to obtain such effects.
  • the Ni content may be 0.005% or more, 0.010% or more, or 0.020% or more.
  • the Ni content is preferably 1.000% or less.
  • the Ni content may be 0.800% or less, 0.600% or less, or 0.400% or less.
  • Ca is an effective element for ensuring the wettability of the plating bath.
  • the Ca content may be 0%, the Ca content is preferably 0.001% or more in order to obtain such effects.
  • the Ca content may be 0.010% or more, 0.100% or more, or 1.000% or more.
  • the Ca content is preferably 4.000% or less.
  • the Ca content may be 3.000% or less, 2.000% or less, or 1.500% or less.
  • the content of Sb, Pb, La, Ce, B, Y, P and Sr is preferably 0.500% or less, for example 0.300% or less, 0.100% or less or 0.050% or less may be Similarly, the content of Cu, Sn, Ti, Cr, Nb, Zr, Mn, Mo, Ag and Li is preferably 1.000% or less, for example 0.800% or less, 0.500% or less, or It may be 0.100% or less.
  • the balance other than the above elements consists of Zn and impurities.
  • Impurities in the plating layer are components and the like that are mixed due to various factors in the manufacturing process, including raw materials, when manufacturing the plating layer.
  • the chemical composition of the plating layer is determined by dissolving the plating layer in an acid solution containing an inhibitor that suppresses the corrosion of the base steel sheet, and measuring the resulting solution by ICP (inductively coupled plasma) emission spectroscopy. be able to.
  • the plating layer may be any plating layer having the chemical composition described above and is not particularly limited, but is preferably a hot-dip galvanized (GI) layer, for example.
  • GI hot-dip galvanized
  • the Fe content in the coating layer increases, and the final coating layer has the desired chemical composition and "Al concentration in the center of the coating layer" / "Fe concentration is the base material steel sheet In some cases, it may not be possible to obtain a ratio of "Al concentration at the plating layer position" that is 50% of.
  • the thickness of the plating layer may be, for example, 3 to 50 ⁇ m.
  • the coating weight of the plating layer is not particularly limited, but may be, for example, 10 to 170 g/m 2 per side.
  • the coating weight of the plating layer may be 45 g/m 2 or more or 50 g/m 2 or more per side. Similarly, the coating weight of the plating layer may be 75 g/m 2 or less or 70 g/m 2 or less per side.
  • the adhesion amount of the plating layer is determined by dissolving the plating layer in an acid solution to which an inhibitor is added to suppress corrosion of the base steel sheet, and from the change in weight before and after pickling.
  • the coating layer By controlling the ratio of the "Al concentration at the center of the coating layer” and the “Al concentration at the position of the coating layer where the Fe concentration is 50% of the base steel sheet” measured by GDS within such a range, the coating layer It is possible to sufficiently exert the effect of adding Al to suppress or reduce the penetration of molten Zn into the steel sheet, and as a result, it is possible to significantly improve the LME resistance of the plated steel sheet. . From the viewpoint of improving LME resistance, the ratio of "Al concentration at the center of the coating layer” / "Al concentration at the coating layer position where the Fe concentration is 50% of the base steel sheet” is better, preferably 0.15.
  • the Al content of the entire plating layer is preferably 0.30% or more.
  • the ratio of "Al concentration at the center of the coating layer”/"Al concentration at the position of the coating layer where the Fe concentration is 50% of the base steel sheet” is set to 1.50 or less. It may be 40 or less, 1.30 or less, 1.20 or less, 1.10 or less, or 1.00 or less.
  • the Al concentration at a depth position where the Fe strength is 50% of the Fe strength of the base steel sheet (Fe strength at a depth of 100 ⁇ m from the surface of the plating layer of the sample) in GDS measurement is defined as "Fe concentration is The Al concentration at the coating layer position that is 50% of the base steel sheet", and the distance from this depth position to the surface is defined as the thickness of the coating layer.
  • the Al concentration by GDS at the 1/2 position of the thickness of the plating layer is determined as the “Al concentration at the center of the plating layer”, and finally the “Al concentration at the center of the plating layer” / “Fe concentration is 50 of the base steel sheet.
  • the ratio of the Al concentration at the plating layer position is determined.
  • the base material steel plate for forming the plating layer is not particularly limited and may be any suitable material.
  • the base steel sheet may be a material having a chemical composition such that the plated steel sheet has a tensile strength of 780 MPa or more.
  • LME cracking becomes conspicuous when steel sheets having relatively high strength are spot-welded, and that the higher the strength of the steel sheet, the higher the susceptibility to LME cracking. Therefore, when the plated steel sheet according to the embodiment of the present invention has a high tensile strength of 780 MPa or more, the effect of suppressing LME cracking is particularly remarkable compared to the conventional plated steel sheet having the same tensile strength. become something.
  • an object of the present invention is to provide a plated steel sheet having improved LME resistance that can suppress or reduce the occurrence of LME cracks during spot welding, and
  • the ratio of "Al concentration at the center of the plating layer” / "Al concentration at the position of the plating layer where the Fe concentration is 50% of the base steel sheet” is 0.10 to 1.50.
  • the object is achieved by forming a plating layer on the surface of the base steel sheet. Therefore, it is clear that the chemical composition of the base steel sheet itself is not an essential technical feature for achieving the object of the present invention.
  • the preferred chemical composition of the base material steel sheet used in the plated steel sheet according to the embodiment of the present invention will be described in detail. It is intended to be a mere example of a preferred chemical composition of a base steel sheet for a plated steel sheet having a high degree of hardness, that is, a plated steel sheet in which the effect of suppressing LME cracking according to the present invention is particularly remarkable. It is not intended to be limited to those using a base material steel plate having a specific chemical composition.
  • the base material steel plate is mass %, C: 0.01 to 0.50%, Si: 0.01 to 3.50%, Mn: 0.10-5.00%, P: 0.100% or less, S: 0.0300% or less, N: 0.0100% or less, O: 0 to 0.020%, Al: 0 to 1.000%, B: 0 to 0.010%, Nb: 0 to 0.150%, Ti: 0 to 0.20%, Mo: 0-3.00%, Cr: 0 to 2.00%, V: 0 to 1.00%, Ni: 0 to 2.00%, W: 0 to 1.00%, Ta: 0 to 0.10%, Co: 0 to 3.00%, Sn: 0 to 1.00%, Sb: 0 to 0.50%, Cu: 0 to 2.00%, As: 0 to 0.050%, Mg: 0-0.100%, Ca: 0-0.100%, Zr: 0 to 0.100%, Hf: 0 to 0.100%, It
  • C is an element that increases the tensile strength at low cost and is an important element for controlling the strength of steel.
  • the C content is preferably 0.01% or more.
  • the C content may be 0.05% or more, 0.08% or more, 0.09% or more, 0.10% or more, or 0.15% or more.
  • an excessive C content may lead to a decrease in elongation. Therefore, the C content is preferably 0.50% or less.
  • the C content may be 0.40% or less, 0.35% or less, or 0.30% or less.
  • Si is an element that acts as a deoxidizing agent and suppresses the precipitation of carbides during the cooling process during cold-rolled sheet annealing.
  • the Si content is preferably 0.01% or more.
  • the Si content may be 0.05% or more, 0.08% or more, 0.10% or more, 0.30% or more, or 0.80% or more.
  • an excessive Si content may increase the strength of the steel and decrease the elongation. Therefore, the Si content is preferably 3.50% or less.
  • the Si content may be 2.50% or less, 2.00% or less, or 1.50% or less.
  • Mn is an element that affects the ferrite transformation of steel and is an element that is effective in increasing strength. In order to sufficiently obtain such effects, the Mn content is preferably 0.10% or more. The Mn content may be 0.50% or more, 0.60% or more, 0.80% or more, 1.00% or more, or 1.50% or more. On the other hand, an excessive Mn content may increase the strength of the steel and decrease the elongation. Therefore, the Mn content is preferably 5.00% or less. The Mn content may be 4.00% or less, 3.00% or less, or 2.50% or less.
  • P is an element that segregates at grain boundaries and promotes embrittlement of steel. Since the P content is preferably as small as possible, it is ideally 0%. However, an excessive reduction in P content may lead to a significant increase in cost. Therefore, the P content may be 0.0001% or more, 0.001% or more, or 0.005% or more. On the other hand, an excessive P content may cause embrittlement of the steel due to grain boundary segregation as described above. Therefore, the P content is preferably 0.100% or less. The P content may be 0.050% or less, 0.030% or less, or 0.010% or less.
  • S is an element that forms non-metallic inclusions such as MnS in steel and causes a decrease in ductility of steel parts.
  • the S content is 0% because the smaller the S content, the better.
  • the S content may be 0.0001% or more, 0.0002% or more, 0.0010% or more, or 0.0050% or more.
  • an excessive S content may cause cracks starting from non-metallic inclusions during cold forming. Therefore, the S content is preferably 0.0300% or less.
  • the S content may be 0.0200% or less, 0.0150% or less, or 0.0100% or less.
  • N is an element that forms coarse nitrides in the steel sheet and reduces the workability of the steel sheet.
  • the N content is 0% because the smaller the N content, the better.
  • the N content may be 0.0001% or more, 0.0005% or more, or 0.0010% or more.
  • the N content is preferably 0.0100% or less.
  • the N content may be 0.0080% or less or 0.0050% or less.
  • the preferred basic chemical composition of the base steel sheet is as described above. Furthermore, the base material steel plate, if necessary, replaces part of the remaining Fe with O: 0 to 0.020%, Al: 0 to 1.000%, B: 0 to 0.010%, Nb : 0-0.150%, Ti: 0-0.20%, Mo: 0-3.00%, Cr: 0-2.00%, V: 0-1.00%, Ni: 0-2.
  • the balance other than the above elements consists of Fe and impurities.
  • Impurities in the base steel sheet are components that are mixed due to various factors in the manufacturing process, including raw materials such as ores and scraps, when the base steel sheet is industrially manufactured.
  • the chemical composition of the base steel sheet can be measured by a general analytical method.
  • the chemical composition of the base steel sheet may be measured by first removing the plating layer by mechanical grinding and then using Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES).
  • C and S can be measured using a combustion-infrared absorption method
  • N can be measured using an inert gas fusion-thermal conductivity method
  • O can be measured using an inert gas fusion-nondispersive infrared absorption method.
  • the plate thickness of the base steel plate is not particularly limited, but is, for example, 0.2 mm or more, and may be 0.3 mm or more, 0.6 mm or more, 1.0 mm or more, or 2.0 mm or more.
  • the plate thickness of the base steel plate is, for example, 6.0 mm or less, and may be 5.0 mm or less, 4.0 mm or less, 3.0 mm or less, or 2.5 mm or less.
  • the plated steel sheet according to the embodiment of the present invention can have any appropriate tensile strength, and is not particularly limited, but preferably has a tensile strength of 780 MPa or more, for example.
  • LME cracking becomes conspicuous when steel sheets having relatively high strength are spot-welded. Therefore, when the plated steel sheet according to the embodiment of the present invention has a high tensile strength of 780 MPa or more, the effect of suppressing LME cracks is particularly high compared to the conventional plated steel sheet having the same tensile strength. become prominent.
  • the plated steel sheet may have a tensile strength of 980 MPa or higher, 1080 MPa or higher, or 1180 MPa or higher.
  • the upper limit is not particularly limited, for example, the tensile strength of the plated steel sheet may be 2300 MPa or less, 2000 MPa or less, 1800 MPa or less, or 1500 MPa or less.
  • Tensile strength is measured by taking a JIS No. 5 test piece from a direction in which the longitudinal direction of the test piece is parallel to the rolling direction of the plated steel sheet, and performing a tensile test in accordance with JIS Z 2241:2011.
  • the plated steel sheet according to the present invention includes, for example, a casting process in which molten steel with an adjusted chemical composition is cast to form a steel slab, a hot rolling process in which the steel slab is hot-rolled to obtain a hot-rolled steel sheet, and a hot-rolled steel sheet is rolled.
  • a coiling step, a cold rolling step of cold rolling the coiled hot-rolled steel sheet to obtain a cold-rolled steel sheet, a pretreatment step, an annealing step of annealing the pretreated cold-rolled steel sheet, and the obtained base steel sheet It can be manufactured by performing a plating process for forming a plating layer. Alternatively, the cold rolling process may be performed as it is after pickling without winding after the hot rolling process. Each step will be described in detail below.
  • Conditions for the casting process are not particularly limited. For example, following smelting using a blast furnace, an electric furnace, etc., various secondary smelting may be performed, and then casting may be performed by a method such as ordinary continuous casting or casting by an ingot method.
  • a hot-rolled steel sheet can be obtained by hot-rolling the cast steel slab.
  • the hot-rolling process is performed by hot-rolling a cast steel slab directly or by reheating it after cooling it once.
  • the heating temperature of the billet may be, for example, 1100-1250.degree.
  • rough rolling and finish rolling are usually performed.
