WO2023131335A1 - 树脂炭素阳极生坯及制备方法、生坯中间体及制备方法、炭素阳极及制备方法 - Google Patents

树脂炭素阳极生坯及制备方法、生坯中间体及制备方法、炭素阳极及制备方法 Download PDF

Info

Publication number
WO2023131335A1
WO2023131335A1 PCT/CN2023/071500 CN2023071500W WO2023131335A1 WO 2023131335 A1 WO2023131335 A1 WO 2023131335A1 CN 2023071500 W CN2023071500 W CN 2023071500W WO 2023131335 A1 WO2023131335 A1 WO 2023131335A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon anode
green body
treatment
resin
modified phenolic
Prior art date
Application number
PCT/CN2023/071500
Other languages
English (en)
French (fr)
Inventor
唐地源
刘卫新
马庆
Original Assignee
山东圣泉新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东圣泉新材料股份有限公司 filed Critical 山东圣泉新材料股份有限公司
Publication of WO2023131335A1 publication Critical patent/WO2023131335A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/12Anodes
    • C25C3/125Anodes based on carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6269Curing of mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/61Mechanical properties, e.g. fracture toughness, hardness, Young's modulus or strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of the carbon industry, in particular to a resin carbon anode green body and a preparation method, a green body intermediate and a preparation method, and a carbon anode and a preparation method.
  • Prebaked anode is an anode material used in the electrolytic aluminum industry. It is used for electrolytic alumina to produce metal aluminum and is an important raw material for the electrolytic alumina industry.
  • the main raw material of the anode is petroleum coke, which is combined with coal tar pitch and made by forming and roasting.
  • coal tar pitch is used as the binder, harmful substances such as sulfur dioxide will be released at high temperature, which will pollute the environment and reduce the product yield.
  • the temperature during molding is about 145°C. After molding, it needs to be put into water, water-cooled to improve the strength, and then roasted for 20-30 days to prepare the finished anode. The process is complicated and the pass rate is low. And the pollution is serious.
  • Phenolic resin is a high-polymer polymer synthesized from phenol formaldehyde under alkali or acid conditions. It has the characteristics of good wettability with carbon materials and high carbon residue at high temperature. At present, phenolic resin has been widely used as a wetting agent for graphite in refractory materials and high temperature resistant materials. In the prior art, although phenolic resin has a relatively high amount of residual carbon, it also has excellent wetting and bonding properties to carbon materials. However, after carbonization, phenolic resin contains a large amount of hard carbon, which is difficult to graphitize, resulting in high resistivity. High;
  • the modified phenolic resin can effectively reduce the resistivity of the resin after carbonization, but currently the modified phenolic resin contains more sulfur content or metal ions, which will cause secondary pollution to the anode when applied to aluminum anodes. There is an urgent need to provide a phenolic resin with low sulfur content, less metal components, and good low-temperature carbonization performance.
  • the object of the present invention is to provide a resin carbon anode green body and a preparation method thereof, the resin carbon anode green body contains a modified phenolic resin with low sulfur content, less metal components, and good low-temperature carbonization performance. After being treated under appropriate conditions, the spectral features of the phenolic resin can be detected by gas chromatography-mass spectrometry.
  • a resin carbon anode green body, the resin carbon anode green body is hardened to obtain a resin carbon anode green body intermediate, and the resin carbon anode green body intermediate is tested by gas chromatography-mass spectrometry.
  • the following spectrum features there are characteristic peaks at retention times of 4.95 ⁇ 0.3min, 5.32 ⁇ 0.3min, 5.47 ⁇ 0.3min and 5.92 ⁇ 0.3min.
  • the resin carbon anode green body intermediate has the following spectrum characteristics when tested by gas chromatography-mass spectrometry: the retention time is 4.95 ⁇ 0.3min, 5.32 ⁇ There are characteristic peaks at 0.3min, 5.47 ⁇ 0.3min, 5.92 ⁇ 0.3min, 6.10 ⁇ 0.3min, 6.40 ⁇ 0.3min and 6.50 ⁇ 0.3min.
  • the resin carbon anode green body according to item 1 the resin carbon anode green body intermediate has a gas chromatography-mass spectrum spectrum as shown in FIG. 1 .
  • the gas chromatography instrument used during the gas chromatography-mass spectrometry technology test is 7890B/5977B GC/MSD
  • the chromatographic column is VF- 1701MS capillary column.
  • the resin carbon anode green body described in any one of items 1-4 is obtained by kneading and molding the mixed material comprising modified phenolic resin and aggregate;
  • the temperature of the modified phenolic resin is raised to 30-50°C.
  • the modified phenolic resin is one of a lignin-modified phenolic resin, a polyphenol compound-modified phenolic resin, and a polyhydroxy compound-modified phenolic resin or two or more;
  • the lignin is acidic lignin
  • the polyphenol compound is selected from one or more of pyrogallol, tea polyphenols, tannic acid and baked gum
  • the polyhydroxy compound is selected from maltose, sucrose, glucose, One or more of fructose, oxidized starch, sorbitol, and dextrin.
  • the aggregate includes calcined coke with a particle diameter of 8-5 mm, calcined coke with a particle diameter of 5-3 mm, and calcined coke with a particle diameter of 3-1 mm.
  • the calcined coke with a particle diameter of 8-5mm is 5-20wt%
  • the calcined coke with a particle diameter of 5-3mm is 10-25wt%
  • the particle diameter is 3
  • Calcined coke with a particle size of -1 mm is 15-30 wt %
  • calcined coke with a particle diameter of 1-0 mm is 10-20 wt %
  • fine powder calcined coke with a particle diameter of less than 0.075 mm is 25-45 wt %.
  • the kneading time is 10-100min, the kneading temperature is 40-60°C, and the kneading time is preferably 20-60min;
  • the modified phenolic resin is added continuously within 10min-30min until the addition is complete;
  • the flow rate of the modified phenolic resin is 1 kg/s-3 kg/s during continuous addition.
  • the modified phenolic resin is 5-15 parts, and the aggregate is 85- 95 servings.
  • the resin carbon anode green body according to any one of items 1-10 the resin carbon anode green body is made of a mixture comprising modified phenolic resin and aggregate after kneading treatment, molding treatment, and hardening treatment Afterwards, a gas chromatography-mass spectrometry test is carried out, wherein the hardening treatment temperature is 120-270°C, and the cracking temperature selected for the test is 600°C.
  • the mixed material includes modified phenolic resin and aggregate
  • Kneading treatment kneading time is 10-100min
  • Forming treatment Forming on an electric screw press or a vibration press
  • the temperature of the modified phenolic resin is raised to 30-50°C;
  • the modified phenolic resin is added continuously within 10min-30min until the addition is complete, and the kneading temperature is 40-60°C;
  • the flow rate of the modified phenolic resin is 1 kg/s-3 kg/s during continuous addition.
  • the green body intermediate body density is 1.6-1.8g/m 3 ;
  • the hardening treatment temperature is 120-270° C.
  • the hardening treatment time is 1-10 hours.
  • the mixed material includes modified phenolic resin and aggregate
  • Kneading treatment kneading time is 10-100min
  • Forming treatment Forming on an electric screw press or a vibration press
  • Hardening treatment the hardening treatment temperature is 120-270°C, and the hardening treatment time is 1-10h;
  • the temperature of the modified phenolic resin is raised to 30-50°C;
  • the modified phenolic resin is added continuously within 10min-30min until the addition is complete, and the kneading temperature is 40-60°C;
  • the flow rate of the modified phenolic resin is 1 kg/s-3 kg/s during continuous addition.
  • a carbon anode obtained by kneading, molding, hardening, and roasting from a mixture comprising modified phenolic resin and aggregate; or by the resin carbon anode described in any one of items 1-10
  • the green body is obtained through hardening treatment and calcination treatment; or obtained from the resin carbon anode green body intermediate described in Item 12 through calcination treatment.
  • the modified phenolic resin is one or more of lignin-modified phenolic resins, polyphenol compound-modified phenolic resins, and polyhydroxy compound-modified phenolic resins;
  • the lignin is acidic lignin
  • the polyphenol compound is selected from one or more of pyrogallol, tea polyphenols, tannic acid and baked gum
  • the polyhydroxy compound is selected from maltose, sucrose, glucose, One or more of fructose, oxidized starch, sorbitol, and dextrin.
  • the aggregates include calcined coke with a particle diameter of 8-5mm, calcined coke with a particle diameter of 5-3mm, calcined coke with a particle diameter of 3-1mm, calcined coke with a particle diameter of 1-0mm, particles One or more of fine powder calcined cokes with a diameter less than 0.075 mm;
  • the calcined coke with a particle diameter of 8-5mm is 5-20wt%
  • the calcined coke with a particle diameter of 5-3mm is 10-25wt%
  • the particle diameter is 3
  • Calcined coke with a particle size of -1 mm is 15-30 wt %
  • calcined coke with a particle diameter of 1-0 mm is 10-20 wt %
  • fine powder calcined coke with a particle diameter of less than 0.075 mm is 25-45 wt %.
  • the carbon anode according to item 15 based on the total weight of carbon anode raw materials, the modified phenolic resin is 5-15 parts, and the aggregate is 85-95 parts.
  • the kneading time is 10-100min, the kneading temperature is 40-60°C, and the kneading time is preferably 20-60min;
  • the modified phenolic resin is added continuously within 10min-30min until the addition is complete;
  • the flow rate of the modified phenolic resin is 1 kg/s-3 kg/s during continuous addition.
  • the carbon anode according to item 16 in the hardening treatment is 120-270°C, and the hardening treatment time is 1-10h;
  • the roasting treatment includes: under the condition of embedding carbon, the temperature is raised from room temperature -270°C to 550-1100°C, and the roasting treatment time is 20-250h;
  • the loss on ignition of the carbon anode is 2-6%
  • the roasting treatment is carried out under the condition of embedding carbon or under the protection of inert gas;
  • the calcination treatment is microwave calcination treatment, oven calcination treatment, tunnel kiln calcination treatment, downdraft kiln calcination treatment, multi-chamber ring calcination furnace calcination treatment, muffle furnace calcination treatment or calcination furnace calcination treatment.
  • the mixed material includes modified phenolic resin and aggregate
  • Kneading treatment kneading time is 10-100min
  • Forming treatment Forming on a friction press or a vibration press
  • Hardening treatment the hardening treatment temperature is 120-270°C, and the hardening treatment time is 1-10h;
  • Roasting treatment from room temperature -270°C to 550-1100°C.
  • the resin carbon anode green body intermediate of the present invention has suitable compressive strength and bulk density before high-temperature baking, reduces the rate of cracked rejects in the baking process, improves the qualified rate of carbon anode products, and saves roasting time at the same time , greatly improving the production efficiency of carbon anode products.
  • the carbon anode of the present invention adopts a large amount of phenolic resin to replace or completely replace coal tar pitch, which improves the structural compactness of the carbon anode, improves the strength simultaneously, and ensures the electrical conductivity of the carbon anode, so that it has good electrical conductivity.
  • Chemical properties improve the electrochemical reaction activity of the anode, reduce the consumption of electric energy in the electrolysis process, and improve economic benefits;
  • the present invention uses phenolic resin as a binder, and the kneading and molding process does not need to heat up the materials, which reduces the process steps; after the green carbon block is hardened and solidified, it has very high strength and dimensional stability, and can be used at 200-400 In the °C temperature stage, the temperature can be raised rapidly, which shortens the process time and reduces the production cost, and at the same time makes the whole production process and electrolysis process more environmentally friendly, which has great application prospects;
  • the carbon anode of the present invention has excellent strength and electrical conductivity, and can be used for electrolysis of alumina to improve economic benefits.
  • Fig. 1 shows the gas chromatography-mass spectrogram of embodiment 2-1
  • Fig. 2 shows the gas chromatography-mass spectrogram of comparative example 2-1;
  • Fig. 3 shows the gas chromatography-mass spectrogram of comparative example 3-1
  • the formed phenolic resin has a hydroxyl-containing aromatic ring structural unit, which mainly comes from the prepolymer formed by phenol and formaldehyde and lignin, and can be represented by the following formula (I) (wherein R is methylol or propyl group, R' is methoxyl group or methylene group), and then can calculate the molecular weight scope that contains the polymer of certain this structure; Adopt gel permeation chromatography to analyze the molecular weight and the molecular weight distribution of the phenolic resin that obtains The situation is measured, and the area of the molecular weight distribution of the phenolic resin polymer within a certain molecular weight range is analyzed, and the ratio of the area to the entire distribution area is calculated, which is the percentage of the polymer within the molecular weight range to the total weight of the phenolic resin, and then determined The percentage by weight of polymers containing a certain number of aromatic ring structures with hydroxyl groups.
  • formula (I) wherein R is methylo
  • the resin carbon anode green body provided by the present invention is hardened to obtain the resin carbon anode green body intermediate, and the resin carbon anode green body intermediate has The following spectrum features: there are characteristic peaks at retention times of 4.95 ⁇ 0.3min, 5.32 ⁇ 0.3min, 5.47 ⁇ 0.3min and 5.92 ⁇ 0.3min.
  • the resin carbon anode green body intermediate has the following spectrum characteristics when tested by gas chromatography-mass spectrometry: the retention times are 4.95 ⁇ 0.3min, 5.32 ⁇ 0.3min, 5.47 There are characteristic peaks at ⁇ 0.3min, 5.92 ⁇ 0.3min, 6.10 ⁇ 0.3min, 6.40 ⁇ 0.3min and 6.50 ⁇ 0.3min.
  • the retention times are 9.7 ⁇ 0.3min, 11.6 ⁇ 0.3min, 12.9 ⁇ 0.3min, 15.9 There is no characteristic peak at ⁇ 0.3min, that is, no characteristic peak belonging to coal tar pitch is detected.
  • the gas chromatography-mass spectrogram analysis results of the resin carbon anode green body intermediate are shown in Figure 1, wherein the specific analysis results of the characteristic peaks shown in Figure 1 are shown in Table 1 .
  • test conditions of the gas chromatography-mass spectrometry technique are test conditions known to those skilled in the art.
  • the gas chromatography-mass spectrometry test conditions are as follows: the gas chromatography-mass spectrometer is 7890B/5977B GC/MSD, equipped with EGA/PY-3030D pyrolysis instrument and Masshunter acquisition and qualitative software; The chromatographic column is a VF-1701MS capillary column.
