WO2023131310A1 - 甾体类化合物及制备方法和用途 - Google Patents

甾体类化合物及制备方法和用途 Download PDF

Info

Publication number
WO2023131310A1
WO2023131310A1 PCT/CN2023/071074 CN2023071074W WO2023131310A1 WO 2023131310 A1 WO2023131310 A1 WO 2023131310A1 CN 2023071074 W CN2023071074 W CN 2023071074W WO 2023131310 A1 WO2023131310 A1 WO 2023131310A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
reaction
add
nmr
dimethyl
Prior art date
Application number
PCT/CN2023/071074
Other languages
English (en)
French (fr)
Inventor
杨玉社
王傲
罗湘港
王雅琬
Original Assignee
中国科学院上海药物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海药物研究所 filed Critical 中国科学院上海药物研究所
Publication of WO2023131310A1 publication Critical patent/WO2023131310A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J43/00Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton
    • C07J43/003Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton not condensed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/24Drugs for disorders of the endocrine system of the sex hormones
    • A61P5/26Androgens
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J43/00Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the field of pharmacy, and relates to the fields of drug synthesis and pharmacology. More specifically, it relates to a steroid compound with a dual mechanism of androgen receptor degradation and antagonism, a preparation method and its role in androgen receptor (AR) signaling pathway-related diseases including prostate cancer, castration-resistant prostate cancer, Application in the treatment of SARS-CoV-2 infectious diseases and advanced breast cancer patients.
  • a steroid compound with a dual mechanism of androgen receptor degradation and antagonism a preparation method and its role in androgen receptor (AR) signaling pathway-related diseases including prostate cancer, castration-resistant prostate cancer, Application in the treatment of SARS-CoV-2 infectious diseases and advanced breast cancer patients.
  • AR androgen receptor
  • PCa Prostate cancer
  • ADT Androgen Deprivation Therapy
  • the CYP17A1 enzyme (androgen synthase) inhibitor abiraterone acetate and the second-generation AR antagonists enzalutamide (Enzalutamide), apalutamide (Apalutamide) and darolutamide (Darolutamide) are approved for transfer It is the first-line treatment for patients with castration-resistant prostate cancer (mCRPC) and non-metastatic castration-resistant prostate cancer (nmCRPC), and has achieved good therapeutic effects.
  • mCRPC castration-resistant prostate cancer
  • nmCRPC non-metastatic castration-resistant prostate cancer
  • AR-related drug resistance includes: 1) AR gene amplification and overexpression. About 80% of CRPC patients exhibit high AR expression level, which enables tumors to adapt to low levels of androgen and continue to grow and proliferate; 2) Point mutations and expression splicing variants of AR ligand-binding domains. AR mutations occurred in approximately 12-48% of CRPC patients who had received enzalutamide and abiraterone.
  • the F876L mutation causes enzalutamide and apalutamide to change from AR antagonistic activity to AR agonistic activity, and instead promotes tumor growth.
  • L701H and T877A mutations will cause abiraterone to develop drug resistance and fail; after receiving enzalutamide or abiraterone-treated patients, approximately 50% expressed the splice variant.
  • AR-V567 and AR-V7 are the two most common splicing variants, which respectively partially or completely lack the ligand-binding domain of AR, so that all current AR antagonists cannot bind to AR to play a role, leading to the loss of drug resistance. live.
  • AR bypass-driven drug resistance refers to the increased expression of glucocorticoid receptor (GR) in CRPC patients, which can compete with AR for binding response elements, so that patients do not rely on AR signaling pathways to promote downstream tumor-related genes. transcription, leading to the aggravation of the disease.
  • GR glucocorticoid receptor
  • SARS-CoV-2 (new coronavirus, COVID-19) invades (infects) host cells mainly by two proteases, namely transmembrane serine protease 2 (TMPRSS2) and angiotensin converting enzyme 2 (ACE2).
  • TMPRSS2 transmembrane serine protease 2
  • ACE2 angiotensin converting enzyme 2
  • SARS-CoV-2 adheres to the cell membrane through ACE2, and TMPRSS2 will complete the hydrolytic cleavage of the spike protein at the S1/S2 site of the SARS-CoV-2 spike protein to initiate the interaction between SARS-CoV-2 and the host cell. Fusion and entry completes invasion/infection of host cells.
  • TMPRSS2 and ACE2 proteins are positively regulated by the human androgen receptor signaling pathway, so AR antagonists or AR degraders can inhibit the function of AR, down-regulate the expression of TMPRSS2 and ACE2 from the transcriptional level, and then block SARS-CoV-2 Invade host cells and block the infection of the new coronavirus from the source, as shown in Figure 1.
  • the AR signaling pathway plays an important role in many diseases including prostate cancer and novel coronavirus pneumonia, and the development of AR antagonists or AR degraders is expected to be better used in the treatment of diseases related to the AR signaling pathway. treat.
  • the purpose of the present invention is to provide a class of steroidal compounds with excellent AR antagonism and AR degradation activity. For the treatment of diseases related to AR signaling pathway.
  • the first aspect of the present invention provides a compound represented by general formula (I), or its enantiomers, diastereomers, stereoisomers, prodrugs, deuterated substances, hydrates, solvents compounds, racemates or pharmaceutically acceptable salts thereof,
  • A is -SO- or C1-C3 alkylene
  • B is hydrogen, substituted or unsubstituted C 1-6 alkyl, substituted or unsubstituted C 3-8 cycloalkyl, substituted or unsubstituted 4-8 membered heterocycloalkyl, substituted or unsubstituted C 6 -10 aryl, substituted or unsubstituted 5-10 membered heteroaryl;
  • X is selected from: substituted or unsubstituted 5-10 membered heteroaryl, substituted or unsubstituted 4-8 membered heterocycloalkyl;
  • substitutions independently refers to being substituted by one or more groups selected from the group consisting of deuterium, hydroxyl, carboxyl, amino, mercapto, C 1-6 alkyl, C 1-6 alkoxy, sulfone, Halogen, cyano, NO 2 , C 1-6 haloalkyl, -SO-C 1-6 alkyl, -SO 2 -C 1-6 alkyl, -CONH-C 1-6 alkyl, -NHCO-C 1-6 alkyl, C 3-6 cycloalkyl;
  • heteroatoms of the heterocycloalkyl group and heteroaryl group are selected from: O, N or S, and the number of heteroatoms is 1, 2, 3 or 4.
  • the compound of formula I has the following formula:
  • A is -SO- , -CH2- , -CH2CH2- , or -CH2CH2CH2- .
  • B is hydrogen, substituted or unsubstituted C 1-4 alkyl, substituted or unsubstituted C 3-6 cycloalkyl, substituted or unsubstituted 5-6 membered heterocycloalkyl, Substituted or unsubstituted phenyl, substituted or unsubstituted 5-7 membered heteroaryl;
  • substitution refers to being substituted by 1, 2 or 3 groups selected from the following group: deuterium, hydroxyl, carboxyl, amino, mercapto, C 1-4 alkyl, C 1-4 alkoxy, sulfone, F , Cl, Br, CN, NO 2 , C 1-4 haloalkyl, -SO-C 1-4 alkyl, -SO 2 -C 1-4 alkyl, -CONH-C 1-4 alkyl, -NHCO -C 1-4 alkyl, C 3-6 cycloalkyl;
  • heteroatoms of the heterocycloalkyl group and heteroaryl group are selected from: O, N or S, and the number of heteroatoms is 1, 2 or 3.
  • B is Cyclopropanyl, Morpholinyl or phenyl, optionally substituted by 1, 2 or 3 groups selected from the group consisting of deuterium, methyl, ethyl, n-propyl, isopropyl, hydroxyl, amino, F, Cl, Br, cyano, NO 2 , -SOCH 3 , -SOCH 2 CH 3 , -SOCH(CH 3 ) 2 , -SO 2 CH 3 , -SO 2 CH 2 CH 3 , -SO 2 CH(CH 3 ) 2 .
  • X is selected from: substituted or unsubstituted 5-9 membered heteroaryl, substituted or unsubstituted 4-6 membered heterocycloalkyl;
  • substitution refers to being substituted by 1, 2 or 3 groups selected from the following group: deuterium, hydroxyl, carboxyl, amino, mercapto, C 1-4 alkyl, C 1-4 alkoxy, sulfone, F , Cl, Br, CN, NO 2 , C 1-4 haloalkyl, -SO-C 1-4 alkyl, -SO 2 -C 1-4 alkyl, -CONH-C 1-4 alkyl, -NHCO -C 1-4 alkyl, C 3-6 cycloalkyl;
  • heteroatoms of the heterocycloalkyl group and heteroaryl group are selected from: O, N or S, and the number of heteroatoms is 1, 2, 3 or 4.
  • X is a nitrogen-containing heteroaryl group selected from: pyridyl, imidazolyl, benzimidazolyl, triazolyl, tetrazolyl, pyrimidinyl, pyridazinyl; any of the above groups Optionally substituted by 1, 2 or 3 groups selected from the group consisting of deuterium, hydroxyl, carboxyl, amino, mercapto, C 1-4 alkyl, C 1-4 alkoxy, sulfone, F, Cl, Br, CN, NO 2 , C 1-4 haloalkyl, -SO-C 1-4 alkyl, -SO 2 -C 1-4 alkyl, -CONH-C 1-4 alkyl, -NHCO-C 1 -4 alkyl, C 3-6 cycloalkyl.
  • X is selected from:
  • the above groups are optionally substituted by 1 or 2 groups selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, isobutyl, tert-butyl, Methoxy, ethoxy, trifluoromethyl, difluoromethyl, cyano, nitro, carboxy, fluorine, chlorine, bromine, -CONHCH 3 , -NHCOCH 3 .
  • the pharmaceutically acceptable salt is formed by the compound of general formula (I) and an organic acid or inorganic acid, organic base or inorganic base.
  • the pharmaceutically acceptable salts include, without limitation, inorganic acid salts, such as hydrochloride, hydrobromide, nitrate, sulfate, phosphate, etc.; organic acid salts, such as formate, acetate, Propionate, maleate, fumarate, succinate, tartrate, citrate, acid amino acid salt, alkylsulfonate (such as methylsulfonate, ethylsulfonate, etc.) , arylsulfonate (such as benzenesulfonate, p-toluenesulfonate, etc.), etc.
  • the pharmaceutically acceptable salts include without limitation inorganic alkali salts, such as sodium salt, potassium salt, magnesium salt, calcium salt; organic alkali salts, including ethylenediamine salt, meglumine salt, t
  • the compound of the general formula (I) of the present invention can also exist in the form of solvates, such as hydrates, alcoholates, etc., and these solvates are also included in the present invention. within the scope of the invention.
  • the compound or a pharmaceutically acceptable salt thereof is selected from:
  • the second aspect of the present invention provides the preparation method of the compound described in the first aspect, comprising the following steps:
  • intermediate I-1 is reacted with methanesulfonyl chloride to obtain intermediate I-2;
  • intermediate I-2 is reacted with azidotrimethylsilane and boron trifluoride ether to obtain intermediate I-3;
  • step a the intermediate I-1 is dissolved in a polar aprotic solvent in the presence of an organic base, and then catalyzed by 4-dimethylaminopyridine, at room temperature and methanesulfonyl chloride React 2-6h to obtain intermediate I-2.
  • the organic base can be triethylamine, N,N-diisopropylethylamine;
  • the polar aprotic solvent can be: 1,4-dioxane, toluene, tetrahydrofuran, dichloromethane; most The best solvent is dichloromethane.
  • step b the intermediate I-2 is dissolved in an ultra-dry dichloromethane solution, and 3-6 equivalents of azidotrimethylsilane and 4-8 equivalents of trifluoro Boronium diethyl ether was reacted at room temperature for 12-24 hours to obtain intermediate I-3 with retained stereo configuration.
  • the best equivalent ratio of azidotrimethylsilane is 3 equivalents; the best equivalent ratio of boron trifluoride ether is 4 equivalents.
  • step c the intermediate I-3 is dissolved in a polar aprotic solvent, and 1.5 equivalents of lithium aluminum tetrahydride is added to react at room temperature for 2-6 hours to obtain the intermediate I-4.
  • the polar aprotic solvent can be: 1,4-dioxane, toluene, tetrahydrofuran, dichloromethane; the best solvent is tetrahydrofuran.
  • step d the intermediate I-4 is dissolved in a polar aprotic solvent in the presence of an organic base, and then catalyzed by 4-dimethylaminopyridine, at room temperature and various acid chlorides (isonicotinyl chloride hydrochloride, nicotinoyl chloride hydrochloride, pyridine-3-sulfonyl chloride hydrochloride, etc.) react for 6-12 hours to obtain the target compound I.
  • various acid chlorides isonicotinyl chloride hydrochloride, nicotinoyl chloride hydrochloride, pyridine-3-sulfonyl chloride hydrochloride, etc.
  • the organic base can be triethylamine, N,N-diisopropylethylamine;
  • the polar aprotic solvent can be: 1,4-dioxane, toluene, tetrahydrofuran, dichloromethane; most The best solvent is dichloromethane.
  • step e the intermediate I-4 is dissolved in N,N-dimethylformamide, and mixed with various carboxylic acids (4-pyridazine carboxylic acid, 4-fluoropyridine- 3-carboxylic acid, etc.) condensation reaction under the action of condensing agent 2-(7-azobenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU) 8-12h to obtain the target compound I.
  • the reaction temperature is 0-50°C, wherein the optimum temperature is room temperature.
  • compound II-1 is subjected to Suzuki coupling reaction with boronic acid or boronic acid ester to obtain the intermediate I-1,
  • compound II-1 is dissolved in a mixed solution of 1,4-dioxane and water, and then under the catalysis of bis(triphenylphosphine)palladium dichloride, at 100°C The corresponding Compound I-1.
  • the volume ratio of the 1,4-dioxane to water is 5:1-2:1, the optimum volume ratio is 3:1; the reaction temperature is 80-110°C, the optimum reaction temperature is 100°C °C.
  • the preparation method of the intermediate I-1 includes the following steps:
  • compound II-3 removes the aldehyde group to obtain compound II-4;
  • step i compound II-2 is dissolved in a polar solvent, and then, under the action of an inorganic base, is mixed with various aromatic heterocyclic compounds (1,2,3-triazole, imidazole , 4-methylimidazole, 4-ethylimidazole, etc.) at 80°C for addition and elimination reaction to obtain the corresponding compound II-3.
  • the polar solvent can be acetonitrile, N,N-dimethylformamide, N,N-dimethylacetamide
  • the inorganic base can be sodium carbonate, potassium carbonate, cesium carbonate, the best inorganic base for potassium carbonate.
  • step ii compound II-3 is dissolved in dry N,N-dimethylformamide, and stoichiometric palladium on carbon is added to react for 18-72h to remove the aldehyde group to obtain compound II-4 .
  • the reaction temperature may be 140-170°C, and the optimum reaction temperature is 160°C.
  • step iii compound II-4 is dissolved in a polar protic solvent, and then potassium hydroxide is added to hydrolyze acetate at room temperature to obtain the corresponding compound I-1.
  • the polar protic solvent can be methanol or ethanol.
  • a third aspect of the present invention provides a pharmaceutical composition comprising:
  • the compound represented by the general formula (I) described in the first aspect, or its enantiomers, diastereomers, stereoisomers, prodrugs, deuterated substances, hydrates, solvates, racemates A rotator or a pharmaceutically acceptable salt thereof; and a pharmaceutically acceptable carrier.
  • the fourth aspect of the present invention provides the use of the compound represented by the general formula (I) described in the first aspect or the pharmaceutical composition described in the third aspect for the prevention and/or treatment of diseases related to the AR signaling pathway Drugs for drugs.
  • the disease associated with the AR signaling pathway is selected from the group consisting of: prostate cancer, castration-resistant prostate cancer, breast cancer, SARS-CoV-2 infectious disease, osteoporosis, and digestive system disease.
  • FIG 1 shows that the AR-ACE2/TMPRSS2 signaling pathway mediates SARS-CoV-2 virus infection of host cells.
  • Figure 2 shows the effect of compounds on gonadal weight gain in vivo, where (A) seminal vesicle weight; (B) prostate weight.
  • the halogen is F, Cl, Br or I.
  • C 1-6 means having 1, 2, 3, 4, 5 or 6 carbon atoms
  • C 1-4 means having 1, 2, 3 or 4 carbon atoms, So on and so forth.
  • alkyl refers to a saturated linear or branched chain hydrocarbon moiety consisting only of carbon atoms and hydrogen atoms
  • C 1-6 alkyl refers to a hydrocarbon moiety having 1 to 6 carbon atoms
  • Straight chain or branched chain alkyl including without limitation methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl and hexyl, etc.; Preference is given to ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl.
  • alkylene refers to a linear or branched saturated aliphatic group having a specified number of carbon atoms and linking at least two other groups, ie, a divalent hydrocarbon group. Two groups attached to an alkylene group can be attached to the same or different atoms of the alkylene group.
  • a linear alkylene group can be a divalent group of —(CH 2 ) n —, where n is 1, 2, 3, 4, 5, or 6.
  • Representative alkylene groups include, but are not limited to, methylene, ethylene, propylene, isopropylene, butylene, isobutylene, sec-butylene, pentylene, and hexylene.
  • alkoxy means a -O-(C 1-6 alkyl) group.
  • C 1-6 alkoxy refers to a straight or branched chain alkoxy group having 1 to 6 carbon atoms, including without limitation methoxy, ethoxy, propoxy, isopropoxy base and butoxyl, etc.
  • cycloalkyl refers to a stable non-aromatic monocyclic or polycyclic hydrocarbon group composed only of carbon atoms and hydrogen atoms, which may include fused ring systems, bridged ring systems or spiro ring systems, usually With 3 to 15 carbon atoms.
  • C 3-8 cycloalkyl refers to a cyclic alkyl group having 3 to 8 carbon atoms in the ring, including without limitation cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclo Heptyl, cyclooctyl, etc.
  • C 3-6 cycloalkyl has a similar meaning.
  • heterocycloalkyl means a saturated or unsaturated non-aromatic cyclic group containing at least one (such as 1, 2, 3 or 4) ring heteroatoms (such as N, O or S) Groups such as tetrahydropyridyl, pyrrolinyl, dihydropyridyl, dihydrofuryl, dihydrothienyl, morpholinyl.
  • the term "4-8 members” means that the number of atoms surrounding the closed ring skeleton itself in the defined closed ring system group (such as aryl, heteroaryl, heterocycloalkyl, etc.) is 4, 5, 6, 7 or 8, different numbers can be taken according to the number of rings of the closed ring system group, the degree of saturation, and the nature of the atoms constituting the ring. From this, the meaning of other terms described in a similar manner can be inferred, such as “3-6 yuan”, “4-6 yuan” and so on.
  • aryl denotes a hydrocarbyl moiety comprising one or more aromatic rings.
  • C 6-10 aryl refers to an aromatic ring group with 6 to 10 carbon atoms that does not contain heteroatoms in the ring, such as phenyl, naphthyl and the like.
  • heteroaryl refers to a conjugated aromatic ring system composed of carbon atoms and heteroatoms selected from nitrogen, oxygen and sulfur, which can be monocyclic, bicyclic, tricyclic or more A ring system that can be connected to the rest of the molecule by a single bond via an atom on an aromatic ring.
  • heteroaryl groups include, but are not limited to, pyrrolyl, furyl, thienyl, imidazolyl, pyrazolyl, thiazolyl, oxazolyl, oxadiazolyl, isoxazolyl, triazolyl, tetrazolyl, Azolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolyl, isoindolyl, indazolyl, benzimidazolyl, benzotriazolyl, quinolinyl, isoquinoline benzothiazolyl, benzopyridazinyl, quinazolinyl, quinoxalinyl, etc.
  • alkyl, cycloalkyl, heterocycloalkyl, aryl, and heteroaryl groups described herein are substituted or unsubstituted groups, and possible substituents include, but are not limited to: hydroxyl, amino, Nitro, nitrile, halogen, C1-C6 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1- C20 heterocycloalkenyl, C1-C6 alkoxy, aryl, heteroaryl, heteroaryloxy, C1-C10 alkylamino, C1-C20 dialkylamino, arylamino, diarylamino, C1 -C10 alkylsulfamoyl group, arylsulfamoyl group, C1-C10 alkylimino group, C1
  • the substitution is mono-substitution or multiple substitution
  • the multiple substitution is di-substitution, tri-substitution, tetra-substitution, or penta-substitution.
  • the disubstituted means having two substituents, and so on.
  • the present invention provides a class of steroidal compounds with dual mechanisms of AR degradation and antagonism, which can promote AR degradation while antagonizing AR, and completely block the androgen receptor signaling pathway.
  • Monofunctional AR degraders or monofunctional androgen synthase inhibitors have better curative effect, which can be used for the treatment of CRPC and even prostate cancer patients at various stages, to solve the increasingly serious drug resistance problem of PCa patients, and can also be used for new coronavirus pneumonia, etc.
  • the treatment of diseases can achieve better treatment of diseases related to AR signaling pathway.
  • the present invention also provides a pharmaceutical composition, which contains active ingredients in a safe and effective dose range, and a pharmaceutically acceptable carrier.
  • the “active ingredient” in the present invention refers to the compound of formula (I) in the present invention.
  • the “active ingredient” and pharmaceutical composition described in the present invention are used to prepare medicines for treating diseases related to AR signaling pathway.
  • the “active ingredients” and pharmaceutical compositions described in the present invention can be used as AR degraders or antagonists.
  • the AR signaling pathway-related diseases are selected from: prostate cancer, SARS-CoV-2 infectious disease, castration-resistant prostate cancer, breast cancer, osteoporosis, and digestive system diseases.
  • Safety and effective amount means: the amount of the active ingredient is sufficient to significantly improve the condition without causing serious side effects.
  • “Pharmaceutically acceptable carrier” refers to: one or more compatible solid or liquid fillers or gel substances, which are suitable for human use, and must have sufficient purity and low toxicity. "Compatibility” here means that each component in the composition can be blended with the active ingredient of the present invention and with each other without significantly reducing the efficacy of the active ingredient.
  • Examples of pharmaceutically acceptable carrier parts include cellulose and derivatives thereof (such as sodium carboxymethylcellulose, sodium ethylcellulose, cellulose acetate, etc.), gelatin, talc, solid lubricants (such as stearic acid , magnesium stearate), calcium sulfate, vegetable oil (such as soybean oil, sesame oil, peanut oil, olive oil, etc.), polyols (such as propylene glycol, glycerin, mannitol, sorbitol, etc.), emulsifiers (such as ), wetting agent (such as sodium lauryl sulfate), coloring agent, flavoring agent, stabilizer, antioxidant, preservative, pyrogen-free water, etc.
  • cellulose and derivatives thereof such as sodium carboxymethylcellulose, sodium ethylcellulose, cellulose acetate, etc.
  • gelatin such as talc
  • solid lubricants such as stearic acid , magnesium stearate
  • calcium sulfate such
  • the administration method of the active ingredient or pharmaceutical composition of the present invention is not particularly limited, and representative administration methods include (but not limited to): oral, intratumoral, rectal, parenteral (intravenous, intramuscular or subcutaneous) and the like.
  • the compound of the present invention can be administered alone or in combination with other therapeutic drugs (such as antineoplastic drugs).
  • other therapeutic drugs such as antineoplastic drugs.
  • a safe and effective amount of the compound of the present invention is applied to a mammal (such as a human) in need of treatment, and the dose is the pharmaceutically effective dose when administered.
  • a mammal such as a human
  • the specific dose should also be considered for administration. factors such as pathways, patient health, etc., are within the skill of the skilled physician.
  • the determination of mass spectrometry is obtained by using Finnigan MAT95 mass spectrometer to obtain electron ionization (EI) mass spectrometry, using Krats MS 80 mass spectrometer to obtain electrospray ionization (ESI) mass spectrometry, and using 1290-6545 UHPLC-QTOF drug small molecule structure analysis high-resolution mass spectrometer to obtain High resolution mass spectrometry.
  • EI electron ionization
  • ESI electrospray ionization
  • Dissolve compound 45 (470mg, 1.1mmol) in ultra-dry dichloromethane and stir at room temperature, then add azidotrimethylsilane (0.22mL, 1.65mmol) and boron trifluoride diethyl ether sequentially with a plastic pipette (0.27mL, 2.2mmol), after the dropwise addition was completed, it was stirred at room temperature for 16h, and the reaction was complete as monitored by TLC.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • Dissolve compound 49 (979mg, 2.1mmol) in ultra-dry dichloromethane and stir at room temperature, then add azidotrimethylsilane (0.41mL, 3.15mmol) and boron trifluoride diethyl ether sequentially with a plastic pipette (0.52mL, 4.2mmol), after the dropwise addition was completed, it was stirred overnight at room temperature, and the reaction was complete as monitored by TLC.
  • silica gel is directly added to the system to concentrate and then purified by an automatic column passer (30-60% ethyl acetate/petroleum ether) to obtain the desired product. Finally, 35 mg of white solid compound 6 was obtained with a yield of 51.3%.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • Dissolve compound 53 (534mg, 1.24mmol) in ultra-dry dichloromethane and stir at room temperature, then add azidotrimethylsilane (0.5mL, 3.77mmol) and boron trifluoride diethyl ether sequentially with a plastic pipette (0.6mL, 4.83mmol), after the dropwise addition was completed, it was stirred overnight at room temperature, and the reaction was complete as monitored by TLC.
  • Dissolve compound 56 (2g, 4.89mmol) in dry N,N-dimethylformamide, stir at room temperature, then add 1g of palladium on carbon, then use argon gas for three times, slowly raise the temperature of the system to 160° C., reacted for 3 days, and the reaction was complete as monitored by TLC.
  • Dissolve compound 62 (6.30g, 14.91mmol) in dry N,N-dimethylformamide, stir at room temperature, then add 5g of palladium on carbon, then use argon gas for three times, slowly raise the temperature of the system to Up to 160°C, reacted for 18 hours, and the reaction was complete as monitored by TLC.
  • Dissolve compound 63 (1.80g, 4.56mmol) in anhydrous methanol, stir at room temperature, then add weighed potassium hydroxide (1.01g, 18.24mmol), after the addition is complete, stir at room temperature for 4h, TLC Monitor for completeness of reaction. After the reaction was completed, part of the solvent was evaporated by rotary evaporation, and then extracted with ethyl acetate and water, the organic phase was collected, washed twice with saturated brine, dried with anhydrous sodium sulfate, filtered, and then directly dried by rotary evaporation to obtain the target compound. 1.6 g of yellow solid compound 64 was obtained with a yield of 99.5%.
  • Dissolve compound 65 (1.95g, 4.53mmol) in ultra-dry dichloromethane and stir at room temperature, then add azidotrimethylsilane (3.6mL, 27.18mmol) and boron trifluoride sequentially with a plastic pipette Diethyl ether (5.6mL, 45.30mmol), after the dropwise addition was completed, the reaction was stirred at room temperature for 5 hours, and the reaction was complete as monitored by TLC.
  • Dissolve compound 69 (860mg, 2.26mmol) in anhydrous methanol, stir at room temperature, then add weighed potassium hydroxide (0.37g, 6.78mmol), after the addition is complete, stir at room temperature for 4h, TLC monitoring The response is complete. After the reaction was completed, part of the solvent was evaporated by rotary evaporation, and then extracted with ethyl acetate and water, the organic phase was collected, washed twice with saturated brine, dried with anhydrous sodium sulfate, filtered, and then directly dried by rotary evaporation to obtain the target compound. 730 mg of compound 70 was obtained as a yellow solid with a yield of 95.4%. Then move on to the next step.
  • Dissolve compound 71 (44mg, 0.106mmol) in ultra-dry dichloromethane and stir at room temperature, then add azidotrimethylsilane (0.15mL, 1.13mmol) and boron trifluoride diethyl ether sequentially with a plastic pipette (0.15mL, 1.21mmol), after the dropwise addition was completed, the reaction was stirred at room temperature for 5 hours, and the reaction was complete as monitored by TLC.
  • Dissolve compound 75 (1.26g, 3.08mmol) in anhydrous methanol, stir at room temperature, then add weighed potassium hydroxide (0.52g, 9.27mmol), after the addition, stir at room temperature for 4h, TLC Monitor for completeness of reaction. After the reaction was completed, part of the solvent was evaporated by rotary evaporation, and then extracted with ethyl acetate and water, the organic phase was collected, washed twice with saturated brine, dried with anhydrous sodium sulfate, filtered, and then concentrated by adding silica gel to the system And purified by an automatic column passer (1-3% methanol/dichloromethane) to obtain the desired product.
  • potassium hydroxide 0.52g, 9.27mmol
  • Dissolve compound 77 (900mg, 2.02mmol) in ultra-dry dichloromethane and stir at room temperature, then add azidotrimethylsilane (0.8mL, 6.06mmol) and boron trifluoride diethyl ether sequentially with a plastic pipette (1 mL, 8.08 mmol), after the dropwise addition was completed, the reaction was stirred at room temperature for 5 hours, and the reaction was complete as monitored by TLC.