  • the temperature and rolling reduction for each rolling can be appropriately determined according to the desired metal structure and plate thickness.
  • the finishing temperature of finish rolling may be 900 to 1050° C., and the rolling reduction of finish rolling may be 10 to 50%.
  • a hot-rolled steel sheet can be coiled at a predetermined temperature.
  • the coiling temperature can be appropriately determined depending on the desired metal structure and the like, and may be, for example, 500 to 800.degree.
  • the hot-rolled steel sheet may be subjected to a predetermined heat treatment by unwinding before or after winding. Alternatively, the coiling process may not be performed, and after the hot rolling process, pickling may be performed and the cold rolling process described below may be performed.
  • the hot-rolled steel sheet After subjecting the hot-rolled steel sheet to pickling or the like, the hot-rolled steel sheet can be cold-rolled to obtain a cold-rolled steel sheet.
  • the rolling reduction of cold rolling can be appropriately determined according to the desired metal structure and plate thickness, and may be, for example, 20 to 80%.
  • air cooling may be performed to cool to room temperature.
  • Pretreatment process it is effective to perform a predetermined pretreatment process before annealing the cold-rolled steel sheet.
  • pretreatment steps may include degreasing and optional grinding.
  • the degreasing treatment may include, for example, electrifying the cold-rolled steel sheet in a solution of pH 8.0 or higher (electrolytic treatment).
  • the current density during energization may be 1.0 to 8.0 A/dm 2 and the energization time may be 5 to 10 seconds.
  • the optional grinding process is preferably carried out with heavy grinding brushes.
  • the nucleation of the Fe-Al barrier layer is promoted during the plating process after the annealing process, and the Fe-Al barrier layer is densified. and the associated slow growth rate of the Fe—Al barrier layer, which allows its thickness to be reduced.
  • the amount of Al consumed for forming the Fe--Al barrier layer can be reduced. Therefore, since the amount of Al in the plating layers other than the Fe—Al barrier layer can be increased, the finally obtained plated steel sheet has the ratio of "Al concentration at the center of the plating layer"/"Fe concentration of 50% of the base material steel sheet".
  • the grinding treatment is not particularly limited, but can be performed, for example, by grinding the surface of the cold-rolled steel sheet with a heavy grinding brush under conditions of a grinding amount of 10 to 200 g/m 2 .
  • the amount of grinding by the heavy grinding brush can be adjusted by any appropriate method known to those skilled in the art, and is not particularly limited. can be adjusted by appropriately selecting
  • Annealing is performed on the cold-rolled steel sheet that has undergone the pretreatment process.
  • the holding temperature in the annealing step is preferably 700-900°C. If the holding temperature in the annealing step is higher than 900°C, an external oxide layer may form on the surface of the steel sheet, degrading the plateability.
  • the rate of temperature increase to the holding temperature is not particularly limited, but may be 1 to 10° C./sec.
  • the retention time at the above retention temperature is preferably 10 to 300 seconds, more preferably 80 to 120 seconds. If the holding time is longer than 300 seconds, the external oxide may grow excessively and the plating properties may deteriorate.
  • the dew point of the atmosphere in the annealing step is preferably -20 to 10°C, more preferably -10 to 5°C. If the dew point is too low, an external oxide layer may be formed on the surface of the steel sheet, degrading the platability. On the other hand, if the dew point is too high, Fe oxide may be similarly generated as an external oxide on the surface of the steel sheet, resulting in deterioration of the plateability.
  • the atmosphere in the annealing step may be a reducing atmosphere, more specifically a reducing atmosphere containing nitrogen and hydrogen, such as a reducing atmosphere containing 1-10% hydrogen (eg, 4% hydrogen and nitrogen balance).
  • a plating layer having the chemical composition and structure described above is formed on at least one, preferably both surfaces of the cold-rolled steel sheet (base material steel sheet). More specifically, the plating step is performed by hot-dip plating using a plating bath whose composition is adjusted so that the chemical composition of the plating layer is within the range described above.
  • the time from immersing the steel sheet in the plating bath to the start of cooling is controlled to 6 seconds or less, and then the average cooling rate from the bath temperature (eg, 420 to 480 ° C.) to 370 ° C. is 20 ° C. /sec or more is extremely important.
  • the Fe—Al barrier layer can be made thinner and the amount of Al consumed to form the Fe—Al barrier layer can be reduced. It becomes possible to sufficiently secure the amount of Al present in the.
  • the ratio of "Al concentration at the center of the plating layer" / "Al concentration at the position of the plating layer where the Fe concentration is 50% of the base steel sheet” is set to 0.10 or more. It is possible to reliably improve the LME resistance of the plated steel sheet.
  • the time from the start of immersion of the steel sheet in the plating bath to the start of cooling is shorter and the average cooling rate from the bath temperature to 370° C. is faster.
  • the Al content of the entire plating layer is 0.30% or more
  • the time from the start of immersion of the steel sheet in the plating bath to the start of cooling is 4 seconds or less
  • the average cooling rate from the bath temperature to 370 ° C. is 40. C./sec or higher can further improve the LME resistance of the plated steel sheet.
  • the time from the start of immersion of the steel sheet in the plating bath to the start of cooling is 6 seconds or less, and the average cooling rate from the bath temperature to 370 ° C. Even under the condition of 20° C./sec or higher, a similar higher LME resistance can be achieved by combining with the condition that the Al content of the entire plating layer is 0.30% or higher. Alternatively, the Al content of the entire plating layer is set to 0.30% or more, grinding treatment is performed with a heavy grinding brush as the pretreatment step described above, and cooling is started from the start of immersion of the steel sheet in the plating bath.
  • the lower limit of the time from the start of immersion of the steel sheet in the plating bath to the start of cooling is not particularly limited, but for example, the time from the start of immersion of the steel sheet in the plating bath to the start of cooling may be 2 seconds or longer.
  • the upper limit of the average cooling rate from the bath temperature to 370°C is not particularly limited, but for example, the average cooling rate from the bath temperature to 370°C may be 80°C/sec or less.
  • Other conditions of the plating process may be appropriately set in consideration of the thickness and adhesion amount of the plating layer. For example, after immersing the cold-rolled steel sheet in the plating bath, pull it up, immediately blow N2 gas or air by the gas wiping method, and then cool it so that the coating amount of the coating layer is within a predetermined range, such as , can be adjusted within the range of 10 to 170 g/m 2 per side.
  • the ratio of "Al concentration at the center of the plating layer” / "Al concentration at the position of the plating layer where the Fe concentration is 50% of the base steel sheet” is 0.10 to 1.50. Since it is controlled within the range, the effect of adding Al to the coating layer is sufficiently exhibited to suppress or reduce the penetration of molten Zn into the steel plate during spot welding. It is possible to remarkably improve the LME resistance of.
  • a plated steel sheet compared with a conventional plated steel sheet provided with a plating layer having a similar chemical composition, more specifically a Zn-based plating layer having a similar Al content, This makes it possible to achieve LME resistance, and contributes to the development of industry by improving collision safety and extending life, particularly when used as a plated steel sheet for automobiles.
  • plated steel sheets according to embodiments of the present invention were produced under various conditions, and the LME resistance of the produced plated steel sheets was investigated.
  • the obtained cold-rolled steel sheet is subjected to a pretreatment in which a current density of 5.0 A/dm 2 is applied for 8 seconds in a pH 9.2 solution.
  • a heavy grinding brush (D-100 manufactured by Hotani Co., Ltd.) was used to grind the cold-rolled steel sheet with a grinding amount of 10 to 200 g / m 2 , a brush reduction of 2.0 mm, and a rotation speed of 600 rpm.
  • the surface was ground to introduce strain into the surface of the cold-rolled steel sheet.
  • Table 1 shows whether or not each cold-rolled steel sheet was ground with a heavy grinding brush.
  • each cold-rolled steel sheet was cut into a size of 100 mm ⁇ 200 mm, and then subjected to annealing treatment (annealing atmosphere: hydrogen 4% and nitrogen balance) under the conditions of a dew point of 0 ° C., a holding temperature of 870 ° C., and a holding time of 100 seconds. rice field. All the steel plate samples were annealed at a heating rate of 5° C./sec.
  • the cut steel plate sample was treated with a hot dip galvanizing bath having a predetermined bath composition, and the bath temperature shown in Table 1, the time from immersion in the plating bath to the start of cooling, and the average cooling rate from the bath temperature to 370 ° C.
  • a plated steel sheet sample was cut into a size of 50 mm ⁇ 50 mm, and then the GDS measurement was performed on the cut plated steel sheet sample to obtain an Al concentration distribution from the surface of the coating layer to a depth of 100 ⁇ m.
  • the Al concentration at a depth position where the Fe strength is 50% of the Fe strength of the base steel sheet (Fe strength at a depth of 100 ⁇ m from the surface of the plating layer of the sample) in GDS measurement is defined as "Fe concentration is Al concentration at the coating layer position which is 50% of the base material steel plate", and the distance from this depth position to the surface was defined as the thickness of the coating layer.
  • the Al concentration by GDS at the 1/2 position of the thickness of the plating layer is determined as the “Al concentration at the center of the plating layer”, and finally the “Al concentration at the center of the plating layer” / “Fe concentration is 50 of the base steel sheet. %, the ratio of the Al concentration at the plating layer position was determined.
  • AAA no LME cracks
  • AA LME crack length over 0 ⁇ m to 100 ⁇ m
  • A LME crack length over 100 ⁇ m to 500 ⁇ m
  • B LME crack length over 500 ⁇ m
  • Comparative Example 26 since the Al content of the entire plating layer was low, the effect of suppressing LME cracking due to the addition of Al could not be sufficiently exhibited, and the LME resistance decreased.
  • Comparative Example 27 it is considered that the melting point of the plating layer was lowered because the Al content of the entire plating layer was high. As a result, Zn in the coating layer was likely to melt during spot welding, and the LME resistance decreased.
  • Comparative Examples 28 and 29 the alloying heat treatment increases the Fe content in the plating layer, and the desired plating chemical composition and "Al concentration in the center of the plating layer" / "Fe concentration is 50% of the base steel plate. The ratio of "Al concentration at the layer position" could not be obtained, and the LME resistance decreased.
  • Comparative Example 30 since the time from immersion in the plating bath to the start of cooling was long, a large amount of Al was consumed to form the Fe—Al barrier layer, and the amount of Al in the plating layers other than the Fe—Al barrier layer decreased. presumably decreased. As a result, the desired ratio of "Al concentration at the center of the coating layer"/"Al concentration at the position of the coating layer where the Fe concentration is 50% of the base steel sheet” could not be obtained, and the LME resistance decreased. In Comparative Example 31, since the average cooling rate from the bath temperature to 370° C. was slow, a large amount of Al was consumed to form the Fe—Al barrier layer, and the amount of Al in the plating layers other than the Fe—Al barrier layer was low. presumably decreased. As a result, the desired ratio of "Al concentration at the center of the coating layer”/"Al concentration at the position of the coating layer where the Fe concentration is 50% of the base steel sheet” could not be obtained, and the LME resistance decreased.
  • the plated steel sheets according to all the examples have a predetermined plating chemical composition, and the "Al concentration at the center of the plating layer"/"Fe concentration at the position of the plating layer where the base material steel sheet is 50%
  • the ratio of "Al concentration” within the range of 0.10 to 1.50, the effect of adding Al to the plating layer can be fully exhibited and LME cracking can be reliably suppressed or reduced.
  • rice field In particular, the Al content of the entire plating layer is 0.30% or more, the time from the start of immersion of the steel sheet in the plating bath to the start of cooling is 4 seconds, and the average cooling rate from the bath temperature to 370 ° C. is 40 ° C.
  • the Al content of the entire plating layer is set to 0.30% or more, grinding with a heavy grinding brush is performed as a pretreatment for the annealing process, and the time from the start of immersion of the steel sheet in the plating bath to the start of cooling. was 4 seconds and the average cooling rate from the bath temperature to 370 ° C. was 40 ° C./sec.
  • the ratio of Al concentration at the coating layer position, which is 50% of the material steel sheet, was 0.30 or more, and as a result, the LME resistance was also evaluated as AAA, and the LME resistance of the plated steel sheet was further improved.