  • the gas chromatography-mass spectrometry test conditions are as follows: the gas chromatography-mass spectrometer is an Agilent5975C-7890AGC-MS spectrometer, and the chromatographic column is a HP-5MS5%PhenylMethylSilox capillary column.
  • the test conditions of the gas chromatography-mass spectrometry technique are as follows: the gas chromatography-mass spectrometer is Agilent 5975C-7890A; the chromatographic column is an HP-5MS capillary chromatographic column.
  • the gas chromatography-mass spectrometry test conditions are as follows: the gas chromatography-mass spectrometer is SHIMADU GCMS-QP2010Plus, and the chromatographic column is DB-5HT.
  • the carbon anode green body is obtained from a mixture of modified phenolic resin and aggregate through kneading and molding.
  • the modified phenolic resin is one or more of lignin-modified phenolic resins, polyphenolic compound-modified phenolic resins, and polyhydroxyl compound-modified phenolic resins ;
  • the lignin is acidic lignin
  • the polyphenol compound is selected from one or more of pyrogallol, tea polyphenols, tannic acid and baked gum
  • the polyhydroxy compound is selected from maltose, sucrose, glucose, One or more of fructose, oxidized starch, sorbitol, and dextrin.
  • the modified phenolic resin can be modified by methods known to those skilled in the art.
  • the modified phenolic resin is prepared by reacting phenolic compounds, hydroxyl compounds, and aldehyde compound carbon formers under the action of a catalyst.
  • the phenolic resin modified by lignin, polyphenolic compounds, and polyhydroxyl compounds can be modified by methods known to those skilled in the art.
  • 100 parts of phenol and an appropriate amount of catalyst are put into the reactor, the temperature is raised to 80-90° C., 110-180 parts of 37% formaldehyde and modified carbon agent are added, and the temperature is raised to 90-95°C, constant temperature for 1-3h, add 30-70 parts of baking glue, control the viscosity to 100-350cp, dehydrate to 3-9%, and discharge.
  • the phenolic resin of the present invention based on the total weight of the modified phenolic resin, contains about 0.2 to 1.5% by weight of a carbon forming agent, and the carbon forming agent is boron Or one or more of the compounds soluble in water or phenolic resin formed by transition elements, and the transition elements do not include elements except Group IB and IIB, and the transition elements can be iron, manganese, cobalt, titanium, elements such as nickel and molybdenum.
  • the carburizing agent can be, for example, ferric ammonium citrate, manganese nitrate, cobalt sulfate, ferric chloride, nickel perchlorate, ammonium molybdate, nickel acetate and the like.
  • the total content of carbon forming agent in phenolic resin can be calculated according to the amount of added carbon forming agent and the total amount of all reaction components forming phenolic resin, and can also be calculated based on methods well known to those skilled in the art The content of the selected carbon forming agent in the phenolic resin was tested.
  • the addition of carbon forming agent can form a fusion compound with carbon at high temperature, and through the rearrangement of atoms inside the compound, carbon can be precipitated as graphite crystallization, which can improve the conductivity of the anode to a certain extent.
  • the modified phenolic resin is prepared by reacting phenolic compounds, aldehyde compounds, lignin and modifiers under the action of a basic catalyst.
  • the phenolic compound can be phenol, cresol, cardanol, resorcinol, alkylphenol, xylenol, octylphenol, nonylphenol, tert-butylphenol, cashew nut oil, bisphenol A, etc.
  • the aldehyde compound can be formaldehyde, paraformaldehyde, paraformaldehyde, acetaldehyde, paraldehyde, butyraldehyde, furfural, benzaldehyde and the like.
  • the lignin is prepared from phenol, dioxane, acid lignin and polyols.
  • the aggregate includes calcined coke with a particle diameter of 8-5 mm, calcined coke with a particle diameter of 5-3 mm, calcined coke with a particle diameter of 3-1 mm, and calcined coke with a particle diameter of 3-1 mm.
  • the calcined coke with a particle diameter of 8-5mm refers to the calcined coke with a particle diameter of 8-5mm;
  • the calcined coke with a particle diameter of 5-3mm refers to the calcined coke with a particle diameter of 5-3mm;
  • the particle diameter is 3-1mm calcined coke refers to calcined coke with a particle diameter of 3-1mm;
  • calcined coke with a particle diameter of 1-0mm refers to calcined coke with a particle diameter of 1-0mm;
  • Powder calcined coke refers to fine powder calcined coke with a particle size of less than 0.075mm.
  • the calcined coke with a particle diameter of 8-5mm is 5-20wt%
  • the calcined coke with a particle diameter of 5-3mm is 10-25wt%.
  • %, calcined coke with a particle diameter of 3-1mm is 15-30wt%
  • calcined coke with a particle diameter of 1-0mm is 10-20wt%
  • fine powder calcined coke with a particle diameter of less than 0.075mm is 25-45wt% .
  • the calcined coke with a particle diameter of 8-5mm can be 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 wt%, or any range between
  • the calcined coke with a particle diameter of 5-3mm can be 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 wt% or between any range of
  • the calcined coke with a particle diameter of 3-1 mm can be 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 wt% or between any range of
  • the calcined coke with a particle diameter of 1-0mm can be 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20wt% or any range therebetween;
  • Fine powder calcined coke with particle diameter less than 0.075mm can be 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43 , 44, 45wt% or any range therebetween.
  • the modified phenolic resin is 5-15 parts, and the aggregate is 85-95 parts;
  • the modified phenolic resin can be 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 parts or any range between them;
  • the aggregate can be 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95 parts or any range therebetween.
  • the temperature of the modified phenolic resin is raised to 30-50°C;
  • the modified phenolic resin can be heated to 30, 35, 40, 45, 50°C or any range therebetween.
  • the modified phenolic resin in the kneading treatment step, is continuously added within 10min-30min until the addition is complete; preferably, the flow rate of the modified phenolic resin is 1kg/S during continuous addition -3kg/S.
  • the kneading temperature is 40-60°C, for example, the kneading temperature may be 40, 45, 50, 55, 60°C or any range therebetween.
  • the kneading treatment includes: the kneading time is 10-100 min, preferably 20-60 min. Specifically, a kneader is used for kneading for 10-100 minutes, and the kneading time used in this application is to ensure the stability of the process.
  • the kneading time is less than 10 minutes, the mixed material composed of modified phenolic resin and aggregate cannot achieve sufficient mixing and infiltration, which will seriously affect the stability of the product and is not conducive to the subsequent process; but when the kneading time exceeds 100 minutes, such as 120 minutes, the kneading If the time is too long, it will cause the pre-curing of the modified phenolic resin, which will affect the molding performance and strength of the product.
  • the molding process adopts molding on an electric screw press or a vibration press.
  • the hardening treatment includes: the hardening treatment temperature is 120-270°C, and the hardening treatment time is 1-10h.
  • the hardening temperature cannot exceed 270°C, such as when the hardening temperature is 300 °C, the surface of the carbon block will be oxidized; the hardening treatment time should not be too long, which is not conducive to forming.
  • the hardening treatment temperature may be 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270°C or any range therebetween;
  • the hardening treatment time may be 1h, 2h, 3h, 4h, 5h, 6h, 7h, 8h, 9h, 10h or any range therebetween.
  • the resin carbon anode green body is made of a mixed material including modified phenolic resin and aggregate, after kneading treatment, molding treatment, and hardening treatment, gas chromatography-mass spectrometry technology test , wherein the hardening treatment temperature is 120-270°C, and the cracking temperature selected for the test is 600°C.
  • the present invention provides a method for preparing the above resin carbon anode green body, wherein,
  • the mixed material includes modified phenolic resin and aggregate
  • Kneading treatment kneading time is 10-100min
  • Forming treatment Forming on an electric screw press or a vibration press
  • the temperature of the modified phenolic resin is raised to 30-50°C;
  • the modified phenolic resin is added continuously within 10min-30min until the addition is complete, and the kneading temperature is 40-60°C;
  • the flow rate of the modified phenolic resin is 1 kg/s-3 kg/s during continuous addition.
  • the invention provides a resin carbon anode green body intermediate, which is obtained by hardening the above green body, wherein the hardening temperature is 120-270°C, and the hardening time is 1-10h.
  • the green body intermediate has a volatile content of 0.4-2%.
  • volatile matter refers to the weight percentage lost after the carbon anode green body is hardened.
  • the volatile content is the ratio of the weight difference between the weight of the formed carbon anode green body and the weight of the hardened green body intermediate to the weight of the formed carbon anode green body.
  • the green body intermediate body density is 1.6-1.8g/m 3 .
  • the green body intermediate has a body density of 1.69-1.75 g/m 3 .
  • the bulk density refers to the bulk density.
  • the bulk density is calculated by the ratio of the weight of the carbon anode green intermediate to the volume of the green intermediate.
  • the bulk density test method refers to GBT 24528-2009 Carbon material bulk density test methods.
  • the resin carbon anode green body intermediate is processed by gas chromatography-mass spectrometry after kneading, molding, and hardening of the mixed material including modified phenolic resin and aggregate.
  • the hardening treatment temperature is 120-270°C
  • the cracking temperature selected for the test is 600°C.
  • the invention provides a carbon anode, which is obtained from a mixed material including modified phenolic resin and aggregate through kneading treatment, molding treatment, hardening treatment and roasting treatment.
  • the modified phenolic resin is one or more of lignin-modified phenolic resins, polyphenolic compound-modified phenolic resins and polyhydroxyl compound-modified phenolic resins ;
  • the lignin is acidic lignin
  • the polyphenol compound is selected from one or more of pyrogallol, tea polyphenols, tannic acid and baked gum
  • the polyhydroxy compound is selected from maltose, sucrose, glucose, One or more of fructose, oxidized starch, sorbitol, and dextrin.
  • the aggregate includes calcined coke with a particle diameter of 8-5 mm, calcined coke with a particle diameter of 5-3 mm, calcined coke with a particle diameter of 3-1 mm, and calcined coke with a particle diameter of 3-1 mm.
  • the calcined coke with a particle diameter of 8-5mm is 5-20wt%
  • the calcined coke with a particle diameter of 5-3mm is 10-25wt%.
  • %, calcined coke with a particle diameter of 3-1mm is 15-30wt%
  • calcined coke with a particle diameter of 1-0mm is 10-20wt%
  • fine powder calcined coke with a particle diameter of less than 0.075mm is 25-45wt% .
  • the modified phenolic resin is 5-15 parts, and the aggregate is 85-95 parts.
  • the forming process uses forming on an electric screw press or a vibratory press.
  • the hardening treatment temperature is 120-270° C.
  • the hardening treatment time is 1-10 hours.
  • the roasting treatment includes: heating from room temperature -270°C to 550-1100°C under the condition of embedding carbon, and the roasting treatment time is 20-250h;
  • the roasting treatment is microwave roasting treatment, oven roasting treatment, tunnel kiln roasting treatment, downdraft kiln roasting treatment, multi-chamber annular roasting furnace roasting treatment, muffle furnace roasting treatment or roasting Furnace roasting treatment.
  • the temperature rise rate is 3-60°C/h in the room temperature-270°C stage; the temperature rise rate is 3-60°C/h in the 270-500°C stage; 500 In the -800°C stage, the heating rate is 10-50°C/h, and in the 800-1100°C stage, the heating rate is 10-30°C/h.
  • the present invention provides a kind of method of above-mentioned carbon anode, wherein,
  • the mixed material includes modified phenolic resin and aggregate
  • Kneading treatment kneading time is 10-100min
  • Forming treatment Forming on a friction press or a vibration press
  • Hardening treatment the hardening treatment temperature is 120-270°C, and the hardening treatment time is 1-10h;
  • Roasting treatment from room temperature -270°C to 550-1100°C;
  • the roasting treatment includes, under the condition of embedding carbon, heating from room temperature -270°C to 550-1100°C, and the roasting treatment time is 20-250h;
  • the calcination treatment is microwave calcination treatment, oven calcination treatment, tunnel kiln calcination treatment, downdraft kiln calcination treatment, multi-chamber annular calcination furnace calcination treatment, muffle furnace calcination treatment or calcination furnace calcination treatment.
  • the modified phenolic resin in the kneading treatment step, is added continuously within 10min-30min until the addition is complete; preferably, the flow rate of the modified phenolic resin is 1kg/ s-3kg/s.
  • the temperature of the modified phenolic resin is raised to 30-50°C.
  • the invention provides a carbon anode prepared from the resin carbon anode green body.
  • the invention provides a method for preparing a carbon anode from the above-mentioned resin carbon anode green body, wherein the resin carbon anode green body is hardened and roasted to obtain a carbon anode;
  • the roasting treatment includes: heating from room temperature -270°C to 550-1100°C under the condition of buried carbon, and the roasting treatment time is 20-250h.
  • the loss on ignition of the carbon anode body is 2-6%.
  • the loss on ignition refers to the weight percentage lost after the carbon anode green body intermediate is roasted.
  • the loss on ignition is the ratio of the weight difference between the weight of the formed carbon anode green body intermediate and the weight of the carbon anode finished product after firing to the weight of the carbon anode green body intermediate.
  • the invention provides a carbon anode prepared from the above resin carbon anode green body intermediate.
  • the present invention provides a method for preparing a carbon anode from the above resin carbon anode green body intermediate, wherein the resin carbon anode green body intermediate is roasted to obtain a carbon anode;
  • the roasting treatment includes: heating from room temperature -270°C to 550-1100°C under the condition of buried carbon, and the roasting treatment time is 20-250h.
  • the present invention also provides the application of the above-mentioned carbon anode on electrolytic aluminum.
  • the characteristic absorption peak of the phenolic resin can be detected when tested by gas chromatography-mass spectrometry, and the resin carbon anode green body can be obtained after hardening and roasting. , the volume density and compressive strength index of the obtained carbon anode fluctuate less, and the quality is more stable.