  • Dissolve compound 80 (2.28g, 5.06mmol) in dry N,N-dimethylformamide, stir at room temperature, then add 1g of palladium carbon, and then use argon gas for three times, slowly raise the temperature of the system to Up to 160°C, reacted for 24 hours, and the reaction was complete as monitored by TLC.
  • Dissolve compound 83 (490mg, 1.07mmol) in ultra-dry dichloromethane and stir at room temperature, then add azidotrimethylsilane (0.45mL, 3.4mmol) and boron trifluoride diethyl ether sequentially with a plastic pipette (0.53mL, 4.28mmol), after the dropwise addition was completed, the reaction was stirred overnight at room temperature, and the reaction was complete as monitored by TLC.
  • Dissolve compound 86 (7g, 15.44mmol) in dry N,N-dimethylformamide, stir at room temperature, then add 3.5g of palladium carbon, then use argon gas for three times, slowly raise the temperature of the system to Up to 160°C, reacted for 39 hours, and the reaction was complete as monitored by TLC.
  • Dissolve compound 87 (1.07g, 2.52mmol) in anhydrous methanol, stir at room temperature, then add weighed potassium hydroxide (0.45g, 8.02mmol), after the addition, stir at room temperature for 4h, TLC Monitor for completeness of reaction. After the reaction was completed, part of the solvent was evaporated by rotary evaporation, and then extracted with ethyl acetate and water, the organic phase was collected, washed twice with saturated brine, dried with anhydrous sodium sulfate, filtered, and then concentrated by adding silica gel to the system And purified by automatic column passer (1-2% methanol/dichloromethane) to obtain the desired product.
  • Dissolve compound 92 (2.2g, 4.62mmol) in dry N,N-dimethylformamide, stir at room temperature, then add 2g of palladium on carbon, then use argon gas for three times, slowly raise the temperature of the system to Up to 160°C, reacted for 38 hours, and the reaction was complete as monitored by TLC.
  • Dissolve compound 93 (720mg, 1.61mmol) in anhydrous methanol, stir at room temperature, then add weighed potassium hydroxide (0.36g, 6.02mmol), after the addition is complete, stir at room temperature for 4h, TLC monitoring The response is complete. After the reaction was completed, part of the solvent was evaporated by rotary evaporation, and then extracted with ethyl acetate and water, the organic phase was collected, washed twice with saturated brine, dried with anhydrous sodium sulfate, filtered, and concentrated by rotary evaporation directly to obtain the obtained Need product. Finally, 650 mg of light yellow solid compound 94 was obtained with a yield of 99.5%.
  • Dissolve compound 95 (650mg, 1.34mmol) in ultra-dry dichloromethane and stir at room temperature, then add azidotrimethylsilane (1.06mL, 8.01mmol) and boron trifluoride diethyl ether sequentially with a plastic pipette (1.66mL, 13.4mmol), after the dropwise addition was completed, the reaction was stirred overnight at room temperature, and the reaction was complete as monitored by TLC.
  • Dissolve compound 99 (0.45g, 1.10mmol) in anhydrous methanol, stir at room temperature, then add weighed potassium hydroxide (0.246g, 4.38mmol), after the addition, stir at room temperature for 4h, TLC Monitor for completeness of reaction. After the reaction was completed, part of the solvent was evaporated by rotary evaporation, and then extracted with ethyl acetate and water, the organic phase was collected, washed twice with saturated brine, dried with anhydrous sodium sulfate, filtered, and then concentrated by adding silica gel to the system And purified by automatic column passer (1-2% methanol/dichloromethane) to obtain the desired product.
  • Dissolve compound 101 (0.4g, 0.896mmol) in ultra-dry dichloromethane and stir at room temperature, then add azidotrimethylsilane (0.54mL, 4.08mmol) and boron trifluoride sequentially with a plastic pipette Diethyl ether (1.74mL, 14mmol), after the dropwise addition was completed, the reaction was stirred overnight at room temperature, and the reaction was complete as monitored by TLC.
  • Dissolve compound 105 (0.315g, 0.78mmol) in anhydrous methanol, stir at room temperature, then add weighed potassium hydroxide (43mg, 0.78mmol), after the addition is complete, stir at room temperature for 4h, TLC monitoring The response is complete. After the reaction is complete, part of the solvent is evaporated by rotary evaporation, and then extracted with ethyl acetate and water, the organic phase is collected, washed twice with saturated brine, dried with anhydrous sodium sulfate, filtered, and concentrated by rotary evaporation to obtain desired product. Finally, 175 mg of white solid compound 106 was obtained with a yield of 62.05%.
  • Dissolve compound 113 (0.46g, 0.97mmol) in ultra-dry dichloromethane and stir at room temperature, then add azidotrimethylsilane (0.5mL, 3.55mmol) and boron trifluoride sequentially with a plastic pipette Diethyl ether (0.6mL, 4.84mmol), after the dropwise addition was completed, the reaction was stirred overnight at room temperature, and the reaction was complete as monitored by TLC.
  • Dissolve compound 114 (219 mg, 0.52 mmol) in 10 mL of tetrahydrofuran and 5 mL of water and stir at room temperature, then add weighed triphenylphosphine (205 mg, 0.78 mmol), then slowly raise the temperature to 60 ° C, at this temperature Stir overnight, and TLC monitors that the reaction is complete. Then rotary evaporate part of the solvent, add 20mL dichloromethane to dissolve, and slowly add 2M hydrochloric acid to adjust the pH of the solution to about 2, carry out liquid separation and collect the water phase, then add 2M sodium hydroxide solution to adjust the pH to be weakly alkaline.
  • Dissolve compound 117 (0.11g, 0.23mmol) in ultra-dry dichloromethane and stir at room temperature, then add azidotrimethylsilane (92 ⁇ L, 0.69mmol) and boron trifluoride diethyl ether sequentially with a plastic pipette (143 ⁇ L, 1.15 mmol), after the dropwise addition was completed, the reaction was stirred overnight at room temperature, and the reaction was complete as monitored by TLC.
  • Dissolve compound 118 (55 mg, 0.13 mmol) in 6 mL of tetrahydrofuran and 6 mL of water and stir at room temperature, then add weighed triphenylphosphine (51 mg, 0.19 mmol), then slowly raise the temperature to 60 ° C, at this temperature Stir overnight, and TLC monitors that the reaction is complete. Then rotary evaporate part of the solvent, add 20mL dichloromethane to dissolve, and slowly add 2M hydrochloric acid to adjust the pH of the solution to about 2, carry out liquid separation and collect the water phase, then add 2M sodium hydroxide solution to adjust the pH to be weakly alkaline.
  • Dissolve compound 122 (0.22g, 0.55mmol) in anhydrous methanol, stir at room temperature, then add weighed potassium hydroxide (50mg, 0.9mmol), after the addition is complete, stir at room temperature for 1h, TLC monitoring The response is complete. After the reaction was completed, part of the solvent was evaporated by rotary evaporation, and then extracted with ethyl acetate and water, the organic phase was collected, washed twice with saturated brine, dried with anhydrous sodium sulfate, filtered, and then concentrated by rotary evaporation to obtain the obtained Need product. Finally, 167 mg of white solid compound 123 was obtained with a yield of 84.77%.
  • Dissolve compound 124 (0.29g, 0.68mmol) in ultra-dry dichloromethane and stir at room temperature, then add azidotrimethylsilane (0.3mL, 2.24mmol) and boron trifluoride sequentially with a plastic pipette Diethyl ether (0.34mL, 2.42mmol), after the dropwise addition was completed, the reaction was stirred overnight at room temperature, and the reaction was complete as monitored by TLC.
  • Dissolve compound 125 (140 mg, 0.367 mmol) in 10 mL of tetrahydrofuran and 5 mL of water and stir at room temperature, then add weighed triphenylphosphine (145 mg, 0.553 mmol), then slowly raise the temperature to 60 ° C, at this temperature Stir overnight, and TLC monitors that the reaction is complete. Then rotary evaporate part of the solvent, add 20mL ethyl acetate to dissolve, and slowly add 2M hydrochloric acid to adjust the pH of the solution to about 2, carry out liquid separation and collect the water phase, then add 2M sodium hydroxide solution to adjust the pH to be weakly alkaline.
  • Dissolve compound 128 (0.497g, 1.08mmol) in anhydrous methanol, stir at room temperature, then add weighed potassium hydroxide (183mg, 3.26mmol), after the addition is complete, stir at room temperature for 2h, TLC monitoring The response is complete. After the reaction was completed, part of the solvent was evaporated by rotary evaporation, and then extracted with ethyl acetate and water, the organic phase was collected, washed twice with saturated brine, dried with anhydrous sodium sulfate, filtered, and then concentrated by rotary evaporation to obtain the obtained Need product. Finally, 278 mg of white solid compound 129 was obtained with a yield of 65.85%.
  • Dissolve compound 130 (0.382g, 0.77mmol) in ultra-dry dichloromethane and stir at room temperature, then add azidotrimethylsilane (0.3mL, 2.24mmol) and boron trifluoride sequentially with a plastic pipette Diethyl ether (0.34mL, 2.42mmol), after the dropwise addition was completed, the reaction was stirred overnight at room temperature, and the reaction was complete as monitored by TLC.
  • Dissolve compound 131 (180 mg, 0.408 mmol) in 10 mL of tetrahydrofuran and 5 mL of water and stir at room temperature, then add weighed triphenylphosphine (160 mg, 0.61 mmol), then slowly raise the temperature to 60 ° C, at this temperature Stir overnight, and TLC monitors that the reaction is complete. Then rotary evaporate part of the solvent, add 20mL ethyl acetate to dissolve, and slowly add 2M hydrochloric acid to adjust the pH of the solution to about 2, carry out liquid separation and collect the water phase, then add 2M sodium hydroxide solution to adjust the pH to be weakly alkaline.
  • Dissolve compound 134 (0.56g, 1.35mmol) in anhydrous methanol, stir at room temperature, then add weighed potassium hydroxide (183mg, 3.26mmol), after the addition, stir at room temperature for 2h, TLC monitoring The response is complete. After the reaction was completed, part of the solvent was evaporated by rotary evaporation, and then extracted with ethyl acetate and water, the organic phase was collected, washed twice with saturated brine, dried with anhydrous sodium sulfate, filtered, and then concentrated by rotary evaporation to obtain the obtained Need product. Finally, 440 mg of white solid compound 135 was obtained with a yield of 87.44%.
  • Dissolve compound 136 (0.486g, 1.08mmol) in ultra-dry dichloromethane and stir at room temperature, then add azidotrimethylsilane (0.5mL, 3.73mmol) and boron trifluoride sequentially with a plastic pipette Diethyl ether (0.7mL, 4.84mmol), after the dropwise addition was completed, the reaction was stirred overnight at room temperature, and the reaction was complete as monitored by TLC.
  • Dissolve compound 137 (330 mg, 0.83 mmol) in 10 mL of tetrahydrofuran and 5 mL of water and stir at room temperature, then add weighed triphenylphosphine (326 mg, 1.24 mmol), then slowly raise the temperature to 60 ° C, at this temperature Stir overnight, and TLC monitors that the reaction is complete. Then rotary evaporate part of the solvent, add 20mL ethyl acetate to dissolve, and slowly add 2M hydrochloric acid to adjust the pH of the solution to about 2, carry out liquid separation and collect the water phase, then add 2M sodium hydroxide solution to adjust the pH to be weakly alkaline.
  • Example 36 N-((3S,10R,13S)-17-(4-methyl-1H-imidazol-1-yl)-10,13-dimethyl-2,3,4,7,8, 9,10,11,12,13,14,15-Dodecahydro-1H-cyclopenta[a]phenanthrene-3-yl)-4-cyanobenzamide (compound 36)
  • Example 38 N-((3S,10R,13S)-17-(4-methyl-1H-imidazol-1-yl)-10,13-dimethyl-2,3,4,7,8, 9,10,11,12,13,14,15-Dodecahydro-1H-cyclopentadien[a]phenanthrene-3-yl)-2,4-difluorobenzamide hydrochloride (compound 38 )
  • Example 40 N-((3S,10R,13S)-10,13-Dimethyl-17-(pyridin-3-yl)-2,3,4,7,8,9,10,11,12 ,13,14,15-dodecyl-1H-cyclopenta[a]phenanthrenyl-3-yl)cyclopropanesulfonamide (compound 40)
  • in vitro activity tests include: wild-type AR antagonistic activity test, mutant AR antagonistic activity test, AR degradation activity test and cell proliferation inhibitory activity test; in vivo activity test is androgen-dependent organ development (Hershberger) test and other druggability tests such as metabolism .
  • HEK293 cells were cultured in DMEM containing 10% fetal bovine serum (FBS) at 5% CO 2 at 37°C. Cells were then trypsinized and counted. Then prepare 10 ⁇ L/well transfection solution with opti-MEM containing 5ng androgen receptor clone, 100ng pGL4.36 vector and 315nL fugene. The cell suspension was diluted with DMEM without phenol red, and 10% dialyzed FBS and 1% GlutaMax were added and mixed with the transfection solution to reach 444,444 cells/ml. This diluted cell suspension was seeded into a 96-well plate in a volume of 90 ⁇ L (40,000 cells/well), and the plate was incubated for 24 hours.
  • FBS fetal bovine serum
  • IC50 was defined as the drug concentration causing 50% inhibition of luciferase expression, determined from dose-response curves.
  • Table 1 show that the compounds of the present invention have excellent AR antagonistic activity and can antagonize/block the AR receptor signaling pathway. Amines increased by 6.2, 3.6, 1.9, 1.8, 1.8 times.
  • LNCaP cells prostate cancer cells
  • RPMI-1640 supplemented with 10% fetal bovine serum (FBS) at 5% CO 2 at 37°C.
  • FBS fetal bovine serum
  • Cells were then trypsinized and cell density counted using an automated cell counter. Dilute the cell suspension to the desired density in growth medium.
  • This cell suspension was then seeded into a 96-well plate in a volume of 100 ⁇ L, and the plate was incubated at 37 °C, 5% CO for 24 h.
  • the compound was then diluted to 200 times the final concentration with DMSO or diluted to 3 times the final concentration with medium, and 50 ⁇ L of the compound solution was transferred to a 96-well plate and incubated at 37°C for 24 hours.
  • the aspiration/wash steps were then repeated, adding 100 ⁇ L of recombinant HRP-Linked secondary antibody to each well, sealing with tape and incubating the plate at 37 °C for 30 min. Then repeat the aspiration/washing steps, add 100 ⁇ L of substrate solution to each well, incubate at 37 °C for 10 min, and finally add 100 ⁇ L of stop solution to each well, gently tap the plate to ensure thorough mixing, and record OD450nm.
  • Degradation rate (%) (OD450_max-OD450_sample)/(OD450_max-OD450_min) ⁇ 100, using GraphPad Prism 5 software to plot, and SPSS software to calculate IC 50 .
  • Galeterone Since enzalutamide only has AR antagonistic activity but not AR degrading activity, Galeterone (CAS: 851983-85-2), which has the same steroidal structure as the compound of the present invention, has entered into clinical research for the treatment of CRPC. Galeterone has a triple action mechanism of CYP17A1 enzyme inhibitory activity, AR degradation and antagonism (J.Med.Chem.2015,58,2077-2087). Then Galeterone was used as a positive control drug to test the AR degradation activity of representative compounds of the present invention, and the results are shown in Table 2:
  • test results in Table 2 show that the steroidal compound of the present invention exhibits excellent in vitro AR degradation activity, which is significantly better than that of the control drug Galeterone, with a significant increase of 2.4-8.1 times in varying degrees.
  • compounds 33, 36, 35, and 37 were 8.1, 7.6, 6.7, and 6.2 times higher than Galeterone, respectively.
  • LNCaP cells were cultured in RPMI-1640 supplemented with 10% fetal bovine serum (FBS) at 5% CO 2 at 37°C. Cells were then trypsinized and cell density counted using an automated cell counter. Dilute the cell suspension to the desired density in growth medium. This cell suspension was then seeded into a 96-well plate in a volume of 100 ⁇ L, and the plate was incubated at 37 °C, 5% CO for 24 h. Add 10 ⁇ L aliquots of the drug solution (including 3-fold serially diluted compound or DMSO) to each well and incubate for 6 days in a 37 °C, 5% CO2 incubator. Assay plates were equilibrated to room temperature prior to measurement.
  • FBS fetal bovine serum
  • IC50 is defined as the drug concentration causing 50% inhibition of cell growth, determined from dose-response curves.
  • test results in Table 3 show that the compound of the present invention exhibits excellent anti-proliferation activity (IC 50 ) of prostate cancer cells, and its anti-tumor activity is significantly better than that of abiraterone, and its anti-tumor activity is 3.0-15.8 times higher than that of the latter Significantly improved; Among them, compounds 14, 17, 37, and 18 were increased by 15.8, 8.8, 8.6, and 7.9 times compared to abiraterone.
  • the biggest feature of this patent compound is that its anti-tumor efficacy (maximum inhibitory activity) is greatly increased by about 2 times, which is attributed to the strong AR degradation/down-regulation ability of the compound of the present invention, while enzalutamide does not The reason for having AR degrading activity.
  • Compounds 14, 16-19, and 37 had significantly better antitumor activity and antitumor efficacy than enzalutamide, while compounds 13, 24 and 33 had comparable antitumor activity to enzalutamide but significantly better antitumor efficacy than enzalutamide Enzalutamide.
  • the steroid compound of the present invention has antitumor activity significantly better than that of existing AR antagonists or androgen synthase inhibitors.
  • first-generation AR antagonists such as flutamide, bicalutamide, and second-generation AR antagonists enzalutamide and apalutamide
  • mutations will occur in the AR ligand-binding domain, resulting in acquired/ Secondary resistance.
  • the compound of the present invention still has strong antagonistic activity to various mutated AR receptors, and will still be effective for clinically enzalutamide and other drug-resistant tumor patients.
  • HEK293 cells were cultured in DMEM supplemented with 10% FBS and 1% GlutaMax at 5% CO 2 at 37°C. The day before transfection, the medium was changed to DMEM medium containing 10% dialyzed FBS and 1% GlutaMax. Androgen-responsive reporter gene constructs (pGL 4.36) encoding AR mutants AR(F876L), AR(T877A) or AR(W741L) were made using Lipofectamine2000 in OptiMEM for 15 minutes at room temperature. Dilute the cell suspension with cell inoculum, and transfer the transfection reagent into it to 500,000 cells/mL. Then 90uL of cell suspension was inoculated into each well of the assay plate.
  • the test results in Table 4 show that the compound of the present invention exhibits excellent antagonistic activity to the main mutant AR that appears clinically: for the W741L mutation, the activity of compound 35 is 4.0 times higher than that of enzalutamide; for the T877A mutation, the compound 33 is 1.4 times higher than that of enzalutamide; for the second-generation AR antagonist enzalutamide and the F876L mutation resistant to apalutamide, the compound of the present invention exhibits excellent antagonistic activity. This shows that the compound of the present invention can treat prostate cancer resistant to existing first-generation and second-generation AR antagonists.
  • AR-V7 splice variants Another major form of acquired/secondary resistance in AR is the expression of AR-V7 splice variants, which are expressed in approximately 50% of patients who have received enzalutamide or abiraterone , the ligand-binding domain of this AR splice variant completely disappears, so that all current AR antagonists cannot bind to AR to play a role, leading to secondary drug resistance or inactivation of natural drug resistance. Since the steroid compound of the present invention has excellent AR degradation activity, it can also degrade AR shear variants, and can solve the problem of drug resistance of the shear variants.
  • test results in Table 5 show that, as expected, enzalutamide, apalutamide and darolutamide have no activity on tumor cells expressing AR splicing variants, while the steroidal compounds of the present invention exhibit excellent
  • the proliferative activity of anti-22RV1 prostate cancer cells can be used in the treatment of drug-resistant patients expressing AR splicing variants.
  • the results of the above-mentioned experiments 1-5 show that, for existing AR antagonists (first generation and second generation) and abiraterone, regardless of sensitive or drug-resistant prostate cancer, the compound of the present invention has strong antitumor activity, and can be used for early stage Treatment of all stages of prostate cancer, including hormone-sensitive prostate cancer, CRPC and drug-resistant CRPC. This will provide unprecedentedly powerful therapies for diseases related to the AR signaling pathway, such as prostate cancer.
  • the representative compound of the present invention was tested by intragastric administration of 10 mg/kg according to the above-mentioned conventional method, and the relevant pharmacokinetic parameters in SD male rats were tested, and the pharmacokinetic characteristics of the compound of the present invention in rats were investigated.
  • the test results are shown in Table 6:
  • the Hershberger assay was used to detect the anti-androgen signal transduction activity of the compounds of the present invention in vivo.
  • prepubertal castrated male Sprague-Dawley rats are administered compounds of the invention (14, 33 and 37) in the presence of 0.4 mg/kg testosterone propionate (TP) and androgen dependence is measured.
  • TP testosterone propionate
  • the weight of the sex organs Dosing was continued for 10 days and measurements were taken 24 hours after the last dose. The extent of AR antagonism and subsequent organ growth inhibition was assessed by comparison with castrated controls.
  • Test compounds were administered orally at 20 mg/kg QD and endpoints were assessed by weight changes of 2 androgen sensitive organs (ASO): seminal vesicles with fluid and coagulated glands (SVCG) and ventral prostate (VP). Using enzalutamide (ENZ) as a positive control, the test results are shown in Figure 2 below.
  • ASO 2 androgen sensitive organs
  • SVCG seminal vesicles with fluid and coagulated glands
  • VP ventral prostate
  • the compound of the present invention inhibits the expression activity of membrane serine protease 2 (TMPRSS2) and angiotensin converting enzyme 2 (ACE2)
  • A549 lung cancer cells were used to collect cells in logarithmic growth phase, count, and resuspend in complete medium For cells, adjust the cell concentration to 3 ⁇ 10 5 cells/well, inoculate in a 12-well plate, and add 1 mL of cell culture medium to each well. Cells were incubated for 24 h in a 37 °C, 100% relative humidity, 5% CO2 incubator. The medium in the culture dish containing A549 cells was then discarded and washed once with PBS.
  • test results in Table 7 show that in A549 cells, compounds 21 and 35 can significantly down-regulate the expression of ACE2 and TMPRSS2 proteins, and are better than the control drug proxalutamide.