Abstract

母材鋼板と、前記母材鋼板の表面に形成されためっき層とを備え、前記めっき層が所定の化学組成を有し、前記めっき層をグロー放電発光分析法(GDS)で測定した場合に、「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比が0.10~1.50であることを特徴とするめっき鋼板が提供される。

Description

めっき鋼板
 本発明は、めっき鋼板に関する。
 自動車等で用いられる鋼板は良好な溶接施工性が求められる。自動車車体の組立及び部品の取付けなどの工程では、主としてスポット溶接が利用されているが、特に亜鉛めっき鋼板同士のスポット溶接又は亜鉛めっき鋼板と非めっき鋼板のスポット溶接においては、液体金属脆化(Liquid Metal Embrittle:LME)割れを抑制する必要がある。この現象は、溶接入熱により液相化した亜鉛が結晶粒界に沿って鋼板内部に侵入して脆化したところに、溶接により発生する引張応力が作用することで生じる割れである。スポット溶接において、このようなLME割れが生じると、溶接継手の強度が確保できなくなるため、亜鉛めっき鋼板の使用が阻害される場合がある。
 これに関連して、特許文献1では、スポット溶接方法を改良することでこのようなLME割れに対処することが教示されている。より具体的には、特許文献1では、溶接電極間の通電終了後に溶接電極の加圧保持を継続(溶接後保持時間Htを延長)し、当該溶接後保持時間Htを被溶接部材の総板厚tの関数として調整することで、電極開放前に溶融した亜鉛系めっきを凝固させ、その結果として溶融した亜鉛系めっきが溶接残留応力の高い箇所の鋼板の結晶粒界に侵入せず、割れを抑制できることが教示されている。
 特許文献2では、スポット溶接後のスポット溶接部近傍のめっき組織を制御することで割れを抑止することが教示されている。より具体的には、特許文献2では、複数枚の鋼板を重ね合わせた板組を、一対の電極によって挟持しスポット溶接して形成したスポット溶接部を有するスポット溶接部材であって、前記複数枚の鋼板のうち少なくとも1枚は、引張強度780MPa以上の高強度亜鉛系めっき鋼板であり、且つ、該高強度亜鉛系めっき鋼板のめっき中のAl含有量は0.5質量%以上であり、前記スポット溶接部のコロナボンド端部の外側の熱衝撃領域は、前記高強度亜鉛系めっき鋼板の母材鋼板と前記めっきとの界面に、平均厚さが0.3μm以上のFeAl合金層と、該FeAl合金層の上に平均厚さが2.0μm以上の亜鉛系めっき層を形成しためっき層を有するスポット溶接部材が記載されている。また、特許文献2では、母材鋼板へのZn侵入を抑制するためには、めっき中のAl含有量を0.5質量%以上とすることで、溶接時の入熱によって鋼板と該鋼板のめっきとの界面に高融点のFeAl合金層を形成することが重要であると教示されている。
特開2017-047475号公報 国際公開第2020/130079号
 特許文献1及び2では、スポット溶接方法を改良したり、スポット溶接後のスポット溶接部近傍のめっき組織を制御したりといった観点からLME割れの抑制について検討がされている。しかしながら、特許文献1及び2では、スポット溶接前のめっき鋼板におけるめっき組織を改良するという観点からは必ずしも十分な検討はなされていない。したがって、これらの特許文献に記載の発明では、耐LME性の向上に関して依然として改善の余地があった。
 そこで、本発明は、新規な構成により、スポット溶接時のLME割れの発生を抑制又は低減することができる改善された耐LME性を有するめっき鋼板を提供することを目的とする。
 本発明者らは、LME割れの発生を抑制又は低減するために、特にめっき鋼板におけるめっき層の組織に着目して検討を行った。その結果、本発明者らは、Alを比較的少ない量で含有するめっき層において、めっき層中心のAl濃度を母材鋼板とめっき層との界面付近のAl濃度に対して所定の範囲内に制御することで、めっき鋼板の耐LME性を顕著に改善することができることを見出し、本発明を完成させた。
 上記目的を達成し得た本発明は下記のとおりである。
 (1)母材鋼板と、前記母材鋼板の表面に形成されためっき層とを備え、
 前記めっき層が、質量%で、
 Al:0.10~1.50%、及び
 Fe:0.01~2.00%
を含有し、さらに、
 Mg:0~1.500%、
 Si:0~1.000%、
 Ni:0~1.000%、
 Ca:0~4.000%、
 Sb:0~0.500%、
 Pb:0~0.500%、
 Cu:0~1.000%、
 Sn:0~1.000%、
 Ti:0~1.000%、
 Cr:0~1.000%、
 Nb:0~1.000%、
 Zr:0~1.000%、
 Mn:0~1.000%、
 Mo:0~1.000%、
 Ag:0~1.000%、
 Li:0~1.000%、
 La:0~0.500%、
 Ce:0~0.500%、
 B :0~0.500%、
 Y :0~0.500%、
 P :0~0.500%、及び
 Sr:0~0.500%
の少なくとも1種を合計で5.000%以下含有し、
 残部がZn及び不純物からなる化学組成を有し、
 前記めっき層をグロー放電発光分析法(GDS)で測定した場合に、「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比が0.10~1.50であることを特徴とする、めっき鋼板。
 (2)前記化学組成が、質量%で、Al:0.30~1.50%を含有し、前記めっき層をGDSで測定した場合に、「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比が0.20~1.50であることを特徴とする、上記(1)に記載のめっき鋼板。
 (3)前記化学組成が、質量%で、Al:0.30~1.50%を含有し、前記めっき層をGDSで測定した場合に、「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比が0.30~1.50であることを特徴とする、上記(1)に記載のめっき鋼板。
 (4)前記めっき層が溶融亜鉛めっき(GI)層であることを特徴とする、上記(1)~(3)のいずれか1項に記載のめっき鋼板。
 (5)780MPa以上の引張強さを有することを特徴とする、上記(1)~(4)のいずれか1項に記載のめっき鋼板。
 本発明によれば、スポット溶接時のLME割れの発生を抑制又は低減することができる改善された耐LME性を有するめっき鋼板を提供することができる。
めっき鋼板のGDSによる分析結果を示す図であり、(a)は通常の方法で製造したAl含有めっき鋼板のGDSによる分析結果を示し、(b)は本発明の実施形態に係るめっき鋼板のGDSによる分析結果を示している。
<めっき鋼板>
 本発明の実施形態に係るめっき鋼板は、母材鋼板と、前記母材鋼板の表面に形成されためっき層とを備え、
 前記めっき層が、質量%で、
 Al:0.10~1.50%、及び
 Fe:0.01~2.00%
を含有し、さらに、
 Mg:0~1.500%、
 Si:0~1.000%、
 Ni:0~1.000%、
 Ca:0~4.000%、
 Sb:0~0.500%、
 Pb:0~0.500%、
 Cu:0~1.000%、
 Sn:0~1.000%、
 Ti:0~1.000%、
 Cr:0~1.000%、
 Nb:0~1.000%、
 Zr:0~1.000%、
 Mn:0~1.000%、
 Mo:0~1.000%、
 Ag:0~1.000%、
 Li:0~1.000%、
 La:0~0.500%、
 Ce:0~0.500%、
 B :0~0.500%、
 Y :0~0.500%、
 P :0~0.500%、及び
 Sr:0~0.500%
の少なくとも1種を合計で5.000%以下含有し、
 残部がZn及び不純物からなる化学組成を有し、
 前記めっき層をグロー放電発光分析法(GDS)で測定した場合に、「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比が0.10~1.50であることを特徴としている。
 先に述べたとおり、亜鉛めっき鋼板同士のスポット溶接又は亜鉛めっき鋼板と非めっき鋼板のスポット溶接においては、LME割れを抑制する必要がある。例えば、亜鉛めっき鋼板を少なくとも1枚以上含む2枚以上の鋼板を重ねてスポット溶接して継手を作製する際、溶接金属(ナゲット)の外側に形成される圧接部の内部若しくはそのすぐ外側又は電極側の表面でLME割れが発生する場合がある。LME割れは、スポット溶接の際に溶接入熱により液相化した亜鉛が結晶粒界に沿って鋼板内部に侵入して脆化したところに、溶接により発生する引張応力、例えば電極による加圧力や溶接部の膨張収縮、電極解放時のスプリングバックなど多くの要因によって発生する引張応力が鋼板に作用することで生じる。そこで、本発明者らは、このような鋼板内部への亜鉛の侵入を抑制又は低減すべく、めっき鋼板におけるめっき層の組織に着目し、当該めっき層の組織をより適切なものとする観点から検討を行った。
 まず、本発明者らは、亜鉛(Zn)を主体とするめっき層においてアルミニウム(Al)を比較的少ない量すなわち0.10~1.50質量%の量で添加することが鋼板内部へのZnの侵入を抑制又は低減する観点から有効であることを見出した。Alの添加量が多くなると、Zn-Al共晶組成にめっき層の組成が近づくため、めっき層の融点が低下する。このため、Alの過剰な添加は、溶融Znの鋼板内部への侵入を抑制又は低減して耐LME性を向上させるという観点からは不利に作用する可能性が高く、特に1.50質量%を大きく超えてAlを添加した場合には、Alの過剰な添加に基づくマイナスの効果が顕著となり、Al添加によるLME割れの抑制効果を十分に発揮することができなくなるものと考えられる。加えて、本発明者らは、めっき層中のAl濃度分布を、めっき層中心のAl濃度が母材鋼板とめっき層との界面付近のAl濃度、より具体的にはFe濃度が母材鋼板の50%となるめっき層位置のAl濃度に対して0.10~1.50の比率となるように制御することで、めっき鋼板の耐LME性を顕著に改善することができることを見出した。以下、図面を参照してより詳しく説明する。
 図1は、めっき鋼板のGDSによる分析結果を示す図であり、図1(a)は通常の方法で製造したAl含有めっき鋼板のGDSによる分析結果を示し、図1(b)は本発明の実施形態に係るめっき鋼板のGDSによる分析結果を示している。まず、図1(a)を参照すると、通常の方法でZnを主体とするめっき層にAlを0.20%含有させたAl含有めっき鋼板では、めっき表面に相当する深さ位置0μmからの深さが深くなるにつれて、Al濃度が次第に上昇し、母材鋼板とめっき層との界面付近、すなわちFe濃度が母材鋼板の50%となるめっき層位置付近においてAl濃度が比較的高いピークを有することがわかる。このAl濃度のピークは、母材鋼板とめっき層との界面においてFeとAlの合金を含むFe-Alバリア層が形成されていることを示唆するものである。Al濃度のピークが比較的高いことからも明らかなように、通常の方法で製造したAl含有めっき鋼板では、めっき層中のより多くのAlがFe-Alバリア層の形成に消費されて比較的厚いFe-Alバリア層が形成されている。それゆえ、図1(a)では、母材鋼板とめっき層との界面付近からめっき表面側に進むにつれてAl濃度が大きく減少し、その後ほぼ一定の非常に低い値となり、Fe濃度が母材鋼板の50%となるめっき層位置とめっき表面との中間位置に相当するめっき層中心においてAl濃度が約0.1%程度の低い値を示していることがわかる。
 これとは対照的に、図1(b)を参照すると、同様のAl含有量を有するめっき層を備えた本発明の実施形態に係るめっき鋼板では、母材鋼板とめっき層との界面付近のAl濃度が図1(a)の場合と比較して非常に低いことがわかる。したがって、本発明の実施形態に係るめっき鋼板では、図1(a)の場合と比較して薄いFe-Alバリア層が形成されている。これに関連して、図1(b)では、母材鋼板とめっき層との界面付近からめっき表面側に進んでも、めっき層中のAl濃度は大きく減少することなく、比較的緩やかに減少し、その後ほぼ一定の値となり、めっき層中心においてAl濃度が約0.2%を超え、図1(a)の場合と比較して約2倍以上の非常に高い値を示していることがわかる。図1(a)及び(b)のGDSによる分析結果から、本発明の実施形態に係るめっき鋼板では、めっき層中のAlの多くはFe-Alバリア層の形成に消費されることなく、当該Fe-Alバリア層以外のめっき層中にAl相として、例えば固溶状態において存在していると考えられる。本発明者らは、これらのめっき鋼板のGDSによる分析結果と、図1(b)のめっき鋼板が図1(a)のめっき鋼板に比べて高い耐LME性を実験的に示した事実とから、Fe-Alバリア層以外のめっき層中に存在するAl相が溶融Znの鋼板内部への侵入を抑制又は低減する上で非常に重要な役割を果たすものと考えてさらに検討を行った。その結果、本発明者らは、Al全体の添加量を1.50質量%以下の比較的低い量に制御してめっき層における融点の低下に基づく耐LME性の劣化を抑制しつつ、めっき層をGDSで測定した場合の「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比を0.10~1.50の範囲内に制御することで、めっき層にAlを添加したことによる効果を十分に発揮して溶融Znの鋼板内部への侵入を抑制又は低減し、これに関連してめっき鋼板の耐LME性を顕著に向上させることができることを見出した。