  • the present invention generally and/or specifically describes the materials and test methods used in the test.
  • % means wt%, ie weight percentage.
  • the reagents or instruments used, whose manufacturers are not indicated, are commercially available conventional reagent products, wherein, Table 2 shows the source of the raw materials used in the examples.
  • Embodiment 1-1 Preparation of resin carbon anode green body
  • step (c) The modified phenolic resin obtained in step (b) is warmed up to 40° C., and 95 parts of aggregate obtained in step (a) are mixed with 10 parts of modified phenolic resin obtained in step (b).
  • the phenolic resin was added continuously within 20 minutes, and the flow rate of the modified phenolic resin was 2 kg/s until the addition was completed.
  • a kneader was used, the kneading time was 30 minutes, and the kneading temperature was 50° C.
  • step (d) Place the mixed material kneaded in step (c) in a specific mold, and use an electric screw press to press and shape it under a pressure of 2,500 tons to obtain a resin carbon anode green body.
  • step (c) the kneading time is 10min, and other conditions are all the same.
  • step (c) the kneading time is 100min, and other conditions are all the same.
  • step (c) the kneading time is 120min, and other conditions are all the same.
  • Embodiment 1-5 Resin Carbon Anode Green Body
  • Example 1-5 The difference between Example 1-5 and Example 1-1 is that in step (c), the modified phenolic resin is not heated to 40°C, that is, at room temperature, 95 parts of the aggregate obtained in step (a) Mix with 10 parts of the modified phenolic resin obtained in step (b), using a kneader, the kneading time is 30min, and the kneading temperature is 50°C.
  • Embodiment 1-6 Resin Carbon Anode Green Body
  • step (c) the modified phenolic resin obtained in step (b) is heated to 40°C, and 95 parts of the aggregate obtained in step (a) are Mix with 10 parts of the modified phenolic resin obtained in step (b), add the modified phenolic resin all at once, use a kneader, the kneading time is 30min, and the kneading temperature is 50°C.
  • Embodiment 1-7 Resin Carbon Anode Green Body
  • Embodiment 1-8 Resin Carbon Anode Green Body
  • Example 1-1 The only difference between Examples 1-8 and Example 1-1 is that in step (c), the kneading temperature is room temperature, and the rest of the conditions are the same.
  • step (b) Heat 95 parts of the aggregate obtained in step (a) to 150°C, add 10 parts of coal tar pitch powder preheated to 140°C, and knead at 140°C for 30 minutes.
  • step (c) Place the mixed material kneaded in step (b) in a specific mold, and use a vibration molding machine to press and shape it.
  • the resin carbon anode green body prepared in Example 1-1 is subjected to hardening treatment, wherein, in the hardening treatment, the hardening treatment temperature is 150°C, and the hardening treatment time is 3h, that is, the resin carbon anode green body intermediate is obtained, and the before and after hardening are detected respectively.
  • the weight of the green body intermediate is based on the weight difference before and after hardening to calculate the data of the volatile content of the green body intermediate, and the result shows that the volatile content of the green body intermediate is 1.05%.
  • the resin carbon anode green body intermediate obtained in Example 2-1 is then analyzed by gas chromatography-mass spectrometry, and the resin carbon anode green body intermediate has a gas chromatography-mass spectrum spectrum as shown in FIG. 1 .
  • the resin carbon anode green body prepared in Examples 1-5 is subjected to hardening treatment, wherein, in the hardening treatment, the hardening treatment temperature is 150°C, and the hardening treatment time is 3h, that is, the resin carbon anode green body intermediate is obtained, and the before and after hardening are detected respectively.
  • the weight of the green body intermediate is based on the weight difference before and after hardening to calculate the data of the volatile content of the green body intermediate, and the result shows that the volatile content of the green body intermediate is 1.02%.
  • the resin carbon anode green body prepared in Examples 1-6 is subjected to hardening treatment, wherein, in the hardening treatment, the hardening treatment temperature is 150°C, and the hardening treatment time is 3h, that is, the resin carbon anode green body intermediate is obtained, and the before and after hardening are detected respectively.
  • the weight of the green body intermediate is based on the weight difference before and after hardening to calculate the data of the volatile content of the green body intermediate, and the result shows that the volatile content of the green body intermediate is 0.98%.
  • the resin carbon anode green body prepared in Examples 1-7 is subjected to hardening treatment, wherein, in the hardening treatment, the hardening treatment temperature is 150°C, and the hardening treatment time is 3h, that is, the resin carbon anode green body intermediate is obtained, and the before and after hardening are detected respectively.
  • the weight of the green body intermediate is based on the weight difference before and after hardening to calculate the data of the volatile content of the green body intermediate, and the result shows that the volatile content of the green body intermediate is 0.97%.
  • the resin carbon anode green body prepared in Examples 1-8 is subjected to hardening treatment, wherein, in the hardening treatment, the hardening treatment temperature is 150°C, and the hardening treatment time is 3h, that is, the resin carbon anode green body intermediate is obtained, and the before and after hardening are detected respectively.
  • the weight of the green body intermediate is based on the weight difference before and after hardening to calculate the data of the volatile content of the green body intermediate, and the result shows that the volatile content of the green body intermediate is 0.98%.
  • the resin carbon anode green body prepared in Example 1-1 is subjected to hardening treatment, wherein, in the hardening treatment, the hardening treatment temperature is 300°C, and the hardening treatment time is 2h, that is, the resin carbon anode green body intermediate is obtained, and the before and after hardening are detected respectively.
  • the weight of the green body intermediate is based on the weight difference before and after hardening to calculate the data of the volatile content of the green body intermediate, and the result shows that the volatile content of the green body intermediate is 1.3%.
  • the resin carbon anode green body prepared in Example 1-1 is subjected to hardening treatment, wherein, in the hardening treatment, the hardening treatment temperature is 90°C, and the hardening treatment time is 12h, that is, the resin carbon anode green body intermediate is obtained, and the before and after hardening are detected respectively.
  • the weight of the green body intermediate is based on the weight difference before and after hardening to calculate the data of the volatile content of the green body intermediate, and the result shows that the volatile content of the green body intermediate is 0.4%.
  • Example 2-8 The only difference between Example 2-8 and Example 2-1 is that the hardening time is 8 hours, and the volatile content of the green body intermediate is 1.3%.
  • Example 2-9 The only difference between Example 2-9 and Example 2-1 is that the hardening time is 30 minutes, and the volatile content of the green body intermediate is 0.3%.
  • Comparative Example 1-1 the compressed carbon anode green body intermediate was water-cooled for 12 hours, and then dried naturally for gas chromatography-mass spectrometry analysis.
  • the carbon anode green body intermediate obtained in Comparative Example 2-1 was then analyzed by gas chromatography-mass spectrometry, and the resin carbon anode green body intermediate had a gas chromatography-mass spectrum spectrum as shown in FIG. 2 .
  • Example 1-1 150°C 3 hours 1.05%
  • Example 2-2 Example 1-5 150°C 3 hours 1.02%
  • Example 2-3 Examples 1-6 150°C 3 hours 0.98%
  • Example 2-4 Example 1-7 150°C 3 hours 0.97%
  • Example 2-5 Examples 1-8 150°C 3 hours 0.98% Example 2-6 Example 1-1 300°C 2 hours 1.3% Example 2-7 Example 1-1 90°C 12 hours 0.4% Example 2-8 Example 1-1 150°C 8 hours 1.3% Example 2-9 Example 1-1 150°C 0.5 0.3%
  • the resin carbon anode green body intermediate prepared in Example 2-1 is placed in a tunnel kiln for roasting treatment, wherein: under the condition of embedding carbon, the temperature is raised from room temperature to 1000 ° C, wherein, at the stage of room temperature - 270 ° C, the heating rate is 50°C/h; 270-500°C stage heating rate is 40°C/h, 500-800°C stage, heating rate is 30°C/h, 800-1000°C stage, heating rate is 25°C/h, roasting 72h,
  • the carbon anode green body intermediate and the carbon anode finished product were weighed before and after firing, and the loss on ignition of the carbon anode was calculated as 3.2% based on the weight difference between the two.
  • Example 2 The resin carbon anode green body intermediate prepared in Example 2-2 was placed in a tunnel kiln for roasting treatment, the roasting treatment conditions were the same as in Example 3-1, and the loss on ignition of the carbon anode was 3.2%.
  • Example 2-3 The resin carbon anode green body intermediate prepared in Example 2-3 was placed in a tunnel kiln for roasting treatment, the roasting treatment conditions were the same as in Example 3-1, and the loss on ignition of the carbon anode was 3.3%.
  • Example 2-4 The resin carbon anode green body intermediate prepared in Example 2-4 was placed in a tunnel kiln for roasting treatment, wherein the roasting treatment conditions were the same as in Example 3-1, and the loss on ignition of the carbon anode was 2.8%.
  • Example 2-5 The resin carbon anode green body intermediate prepared in Example 2-5 was placed in a tunnel kiln for roasting treatment, wherein the roasting treatment conditions were the same as in Example 3-1, and the loss on ignition of the carbon anode was 3.3%.
  • Example 2-6 The resin carbon anode green body intermediate prepared in Example 2-6 was placed in a tunnel kiln for roasting treatment, wherein the roasting treatment conditions were the same as in Example 3-1, and the loss on ignition of the carbon anode was 2.9%.
  • Example 2-7 The resin carbon anode green body intermediate prepared in Example 2-7 was placed in a tunnel kiln for roasting treatment, wherein the roasting treatment conditions were the same as in Example 3-1, and the loss on ignition of the carbon anode was 3.8%.
  • Example 2-8 The resin carbon anode green body intermediate prepared in Example 2-8 was placed in a tunnel kiln for roasting treatment, wherein the roasting treatment conditions were the same as in Example 3-1, and the loss on ignition of the carbon anode was 3.0%.
  • Example 2-9 The resin carbon anode green body intermediate prepared in Example 2-9 was placed in a tunnel kiln for roasting treatment, wherein the roasting treatment conditions were the same as in Example 3-1, and the loss on ignition of the carbon anode was 4.0%.
  • the resin carbon anode green body intermediate prepared in Example 2-1 is placed in a tunnel kiln for roasting treatment, wherein the roasting treatment conditions are: under the condition of carbon embedding, the temperature is raised from room temperature to 780 ° C, wherein, at room temperature -270 ° C stage, the heating rate is 50°C/h; the heating rate is 40°C/h in the 270-500°C stage, and the heating rate is 30°C/h in the 500-780°C stage, and the firing rate is 72 hours.
  • the body and the finished carbon anode were weighed, and based on the weight difference between the two, the loss on ignition of the carbon anode was calculated as 2.7%.
  • the carbon anode green body intermediate prepared in Comparative Example 2-1 was placed in a tunnel kiln for roasting treatment, wherein the roasting treatment was the same as in Example 3-1, and the loss on ignition was 6.8%.
  • the carbon anode green body intermediate obtained in Comparative Example 3-1 was then analyzed by gas chromatography-mass spectrometry, and the carbon anode green body intermediate had a gas chromatography-mass spectrum spectrum as shown in FIG. 3 .
  • the carbon anode green body intermediate prepared in Example 2-1 is placed in a tunnel kiln for roasting treatment, wherein the roasting conditions: under the condition of embedding carbon, the temperature is raised from room temperature to 500 ° C, wherein, at the stage of room temperature - 270 ° C, the heating rate is 50°C/h; 270-500°C stage heating rate is 40°C/h, roasting 72h, ignition loss 1.8%.
  • Oven temperature initial temperature is 60°C, keep for 0min; increase temperature at 20°C/min to 260°C, keep for 30min.
  • Ion source Inert EI source
  • Example 2-1 The gas chromatography-mass spectrum of Example 2-1 is shown in Figure 1; wherein, Examples 2-2 to 2-4 can also obtain spectra similar to Figure 1.
  • Example 2-1 The gas chromatography-mass spectrometry of Comparative Example 2-1 is as shown in Figure 2, and its gas chromatography-mass spectrometry test conditions are the same as those in Example 2-1;
  • Example 3-1 The gas chromatography-mass spectrometry of Comparative Example 3-1 is shown in Figure 3, and its gas chromatography-mass spectrometry test conditions are the same as those in Example 2-1;
  • the characteristic groups corresponding to these characteristic peaks Groups all belong to the characteristic groups of long-chain alkanes; also can see the characteristic peaks belonging to coal tar pitch, such as 9.78 ⁇ 0.3min, 10.53 ⁇ 0.3min, 11.6 ⁇ 0.3min, 5.60 ⁇ 0.3min have characteristic peaks at retention time, According to Table 7, it can be seen that the characteristic groups corresponding to these characteristic peaks belong to the characteristic groups of coal tar pitch.
  • the resin carbon anode green body is defined as 100% if it has no cracks, no gaps, and a round shape.
  • the compressive strength of the intermediate is tested according to the testing method in YS/T 285-2012.
  • Example 2-1 the Compressive strength (Mpa) Volatile matter
  • Example 2-1 45 1.05%
  • Example 2-2 40 1.02%
  • Example 2-3 38 0.98%
  • Example 2-4 41 0.97%
  • Example 2-5 37 0.98%
  • Example 2-6 41 1.3%
  • Example 2-7 37 0.4%
  • Example 2-8 46 1.3%
  • Example 2-9 38 0.3% Comparative example 2-1 36 0.1%
  • the resin carbon anode green body intermediate is defined as 100% with no cracks, no gaps, and a round shape.
  • Volatility is an indicator of the degree of hardening. In principle, volatile matter is a characteristic value, and it is the most energy-saving to stop immediately once this specific value is reached. If the time is too short, the volatile matter is relatively small, and the impurities at this temperature are not fully volatilized, and subsequent high-temperature calcination may cause cracks in the anode. If the time is too long, the volatile matter reaches a specific value, but energy consumption is increased.
  • Embodiment 3 carbon anode index
  • the bulk density test method is tested according to the test method in YS/T 285-2012
  • Example 3-1 the Compressive strength (Mpa) Bulk density g/m 3 Resistivityu ⁇ .m Loss on ignition/%
  • Example 3-1 45 1.70 54 3.2
  • Example 3-2 42 1.63 52 3.2
  • Example 3-3 40 1.65 51 3.3
  • Example 3-4 44 1.64 55 2.8
  • Example 3-5 40 1.63 54 3.3
  • Example 3-6 43 1.70 58 2.9
  • Example 3-7 39 1.69 60 3.8
  • Example 3-9 42 1.67 57 4.0
  • Example 3-10 46 1.71 60 2.7 Comparative example 3-1 34 1.57 57 6.8 Comparative example 3-2 35 1.72 63 1.8