  • In vitro protein expression experiments have confirmed that the compound of the present invention can effectively inhibit the signaling pathway of AR-TMPRSS2/ACE2, and can be used for the treatment of patients with new coronary pneumonia.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Diabetes (AREA)
  • Endocrinology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种甾体类化合物及制备方法和用途,该甾体类化合物结构如式I所示,式中,各取代基的定义如说明书和权利要求书中所述。本发明的甾体类化合物,具有优异AR拮抗和AR降解活性双重功能的甾体类化合物,具有成药性良好、安全性好的特点,能够用于与AR信号通路相关疾病的治疗。

Description

甾体类化合物及制备方法和用途 技术领域
本发明属于药物学领域,涉及药物合成和药理学领域。更具体而言,涉及含有具有雄激素受体降解和拮抗双重作用机制的甾体类化合物、制备方法和其在雄激素受体(AR)信号通路相关疾病包括前列腺癌、去势抵抗前列腺癌、SARS-CoV-2感染性疾病、晚期乳腺癌患者的治疗中的应用。
技术背景
前列腺癌(Prostate Cancer,PCa)是男性泌尿生殖系统常见的恶性肿瘤,是一种雄性激素依赖性的恶性肿瘤,其发生、发展、转移和恶化与雄激素及其受体信号通路密切相关。因此雄激素阻断疗法(Androgen deprivation therapy,ADT)成为早期PCa的主要治疗手段。但是经过18-24个月的ADT治疗后,患者会适应体内低水平的雄激素进而发展成为致死性的去势抵抗性前列腺癌(castration resistant prostate cancer,CRPC)。在过去的二十年里,针对CRPC患者的治疗也有了显著进展。其中CYP17A1酶(雄性激素合成酶)抑制剂醋酸阿比特龙和第二代AR拮抗剂恩杂鲁胺(Enzalutamide)、阿帕他胺(Apalutamide)以及达罗他胺(Darolutamide)被批准用于转移性去势抵抗前列腺癌(mCRPC)和非转移性去势抵抗前列腺癌(nmCRPC)患者的一线治疗,且取得良好的治疗效果。
但是阿比特龙和第二代AR拮抗剂临床治疗9-15个月后,依然会产生获得性耐药,其耐药可分为AR相关型耐药和AR旁路激活耐药。AR相关型耐药包括:1)AR基因的扩增和过表达。大约有80%的CRPC患者展现出较高的AR表达水平,使得肿瘤能够适应低水平的雄激素,从而继续生长增值;2)AR配体结合域的点突变和表达剪切变异体。在接受过恩杂鲁胺和阿比特龙治疗过的CRPC患者中,大约有12-48%发生AR突变。其中F876L突变导致恩杂鲁胺和阿帕他胺由AR拮抗活性转变为AR激动活性,反而促进肿瘤生长,L701H和T877A突变会导致阿比特龙产生耐药而失效;在接受过恩杂鲁胺或阿比特龙治疗的患者中,约50%表达剪切变异体。AR-V567和AR-V7为最常见的两种剪切变异体,它们分别部分或者完全缺失AR的配体结合域,从而使得目前的所有AR拮抗剂不能结合到AR发挥作用,导致耐药失活。AR旁路驱动耐药指糖皮质激素受体(Glucocorticoid receptor,GR)在CRPC患者中表达增加,其能够和AR竞争性结合的反应元件,使得患者不依赖AR信号通路而促进下游肿瘤相关基因的转录,导致病情的恶化。
由于CRPC患者的五年存活率不足30%,目前针对CRPC患者的治疗手段并不能使得病情得到有效控制,因此临床亟需找到新的治疗策略用于CRPC患者和耐药性CRPC的治疗。
SARS-CoV-2(新冠病毒,COVID-19)入侵(感染)宿主细胞主要依靠两个蛋白酶介导,即跨膜丝氨酸蛋白酶2(TMPRSS2)和血管紧张素转化酶2(ACE2)。SARS-CoV-2通过ACE2粘附在细胞膜上,TMPRSS2会在SARS-CoV-2刺突蛋白蛋S1/S2位点完成对刺突蛋白的水解切割,来启动SARS-CoV-2和宿主细胞的融合和进入,完成对宿主细胞的入侵/感染。而TMPRSS2和ACE2蛋白受到人体雄激素受体信号通路的正向调控,因此AR拮抗剂或AR降 解剂能够抑制AR的功能,从转录水平下调TMPRSS2和ACE2的表达,进而阻断SARS-CoV-2入侵宿主细胞,从源头上阻断新冠病毒的感染,见图1。
临床研究也表明,靶向AR信号通路的治疗策略能够有效地治疗新冠患者,大幅降低死亡率。苏州开拓药业的AR拮抗剂普克鲁胺,已完成AR拮抗剂用于新冠感染患者治疗的II期概念验证,并且取得了令人吃惊的临床抗新冠病毒效果,目前在多国开展Ⅲ期临床研究。该药已经于2021年7月获巴拉圭紧急使用授权。
综上所述,AR信号通路在包括前列腺癌和新冠病毒肺炎在内的多种疾病中扮演着重要的角色,研发AR拮抗剂或AR降解剂有望更好地用于与AR信号通路相关疾病的治疗。
发明内容
本发明目的在于提供一类同时具有优异AR拮抗和AR降解活性双重功能的甾体类化合物,这类化合物与现有拮抗剂相比,能更彻底的阻断AR信号通路,能够更好地用于与AR信号通路相关疾病治疗。
本发明的第一方面,提供一种通式(I)所示的化合物,或其对映异构体、非对映异构体、立体异构体、前药、氘代物、水合物、溶剂化物、外消旋体或其药学上可接受的盐,
Figure PCTCN2023071074-appb-000001
式中,A为
Figure PCTCN2023071074-appb-000002
-SO-或者C1-C3亚烷基;
B为氢、取代或未取代的C 1-6烷基、取代或未取代的C 3-8环烷基、取代或未取代的4-8元杂环烷基、取代或未取代的C 6-10芳基、取代或未取代的5-10元杂芳基;
X选自:取代或未取代的5-10元杂芳基、取代或未取代的4-8元杂环烷基;
所述各取代独立地是指被选自下组的一个或多个基团取代:氘、羟基、羧基、氨基、巯基、C 1-6烷基、C 1-6烷氧基、砜基、卤素、氰基、NO 2、C 1-6卤代烷基、-SO-C 1-6烷基、-SO 2-C 1-6烷基、-CONH-C 1-6烷基、-NHCO-C 1-6烷基、C 3-6环烷基;
所述杂环烷基、杂芳基的杂原子选自:O、N或S,杂原子的个数为1、2、3或4个。
在另一优选例中,所述式I化合物具有下式:
Figure PCTCN2023071074-appb-000003
在另一优选例中,A为
Figure PCTCN2023071074-appb-000004
-SO-、-CH 2-、-CH 2CH 2-或-CH 2CH 2CH 2-。
在另一优选例中,B为氢、取代或未取代的C 1-4烷基、取代或未取代的C 3-6环烷基、取代或未取代的5-6元杂环烷基、取代或未取代的苯基、取代或未取代的5-7元杂芳基;
所述取代是指被选自下组的1、2或3个基团取代:氘、羟基、羧基、氨基、巯基、C 1-4烷基、C 1-4烷氧基、砜基、F、Cl、Br、CN、NO 2、C 1-4卤代烷基、-SO-C 1-4烷基、-SO 2-C 1-4烷基、-CONH-C 1-4烷基、-NHCO-C 1-4烷基、C 3-6环烷基;
所述杂环烷基、杂芳基的杂原子选自:O、N或S,杂原子的个数为1、2或3个。
在另一优选例中,B为
Figure PCTCN2023071074-appb-000005
环丙烷基、吗啉基
Figure PCTCN2023071074-appb-000006
或苯基,上述基团任选地被选自下组的1、2或3个基团取代:氘、甲基、乙基、正丙基、异丙基、羟基、氨基、F、Cl、Br、氰基、NO 2、-SOCH 3、-SOCH 2CH 3、-SOCH(CH 3) 2、-SO 2CH 3、-SO 2CH 2CH 3、-SO 2CH(CH 3) 2
在另一优选例中,X选自:取代或未取代的5-9元杂芳基、取代或未取代的4-6元杂环烷基;
所述取代是指被选自下组的1、2或3个基团取代:氘、羟基、羧基、氨基、巯基、C 1-4烷基、C 1-4烷氧基、砜基、F、Cl、Br、CN、NO 2、C 1-4卤代烷基、-SO-C 1-4烷基、-SO 2-C 1-4烷基、-CONH-C 1-4烷基、-NHCO-C 1-4烷基、C 3-6环烷基;
所述杂环烷基、杂芳基的杂原子选自:O、N或S,杂原子的个数为1、2、3或4个。
在另一优选例中,X为含氮杂芳基,选自:吡啶基、咪唑基、苯并咪唑基、三氮唑基、四氮唑基、嘧啶基、哒嗪基;上述基团任选地被选自下组的1、2或3个基团取代:氘、羟基、羧基、氨基、巯基、C 1-4烷基、C 1-4烷氧基、砜基、F、Cl、Br、CN、NO 2、C 1-4卤代烷基、-SO-C 1-4烷基、-SO 2-C 1-4烷基、-CONH-C 1-4烷基、-NHCO-C 1-4烷基、C 3-6环烷基。
在另一优选例中,X选自:
Figure PCTCN2023071074-appb-000007
上述基团任选地被选自下组的1或2个基团取代:甲基、乙基、正丙基、异丙基、环丙基、正丁基、异丁基、叔丁基、甲氧基、乙氧基、三氟甲基、二氟甲基、氰基、硝基、羧基、氟、氯、溴、-CONHCH 3、-NHCOCH 3
在另一优选例中,所述药学上可接受的盐由通式(I)化合物与有机酸或无机酸、有机碱或无机碱形成。所述药学上可接受的盐非限制性地包括无机酸盐,如盐酸盐、氢溴酸盐、硝酸盐、硫酸盐、磷酸盐等;有机酸盐,如甲酸盐、乙酸盐、丙酸盐、马来酸盐、富马酸盐、琥珀酸盐、酒石酸盐、柠檬酸盐、酸式氨基酸盐、烷基磺酸盐(如甲基磺酸盐、乙基磺酸盐等)、芳基磺酸盐(如苯磺酸盐、对甲苯磺酸盐等)等。所述药学上可接受的盐非限制性地包括无机碱盐,如钠盐,钾盐,镁盐,钙盐;有机碱盐,包括乙二胺盐,葡甲胺盐,氨基丁三醇盐等。
本发明的通式(I)化合物,其光学异构体或其药学上可接受的盐还可以是溶剂合物的形式存在,例如水合物、醇合物等,这些溶剂合物也包含在本发明的范围内。
在另一优选例中,所述化合物或其药学上可接受的盐选自:
Figure PCTCN2023071074-appb-000008
Figure PCTCN2023071074-appb-000009
Figure PCTCN2023071074-appb-000010
本发明的第二方面,提供第一方面所述的化合物的制备方法,包括以下步骤:
Figure PCTCN2023071074-appb-000011
a)中间体I-1与甲磺酰氯反应得到中间体I-2;
b)中间体I-2与叠氮基三甲基硅烷和三氟化硼乙醚反应得到中间体I-3;
c)中间体I-3与四氢铝锂反应得到中间体I-4;
d)中间体I-4与酰氯反应得到目标化合物I;或
e)中间体I-4与羧酸发生缩合反应得到目标化合物I,
各式中,X、A和B的定义如前所述。
在另一优选例中,步骤a中,将中间体I-1在有机碱存在环境中,溶于极性非质子溶剂,然后在4-二甲氨基吡啶的催化下,于室温和甲磺酰氯反应2-6h得到中间体I-2。所述有机碱可以是三乙胺、N,N-二异丙基乙胺;所述极性非质子性溶剂可以是:1,4-二氧六环、甲苯、四氢呋喃、二氯甲烷;最佳溶剂为二氯甲烷。
在另一优选例中,步骤b中,将中间体I-2溶于超干的二氯甲烷溶液中,依次加入3-6当量的叠氮基三甲基硅烷和4-8当量的三氟化硼乙醚在常温下反应12-24h,得到立体构型保持的中间体I-3。其中叠氮基三甲基硅烷的最佳当量比为3当量;三氟化硼乙醚的最佳当量比为4当量。
在另一优选例中,步骤c中,将中间体I-3溶于极性非质子性溶剂中,加入1.5当量的四氢铝锂于室温下反应2-6h得到中间体I-4。所述极性非质子性溶剂可以是:1,4-二氧六环、甲苯、四氢呋喃、二氯甲烷;最佳溶剂为四氢呋喃。
在另一优选例中,步骤d中,将中间体I-4在有机碱存在环境中,溶于极性非质子溶剂,然后在4-二甲氨基吡啶的催化下,于室温和各种酰氯(盐酸异烟酰氯、盐酸烟酰氯、吡啶-3-磺酰氯盐酸盐等)反应6-12h得到目标化合物I。所述有机碱可以是三乙胺、N,N-二异丙基乙胺;所述极性非质子性溶剂可以是:1,4-二氧六环、甲苯、四氢呋喃、二氯甲烷;最佳溶剂为二氯甲烷。
在另一优选例中,步骤e中,将中间体I-4溶于N,N-二甲基甲酰胺,在常温下与各种羧酸(4-哒嗪羧酸、4-氟吡啶-3-羧酸等)在缩合剂2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(HATU)的作用下发生缩合反应8-12h得到目标化合物I。反应温度为0-50℃,其中最佳温度为室温。
在另一优选例中,化合物Ⅱ-1与硼酸或者硼酸酯进行Suzuki偶联反应得到所述中间体I-1,
Figure PCTCN2023071074-appb-000012
式中,X的定义如前所述。
在另一优选例中,将化合物Ⅱ-1溶解在1,4-二氧六环和水的混合溶液中,然后在双(三苯基膦)二氯化钯的催化作用下,于100℃与各种硼酸或者硼酸酯(5-嘧啶硼酸、5-甲基吡啶-3-硼酸、5-甲氧基-3-嘧啶频那醇硼酸酯等)进行Suzuki偶联反应得到相对应的化合物I-1。所述1,4-二氧六环和水的体积比为5:1-2:1,最佳体积比为3:1;所述的反应温度为80-110℃,最佳反应温度为100℃。
在另一优选例中,所述中间体I-1的制备方法包括以下步骤:
Figure PCTCN2023071074-appb-000013
i)化合物Ⅱ-2发生加成消除反应得到化合物Ⅱ-3;
ii)化合物Ⅱ-3脱除醛基得到化合物Ⅱ-4;
iii)化合物Ⅱ-4水解得到中间体I-1,
式中,X的定义如前所述。
在另一优选例中,步骤i中,将化合物Ⅱ-2溶解在极性溶剂中,然后在无机碱的作用下,与各种芳香杂环化合物(1,2,3-三氮唑、咪唑、4-甲基咪唑、4-乙基咪唑等)于80℃发生加成消除反应得到对应的化合物Ⅱ-3。所述的极性溶剂可以为乙腈、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺;所述的无机碱可以是碳酸钠、碳酸钾、碳酸铯,最佳无机碱为碳酸钾。
在另一优选例中,步骤ii中,将化合物Ⅱ-3溶解在干燥的N,N-二甲基甲酰胺中,加入化学计量的钯碳反应18-72h脱除醛基得到化合物Ⅱ-4。所述的反应温度可以为140-170℃,最佳反应温度为160℃。
在另一优选例中,步骤iii中,将化合物Ⅱ-4溶解在极性质子性溶剂中,然后加入氢氧化钾在室温下水解醋酸酯得到对应的化合物I-1。所述的极性质子性溶剂可以为甲醇、乙醇。
应当理解的是,对于本发明所述的式(I)所示的化合物,本领域技术人员在上述方法的教导下,可以用有机合成或药物化学领域的技术人员熟知的多种方法的组合来制备,可以将上文中所描述的方法,与本领域已知的合成方法或本领域技术人员所理解的在其上的变化相结合,来合成本发明化合物,而并不限于上述方法。
本发明的第三方面,提供一种药物组合物,包含:
第一方面所述的通式(I)所示的化合物,或其对映异构体、非对映异构体、立体异构 体、前药、氘代物、水合物、溶剂化物、外消旋体或其药学上可接受的盐;和药学上可接受的载体。
本发明的第四方面,提供第一方面所述的通式(I)所示的化合物或第三方面所述的药物组合物用途,用于制备预防和/或治疗与AR信号通路相关的疾病药物的药物。
在另一优选例中,所述与AR信号通路相关的疾病选自:前列腺癌、去势抵抗前列腺癌、乳腺癌、SARS-CoV-2感染性疾病、骨质疏松症、消化系统疾病。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。说明书中所揭示的各个特征,可以被任何提供相同、均等或相似目的的替代性特征取代。限于篇幅,在此不再一一赘述。
附图说明
图1示出AR-ACE2/TMPRSS2信号通路介导SARS-CoV-2病毒感染宿主细胞。
图2示出化合物对体内性腺增重的影响,其中(A)精囊的重量;(B)前列腺的重量。
具体实施方式
本专利的发明人经过广泛而深入地研究,设计、合成了一系列结构通式如式(I)的甾体类化合物,经过体外AR拮抗活性、AR降解活性、突变AR拮抗活性和细胞增殖抑制活性测试以及体内大鼠性腺增重和小鼠体内异种移植瘤测试等系统生物活性测试,结果表明本发明化合物是具有优异抗肿瘤活性、是更加安全有效的AR降解/拮抗剂,同时本发明化合物大鼠的体内药代动力学实验表明,该类化合物血浆暴露量高,展现出优异的药代动力学特性和成药性。所有这些结果证明,本发明化合物能用于AR信号通路相关疾病包括前列腺癌、新冠患者等的治疗。在此基础上,完成了本发明。
术语
在本发明中,除非特别指出,所用术语具有本领域技术人员公知的一般含义。
在本发明中,所述卤素为F、Cl、Br或I。
在本发明中,术语“C 1-6”是指具有1、2、3、4、5或6个碳原子,“C 1-4”是指具有1、2、3或4个碳原子,依此类推。
在本发明中,术语“烷基”是指仅由碳原子和氢原子组成的饱和的线性或支链烃部分,例如术语“C 1-6烷基”是指具有1至6个碳原子的直链或支链烷基,非限制性地包括甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、戊基和已基等;优选乙基、正丙基、异丙基、正丁基、异丁基、仲丁基和叔丁基。
在本发明中,术语“亚烷基”是指具有指定的碳原子数并连接至少两个其他基团的直链或支链饱和脂肪族基团,即二价烃基团。连接到亚烷基的两个基团可以连接到亚烷基上相同的或不同原子。例如,直链亚烷基可以是-(CH 2) n-的二价基团,其中n是1、2、3、4、5或6。 代表性的亚烷基包括但不限于亚甲基、亚乙基、亚丙基、亚异丙基、亚丁基、亚异丁基、亚仲丁基、亚戊基和亚己基。
在本发明中,术语“烷氧基”表示-O-(C 1-6烷基)基团。例如术语“C 1-6烷氧基”是指具有1至6个碳原子的直链或支链烷氧基,非限制性地包括甲氧基、乙氧基、丙氧基、异丙氧基和丁氧基等。
在本发明中,术语“环烷基”是指仅由碳原子和氢原子组成的稳定的非芳香族单环或多环烃基,可包括稠合环体系、桥环体系或螺环体系,通常具有3至15个碳原子。例如术语“C 3-8环烷基”是指在环上具有3至8个碳原子的环状烷基,非限制性地包括环丙基、环丁基、环戊基、环己基、环庚基、环辛基等。术语“C 3-6环烷基”具有类似的含义。
在本发明中,术语“杂环烷基”表示包含至少一个(如1、2、3或4个)环杂原子(例如N,O或S)的饱和或不饱和的非芳香性环状基团,例如四氢吡啶基、吡咯啉基、二氢吡啶基、二氢呋喃基、二氢噻吩基、吗啉基。
在本发明中,术语“4-8元”是指其所定义的闭合环系基团(如芳基、杂芳基、杂环烷基等)中围成该闭合环骨架本身的原子数目为4、5、6、7或8,可根据闭合环系基团的环数、饱和度以及构成该环的原子性质等而取不同的数目。由此可推知其他以类似方式描述的术语的含义,如“3~6元”、“4~6元”等。
在本发明中,术语“芳基”表示包含一个或多个芳环的烃基部分。例如术语“C 6-10芳基”是指在环上不含杂原子的具有6至10个碳原子的芳香族环基,如苯基、萘基等。
在本发明中,术语“杂芳基”是指由碳原子和选自氮、氧和硫的杂原子共同组成的轭芳香性环系基团,可以为单环、双环、三环或更多环体系,其可经由芳香环上的原子通过单键与分子的其余部分连接。通常,杂芳基的实例包括但不限于吡咯基、呋喃基、噻吩基、咪唑基、吡唑基、噻唑基、噁唑基、噁二唑基、异噁唑基、三氮唑基、四氮唑基、吡啶基、嘧啶基、吡嗪基、哒嗪基、吲哚基、异吲哚基、吲唑基、苯并咪唑基、苯并三氮唑基、喹啉基、异喹啉基、苯并噻唑基、苯并哒嗪基、喹唑啉基、喹喔啉基等。
除非另外说明,本文所述的烷基、环烷基、杂环烷基、芳基、杂芳基为取代的或未取代的基团,可能的取代基包括,但不限于:羟基、氨基、硝基、腈基、卤素、C1-C6烷基、C2-C10烯基、C2-C10炔基、C3-C20环烷基、C3-C20环烯基、C1-C20杂环烷基、C1-C20杂环烯基、C1-C6烷氧基、芳基、杂芳基、杂芳氧基、C1-C10烷基氨基、C1-C20二烷基氨基、芳基氨基、二芳基氨基、C1-C10烷基氨磺酰基、芳基氨磺酰基、C1-C10烷基亚氨基、C1-C10烷基磺基亚氨基、芳基磺基亚氨基、巯基、C1-C10烷硫基、C1-C10烷基磺酰基、芳基磺酰基、酰基氨基、氨酰基、氨基硫代酰基、胍基、脲基、氰基、酰基、硫代酰基、酰氧基、羧基和羧酸酯基。另一方面,环烷基、杂环烷基、杂环烯基、芳基和杂芳基也可互相稠合。
本发明中,所述取代为单取代或多取代,所述多取代为二取代、三取代、四取代、或五取代。所述二取代就是指具有两个取代基,依此类推。
化合物
本发明提供一类同时具有AR降解和拮抗双重作用机制的甾体类化合物,能在拮抗AR 的同时促进AR降解,实现完全阻断雄激素受体信号通路,比现有单功能AR拮抗剂、单功能AR降解剂或单功能雄性激素合成酶抑制剂更好的疗效,用于CRPC甚至各个阶段前列腺癌患者的治疗,解决日益严重的PCa患者耐药问题,且还能用于新冠病毒肺炎等疾病的治疗,实现对AR信号通路相关疾病更好的治疗。
本发明化合物结构如下:
Figure PCTCN2023071074-appb-000014
式中,各取代的定义同前。
药物组合物
本发明还提供了一种药物组合物,它包含安全有效量范围内的活性成分,以及药学上可接受的载体。
本发明所述的“活性成分”是指本发明所述的式(I)化合物。
本发明所述的“活性成分”和药物组合物用于制备治疗AR信号通路相关疾病药物。本发明所述的“活性成分”和药物组合物可用作AR降解剂或者拮抗剂。所述AR信号通路相关疾病选自:前列腺癌、SARS-CoV-2感染性疾病、去势抵抗前列腺癌、乳腺癌、骨质疏松症、消化系统疾病。
“安全有效量”指的是:活性成分的量足以明显改善病情,而不至于产生严重的副作用。
“药学上可接受的载体”指的是:一种或多种相容性固体或液体填料或凝胶物质,它们适合于人使用,而且必须有足够的纯度和足够低的毒性。“相容性”在此指的是组合物中各组份能和本发明的活性成分以及它们之间相互掺和,而不明显降低活性成分的药效。药学上可以接受的载体部分例子有纤维素及其衍生物(如羧甲基纤维素钠、乙基纤维素钠、纤维素乙酸酯等)、明胶、滑石、固体润滑剂(如硬脂酸、硬脂酸镁)、硫酸钙、植物油(如豆油、芝麻油、花生油、橄榄油等)、多元醇(如丙二醇、甘油、甘露醇、山梨醇等)、乳化剂(如
Figure PCTCN2023071074-appb-000015
)、润湿剂(如十二烷基硫酸钠)、着色剂、调味剂、稳定剂、抗氧化剂、防腐剂、无热原水等。
本发明的活性成分或药物组合物的施用方式没有特别限制,代表性的施用方式包括(但并不限于):口服、瘤内、直肠、肠胃外(静脉内、肌肉内或皮下)等。
本发明化合物可以单独给药,或者与其它治疗药物(如抗肿瘤药)联合给药。
使用药物组合物时,是将安全有效量的本发明化合物适用于需要治疗的哺乳动物(如人),其中施用时剂量为药学上认为的有效给药剂量,当然,具体剂量还应考虑给药途径、病人健康状况等因素,这些都是熟练医师技能范围之内的。
除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。文中所述 的较佳实施方法与材料仅作示范之用。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。说明书中所揭示的各个特征,可以被任何提供相同、均等或相似目的的替代性特征取代。这些使用本领域技术人员所知的技术,如前药或前体药物(本发明化合物结构中的羟基,羧基,NH等均可按常规方法制备成前药)、氘代、成盐、溶剂合物等对本发明进行不经过创造性劳动的改进均属本专利保护范围。
下面的具体实施例,其目的是使本领域的技术人员能更清楚地理解和实施本发明。它们不应该被认为是对本发明范围的限制,而只是本发明的示例性说明和典型代表。本领域技术人员应该理解,形成本发明化合物还有其他的合成路径,下面提供的是非限制性的实施例。
使用薄层色谱法(TLC)在硅胶F-254 TLC板上监测所有反应。使用硅胶(200-300目)进行柱色谱。化合物的结构是通过核磁共振(NMR)来确定的。测定溶剂为氘代二甲基亚砜(DMSO-d 6)或氘代氯仿(CDCl 3)。 1H和 13C NMR的测定是通过Bruker 400,Bruker 500或Bruker 600 NMR光谱仪。化学位移(δ)以百万分之一(ppm)表示,耦合常数(J)以赫兹(Hz)表示。质谱的测定是用Finnigan MAT95质谱仪获得电子电离(EI)质谱、用Krats MS 80质谱仪上获得电喷雾电离(ESI)质谱,以1290-6545 UHPLC-QTOF药物小分子结构解析高分辨质谱仪获得高分辨质谱。通过分析型高效液相色谱法(PLATISIL ODS 250mm×4.6mm,粒径5μm),以乙腈/水、乙腈/缓冲液(0.1%三氟乙酸/水)或者甲醇/缓冲液(0.1%三氟乙酸/水)为流动相,将所有最终化合物纯化至>95%的纯度。
实施例1:
N-((3S,10R,13S)-10,13-二甲基-17-(吡啶-3-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基)吡啶-3-磺酰胺(化合物1)
Figure PCTCN2023071074-appb-000016
(3S,10R,13S)-10,13-二甲基-17-(吡啶-3-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基甲磺酸酯(45)
将阿比特龙(44)(1g,2.86mmol)和4-二甲氨基吡啶(35mg,0.286mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(1.19mL,8.58mmol)搅拌一段时间,最后缓慢加入甲磺酰氯(0.5mL,5.72mmol),滴加完毕后于室温下搅拌5h,TLC监测反应完全。接着加入冰水进行淬灭,紧接着用乙酸乙酯进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(20-50%乙酸乙酯/石油醚),得到所需产物。最终得到705mg浅黄色固体45,产率为57.6%。 1H NMR(400MHz,CDCl 3)δ8.63(s,1H),8.48(d,J=4.7Hz,1H),7.66(d,J=7.7Hz,1H),7.24(dd,J=7.6,4.9Hz,1H),6.01(s,1H),5.49(d,J=4.5Hz,1H),4.56(dq,J=16.2,5.3Hz,1H),3.04(s,3H), 1.10(s,3H),1.06(s,3H).
3-((3S,10R,13S)-3-叠氮基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)吡啶(46)
将化合物45(470mg,1.1mmol)溶于超干二氯甲烷中于室温下搅拌,然后用塑料加液器依次加入叠氮基三甲基硅烷(0.22mL,1.65mmol)和三氟化硼乙醚(0.27mL,2.2mmol),滴加完毕后于室温下搅拌16h,TLC监测反应完全。接着加入饱和碳酸氢钠溶液进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(5-10%乙酸乙酯/石油醚),得到所需产物。最终得到120mg白色固体化合物46,产率为29.1%。 1H NMR(400MHz,CDCl 3)δ8.64(d,J=1.8Hz,1H),8.48(dd,J=4.8,1.4Hz,1H),7.67(dt,J=7.9,1.9Hz,1H),7.24(dd,J=7.9,4.8Hz,1H),6.02(dd,J=3.1,1.7Hz,1H),5.45(d,J=5.1Hz,1H),3.24(ddd,J=10.5,9.2,4.1Hz,1H),1.09(s,3H),1.07(s,3H).
(3S,10R,13S)-10,13-二甲基-17-(吡啶-3-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-胺(47)
将化合物46(253mg,0.68mmol)溶于超干四氢呋喃中于冰浴下搅拌,然后用塑料加液器缓慢滴加1M四氢铝锂的四氢呋喃溶液(1mL,1mmol),滴加完毕后于室温下搅拌1.5h,TLC监测反应完全。反应完毕后将体系置于冰浴下,用冰水进行淬灭,紧接着用乙酸乙酯进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(5-10%甲醇/二氯甲烷),得到所需产物。最终得到113mg白色固体化合物47,产率为48.1%。 1H NMR(400MHz,CDCl 3)δ8.63(d,J=1.7Hz,1H),8.47(dd,J=4.7,1.4Hz,1H),7.66(d,J=7.9Hz,1H),7.24(dd,J=7.8,4.8Hz,1H),6.01(s,1H),5.39(d,J=5.1Hz,1H),1.07(s,6H).
N-((3S,10R,13S)-10,13-二甲基-17-(吡啶-3-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基)吡啶-3-磺酰胺(化合物1)
将化合物47(50mg,0.143mmol)和4-二甲氨基吡啶(2mg,0.015mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(60μL,0.42mmol)搅拌一段时间,最后加入吡啶-3-磺酰氯盐酸盐(40mg,0.17mmol)于室温下搅拌4h,TLC监测反应完全。反应完毕后,用二氯甲烷和水进行萃取,收集有机相,然后用饱和食盐水洗涤两次,用无水硫酸钠干燥后,过滤,向体系中加入硅胶浓缩并通过自动过柱机进行纯化(30-40%乙酸乙酯/石油醚),得到所需产物。最终得到45mg白色固体化合物1,产率为64.1%。 1H NMR(400MHz,DMSO)δ8.97(d,J=2.1Hz,1H),8.82(dd,J=4.8,1.5Hz,1H),8.58(s,1H),8.43(d,J=3.5Hz,1H),8.23–8.17(m,1H),8.02(d,J=7.4Hz,1H),7.78–7.71(m,1H),7.65(dd,J=8.0,4.8Hz,1H),7.33(dd,J=7.9,4.8Hz,1H),6.11(s,1H),5.21(d,J=4.8Hz,1H),2.90(dd,J=11.6,4.7Hz,1H),0.99(s,3H),0.95(s,3H). 13C NMR(126MHz,DMSO)δ153.36,148.26,147.61,147.27,140.99,138.94,134.70,133.75,132.57,129.44,124.76,123.82,121.51,57.43,53.99,50.04,47.07,37.64,36.55,34.97,31.72,31.26,30.27,29.51,20.73,19.27,16.68.HRMS(ESI)(M+H) +m/z计算值C 29H 36N 3O 2S 490.2523,实测值:490.2513.
实施例2:
N-((3S,10R,13S)-10,13-二甲基-17-(吡啶-3-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基)异烟酰胺(化合物2)
Figure PCTCN2023071074-appb-000017
将化合物47(50mg,0.143mmol)和4-二甲氨基吡啶(2mg,0.015mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(60μL,0.42mmol)搅拌一段时间,最后加入盐酸异烟酰氯(30mg,0.17mmol)于室温下搅拌6h,TLC监测反应完全。反应完毕后,直接向体系中加入硅胶浓缩并通过自动过柱机进行纯化(1-3%甲醇/二氯甲烷),得到所需产物。最终得到34mg白色固体化合物2,产率为52.3%。 1H NMR(600MHz,CDCl 3)δ8.69(d,J=5.8Hz,2H),8.59(s,1H),8.43(d,J=4.3Hz,1H),7.65(d,J=7.9Hz,1H),7.59(d,J=5.8Hz,2H),7.22(dd,J=7.8,4.9Hz,1H),6.28(d,J=7.9Hz,1H),5.99(s,1H),5.43(d,J=5.1Hz,1H),3.94–3.86(m,1H),1.05(s,3H),1.02(s,3H). 13C NMR(151MHz,CDCl 3)δ164.77,151.48,150.52,147.43,141.95,140.29,134.23,133.07,129.49,123.21,122.05,120.90,57.45,50.44,50.29,47.32,39.14,37.75,36.78,35.09,31.81,31.47,30.40,29.01,20.77,19.30,16.58.HRMS(ESI)(M-H) -m/z计算值C 30H 34N 3O 452.2707,实测值:452.2703.
实施例3:
N-((3S,10R,13S)-10,13-二甲基-17-(吡啶-3-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基)烟酰胺(化合物3)
Figure PCTCN2023071074-appb-000018
将化合物47(50mg,0.143mmol)和4-二甲氨基吡啶(2mg,0.015mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(60μL,0.42mmol)搅拌一段时间,最后加入盐酸烟酰氯(30mg,0.17mmol)于室温下搅拌3h,TLC监测反应完全。反应完毕后,直接向体系中加入硅胶浓缩并通过自动过柱机进行纯化(1-3%甲醇/二氯甲烷),得到所需产物。最终得到44mg白色固体化合物3,产率为67.7%。 1H NMR(500MHz,CDCl 3)δ8.98(d,J=1.6Hz,1H),8.72(dd,J=4.8,1.6Hz,1H),8.64(d,J=1.7Hz,1H),8.47(dd,J=4.8,1.4Hz,1H),8.14–8.10(m,1H),7.67(dt,J=7.9,1.8Hz,1H),7.39(dd,J=7.8,4.9Hz,1H),7.24(dd,J=7.9,4.8Hz,1H),6.24(d,J=7.8Hz,1H),6.02(dd,J=3.1,1.7Hz,1H),5.48–5.45(m,1H),3.95(tdd,J=12.1,8.1,4.3Hz,1H),1.11(s,3H),1.07(s,3H). 13C NMR(126MHz,CDCl 3)δ 151.60,151.12,147.30,147.27,147.22,139.85,134.61,133.35,128.85,122.97,122.59,121.47,56.98,49.87,49.82,46.84,38.76,37.29,36.30,34.72,31.30,30.99,29.92,28.61,20.28,18.81,16.02.HRMS(ESI)(M+H) +m/z计算值C 30H 36N 3O 454.2853,实测值:454.2849.