 何ら特定の理論に束縛されることを意図するものではないが、本発明の実施形態に係るめっき鋼板においては、めっき層中のAlが以下のように作用して、スポット溶接の際に溶接入熱により液相化したZnが結晶粒界に沿って鋼板内部に侵入するのを抑制又は低減しているものと考えられる。より詳しく説明すると、まず、めっき鋼板において母材鋼板とめっき層との界面に形成されるFe-Alバリア層は比較的脆いため、スポット溶接の際に電極による加圧力等に起因して鋼板に負荷される応力によって比較的容易に破断するものと考えられる。スポット溶接の際に溶融したZnは、このようなFe-Alバリア層の破断によって母材鋼板と直接的に接触することになるため、溶融したZnが結晶粒界に沿って鋼板内部に侵入するリスクが高まる。しかしながら、本発明の実施形態に係るめっき鋼板によれば、めっき層中のFe-Alバリア層以外の部分において比較的多く存在するAlがFe-Alバリア層の破断によってZnとともに母材鋼板と直接的に接触することになる。この場合、スポット溶接時の入熱によりめっき層中のAlが母材鋼板中のFeと反応して、新たにFe-Alバリア層を形成し、結果として破断したFe-Alバリア層が補修されることになると考えられる。すなわち、Fe-Alバリア層以外のめっき層中にAlが多く存在することで、スポット溶接時にZnがFe-Alバリア層の破断等によって母材鋼板と直接的に接触することになっても、すぐ近くに存在するAlによって直ちに破断部に新たなFe-Alバリア層が形成されることになる。このため、本発明の実施形態に係るめっき鋼板によれば、スポット溶接時における溶融Znの鋼板内部への侵入を顕著に抑制又は低減することができるので、めっき鋼板におけるLME割れの発生を確実に抑制又は低減することが可能になるものと考えられる。従来、Zn系めっき層にAlを添加しためっき鋼板は知られているものの、めっき層の融点の低下を考慮してめっき層全体のAl量を比較的低く抑えつつ、一方でFe-Alバリア層以外のめっき層中のAl量を増加させることによってスポット溶接時における溶融Znの鋼板内部への侵入を抑制又は低減することができるという事実は従来知られておらず、今回、本発明者らによって初めて明らかにされたことである。
 以下、本発明の実施形態に係るめっき鋼板についてより詳しく説明する。以下の説明において、各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味するものである。また、本明細書において、数値範囲を示す「~」とは、特に断りがない場合、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
[めっき層]
 本発明の実施形態によれば、めっき層は母材鋼板の表面に形成され、例えば母材鋼板の少なくとも一方、好ましくは両方の表面に形成される。めっき層は下記の化学組成を有する。
[Al:0.10~1.50%]
 Alは、溶融したZnが結晶粒界に沿って鋼板内部に侵入するのを抑制するのに有効な元素である。このような効果を十分に得るために、Al含有量は0.10%以上とする。Al含有量は0.12%以上、0.15%以上、0.18%以上、0.20%以上、0.25%以上、0.30%以上、0.35%以上、0.40%以上、0.60%超、0.62%以上、0.65%以上又は0.70%以上であってもよい。一方で、Alを過度に含有すると、Zn-Al共晶組成にめっき層の組成が近づくため、めっき層の融点が低下する。このため、スポット溶接の際にめっき層中のZnが溶融しやすくなり、LME割れを促進させてしまう場合がある。したがって、Al含有量は1.50%以下とする。Al含有量は1.45%以下、1.40%以下、1.30%以下、1.20%以下、1.10%以下、1.00%以下、0.90%以下又は0.80%以下であってもよい。
[Fe:0.01~2.00%]
 Feは、例えば、母材鋼板からめっき浴中に溶け出したり、めっき処理の際にAlと反応して母材鋼板とめっき層との界面にFe-Alバリア層を形成したりして、めっき層中に不可避的に含まれる元素である。このため、本発明の実施形態に係るめっき鋼板では、めっき層中のFe含有量は0.01%以上となる。Fe含有量は0.05%以上、0.10%以上、0.15%以上、0.20%以上、0.25%以上、0.30%以上、0.40%以上又は0.50%以上であってもよい。一方で、めっき層中のFe含有量が高すぎると、めっき層中のAlがFeと化合したり、あるいはFe-Alバリア層の形成に多くのAlが消費されたりし、その結果として、Al添加によるLME割れの抑制効果を十分に発揮することができなくなる場合がある。したがって、Fe含有量は2.00%以下とする。Fe含有量は1.80%以下、1.60%以下、1.50%以下、1.30%以下、1.20%以下、1.00%以下、0.90%以下、0.80%以下、0.70%以下又は0.60%以下であってもよい。
 めっき層の基本化学組成は上記のとおりである。さらに、めっき層は、任意選択で、Mg:0~1.500%、Si:0~1.000%、Ni:0~1.000%、Ca:0~4.000%、Sb:0~0.500%、Pb:0~0.500%、Cu:0~1.000%、Sn:0~1.000%、Ti:0~1.000%、Cr:0~1.000%、Nb:0~1.000%、Zr:0~1.000%、Mn:0~1.000%、Mo:0~1.000%、Ag:0~1.000%、Li:0~1.000%、La:0~0.500%、Ce:0~0.500%、B:0~0.500%、Y:0~0.500%、P:0~0.500%、及びSr:0~0.500%の少なくとも1種を含有してもよい。これらの任意選択元素は、めっき層を構成する上記基本成分、とりわけAlの作用及び機能を十分に発揮させる観点から、合計で5.000%以下とする。任意選択元素は、合計で4.500%以下、4.000%以下、3.500%以下、3.000%以下、2.500%以下、2.000%以下、1.500%以下又は1.000%以下であってもよい。以下、これらの任意選択元素について詳しく説明する。
[Mg:0~1.500%]
 Mgは、めっき層の耐食性を向上させるのに有効な元素である。Mg含有量は0%であってもよいが、このような効果を得るためには、Mg含有量は0.001%以上であることが好ましい。Mg含有量は0.010%以上、0.050%以上又は0.100%以上であってもよい。一方で、Mgを過度に含有すると、めっき層中に脆性な化合物であるMgZn系化合物が多く生成する場合があり、加工性低下の原因となり得る。したがって、Mg含有量は1.500%以下であることが好ましい。Mg含有量は1.200%以下、1.000%以下、0.800%以下、0.500%以下、0.240%以下、0.220%以下又は0.200%以下であってもよい。
[Si:0~1.000%]
 Siは、めっき層の耐食性を向上させるのに有効な元素である。Si含有量は0%であってもよいが、必要に応じて、Siは0.0001%以上又は0.001%以上の量でめっき層中に含有されていてもよい。一方で、Siを過度に含有すると、めっき層のめっき密着性が低下する場合がある。したがって、Si含有量は1.000%以下であることが好ましい。Si含有量は0.800%以下、0.500%以下、0.100%以下又は0.050%以下であってもよい。
[Ni:0~1.000%]
 Niは、めっき層の耐食性を向上させるのに有効な元素である。Ni含有量は0%であってもよいが、このような効果を得るためには、Ni含有量は0.001%以上であることが好ましい。Ni含有量は0.005%以上、0.010%以上又は0.020%以上であってもよい。一方で、Niを過度に含有すると、金属間化合物が多く形成し、耐食性を低下させる場合がある。したがって、Ni含有量は1.000%以下であることが好ましい。Ni含有量は0.800%以下、0.600%以下又は0.400%以下であってもよい。
[Ca:0~4.000%]
 Caは、めっき浴の濡れ性を確保するのに有効な元素である。Ca含有量は0%であってもよいが、このような効果を得るためには、Ca含有量は0.001%以上であることが好ましい。Ca含有量は0.010%以上、0.100%以上又は1.000%以上であってもよい。一方で、Caを過度に含有すると、めっき層中に硬い金属間化合物を多量に形成して、めっき層が脆くなり、鋼板との密着性を低下させる場合がある。したがって、Ca含有量は4.000%以下であることが好ましい。Ca含有量は3.000%以下、2.000%以下又は1.500%以下であってもよい。
[Sb:0~0.500%、Pb:0~0.500%、Cu:0~1.000%、Sn:0~1.000%、Ti:0~1.000%、Cr:0~1.000%、Nb:0~1.000%、Zr:0~1.000%、Mn:0~1.000%、Mo:0~1.000%、Ag:0~1.000%、Li:0~1.000%、La:0~0.500%、Ce:0~0.500%、B:0~0.500%、Y:0~0.500%、P:0~0.500%及びSr:0~0.500%]
 Sb、Pb、Cu、Sn、Ti、Cr、Nb、Zr、Mn、Mo、Ag、Li、La、Ce、B、Y、P及びSrは、めっき層中に含まれなくてもよいが、0.0001%以上又は0.001%以上の量においてめっき層中に存在し得る。これらの元素は、所定の含有量の範囲内であれば、めっき鋼板としての性能に悪影響は及ぼさない。しかしながら、各元素の含有量が過剰な場合には耐食性を低下させる場合がある。したがって、Sb、Pb、La、Ce、B、Y、P及びSrの含有量は0.500%以下であることが好ましく、例えば0.300%以下、0.100%以下又は0.050%以下であってもよい。同様に、Cu、Sn、Ti、Cr、Nb、Zr、Mn、Mo、Ag及びLiの含有量は1.000%以下であることが好ましく、例えば0.800%以下、0.500%以下又は0.100%以下であってもよい。
 めっき層において、上記の元素以外の残部はZn及び不純物からなる。めっき層における不純物とは、めっき層を製造する際に、原料を始めとして、製造工程の種々の要因によって混入する成分等である。
 めっき層の化学組成は、母材鋼板の腐食を抑制するインヒビターを加えた酸溶液にめっき層を溶解し、得られた溶液をICP(高周波誘導結合プラズマ)発光分光法によって測定することにより決定することができる。
 めっき層としては、上記の化学組成を有する任意のめっき層であってよく特に限定されないが、例えば溶融亜鉛めっき(GI)層であることが好ましい。例えば、合金化熱処理を施した場合には、めっき層中のFe含有量が高くなり、最終的なめっき層において所望の化学組成及び「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比を得ることができない場合がある。また、めっき層の厚さは、例えば3~50μmであってよい。めっき層の付着量は、特に限定されないが、例えば、片面当たり10~170g/m2であってよい。めっき層の付着量は、片面当たり45g/m2以上又は50g/m2以上であってもよい。同様に、めっき層の付着量は、片面当たり75g/m2以下又は70g/m2以下であってもよい。めっき層の付着量は、母材鋼板の腐食を抑制するインヒビターを加えた酸溶液にめっき層を溶解し、酸洗前後の重量変化から決定される。
[「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比:0.10~1.50]
 本発明の実施形態では、めっき層をグロー放電発光分析法(GDS)で測定した場合に、「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比は0.10~1.50である。GDSで測定した場合の「めっき層中心のAl濃度」と「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比をこのような範囲内に制御することで、めっき層にAlを添加したことによる効果を十分に発揮して溶融Znの鋼板内部への侵入を抑制又は低減することができ、その結果としてめっき鋼板の耐LME性を顕著に向上させることが可能となる。耐LME性を向上させる観点からは、「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比は高いほどよく、好ましくは0.15以上、より好ましくは0.20以上、最も好ましくは0.30以上であり、例えば0.40以上、0.42以上、0.45以上、0.50以上、0.55以上又は0.60以上であってもよい。この比は、めっき層全体のAl含有量を増加させつつ、後で詳しく説明するめっき鋼板の製造方法を適用することで増加させることが可能である。例えば、この比を0.20以上又は0.30以上とするためには、めっき層全体のAl含有量は0.30%以上とすることが好ましい。一方で、「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比が高くなりすぎると、それに関連するめっき層全体のAl含有量の増加に伴い、めっき層の融点が低下する場合がある。このため、スポット溶接の際にめっき層中のZnが溶融しやすくなり、LME割れを促進させてしまうおそれがある。したがって、本発明の実施形態においては、「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比は1.50以下とし、例えば1.40以下、1.30以下、1.20以下、1.10以下又は1.00以下であってもよい。
[「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比の測定方法]
 「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比は、以下のようにして決定される。まず、めっき鋼板から50mm×50mmのサイズに切断しためっき鋼板試料を得、次いで当該めっき鋼板試料をグロー放電発光分析(GDS)測定することにより、めっき層の表面から深さ方向100μmまでのAl濃度分布を得る。次に、GDS測定にてFe強度が母材鋼板のFe強度(試料のめっき層の表面から深さ100μm位置でのFe強度)の50%となる深さ位置でのAl濃度を「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」として決定し、この深さ位置から表面までの距離をめっき層の厚さと定義する。当該めっき層の厚さの1/2位置におけるGDSによるAl濃度を「めっき層中心のAl濃度」として決定し、最終的に「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比を決定する。