Abstract

本申请提供了一种树脂炭素阳极生坯,所述树脂炭素阳极生坯经硬化处理后得树脂炭素阳极生坯中间体,所述树脂炭素阳极生坯中间体通过气相色谱-质谱联用技术测试时具有以下图谱特征:在保留时间依次为4.95±0.3min、5.32±0.3min、5.47±0.3min和5.92±0.3min处有特征峰。本发明还提供了树脂炭素阳极生坯的制备方法。另外,本发明还提供了一种树脂炭素阳极生坯中间体、树脂炭素阳极及其相应的制备方法及应用。

Description

树脂炭素阳极生坯及制备方法、生坯中间体及制备方法、炭素阳极及制备方法 技术领域
本发明涉及一种炭素行业技术领域,尤其是涉及树脂炭素阳极生坯及制备方法、生坯中间体及制备方法、炭素阳极及制备方法。
背景技术
预焙阳极是电解铝行业使用的阳极材料,用于电解氧化铝,生产金属铝,是电解氧化铝行业重要的原材料。目前阳极主要原料是石油焦,用煤沥青结合,通过成型焙烧等阶段制成。而采用煤沥青作为粘合剂,在高温下会放出二氧化硫等有害物质,污染环境,并且降低产品收率。并且,采用煤沥青制备阳极的过程中,成型时温度处于145℃左右,成型后还需要放入水中,水冷以提升强度,再焙烧20-30d才能制备得到阳极成品,工艺复杂,合格率低,且污染严重。
酚醛树脂是以苯酚甲醛为原料,在碱或者酸条件下合成的一种高分聚合物,具有与碳素材料浸润性好,高温残炭高的特点。目前酚醛树脂作为石墨的浸润剂已经在耐火材料和耐高温材料上取得了广泛的应用。现有技术中,酚醛树脂虽具有较高的炭残留量,同时对碳素材料具有优异的浸润性能和粘结性能,但酚醛树脂碳化后含有大量的硬碳,较难石墨化,导致电阻率偏高;
而酚醛树脂经改性后可有效地降低树脂碳化后的电阻率,但目前改性酚醛树脂中含有较多硫含量或者金属离子,应用于铝用阳极会对阳极产生二次污染。亟需提供一种硫含量低和金属成分少、低温碳化性能好的的酚醛树脂。
发明内容
为了解决上述问题,本发明的目的是提供一种树脂炭素阳极生坯及制备方法,所述树脂炭素阳极生坯含有硫含量低、金属成分少、低温碳化性能好的改性酚醛树脂,而且在采用适当的条件进行处理后,通过气相色谱-质谱联用技术测试时可以检测到酚醛树脂的图谱特征。
1.一种树脂炭素阳极生坯,所述树脂炭素阳极生坯经硬化处理后得树脂炭素阳极生坯中间体,所述树脂炭素阳极生坯中间体通过气相色谱-质谱联用技术测试时具有以下图谱特征:在保留时间依次为4.95±0.3min、5.32±0.3min、5.47±0.3min和5.92±0.3min处有特征峰。
2.根据项1所述的树脂炭素阳极生坯,所述树脂炭素阳极生坯中间体通过气相色谱-质谱联用技术测试时具有以下图谱特征:在保留时间依次为4.95±0.3min、5.32±0.3min、5.47±0.3min、5.92±0.3min、6.10±0.3min、6.40±0.3min和6.50±0.3min处有特征峰。
3.根据项1所述的树脂炭素阳极生坯,所述树脂炭素阳极生坯中间体具有如图1所示的气相色谱-质谱图谱。
4.根据项1-3中任一项所述的树脂炭素阳极生坯,所述气相色谱-质谱联用技术测试时使用的气质联用仪为7890B/5977B GC/MSD,色谱柱为VF-1701MS毛细管柱。
5.根据项1-4中任一项所述的树脂炭素阳极生坯,所述树脂炭素阳极生坯由包括改性酚醛树脂、骨料的混合物料经混捏处理、成型处理所得到;
优选地,在混捏处理前,所述改性酚醛树脂升温至30-50℃。
6.根据项5所述的树脂炭素阳极生坯,所述改性酚醛树脂为木质素改性的酚醛树脂、多酚化合物改性的酚醛树脂以及多羟基化合物改性的酚醛树脂中的一种或两种以上;
优选地,木质素为酸性木质素,多酚化合物选自联苯三酚,茶多酚、单宁酸及烤胶中的一种或两种以上,多羟基化合物选自麦芽糖,蔗糖,葡萄糖,果糖,氧化淀粉,山梨糖醇,糊精中的一种或两种以上。
7.根据项5所述的树脂炭素阳极生坯,所述骨料包括颗粒径为8-5mm的煅后焦、颗粒径为5-3mm的煅后焦、颗粒径为3-1mm的煅后焦、颗粒径为1-0mm的煅后焦、颗粒径小于0.075mm的细粉煅后焦中的一种或多种;
优选地,以占骨料总重量的质量百分比计,颗粒径为8-5mm的煅后焦为5-20wt%,颗粒径为5-3mm的煅后焦为10-25wt%,颗粒径为3-1mm的煅后焦为15-30wt%,颗粒径为1-0mm的煅后焦为10-20wt%,颗粒径小于0.075mm的细粉煅后焦为25-45wt%。
8.根据项5所述的树脂炭素阳极生坯,
所述混捏处理中,混捏时间为10-100min,混捏温度为40-60℃,混捏时 间优选为20-60min;
优选地,在混捏处理步骤中,所述改性酚醛树脂在10min-30min内连续添加,直至添加完毕;
进一步优选的,连续添加时所述改性酚醛树脂流速为1kg/s-3kg/s。
9.根据项5-8中任一项所述的树脂炭素阳极生坯,以树脂炭素阳极生坯原料总重量计,所述改性酚醛树脂为5-15份、所述骨料为85-95份。
10.根据项5所述的树脂炭素阳极生坯,所述成型处理采用在电动螺旋压力机或振动压力机上成型。
11.根据项1-10中任一项所述的树脂炭素阳极生坯,所述树脂炭素阳极生坯由包括改性酚醛树脂、骨料的混合物料经混捏处理、成型处理后,经硬化处理后进行气相色谱-质谱联用技术测试,其中,硬化处理温度为120-270℃,测试选用的裂解温度为600℃。
12.一种制备项1-11中任一项所述的树脂炭素阳极生坯的方法,其中,
混合物料:所述混合物料包括改性酚醛树脂、骨料;
混捏处理:混捏时间为10-100min;
成型处理:采用在电动螺旋压力机或振动压力机上成型;
优选地,在混捏处理前,所述改性酚醛树脂升温至30-50℃;
进一步优选地,在混捏处理步骤中,所述改性酚醛树脂在10min-30min内连续添加,直至添加完毕,混捏温度为40-60℃;
进一步优选的,连续添加时所述改性酚醛树脂流速为1kg/s-3kg/s。
13.一种树脂炭素阳极生坯中间体,项1-10中任一项所述的生坯经过硬化处理所得,其中,所述生坯中间体挥发分为0.4-2%;
优选地,所述生坯中间体体密为1.6-1.8g/m 3
进一步优选地,硬化处理温度为120-270℃,硬化处理时间为1-10h。
14.一种制备项13所述的树脂炭素阳极生坯中间体的方法,其中,
混合物料:所述混合物料包括改性酚醛树脂、骨料;
混捏处理:混捏时间为10-100min;
成型处理:采用在电动螺旋压力机或振动压力机上成型;
硬化处理:硬化处理温度为120-270℃,硬化处理时间为1-10h;
优选地,在混捏处理前,所述改性酚醛树脂升温至30-50℃;
进一步优选地,在混捏处理步骤中,所述改性酚醛树脂在10min-30min内连续添加,直至添加完毕,混捏温度为40-60℃;
进一步优选的,连续添加时所述改性酚醛树脂流速为1kg/s-3kg/s。
15.一种炭素阳极,由包括改性酚醛树脂、骨料的混合物料经混捏处理、成型处理、硬化处理、焙烧处理所得到;或由项1-10中任一项所述的树脂炭素阳极生坯经硬化处理、焙烧处理所得到;或由项12所述的树脂炭素阳极生坯中间体经焙烧处理所得到。
16.根据项15所述的炭素阳极,
所述改性酚醛树脂为木质素改性的酚醛树脂、多酚化合物改性的酚醛树脂、多羟基化合物改性的酚醛树脂中的一种或两种以上;
优选地,木质素为酸性木质素,多酚化合物选自联苯三酚,茶多酚、单宁酸及烤胶中的一种或两种以上,多羟基化合物选自麦芽糖,蔗糖,葡萄糖,果糖,氧化淀粉,山梨糖醇,糊精中的一种或两种以上。
17.根据项15所述的炭素阳极,
所述骨料包括颗粒径为8-5mm的煅后焦、颗粒径为5-3mm的煅后焦、颗粒径为3-1mm的煅后焦、颗粒径为1-0mm的煅后焦、颗粒径小于0.075mm的细粉煅后焦中的一种或多种;
优选地,以占骨料总重量的质量百分比计,颗粒径为8-5mm的煅后焦为5-20wt%,颗粒径为5-3mm的煅后焦为10-25wt%,颗粒径为3-1mm的煅后焦为15-30wt%,颗粒径为1-0mm的煅后焦为10-20wt%,颗粒径小于0.075mm的细粉煅后焦为25-45wt%。
18.根据项15所述的炭素阳极,以炭素阳极原料总重量计,所述改性酚醛树脂为5-15份、所述骨料为85-95份。
19.根据项15所述的炭素阳极,
所述混捏处理中,混捏时间为10-100min,混捏温度为40-60℃,混捏时间优选为20-60min;
优选地,在混捏处理步骤中,所述改性酚醛树脂在10min-30min内连续添加,直至添加完毕;
进一步优选的,连续添加时所述改性酚醛树脂流速为1kg/s-3kg/s。
20.根据项16所述的炭素阳极,所述成型处理采用在电动螺旋压力机或振动压力机上成型。
21.根据项16所述的炭素阳极,所述硬化处理中:硬化处理温度为120-270℃,硬化处理时间为1-10h;
优选地,所述焙烧处理包括:在埋炭条件下,由室温-270℃升温至550-1100℃,焙烧处理时间为20-250h;
优选地,与炭素阳极生坯中间体相比,所述炭素阳极烧失量为2-6%;
进一步优选地,所述焙烧处理是在埋炭条件下或惰性气体保护条件下处理;
更优选地,所述焙烧处理为微波焙烧处理、烘箱焙烧处理、隧道窑焙烧处理、倒焰窑焙烧处理、多室环式焙烧炉焙烧处理、马弗炉焙烧处理或焙烧炉焙烧处理。
22.根据项21所述的炭素阳极,所述焙烧处理过程中,室温-270℃阶段,升温速率为3-60℃/h;270-500℃阶段,升温速率为3-60℃/h;500-800℃阶段升温速率为10-50℃/h,800-1100℃阶段,升温速率为10-30℃/h。
23.一种制备项15-22中任一项所述的炭素阳极的方法,包括如下步骤:
混合物料:所述混合物料包括改性酚醛树脂、骨料;
混捏处理:混捏时间为10-100min;
成型处理:采用在摩擦压力机或振动压力机上成型;
硬化处理:硬化处理温度为120-270℃,硬化处理时间为1-10h;
焙烧处理:由室温-270℃升温至550-1100℃。
24.一种项15-22中任一项所述的炭素阳极、根据项23所述方法制备的炭素阳极在电解铝上的应用。
本发明的技术效果如下:
(1)本发明所述的树脂炭素阳极生坯,在硬化处理温度低于270℃时,通过气相色谱-质谱联用技术测试时,可以检测到酚醛树脂的特征峰。
(2)本发明所述的树脂炭素阳极生坯中间体,高温烘焙前具有合适的耐压强度和体积密度,降低烘焙过程中裂纹废品率,提升了炭素阳极产品合格率,同时节省了焙烧时间,大大提高了炭素阳极成品的生产效率。
(2)本发明所述的炭素阳极,采用酚醛树脂大量替代或全部替代煤沥青,提高了炭素阳极的结构致密性,同时提高强度,并确保炭素阳极的导电性能,以使其具有良好的电化学性能,提高阳极电化学反应活性,降低电解过程中电能的消耗,提高经济效益;
(3)本发明采用酚醛树脂作为粘结剂,混捏及成型过程无需对物料进行升温处理,缩减了工艺步骤;生炭块硬化固化后,具有非常高的强度和尺寸稳定性,在200-400℃温度阶段,可快速升温,缩减了工艺时间,降低生产成本,同时使得整个生产过程和电解过程更加环保,具有极大的应用前景;
(4)本发明所述的炭素阳极,具有优异的强度、导电性能,可用于电解氧化铝,提高经济效益。
附图说明
图1示出了实施例2-1的气相色谱-质谱图谱;
图2示出了对比例2-1的气相色谱-质谱图谱;
图3示出了对比例3-1的气相色谱-质谱图谱;
具体实施方式
下面将对本发明做以详细说明。需要说明的是,通篇说明书及权利要求当中所提及的“包含”“包括”或“含有”为一开放式用语,故应解释成“包含但不限定于”。说明书后续描述为实施本发明的较佳实施方式,然所述描述乃以说明书的一般原则为目的,并非用以限定本发明的范围。本发明的保护范围当视所附权利要求所界定者为准。
在本申请中,形成的酚醛树脂具有含羟基的芳香环结构单元,该含羟基的芳香环结构单元主要来自苯酚和甲醛形成的预聚体以及木质素,可以用下式(I)表示(其中R为羟甲基或者丙基,R’为甲氧基或者亚甲基),进而可计 算含有一定该结构的聚合物的分子量范围;采用凝胶渗透色谱对得到的酚醛树脂的分子量和分子量分布情况进行测定,并对一定分子量范围内该酚醛树脂聚合物分子量分布的面积进行分析,计算该面积占整个分布面积的比值,即为该分子量范围内聚合物占酚醛树脂总重量的百分比,进而确定含有一定数量带羟基的芳香环结构的聚合物所占的重量百分数。
本发明提供的树脂炭素阳极生坯,所述树脂炭素阳极生坯经硬化处理后得树脂炭素阳极生坯中间体,所述树脂炭素阳极生坯中间体通过气相色谱-质谱联用技术测试时具有以下图谱特征:在保留时间依次为4.95±0.3min、5.32±0.3min、5.47±0.3min和5.92±0.3min处有特征峰。
在本发明的一个具体实施方式中,所述树脂炭素阳极生坯中间体通过气相色谱-质谱联用技术测试时具有以下图谱特征:在保留时间依次为4.95±0.3min、5.32±0.3min、5.47±0.3min、5.92±0.3min、6.10±0.3min、6.40±0.3min和6.50±0.3min处有特征峰。
在本发明的一个具体实施方式中,所述树脂炭素阳极生坯中间体通过气相色谱-质谱联用技术测试时,在保留时间为9.7±0.3min、11.6±0.3min、12.9±0.3min、15.9±0.3min处没有特征峰,即没有检测到属于煤沥青的特征峰。
在本发明的一个具体实施方式中,所述树脂炭素阳极生坯中间体的气相色谱-质谱图谱分析结果如图1所示,其中图1所示的特征峰的具体分析结果见表1所示。
表1-树脂炭素阳极生坯中间体的气相色谱-质谱图谱分析结果
Figure PCTCN2023071500-appb-000001
Figure PCTCN2023071500-appb-000002
在本发明的一些具体实施方式中,所述气相色谱-质谱联用技术测试条件为本领域技术人员可以获知的测试条件。
在本发明的一些具体实施方式中,所述气相色谱-质谱联用技术测试条件如下:气质联用仪为7890B/5977B GC/MSD,配EGA/PY-3030D裂解仪及Masshunter采集和定性软件;色谱柱为VF-1701MS毛细管柱。
在本发明的一些具体实施方式中,所述气相色谱-质谱联用技术测试条件如下:气质联用仪为Agilent5975C-7890AGC-MS联用仪,色谱柱为HP-5MS5%PhenylMethylSilox毛细管柱。
在本发明的一些具体实施方式中,所述气相色谱-质谱联用技术测试条件如下:气质联用仪为Agilent5975C-7890A;色谱柱为HP-5MS毛细管色谱柱。
在本发明的一些具体实施方式中,所述气相色谱-质谱联用技术测试条件如下:气质联用仪为SHIMADU GCMS-QP2010Plus,色谱柱为DB-5HT。
在本发明的一些具体实施方式中,样品测试时按照使用说明书进行操作,其中实施方式包括如下:
取少量样品移入样品杯中;
将样品杯用连杆连接到手动进样器上,将进样器固定到裂解仪上;
编辑气相色谱进样序列并运行;
当裂解软件发出进样警示后,启动运行程序,样品开始裂解并进入色谱 柱进行分离,由质谱进行检测;
对检测结果进行定性分析。
在本发明的一些具体实施方式中,所述炭素阳极生坯由包括改性酚醛树脂、骨料的混合物料经混捏处理、成型处理所得。
在本发明的一些具体实施方式中,所述改性酚醛树脂为木质素改性的酚醛树脂、多酚化合物改性的酚醛树脂、多羟基化合物改性的酚醛树脂中的一种或两种以上;
优选地,木质素为酸性木质素,多酚化合物选自联苯三酚,茶多酚、单宁酸及烤胶中的一种或两种以上,多羟基化合物选自麦芽糖,蔗糖,葡萄糖,果糖,氧化淀粉,山梨糖醇,糊精中的一种或两种以上。