实施例4:
N-((3S,10R,13S)-10,13-二甲基-17-(吡啶-3-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基)哒嗪-4-酰胺(化合物4)
Figure PCTCN2023071074-appb-000019
将化合物47(50mg,0.143mmol)和4-哒嗪羧酸(20mg,0.161mmol)都装入烧瓶中,加入超干N,N-二甲基甲酰胺作为溶剂于室温下搅拌,然后加入2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(74mg,0.195mmol)搅拌一段时间,最后加入N,N-二异丙基乙胺(43μL,0.29mmol)于室温下搅拌12h,TLC监测反应完全。反应完毕后,用乙酸乙酯和水进行萃取,收集有机相,然后用饱和食盐水洗涤两次,用无水硫酸钠干燥后,过滤,向体系中加入硅胶浓缩并通过自动过柱机进行纯化(30-60%乙酸乙酯/石油醚),得到所需产物。最终得到29mg浅黄色固体化合物4,产率为44.6%。 1H NMR(600MHz,DMSO)δ9.50(dd,J=2.1,1.3Hz,1H),9.39(dd,J=5.3,1.1Hz,1H),8.82(d,J=7.9Hz,1H),8.77(d,J=1.6Hz,1H),8.63(d,J=4.4Hz,1H),8.24(d,J=8.2Hz,1H),7.96(dd,J=5.3,2.3Hz,1H),7.72(dd,J=8.0,5.3Hz,1H),6.33(d,J=1.0Hz,1H),5.36(d,J=5.0Hz,1H),3.73–3.65(m,1H),1.03(s,3H),1.01(s,3H). 13C NMR(151MHz,DMSO)δ162.66,152.40,149.28,142.67,141.30,139.28,132.89,132.01,125.99,124.67,121.33,117.45,57.47,50.30,50.05,47.07,38.54,37.88,36.86,34.55,32.02,31.26,30.26,28.23,20.83,19.46,16.53.HRMS(ESI)(M-H) -m/z计算值C 29H 33N 4O 453.266,实测值:453.2654.
实施例5:
N-((3S,10R,13S)-10,13-二甲基-17-(吡啶-3-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基)-4-氟烟酰胺(化合物5)
Figure PCTCN2023071074-appb-000020
将化合物47(50mg,0.143mmol)和4-氟吡啶-3-羧酸(22mg,0.143mmol)都装入烧瓶中,加入超干N,N-二甲基甲酰胺作为溶剂于室温下搅拌,然后加入2-(7-偶氮苯并三氮唑)-N,N, N',N'-四甲基脲六氟磷酸酯(74mg,0.195mmol)搅拌一段时间,最后加入N,N-二异丙基乙胺(43μL,0.29mmol)于室温下搅拌10h,TLC监测反应完全。反应完毕后,用乙酸乙酯和水进行萃取,收集有机相,然后用饱和食盐水洗涤两次,用无水硫酸钠干燥后,过滤,向体系中加入硅胶浓缩并通过自动过柱机进行纯化(1-2%甲醇/二氯甲烷),得到所需产物。最终得到36mg白色固体化合物5,产率为53.2%。 1H NMR(600MHz,CDCl 3)δ8.88(s,1H),8.69(d,J=4.8Hz,1H),8.61(d,J=2.0Hz,1H),8.59(d,J=4.8Hz,1H),8.28(d,J=8.1Hz,1H),7.99–7.95(m,1H),7.78(dd,J=7.8,5.6Hz,1H),6.65–6.59(m,1H),6.33(s,1H),5.48(d,J=4.8Hz,1H),3.96(d,J=5.8Hz,1H),1.12(s,6H). 13C NMR(151MHz,CDCl 3)δ160.23,148.55,146.44,140.98,140.24,139.80,139.02,136.70,134.88,126.03,124.91,121.83,57.41,50.61,50.09,47.44,39.00,37.68,36.78,34.89,32.18,31.32,30.25,28.87,20.67,19.31,16.61.HRMS(ESI)(M+H) +m/z计算值C 30H 35FN 3O 472.2759,实测值:472.2763.
实施例6:
N-((3S,10R,13S)-17-(1H-苯并[d]咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基)吡啶-3-磺酰胺(化合物6)
Figure PCTCN2023071074-appb-000021
(3S,10R,13S)-10,13-二甲基-17-(1H-苯并[d]咪唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基甲磺酸酯(49)
将Galeterone(48)(1.645g,4.24mmol)和4-二甲氨基吡啶(52mg,0.424mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(1.8mL,12.72mmol)搅拌一段时间,最后缓慢加入甲磺酰氯(0.7mL,8.4mmol),滴加完毕后于室温下搅拌8h,TLC监测反应完全。接着加入冰水进行淬灭,紧接着用乙酸乙酯进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(30-50%乙酸乙酯/石油醚),得到所需产物。最终得到1.64g浅黄色固体化合物49,产率为83.2%。 1H NMR(400MHz,CDCl 3)δ7.97(s,1H),7.86–7.82(m,1H),7.52–7.49(m,1H),7.35–7.30(m,2H),6.00(dd,J=3.1,1.7Hz,1H),5.50(d,J=5.2Hz,1H),4.57(tdd,J=11.4,7.1,4.7Hz,1H),3.04(s,3H),1.09(s,3H),1.03(s,3H).
3-((3S,10R,13S)-3-叠氮基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-1H-苯并[d]咪唑(50)
将化合物49(979mg,2.1mmol)溶于超干二氯甲烷中于室温下搅拌,然后用塑料加液器依次加入叠氮基三甲基硅烷(0.41mL,3.15mmol)和三氟化硼乙醚(0.52mL,4.2mmol),滴加完毕后于室温下搅拌过夜,TLC监测反应完全。接着加入饱和碳酸氢钠溶液进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(5-10%乙酸乙酯/石油醚),得到所需产物。最终得到266mg白色固体化合物50,产率为30.7%。 1H NMR(400MHz,CDCl 3)δ8.45(s,1H),8.11(d, J=7.6Hz,1H),7.60–7.52(m,3H),6.24(dd,J=3.0,1.6Hz,1H),5.47(d,J=5.0Hz,1H),3.25(dt,J=11.5,6.3Hz,1H),1.08(s,3H),1.05(s,3H).
(3S,10R,13S)-17-(1H-苯并[d]咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-胺(51)
将化合物50(266mg,0.643mmol)溶于超干四氢呋喃中于冰浴下搅拌,然后用塑料加液器缓慢滴加1M四氢铝锂的四氢呋喃溶液(1mL,1mmol),滴加完毕后于室温下搅拌2h,TLC监测反应完全。反应完毕后将体系置于冰浴下,用冰水进行淬灭,紧接着用乙酸乙酯进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(5-10%甲醇/二氯甲烷),得到所需产物。最终得到107mg白色固体化合物51,产率为43.3%。 1H NMR(400MHz,DMSO)δ8.27(s,1H),7.71(d,J=7.4Hz,1H),7.57(d,J=7.4Hz,1H),7.28(ddd,J=15.0,13.7,6.6Hz,2H),6.06(s,1H),5.32(d,J=4.3Hz,1H),0.99(s,3H),0.97(s,3H).
N-((3S,10R,13S)-17-(1H-苯并[d]咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基)吡啶-3-磺酰胺(化合物6)
将化合物51(50mg,0.129mmol)和4-二甲氨基吡啶(2mg,0.013mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(54μL,0.39mmol)搅拌一段时间,最后缓慢加入吡啶-3-磺酰氯(20μL,0.155mmol),滴加完毕后于室温下搅拌6h,TLC监测反应完全。反应完毕后,直接向体系中加入硅胶浓缩并通过自动过柱机进行纯化(30-60%乙酸乙酯/石油醚),得到所需产物。最终得到35mg白色固体化合物6,产率为51.3%。 1H NMR(600MHz,CDCl 3)δ9.09(d,J=1.9Hz,1H),8.78(dd,J=4.8,1.6Hz,1H),8.16(ddd,J=8.0,2.2,1.7Hz,1H),7.99(s,1H),7.81–7.78(m,1H),7.48–7.42(m,2H),7.31–7.26(m,2H),5.97(dd,J=3.1,1.6Hz,1H),5.31(d,J=7.0Hz,2H),3.16–3.08(m,1H),0.97(s,6H). 13C NMR(151MHz,CDCl 3)δ153.03,147.92,146.97,141.52,140.13,138.18,134.59,134.42,124.42,123.74,123.63,122.76,121.93,119.94,111.24,55.75,54.21,50.36,47.21,40.28,37.65,36.59,34.73,30.96,30.28,30.23,20.50,19.15,15.98.HRMS(ESI)(M+H) +m/z计算值C 31H 37N 4O 2S 529.2632,实测值:529.2635.
实施例7:
(3S,10R,13S)-17-(1H-苯并[d]咪唑-1-基)-10,13-二甲基-N-(吡啶-4-基甲基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-胺(化合物7)
Figure PCTCN2023071074-appb-000022
将化合物51(50mg,0.129mmol)装入烧瓶中,加入超干N,N-二甲基甲酰胺作为溶剂于室温下搅拌,然后加入碳酸钾(36mg,0.261mmol)搅拌一段时间,最后加入4-(溴甲基)吡啶盐酸盐(33mg,0.130mmol),加完后于将体系缓慢升温至50℃搅拌过夜,TLC监测反应完全。反 应完毕后,用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,然后用无水硫酸钠干燥、过滤,向体系中加入硅胶浓缩并通过自动过柱机进行纯化(2-5%甲醇/二氯甲烷),得到所需产物。最终得到32mg白色固体化合物7,产率为51.8%。 1H NMR(600MHz,CDCl 3)δ8.53(dd,J=4.6,1.3Hz,2H),7.94(s,1H),7.81–7.77(m,1H),7.48–7.45(m,1H),7.30(d,J=5.6Hz,2H),7.29–7.26(m,2H),5.96(dd,J=2.9,1.6Hz,1H),5.38–5.35(m,1H),3.87(s,2H),1.03(s,3H),0.99(s,3H). 13C NMR(151MHz,CDCl 3)δ149.92,147.17,143.22,141.64,134.55,124.11,123.41,123.25,122.50,120.81,120.17,111.15,57.65,55.87,50.56,49.31,47.23,37.68,37.24,34.86,31.09,30.33,30.29,20.59,19.33,16.02.HRMS(ESI)(M+H) +m/z计算值C 32H 39N 4 479.3169,实测值:479.3168.
实施例8:
N-((3S,10R,13S)-17-(1H-苯并[d]咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基)异烟酰胺(化合物8)
Figure PCTCN2023071074-appb-000023
按照合成化合物2一样的方法来合成化合物8。投入化合物51(50mg,0.129mmol)得到24mg白色固体化合物8,产率37.8%。 1H NMR(500MHz,DMSO)δ8.74(d,J=4.4Hz,2H),8.65(s,1H),8.62(d,J=8.0Hz,1H),7.80(d,J=5.9Hz,2H),7.75(d,J=7.6Hz,1H),7.65(d,J=7.7Hz,1H),7.41–7.32(m,2H),6.15(s,1H),5.39(d,J=4.6Hz,1H),3.77–3.67(m,1H),1.03(s,3H),0.97(s,3H). 13C NMR(126MHz,DMSO)δ163.98,149.94,146.22,141.55,126.38,124.68,123.90,121.98,120.98,118.70,112.46,55.72,50.39,50.16,47.17,38.65,37.96,36.86,34.17,30.86,30.41,28.34,20.63,19.41,16.07.HRMS(ESI)(M+H) +m/z计算值C 32H 37N 4O 493.2962,实测值:493.2969.
实施例9:
N-((3S,10R,13S)-17-(1H-苯并[d]咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基)哒嗪-4-酰胺(化合物9)
Figure PCTCN2023071074-appb-000024
按照合成化合物4一样的方法来合成化合物9。投入化合物51(50mg,0.129mmol)得到24mg白色固体化合物9,产率37.8%。 1H NMR(600MHz,CDCl 3)δ9.53(dd,J=2.1,1.2Hz,1H),9.28(dd,J=5.2,1.0Hz,1H),7.94(s,1H),7.86(dd,J=5.2,2.3Hz,1H),7.78–7.73(m,1H), 7.49–7.44(m,1H),7.30–7.25(m,2H),7.18(d,J=7.9Hz,1H),5.97(dd,J=2.8,1.5Hz,1H),5.43(d,J=5.0Hz,1H),3.94(tdd,J=12.1,8.1,4.2Hz,1H),1.01(s,3H),0.99(s,3H). 13C NMR(151MHz,CDCl 3)δ162.79,151.81,148.56,142.98,141.55,140.26,134.53,132.28,124.39,124.16,123.54,122.62,121.80,120.02,111.22,55.77,50.74,50.42,47.22,38.87,37.72,36.81,34.81,31.05,30.30,28.71,20.56,19.19,16.01.HRMS(ESI)(M+H) +m/z计算值C 31H 36N 5O 494.2914,实测值:494.2917.
实施例10:
N-((3S,10R,13S)-10,13-二甲基-17-(嘧啶-5-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基)哒嗪-4-酰胺(化合物10)
Figure PCTCN2023071074-appb-000025
(3S,10R,13S)-10,13-二甲基-17-(嘧啶-5-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊[a]菲蒽-3-醇(52)
将化合物Ⅱ-1(7g,17.6mmol)、5-嘧啶硼酸(2.68g,21.6mmol)、碳酸钾(7.45g,54.02mmol)和双三苯基膦二氯化钯(1.28g,1.82mmol)都装入烧瓶中,然后加入60mL二氧六环和20mL水于室温下搅拌,接着用氩气换气三次,缓慢将温度升高至100℃过夜反应,第二天TLC监测反应完全,反应完毕后,用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(30-50%乙酸乙酯/石油醚),得到所需产物。最终得到2.2g黄色固体化合物52,产率为35.78%。 1H NMR(400MHz,CDCl 3)δ9.05(s,1H),8.72(s,2H),6.10(s,1H),5.38(d,J=5.1Hz,1H),3.58–3.49(m,1H),1.06(s,3H),1.04(s,3H).
(3S,10R,13S)-10,13-二甲基-17-(嘧啶-5-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基甲磺酸酯(53)
将化合物52(2.2g,6.28mmol)和4-二甲氨基吡啶(80mg,0.65mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(2.6mL,19.34mmol)搅拌一段时间,最后缓慢加入甲磺酰氯(1mL,11.54mmol),滴加完毕后于室温下搅拌5h,TLC监测反应完全。接着加入冰水进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(20-40%乙酸乙酯/石油醚),得到所需产物。最终得到534mg白色固体化合物53,产率为19.9%。 1H NMR(400MHz,CDCl 3)δ9.09(s,1H),8.74(s,2H),6.13(dd,J=3.1,1.7Hz,1H),5.49(d,J=5.1Hz, 2H),4.60–4.51(m,1H),3.04(s,3H),1.11(s,3H),1.07(s,3H).
5-((3S,10R,13S)-3-叠氮基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)嘧啶(54)
将化合物53(534mg,1.24mmol)溶于超干二氯甲烷中于室温下搅拌,然后用塑料加液器依次加入叠氮基三甲基硅烷(0.5mL,3.77mmol)和三氟化硼乙醚(0.6mL,4.83mmol),滴加完毕后于室温下搅拌过夜,TLC监测反应完全。接着加入饱和碳酸氢钠溶液进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(10-20%乙酸乙酯/石油醚),得到所需产物。最终得到231mg白色固体化合物54,产率为49.4%。
(3S,10R,13S)-10,13-二甲基-17-(嘧啶-5-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-胺(55)
将化合物54(231mg,0.615mmol)溶于超干四氢呋喃中于冰浴下搅拌,然后用塑料加液器缓慢滴加1M四氢铝锂的四氢呋喃溶液(0.9mL,0.9mmol),滴加完毕后于室温下搅拌过夜,TLC监测反应完全。反应完毕后将体系置于冰浴下,用冰水进行淬灭,紧接着用乙酸乙酯进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(5-8%甲醇/二氯甲烷),得到所需产物。最终得到101mg白色固体化合物55,产率为47.02%。
N-((3S,10R,13S)-10,13-二甲基-17-(嘧啶-5-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基)哒嗪-4-酰胺(化合物10)
投入化合物55(43mg,0.123mmol)得到42mg黄色固体化合物10,产率为75%。 1H NMR(400MHz,DMSO)δ9.52(s,1H),9.41(d,J=5.3Hz,1H),9.04(s,1H),8.81(s,3H),7.97(dd,J=5.2,2.2Hz,1H),6.28(s,1H),5.37(d,J=4.1Hz,1H),3.71(dd,J=11.8,4.1Hz,1H),1.04(s,3H),1.01(s,3H). 13C NMR(126MHz,DMSO)δ162.21,156.70,153.81,152.12,148.82,147.92,140.88,131.64,131.25,130.07,124.07,120.85,56.89,49.87,49.61,46.67,38.17,37.47,36.37,34.30,31.52,30.91,29.88,27.87,20.35,18.97,16.08.HRMS(ESI)(M+H) +m/z计算值C 28H 34N 5O 456.2758,实测值:456.2762.
实施例11:
N-((3S,10R,13S)-10,13-二甲基-17-(1H-1,2,3-三唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基)哒嗪-4-酰胺(化合物11)
Figure PCTCN2023071074-appb-000026
(3S,10R,13S)-16-甲酰基-10,13-二甲基-17-(1H-1,2,3-三唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基乙酸酯(56)
将化合物Ⅱ-2(2g,5.3mmol)和碳酸钾(2.56g,18.6mmol)都装入烧瓶中,加入超干的N,N-二甲基甲酰胺作为溶剂,在室温下搅拌半小时后,将1,2,3-三氮唑(0.9mL,15.9mmol)加入到体系中,缓慢将温度升高至80℃,于该温度下搅拌过夜,TLC监测反应完全。反应完毕后,用乙酸乙酯进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(30-50%乙酸乙酯/石油醚),得到所需产物。最终得到1.26g白色固体化合物56,产率为58%。 1H NMR(400MHz,CDCl 3)δ9.92(s,1H),7.85(d,J=1.1Hz,1H),7.83(d,J=1.1Hz,1H),5.41(d,J=4.9Hz,1H),4.59(dt,J=10.8,6.1Hz,1H),2.03(s,3H),1.16(s,3H),1.07(s,3H).
(3S,10R,13S)-10,13-二甲基-17-(1H-1,2,3-三唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基乙酸酯(57)
将化合物56(2g,4.89mmol)溶于干燥的N,N-二甲基甲酰胺中,于室温下搅拌,然后加入1g的钯碳,然后用氩气换气三次,缓慢将体系温度升高至160℃,反应3天,TLC监测反应完全。反应完毕后,将反应体系冷却至室温,加入一定量乙酸乙酯,搅拌一段时间后,用硅藻土进行过滤,收集滤液,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(20-25%乙酸乙酯/石油醚),得到所需产物。最终得到720mg黄色固体化合物57,产率为38.6%。 1H NMR(400MHz,CDCl 3)δ7.72(d,J=1.0Hz,1H),7.71(d,J=1.0Hz,1H),5.96(dd,J=3.1,1.7Hz,1H),5.41(d,J=5.0Hz,1H),4.61(dt,J=11.4,4.4Hz,1H),2.03(s,3H),1.13(s,3H),1.08(s,3H).
(3S,10R,13S)-10,13-二甲基-17-(1H-1,2,3-三唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-醇(58)
将化合物57(720mg,1.88mmol)溶于无水甲醇中,于室温下搅拌,然后加入称量好的氢氧化钾(0.4g,7.3mmol),加入完毕后,在室温下搅拌4h,TLC监测反应完全。反应完毕后,旋转蒸发掉部分溶剂,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着直接旋转蒸发干燥得到目标化合物。得到554mg黄色固体化合物58,产率86.4%。 1H NMR(400MHz,CDCl 3)δ7.72(s,1H),7.71(s,1H),5.97(s, 1H),5.38(d,J=4.7Hz,1H),3.54(m,1H),1.13(s,3H),1.07(s,3H).
(3S,10R,13S)-10,13-二甲基-17-(1H-1,2,3-三唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基甲磺酸酯(59)
将化合物58(550mg,1.62mmol)和4-二甲氨基吡啶(20mg,0.16mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(0.7mL,5.04mmol)搅拌一段时间,最后缓慢加入甲磺酰氯(0.25mL,3.3mmol),滴加完毕后于室温下搅拌5h,TLC监测反应完全。接着加入冰水进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,直接旋转蒸发掉溶剂,得到所需产物。最终得到500mg白色固体59,产率为74%。 1H NMR(400MHz,CDCl 3)δ7.75(s,1H),7.73(s,1H),5.98(s,1H),5.47(d,J=5.1Hz,1H),4.60–4.49(m,1H),3.03(s,3H),1.15(s,3H),1.10(s,3H).
1-((3S,10R,13S)-3-叠氮基10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-1H-1,2,3-三唑(60)
将化合物59(100mg,0.24mmol)溶于超干二氯甲烷中于室温下搅拌,然后用塑料加液器依次加入叠氮基三甲基硅烷(47μL,0.26mmol)和三氟化硼乙醚(59μL,0.48mmol),滴加完毕后于室温下搅拌过夜,TLC监测反应完全。接着加入饱和碳酸氢钠溶液进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(10-20%乙酸乙酯/石油醚),得到所需产物。最终得到63mg白色固体60,产率为72.16%。 1H NMR(400MHz,CDCl 3)δ7.75(s,1H),7.74(s,1H),5.99(dd,J=3.1,1.8Hz,1H),5.45(d,J=5.1Hz,1H),3.24(ddd,J=10.4,8.8,4.1Hz,1H),1.15(s,3H),1.08(s,3H).
(3S,10R,13S)-10,13-二甲基-17-(1H-1,2,3-三唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-胺(61)
将化合物60(63mg,0.173mmol)溶于干燥的四氢呋喃中,于室温下搅拌,然后加入1M四氢铝锂的四氢呋喃溶液(0.3mL,0.3mmol),反应2小时候TLC监测反应完全。向反应体系中加入饱和氯化铵溶液进行淬灭,接着用乙酸乙酯进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,最后直接旋转蒸发浓缩干燥得到所需产物。最终得到30mg白色固体化合物61,产率为51.2%。 1H NMR(400MHz,DMSO)δ8.41(s,1H),7.81(d,J=0.9Hz,1H),6.12(s,1H),5.27(s,1H),1.05(s,3H),0.99(s,3H).
N-((3S,10R,13S)-10,13-二甲基-17-(1H-1,2,3-三唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基)哒嗪-4-酰胺(化合物11)
投入化合物61(50mg,0.148mmol),得到58mg白色固体化合物11,产率为:88.3%。 1H NMR(400MHz,DMSO)δ9.55–9.53(m,1H),9.43(dd,J=5.3,1.0Hz,1H),8.85(d,J=7.9Hz,1H),8.45(d,J=0.8Hz,1H),8.00(dd,J=5.3,2.3Hz,1H),7.83(d,J=0.9Hz,1H),6.15(s,1H),5.39(d,J=4.5Hz,1H),3.79–3.67(m,1H),1.08(s,3H),1.06(s,3H). 13C NMR(151MHz,DMSO)δ162.12,152.10,148.82,133.25,124.13,123.46,120.75,118.75,67.03,55.84,49.84,45.88,38.16,37.41,36.39,34.25,30.48,29.64,29.49,27.84,25.14,20.08,18.86,15.51.HRMS(ESI)(M+H) +m/z计算值C 26H 33N 6O 445.271,实测值:445.2722.
实施例12:
N-((3S,10R,13S)-10,13-二甲基-17-(4-甲基-1H-咪唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基)烟酰胺(化合物12)
Figure PCTCN2023071074-appb-000027
(3S,10R,13S)-16-甲酰基-10,13-二甲基-17-(4-甲基-1H-咪唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基乙酸酯(62)
将化合物Ⅱ-2(7.90g,20.96mmol)和碳酸钾(7.24g,52.40mmol)都装入烧瓶中,加入超干的N,N-二甲基甲酰胺作为溶剂,在室温下搅拌半小时后,将4-甲基咪唑(2.06g,25.09mmol)加入到体系中,缓慢将温度升高至80℃,于该温度下搅拌过夜,TLC监测反应完全。反应完毕后,用乙酸乙酯进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(30-50%乙酸乙酯/石油醚),得到所需产物。最终得到7.0g黄色固体化合物62,产率为79%。 1H NMR(400MHz,CDCl3)δ9.77(s,1H),7.54(d,J=1.1Hz,1H),6.84(s,1H),5.43(d,J=5.2Hz,1H),4.62(tt,J=10.5,5.4Hz,1H),2.29(d,J=0.6Hz,3H),2.06(s,3H),1.08(s,6H).
(3S,10R,13S)-10,13-二甲基-17-(4-甲基-1H-咪唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基乙酸酯(63)
将化合物62(6.30g,14.91mmol)溶于干燥的N,N-二甲基甲酰胺中,于室温下搅拌,然后加入5g的钯碳,然后用氩气换气三次,缓慢将体系温度升高至160℃,反应18小时,TLC监测反应完全。反应完毕后,将反应体系冷却至室温,加入一定量乙酸乙酯,搅拌一段时间后,用硅藻土进行过滤,收集滤液,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(20-30%乙酸乙酯/石油醚),得到所需产物。最终得到3.0g黄色固体化合物63,产率为50.6%。 1H NMR(400MHz,CDCl3)δ7.50(s,1H),6.75(s,1H),5.60(s,1H),5.40(d,J=4.8Hz,1H),4.60(tt,J=10.8,5.3Hz,1H),2.22(s,3H),2.02(s,3H),1.06(s,3H),0.98(s,3H).
(3S,10R,13S)-10,13-二甲基-17-(4-甲基-1H-咪唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-醇(64)
将化合物63(1.80g,4.56mmol)溶于无水甲醇中,于室温下搅拌,然后加入称量好的氢氧化钾(1.01g,18.24mmol),加入完毕后,在室温下搅拌4h,TLC监测反应完全。反应完毕后,旋转蒸发掉部分溶剂,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着直接旋转蒸发干燥得到目标化合物。得到1.6g黄色 固体化合物64,产率99.5%。 1H NMR(400MHz,CDCl 3)δ7.53(d,J=0.9Hz,1H),6.78(s,1H),5.63(dd,J=3.0,1.7Hz,1H),5.40(d,J=5.2Hz,1H),3.61–3.50(m,1H),2.25(s,3H),1.07(s,3H),1.01(s,3H).
(3S,10R,13S)-10,13-二甲基-17-(4-甲基-1H-咪唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基甲磺酸酯(65)
将化合物64(1.06g,3.01mmol)和4-二甲氨基吡啶(37mg,0.30mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(1.25mL,9.03mmol)搅拌一段时间,最后缓慢加入甲磺酰氯(0.47mL,6.01mmol),滴加完毕后于室温下搅拌10h,TLC监测反应完全。接着加入冰水进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(30-50%乙酸乙酯/石油醚),得到所需产物。最终得到1.05g黄色固体化合物65,产率为81.4%。 1H NMR(400MHz,CDCl 3)δ7.69(s,1H),6.80(s,1H),5.69(d,J=1.3Hz,1H),5.47(d,J=4.8Hz,1H),4.60–4.49(m,1H),3.04(s,3H),2.28(s,3H),1.09(s,3H),1.01(s,3H).
1-((3S,10R,13S)-3-叠氮基10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-4-甲基-1H-咪唑(66)
将化合物65(1.95g,4.53mmol)溶于超干二氯甲烷中于室温下搅拌,然后用塑料加液器依次加入叠氮基三甲基硅烷(3.6mL,27.18mmol)和三氟化硼乙醚(5.6mL,45.30mmol),滴加完毕后于室温下搅拌反应5小时,TLC监测反应完全。接着加入饱和碳酸氢钠溶液进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(20-40%乙酸乙酯/石油醚),得到所需产物。最终得到1.55g白色固体66,产率为90.64%。 1H NMR(400MHz,DMSO)δ8.06(s,1H),6.84(s,1H),5.92–5.88(m,1H),5.42(d,J=4.9Hz,1H),3.27–3.17(m,1H),2.39(s,3H),1.05(s,3H),1.01(s,3H).
(3S,10R,13S)-10,13-二甲基-17-(4-甲基-1H-咪唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-胺(67)
将化合物66(1.55g,4.11mmol)溶于16mL四氢呋喃、16mL甲醇和4mL水中于室温下搅拌,然后加入称量好的三苯基膦(3.23g,12.33mmol),接着将温度缓慢升温至60℃,于该温度下搅拌过夜,TLC监测反应完全。然后旋转蒸发部分溶剂,加入20mL二氯甲烷溶解,并缓慢加入2M盐酸将溶液PH调为2左右,进行分液并收集水相,紧接着加入2M氢氧化钠溶液调PH为弱碱性,此时有大量白色固体析出,分别用少量二氯甲烷萃取水相三次,收集合并有机相,经无水硫酸钠干燥后旋转蒸发除去溶剂得350mg白色固体67,收率24.3%。 1H NMR(400MHz,CDCl 3)δ7.53(s,1H),6.78(s,1H),5.63(dd,J=3.0,1.7Hz,1H),5.37(d,J=5.2Hz,1H),2.25(s,3H),1.05(s,3H),1.01(s,3H).