[母材鋼板]
 本発明の実施形態において、上記のめっき層を形成するための母材鋼板は、特に限定されず任意の適切な材料であってよい。例えば、母材鋼板は、めっき鋼板の引張強さが780MPa以上となるような化学組成を有する材料であってよい。一般に、LME割れは、比較的高い強度を有する鋼板をスポット溶接した場合にその発生が顕著となり、鋼板を高強度化するほどLME割れの感受性が高まる傾向にあることが知られている。したがって、本発明の実施形態に係るめっき鋼板が780MPa以上の高い引張強さを有する場合には、同じ引張強さを有する従来のめっき鋼板の場合と比較して、LME割れの抑制効果が特に顕著なものとなる。
[母材鋼板の好ましい化学組成]
 本発明は、上記のとおり、スポット溶接時のLME割れの発生を抑制又は低減することができる改善された耐LME性を有するめっき鋼板を提供することを目的とするものであって、所定の化学組成を有し、GDSで測定した場合に、「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比が0.10~1.50であるめっき層を母材鋼板の表面に形成することによって当該目的を達成するものである。したがって、母材鋼板の化学組成自体は、本発明の目的を達成する上で必須の技術的特徴でないことは明らかである。以下、本発明の実施形態に係るめっき鋼板において使用される母材鋼板の好ましい化学組成について詳しく説明するが、これらの説明は、スポット溶接した場合にLMEの発生が顕著となる780MPa以上の引張強さを有するめっき鋼板であって、すなわち、本発明に係るLME割れの抑制効果が特に顕著なめっき鋼板に関する母材鋼板の好ましい化学組成の単なる例示を意図するものであり、本発明をこのような特定の化学組成を有する母材鋼板を使用したものに限定することを意図するものではない。
 本発明の実施形態において、例えば、母材鋼板は、質量%で、
 C:0.01~0.50%、
 Si:0.01~3.50%、
 Mn:0.10~5.00%、
 P:0.100%以下、
 S:0.0300%以下、
 N:0.0100%以下、
 O:0~0.020%、
 Al:0~1.000%、
 B:0~0.010%、
 Nb:0~0.150%、
 Ti:0~0.20%、
 Mo:0~3.00%、
 Cr:0~2.00%、
 V:0~1.00%、
 Ni:0~2.00%、
 W:0~1.00%、
 Ta:0~0.10%、
 Co:0~3.00%、
 Sn:0~1.00%、
 Sb:0~0.50%、
 Cu:0~2.00%、
 As:0~0.050%、
 Mg:0~0.100%、
 Ca:0~0.100%、
 Zr:0~0.100%、
 Hf:0~0.100%、
 REM:0~0.10、並びに
 残部:Fe及び不純物
からなる化学組成を有することが好ましい。以下、各元素についてより詳しく説明する。
[C:0.01~0.50%]
 Cは、安価に引張強さを増加させる元素であり、鋼の強度を制御するために重要な元素である。このような効果を十分に得るために、C含有量は0.01%以上とすることが好ましい。C含有量は0.05%以上、0.08%以上、0.09%以上、0.10%以上又は0.15%以上であってもよい。一方で、Cを過度に含有すると、伸びの低下を招く場合がある。このため、C含有量は0.50%以下とすることが好ましい。C含有量は0.40%以下、0.35%以下又は0.30%以下であってもよい。
[Si:0.01~3.50%]
 Siは、脱酸剤として作用し、冷延板焼鈍中の冷却過程における炭化物の析出を抑制する元素である。このような効果を十分に得るために、Si含有量は0.01%以上とすることが好ましい。Si含有量は0.05%以上、0.08%以上、0.10%以上、0.30%以上又は0.80%以上であってもよい。一方で、Siを過度に含有すると、鋼強度の増加とともに伸びの低下を招く場合がある。このため、Si含有量は3.50%以下とすることが好ましい。Si含有量は2.50%以下、2.00%以下又は1.50%以下であってもよい。
[Mn:0.10~5.00%]
 Mnは、鋼のフェライト変態に影響を与える元素であり、強度上昇に有効な元素である。このような効果を十分に得るために、Mn含有量は0.10%以上とすることが好ましい。Mn含有量は0.50%以上、0.60%以上、0.80%以上、1.00%以上又は1.50%以上であってもよい。一方で、Mnを過度に含有すると、鋼強度の増加とともに伸びの低下を招く場合がある。このため、Mn含有量は5.00%以下とすることが好ましい。Mn含有量は4.00%以下、3.00%以下又は2.50%以下であってもよい。
[P:0.100%以下]
 Pは、粒界に偏析して鋼の脆化を促す元素である。P含有量は少ないほど好ましいため、理想的には0%である。しかしながら、P含有量の過度な低減はコストの大幅な増加を招く場合がある。このため、P含有量は0.0001%以上としてもよく、0.001%以上又は0.005%以上であってもよい。一方で、Pを過度に含有すると、上記のとおり粒界偏析により鋼の脆化を招く場合がある。したがって、P含有量は0.100%以下とすることが好ましい。P含有量は0.050%以下、0.030%以下又は0.010%以下であってもよい。
[S:0.0300%以下]
 Sは、鋼中でMnS等の非金属介在物を生成し、鋼材部品の延性の低下を招く元素である。S含有量は少ないほど好ましいため、理想的には0%である。しかしながら、S含有量の過度な低減はコストの大幅な増加を招く場合がある。このため、S含有量は0.0001%以上としてもよく、0.0002%以上、0.0010%以上又は0.0050%以上であってもよい。一方で、Sを過度に含有すると、冷間成形時に非金属介在物を起点とした割れの発生を招く場合がある。したがって、S含有量は0.0300%以下とすることが好ましい。S含有量は0.0200%以下、0.0150%以下又は0.0100%以下であってもよい。
[N:0.0100%以下]
 Nは、鋼板中で粗大な窒化物を形成し、鋼板の加工性を低下させる元素である。N含有量は少ないほど好ましいため、理想的には0%である。しかしながら、N含有量の過度な低減は製造コストの大幅な増加を招く場合がある。このため、N含有量は0.0001%以上としてもよく、0.0005%以上又は0.0010%以上であってもよい。一方で、Nを過度に含有すると、上記のとおり粗大な窒化物を形成して鋼板の加工性を低下させる場合がある。したがって、N含有量は0.0100%以下とすることが好ましい。N含有量は0.0080%以下又は0.0050%以下であってもよい。
 母材鋼板の好ましい基本化学組成は上記のとおりである。さらに、母材鋼板は、必要に応じて、残部のFeの一部に代えて、O:0~0.020%、Al:0~1.000%、B:0~0.010%、Nb:0~0.150%、Ti:0~0.20%、Mo:0~3.00%、Cr:0~2.00%、V:0~1.00%、Ni:0~2.00%、W:0~1.00%、Ta:0~0.10%、Co:0~3.00%、Sn:0~1.00%、Sb:0~0.50%、Cu:0~2.00%、As:0~0.050%、Mg:0~0.100%、Ca:0~0.100%、Zr:0~0.100%、Hf:0~0.100%、及びREM:0~0.100%からなる群より選択される1種又は2種以上を含有してもよい。各元素は0.0001%以上、0.0005%以上又は0.001%以上であってもよい。
 母材鋼板において、上記の元素以外の残部はFe及び不純物からなる。母材鋼板における不純物とは、母材鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分等である。
 母材鋼板の化学組成は、一般的な分析方法によって測定すればよい。例えば、母材鋼板の化学組成は、まず機械研削によりめっき層を除去し、次いで誘導結合プラズマ発光分光分析(ICP-AES:Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。C及びSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。
[母材鋼板の板厚]
 母材鋼板の板厚は、特に限定されないが、例えば0.2mm以上であり、0.3mm以上、0.6mm以上、1.0mm以上又は2.0mm以上であってもよい。同様に、母材鋼板の板厚は、例えば6.0mm以下であり、5.0mm以下、4.0mm以下、3.0mm以下又は2.5mm以下であってもよい。
[めっき鋼板の機械特性]
 本発明の実施形態に係るめっき鋼板は、任意の適切な引張強さを有することができ、特に限定されないが、例えば780MPa以上の引張強さを有することが好ましい。上記のとおり、LME割れは、比較的高い強度を有する鋼板をスポット溶接した場合にその発生が顕著となる。このため、本発明の実施形態に係るめっき鋼板が780MPa以上の高い引張強さを有する場合には、同じ引張強さを有する従来のめっき鋼板の場合と比較して、LME割れの抑制効果が特に顕著なものとなる。例えば、本発明の実施形態においては、めっき鋼板の引張強さは980MPa以上、1080MPa以上又は1180MPa以上であってもよい。上限は特に限定されないが、例えば、めっき鋼板の引張強さは2300MPa以下、2000MPa以下、1800MPa以下又は1500MPa以下であってもよい。引張強さは、試験片の長手方向がめっき鋼板の圧延直角方向と平行になる向きからJIS5号試験片を採取し、JIS Z 2241:2011に準拠して引張試験を行うことで測定される。
<めっき鋼板の製造方法>
 次に、本発明の実施形態に係るめっき鋼板の好ましい製造方法について説明する。以下の説明は、本発明の実施形態に係るめっき鋼板を製造するための特徴的な方法の例示を意図するものであって、当該めっき鋼板を以下に説明するような製造方法によって製造されるものに限定することを意図するものではない。
 本発明に係るめっき鋼板は、例えば、化学組成を調整した溶鋼を鋳造して鋼片を形成する鋳造工程、鋼片を熱間圧延して熱延鋼板を得る熱延工程、熱延鋼板を巻取る巻取工程、巻取った熱延鋼板を冷間圧延して冷延鋼板を得る冷延工程、前処理工程、前処理した冷延鋼板を焼鈍する焼鈍工程、及び得られた母材鋼板にめっき層を形成するめっき工程を行うことで製造することができる。代替的に、熱延工程後に巻き取らず、酸洗してそのまま冷延工程を行ってもよい。以下、各工程について詳しく説明する。
[鋳造工程]
 鋳造工程の条件は特に限定されない。例えば、高炉や電炉等による溶製に引き続き、各種の二次製錬を行い、次いで、通常の連続鋳造、インゴット法による鋳造などの方法で鋳造すればよい。
[熱延工程]
 鋳造した鋼片を熱間圧延して熱延鋼板を得ることができる。熱延工程は、鋳造した鋼片を直接又は一旦冷却した後に再加熱して熱間圧延することにより行われる。再加熱を行う場合には、鋼片の加熱温度は、例えば1100~1250℃であってよい。熱延工程においては、通常、粗圧延と仕上げ圧延とが行われる。各圧延の温度や圧下率は、所望の金属組織や板厚に応じて適宜決定することができる。例えば仕上げ圧延の終了温度は900~1050℃であってよく、仕上げ圧延の圧下率は10~50%であってよい。
[巻取工程]
 熱延鋼板は所定の温度で巻取ることができる。巻取温度は、所望の金属組織等に応じて適宜決定することができ、例えば500~800℃であってよい。巻取る前又は巻取った後に巻き戻して、熱延鋼板に所定の熱処理を与えてもよい。代替的に、巻取工程は行わずに熱延工程後に酸洗して後述する冷延工程を行うこともできる。
[冷延工程]
 熱延鋼板に酸洗等を行った後、熱延鋼板を冷間圧延して冷延鋼板を得ることができる。冷間圧延の圧下率は、所望の金属組織や板厚に応じて適宜決定することができ、例えば20~80%であってよい。冷延工程後は、例えば空冷して室温まで冷却してもよい。
[前処理工程]
 次に、冷延鋼板を焼鈍する前に所定の前処理工程を行うことが有効である。このような前処理工程としては、脱脂処理及び任意選択の研削処理を含むことができる。脱脂処理は、例えばpH8.0以上の溶液中で冷延鋼板を通電すること(電解処理)を含むものであってよい。通電の際の電流密度は1.0~8.0A/dm2であってよく、通電時間は5~10秒間であってよい。一方、任意選択の研削処理は、重研削ブラシを用いて実施することが好ましい。重研削ブラシを用いた研削により冷延鋼板の表面に歪みを導入することで、焼鈍工程後のめっき工程の際にFe-Alバリア層の核生成が促進され、Fe-Alバリア層を緻密化することができ、これに関連してFe-Alバリア層の成長速度が遅くなるため、厚さを薄くすることができる。その結果として、Fe-Alバリア層の形成に消費されるAl量を低減することができる。したがって、Fe-Alバリア層以外のめっき層中のAl量を増加させることができるので、最終的に得られるめっき鋼板において、「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比を高めることができ、より高い耐LME性を達成することが可能となる。研削処理は、特に限定されないが、例えば、重研削ブラシを用いて研削量10~200g/m2の条件下で冷延鋼板の表面を研削することにより実施することができる。重研削ブラシによる研削量は、当業者に公知の任意の適切な方法によって調整することができ、特に限定されないが、例えば、重研削ブラシの本数、回転数、ブラシ圧下量、及び使用する塗布液などを適切に選択することによって調整することができる。