在本发明的一个具体实施方式中,所述改性酚醛树脂可以是本领域技术人员所悉知的方法进行改性得到的。
在本发明的一个具体实施方式中,所述改性酚醛树脂是由酚类化合物、羟基化合物、醛类化合物成碳剂在催化剂作用下反应制得。
在本发明的一个具体实施方式中,在反应釜中投入100份苯酚和适量催化剂,升温至90-120℃,加入20-100份木质素,酚化1-5h,降温至80-82℃,加入37%甲醛100-150份和改性成碳剂,加入完毕后,升温至88-90℃,中控粘度至100-350cp,脱水至3-9%,放料。
在本发明的一些具体实施方式中,木质素、多酚化合物、多羟基化合物改性的酚醛树脂,可以是本领域技术人员所悉知的方法进行改性得到的。
在反应釜中投入100份苯酚和适量酸性催化剂,升温至90-120℃,加入20-100份木质素,酚化1-5h,降温至80-82℃,加入37%甲醛100-150份和改性成碳剂,加入完毕后,升温至88-90℃,中控粘度至100-350cp,脱水至3-9%,放料
在本发明的一个具体实施方式中,在反应釜中投入100份苯酚和适量催化剂,升温至90-100℃,加入10-60份果糖和10-20份间苯二酚,恒温1-2h,降温至80-82℃,加入37%甲醛100-150份和改性成碳剂,加入完毕后,升温至90-95℃,中控粘度至100-350cp,脱水至3-9%,放料。
在本发明的一个具体实施方式中,在反应釜中投入100份苯酚和适量催化剂,升温至80-90℃,加入37%甲醛110-180份和改性成碳剂,加入完毕后,升温至90-95℃,恒温1-3h,加入烤胶30-70份,中控粘度至100-350cp, 脱水至3-9%,放料。
在本发明的一个具体实施方式中,本发明的酚醛树脂,以所述改性酚醛树脂的总重量为基础,其含有约0.2~1.5重量%的成碳剂,所述成碳剂为硼元素或过渡元素形成的可溶于水或酚醛树脂的化合物中的一种或几种,且所述过渡元素不包括除ⅠB和ⅡB族元素,所述过渡元素可为铁、锰、钴、钛、镍、钼等元素。成碳剂可为例如柠檬酸铁胺、硝酸锰、硫酸钴、氯化铁、高氯酸镍、钼酸铵、醋酸镍等。在本申请中,成碳剂占酚醛树脂的总含量可以依据加入的成碳剂的量与形成酚醛树脂的全部反应成分的总量来进行计算,也可以基于本领域技术人员所熟知的方法对选取的成碳剂在酚醛树脂中的含量进行检测。成碳剂的加入,在高温下可与碳形成熔合物,通过化合物内部原子的重排,使碳作为石墨的结晶析出,可一定程度上提高阳极的导电性能。
在本发明的一个优选的实施方式中,所述改性酚醛树脂是由酚类化合物、醛类化合物、木质素和改性剂在碱性催化剂作用下反应制得。其中,所述酚类化合物可为苯酚、甲酚、腰果酚、间苯二酚、烷基酚、二甲酚、辛基酚,壬基酚,叔丁基酚、腰果油、双酚A等,所述醛类化合物可为甲醛、三聚甲醛、多聚甲醛、乙醛、三聚乙醛、丁醛、糠醛、苯甲醛等。
在本发明的一个具体实施方式中,所述木质素由苯酚、二噁烷、酸性木质素和多羟基化合物制得。
在本发明的一些实施方式中,所述骨料包括颗粒径为8-5mm的煅后焦、颗粒径为5-3mm的煅后焦、颗粒径为3-1mm的煅后焦、颗粒径为1-0mm的煅后焦、颗粒径小于0.075mm的细粉煅后焦中的一种或多种;
颗粒径为8-5mm的煅后焦是指;粒径为8-5mm的煅后焦;颗粒径为5-3mm的煅后焦是指粒径为5-3mm的煅后焦;颗粒径为3-1mm的煅后焦是指粒径为3-1mm的煅后焦;颗粒径为1-0mm的煅后焦是指粒径为1-0mm的煅后焦;颗粒径小于0.075mm的细粉煅后焦是指粒径小于0.075mm的细粉煅后焦。
在本发明的一些实施方式中,以占骨料总重量的质量百分比计,颗粒径为8-5mm的煅后焦为5-20wt%,颗粒径为5-3mm的煅后焦为10-25wt%,颗粒径为3-1mm的煅后焦为15-30wt%,颗粒径为1-0mm的煅后焦为10-20wt%,颗粒径小于0.075mm的细粉煅后焦为25-45wt%。
例如,所述颗粒径为8-5mm的煅后焦可以为5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20wt%或其之间的任意范围;
所述颗粒径为5-3mm的煅后焦可以为10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25wt%或其之间的任意范围;
所述颗粒径为3-1mm的煅后焦可以为15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30wt%或其之间的任意范围;
所述颗粒径为1-0mm的煅后焦可以为10、11、12、13、14、15、16、17、18、19、20wt%或其之间的任意范围;
颗粒径小于0.075mm的细粉煅后焦可以为25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45wt%或其之间的任意范围。
在本发明的一些实施方式中,以树脂炭素阳极生坯原料总重量计,所述改性酚醛树脂为5-15份、所述骨料为85-95份;
例如,所述改性酚醛树脂可以为5、6、7、8、9、10、11、12、13、14、15份或其之间的任意范围;
所述骨料可以为85、86、87、88、89、90、91、92、93、94、95份或其之间的任意范围。
在本发明的一些实施方式中,在混捏处理前,所述改性酚醛树脂升温至30-50℃;
例如,所述改性酚醛树脂可以升温至30、35、40、45、50℃或其之间的任意范围。
在本发明的一些实施方式中,在混捏处理步骤中,所述改性酚醛树脂在10min-30min内连续添加,直至添加完毕;优选的,连续添加时所述改性酚醛树脂流速为1kg/S-3kg/S。
在本发明的一些实施方式中,混捏温度为40-60℃,例如混捏温度可以为40、45、50、55、60℃或其之间的任意范围。
在本发明的一些实施方式中,所述混捏处理包括:混捏时间为10-100min,优选为20-60min。具体来说,采用混捏机混捏10-100min,采用本申请中的混捏时间在于,可以保证工艺的稳定性。如混捏时间不足10min,改性酚醛树脂、骨料组成的混合物料达不到充分的混合与浸润,严重影响产品的稳定性,不利于后续工序;但当混捏时间超过100min,如120min时,混捏时间 过长,会造成改性酚醛树脂的预固化,影响产品的成型性能和强度。
在本发明的一些实施方式中,所述成型处理采用在电动螺旋压力机或振动压力机上成型。
在本发明的一些实施方式中,所述硬化处理包括:硬化处理温度为120-270℃,硬化处理时间为1-10h,在本申请中,硬化温度不能超过270℃,如当硬化温度为300℃,炭块表面会被氧化;硬化处理时间不能过长,不利于成型。
例如,所述硬化处理温度可以为120、130、140、150、160、170、180、190、200、210、220、230、240、250、260、270℃或其之间的任意范围;
所述硬化处理时间可以为1h、2h、3h、4h、5h、6h、7h、8h、9h、10h或其之间的任意范围。
在本发明的一些具体实施方式中,所述树脂炭素阳极生坯由包括改性酚醛树脂、骨料的混合物料经混捏处理、成型处理后,经硬化处理后进行气相色谱-质谱联用技术测试,其中,硬化处理温度为120-270℃,测试选用的裂解温度为600℃。
本发明提供了一种制备上述树脂炭素阳极生坯的方法,其中,
混合物料:所述混合物料包括改性酚醛树脂、骨料;
混捏处理:混捏时间为10-100min;
成型处理:采用在电动螺旋压力机或振动压力机上成型;
优选地,在混捏处理前,所述改性酚醛树脂升温至30-50℃;
进一步优选地,在混捏处理步骤中,所述改性酚醛树脂在10min-30min内连续添加,直至添加完毕,混捏温度为40-60℃;
进一步优选的,连续添加时所述改性酚醛树脂流速为1kg/s-3kg/s。
本发明提供了一种树脂炭素阳极生坯中间体,由上述生坯经过硬化处理所得,其中,硬化处理温度为120-270℃,硬化处理时间为1-10h。
在本发明的一些具体实施方式中,所述生坯中间体挥发分为0.4-2%。
其中,挥发分指的是炭素阳极生坯经过硬化处理后失去的重量百分比。在本发明中,挥发分是成型的炭素阳极生坯重量与硬化处理后生坯中间体的重量差值与成型的炭素阳极生坯重量的比值。
在本发明的一些具体实施方式中,所述生坯中间体体密为1.6-1.8g/m 3
优选地,所述生坯中间体体密为1.69-1.75g/m 3
其中,体密是指体积密度,在本发明中,体积密度是炭素阳极生坯中间体的重量与该生坯中间体体积的比值计算的,体积密度测试方法参照GBT 24528-2009炭素材料体积密度测定方法。
在本发明的一些具体实施方式中,所述树脂炭素阳极生坯中间体由包括改性酚醛树脂、骨料的混合物料经混捏处理、成型处理、硬化处理后,进行气相色谱-质谱联用技术测试,其中,硬化处理温度为120-270℃,测试选用的裂解温度为600℃。
本发明提供了一种炭素阳极,由包括改性酚醛树脂、骨料的混合物料经混捏处理、成型处理、硬化处理、焙烧处理所得。
在本发明的一些具体实施方式中,所述改性酚醛树脂为木质素改性的酚醛树脂、多酚化合物改性的酚醛树脂以及多羟基化合物改性的酚醛树脂中的一种或两种以上;
优选地,木质素为酸性木质素,多酚化合物选自联苯三酚,茶多酚、单宁酸及烤胶中的一种或两种以上,多羟基化合物选自麦芽糖,蔗糖,葡萄糖,果糖,氧化淀粉,山梨糖醇,糊精中的一种或两种以上。
所述改性酚醛树脂的工艺过程如上所述,此处不再赘述。
在本发明的一些实施方式中,所述骨料包括颗粒径为8-5mm的煅后焦、颗粒径为5-3mm的煅后焦、颗粒径为3-1mm的煅后焦、颗粒径为1-0mm的煅后焦、颗粒径小于0.075mm的细粉煅后焦中的一种或多种。
关于颗粒径为8-5mm的煅后焦、颗粒径为5-3mm的煅后焦、颗粒径为3-1mm的煅后焦、颗粒径为1-0mm的煅后焦、颗粒径小于0.075mm的细粉煅后焦的规格如上所述,此处不再赘述。
在本发明的一些实施方式中,以占骨料总重量的质量百分比计,颗粒径为8-5mm的煅后焦为5-20wt%,颗粒径为5-3mm的煅后焦为10-25wt%,颗粒径为3-1mm的煅后焦为15-30wt%,颗粒径为1-0mm的煅后焦为10-20wt%,颗粒径小于0.075mm的细粉煅后焦为25-45wt%。
在本发明的一些实施方式中,以炭素阳极原料总重量计,所述改性酚醛树脂为5-15份、所述骨料为85-95份。
在本发明的一些实施方式中,所述成型处理采用在电动螺旋压力机或振 动压力机上成型。
在本发明的一些具体实施方式中,硬化处理温度为120-270℃,硬化处理时间为1-10h。
在本发明的一些具体实施方式中,所述焙烧处理包括:在埋炭条件下,由室温-270℃升温至550-1100℃,焙烧处理时间为20-250h;。
在本发明的一些具体实施方式中,所述焙烧处理为微波焙烧处理、烘箱焙烧处理、隧道窑焙烧处理、倒焰窑焙烧处理、多室环式焙烧炉焙烧处理、马弗炉焙烧处理或焙烧炉焙烧处理。
在本发明的一些具体实施方式中,所述焙烧处理过程中,室温-270℃阶段,升温速率为3-60℃/h;270-500℃阶段,升温速率为3-60℃/h;500-800℃阶段升温速率为10-50℃/h,800-1100℃阶段,升温速率为10-30℃/h。
本发明提供了一种上述炭素阳极的方法,其中,
混合物料:所述混合物料包括改性酚醛树脂、骨料;
混捏处理:混捏时间为10-100min;
成型处理:采用在摩擦压力机或振动压力机上成型;
硬化处理:硬化处理温度为120-270℃,硬化处理时间为1-10h;
焙烧处理:由室温-270℃升温至550-1100℃;
所述焙烧处理包括,在埋炭条件下,由室温-270℃升温至550-1100℃,焙烧处理时间为20-250h;
优选地,所述焙烧处理为微波焙烧处理、烘箱焙烧处理、隧道窑焙烧处理、倒焰窑焙烧处理、多室环式焙烧炉焙烧处理、马弗炉焙烧处理或焙烧炉焙烧处理。
在本发明的一些具体实施方式中,在混捏处理步骤中,所述改性酚醛树脂在10min-30min内连续添加,直至添加完毕;优选的,连续添加时所述改性酚醛树脂流速为1kg/s-3kg/s。
在本发明的一些具体实施方式中,在混捏处理前,所述改性酚醛树脂升温至30-50℃。
本发明提供了一种由上述树脂炭素阳极生坯制备的炭素阳极。
本发明提供了一种由上述树脂炭素阳极生坯制备炭素阳极的方法,所述树脂炭素阳极生坯经硬化处理、焙烧处理后得炭素阳极;
所述焙烧处理包括:在埋炭条件下,在埋炭条件下,由室温-270℃升温 至550-1100℃,焙烧处理时间为20-250h。
在本发明的一些实施方式中,与炭素阳极生坯中间体相比,所述炭素阳极体烧失量为2-6%。
其中,烧失量指的是炭素阳极生坯中间体经过焙烧处理后失去的重量百分比。在本发明中,烧失量分是成型的炭素阳极生坯中间体重量与焙烧后炭素阳极成品的重量差值与炭素阳极生坯中间体重量的比值。
本发明提供了一种由上述树脂炭素阳极生坯中间体制备的炭素阳极。
本发明提供了一种由上述树脂炭素阳极生坯中间体制备炭素阳极的方法,所述树脂炭素阳极生坯中间体经焙烧处理后得炭素阳极;
所述焙烧处理包括:在埋炭条件下,在埋炭条件下,由室温-270℃升温至550-1100℃,焙烧处理时间为20-250h。
本发明还提供了上述炭素阳极在电解铝上的应用。
本发明提供的树脂炭素阳极生坯经硬化处理后,通过气相色谱-质谱联用技术测试时可以检测到酚醛树脂的特征吸收峰,树脂炭素阳极生坯经硬化处理、焙烧处理后可得炭素阳极,得到的炭素阳极体积密度和耐压强度指标波动小,质量更稳定。
实施例
本发明对试验中所用到的材料以及试验方法进行一般性和/或具体的描述,在下面的实施例中,如果无其他特别的说明,%表示wt%,即重量百分数。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品,其中,表2为实施例中所用到的原料的来源。
表2实施例中所用到的原料来源
原料 型号/纯度 生产厂家
木质素 工业用 普通市购
煅后焦 工业用 普通市购
催化剂 工业用 天津市大茂化学试剂厂
酚醛树脂 工业用 山东圣泉新材料股份有效公司
煤沥青粉 工业用 普通市购
实施例1-1树脂炭素阳极生坯的制备
(a)骨料准备:称取颗粒径为8-5mm的煅后焦10份,颗粒径为5-3mm煅后焦15份,颗粒径为3-1mm煅后焦20份,颗粒径为1-0mm煅后焦10份,粒度小于0.075mm的细粉煅后焦40份放入混料机中混合均匀。
(b)木质素改性酚醛树脂制备:在反应釜中投入100份苯酚和适量催化剂,升温至100℃,加入70份木质素,酚化2h,降温至80-82℃,加入37%甲醛130份和改性成碳剂,加入完毕后,升温至88-90℃,中控粘度至180-280cp,脱水至4-7%,放料。
(c)将步骤(b)得到的改性酚醛树脂升温至40℃,将步骤(a)中得到的骨料95份和步骤(b)得到的改性酚醛树脂10份混合,所述改性酚醛树脂在20min内连续添加,所述改性酚醛树脂流速为2kg/s直至添加完毕,采用混捏机,混捏时间为30min,混捏温度为50℃。
(d)将步骤(c)中混捏好的混合物料,放置于特定的模具中,使用电动螺旋压力机在2500吨的压力下压制成型,即得树脂炭素阳极生坯。
实施例1-2树脂炭素阳极生坯的制备
实施例1-2与实施例1-1的区别仅在于:步骤(c)中,混捏时间为10min,其余条件均相同。
实施例1-3树脂炭素阳极生坯的制备
实施例1-3与实施例1-1的区别仅在于:步骤(c)中,混捏时间为100min,其余条件均相同。