N-((3S,10R,13S)-10,13-二甲基-17-(4-甲基-1H-咪唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基)烟酰胺(化合物12)
投入化合物67(55mg,0.156mmol),得到55mg咖啡色固体化合物12,产率为:77%。 1H NMR(400MHz,DMSO)δ8.98(d,J=1.7Hz,1H),8.67(dd,J=4.8,1.5Hz,1H),8.49(d,J=7.9Hz,1H),8.18–8.14(m,1H),7.73(s,1H),7.48(dd,J=7.9,4.9Hz,1H),7.05(s,1H),5.73(s, 1H),5.36(d,J=4.0Hz,1H),3.77–3.65(m,1H),2.09(s,3H),1.03(s,3H),0.96(s,3H). 13C NMR(126MHz,DMSO)δ163.90,151.73,148.40,141.15,137.05,134.95,134.73,123.31,120.51,116.43,114.56,55.84,49.81,49.50,45.37,38.36,37.53,36.40,34.09,30.38,29.68,29.17,28.01,20.13,18.95,15.64,13.35.HRMS(ESI)(M+H) +m/z计算值C 29H 37N 4O 445.271,实测值:445.2722.
实施例13:
N-((3S,10R,13S)-10,13-二甲基-17-(4-甲基-1H-咪唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基)哒嗪-4-酰胺(化合物13)
Figure PCTCN2023071074-appb-000028
投入化合物67(55mg,0.156mmol),得到46mg微黄色固体化合物13,产率为:64.3%。 1H NMR(400MHz,DMSO)δ9.52(s,1H),9.41(d,J=4.4Hz,1H),8.82(d,J=7.8Hz,1H),7.97(dd,J=5.2,2.2Hz,1H),7.68(s,1H),7.02(s,1H),5.71(s,1H),5.36(d,J=3.3Hz,1H),3.71(d,J=7.2Hz,1H),2.08(s,3H),1.03(s,3H),0.95(s,3H). 13C NMR(126MHz,DMSO)δ162.20,152.08,148.82,140.88,134.77,124.12,120.74,116.14,114.38,55.82,54.92,49.86,49.79,45.39,38.15,37.42,36.36,34.08,30.46,29.66,29.10,27.85,20.18,18.92,15.64,13.47.HRMS(ESI)(M+H) +m/z计算值C 28H 36N 5O 458.2914,实测值:458.2912.
实施例14:
N-((3S,10R,13S)-10,13-二甲基-17-(4-甲基-1H-咪唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基)异烟酰胺(化合物14)
Figure PCTCN2023071074-appb-000029
投入化合物67(55mg,0.156mmol),得到52mg白色固体化合物14,产率为:72.8%。 1H NMR(500MHz,DMSO)δ8.72(dd,J=4.4,1.6Hz,2H),8.59(d,J=8.0Hz,1H),7.81(d,J=0.7Hz,1H),7.75(dd,J=4.5,1.6Hz,2H),7.10(s,1H),5.79–5.76(m,1H),5.39(d,J=4.9Hz,1H),3.78–3.68(m,1H),2.12(d,J=0.5Hz,3H),1.06(s,3H),0.99(s,3H). 13C NMR(126MHz,DMSO)δ164.19,150.62,148.26,142.08,137.21,135.12,121.64,121.01,115.15,56.30,50.35,50.10,45.87,38.67,37.96,36.85,34.47,30.92,30.14,29.64,28.30,20.63,19.40,16.08,13.65.HRMS(ESI)(M+H) +m/z计算值C 29H 37N 4O 457.2962,实测值:457.2959.
实施例15:
N-((3S,10R,13S)-10,13-二甲基-17-(4-甲基-1H-咪唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基)-3-氟异烟酰胺(化合物15)
Figure PCTCN2023071074-appb-000030
投入化合物67(100mg,0.285mmol),得到89mg咖啡色固体化合物15,产率为:65.9%。 1H NMR(600MHz,DMSO)δ8.68(s,1H),8.59(d,J=7.9Hz,1H),8.53(d,J=4.7Hz,1H),7.71(s,1H),7.57–7.54(m,1H),7.06(s,1H),5.74(s,1H),5.40(d,J=4.6Hz,1H),3.68(dt,J=16.9,8.6Hz,1H),2.11(s,3H),1.03(s,3H),0.97(s,3H). 13C NMR(151MHz,DMSO)δ161.60,148.38,146.64,141.34,139.13,137.71,135.23,123.72,121.12,116.60,114.86,56.29,50.20,50.15,45.85,38.65,37.86,36.79,34.52,30.93,30.11,29.62,28.37,20.65,19.39,16.11,13.93.HRMS(ESI)(M+H) +m/z计算值C 29H 36FN 4O 457.2868,实测值:457.2874.
实施例16:
N-((3S,10R,13S)-17-(1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基)哒嗪-4-羧酰胺(化合物16)
Figure PCTCN2023071074-appb-000031
(3S,10R,13S)-16-甲酰基-17-(1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基乙酸酯(68)
将化合物Ⅱ-2(6g,15.92mmol)和碳酸钾(4.39g,31.83mmol)都装入烧瓶中,加入超干的N,N-二甲基甲酰胺作为溶剂,在室温下搅拌半小时后,将咪唑(1.08g,15.86mmol)加入到体系中,缓慢将温度升高至80℃,于该温度下搅拌过夜,TLC监测反应完全。反应完毕后,用乙酸乙酯进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(30-50%乙酸乙酯/石油醚),得到所需产物。最终得到2.27g黄色固体化合物68,产率为34.97%。 1H NMR(400MHz,CDCL 3)δ9.72(s,1H),7.61(s,1H),7.20(s,1H),7.09(s,1H),5.40(d,J=4.6Hz,1H),4.58(dt,J=10.8,5.7Hz,1H),2.01(s,3H),1.05(s,6H).
(3S,10R,13S)-17-(1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基乙酸酯(69)
将化合物68(2.27g,5.56mmol)溶于干燥的N,N-二甲基甲酰胺中,于室温下搅拌,然后加入2.27g的钯碳,然后用氩气换气三次,缓慢将体系温度升高至160℃,反应20小时,TLC监测反应完全。反应完毕后,将反应体系冷却至室温,加入一定量乙酸乙酯,搅拌一段时间后,用硅藻土进行过滤,收集滤液,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(30-50%乙酸乙酯/石油醚),得到所需产物。最终得到875mg黄色固体化合物69,产率为41.47%。直接投入下一步反应
(3S,10R,13S)-17-(1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-醇(70)
将化合物69(860mg,2.26mmol)溶于无水甲醇中,于室温下搅拌,然后加入称量好的氢氧化钾(0.37g,6.78mmol),加入完毕后,在室温下搅拌4h,TLC监测反应完全。反应完毕后,旋转蒸发掉部分溶剂,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着直接旋转蒸发干燥得到目标化合物。得到730mg黄色固体化合物70,产率95.4%。而后投入下一步。
(3S,10R,13S)-17-(1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基甲磺酸酯(71)
将化合物70(105mg,0.31mmol)和4-二甲氨基吡啶(4mg,0.03mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(129μL,0.93mmol)搅拌一段时间,最后缓慢加入甲磺酰氯(48μL,0.62mmol),滴加完毕后于室温下搅拌5h,TLC监测反应完全。接着加入冰水进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(40-60%乙酸乙酯/石油醚),得到所需产物。最终得到111mg白色固体化合物71,产率为86.3%。 1H NMR(400MHz,CDCl 3)δ7.62(s,1H),7.08(s,1H),7.05(s,1H),5.69(dd,J=3.0,1.6Hz,1H),5.46(d,J=5.1Hz,1H),4.58–4.48(m,1H),3.02(s,3H),1.07(s,3H),1.00(s,3H).
1-((3S,10R,13S)-3-叠氮基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-1H-咪唑(72)
将化合物71(44mg,0.106mmol)溶于超干二氯甲烷中于室温下搅拌,然后用塑料加液器依次加入叠氮基三甲基硅烷(0.15mL,1.13mmol)和三氟化硼乙醚(0.15mL,1.21mmol),滴加完毕后于室温下搅拌反应5小时,TLC监测反应完全。接着加入饱和碳酸氢钠溶液进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(20-40%乙酸乙酯/石油醚),得到所需产物。最终得到10mg白色固体72,产率为26.04%。 1H NMR(400MHz,CDCl 3)δ8.16(s,1H),7.39(s,1H),7.16(s,1H),6.01(s,1H),5.45(d,J=4.9Hz,1H),3.24(dt,J=16.1,5.8Hz,1H),1.08(s,3H),1.05(s,3H).
(3S,10R,13S)-17-(1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基 -1H-环戊[a]菲蒽-3-胺(73)
将化合物72(157mg,0.432mmol)溶于6mL四氢呋喃、6mL甲醇和1.5mL水中于室温下搅拌,然后加入称量好的三苯基膦(453mg,1.73mmol),接着将温度缓慢升温至60℃,于该温度下搅拌过夜,TLC监测反应完全。然后旋转蒸发部分溶剂,加入20mL二氯甲烷溶解,并缓慢加入2M盐酸将溶液pH调为2左右,进行分液并收集水相,紧接着加入2M氢氧化钠溶液调pH为弱碱性,此时有大量白色固体析出,分别用少量二氯甲烷萃取水相三次,收集合并有机相,经无水硫酸钠干燥后旋转蒸发除去溶剂得80mg白色固体73,收率54.9%。 1H NMR(400MHz,DMSO)δ8.10(s,2H),7.84(s,1H),7.36(s,1H),7.00(s,1H),5.83(s,1H),5.41(d,J=4.8Hz,1H),1.01(s,3H),0.99(s,3H).
N-((3S,10R,13S)-17-(1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基)哒嗪-4-羧酰胺(化合物16)
投入化合物73(35mg,0.104mmol),得到28mg白色固体化合物16,产率为:61%。 1H NMR(500MHz,DMSO)δ9.56(d,J=0.7Hz,1H),9.42(d,J=5.2Hz,1H),9.25(s,1H),8.97(d,J=7.8Hz,1H),8.05(dd,J=5.3,2.3Hz,1H),7.90(s,1H),7.80(s,1H),6.26(d,J=1.3Hz,1H),5.39(d,J=4.6Hz,1H),3.78–3.69(m,1H),1.06(s,3H),1.02(s,3H). 13C NMR(126MHz,DMSO)δ162.64,152.53,149.31,146.43,141.41,132.14,124.63,121.57,121.42,121.00,56.29,50.40,50.17,46.07,38.55,37.87,36.83,33.43,30.80,30.04,29.95,28.19,20.35,19.37,15.66.HRMS(ESI)(M+H) +m/z计算值C 27H 34N 5O 444.2758,实测值:444.2757.
实施例17:
N-((3S,10R,13S)-17-(1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基)异烟酰胺(化合物17)
Figure PCTCN2023071074-appb-000032
投入化合物73(35mg,0.104mmol),得到17mg白色固体化合物17,产率为:37%。 1H NMR(500MHz,DMSO)δ9.33(s,1H),8.88(d,J=6.0Hz,2H),8.79(d,J=7.9Hz,1H),8.01(d,J=6.2Hz,2H),7.95(s,1H),7.87(s,1H),6.29(s,1H),5.40(d,J=4.4Hz,1H),3.79–3.69(m,1H),1.07(s,3H),1.03(s,3H). 13C NMR(126MHz,DMSO)δ163.24,147.80,146.19,141.47,134.57,125.71,123.31,121.65,121.00,56.29,50.33,50.17,46.03,38.55,37.88,36.84,33.44,30.79,30.04,29.99,28.25,20.34,19.37,15.63.HRMS(ESI)(M+H) +m/z计算值C 28H 35N 4O443.2805,实测值:443.2812.
实施例18:
N-((3S,10R,13S)-17-(4-乙基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基)异烟酰胺(化合物18)
Figure PCTCN2023071074-appb-000033
(3S,10R,13S)-16-甲酰基-17-(4-乙基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基乙酸酯(74)
将化合物Ⅱ-2(4g,10.61mmol)和碳酸钾(2.15g,15.59mmol)都装入烧瓶中,加入超干的N,N-二甲基甲酰胺作为溶剂,在室温下搅拌半小时后,将4-乙基咪唑(1g,10.4mmol)加入到体系中,缓慢将温度升高至80℃,于该温度下搅拌过夜,TLC监测反应完全。反应完毕后,用乙酸乙酯进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(30-50%乙酸乙酯/石油醚),得到所需产物。最终得到3.386g咖啡色固体化合物74,产率为73%。 1H NMR(400MHz,DMSO)δ9.77(s,1H),7.54(s,1H),6.81(s,1H),5.42(s,1H),4.66–4.55(m,1H),2.63(q,J=7.5Hz,2H),2.04(s,3H),1.26(t,J=7.5Hz,3H),1.01(s,3H),0.88(s,3H).
(3S,10R,13S)-17-(4-乙基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基乙酸酯(75)
将化合物74(3.386g,5.56mmol)溶于干燥的N,N-二甲基甲酰胺中,于室温下搅拌,然后加入1.5g的钯碳,然后用氩气换气三次,缓慢将体系温度升高至160℃,反应36小时,TLC监测反应完全。反应完毕后,将反应体系冷却至室温,加入一定量乙酸乙酯,搅拌一段时间后,用硅藻土进行过滤,收集滤液,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(1-4%甲醇/二氯甲烷),得到所需产物。最终得到1.264g黄色固体化合物75,产率为39.9%。 1H NMR(400MHz,CDCl3)δ7.54(d,J=1.2Hz,1H),6.76(d,J=0.9Hz,1H),5.41(d,J=3.8Hz,1H),4.67–4.56(m,1H),2.63(q,J=7.5Hz,2H),2.05(s,3H),1.26(t,J=7.5Hz,3H),1.01(s,3H),0.88(s,3H).
(3S,10R,13S)-17-(4-乙基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-醇(76)
将化合物75(1.26g,3.08mmol)溶于无水甲醇中,于室温下搅拌,然后加入称量好的氢氧化钾(0.52g,9.27mmol),加入完毕后,在室温下搅拌4h,TLC监测反应完全。反应完毕后,旋转蒸发掉部分溶剂,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(1-3%甲醇/二氯甲烷),得到所需产物。最终得到537mg黄色固体化合物76,产率为47.5%。 1H NMR(400MHz,CDCl3)δ7.56(d,J=0.8Hz,1H),6.78(s,1H),5.64(dd,J=3.0,1.7Hz,1H), 5.41(d,J=5.2Hz,1H),3.56(dt,J=15.5,5.4Hz,1H),2.63(q,J=7.5Hz,2H),1.26(t,J=7.5Hz,3H),1.08(s,3H),1.02(s,3H).
(3S,10R,13S)-17-(4-乙基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基甲磺酸酯(77)
将化合物76(537mg,1.47mmol)和4-二甲氨基吡啶(18mg,0.15mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(0.6mL,4.41mmol)搅拌一段时间,最后缓慢加入甲磺酰氯(0.24mL,2.94mmol),滴加完毕后于室温下搅拌5h,TLC监测反应完全。接着加入冰水进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(40-60%乙酸乙酯/石油醚),得到所需产物。最终得到489mg黄色固体化合物77,产率为75.1%。 1H NMR(400MHz,CDCl3)δ7.59(s,1H),6.77(s,1H),5.67–5.64(m,1H),5.48(d,J=5.1Hz,1H),4.59–4.50(m,1H),3.04(s,3H),2.63(q,J=7.5Hz,2H),1.26(t,J=7.5Hz,3H),1.09(s,3H),1.02(s,3H).
1-((3S,10R,13S)-3-叠氮基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-4-乙基-1H-咪唑(78)
将化合物77(900mg,2.02mmol)溶于超干二氯甲烷中于室温下搅拌,然后用塑料加液器依次加入叠氮基三甲基硅烷(0.8mL,6.06mmol)和三氟化硼乙醚(1mL,8.08mmol),滴加完毕后于室温下搅拌反应5小时,TLC监测反应完全。接着加入饱和碳酸氢钠溶液进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(20-40%乙酸乙酯/石油醚),得到所需产物。最终得到156mg白色固体78,产率为19.7%。 1H NMR(400MHz,CDCl3)δ8.09(d,J=1.3Hz,1H),6.84(s,1H),5.94(dd,J=3.1,1.7Hz,1H),5.44(d,J=5.0Hz,1H),3.25(ddd,J=15.9,11.6,4.1Hz,1H),2.87(q,J=7.5Hz,2H),1.29(t,J=7.5Hz,3H),1.08(s,3H),1.04(s,3H).
(3S,10R,13S)-17-(4-乙基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-胺(79)
将化合物78(150mg,0.383mmol)溶于8mL四氢呋喃和3mL水中于室温下搅拌,然后加入称量好的三苯基膦(390mg,1.49mmol),接着将温度缓慢升温至60℃,于该温度下搅拌过夜,TLC监测反应完全。然后旋转蒸发部分溶剂,加入20mL二氯甲烷溶解,并缓慢加入2M盐酸将溶液PH调为2左右,进行分液并收集水相,紧接着加入2M氢氧化钠溶液调PH为弱碱性,此时有大量白色固体析出,分别用少量二氯甲烷萃取水相三次,收集合并有机相,经无水硫酸钠干燥后旋转蒸发除去溶剂得75mg白色固体79,收率53.57%。 1H NMR(400MHz,CDCl3)δ7.51(s,1H),6.73(s,1H),5.58(s,1H),5.31(d,J=5.0Hz,1H),2.57(q,J=7.4Hz,2H),1.21(t,J=7.5Hz,3H),1.01(s,3H),0.97(s,3H).
N-((3S,10R,13S)-17-(4-乙基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基)异烟酰胺(化合物18)
投入化合物79(75mg,0.205mmol),得到57mg白色固体化合物18,产率为:59.07%。 1H NMR(600MHz,DMSO)δ8.68(dd,J=4.5,1.4Hz,2H),8.54(d,J=8.0Hz,1H),7.71(dd,J=4.5,1.5Hz,2H),7.67(s,1H),7.00(s,1H),5.71(s,1H),5.35(d,J=4.8Hz,1H),3.73–3.65(m, 1H),2.44(dd,J=15.0,7.5Hz,3H),1.12(t,J=7.5Hz,2H),1.02(s,3H),0.95(s,3H). 13C NMR(151MHz,DMSO)δ164.18,150.62,148.49,144.30,142.07,141.59,135.19,121.72,121.04,116.48,113.77,56.31,50.26,50.10,45.86,38.68,37.95,36.85,34.56,30.90,30.14,29.62,28.36,21.55,20.69,19.40,16.13,13.99.HRMS(ESI)(M+H) +m/z计算值C 30H 39N 4O 471.3118,实测值:471.3125.
实施例19:
N-((3S,10R,13S)-17-(4-乙基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基)哒嗪-4-羧酰胺(化合物19)
Figure PCTCN2023071074-appb-000034
投入化合物79(32mg,0.08mmol),得到10mg白色固体化合物19,产率为:24.3%。 1H NMR(500MHz,DMSO)δ9.56(s,1H),9.43(d,J=5.1Hz,1H),8.95(s,1H),8.79(s,1H),8.04(s,1H),7.50(s,1H),6.11(s,1H),5.40(s,1H),3.78–3.70(m,1H),2.62(q,J=7.5Hz,2H),1.22(t,J=7.6Hz,3H),1.07(s,3H),1.02(s,3H). 13C NMR(126MHz,DMSO)δ162.57,152.59,149.25,147.01,141.43,138.76,134.10,132.08,124.62,122.40,121.06,116.21,56.33,50.32,50.18,45.96,38.57,37.92,36.84,33.82,30.83,30.01,29.82,28.26,20.38,19.34,19.02,15.80,13.24.HRMS(ESI)(M+H) +m/z计算值C 29H 38N 5O 472.3071,实测值:472.3066.
实施例20:
N-((3S,10R,13S)-17-(4-异丙基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基)异烟酰胺(化合物20)
Figure PCTCN2023071074-appb-000035
(3S,10R,13S)-16-甲酰基-17-(4-异丙基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基乙酸酯(80)
将化合物Ⅱ-2(7g,18.57mmol)和碳酸钾(3.8g,27.55mmol)都装入烧瓶中,加入超干的N,N-二甲基甲酰胺作为溶剂,在室温下搅拌半小时后,将5-异丙基咪唑(1.98g,17.97mmol)加 入到体系中,缓慢将温度升高至80℃,于该温度下搅拌过夜,TLC监测反应完全。反应完毕后,用乙酸乙酯进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(30-50%乙酸乙酯/石油醚),得到所需产物。最终得到2.28g棕色固体化合物80,产率为27.3%。 1H NMR(400MHz,CDCL 3)δ9.76(s,1H),7.54(s,1H),6.78(s,1H).5.42(d,J=5.0Hz,1H),4.60–4.54(m,1H),2.96–2.80(m,2H),2.04(s,3H),1.26(t,J=6.1Hz,6H),1.08(s,3H),0.96(s,3H).
(3S,10R,13S)-17-(4-异丙基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基乙酸酯(81)
将化合物80(2.28g,5.06mmol)溶于干燥的N,N-二甲基甲酰胺中,于室温下搅拌,然后加入1g的钯碳,然后用氩气换气三次,缓慢将体系温度升高至160℃,反应24小时,TLC监测反应完全。反应完毕后,将反应体系冷却至室温,加入一定量乙酸乙酯,搅拌一段时间后,用硅藻土进行过滤,收集滤液,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(20-30%乙酸乙酯/石油醚),得到所需产物。最终得到1.13g黄色固体化合物81,产率为52.8%。 1H NMR(400MHz,CDCl 3)δ7.75(d,J=0.8Hz,1H),6.96(s,1H),5.43(d,J=5.0Hz,1H),4.65–4.54(m,1H),2.96–2.80(m,2H),2.04(s,3H),1.26(t,J=6.1Hz,6H),1.08(s,3H),0.96(s,3H).
(3S,10R,13S)-17-(4-异丙基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-醇(82)
将化合物81(1g,2.37mmol)溶于无水甲醇中,于室温下搅拌,然后加入称量好的氢氧化钾(0.45g,8.02mmol),加入完毕后,在室温下搅拌4h,TLC监测反应完全。反应完毕后,旋转蒸发掉部分溶剂,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(1-2%甲醇/二氯甲烷),得到所需产物。最终得到426mg白色固体化合物82,产率为47.3%。 1H NMR(400MHz,CDCl 3)δ7.57(d,J=1.2Hz,1H),6.75(s,1H),5.64(dd,J=3.1,1.7Hz,1H),5.42–5.39(m,1H),3.60–3.51(m,1H),2.91(dt,J=13.7,6.9Hz,1H),1.28(d,J=6.9Hz,6H),1.08(s,3H),1.03(s,3H).
(3S,10R,13S)-17-(4-异丙基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基甲磺酸酯(83)
将化合物82(426mg,1.12mmol)和4-二甲氨基吡啶(14mg,0.11mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(0.47mL,3.45mmol)搅拌一段时间,最后缓慢加入甲磺酰氯(0.18mL,2.21mmol),滴加完毕后于室温下搅拌5h,TLC监测反应完全。接着加入冰水进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(40-60%乙酸乙酯/石油醚),得到所需产物。最终得到490mg白色固体化合物83,产率为95.5%。 1H NMR(400MHz,DMSO)δ7.56(s,1H),6.74(s,1H),5.63(s,1H),5.46(s,1H),4.59–4.49(m,1H),3.02(s,3H),2.90(dt,J=13.7,6.9Hz,1H),1.27(d,J=6.9Hz,6H),1.08(s,3H),1.01(s,3H).
1-((3S,10R,13S)-3-叠氮基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-4-异丙基-1H-咪唑(84)
将化合物83(490mg,1.07mmol)溶于超干二氯甲烷中于室温下搅拌,然后用塑料加液器依次加入叠氮基三甲基硅烷(0.45mL,3.4mmol)和三氟化硼乙醚(0.53mL,4.28mmol),滴加完毕后于室温下搅拌反应过夜,TLC监测反应完全。接着加入饱和碳酸氢钠溶液进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(1-3%甲醇/二氯甲烷),得到所需产物。最终得到151mg白色固体84,产率为34.87%。 1H NMR(400MHz,CDCl 3)δ7.65(s,1H),6.74(s,1H),5.67–5.65(m,1H),5.41(d,J=4.9Hz,1H),3.21(ddd,J=10.2,8.7,4.7Hz,1H),2.88(dq,J=13.8,6.9Hz,1H),1.25(d,J=6.9Hz,6H),1.04(s,3H),1.00(s,3H).
(3S,10R,13S)-17-(4-异丙基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-胺(85)
将化合物84(151mg,0.372mmol)溶于6mL四氢呋喃和4mL水中于室温下搅拌,然后加入称量好的三苯基膦(390mg,1.49mmol),接着将温度缓慢升温至60℃,于该温度下搅拌过夜,TLC监测反应完全。然后旋转蒸发部分溶剂,加入20mL二氯甲烷溶解,并缓慢加入2M盐酸将溶液PH调为2左右,进行分液并收集水相,紧接着加入2M氢氧化钠溶液调PH为弱碱性,此时有大量白色固体析出,分别用少量二氯甲烷萃取水相三次,收集合并有机相,经无水硫酸钠干燥后旋转蒸发除去溶剂得100mg白色固体85,收率70.77%。 1H NMR(400MHz,CDCl 3)δ7.54(s,1H),6.72(s,1H),5.60(s,1H),5.34(d,J=5.0Hz,1H),2.86(dq,J=13.6,6.8Hz,1H),1.24(d,J=6.9Hz,6H),1.03(s,3H),0.99(s,3H).
N-((3S,10R,13S)-17-(4-异丙基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基)异烟酰胺(化合物20)
投入化合物85(100mg,0.264mmol),得到63mg白色固体化合物20,产率为:49.2%。 1H NMR(500MHz,DMSO)δ9.28(d,J=1.5Hz,1H),8.89(d,J=8.0Hz,1H),8.84(d,J=5.7Hz,2H),8.00(d,J=6.2Hz,2H),7.68(s,1H),6.30–6.27(m,1H),5.39(d,J=5.0Hz,1H),3.75(qd,J=12.4,5.0Hz,1H),3.03(dq,J=14.0,7.0Hz,1H),1.29(d,J=6.9Hz,6H),1.07(s,3H),1.04(s,3H).13C NMR(126MHz,DMSO)δ163.32,158.66,148.22,146.41,144.36,141.55,141.00,133.74,124.80,122.97,120.92,116.31,56.36,50.34,50.16,45.99,38.56,37.91,36.85,33.45,30.80,30.04,29.89,28.24,25.20,21.77,20.41,19.37,15.63.HRMS(ESI)(M+H)+m/z计算值C 31H 41N 4O 485.3275,实测值:485.3279.
实施例21:
N-((3S,10R,13S)-17-(4-硝基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基)哒嗪-4-羧酰胺(化合物21)
Figure PCTCN2023071074-appb-000036
(3S,10R,13S)-16-甲酰基-17-(4-硝基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基乙酸酯(86)
将化合物Ⅱ-2(10g,26.53mmol)和碳酸钾(5.49g,39.8mmol)都装入烧瓶中,加入超干的N,N-二甲基甲酰胺作为溶剂,在室温下搅拌半小时后,将4-硝基咪唑(3g,26.53mmol)加入到体系中,缓慢将温度升高至80℃,于该温度下搅拌过夜,TLC监测反应完全。反应完毕后,用乙酸乙酯进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(30-50%乙酸乙酯/石油醚),得到所需产物。最终得到7g灰绿色固体化合物86,产率为58.3%。 1H NMR(400MHz,CDCl 3)δ9.77(s,1H),7.93(d,J=1.5Hz,1H),7.59(d,J=1.5Hz,1H),5.44(d,J=5.1Hz,1H),4.63(ddd,J=16.0,11.1,5.1Hz,1H),2.77(dd,J=15.7,6.0Hz,1H),2.06(s,3H),1.13(s,3H),1.10(s,3H).
(3S,10R,13S)-17-(4-硝基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基乙酸酯(87)
将化合物86(7g,15.44mmol)溶于干燥的N,N-二甲基甲酰胺中,于室温下搅拌,然后加入3.5g的钯碳,然后用氩气换气三次,缓慢将体系温度升高至160℃,反应39小时,TLC监测反应完全。反应完毕后,将反应体系冷却至室温,加入一定量乙酸乙酯,搅拌一段时间后,用硅藻土进行过滤,收集滤液,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(20-30%乙酸乙酯/石油醚),得到所需产物。最终得到1.07g黄色固体化合物87,产率为16.3%。 1H NMR(400MHz,CDCl 3)δ7.87(d,J=1.4Hz,1H),7.56(d,J=1.3Hz,1H),5.96–5.92(m,1H),5.43(d,J=5.1Hz,1H),4.68–4.57(m,1H),2.06(s,3H),1.09(s,3H),1.05(s,3H).