[焼鈍工程]
 前処理工程を行った冷延鋼板に焼鈍を行う。焼鈍工程の保持温度は700~900℃であることが好ましい。焼鈍工程の保持温度が900℃超であると、鋼板表面に外部酸化層が生成し、めっき性が低下するおそれがある。上記保持温度までの昇温速度は、特に限定されないが1~10℃/秒であってよい。上記保持温度での保持時間は、10~300秒であることが好ましく、80~120秒であることがより好ましい。保持時間が300秒超であると、外部酸化物が過剰に成長し、めっき性が低下するおそれがある。焼鈍工程における雰囲気の露点は、好ましくは-20~10℃であり、より好ましくは-10~5℃である。露点が低すぎると、鋼板の表面上に外部酸化層が形成され、めっき性が低下する場合がある。一方で、露点が高すぎても、同様に鋼板表面に外部酸化物としてFe酸化物が生成し、めっき性が低下する場合がある。また、焼鈍工程における雰囲気は、還元雰囲気、より具体的には窒素及び水素を含む還元雰囲気、例えば水素1~10%の還元雰囲気(例えば、水素4%及び窒素バランス)であってよい。
[めっき工程]
 次に、めっき工程において、冷延鋼板(母材鋼板)の少なくとも一方、好ましくは両方の表面に、上で説明した化学組成及び組織を有するめっき層が形成される。より具体的には、めっき工程は、例えば、めっき層の化学組成が上で説明した範囲内となるように成分調整しためっき浴を用いて溶融めっきにより行われる。めっき工程では、まず、鋼板をめっき浴に浸漬してから冷却開始までの時間を6秒以下に制御すること、次いで浴温(例えば420~480℃)から370℃までの平均冷却速度を20℃/秒以上に制御することが極めて重要である。これらの要件を満足させることで、Fe-Alバリア層を薄くして、当該Fe-Alバリア層の形成に消費されるAl量を低減することができ、Fe-Alバリア層以外のめっき層中に存在するAl量を十分に確保することが可能となる。その結果として、最終的に得られるめっき鋼板において、「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比を0.10以上とすることができ、めっき鋼板の耐LME性を確実に向上させることが可能となる。一方で、これらの要件のうち一方でも満足しないと、すなわちめっき浴への鋼板の浸漬開始から冷却開始までの時間が6秒を超えるか及び/又は浴温から370℃までの平均冷却速度が20℃/秒未満になると、Fe-Alバリア層の形成に多くのAlが消費されてしまい、Fe-Alバリア層以外のめっき層中のAl量が低下してしまう。その結果として、最終的に得られるめっき鋼板において、所望の「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比を得ることができなくなり、めっき鋼板の耐LME性が低下してしまう。
 めっき鋼板の耐LME性をより向上させる観点からは、めっき浴への鋼板の浸漬開始から冷却開始までの時間はより短く、浴温から370℃までの平均冷却速度はより速いことが好ましい。例えば、めっき層全体のAl含有量を0.30%以上とするとともに、めっき浴への鋼板の浸漬開始から冷却開始までの時間を4秒以下及び浴温から370℃までの平均冷却速度を40℃/秒以上とすることで、めっき鋼板の耐LME性をより向上させることが可能である。先に説明した前処理工程として重研削ブラシによる研削処理を実施する場合には、めっき浴への鋼板の浸漬開始から冷却開始までの時間が6秒以下及び浴温から370℃までの平均冷却速度を20℃/秒以上の条件であっても、めっき層全体のAl含有量が0.30%以上の条件と組み合わせることにより、同様のより高い耐LME性を達成することができる。あるいはまた、めっき層全体のAl含有量を0.30%以上とするとともに、先に説明した前処理工程として重研削ブラシによる研削処理を実施し、さらにめっき浴への鋼板の浸漬開始から冷却開始までの時間を4秒以下及び浴温から370℃までの平均冷却速度を40℃/秒以上とすることで、めっき鋼板の耐LME性をより顕著に向上させることが可能である。めっき浴への鋼板の浸漬開始から冷却開始までの時間の下限は特に限定されないが、例えばめっき浴への鋼板の浸漬開始から冷却開始までの時間は2秒以上であってもよい。同様に浴温から370℃までの平均冷却速度の上限は特に限定されないが、例えば浴温から370℃までの平均冷却速度は80℃/秒以下であってもよい。めっき工程の他の条件は、めっき層の厚さ及び付着量等を考慮して適宜設定すればよい。例えば、冷延鋼板をめっき浴に浸漬した後、これを引き上げ、ガスワイピング法により直ちにN2ガス又は空気を吹き付け、その後冷却するようにすることでめっき層の付着量を所定の範囲内、例えば、片面当たり10~170g/m2の範囲内に調整することができる。
 本製造方法によって製造されためっき鋼板は、「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比が0.10~1.50の範囲内に制御されるため、めっき層にAlを添加したことによる効果を十分に発揮してスポット溶接の際の溶融Znの鋼板内部への侵入を抑制又は低減し、これに関連してめっき鋼板の耐LME性を顕著に向上させることが可能となる。したがって、このようなめっき鋼板によれば、同様の化学組成を有するめっき層、より具体的には同様のAl含有量を有するZn系めっき層を備えた従来のめっき鋼板と比較して、より優れた耐LME性を実現することが可能となり、特に自動車用めっき鋼板としての使用において衝突安全性の向上と長寿命化を通して、産業の発展に貢献することができる。
 以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 以下の実施例では、本発明の実施形態に係るめっき鋼板を種々の条件下で製造し、製造されためっき鋼板の耐LME性について調べた。
 まず、質量%で、C:0.15%、Si:1.00%、Mn:2.60%、P:0.010%、S:0.0020%、N:0.0100%、Al:0.020並びに残部:Fe及び不純物からなる化学組成を有する溶鋼を連続鋳造法にて鋳造して鋼片を形成し、当該鋼片を一旦冷却した後、1200℃に再加熱して熱間圧延し、次いで600℃で巻き取った。熱間圧延は、粗圧延と仕上げ圧延を行うことにより実施し、仕上げ圧延の終了温度は950℃、仕上げ圧延の圧下率は30%であった。次に、得られた熱延鋼板に酸洗を施し、次いで圧下率50%で冷間圧延して、1.6mmの板厚を有する冷延鋼板を得た。次に、得られた冷延鋼板について、pH9.2の溶液中で5.0A/dm2の電流密度で8秒間通電する前処理を行い、次いで、必要に応じて、冷延鋼板に2.0%のNaOH水溶液を塗布した後、重研削ブラシ(ホタニ社製D-100)を用いて10~200g/m2の研削量、ブラシ圧下量2.0mm及び回転数600rpmにて冷延鋼板の表面を研削し、当該冷延鋼板の表面に歪みを導入した。各冷延鋼板に関する重研削ブラシによる研削の有無は表1に示すとおりである。
 次に、各冷延鋼板を100mm×200mmのサイズに切断し、次いで露点0℃、保持温度870℃及び保持時間100秒の条件下で焼鈍処理(焼鈍雰囲気:水素4%及び窒素バランス)を行った。全ての鋼板試料において、焼鈍時の昇温速度は5℃/秒とした。次に、切断した鋼板試料を所定の浴組成を有する溶融亜鉛めっき浴を用いて、表1に示す浴温、めっき浴浸漬から冷却開始までの時間、及び浴温~370℃の平均冷却速度の条件下でめっき処理を行うことにより、鋼板試料の両方の表面にめっき層が形成されためっき鋼板試料を得た。めっき付着量は、めっき浴への浸漬後、鋼板試料を引き上げ、冷却開始前にN2ガスワイピングにより片面当たり50g/m2に調整した。比較例28及び29では、溶融亜鉛めっき処理後にそれぞれ520℃×10秒及び570℃×30秒の合金化熱処理を行った。
[めっき層の化学組成分析]
 めっき層の化学組成は、30mm×30mmに切断したサンプルをインヒビター(朝日化学工業製イビット)入りの10%HCl水溶液に浸漬し、めっき層を酸洗剥離した後、水溶液中に溶解しためっき成分をICP発光分光法によって測定することにより決定した。その結果を表1に示す。
[めっき鋼板の引張強さ]
 引張強さは、試験片の長手方向がめっき鋼板試料の圧延直角方向と平行になる向きからJIS5号試験片を採取し、JIS Z 2241:2011に準拠して引張試験を行うことで測定した。その結果、全てのめっき鋼板試料において引張強さは780MPa以上であった。
[めっき層中のAl濃度分布の測定]
 まず、めっき鋼板試料を50mm×50mmのサイズに切断し、次いで切断しためっき鋼板試料をGDS測定することにより、めっき層の表面から深さ方向100μmまでのAl濃度分布を得た。次に、GDS測定にてFe強度が母材鋼板のFe強度(試料のめっき層の表面から深さ100μm位置でのFe強度)の50%となる深さ位置でのAl濃度を「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」として決定し、この深さ位置から表面までの距離をめっき層の厚さと定義した。当該めっき層の厚さの1/2位置におけるGDSによるAl濃度を「めっき層中心のAl濃度」として決定し、最終的に「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比を決定した。
[スポット溶接による耐LME性の評価]
 100×100mmのサイズのめっき鋼板試料をスポット溶接に供した。50mm×100mmのサイズに切断したものを2枚準備し、これら2枚のめっき鋼板試料に対して、ドームラジアス型の先端直径8mmの溶接電極を用いて、打角5°、加圧力4.0kN、通電時間0.5秒、及び通電電流9kAにてスポット溶接を行うことで、溶接継手を作製した。次に、作製した溶接継手の溶接部を断面研磨した後、光学顕微鏡で観察し、溶接部の断面に生じたLME割れの長さを測定し、以下のようにして耐LME性を評価した。
  AAA:LME割れなし、
  AA :LME割れ長さ0μm超~100μm、
  A  :LME割れ長さ100μm超~500μm、
  B  :LME割れ長さ500μm超
 耐LME性の評価がAAA、AA及びAの場合を、改善された耐LME性を有するめっき鋼板として評価した。その結果を下表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1を参照すると、比較例26では、めっき層全体のAl含有量が低かったために、Al添加によるLME割れの抑制効果を十分に発揮することができず、耐LME性が低下した。比較例27では、めっき層全体のAl含有量が高かったために、めっき層の融点が低下したものと考えられる。その結果として、スポット溶接の際にめっき層中のZnが溶融しやすくなり、耐LME性が低下した。比較例28及び29では、合金化熱処理によりめっき層中のFe含有量が高くなり、所望のめっき化学組成及び「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比を得ることができず、耐LME性が低下した。比較例30では、めっき浴浸漬から冷却開始までの時間が長かったために、Fe-Alバリア層の形成に多くのAlが消費されてしまい、Fe-Alバリア層以外のめっき層中のAl量が低下してしまったと考えられる。その結果として、所望の「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比を得ることができず、耐LME性が低下した。比較例31では、浴温~370℃の平均冷却速度が遅かったために、Fe-Alバリア層の形成に多くのAlが消費されてしまい、Fe-Alバリア層以外のめっき層中のAl量が低下してしまったと考えられる。その結果として、所望の「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比を得ることができず、耐LME性が低下した。
 これとは対照的に、全ての実施例に係るめっき鋼板において所定のめっき化学組成を有し、「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比を0.10~1.50の範囲内に制御することで、めっき層にAlを添加したことによる効果を十分に発揮してLME割れを確実に抑制又は低減することができた。とりわけ、めっき層全体のAl含有量を0.30%以上とするとともに、めっき浴への鋼板の浸漬開始から冷却開始までの時間を4秒及び浴温から370℃までの平均冷却速度を40℃/秒とした実施例4及び5(重研削ブラシによる研削なし)並びにめっき層全体のAl含有量を0.30%以上とするとともに、焼鈍工程の前処理として重研削ブラシによる研削を実施した実施例12及び19(ただしめっき浴への鋼板の浸漬開始から冷却開始までの時間は6秒及び浴温から370℃までの平均冷却速度は20℃/秒)では、「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比が0.20以上となり、その結果として耐LME性の評価もAAとなり、さらにめっき鋼板の耐LME性が向上した。加えて、めっき層全体のAl含有量を0.30%以上とするとともに、焼鈍工程の前処理として重研削ブラシによる研削を実施し、さらにめっき浴への鋼板の浸漬開始から冷却開始までの時間を4秒及び浴温から370℃までの平均冷却速度を40℃/秒とした実施例6~11、13~18及び20~25では、「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比が0.30以上となり、その結果として耐LME性の評価もAAAとなり、めっき鋼板の耐LME性がより一層向上した。