实施例1-4树脂炭素阳极生坯的制备
实施例1-4与实施例1-1的区别仅在于:步骤(c)中,混捏时间为120min,其余条件均相同。
实施例1-5树脂炭素阳极生坯的制备
实施例1-5与实施例1-1的区别仅在于:步骤(c)中,改性酚醛树脂未升温至40℃,即在室温条件下,将步骤(a)中得到的骨料95份和步骤(b)得到的改性酚醛树脂10份混合,采用混捏机,混捏时间为30min,混捏温度为50℃。
实施例1-6树脂炭素阳极生坯的制备
实施例1-6与实施例1-1的区别仅在于:步骤(c)中,将步骤(b)得到的改性酚醛树脂升温至40℃,将步骤(a)中得到的骨料95份和步骤(b)得到的改性酚醛树脂10份混合,所述改性酚醛树脂一次全部加入,采用混捏机,混捏时间为30min,混捏温度为50℃。
实施例1-7树脂炭素阳极生坯的制备
实施例1-7与实施例1-1的区别仅在于:骨料的成分不同,具体如下:步骤(a):骨料准备:以骨料总份数来计,称取0-1mm石油焦20份,1-2mm 石油焦20份,2-4mm石油焦20份,4-8mm石油焦15份,180目细粉石油焦30份,石墨碎5份,碳纳米管5份,放入混料机中混合均匀。
实施例1-8树脂炭素阳极生坯的制备
实施例1-8与实施例1-1的区别仅在于:步骤(c)中,混捏温度为室温,其余条件均相同。
对比例1-1
(a)骨料准备:称取颗粒径为8-5mm的煅后焦10份,颗粒径为5-3mm煅后焦15份,颗粒径为3-1mm煅后焦20份,颗粒径为1-0mm煅后焦10份,粒度小于0.075mm的细粉煅后焦40份放入混料机中混合均匀。
(b)将步骤(a)中得到的骨料95份升温至150℃,加入预热至140℃的煤沥青粉10份,在140℃下混捏30min。
(c)将步骤(b)中混捏好的混合物料,放置于特定的模具中,使用振动成型机压制成型。
实施例1-1~1-8及对比例1-1的重要参数如表3所示
表3
Figure PCTCN2023071500-appb-000003
Figure PCTCN2023071500-appb-000004
实施例2-1树脂炭素阳极生坯中间体的制备
将实施例1-1制备的树脂炭素阳极生坯进行硬化处理,其中,硬化处理中,硬化处理温度为150℃,硬化处理时间为3h,即得到树脂炭素阳极生坯中间体,分别检测硬化前后的生胚中间体的重量,基于硬化前后的重量差值计算生胚中间体挥发分的数据,结果显示生坯中间体挥发分为1.05%。
实施例2-1得到的树脂炭素阳极生坯中间体,然后进行气相色谱-质谱联用分析,所述所述树脂炭素阳极生坯中间体具有如图1所示的气相色谱-质谱图谱。
实施例2-2树脂炭素阳极生坯中间体的制备
将实施例1-5制备的树脂炭素阳极生坯进行硬化处理,其中,硬化处理中,硬化处理温度为150℃,硬化处理时间为3h,即得到树脂炭素阳极生坯中间体,分别检测硬化前后的生胚中间体的重量,基于硬化前后的重量差值计算生胚中间体挥发分的数据,结果显示生坯中间体挥发分为1.02%。
实施例2-3树脂炭素阳极生坯中间体的制备
将实施例1-6制备的树脂炭素阳极生坯进行硬化处理,其中,硬化处理中,硬化处理温度为150℃,硬化处理时间为3h,即得到树脂炭素阳极生坯中间体,分别检测硬化前后的生胚中间体的重量,基于硬化前后的重量差值计算生胚中间体挥发分的数据,结果显示生坯中间体挥发分为0.98%。
实施例2-4树脂炭素阳极生坯中间体的制备
将实施例1-7制备的树脂炭素阳极生坯进行硬化处理,其中,硬化处理中,硬化处理温度为150℃,硬化处理时间为3h,即得到树脂炭素阳极生坯中间体,分别检测硬化前后的生胚中间体的重量,基于硬化前后的重量差值计算生胚中间体挥发分的数据,结果显示生坯中间体挥发分为0.97%。
实施例2-5树脂炭素阳极生坯中间体的制备
将实施例1-8制备的树脂炭素阳极生坯进行硬化处理,其中,硬化处理中,硬化处理温度为150℃,硬化处理时间为3h,即得到树脂炭素阳极生坯中间体,分别检测硬化前后的生胚中间体的重量,基于硬化前后的重量差值计算生胚中间体挥发分的数据,结果显示生坯中间体挥发分为0.98%。
实施例2-6树脂炭素阳极生坯中间体的制备
将实施例1-1制备的树脂炭素阳极生坯进行硬化处理,其中,硬化处理中,硬化处理温度为300℃,硬化处理时间为2h,即得到树脂炭素阳极生坯中间体,分别检测硬化前后的生胚中间体的重量,基于硬化前后的重量差值计算生胚中间体挥发分的数据,结果显示生坯中间体挥发分为1.3%。
实施例2-7树脂炭素阳极生坯中间体的制备
将实施例1-1制备的树脂炭素阳极生坯进行硬化处理,其中,硬化处理中,硬化处理温度为90℃,硬化处理时间为12h,即得到树脂炭素阳极生坯中间体,分别检测硬化前后的生胚中间体的重量,基于硬化前后的重量差值计算生胚中间体挥发分的数据,结果显示生坯中间体挥发分为0.4%。
实施例2-8
实施例2-8与实施例2-1的区别仅在于,硬化时间为8h,生坯中间体挥发分为1.3%。
实施例2-9
实施例2-9与实施例2-1的区别仅在于,硬化时间为30min,生坯中间体挥发分为0.3%。
对比例2-1
将对比例1-1将压制成型的的炭素阳极生坯中间体水冷12h,然后自然干燥后进行气相色谱-质谱联用分析。
对比例2-1得到的炭素阳极生坯中间体,然后进行气相色谱-质谱联用分析,所述所述树脂炭素阳极生坯中间体具有如图2所示的气相色谱-质谱图谱。
表4实施例2-1~2-7及对比例2-1重要实施参数
  生坯来源 硬化处理温度 硬化处理时间 挥发分
实施例2-1 实施例1-1 150℃ 3h 1.05%
实施例2-2 实施例1-5 150℃ 3h 1.02%
实施例2-3 实施例1-6 150℃ 3h 0.98%
实施例2-4 实施例1-7 150℃ 3h 0.97%
实施例2-5 实施例1-8 150℃ 3h 0.98%
实施例2-6 实施例1-1 300℃ 2h 1.3%
实施例2-7 实施例1-1 90℃ 12h 0.4%
实施例2-8 实施例1-1 150℃ 8h 1.3%
实施例2-9 实施例1-1 150℃ 0.5 0.3%
实施例3-1炭素阳极的制备
将实施例2-1制备的树脂炭素阳极生坯中间体置于隧道窑中进行焙烧处理,其中:在埋炭条件下,由室温升温至1000℃,其中,在室温-270℃阶段,升温速率为50℃/h;270-500℃阶段升温速率为40℃/h,500-800℃阶段,升温速率为30℃/h,800-1000℃阶段,升温速率为25℃/h,焙烧72h,分别对焙烧前后的炭素阳极生坯中间体和炭素阳极成品称量其重量,并基于两者的重量差值计算所述炭素阳极的烧失量为3.2%。
焙烧完毕后缓慢降温,出窑,得到所述炭素阳极。
实施例3-2
将实施例2-2制备的树脂炭素阳极生坯中间体置于隧道窑中进行焙烧处理,焙烧处理条件同实施例3-1,所述炭素阳极的烧失量为3.2%。
实施例3-3
将实施例2-3制备的树脂炭素阳极生坯中间体置于隧道窑中进行焙烧处理,焙烧处理条件同实施例3-1,所述炭素阳极的烧失量为3.3%。
实施例3-4
将实施例2-4制备的树脂炭素阳极生坯中间体置于隧道窑中进行焙烧处理,其中焙烧处理条件同实施例3-1,所述炭素阳极的烧失量为2.8%。
实施例3-5
将实施例2-5制备的树脂炭素阳极生坯中间体置于隧道窑中进行焙烧处理,其中焙烧处理条件同实施例3-1,所述炭素阳极的烧失量为3.3%。
实施例3-6
将实施例2-6制备的树脂炭素阳极生坯中间体置于隧道窑中进行焙烧处理,其中焙烧处理条件同实施例3-1,所述炭素阳极的烧失量为2.9%。
实施例3-7
将实施例2-7制备的树脂炭素阳极生坯中间体置于隧道窑中进行焙烧处理,其中焙烧处理条件同实施例3-1,所述炭素阳极的烧失量为3.8%。
实施例3-8
将实施例2-8制备的树脂炭素阳极生坯中间体置于隧道窑中进行焙烧处理,其中焙烧处理条件同实施例3-1,所述炭素阳极的烧失量为3.0%。
实施例3-9
将实施例2-9制备的树脂炭素阳极生坯中间体置于隧道窑中进行焙烧处理,其中焙烧处理条件同实施例3-1,所述炭素阳极的烧失量为4.0%。
实施例3-10
将实施例2-1制备的树脂炭素阳极生坯中间体置于隧道窑中进行焙烧处理,其中焙烧处理条件为:在埋炭条件下,由室温升温至780℃,其中,在室温-270℃阶段,升温速率为50℃/h;270-500℃阶段升温速率为40℃/h,500-780℃阶段,升温速率为30℃/h,焙烧72h,分别对焙烧前后的炭素阳极生坯中间体和炭素阳极成品称量其重量,并基于两者的重量差值计算所述炭素阳极的烧失量为2.7%。
对比例3-1
将对比例2-1制备的炭素阳极生坯中间体置于隧道窑中进行焙烧处理,其中焙烧处理同实施例3-1,烧失量为6.8%
对比例3-1得到的炭素阳极生坯中间体,然后进行气相色谱-质谱联用分析,所述所述炭素阳极生坯中间体具有如图3所示的气相色谱-质谱图谱。
对比例3-2
将实施例2-1制备的炭素阳极生坯中间体置于隧道窑焙烧处理,其中焙烧条件:在埋炭条件下,由室温升温至500℃,其中,在室温-270℃阶段,升温速率为50℃/h;270-500℃阶段升温速率为40℃/h,焙烧72h,烧失量1.8%。
表5实施例3-1~3-7及对比例3-1的实验参数
Figure PCTCN2023071500-appb-000005
实验例1
本申请所得产品在气相色谱-质谱联用技术测试时,参数如下:
1.仪器试剂
1.1气质联用仪:7890B/5977B GC/MSD,配EGA/PY-3030D裂解仪及Masshunter采集和定性软件;
1.2色谱柱:VF-1701MS毛细管柱(30m*0.150mm*0.15μm);
1.3高纯氦气:99.999%;
1.4样品杯:Eco-Cup LF;
1.5连杆:Eco-Stick SF;
1.6手动进样器;
1.7样品匙。
2.检测方法
2.1色谱方法
2.1.1进样口温度:270℃;
2.1.2柱1流量:1ml/min;
2.1.3分流比:80:1;
2.1.4柱箱温度:初始温度60℃,保持0min;以20℃/min升温速率升至260℃,保持30min。
2.1.5 MSD传输线温度:260℃。
2.2质谱方法
2.2.1离子源温度:230℃;
2.2.2四级杆温度:150℃;
2.2.3离子源:Inert EI源;
2.2.4电离能量:70eV;
2.2.3溶剂延迟:0min;
2.2.4采集模式:扫描;
2.2.5扫描范围m/z:10-500amu;
2.3裂解方法
2.3.1裂解模式:单击;
2.3.2裂解温度:600℃;
2.3.3裂解时间:0.2min;
3.样品测试
3.1运行气相、质谱及裂解仪方法,使仪器准备就绪。
3.2用样品匙取少量样品移入样品杯中。
3.3将样品杯用连杆连接到手动进样器上,将进样器固定到裂解仪上。
3.4编辑气相色谱进样序列并运行,点击裂解软件“开始”。
3.5当仪器就绪,裂解软件发出进样警示后,按下手动进样器顶部按钮,使样品杯落入裂解仪衬管,启动运行程序,样品开始裂解并进入色谱柱进行分离,由质谱进行检测。
3.6运行结束后取出样品杯。
3.7打开定性软件对检测结果进行定性分析。
实施例2-1的气相色谱-质谱如图1所示;其中,实施例2-2~2-4也可以得到与图1类似的图谱。
对比例2-1的气相色谱-质谱如图2所示,其气相色谱-质谱联用技术测试条件同实施例2-1中的测试条件;
对比例3-1的气相色谱-质谱如图3所示,其气相色谱-质谱联用技术测试条件同实施例2-1中的测试条件;
其中在图1中,可以明显的看到属于酚醛树脂的特征峰,如在保留时间为4.95±0.3min、5.32±0.3min、5.47±0.3min、5.92±0.3min、6.10±0.3min、6.40±0.3min和6.50±0.3min有特征峰,根据表1可以看出这些特征峰对应的特征基团都属于酚醛树脂的特征基团。
图2所示的特征峰的具体分析结果见表6所示,图2结合表6可以看出,在对比例2-1中,未经高温焙烧处理,在其气相色谱-质谱图谱中,可以明显的得到属于煤沥青的特征峰,如在保留时间为9.7±0.3min、11.6±0.3min、12.9±0.3min、15.9±0.3min有特征峰,根据表6可以看出这些特征峰对应的特征基团都属于煤沥青的特征基团。
表6对比例2-1制备的生坯中间体气相色谱-质谱图谱分析结果
Figure PCTCN2023071500-appb-000006
Figure PCTCN2023071500-appb-000007
图3所示的特征峰的具体分析结果见表7所示,图3结合表7可以看出在对比例3-1中,经1000℃高温焙烧处理,在其气相色谱-质谱图谱中,可以看到长链烷烃的特征峰,如在保留时间为1.56±0.3min、3.37±0.3min、4.88±0.3min、5.60±0.3min有特征峰,根据表7可以看出这些特征峰对应的特征基团都属于长链烷烃的特征基团;也可以看到属于煤沥青的特征峰, 如在保留时间为9.78±0.3min、10.53±0.3min、11.6±0.3min、5.60±0.3min有特征峰,根据表7可以看出这些特征峰对应的特征基团都属于煤沥青的特征基团。
表7对比例3-1制备的熟坯气相色谱-质谱图谱分析结果
Figure PCTCN2023071500-appb-000008
表8实施例1-1~1-8及对比例1-1生坯的指标
Figure PCTCN2023071500-appb-000009
Figure PCTCN2023071500-appb-000010
表8中,将树脂炭素阳极生坯外形无裂纹无缝隙且外形圆润,定义为100%。
实验例2生坯中间体指标
中间体的耐压强度按照YS/T 285-2012中检测方法进行检测。
表9树脂炭素阳极生坯中间体指标
  耐压强度(Mpa) 挥发分
实施例2-1 45 1.05%
实施例2-2 40 1.02%
实施例2-3 38 0.98%
实施例2-4 41 0.97%
实施例2-5 37 0.98%
实施例2-6 41 1.3%
实施例2-7 37 0.4%
实施例2-8 46 1.3%
实施例2-9 38 0.3%
对比例2-1 36 0.1%
表9中,将树脂炭素阳极生坯中间体外形无裂纹无缝隙且外形圆润,定义为100%。
挥发分为硬化程度的一个指标。原则上挥发分是个特性值,一旦达到这个特定值立即停止是最节能的。如果时间过短挥发分比较少,这个温度下的 杂质没有充分挥发出来,后续高温煅烧可能造成阳极裂纹,如果时间过长,挥发分达到特定值,但是增加了耗能。
实施例3炭素阳极指标
体积密度检测方法按照YS/T 285-2012中检测方法进行检测
表10炭素阳极指标
  抗压强度(Mpa) 体积密度g/m 3 电阻率uΩ.m 烧失量/%
实施例3-1 45 1.70 54 3.2
实施例3-2 42 1.63 52 3.2
实施例3-3 40 1.65 51 3.3
实施例3-4 44 1.64 55 2.8
实施例3-5 40 1.63 54 3.3
实施例3-6 43 1.70 58 2.9
实施例3-7 39 1.69 60 3.8
实施例3-8 46 1.72 50 3.0
实施例3-9 42 1.67 57 4.0
实施例3-10 46 1.71 60 2.7
对比例3-1 34 1.57 57 6.8
对比例3-2 35 1.72 63 1.8
虽然本案已以实施例揭露如上然其并非用以限定本案,任何所属技术领域中具有通常知识者,在不脱离本案的精神和范围内,当可作些许的更动与润饰,故本案的保护范围当视后附的专利申请范围所界定者为准。