(3S,10R,13S)-17-(4-硝基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-醇(88)
将化合物87(1.07g,2.52mmol)溶于无水甲醇中,于室温下搅拌,然后加入称量好的氢氧化钾(0.45g,8.02mmol),加入完毕后,在室温下搅拌4h,TLC监测反应完全。反应完毕后,旋转蒸发掉部分溶剂,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化 (1-2%甲醇/二氯甲烷),得到所需产物。最终得到910mg白色固体化合物88,产率为94.3%。 1H NMR(400MHz,CDCl 3)δ7.87(d,J=1.5Hz,1H),7.56(d,J=1.4Hz,1H),5.95(dd,J=3.0,1.6Hz,1H),5.40(d,J=5.1Hz,1H),3.61–3.51(m,1H),1.08(s,3H),1.05(s,3H).
(3S,10R,13S)-17-(4-硝基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基甲磺酸酯(89)
将化合物88(910mg,2.375mmol)和4-二甲氨基吡啶(30mg,0.245mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(1mL,7.34mmol)搅拌一段时间,最后缓慢加入甲磺酰氯(0.4mL,4.91mmol),滴加完毕后于室温下搅拌5h,TLC监测反应完全。接着加入冰水进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,直接旋转蒸发浓缩溶液得到所需产物。最终得到1.02g黄绿色固体化合物89,产率为93.1%。 1H NMR(400MHz,CDCl 3)δ7.87(d,J=1.5Hz,1H),7.56(d,J=1.5Hz,1H),5.95(dd,J=3.1,1.7Hz,1H),5.48(d,J=4.8Hz,1H),4.60–4.51(m,1H),3.04(s,3H),1.10(s,3H),1.05(s,3H).
1-((3S,10R,13S)-3-叠氮基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-4-硝基-1H-咪唑(90)
将化合物89(1.02g,2.21mmol)溶于超干二氯甲烷中于室温下搅拌,然后用塑料加液器依次加入叠氮基三甲基硅烷(0.88mL,6.65mmol)和三氟化硼乙醚(1.1mL,8.88mmol),滴加完毕后于室温下搅拌反应过夜,TLC监测反应完全。接着加入饱和碳酸氢钠溶液进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(1-3%甲醇/二氯甲烷),得到所需产物。最终得到714mg黄色固体90,产率为78.63%。 1H NMR(400MHz,CDCl 3)δ7.87(d,J=1.5Hz,1H),7.56(d,J=1.4Hz,1H),5.95(dd,J=3.2,1.7Hz,1H),5.45(d,J=5.1Hz,1H),3.30–3.20(m,1H),1.08(s,3H),1.05(s,3H).
(3S,10R,13S)-17-(4-硝基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-胺(91)
将化合物90(713mg,1.75mmol)溶于20mL四氢呋喃和10mL水中于室温下搅拌,然后加入称量好的三苯基膦(1.8g,6.86mmol),接着将温度缓慢升温至60℃,于该温度下搅拌过夜,TLC监测反应完全。然后旋转蒸发部分溶剂,加入20mL二氯甲烷溶解,并缓慢加入2M盐酸将溶液pH调为2左右,进行分液并收集水相,紧接着加入2M氢氧化钠溶液调pH为弱碱性,此时有大量白色固体析出,分别用少量二氯甲烷萃取水相三次,收集合并有机相,经无水硫酸钠干燥后旋转蒸发除去溶剂得75mg白色固体91,收率11.2%,直接投入下一步。N-((3S,10R,13S)-17-(4-硝基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基)哒嗪-4-羧酰胺(化合物21)
投入化合物91(75mg,0.196mmol),得到68mg白色固体化合物21,产率为:70.8%。 1H NMR(500MHz,DMSO)δ9.54(dd,J=2.1,1.3Hz,1H),9.43(dd,J=5.3,1.1Hz,1H),8.82(d,J=7.9Hz,1H),8.50(d,J=1.4Hz,1H),8.06(d,J=1.4Hz,1H),7.99(dd,J=5.3,2.3Hz,1H),6.17(d,J=1.2Hz,1H),5.39(d,J=4.8Hz,1H),3.79–3.68(m,1H),1.06(s,3H),1.01(s,3H). 13C NMR(126MHz,DMSO)δ162.69,159.92,152.51,149.26,148.07,146.98,141.37, 136.23,132.03,124.59,123.21,121.03,120.00,56.22,50.32,50.15,46.07,38.59,37.87,36.83,33.78,30.84,30.08,29.91,28.37,20.49,19.38,15.78.HRMS(ESI)(M+H) +m/z计算值C 27H 33N 6O 3 489.2609,实测值:489.2603.
实施例22:
N-((3S,10R,13S)-17-(4-三氟甲基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基)哒嗪-4-羧酰胺(化合物22)
Figure PCTCN2023071074-appb-000037
(3S,10R,13S)-16-甲酰基-17-(4-三氟甲基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基乙酸酯(92)
将化合物Ⅱ-2(3.6g,9.55mmol)和碳酸钾(3.96g,28.7mmol)都装入烧瓶中,加入超干的N,N-二甲基甲酰胺作为溶剂,在室温下搅拌半小时后,将4-三氟甲基咪唑(1.56g,11.46mmol)加入到体系中,缓慢将温度升高至80℃,于该温度下搅拌过夜,TLC监测反应完全。反应完毕后,用乙酸乙酯进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(20-40%乙酸乙酯/石油醚),得到所需产物。最终得到2.2g黄色固体化合物92,产率为48.4%。 1H NMR(400MHz,CDCl 3)δ9.75(s,1H),7.67(s,1H),7.45(s,1H),5.43(d,J=5.1Hz,1H),4.63(dq,J=15.9,5.2Hz,1H),2.73(dd,J=15.5,6.1Hz,1H),2.06(s,3H),1.10(s,3H),1.09(s,3H).
(3S,10R,13S)-17-(4-三氟甲基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基乙酸酯(93)
将化合物92(2.2g,4.62mmol)溶于干燥的N,N-二甲基甲酰胺中,于室温下搅拌,然后加入2g的钯碳,然后用氩气换气三次,缓慢将体系温度升高至160℃,反应38小时,TLC监测反应完全。反应完毕后,将反应体系冷却至室温,加入一定量乙酸乙酯,搅拌一段时间后,用硅藻土进行过滤,收集滤液,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(10-40%乙酸乙酯/石油醚),得到所需产物。最终得到725mg白色固体化合物93,产率为35.0%。 1H NMR(400MHz,CDCl 3)δ7.64(s,1H),7.36(s,1H),5.80(s,1H),5.41(d,J=4.8Hz,1H),4.66–4.56(m,1H),2.04(s,3H),1.07(s,3H),1.00(s,3H).
(3S,10R,13S)-17-(4-三氟甲基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-醇(94)
将化合物93(720mg,1.61mmol)溶于无水甲醇中,于室温下搅拌,然后加入称量好的氢氧化钾(0.36g,6.02mmol),加入完毕后,在室温下搅拌4h,TLC监测反应完全。反应完毕后,旋转蒸发掉部分溶剂,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,直接旋转蒸发浓缩溶液得到所需产物。最终得到650mg浅黄色固体化合物94,产率为99.5%。 1H NMR(400MHz,CDCl 3)δ7.62(s,1H),7.36(s,1H),5.80(s,1H),5.39(s,1H),3.61–3.48(m,1H),1.06(s,3H),1.00(s,3H).
(3S,10R,13S)-17-(4-三氟甲基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基甲磺酸酯(95)
将化合物4(650mg,1.60mmol)和4-二甲氨基吡啶(20mg,0.164mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(0.66mL,4.84mmol)搅拌一段时间,最后缓慢加入甲磺酰氯(0.25mL,3.06mmol),滴加完毕后于室温下搅拌5h,TLC监测反应完全。接着加入冰水进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,直接旋转蒸发浓缩溶液得到所需产物。最终得到0.747g浅黄色固体化合物95,产率为96.4%。 1H NMR(400MHz,CDCl 3)δ7.71(s,1H),7.39(s,1H),5.84(d,J=1.3Hz,1H),5.48(d,J=5.0Hz,1H),4.56(tdd,J=11.3,7.0,4.7Hz,1H),3.04(s,3H),1.09(s,3H),1.03(s,3H).
1-((3S,10R,13S)-3-叠氮基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-4-三氟甲基-1H-咪唑(96)
将化合物95(650mg,1.34mmol)溶于超干二氯甲烷中于室温下搅拌,然后用塑料加液器依次加入叠氮基三甲基硅烷(1.06mL,8.01mmol)和三氟化硼乙醚(1.66mL,13.4mmol),滴加完毕后于室温下搅拌反应过夜,TLC监测反应完全。接着加入饱和碳酸氢钠溶液进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(1-3%甲醇/二氯甲烷),得到所需产物。最终得到570mg黄色固体96,产率为98.4%。 1H NMR(400MHz,CDCl 3)δ7.65(s,1H),7.38(s,1H),5.82(dd,J=3.0,1.6Hz,1H),5.45(d,J=5.0Hz,1H),3.24(ddd,J=11.4,8.8,4.0Hz,1H),1.07(s,3H),1.03(s,3H).
(3S,10R,13S)-17-(4-三氟甲基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-胺(97)
将化合物96(650mg,1.51mmol)溶于6mL四氢呋喃和6mL水中于室温下搅拌,然后加入称量好的三苯基膦(435mg,1.66mmol),接着将温度缓慢升温至60℃,于该温度下搅拌过夜,TLC监测反应完全。然后旋转蒸发部分溶剂,加入20mL二氯甲烷溶解,并缓慢加入2M盐酸将溶液pH调为2左右,进行分液并收集水相,紧接着加入2M氢氧化钠溶液调pH为弱碱性,此时有大量白色固体析出,分别用少量二氯甲烷萃取水相三次,收集合并有机相,经无水硫酸钠干燥后旋转蒸发除去溶剂得355mg白色固体97,收率58.1%。 1H NMR(400MHz,CDCl 3)δ8.46(s,2H),7.72(s,1H),7.38(s,1H),5.84(s,1H),5.49(d,J=3.6Hz,1H),3.13(s,1H),1.10(s,3H),1.03(s,3H).
N-((3S,10R,13S)-17-(4-三氟甲基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13, 14,15-十二烷基-1H-环戊[a]菲蒽-3-基)哒嗪-4-羧酰胺(化合物22)
投入化合物97(100mg,0.247mmol),得到96mg白色固体化合物22,产率为:76.2%。 1H NMR(400MHz,CDCl3)δ9.60(s,1H),9.36(d,J=5.0Hz,1H),7.92(dd,J=5.1,1.9Hz,1H),7.64(s,1H),7.38(s,1H),6.98(d,J=7.9Hz,1H),5.83(d,J=1.1Hz,1H),5.46(d,J=4.9Hz,1H),4.03–3.91(m,1H),1.09(s,3H),1.02(s,3H). 13C NMR(151MHz,DMSO)δ162.60,152.55,149.22,147.44,141.36,137.99,131.95,124.58,121.15,56.25,50.30,50.23,45.96,38.60,37.87,36.83,33.99,31.43,30.87,30.10,29.78,28.29,22.53,20.52,19.38,15.88,14.35.HRMS(ESI)(M+H) +m/z计算值C 28H 31F 3N 5O 510.2486,实测值:510.2489.
实施例23:
N-((3S,10R,13S)-17-(4-甲氧基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基)异烟酰胺(化合物23)
Figure PCTCN2023071074-appb-000038
(3S,10R,13S)-16-甲酰基-17-(4-甲氧基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基乙酸酯(98)
将化合物Ⅱ-2(4.2g,11.14mmol)和碳酸钾(4.6g,33.35mmol)都装入烧瓶中,加入超干的N,N-二甲基甲酰胺作为溶剂,在室温下搅拌半小时后,将4-甲氧基咪唑(1.09g,11.1mmol)加入到体系中,缓慢将温度升高至80℃,于该温度下搅拌过夜,TLC监测反应完全。反应完毕后,用乙酸乙酯进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(10-25%乙酸乙酯/石油醚),得到所需产物。最终得到2g黄色固体化合物98,产率为41.08%。 1H NMR(400MHz,CDCl 3)δ9.80(s,1H),7.31(d,J=1.5Hz,1H),6.44(d,J=1.6Hz,1H),5.44(d,J=5.0Hz,1H),4.63(ddd,J=15.9,10.7,5.3Hz,1H),3.88(s,3H),2.06(s,3H),1.09(d,J=1.9Hz,6H).
(3S,10R,13S)-17-(4-甲氧基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基乙酸酯(99)
将化合物98(2.6g,5.93mmol)溶于干燥的N,N-二甲基甲酰胺中,于室温下搅拌,然后加入2.6g的钯碳,然后用氩气换气三次,缓慢将体系温度升高至160℃,反应30小时,TLC监测反应完全。反应完毕后,将反应体系冷却至室温,加入一定量乙酸乙酯,搅拌一段时间后,用硅藻土进行过滤,收集滤液,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(10-30%乙酸乙酯/石油醚),得到所需产物。最终得到0.45g黄色固体化合物 99,产率为18.75%。 1H NMR(400MHz,DMSO)δ7.28(s,1H),6.34(s,1H),5.61(s,1H),5.40(d,J=4.2Hz,1H),4.66–4.55(m,1H),3.81(d,J=0.5Hz,3H),2.03(s,3H),1.06(s,3H),1.00(s,3H).
(3S,10R,13S)-17-(4-甲氧基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-醇(100)
将化合物99(0.45g,1.10mmol)溶于无水甲醇中,于室温下搅拌,然后加入称量好的氢氧化钾(0.246g,4.38mmol),加入完毕后,在室温下搅拌4h,TLC监测反应完全。反应完毕后,旋转蒸发掉部分溶剂,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(1-2%甲醇/二氯甲烷),得到所需产物。最终得到330mg黄色固体化合物100,产率为81.88%。 1H NMR(400MHz,CDCl 3)δ7.30(d,J=1.3Hz,1H),6.37(d,J=1.5Hz,1H),5.63(d,J=1.2Hz,1H),5.40(d,J=5.1Hz,1H),3.84(s,3H),3.55(ddd,J=15.7,11.0,4.5Hz,1H),1.07(s,3H),1.02(s,3H).
(3S,10R,13S)-17-(4-甲氧基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基甲磺酸酯(101)
将化合物100(330mg,0.896mmol)和4-二甲氨基吡啶(11mg,0.09mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(0.4mL,2.936mmol)搅拌一段时间,最后缓慢加入甲磺酰氯(0.14mL,1.72mmol),滴加完毕后于室温下搅拌5h,TLC监测反应完全。接着加入冰水进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,直接旋转蒸发浓缩溶液得到所需产物。最终得到0.38g橙黄色固体化合物101,产率为95.2%。 1H NMR(400MHz,CDCl 3)δ7.30(d,J=1.4Hz,1H),6.37(d,J=1.5Hz,1H),5.64(dd,J=3.0,1.6Hz,1H),5.48(d,J=5.0Hz,1H),4.60–4.50(m,1H),3.84(s,3H),3.04(s,3H),1.09(s,3H),1.02(s,3H).
1-((3S,10R,13S)-3-叠氮基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-4-甲氧基-1H-咪唑(102)
将化合物101(0.4g,0.896mmol)溶于超干二氯甲烷中于室温下搅拌,然后用塑料加液器依次加入叠氮基三甲基硅烷(0.54mL,4.08mmol)和三氟化硼乙醚(1.74mL,14mmol),滴加完毕后于室温下搅拌反应过夜,TLC监测反应完全。接着加入饱和碳酸氢钠溶液进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(1-3%甲醇/二氯甲烷),得到所需产物。最终得到300mg黄色固体102,产率为84.98%。 1H NMR(400MHz,CDCl 3)δ7.33(s,1H),6.37(s,1H),5.65(s,1H),5.44(d,J=4.8Hz,1H),3.84(s,3H),3.23(dt,J=10.2,4.7Hz,1H),1.07(s,3H),1.03(s,3H).
(3S,10R,13S)-17-(4-甲氧基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-胺(103)
将化合物102(300mg,0.763mmol)溶于10mL四氢呋喃和50mL水中于室温下搅拌,然后加入称量好的三苯基膦(0.6g,2.29mmol),接着将温度缓慢升温至60℃,于该温度下搅拌 过夜,TLC监测反应完全。然后旋转蒸发部分溶剂,加入20mL二氯甲烷溶解,并缓慢加入2M盐酸将溶液pH调为2左右,进行分液并收集水相,紧接着加入2M氢氧化钠溶液调pH为弱碱性,此时有大量白色固体析出,分别用少量二氯甲烷萃取水相三次,收集合并有机相,经无水硫酸钠干燥后旋转蒸发除去溶剂得50mg浅黄色固体103,收率11.2%。 1H NMR(400MHz,CDCl 3)δ7.30(s,1H),6.37(s,1H),5.63(s,1H),5.36(d,J=4.8Hz,1H),3.83(s,3H),2.63(td,J=11.3,5.6Hz,1H),1.05(s,3H),1.02(s,3H).
N-((3S,10R,13S)-17-(4-甲氧基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基)异烟酰胺(化合物23)
投入化合物103(61mg,0.166mmol),得到52mg白色固体化合物23,产率为:66.67%。 1H NMR(500MHz,DMSO)δ8.81(d,J=4.9Hz,1H),8.71(d,J=7.9Hz,1H),7.90(d,J=3.5Hz,1H),7.64–7.61(m,1H),7.56(d,J=2.6Hz,1H),6.89(d,J=1.5Hz,1H),5.89(s,1H),5.39(d,J=4.7Hz,1H),3.76(s,3H),1.06(s,3H),1.02(s,3H). 13C NMR(126MHz,DMSO)δ163.68,155.36,149.08,143.72,141.49,132.66,132.04,130.36,129.17,122.53,121.04,96.85,57.74,56.39,50.23,45.86,38.62,37.97,36.76,34.30,30.82,30.02,29.58,28.31,20.55,19.30,15.97.HRMS(ESI)(M+H) +m/z计算值C 29H 37N 4O 2 473.2911,实测值:473.2917.
实施例24:
N-((3S,10R,13S)-17-(4-甲氧基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基)哒嗪-4-羧酰胺(化合物24)
Figure PCTCN2023071074-appb-000039
投入化合物103(70mg,0.191mmol),得到58mg白色固体化合物24,产率为:64.4%。 1H NMR(400MHz,CDCl3)δ9.57(s,1H),9.31(d,J=5.0Hz,1H),7.93–7.90(m,1H),7.49(d,J=7.8Hz,1H),7.29(s,1H),6.36(s,1H),5.64(s,1H),5.43(d,J=4.3Hz,1H),4.01–3.89(m,1H),3.80(s,3H),1.05(s,3H),1.01(s,3H). 13C NMR(126MHz,CDCl3)δ162.84,157.25,151.79,148.64,148.55,140.32,132.36,130.58,124.22,121.70,118.09,95.87,56.87,56.16,50.86,50.32,46.09,38.77,37.72,36.77,34.83,30.89,30.12,29.66,28.62,20.56,19.13,15.93.HRMS(ESI)(M+H) +m/z计算值C 28H 36N 5O 2 474.2864,实测值:474.2875.
实施例25:
N-((3S,10R,13S)-17-(4-氰基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基)哒嗪-4-羧酰胺(化合物25)
Figure PCTCN2023071074-appb-000040
(3S,10R,13S)-16-甲酰基-17-(4-氰基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基乙酸酯(104)
将化合物Ⅱ-2(3.8g,10.08mmol)和碳酸钾(4.07g,29.5mmol)都装入烧瓶中,加入超干的N,N-二甲基甲酰胺作为溶剂,在室温下搅拌半小时后,将4-氰基咪唑(1.03g,11.06mmol)加入到体系中,缓慢将温度升高至80℃,于该温度下搅拌过夜,TLC监测反应完全。反应完毕后,用乙酸乙酯进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(10-30%乙酸乙酯/石油醚),得到所需产物。最终得到3.64g黄色固体化合物104,产率为82.4%。 1H NMR(400MHz,CDCl 3)δ9.72(s,1H),7.66(s,2H),5.43(d,J=5.0Hz,1H),4.66–4.57(m,1H),2.74(dd,J=15.6,6.1Hz,1H),2.05(s,3H),1.09(s,6H).
(3S,10R,13S)-17-(4-氰基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基乙酸酯(105)
将化合物104(3.6g,8.31mmol)溶于干燥的N,N-二甲基甲酰胺中,于室温下搅拌,然后加入3.6g的钯碳,然后用氩气换气三次,缓慢将体系温度升高至160℃,反应30小时,TLC监测反应完全。反应完毕后,将反应体系冷却至室温,加入一定量乙酸乙酯,搅拌一段时间后,用硅藻土进行过滤,收集滤液,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(10-30%乙酸乙酯/石油醚),得到所需产物。最终得到1.8g黄色固体化合物105,产率为53.57%。 1H NMR(400MHz,CDCl 3)δ7.64(d,J=1.1Hz,1H),7.59(d,J=1.2Hz,1H),5.86(dd,J=3.2,1.7Hz,1H),5.43(d,J=5.1Hz,1H),4.63(ddd,J=15.9,11.1,5.1Hz,1H),2.06(s,3H),1.09(s,3H),1.01(s,3H).
(3S,10R,13S)-17-(4-氰基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-醇(106)
将化合物105(0.315g,0.78mmol)溶于无水甲醇中,于室温下搅拌,然后加入称量好的氢氧化钾(43mg,0.78mmol),加入完毕后,在室温下搅拌4h,TLC监测反应完全。反应完毕后,旋转蒸发掉部分溶剂,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,然后旋转蒸发浓缩浓缩溶液得到所需产物。最终得到175mg白色固体化合物106,产率为62.05%。 1H NMR(400MHz,DMSO)δ8.37(d,J=0.9 Hz,1H),8.11(d,J=0.8Hz,1H),6.04(s,1H),5.31(d,J=4.4Hz,1H),4.65(d,J=4.5Hz,1H),3.27(td,J=10.8,5.5Hz,1H),0.99(s,3H),0.97(s,3H).
(3S,10R,13S)-17-(4-氰基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基甲磺酸酯(107)
将化合物106(175mg,0.482mmol)和4-二甲氨基吡啶(6mg,0.05mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(0.2mL,1.64mmol)搅拌一段时间,最后缓慢加入甲磺酰氯(75μL,0.856mmol),滴加完毕后于室温下搅拌5h,TLC监测反应完全。接着加入冰水进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,直接旋转蒸发浓缩溶液得到所需产物。最终得到0.21g浅黄色固体化合物107,产率为99%。 1H NMR(400MHz,CDCl 3)δ7.65(s,1H),7.59(d,J=1.0Hz,1H),5.87(dd,J=3.1,1.7Hz,1H),5.48(d,J=4.9Hz,1H),4.55(tdd,J=11.5,7.2,4.7Hz,1H),3.04(s,3H),1.09(s,3H),1.02(s,3H).
1-((3S,10R,13S)-3-叠氮基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-4-氰基-1H-咪唑(108
将化合物107(0.21g,0.48mmol)溶于超干二氯甲烷中于室温下搅拌,然后用塑料加液器依次加入叠氮基三甲基硅烷(0.19mL,1.42mmol)和三氟化硼乙醚(0.3mL,2.42mmol),滴加完毕后于室温下搅拌反应过夜,TLC监测反应完全。接着加入饱和碳酸氢钠溶液进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(10-20%乙酸乙酯/石油醚),得到所需产物。最终得到110mg黄色固体108,产率为59.45%。 1H NMR(400MHz,CDCl 3)δ7.64(s,1H),7.59(d,J=1.0Hz,1H),5.86(dd,J=3.1,1.7Hz,1H),5.45(d,J=5.1Hz,1H),3.24(td,J=12.4,5.9Hz,1H),1.08(s,3H),1.02(s,3H).
(3S,10R,13S)-17-(4-氰基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-胺(109)
将化合物108(110mg,0.283mmol)溶于6mL四氢呋喃和3mL水中于室温下搅拌,然后加入称量好的三苯基膦(90mg,0.343mmol),接着将温度缓慢升温至60℃,于该温度下搅拌过夜,TLC监测反应完全。然后旋转蒸发部分溶剂,加入20mL二氯甲烷溶解,并缓慢加入2M盐酸将溶液pH调为2左右,进行分液并收集水相,紧接着加入2M氢氧化钠溶液调pH为弱碱性,此时有大量白色固体析出,分别用少量二氯甲烷萃取水相三次,收集合并有机相,经无水硫酸钠干燥后旋转蒸发除去溶剂得60mg白色固体109,收率58.2%。直接投入下一步。
N-((3S,10R,13S)-17-(4-氰基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基)哒嗪-4-羧酰胺(化合物25)
投入化合物109(60mg,0.166mmol),得到25mg黄色固体化合物25,产率为:32.5%。 1H NMR(400MHz,DMSO)δ9.57(s,1H),9.36(s,1H),7.88(s,1H),7.61(s,1H),7.57(s,1H),6.78(s,1H),5.85(s,1H),5.44(d,J=4.6Hz,1H),3.96(s,1H),1.07(s,3H),0.99(s,3H). 13C NMR(126MHz,CDCl 3)δ162.68,152.00,148.45,147.18,140.19,137.62,132.40,126.60,124.25,122.79,121.64,114.77,114.44,56.11,50.66,50.26,46.32,38.92,37.69,36.78,34.57,30.88,30.11, 29.94,28.69,20.60,19.31,15.88.HRMS(ESI)(M+H) +m/z计算值C 28H 33N 6O 469.271,实测值:469.2706.
实施例26:
N-((3S,10R,13S)-10,13-二甲基-17-(4-(甲基氨基甲酰基)-1H-咪唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基)哒嗪-4-羧酰胺(化合物26)
Figure PCTCN2023071074-appb-000041
1-((3S,10R,13S)-3-乙酰氧基-16-甲酰基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-1H-咪唑-4-羧酸乙酯(110)
将化合物Ⅱ-2(2g,5.3mmol)和碳酸钾(1.1g,7.97mmol)都装入烧瓶中,加入超干的N,N-二甲基甲酰胺作为溶剂,在室温下搅拌半小时后,将咪唑-4-甲酸乙酯(0.75g,5.35mmol)加入到体系中,缓慢将温度升高至80℃,于该温度下搅拌1h,TLC监测反应完全。反应完毕后,用乙酸乙酯进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(1-3%甲醇/二氯甲烷),得到所需产物。最终得到1.97g白色固体化合物110,产率为77.25%。 1H NMR(400MHz,CDCl 3)δ9.75(s,1H),7.77(s,1H),7.65(s,1H),5.43(d,J=4.8Hz,1H),4.67–4.56(m,1H),4.42(q,J=7.1Hz,2H),2.73(dd,J=15.5,6.2Hz,1H),2.06(s,3H),1.43(t,J=7.1Hz,3H),1.10(s,3H),1.09(s,3H).
1-((3S,10R,13S)-3-乙酰氧基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-1H-咪唑-4-羧酸乙酯(111)
将化合物110(317mg,0.66mmol)溶于干燥的N,N-二甲基甲酰胺中,于室温下搅拌,然后加入0.3g的钯碳,然后用氩气换气三次,缓慢将体系温度升高至160℃,反应18小时,TLC监测反应完全。反应完毕后,将反应体系冷却至室温,加入一定量乙酸乙酯,搅拌一段时间后,用硅藻土进行过滤,收集滤液,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(20-40%乙酸乙酯/石油醚),得到所需产物。最终得到108mg白色固体化合物111,产率为36.24%。 1H NMR(400MHz,CDCl 3)δ7.73(d,J=1.1Hz,1H),7.65(d,J=1.0Hz,1H),5.83(d,J=1.3Hz,1H),5.43(d,J=5.0Hz,1H),4.63(ddd,J=16.0,10.8,5.3Hz,1H),4.40(q,J=7.1Hz,2H),2.06(s,3H),1.42(t,J=7.1Hz,3H),1.09(s,3H),1.02(s,3H).
1-((3S,10R,13S)-3-羟基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊 [a]菲蒽-17-基)-N-甲基-1H-咪唑-4-甲酰胺(112)
将化合物111(0.75g,1.66mmol)装入封管中,然后加入10mL甲胺的醇溶液,将封管于50℃下过夜反应,TLC监测反应完全。反应完毕后,将体系冷却至室温,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(1-3%甲醇/二氯甲烷),得到所需产物。最终得到408mg白色固体化合物112,产率为62.29%。 1H NMR(400MHz,CDCl 3)δ7.69(d,J=1.3Hz,1H),7.55(d,J=1.3Hz,1H),7.17(d,J=4.4Hz,1H),5.79(dd,J=3.1,1.7Hz,1H),5.39(d,J=5.2Hz,1H),3.61–3.51(m,1H),2.99(d,J=5.0Hz,3H),1.07(s,3H),1.02(s,3H).(3S,10R,13S)-10,13-二甲基-17-(4-(甲基氨基甲酰基)-1H-咪唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基甲磺酸酯(113)
将化合物112(408mg,1.03mmol)和4-二甲氨基吡啶(12mg,0.1mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(0.43mL,3.28mmol)搅拌一段时间,最后缓慢加入甲磺酰氯(160μL,2.06mmol),滴加完毕后于室温下搅拌4h,TLC监测反应完全。接着加入冰水进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,直接旋转蒸发浓缩溶液得到所需产物。最终得到0.46g浅黄色固体化合物113,产率为94.26%。 1H NMR(400MHz,CDCl 3)δ7.71(s,1H),7.71(s,1H),7.39(s,1H),5.86(dd,J=3.0,1.6Hz,1H),5.48(d,J=4.7Hz,1H),4.56(ddd,J=14.2,11.4,4.8Hz,1H),3.04(s,3H),3.00(d,J=5.0Hz,3H),1.09(s,3H),1.03(s,3H).