Claims (5)

  1.  母材鋼板と、前記母材鋼板の表面に形成されためっき層とを備え、
     前記めっき層が、質量%で、
     Al:0.10~1.50%、及び
     Fe:0.01~2.00%
    を含有し、さらに、
     Mg:0~1.500%、
     Si:0~1.000%、
     Ni:0~1.000%、
     Ca:0~4.000%、
     Sb:0~0.500%、
     Pb:0~0.500%、
     Cu:0~1.000%、
     Sn:0~1.000%、
     Ti:0~1.000%、
     Cr:0~1.000%、
     Nb:0~1.000%、
     Zr:0~1.000%、
     Mn:0~1.000%、
     Mo:0~1.000%、
     Ag:0~1.000%、
     Li:0~1.000%、
     La:0~0.500%、
     Ce:0~0.500%、
     B :0~0.500%、
     Y :0~0.500%、
     P :0~0.500%、及び
     Sr:0~0.500%
    の少なくとも1種を合計で5.000%以下含有し、
     残部がZn及び不純物からなる化学組成を有し、
     前記めっき層をグロー放電発光分析法(GDS)で測定した場合に、「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比が0.10~1.50であることを特徴とする、めっき鋼板。
  2.  前記化学組成が、質量%で、Al:0.30~1.50%を含有し、前記めっき層をGDSで測定した場合に、「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比が0.20~1.50であることを特徴とする、請求項1に記載のめっき鋼板。
  3.  前記化学組成が、質量%で、Al:0.30~1.50%を含有し、前記めっき層をGDSで測定した場合に、「めっき層中心のAl濃度」/「Fe濃度が母材鋼板の50%となるめっき層位置のAl濃度」の比が0.30~1.50であることを特徴とする、請求項1に記載のめっき鋼板。
  4.  前記めっき層が溶融亜鉛めっき(GI)層であることを特徴とする、請求項1~3のいずれか1項に記載のめっき鋼板。
  5.  780MPa以上の引張強さを有することを特徴とする、請求項1~4のいずれか1項に記載のめっき鋼板。
PCT/JP2022/047088 2022-01-06 2022-12-21 めっき鋼板 WO2023132237A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022001155 2022-01-06
JP2022-001155 2022-01-06