Claims (24)

  1. 一种树脂炭素阳极生坯,其特征在于,所述树脂炭素阳极生坯经硬化处理后得树脂炭素阳极生坯中间体,所述树脂炭素阳极生坯中间体通过气相色谱-质谱联用技术测试时具有以下图谱特征:在保留时间依次为4.95±0.3min、5.32±0.3min、5.47±0.3min和5.92±0.3min处有特征峰。
  2. 根据权利要求1所述的树脂炭素阳极生坯,其特征在于,所述树脂炭素阳极生坯中间体通过气相色谱-质谱联用技术测试时具有以下图谱特征:在保留时间依次为4.95±0.3min、5.32±0.3min、5.47±0.3min、5.92±0.3min、6.10±0.3min、6.40±0.3min和6.50±0.3min处有特征峰。
  3. 根据权利要求1所述的树脂炭素阳极生坯,其特征在于,所述树脂炭素阳极生坯中间体具有如图1所示的气相色谱-质谱图谱。
  4. 根据权利要求1-3中任一项所述的树脂炭素阳极生坯,其特征在于,所述气相色谱-质谱联用技术测试时使用的气质联用仪为7890B/5977BGC/MSD,色谱柱为VF-1701MS毛细管柱。
  5. 根据权利要求1-4中任一项所述的树脂炭素阳极生坯,其特征在于,所述树脂炭素阳极生坯由包括改性酚醛树脂、骨料的混合物料经混捏处理、成型处理所得到;
    优选地,在混捏处理前,所述改性酚醛树脂升温至30-50℃。
  6. 根据权利要求5所述的树脂炭素阳极生坯,其特征在于,所述改性酚醛树脂为木质素改性的酚醛树脂、多酚化合物改性的酚醛树脂以及多羟基化合物改性的酚醛树脂中的一种或两种以上;
    优选地,木质素为酸性木质素,多酚化合物选自联苯三酚,茶多酚、单宁酸及烤胶中的一种或两种以上,多羟基化合物选自麦芽糖,蔗糖,葡萄糖,果糖,氧化淀粉,山梨糖醇,糊精中的一种或两种以上。
  7. 根据权利要求5所述的树脂炭素阳极生坯,其特征在于,所述骨料包括颗粒径为8-5mm的煅后焦、颗粒径为5-3mm的煅后焦、颗粒径为3-1mm的煅后焦、颗粒径为1-0mm的煅后焦、颗粒径小于0.075mm的细粉煅后焦中的一种或多种;
    优选地,以占骨料总重量的质量百分比计,颗粒径为8-5mm的煅后焦为5-20wt%,颗粒径为5-3mm的煅后焦为10-25wt%,颗粒径为3-1mm的煅后焦为15-30wt%,颗粒径为1-0mm的煅后焦为10-20wt%,颗粒径小于0.075mm的细粉煅后焦为25-45wt%。
  8. 根据权利要求5所述的树脂炭素阳极生坯,其特征在于,
    所述混捏处理中,混捏时间为10-100min,混捏温度为40-60℃,混捏时间优选为20-60min;
    优选地,在混捏处理步骤中,所述改性酚醛树脂在10min-30min内连续添加,直至添加完毕;
    进一步优选的,连续添加时所述改性酚醛树脂流速为1kg/s-3kg/s。
  9. 根据权利要求5-8中任一项所述的树脂炭素阳极生坯,其特征在于,以树脂炭素阳极生坯原料总重量计,所述改性酚醛树脂为5-15份、所述骨料为85-95份。
  10. 根据权利要求5所述的树脂炭素阳极生坯,其特征在于,所述成型处理采用在电动螺旋压力机或振动压力机上成型。
  11. 根据权利要求1-10中任一项所述的树脂炭素阳极生坯,其特征在于,所述树脂炭素阳极生坯由包括改性酚醛树脂、骨料的混合物料经混捏处理、成型处理后,经硬化处理后进行气相色谱-质谱联用技术测试,其中,硬化处理温度为120-270℃,测试选用的裂解温度为600℃。
  12. 一种制备权利要求1-11中任一项所述的树脂炭素阳极生坯的方法,其中,
    混合物料:所述混合物料包括改性酚醛树脂、骨料;
    混捏处理:混捏时间为10-100min;
    成型处理:采用在电动螺旋压力机或振动压力机上成型;
    优选地,在混捏处理前,所述改性酚醛树脂升温至30-50℃;
    进一步优选地,在混捏处理步骤中,所述改性酚醛树脂在10min-30min内连续添加,直至添加完毕,混捏温度为40-60℃;
    进一步优选的,连续添加时所述改性酚醛树脂流速为1kg/s-3kg/s。
  13. 一种树脂炭素阳极生坯中间体,其特征在于,权利要求1-10中任一 项所述的生坯经过硬化处理所得,其中,所述生坯中间体挥发分为0.4-2%;
    优选地,所述生坯中间体体密为1.6-1.8g/m 3
    进一步优选地,硬化处理温度为120-270℃,硬化处理时间为1-10h。
  14. 一种制备权利要求13所述的树脂炭素阳极生坯中间体的方法,其中,
    混合物料:所述混合物料包括改性酚醛树脂、骨料;
    混捏处理:混捏时间为10-100min;
    成型处理:采用在电动螺旋压力机或振动压力机上成型;
    硬化处理:硬化处理温度为120-270℃,硬化处理时间为1-10h;
    优选地,在混捏处理前,所述改性酚醛树脂升温至30-50℃;
    进一步优选地,在混捏处理步骤中,所述改性酚醛树脂在10min-30min内连续添加,直至添加完毕,混捏温度为40-60℃;
    进一步优选的,连续添加时所述改性酚醛树脂流速为1kg/s-3kg/s。
  15. 一种炭素阳极,由包括改性酚醛树脂、骨料的混合物料经混捏处理、成型处理、硬化处理、焙烧处理所得到;或由权利要求1-10中任一项所述的树脂炭素阳极生坯经硬化处理、焙烧处理所得到;或由权利要求12所述的树脂炭素阳极生坯中间体经焙烧处理所得到。
  16. 根据权利要求15所述的炭素阳极,其特征在于,
    所述改性酚醛树脂为木质素改性的酚醛树脂、多酚化合物改性的酚醛树脂、多羟基化合物改性的酚醛树脂中的一种或两种以上;
    优选地,木质素为酸性木质素,多酚化合物选自联苯三酚,茶多酚、单宁酸及烤胶中的一种或两种以上,多羟基化合物选自麦芽糖,蔗糖,葡萄糖,果糖,氧化淀粉,山梨糖醇,糊精中的一种或两种以上。
  17. 根据权利要求15所述的炭素阳极,其特征在于,
    所述骨料包括颗粒径为8-5mm的煅后焦、颗粒径为5-3mm的煅后焦、颗粒径为3-1mm的煅后焦、颗粒径为1-0mm的煅后焦、颗粒径小于0.075mm的细粉煅后焦中的一种或多种;
    优选地,以占骨料总重量的质量百分比计,颗粒径为8-5mm的煅后焦为5-20wt%,颗粒径为5-3mm的煅后焦为10-25wt%,颗粒径为3-1mm的煅后焦为15-30wt%,颗粒径为1-0mm的煅后焦为10-20wt%,颗粒径小于0.075mm的细粉煅后焦为25-45wt%。
  18. 根据权利要求15所述的炭素阳极,其特征在于,以炭素阳极原料总 重量计,所述改性酚醛树脂为5-15份、所述骨料为85-95份。
  19. 根据权利要求15所述的炭素阳极,其特征在于,
    所述混捏处理中,混捏时间为10-100min,混捏温度为40-60℃,混捏时间优选为20-60min;
    优选地,在混捏处理步骤中,所述改性酚醛树脂在10min-30min内连续添加,直至添加完毕;
    进一步优选的,连续添加时所述改性酚醛树脂流速为1kg/s-3kg/s。
  20. 根据权利要求16所述的炭素阳极,其特征在于,所述成型处理采用在电动螺旋压力机或振动压力机上成型。
  21. 根据权利要求16所述的炭素阳极,其特征在于,所述硬化处理中:硬化处理温度为120-270℃,硬化处理时间为1-10h;
    优选地,所述焙烧处理包括:在埋炭条件下,由室温-270℃升温至550-1100℃,焙烧处理时间为20-250h;
    优选地,与炭素阳极生坯中间体相比,所述炭素阳极烧失量为2-6%;
    进一步优选地,所述焙烧处理是在埋炭条件下或惰性气体保护条件下处理;
    更优选地,所述焙烧处理为微波焙烧处理、烘箱焙烧处理、隧道窑焙烧处理、倒焰窑焙烧处理、多室环式焙烧炉焙烧处理、马弗炉焙烧处理或焙烧炉焙烧处理。
  22. 根据权利要求21所述的炭素阳极,其特征在于:所述焙烧处理过程中,室温-270℃阶段,升温速率为3-60℃/h;270-500℃阶段,升温速率为3-60℃/h;500-800℃阶段升温速率为10-50℃/h,800-1100℃阶段,升温速率为10-30℃/h。
  23. 一种制备权利要求15-22中任一项所述的炭素阳极的方法,包括如下步骤:
    混合物料:所述混合物料包括改性酚醛树脂、骨料;
    混捏处理:混捏时间为10-100min;
    成型处理:采用在摩擦压力机或振动压力机上成型;
    硬化处理:硬化处理温度为120-270℃,硬化处理时间为1-10h;
    焙烧处理:由室温-270℃升温至550-1100℃。
  24. 一种权利要求15-22中任一项所述的炭素阳极、根据权利要求23所述方法制备的炭素阳极在电解铝上的应用。
PCT/CN2023/071500 2022-01-10 2023-01-10 树脂炭素阳极生坯及制备方法、生坯中间体及制备方法、炭素阳极及制备方法 WO2023131335A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210022319.9 2022-01-10
CN202210022319.9A CN116444273A (zh) 2022-01-10 2022-01-10 树脂炭素阳极生坯及制备方法、生坯中间体及制备方法、炭素阳极及制备方法