1-((3S,10R,13S)-3-叠氮基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-N-甲基-1H-咪唑-4-甲酰胺(114)
将化合物113(0.46g,0.97mmol)溶于超干二氯甲烷中于室温下搅拌,然后用塑料加液器依次加入叠氮基三甲基硅烷(0.5mL,3.55mmol)和三氟化硼乙醚(0.6mL,4.84mmol),滴加完毕后于室温下搅拌反应过夜,TLC监测反应完全。接着加入饱和碳酸氢钠溶液进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(30-60%乙酸乙酯/石油醚),得到所需产物。最终得到219mg白色固体114,产率为53.68%。 1H NMR(400MHz,CDCl 3)δ7.70(d,J=1.3Hz,1H),7.58(d,J=1.2Hz,1H),7.22(d,J=4.4Hz,1H),5.81(dd,J=3.1,1.7Hz,1H),5.44(d,J=5.1Hz,1H),3.24(ddd,J=9.9,8.7,3.9Hz,1H),2.99(d,J=5.0Hz,3H),1.07(s,3H),1.02(s,3H).
1-((3S,10R,13S)-3-氨基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-N-甲基-1H-咪唑-4-甲酰胺(115)
将化合物114(219mg,0.52mmol)溶于10mL四氢呋喃和5mL水中于室温下搅拌,然后加入称量好的三苯基膦(205mg,0.78mmol),接着将温度缓慢升温至60℃,于该温度下搅拌过夜,TLC监测反应完全。然后旋转蒸发部分溶剂,加入20mL二氯甲烷溶解,并缓慢加入2M盐酸将溶液pH调为2左右,进行分液并收集水相,紧接着加入2M氢氧化钠溶液调pH为弱碱性,此时有大量白色固体析出,分别用少量二氯甲烷萃取水相三次,收集合并有机相,经无水硫酸钠干燥后旋转蒸发除去溶剂得58mg白色固体115,收率28.3%。直接投入下一 步。
N-((3S,10R,13S)-10,13-二甲基-17-(4-(甲基氨基甲酰基)-1H-咪唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基)哒嗪-4-羧酰胺(化合物26)
投入化合物115(58mg,0.147mmol),得到53mg白色固体化合物26,产率为:72.1%。 1H NMR(500MHz,DMSO)δ9.52–9.50(m,1H),9.41(dd,J=5.3,1.0Hz,1H),8.79(d,J=7.9Hz,1H),7.98–7.94(m,2H),7.88(d,J=1.1Hz,1H),7.72(d,J=1.1Hz,1H),5.96(s,1H),5.37(d,J=4.6Hz,1H),3.76–3.65(m,1H),2.72(d,J=4.8Hz,3H),1.03(s,3H),0.97(s,3H). 13C NMR(126MHz,DMSO)δ162.69,162.63,152.55,149.27,147.76,141.36,137.68,136.34,132.12,124.59,121.17,120.30,119.79,56.20,50.32,50.22,46.06,38.61,37.88,36.84,34.28,30.89,30.12,29.73,28.30,25.92,20.58,19.39,15.98.HRMS(ESI)(M+H) +m/z计算值C 28H 41N 2O 6 501.2959,实测值:501.2954.
实施例27:
1-((3S,10R,13S)-10,13-二甲基-3-(哒嗪-4-甲酰胺基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-1H-咪唑-4-羧酸(化合物27)
Figure PCTCN2023071074-appb-000042
1-((3S,10R,13S)-3-羟基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-1H-咪唑-4-羧酸甲酯(116)
将化合物111(2.14g,4.73mmol)装入烧瓶中,然后加入20mL甲醇钠的甲醇溶液,于室温下搅拌过夜,TLC监测反应完全。反应完毕后,用4M盐酸甲醇溶液中和,待溶液由黄色变为无色后,用二氯甲烷和水进行萃取,收集有机相,用无水硫酸钠干燥,过滤后,直接旋转蒸发溶液,得到所需产物。最终得到1.85g黄色固体化合物116,产率为98.9%。 1H NMR(400MHz,DMSO)δ7.96(d,J=1.2Hz,1H),7.94(s,1H),6.00(s,1H),5.28(d,J=4.4Hz,1H),4.65(s,1H),3.74(s,3H),3.25(s,1H),0.97(s,3H),0.95(s,3H).
1-((3S,10R,13S)-10,13-二甲基-3-((甲基磺酰基)氧基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-1H-咪唑-4-羧酸甲酯(117)
将化合物116(105mg,0.25mmol)和4-二甲氨基吡啶(3mg,0.025mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(0.1mL,0.75mmol)搅拌一段时间,最后缓慢加入甲磺酰氯(39μL,0.5mmol),滴加完毕后于室温下搅拌4h,TLC监测反应完全。 接着加入冰水进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,直接旋转蒸发浓缩溶液得到所需产物。最终得到117mg白色固体化合物117,产率为97.8%。 1H NMR(400MHz,CDCl 3)δ7.72(s,2H),5.83(s,1H),5.45(d,J=4.9Hz,1H),4.54(d,J=5.0Hz,1H),3.91(s,3H),3.02(s,3H),1.07(s,3H),1.00(s,3H).
1-((3S,10R,13S)-3-叠氮基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-1H-咪唑-4-羧酸甲酯(118)
将化合物117(0.11g,0.23mmol)溶于超干二氯甲烷中于室温下搅拌,然后用塑料加液器依次加入叠氮基三甲基硅烷(92μL,0.69mmol)和三氟化硼乙醚(143μL,1.15mmol),滴加完毕后于室温下搅拌反应过夜,TLC监测反应完全。接着加入饱和碳酸氢钠溶液进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(30-60%乙酸乙酯/石油醚),得到所需产物。最终得到66mg白色固体118,产率为68.7%。 1H NMR(400MHz,CDCl 3)δ7.74(s,1H),7.68(s,1H),5.84(s,1H),5.44(d,J=5.0Hz,1H),3.93(s,3H),3.28–3.19(m,1H),1.07(s,3H),1.02(s,3H).1-((3S,10R,13S)-3-氨基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-1H-咪唑-4-羧酸甲酯(119)
将化合物118(55mg,0.13mmol)溶于6mL四氢呋喃和6mL水中于室温下搅拌,然后加入称量好的三苯基膦(51mg,0.19mmol),接着将温度缓慢升温至60℃,于该温度下搅拌过夜,TLC监测反应完全。然后旋转蒸发部分溶剂,加入20mL二氯甲烷溶解,并缓慢加入2M盐酸将溶液pH调为2左右,进行分液并收集水相,紧接着加入2M氢氧化钠溶液调pH为弱碱性,此时有大量白色固体析出,分别用少量二氯甲烷萃取水相三次,收集合并有机相,经无水硫酸钠干燥后旋转蒸发除去溶剂得29mg白色固体119,收率55.8%。 1H NMR(400MHz,CDCl 3)δ7.74(s,1H),7.63(s,1H),5.82(s,1H),5.38(s,1H),3.92(d,J=2.1Hz,3H),1.06(s,3H),1.01(s,3H).
1-((3S,10R,13S)-10,13-二甲基-3-(哒嗪-4-甲酰胺基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-1H-咪唑-4-羧酸甲酯(120)
投入化合物119(24mg,0.06mmol),得到22mg白色固体化合物120,产率为:73.3%。 1H NMR(500MHz,CDCl3)δ9.58(s,1H),9.31(d,J=5.2Hz,1H),7.93(dd,J=5.0,1.8Hz,1H),7.72(s,1H),7.63(s,1H),7.29(s,1H),5.83(s,1H),5.44(d,J=4.6Hz,1H),3.95(qd,J=12.3,6.4Hz,1H),3.89(s,3H),1.05(s,3H),1.01(s,3H).
1-((3S,10R,13S)-10,13-二甲基-3-(哒嗪-4-甲酰胺基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-1H-咪唑-4-羧酸(化合物27)
将化合物120(50mg,0.1mmol)溶于5mL甲醇和5mL四氢呋喃中,于室温下搅拌,然后加入2M氢氧化钠溶液1mL,在室温下反应2h,TLC监测反应完全。然后旋转蒸发掉部分溶液,紧接着用稀盐酸调节pH至酸性,用乙酸乙酯进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,直接旋转蒸发浓缩溶液,得到所需产物。最终得到33mg白色固体27,产率为67.8%。 1H NMR(500MHz,DMSO)δ9.54(s,1H),9.43(d,J=4.7Hz,1H),8.82(d,J=7.4Hz,1H),8.00(d,J=2.9Hz,1H),7.93(s,1H),7.90(s,1H),6.00(s,1H),5.39(s,1H),3.73(s,1H),1.05(s,3H),0.99(s,3H). 13C NMR(126MHz,DMSO)δ163.85,162.63,152.54, 149.22,147.59,141.49,137.45,134.15,132.11,124.58,124.28,121.15,120.50,56.23,50.32,50.22,46.00,38.60,37.88,36.83,34.25,30.81,30.18,29.80,28.22,21.45,20.56,19.31,15.90.HRMS(ESI)(M+H) +m/z计算值C 28H 34N 5O 3 488.2656,实测值:488.2657.
实施例28:
4-氟-N-((3S,10R,13S)-17-(4-氟-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基)苯甲酰胺(化合物28)
Figure PCTCN2023071074-appb-000043
(3S,10R,13S)-17-(4-氟-1H-咪唑-1-基)-16-甲酰基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基乙酸酯(121)
将化合物Ⅱ-2(4.38g,11.62mmol)和碳酸钾(2.4g,17.5mmol)都装入烧瓶中,加入超干的N,N-二甲基甲酰胺作为溶剂,在室温下搅拌半小时后,将4-氟咪唑(1g,11.62mmol)加入到体系中,缓慢将温度升高至80℃,于该温度下搅拌过夜,TLC监测反应完全。反应完毕后,用乙酸乙酯进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(10-30%乙酸乙酯/石油醚),得到所需产物。最终得到1.8g棕黄色固体化合物121,产率为36.3%。 1H NMR(400MHz,CDCl 3)δ9.78(s,1H),7.25(s,1H),6.69(dd,J=8.1,1.6Hz,1H),5.43(d,J=5.2Hz,1H),4.67–4.58(m,1H),2.06(s,3H),1.09(s,6H).
(3S,10R,13S)-17-(4-氟-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊[a]菲蒽-3-基乙酸酯(122)
将化合物1,3-双(二苯基膦)丙烷(0.48g,1.16mmol)和羰基双(三苯膦基)氯化铑(I)(0.48g,0.69mmol)溶于干燥的二甲苯中,用氩气换气三次后,缓慢将体系温度升高至80℃,搅拌半小时,接着加入化合物121(1g,2.35mmol),将反应温度升高至135℃,于该温度下搅拌反应过夜。反应完毕后,将反应体系冷却至室温,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(10-20%乙酸乙酯/石油醚),得到所需产物。最终得到230mg白色固体化合物122,产率为24.62%。 1H NMR(400MHz,CDCl 3)δ7.24(s,1H),6.59(d,J=8.1Hz,1H),5.72(s,1H),5.43(d,J=5.1Hz,1H),4.63(tt,J=10.7,5.1Hz,1H),2.06(s,3H),1.09(s,3H),1.02(s,3H).
(3S,10R,13S)-17-(4-氟-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二 烷基-1H-环戊[a]菲蒽-3-醇(123)
将化合物122(0.22g,0.55mmol)溶于无水甲醇中,于室温下搅拌,然后加入称量好的氢氧化钾(50mg,0.9mmol),加入完毕后,在室温下搅拌1h,TLC监测反应完全。反应完毕后,旋转蒸发掉部分溶剂,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,然后旋转蒸发浓缩溶液得到所需产物。最终得到167mg白色固体化合物123,产率为84.77%。 1H NMR(600MHz,CDCl 3)δ7.14(s,1H),6.50(dd,J=8.1,1.4Hz,1H),5.62(dd,J=3.0,1.7Hz,1H),5.33–5.29(m,1H),3.50–3.44(m,1H),0.99(s,3H),0.93(s,3H).
(3S,10R,13S)-17-(4-氟-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基甲磺酸酯(124)
将化合物123(160mg,0.449mmol)和4-二甲氨基吡啶(6mg,0.05mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(0.2mL,1.64mmol)搅拌一段时间,最后缓慢加入甲磺酰氯(150μL,1.71mmol),滴加完毕后于室温下搅拌2h,TLC监测反应完全。接着加入冰水进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,直接旋转蒸发浓缩溶液得到所需产物。最终得到0.29g黄色固体化合物124,直接投入下一步
1-((3S,10R,13S)-3-叠氮基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-4-氟-1H-咪唑(125)
将化合物124(0.29g,0.68mmol)溶于超干二氯甲烷中于室温下搅拌,然后用塑料加液器依次加入叠氮基三甲基硅烷(0.3mL,2.24mmol)和三氟化硼乙醚(0.34mL,2.42mmol),滴加完毕后于室温下搅拌反应过夜,TLC监测反应完全。接着加入饱和碳酸氢钠溶液进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(5-20%乙酸乙酯/石油醚),得到所需产物。最终得到146mg白色固体化合物125,产率为56.59%。 1H NMR(600MHz,CDCl 3)δ7.16(s,1H),6.50(dd,J=8.1,1.1Hz,1H),5.63(dd,J=3.0,1.6Hz,1H),5.36(d,J=5.3Hz,1H),3.18–3.12(m,1H),0.98(s,3H),0.93(s,3H).
(3S,10R,13S)-17-(4-氟-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-胺(126)
将化合物125(140mg,0.367mmol)溶于10mL四氢呋喃和5mL水中于室温下搅拌,然后加入称量好的三苯基膦(145mg,0.553mmol),接着将温度缓慢升温至60℃,于该温度下搅拌过夜,TLC监测反应完全。然后旋转蒸发部分溶剂,加入20mL乙酸乙酯溶解,并缓慢加入2M盐酸将溶液pH调为2左右,进行分液并收集水相,紧接着加入2M氢氧化钠溶液调pH为弱碱性,此时有大量白色固体析出,分别用少量乙酸乙酯萃取水相三次,收集合并有机相,经无水硫酸钠干燥后旋转蒸发除去溶剂得72mg白色固体化合物126,收率55.38%。直接投入下一步
4-氟-N-((3S,10R,13S)-17-(4-氟-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基)苯甲酰胺(化合物28)
投入化合物126(47mg,0.132mmol),得到47mg白色固体化合物28,产率为:74.6%。 1H NMR(600MHz,DMSO)δ8.28(d,J=8.0Hz,1H),7.89(dd,J=8.7,5.6Hz,2H),7.54(s,1H),7.25(t,J=8.8Hz,2H),7.09(dd,J=8.2,1.6Hz,1H),5.83(s,1H),5.33(d,J=4.7Hz,1H),3.72–3.64(m,1H),1.01(s,3H),0.95(s,3H). 13C NMR(151MHz,DMSO)δ164.17,162.95,157.49,155.96,147.69,141.24,131.13,129.85,129.80,129.62,129.52,120.35,118.37,115.14,115.00,97.20,97.00,55.84,49.78,49.48,45.37,38.42,37.54,36.38,33.73,30.42,29.63,29.15,28.05,20.14,18.92,15.49.HRMS(ESI)(M+H) +m/z计算值C 29H 34F 2N 3O 478.2664,实测值:478.2665.
实施例29:
4-氟-N-((3S,10R,13S)-17-(4-溴-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基)苯甲酰胺(化合物29)
Figure PCTCN2023071074-appb-000044
(3S,10R,13S)-17-(4-溴-1H-咪唑-1-基)-16-甲酰基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基乙酸酯(127)
将化合物Ⅱ-2(4g,11.62mmol)和碳酸钾(2.4g,17.5mmol)都装入烧瓶中,加入超干的N,N-二甲基甲酰胺作为溶剂,在室温下搅拌半小时后,将4-溴咪唑(1.5g,10.27mmol)加入到体系中,缓慢将温度升高至80℃,于该温度下搅拌过夜,TLC监测反应完全。反应完毕后,用乙酸乙酯进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(10-30%乙酸乙酯/石油醚),得到所需产物。最终得到3.4g黄色固体化合物127,产率为68.19%。 1H NMR(400MHz,CDCl 3)δ9.76(s,1H),7.52(d,J=1.4Hz,1H),7.11(d,J=1.5Hz,1H),5.43(d,J=5.1Hz,1H),4.63(dq,J=15.9,5.2Hz,1H),2.71(dd,J=15.5,6.3Hz,1H),2.06(s,3H),1.08(s,6H).
(3S,10R,13S)-17-(4-溴-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊[a]菲蒽-3-基乙酸酯(128)
将化合物1,3-双(二苯基膦)丙烷(0.21g,0.51mmol)和羰基双(三苯膦基)氯化铑(I)(0.17g,0.24mmol)溶于干燥的二甲苯中,用氩气换气三次后,缓慢将体系温度升高至80℃,搅拌半小时,接着加入化合物127(1g,2.06mmol),将反应温度升高至135℃,于该温度下搅拌反应过夜。反应完毕后,将反应体系冷却至室温,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(10-30%乙酸乙酯/石油醚),得到所需产物。最终得到322mg白色 固体化合物128,产率为34.18%。 1H NMR(400MHz,CDCl 3)δ7.50(s,1H),7.02(s,1H),5.72(s,1H),5.41(d,J=5.0Hz,1H),4.60(dt,J=10.9,5.9Hz,1H),2.04(s,3H),1.07(s,3H),0.99(s,3H).
(3S,10R,13S)-17-(4-溴-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-醇(129)
将化合物128(0.497g,1.08mmol)溶于无水甲醇中,于室温下搅拌,然后加入称量好的氢氧化钾(183mg,3.26mmol),加入完毕后,在室温下搅拌2h,TLC监测反应完全。反应完毕后,旋转蒸发掉部分溶剂,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,然后旋转蒸发浓缩溶液得到所需产物。最终得到278mg白色固体化合物129,产率为65.85%。 1H NMR(400MHz,DMSO)δ7.84(s,1H),7.54(s,1H),5.90(s,1H),5.31(d,J=4.6Hz,1H),4.64(d,J=4.5Hz,1H),3.31–3.22(m,1H),1.00(s,3H),0.98(s,3H).
(3S,10R,13S)-17-(4-溴-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基甲磺酸酯(130)
将化合物129(278mg,0.668mmol)和4-二甲氨基吡啶(6mg,0.05mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(0.28mL,2.3mmol)搅拌一段时间,最后缓慢加入甲磺酰氯(150μL,1.71mmol),滴加完毕后于室温下搅拌2h,TLC监测反应完全。接着加入冰水进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,直接旋转蒸发浓缩溶液得到所需产物。最终得到382mg黄色油状化合物130,直接投入下一步。
1-((3S,10R,13S)-3-叠氮基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-4-溴-1H-咪唑(131)
将化合物130(0.382g,0.77mmol)溶于超干二氯甲烷中于室温下搅拌,然后用塑料加液器依次加入叠氮基三甲基硅烷(0.3mL,2.24mmol)和三氟化硼乙醚(0.34mL,2.42mmol),滴加完毕后于室温下搅拌反应过夜,TLC监测反应完全。接着加入饱和碳酸氢钠溶液进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(15-25%乙酸乙酯/石油醚),得到所需产物。最终得到183mg白色固体化合物131,产率为53.66%。 1H NMR(400MHz,DMSO)δ7.84(s,1H),7.54(s,1H),5.90(s,1H),5.43(d,J=4.1Hz,1H),1.01(s,3H),0.98(s,3H).
(3S,10R,13S)-17-(4-溴-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-胺(132)
将化合物131(180mg,0.408mmol)溶于10mL四氢呋喃和5mL水中于室温下搅拌,然后加入称量好的三苯基膦(160mg,0.61mmol),接着将温度缓慢升温至60℃,于该温度下搅拌过夜,TLC监测反应完全。然后旋转蒸发部分溶剂,加入20mL乙酸乙酯溶解,并缓慢加入2M盐酸将溶液pH调为2左右,进行分液并收集水相,紧接着加入2M氢氧化钠溶液调pH为弱碱性,此时有大量白色固体析出,分别用少量乙酸乙酯萃取水相三次,收集合并有机相,经无水硫酸钠干燥后旋转蒸发除去溶剂得147mg白色固体化合物132,收率86.98%。 直接投入下一步。
4-氟-N-((3S,10R,13S)-17-(4-溴-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基)苯甲酰胺(化合物29)
投入化合物132(50mg,0.12mmol),得到45mg白色固体化合物29,产率为:69.55%。 1H NMR(600MHz,DMSO)δ8.28(d,J=8.0Hz,1H),7.91–7.87(m,2H),7.81(d,J=1.4Hz,1H),7.52(d,J=1.4Hz,1H),7.26(t,J=8.8Hz,2H),5.88(s,1H),5.34(d,J=4.6Hz,1H),3.68(ddd,J=16.3,12.0,5.9Hz,1H),1.02(s,3H),0.95(s,3H). 13C NMR(151MHz,DMSO)δ164.18,147.23,141.25,135.94,129.86,129.80,120.37,118.99,117.55,115.16,115.02,114.96,55.81,49.78,49.41,45.44,38.41,37.52,36.35,33.67,30.43,29.64,29.16,28.05,20.12,18.95,15.49.HRMS(ESI)(M+H) +m/z计算值C 29H 34BrFN 3O 538.1864,实测值:538.1852.
实施例30:
N-((3S,10R,13S)-17-(4-氯-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基)哒嗪-4-甲酰胺(化合物30)
Figure PCTCN2023071074-appb-000045
(3S,10R,13S)-17-(4-氯-1H-咪唑-1-基)-16-甲酰基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基乙酸酯(133)
将化合物Ⅱ-2(4g,11.62mmol)和碳酸钾(2.4g,17.5mmol)都装入烧瓶中,加入超干的N,N-二甲基甲酰胺作为溶剂,在室温下搅拌半小时后,将4-氯咪唑(1g,9.75mmol)加入到体系中,缓慢将温度升高至80℃,于该温度下搅拌过夜,TLC监测反应完全。反应完毕后,用乙酸乙酯进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(10-20%乙酸乙酯/石油醚),得到所需产物。最终得到1.53g黄色固体化合物133,产率为35.58%。 1H NMR(400MHz,CDCl 3)δ9.76(s,1H),7.50(d,J=1.6Hz,1H),7.04(d,J=1.6Hz,1H),5.43(d,J=5.2Hz,1H),4.63(ddd,J=15.9,10.7,5.4Hz,1H),2.71(dd,J=15.5,6.3Hz,1H),2.06(s,3H),1.08(s,6H).
(3S,10R,13S)-17-(4-氯-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊[a]菲蒽-3-基乙酸酯(134)
将化合物1,3-双(二苯基膦)丙烷(0.47g,1.14mmol)和羰基双(三苯膦基)氯化铑(I)(0.47g,0.66mmol)溶于干燥的二甲苯中,用氩气换气三次后,缓慢将体系温度升高至80℃,搅拌半小时,接着加入化合物133(1g,2.26mmol),将反应温度升高至135℃,于该温度下搅拌反应 过夜。反应完毕后,将反应体系冷却至室温,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,接着向体系中加入硅胶浓缩并通过自动过柱机进行纯化(10-20%乙酸乙酯/石油醚),得到所需产物。最终得到569mg白色固体化合物134,产率为60.73%。 1H NMR(400MHz,CDCl 3)δ7.49(d,J=1.2Hz,1H),6.97(d,J=1.3Hz,1H),5.73(dd,J=3.2,1.7Hz,1H),5.42(d,J=5.2Hz,1H),4.67–4.57(m,1H),2.05(s,3H),1.08(s,3H),1.00(s,3H).
(3S,10R,13S)-17-(4-氯-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-醇(135)
将化合物134(0.56g,1.35mmol)溶于无水甲醇中,于室温下搅拌,然后加入称量好的氢氧化钾(183mg,3.26mmol),加入完毕后,在室温下搅拌2h,TLC监测反应完全。反应完毕后,旋转蒸发掉部分溶剂,然后用乙酸乙酯和水进行萃取,收集有机相,用饱和食盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,然后旋转蒸发浓缩溶液得到所需产物。最终得到440mg白色固体化合物135,产率为87.44%。 1H NMR(400MHz,CDCl 3)δ7.50(s,1H),6.97(d,J=1.0Hz,1H),5.74(dd,J=3.1,1.6Hz,1H),5.42–5.38(m,1H),3.61–3.50(m,1H),1.08(s,3H),1.01(s,3H).
(3S,10R,13S)-17-(4-氯-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-基甲磺酸酯(136)
将化合物135(440mg,1.182mmol)和4-二甲氨基吡啶(15mg,0.12mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(0.5mL,4.1mmol)搅拌一段时间,最后缓慢加入甲磺酰氯(0.2mL,2.28mmol),滴加完毕后于室温下搅拌2h,TLC监测反应完全。接着加入冰水进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,再用无水硫酸钠进行干燥、过滤,直接旋转蒸发浓缩溶液得到所需产物。最终得到493mg白色固体化合物136,产率为92.67%。 1H NMR(400MHz,DMSO)δ7.83(d,J=1.3Hz,1H),7.50(d,J=1.3Hz,1H),5.90(s,1H),5.45(d,J=3.9Hz,1H),4.43(d,J=7.5Hz,1H),3.19(s,3H),1.03(s,3H),0.98(s,3H).
1-((3S,10R,13S)-3-叠氮基-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-4-氯-1H-咪唑(137)
将化合物136(0.486g,1.08mmol)溶于超干二氯甲烷中于室温下搅拌,然后用塑料加液器依次加入叠氮基三甲基硅烷(0.5mL,3.73mmol)和三氟化硼乙醚(0.7mL,4.84mmol),滴加完毕后于室温下搅拌反应过夜,TLC监测反应完全。接着加入饱和碳酸氢钠溶液进行淬灭,紧接着用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(5-10%乙酸乙酯/石油醚),得到所需产物。最终得到330mg白色固体化合物137,产率为76.96%。 1H NMR(400MHz,CDCl 3)δ7.47(s,1H),6.94(d,J=1.4Hz,1H),5.71(s,1H),5.42(d,J=4.6Hz,1H),3.21(d,J=4.1Hz,1H),1.05(s,3H),0.99(s,3H).
(3S,10R,13S)-17-(4-氯-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-胺(138)
将化合物137(330mg,0.83mmol)溶于10mL四氢呋喃和5mL水中于室温下搅拌,然后加入称量好的三苯基膦(326mg,1.24mmol),接着将温度缓慢升温至60℃,于该温度下搅拌过夜,TLC监测反应完全。然后旋转蒸发部分溶剂,加入20mL乙酸乙酯溶解,并缓慢加入2M盐酸将溶液pH调为2左右,进行分液并收集水相,紧接着加入2M氢氧化钠溶液调pH为弱碱性,此时有大量白色固体析出,分别用少量乙酸乙酯萃取水相三次,收集合并有机相,经无水硫酸钠干燥后旋转蒸发除去溶剂得295mg白色固体化合物138,收率95.65%。 1H NMR(400MHz,CDCl 3)δ7.48(d,J=1.5Hz,1H),6.96(d,J=1.5Hz,1H),5.72(dd,J=3.1,1.7Hz,1H),5.37(d,J=5.3Hz,1H),2.72–2.61(m,1H),1.06(s,3H),1.01(s,3H).
N-((3S,10R,13S)-17-(4-氯-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基)哒嗪-4-甲酰胺(化合物30)
投入化合物138(50mg,0.136mmol),得到49mg浅黄色固体化合物30,产率为:76.23%。 1H NMR(500MHz,CDCl 3)δ9.53(dd,J=2.0,1.2Hz,1H),9.42(dd,J=5.3,1.0Hz,1H),8.84(d,J=7.8Hz,1H),7.99(dd,J=5.3,2.3Hz,1H),7.83(d,J=1.4Hz,1H),7.53(d,J=1.4Hz,1H),5.90(d,J=1.2Hz,1H),5.38(d,J=4.8Hz,1H),3.73(ddd,J=15.8,12.0,6.1Hz,1H),1.05(s,3H),0.98(s,3H). 13C NMR(126MHz,CDCl 3)δ167.45,157.31,154.05,152.42,146.20,141.17,136.99,129.36,125.92,124.30,122.78,120.16,61.01,55.08,54.98,50.66,43.34,42.63,41.58,38.90,35.62,34.84,34.43,33.04,25.32,24.14,20.70.HRMS(ESI)(M+H) +m/z计算值C 27H 33ClN 5O 478.2368,实测值:478.2365.