Publications (1)

Publication Number Publication Date
WO2023132237A1 true WO2023132237A1 (ja) 2023-07-13

Family

ID=87073645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047088 WO2023132237A1 (ja) 2022-01-06 2022-12-21 めっき鋼板

Country Status (1)

Country Link
WO (1) WO2023132237A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261046A (ja) * 1988-08-26 1990-03-01 Kawasaki Steel Corp スポット溶接性に優れた合金化溶融亜鉛めっき鋼板の製造方法
JP2001247951A (ja) * 1999-12-28 2001-09-14 Kawasaki Steel Corp めっき密着性および溶接性に優れた溶融亜鉛めっき鋼板並びにその製造方法
JP2018178137A (ja) * 2017-04-03 2018-11-15 新日鐵住金株式会社 耐食性に優れためっき鋼材
JP2020503442A (ja) * 2016-12-22 2020-01-30 ポスコPosco 溶接性及びプレス加工性に優れた溶融亜鉛系めっき鋼材及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0261046A (ja) * 1988-08-26 1990-03-01 Kawasaki Steel Corp スポット溶接性に優れた合金化溶融亜鉛めっき鋼板の製造方法
JP2001247951A (ja) * 1999-12-28 2001-09-14 Kawasaki Steel Corp めっき密着性および溶接性に優れた溶融亜鉛めっき鋼板並びにその製造方法
JP2020503442A (ja) * 2016-12-22 2020-01-30 ポスコPosco 溶接性及びプレス加工性に優れた溶融亜鉛系めっき鋼材及びその製造方法
JP2018178137A (ja) * 2017-04-03 2018-11-15 新日鐵住金株式会社 耐食性に優れためっき鋼材

Similar Documents

Publication Publication Date Title
CN111492075B (zh) 钢板、热浸镀锌钢板和合金化热浸镀锌钢板
TWI500780B (zh) 熔融鍍鋅鋼板及其製造方法
JP3990539B2 (ja) メッキ密着性およびプレス成形性に優れた高強度溶融亜鉛メッキ鋼板および高強度合金化溶融亜鉛メッキ鋼板およびその製造方法
CN111433380B (zh) 高强度镀锌钢板及其制造方法
JP6009438B2 (ja) オーステナイト鋼の製造方法
CN111386358A (zh) 高强度镀锌钢板及其制造方法
KR20180133508A (ko) 도금 강판 및 그의 제조 방법
JP5516057B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
CN116685699A (zh) 焊接接头及汽车部件
KR20160136468A (ko) 내용융금속취화균열성이 우수한 아연계 합금 도금 강재
KR20230110807A (ko) 용접 조인트 및 자동차 부품
CN116745060A (zh) 焊接接头及汽车部件
JP5264234B2 (ja) 耐溶融金属脆化割れ性に優れたZn−Al−Mg系めっき鋼板およびその製造方法
JP3132406B2 (ja) 合金化溶融亜鉛めっき鋼板とその製造方法
JP4436275B2 (ja) 高降伏比高強度冷延鋼板と高降伏比高強度溶融亜鉛めっき鋼板及び高降伏比高強度合金化溶融亜鉛めっき鋼板並びにそれらの製造方法
CN115362277A (zh) 钢板、部件及其制造方法
JP4947565B2 (ja) めっき密着性およびプレス成形性に優れた高強度溶融亜鉛めっき鋼板の製造方法。
WO2023132237A1 (ja) めっき鋼板
JP2004292869A (ja) プレス成形性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
WO2023132244A1 (ja) 溶接継手
WO2023132241A1 (ja) 溶接継手
KR20230160384A (ko) 강 용접 부재
JP6893989B2 (ja) 犠牲防食性及びめっき性に優れた高マンガン溶融アルミニウムめっき鋼板及びその製造方法
JP7327676B2 (ja) 抵抗スポット溶接部材およびその抵抗スポット溶接方法
KR102457022B1 (ko) 폭방향을 따라 우수한 점 용접성이 균등하게 구현되는 고강도 용융아연도금 강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918821

Country of ref document: EP

Kind code of ref document: A1