Publications (1)

Publication Number Publication Date
WO2023131335A1 true WO2023131335A1 (zh) 2023-07-13

Family

ID=81748779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071500 WO2023131335A1 (zh) 2022-01-10 2023-01-10 树脂炭素阳极生坯及制备方法、生坯中间体及制备方法、炭素阳极及制备方法

Country Status (5)

Country Link
US (1) US11613822B1 (zh)
EP (1) EP4209471A1 (zh)
CN (1) CN116444273A (zh)
DE (1) DE202022103735U1 (zh)
WO (1) WO2023131335A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775455A (en) * 1986-04-07 1988-10-04 Borden, Inc. Binder system for anodes, cathodes, and electrodes
US4885073A (en) * 1988-01-06 1989-12-05 Northeast University Of Technology Activated carbon anode including lithium
CN103484896A (zh) * 2013-10-11 2014-01-01 河南科技大学 一种电解铝用低成本碳素阳极及其制备方法
CN106757161A (zh) * 2016-12-01 2017-05-31 山东南山铝业股份有限公司 改性预焙阳极及其制备方法
CN109400163A (zh) * 2018-12-30 2019-03-01 山东圣泉新材料股份有限公司 一种炭素阳极及其制备方法和应用
CN112442155A (zh) * 2019-08-30 2021-03-05 山东圣泉新材料股份有限公司 一种酚醛树脂及其制备方法和应用
CN113603488A (zh) * 2021-08-04 2021-11-05 河南中孚铝业有限公司 一种新型环保阳极炭块的生产方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516339B1 (zh) * 1971-02-03 1976-02-27
US4188279A (en) * 1976-10-26 1980-02-12 Mobil Oil Corporation Shaped carbon articles
US4308177A (en) * 1979-08-27 1981-12-29 Great Lakes Carbon Corporation Use of chloro-hydrocarbons to produce high density electrodes
US4431503A (en) * 1981-06-22 1984-02-14 Metallurgical, Inc. Energy reduction in the manufacture of pre-baked carbon containing electrodes for electrolytic production of metals such as aluminum
US7927470B2 (en) * 2002-06-04 2011-04-19 Prochemtech International, Inc. Flow-through-resin-impregnated monolithic graphite electrode and containerless electrolytic cell comprising same
KR101835902B1 (ko) * 2010-05-28 2018-03-07 스미또모 베이크라이트 가부시키가이샤 에스테르화물의 제조 방법
US9734953B2 (en) * 2012-12-11 2017-08-15 Showa Denko K.K. Carbon paste and solid electrolytic capacitor element
CN103952721B (zh) * 2014-04-21 2016-04-13 西安建筑科技大学 一种兰炭基铝电解用炭素阳极及其制备方法
JP7215046B2 (ja) * 2018-09-28 2023-01-31 住友ベークライト株式会社 フェノール変性リグニン樹脂を含有する樹脂材料の製造方法、それを用いた構造体の製造方法
US20220112339A1 (en) * 2019-06-20 2022-04-14 University Of Kansas Methods for forming lignin prepolymers and lignin resins
CN113336552B (zh) 2021-06-30 2023-06-16 武汉科技大学 一种铝电解用低电阻率阳极炭块及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775455A (en) * 1986-04-07 1988-10-04 Borden, Inc. Binder system for anodes, cathodes, and electrodes
US4885073A (en) * 1988-01-06 1989-12-05 Northeast University Of Technology Activated carbon anode including lithium
CN103484896A (zh) * 2013-10-11 2014-01-01 河南科技大学 一种电解铝用低成本碳素阳极及其制备方法
CN106757161A (zh) * 2016-12-01 2017-05-31 山东南山铝业股份有限公司 改性预焙阳极及其制备方法
CN109400163A (zh) * 2018-12-30 2019-03-01 山东圣泉新材料股份有限公司 一种炭素阳极及其制备方法和应用
CN112442155A (zh) * 2019-08-30 2021-03-05 山东圣泉新材料股份有限公司 一种酚醛树脂及其制备方法和应用
CN113603488A (zh) * 2021-08-04 2021-11-05 河南中孚铝业有限公司 一种新型环保阳极炭块的生产方法

Also Published As

Publication number Publication date
US11613822B1 (en) 2023-03-28
EP4209471A1 (en) 2023-07-12
DE202022103735U1 (de) 2022-08-01
CN116444273A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
CN109400163B (zh) 一种炭素阳极及其制备方法和应用
CN108706973B (zh) 一种高强度高导热石墨材料的制备方法
CN103484896B (zh) 一种电解铝用低成本碳素阳极及其制备方法
CN107128914B (zh) 石油焦基柱状活性炭的制备方法
CN107032792B (zh) 一种高强高密石墨材料及其制备方法
CN102585127B (zh) 干式料用改性酚醛树脂、其制备方法及干式料
CN114751749A (zh) 优化混捏效果的工艺方法
CN109678509B (zh) 一种水性树脂基预焙碳阳极的制备方法
CN112321300A (zh) 一种用于曲面玻璃热弯模具的高导热低孔隙石墨及其制备方法
CN111517761A (zh) 一种复合内衬材料及其应用和应用方法
CN111792935A (zh) 用于受电弓的高强度耐磨碳滑板及其制备方法
CN100494507C (zh) 高体密半石墨质阴极炭块及其生产方法
CN103289618B (zh) 复合改性抗氧化酚醛树脂结合剂及其制备方法
Fang et al. Improving the self-sintering of mesocarbon-microbeads for the manufacture of high performance graphite-parts
WO2023131335A1 (zh) 树脂炭素阳极生坯及制备方法、生坯中间体及制备方法、炭素阳极及制备方法
CN103642511B (zh) 一种优质针状焦原料的制备方法
CN114213128A (zh) 一种等静压成型制氟碳阳极板的制备方法
CN109097084A (zh) 一种生产型焦的配煤原料组合物及型焦制备工艺
CN112500130A (zh) 一种硅钙钡复相结合碳化硅的镁碳砖及其制造方法
CN112694332A (zh) 一种制备核石墨材料的煤沥青分质处理方法
CN110668820A (zh) 一种高性能极细结构炭素石墨制品的制备方法
CN103205239B (zh) 一种橡胶基摩擦材料及其生产方法
CN116409994A (zh) 树脂炭素阳极生坯及制备方法、生坯中间体及制备方法、炭素阳极及制备方法
CN106403579B (zh) 一种中间相沥青制备优质针焦电极材料的方法
CN107297497B (zh) 一种铌条的制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23737197

Country of ref document: EP

Kind code of ref document: A1