实施例31:
4-氟-N-((3S,10R,13S)-17-(4-氯-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基)苯甲酰胺(化合物31)
Figure PCTCN2023071074-appb-000046
投入化合物138(50mg,0.136mmol),得到56mg白色固体化合物31,产率为:84.3%。 1H NMR(500MHz,CDCl 3)δ8.29(d,J=7.9Hz,1H),7.92(dd,J=8.5,5.6Hz,2H),7.81(s,1H),7.47(d,J=1.1Hz,1H),7.28(t,J=8.8Hz,2H),5.89(s,1H),5.35(d,J=3.4Hz,1H),3.71(dd,J=7.6,4.0Hz,1H),1.04(s,3H),0.97(s,3H). 13C NMR(126MHz,CDCl 3)δ169.44,152.41,146.41,140.01,135.00,133.85,125.55,124.18,120.36,120.19,119.56,61.02,55.01,54.72,50.63,43.62,42.76,41.60,38.92,35.63,34.86,34.42,33.26,25.33,24.13,20.68.HRMS(ESI)(M+H) +m/z计算值C 29H 34ClFN 3O 494.2369,实测值:494.2366.
实施例32:
N-((3S,10R,13S)-17-(4-氯-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基)-4-氰基苯甲酰胺(化合物32)
Figure PCTCN2023071074-appb-000047
投入化合物138(50mg,0.136mmol),得到47mg浅黄色固体化合物32,产率为:69.75%。 1H NMR(600MHz,DMSO)δ8.52(d,J=7.9Hz,1H),7.97(d,J=8.3Hz,2H),7.92(d,J=8.3Hz,2H),7.79(d,J=0.9Hz,1H),7.46(d,J=0.8Hz,1H),5.86(s,1H),5.33(d,J=3.7Hz,1H),3.72–3.65(m,1H),1.00(s,3H),0.94(s,3H). 13C NMR(151MHz,DMSO)δ163.85,147.28,141.07,138.55,134.79,132.36,128.56,128.09,120.43,118.90,114.34,113.45,55.79,49.75,49.69,45.41,38.26,37.48,36.36,33.67,30.41,29.61,29.20,27.92,20.07,18.92,15.47.HRMS(ESI)(M+H) +m/z计算值C 30H 34ClN 4O 501.2416,实测值:501.2411.
实施例33:N-((3S,10R,13S)-17-(4-甲基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基)-4-氟苯甲酰胺(化合物33)
Figure PCTCN2023071074-appb-000048
投入化合物67(25mg,0.071mmol),得到25mg白色固体化合物33,产率为:74.23%。 1H NMR(500MHz,DMSO)δ8.30(d,J=7.9Hz,1H),7.95–7.89(m,2H),7.69(s,1H),7.28(t,J=8.7Hz,2H),7.05(s,1H),5.74(s,1H),5.37(s,1H),3.72(d,J=7.2Hz,1H),2.11(s,3H),1.05(s,3H),0.98(s,3H). 13C NMR(126MHz,DMSO)δ164.31,147.82,141.28,137.25,134.77,131.20,129.82,129.75,120.35,115.24,114.94,114.44,55.79,49.79,49.47,45.36,38.38,37.53,36.36,34.06,30.44,29.65,29.12,28.01,20.15,18.90,15.66,13.41.HRMS(ESI)(M+H) +m/z计算值C 30H 37FN 3O 474.2915,实测值:474.2923.
实施例34:N-((3S,10R,13S)-17-(4-甲基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基)-4-硝基苯甲酰胺(化合物34)
Figure PCTCN2023071074-appb-000049
投入化合物67(25mg,0.071mmol),得到25mg淡黄色固体化合物34,产率为:70.38%。 1H NMR(500MHz,DMSO)δ8.64(d,J=8.0Hz,1H),8.31(d,J=8.8Hz,2H),8.08(d,J=8.9Hz,2H),7.69(s,1H),7.04(s,1H),5.73(s,1H),5.38(d,J=4.6Hz,1H),3.79–3.69(m,1H),2.11(s,3H),1.05(s,3H),0.98(s,3H). 13C NMR(126MHz,DMSO)δ163.69,148.90,148.01,141.09,140.37,137.39,134.73,128.69,123.40,120.57,116.11,114.40,109.50,55.74,49.77,45.35,38.20,37.52,36.40,34.06,30.43,29.64,29.19,27.88,20.14,18.88,15.59,13.42.HRMS(ESI)(M+H) +m/z计算值C 30H 37N 4O 3 501.286,实测值:501.2866.
实施例35:N-((3S,10R,13S)-17-(4-甲基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基)-4-(甲砜基)苯甲酰胺(化合物35)
Figure PCTCN2023071074-appb-000050
投入化合物67(25mg,0.071mmol),得到28mg白色固体化合物35,产率为:73.96%。 1H NMR(500MHz,DMSO)δ8.57(d,J=8.0Hz,1H),8.08(d,J=8.5Hz,2H),8.02(d,J=8.4Hz,2H),7.71(s,1H),7.06(s,1H),5.74(s,1H),5.38(d,J=4.4Hz,1H),3.80–3.69(m,1H),2.11(s,3H),1.06(s,3H),0.98(s,3H). 13C NMR(126MHz,DMSO)δ164.07,147.93,142.78,141.21,139.06,137.21,134.76,128.18,126.93,120.43,116.16,114.45,55.79,49.78,49.68,45.36,43.32,38.24,37.48,36.36,34.04,30.44,29.65,29.07,27.92,20.15,18.90,15.60,13.37.HRMS(ESI)(M+H) +m/z计算值C 31H 40N 3OS 534.2785,实测值:534.2786.
实施例36:N-((3S,10R,13S)-17-(4-甲基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基)-4-氰基苯甲酰胺(化合物36)
Figure PCTCN2023071074-appb-000051
投入化合物67(25mg,0.071mmol),得到25mg白色固体化合物36,产率为:73.31%。 1H NMR(500MHz,DMSO)δ8.56(d,J=7.9Hz,1H),8.01(d,J=8.4Hz,2H),7.95(d,J=8.4Hz,2H),7.71(s,1H),7.05(s,1H),5.74(s,1H),5.37(d,J=4.4Hz,1H),3.78–3.68(m,1H),2.11(s,3H),1.05(s,3H),0.98(s,3H). 13C NMR(126MHz,DMSO)δ163.93,147.91,140.99,138.72,137.21,134.72,132.31,128.05,120.48,116.16,114.43,113.51,55.78,49.77,49.68,45.36,38.22,37.47,36.35,34.11,30.43,29.69,29.12,27.89,20.21,18.88,15.60,13.39.HRMS(ESI)(M+H) +m/z计算值C 31H 37N 4O 481.2962,实测值:481.2959.
实施例37:N-((3S,10R,13S)-17-(4-甲基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基)-2,4-二氟苯甲酰胺(化合物37)
Figure PCTCN2023071074-appb-000052
投入化合物67(25mg,0.071mmol),得到25mg淡黄色固体化合物37,产率为:71.67%。 1H NMR(500MHz,DMSO)δ8.23(d,J=7.7Hz,1H),7.69(s,1H),7.64(dt,J=15.2,7.8Hz,1H),7.32(t,J=9.9Hz,1H),7.15(t,J=7.6Hz,1H),5.74(s,1H),5.38(d,J=3.8Hz,1H),3.67(dd,J=7.8,3.9Hz,1H),2.11(s,3H),1.03(s,3H),0.98(s,3H). 13C NMR(126MHz,DMSO)δ162.59,148.46,141.64,137.69,135.30,132.22,120.85,116.72,114.98,112.19,112.08,105.07,104.85,104.67,56.38,50.22,50.15,45.94,38.69,37.89,36.79,34.61,30.98,30.06,29.68,28.35,20.57,19.47,16.01,13.85.HRMS(ESI)(M+H) +m/z计算值C 30H 36F 2N 3O 492.2821,实测值:492.2829.
实施例38:N-((3S,10R,13S)-17-(4-甲基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基)-2,4-二氟苯甲酰胺盐酸盐(化合物38)
Figure PCTCN2023071074-appb-000053
将化合物37(30mg,0.061mmol)放入烧瓶中,以二氧六环为溶剂,于室温下搅拌,然后加入2M氯化氢的二氧六环溶液,室温反应2h后,直接旋转蒸发掉溶剂,得到28mg白色固体化合物38,产率为:86.96%。
实施例39:
N-((3S,10R,13S)-17-(4-甲基-1H-咪唑-1-基)-10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基)-2,4-二氟苯甲酰胺甲磺酸盐(化合物39)
Figure PCTCN2023071074-appb-000054
将化合物37(30mg,0.061mmol)放入烧瓶中,以二氯甲烷为溶剂,于室温下搅拌,然后缓慢滴加少量甲磺酸,室温下搅拌过夜后发现有白色固体析出,用布氏漏斗进行过滤,并用乙酸乙酯冲洗滤饼几次,将滤饼于真空干燥箱干燥,最终得到30mg白色固体化合物39,产率为:83.3%。
实施例40:N-((3S,10R,13S)-10,13-二甲基-17-(吡啶-3-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲基-3-基)环丙磺酰胺(化合物40)
Figure PCTCN2023071074-appb-000055
将化合物47(60mg,0.172mmol)和4-二甲氨基吡啶(2mg,0.015mmol)都装入烧瓶中,加入超干二氯甲烷作为溶剂于冰浴下搅拌,然后加入三乙胺(60μL,0.42mmol)搅拌一段时间,最后加入环丙基磺酰氯(30μL,0.21mmol)于室温下搅拌4h,TLC监测反应完全。反应完毕后,用二氯甲烷和水进行萃取,收集有机相,然后用饱和食盐水洗涤两次,用无水硫酸钠干燥后,过滤,向体系中加入硅胶浓缩并通过自动过柱机进行纯化(30-40%乙酸乙酯/石油醚),得到所需产物。最终得到51mg白色固体化合物40,产率为65.5%。 1H NMR(400MHz,DMSO)δ8.59(d,J=1.8Hz,1H),8.44(dd,J=4.7,1.3Hz,1H),7.77(dd,J=8.0,1.8Hz,1H),7.34(dd,J=7.9,4.8Hz,1H),7.10(d,J=8.0Hz,1H),6.12(s,1H),5.37(d,J=4.6Hz,1H),3.01(d,J=7.0Hz,1H),1.02(s,3H),1.00(s,3H). 13C NMR(126MHz,DMSO)δ151.48,148.27,147.62,141.56,133.76,132.59,129.46,123.83,121.22,57.47,53.88,50.17,47.11,37.95,36.62,35.11,31.75,31.36,31.13,30.36,30.25,20.82,19.36,16.71,5.48.HRMS(ESI)(M+H) +m/z计算值C 27H 37N 2O 2S 453.257,实测值:453.258.
实施例41:
N-((3S,10R,13S)-10,13-二甲基-17-(4-甲基-1H-咪唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基)吗啉-4-磺酰胺(化合物41)
Figure PCTCN2023071074-appb-000056
投入化合物67(50mg,0.142mmol),得到46mg白色固体化合物41,产率为:64.7%。 1H NMR(500MHz,DMSO)δ7.68(s,1H),7.34(d,J=7.3Hz,1H),7.04(s,1H),5.73(s,1H),5.36(d,J=4.2Hz,1H),3.66–3.60(m,4H),2.99(m,4H),2.93(m,1H),2.10(s,3H),0.99(s,3H),0.97(s,3H). 13C NMR(126MHz,DMSO)δ148.33,141.53,137.80,135.30,121.11,116.73,114.87,65.96,56.27,54.26,50.20,46.36,45.85,37.89,36.66,34.49,32.00,30.88,30.09,29.90,29.80,29.60,29.19,20.62,19.31,16.09,13.92.HRMS(ESI)(M+H) +m/z计算值C 27H 41N 4O 3S501.2894,实测值:501.2904.
实施例42:
N-((3R,10R,13S)-10,13-二甲基-17-(4-甲基-1H-咪唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基)-4-氟苯甲酰胺(化合物42)
Figure PCTCN2023071074-appb-000057
1-((3R,10R,13S)-3-叠氮基10,13-二甲基-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-17-基)-4-甲基-1H-咪唑(134)
将化合物65(1.5g,3.48mmol)和15-冠-5(77mg,0.35mmol)溶于无水DMF中,然后加入叠氮化钠(0.68g,10.44mmol),加入完毕后将反应体系缓慢升温至80℃,于该温度下搅拌反应18小时,TLC监测反应完全。接着将反应体系冷却至室温,加入一定量冰水,用二氯甲烷进行萃取,有机相用饱和盐水洗涤两次,经无水硫酸钠干燥后,过滤,向有机相加入硅胶浓缩并通过自动过柱机进行纯化(15-30%乙酸乙酯/石油醚),得到所需产物。最终得到0.63g淡黄色固体134,产率为48.09%。 1H NMR(400MHz,DMSO)δ8.06(s,1H),6.84(s,1H),5.92–5.88(m,1H),5.42(d,J=4.9Hz,1H),3.27–3.17(m,1H),2.39(s,3H),1.05(s,3H),1.01(s,3H).
(3R,10R,13S)-10,13-二甲基-17-(4-甲基-1H-咪唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二烷基-1H-环戊[a]菲蒽-3-胺(135)
将化合物134(2g,5.3mmol)溶于16mL四氢呋喃和8mL水中于室温下搅拌,然后加入称量好的三苯基膦(2.08g,7.95mmol),接着将温度缓慢升温至60℃,于该温度下搅拌过夜,TLC监测反应完全。然后旋转蒸发部分溶剂,加入20mL二氯甲烷溶解,并缓慢加入2M盐酸将溶液PH调为2左右,进行分液并收集水相,紧接着加入2M氢氧化钠溶液调PH为弱 碱性,此时有大量白色固体析出,分别用少量二氯甲烷萃取水相三次,收集合并有机相,经无水硫酸钠干燥后旋转蒸发除去溶剂得664mg白色固体135,收率36.08%。 1H NMR(400MHz,CDCl 3)δ7.53(s,1H),6.78(s,1H),5.63(dd,J=3.0,1.7Hz,1H),5.37(d,J=5.2Hz,1H),2.25(s,3H),1.05(s,3H),1.01(s,3H).
N-((3R,10R,13S)-10,13-二甲基-17-(4-甲基-1H-咪唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基)-4-氟苯甲酰胺(化合物42)
投入化合物135(100mg,0.284mmol),得到86mg白色固体化合物42,产率为:63.7%。 1H NMR(400MHz,DMSO)δ8.98(d,J=1.7Hz,1H),8.67(dd,J=4.8,1.5Hz,1H),8.49(d,J=7.9Hz,1H),8.18–8.14(m,1H),7.73(s,1H),7.48(dd,J=7.9,4.9Hz,1H),7.05(s,1H),5.73(s,1H),5.36(d,J=4.0Hz,1H),3.77–3.65(m,1H),2.09(s,3H),1.03(s,3H),0.96(s,3H). 13C NMR(126MHz,DMSO)δ163.90,151.73,148.40,141.15,137.05,134.95,134.73,123.31,120.51,116.43,114.56,55.84,49.81,49.50,45.37,38.36,37.53,36.40,34.09,30.38,29.68,29.17,28.01,20.13,18.95,15.64,13.35.HRMS(ESI)(M+H) +m/z计算值C 30H 37FN 3O 474.2915,实测值:474.2916.
实施例43:
N-((3R,10R,13S)-10,13-二甲基-17-(4-甲基-1H-咪唑-1-基)-2,3,4,7,8,9,10,11,12,13,14,15-十二氢-1H-环戊二烯并[a]菲-3-基)-2,4-二氟苯甲酰胺(化合物43)
Figure PCTCN2023071074-appb-000058
投入化合物135(100mg,0.028mmol),得到94mg淡黄色固体化合物43,产率为:
67.14%。 1H NMR(500MHz,DMSO)δ8.20(d,J=7.9Hz,1H),7.67(d,J=1.1Hz,1H),7.63(td,J=8.5,6.8Hz,1H),7.34–7.28(m,1H),7.14(td,J=8.4,2.1Hz,1H),7.03(s,1H),5.73–5.71(m,1H),5.37(d,J=4.8Hz,1H),3.70–3.61(m,1H),2.09(d,J=0.4Hz,3H),1.01(s,3H),0.96(s,3H). 13C NMR(126MHz,DMSO)δ162.42,148.46,141.53,137.82,135.16,132.06,120.97,116.59,114.89,112.20,111.96,104.98,104.93,104.72,56.29,50.27,50.03,45.85,38.74,37.93,36.85,34.61,30.93,30.05,29.51,28.49,20.65,19.39,16.11,13.94.HRMS(ESI)(M+H) +m/z计算值C 30H 36F 2N 3O 492.2821,实测值:492.2837.
生物活性测试
通过一系列体内和体外活性测试来证明本发明的甾体化合物可适用于治疗AR信号通路介导的疾病。体外活性测试包括:野生型AR拮抗活性测试、突变型AR拮抗活性测试、AR降解活性测试和细胞增殖抑制活性测试;体内活性测试为雄性激素依赖性器官发育(Hershberger)测试以及代谢等其他成药性试验。
1.野生型AR拮抗活性测试
将HEK293细胞在含10%胎牛血清(FBS)的DMEM中于5%CO 2,37℃培养。接着用胰蛋白酶消化细胞并计数。然后用含有5ng雄激素受体克隆,100ng pGL4.36载体和315nL fugene的opti-MEM制备10μL/孔转染溶液。将细胞悬浮液用不含苯酚红的DMEM稀释,并添加10%透析FBS和1%GlutaMax,并与转染溶液混合以达到444,444细胞/毫升。将该稀释的细胞悬浮液以90μL(40,000个细胞/孔)的体积接种到96孔板中,然后将板孵育24小时。接着加入10μL药物溶液(包括梯度稀释的化合物或DMSO),然后将板孵育30分钟。将10nL DHT(最终浓度为1.5nM)添加到平板的每个孔中,然后将平板在37℃,5%CO 2下孵育。孵育24小时后,将100μL Steady-Glo添加到板的每个孔中,在室温下摇动板20分钟,并在Envision上读取板。IC 50定义为引起50%荧光素酶表达抑制的药物浓度,由剂量反应曲线确定。
以第二代AR拮抗剂恩杂鲁胺为阳性对照药,代表性化合物的AR拮抗活性如表1所示:
表1.代表性化合物的AR拮抗活性
Figure PCTCN2023071074-appb-000059
表1测试结果表明,本发明化合物具有优异的AR拮抗活性,能拮抗/阻断AR受体信号通路,其代表性化合物34、33、37、13、14的AR拮抗活性分别比对照恩杂鲁胺提高了6.2,3.6,1.9,1.8,1.8倍。
2.体外AR降解活性测试
将LNCaP细胞(前列腺癌细胞)在添加有10%胎牛血清(FBS)的RPMI-1640中于5%CO 2,37℃培养。然后用胰蛋白酶消化细胞并使用自动细胞计数器对细胞密度进行计数。将细胞悬浮液在生长培养基中稀释至所需密度。接着将该细胞悬浮液以100μL的体积接种到96孔板中,然后将板在37℃,5%CO 2下孵育24小时。然后用DMSO将化合物稀释至最终浓度的200倍或者用培养基将化合物稀释至最终浓度的3倍,将50μL化合物溶液转移到96孔板中,在37℃下孵育24小时。孵育24小时后,用DPBS洗涤细胞板3次,向每个孔中加入100μL1x裂解缓冲液,在冰上放置30分钟,收集上清液。对细胞裂解液样品的蛋白进行定量定量,然后稀释至所需的浓度。将100μL细胞裂解物样品加到适当的孔中,用胶带密封并用力按压在微孔顶部,在37℃下孵育平板2小时。然后弃板内容物,用1x洗涤缓冲液洗涤4次,每个孔每次200μL。接着加入100μL重构的检测抗体,用胶带密封并孵育平板在37℃下放置1小时。随后重复抽吸/洗涤步骤,向每个孔添加100μL的重组HRP-Linked次级抗体,用胶带密封并在37℃下孵育平板30分钟。接着重复抽吸/洗涤步骤,向每个孔中添加100μL底物溶液,在37℃下孵育10分钟,最后向每个孔中添加100μL终止液,轻轻敲打板以确保彻底混合,记录OD450nm。
降解率(%)=(OD450_max-OD450_sample)/(OD450_max-OD450_min)×100,用GraphPad Prism 5软件作图,SPSS软件计算IC 50
由于恩杂鲁胺仅具有AR拮抗活性不具有AR降解活性,而与本发明化合物具有相同甾体结构的Galeterone(CAS:851983-85-2)曾进入临床研究治疗CRPC。Galeterone具有CYP17A1酶抑制活性、AR降解和拮抗三重作用机制(J.Med.Chem.2015,58,2077-2087)。于是以Galeterone为阳性对照药,测试了本发明代表性化合物的AR降解活性,结果如表2所示:
表2.代表性化合物的AR降解活性
Figure PCTCN2023071074-appb-000060
表2测试结果表明,本发明的甾体化合物展现出优异的体外AR降解活性,且明显优于对照药Galeterone,有2.4-8.1倍不同程度的大幅提升。其中化合物33、36、35、37相比于Galeterone分别提高了8.1,7.6,6.7,6.2倍。
3.体外LNCaP(激素敏感型前列腺癌)细胞增殖抑制测试
将LNCaP细胞在添加有10%胎牛血清(FBS)的RPMI-1640中于5%CO 2,37℃培养。然后用胰蛋白酶消化细胞并使用自动细胞计数器对细胞密度进行计数。将细胞悬浮液在生长培养基中稀释至所需密度。接着将该细胞悬浮液以100μL的体积接种到96孔板中,然后将板在37℃,5%CO 2下孵育24小时。向每个孔中加入10μL等分试样的药物溶液(包括3倍浓度梯度稀释的化合物或DMSO),并在37℃,5%CO 2培养箱中培养6天。测量前将测定板平衡至室温。在每个孔中加入40μL
Figure PCTCN2023071074-appb-000061
试剂。在轨道振荡器上混合2分钟,以诱导细胞裂解。在室温下孵育60分钟以稳定发光信号。并读取Envision板上的板。IC 50定义为引起50%细胞生长抑制的药物浓度,由剂量反应曲线确定。
以目前临床用于治疗晚期前列腺癌的阿比特龙和恩杂鲁胺为阳性对照药,测定了本发明代表性化合物的抗LNCaP前列腺癌细胞增殖活性,结果如表3所示:
表3.代表性化合物的抗LNCaP细胞增殖活性
Figure PCTCN2023071074-appb-000062
Figure PCTCN2023071074-appb-000063
表3测试结果表明,本发明化合物展现出优异的抗前列腺癌细胞增殖活性(IC 50),其抗肿瘤活性明显优于阿比特龙,与后者相比其抗肿瘤活性有3.0-15.8倍的大幅提升;其中化合物14、17、37、18相比于阿比特龙分别提高了15.8,8.8,8.6,7.9倍。
本专利化合物相较于恩杂鲁胺最大的特点是其抗肿瘤效力(最大抑制活性)大幅提高2倍左右,归因于本发明化合物具有强大的AR降解/下调能力,而恩杂鲁胺不具有AR降解活性的原因。化合物14、16-19、37的抗肿瘤活性和抗肿瘤效力均明显优于恩杂鲁胺,而化合物13、24和33的抗肿瘤活性和恩杂鲁胺相当但抗肿瘤效力均明显优于恩杂鲁胺。
由此可见,本发明的甾体化合物具有明显优于现有AR拮抗剂或雄性激素合成酶抑制剂的抗肿瘤活性。
4.突变AR拮抗活性测试
一代AR拮抗剂如氟他胺,比卡鲁胺和二代AR拮抗剂恩杂鲁胺,阿帕他胺等临床治疗一段时间后,均会在AR配体结合域发生突变而导致获得性/继发性耐药。本发明化合物因为具有独特的降解/拮抗双功能作用,对各种突变的AR受体依然有很强拮抗活性,将会对临床上恩杂鲁胺等耐药的肿瘤患者依然有效。
将HEK293细胞在添加有10%FBS和1%GlutaMax的DMEM中于5%CO 2,37℃培养。转染前一天,将培养基更换为含有10%透析处理的FBS和1%GlutaMax的DMEM培养基。在OptiMEM中使用Lipofectamine2000将雄激素反应性报告基因构建体(pGL 4.36)编码AR突变体AR(F876L)、AR(T877A)或AR(W741L),室温放置15分钟。用细胞接种液稀释细胞悬液,将转染试剂转入其中至500000个细胞/mL。接着将90uL细胞悬液接种到检测板的每个孔中。第二天制备化合物:从8mM开始,用DMSO进行3倍连续稀释,总共8个点,然 后使用Echo将500nL转移到化合物板上。随后用40uL培养基将化合物稀释至终浓度10倍,将10uL转移至细胞板,置于37℃培养箱中30分钟。接着使用TECAN将10nL DHT最终浓度为10nM转移到检测板的每个孔中。培养24小时后,使用100uL Steady-Glo测定板并在Envision上读数。使用GraphPad Prism确定和分析数据。
对于W741L和T877A突变,以第二代AR拮抗剂恩杂鲁胺作为阳性对照,对于F876L突变,恩杂鲁胺表现为激动活性,测试结果如表4所示:
表4.代表性化合物对突变型AR的拮抗活性
Figure PCTCN2023071074-appb-000064
表4测试结果表明,本发明化合物对临床上出现的主要的突变型AR展现出优异的拮抗活性:对于W741L突变,化合物35相比于恩杂鲁胺活性提高了4.0倍;对于T877A突变,化合物33相比于恩杂鲁胺提高了1.4倍;对于第二代AR拮抗剂恩杂鲁胺和阿帕他胺耐药的F876L突变,本发明化合物都展现出优异的拮抗活性。这说明本发明化合物可以治疗现有一代和二代AR拮抗剂耐药的前列腺癌。
5.抗耐药细胞(22RV1)增殖活性
AR发生获得性/继发性耐药的另一种主要形式是表达AR-V7剪切变异体,在接受过恩杂鲁胺或阿比特龙治疗的患者中,约50%表达剪切变异体,这种AR剪切变异体的配体结合域完全消失,使得目前的所有AR拮抗剂不能结合到AR发挥作用,导致继发耐药或天然耐药失活。由于本发明甾体化合物具有优异的AR降解活性,同样可以降解AR剪切变异体,可以解决剪切变异体耐药的问题。
以所有上市的二代AR拮抗剂恩杂鲁胺、阿帕他胺和达罗他胺为对照,测试了本发明化合物抗表达AR-V7剪切变异体的22RV1前列腺癌细胞增殖活性,实验操作与LNCaP细胞基本相同,结果如表5所示,
表5.代表性化合物的抗22RV1细胞增殖活性
Figure PCTCN2023071074-appb-000065
表5测试结果表明,如预期的一样,恩杂鲁胺、阿帕他胺和达罗他胺对表达AR剪切变 异体的肿瘤细胞没有任何活性,而本发明的甾体化合物展现出优异的抗22RV1前列腺癌细胞的增殖活性,可以用于表达AR剪切变异体耐药患者的治疗。
综合上述实验1-5结果表明,对现有AR拮抗剂(一代和二代)和阿比特龙,无论敏感还是耐药的前列腺癌,对本发明化合物均具有很强的抗肿瘤活性,可用于初期激素敏感前列腺癌、CRPC以及耐药性CRPC等全阶段前列腺癌的治疗。这将对前列腺癌等与AR信号通路相关疾病提供前所未有的强大疗法。
6.本发明化合物体内代谢
将雄性SD大鼠随机分配为6组,每组3只,给药前1天禁食不禁水12~14h,然后将受试样品溶于5%DMSO+30%PEG400+65%(0.5%MC)的溶媒10mg/kg灌胃给药,给药后4h给食。然后分别在0,15,30min,1,2,4,6,8,24h通过眼眶取0.10mL血液,EDTAK 2抗凝。血液样本采集后置于冰上,并于30分钟之内离心分离血浆(离心条件:5000转/分钟,10分钟,4℃)。取血浆样品50.0μL(从冰箱-80℃中取出样品,室温自然溶化后涡旋30秒)至1.5mL离心管中,加入500μL内标溶液(甲醇(TEDIA,HPLC grade),乙腈(TEDIA,HPLC grade),甲酸(FA,ACROS ORGANICS,HPLC grade),水为实验室自制超纯水(100.0ng·mL -1),涡旋60秒后离心3分钟(离心力12000rpm);取上清液100μL移至装有等体积水的96孔进样板上,振荡混匀后LC-MS/MS进样分析,进样量为10μL。数据采集及控制系统软件为Analyst1.5.1软件(Applied Biosystem)。图谱样品峰积分方式为自动积分;采用样品峰面积和内标峰面积的比值作为指标,和样品的浓度进行回归。
按上述常规方法测试了本发明代表性化合物10mg/kg灌胃给药,在SD雄性大鼠体内相关药代参数,考察了本发明化合物在大鼠体内药代特征。测试结果如表6所示:
表6.大鼠体内药代动力学活性测试结果(PO:10mg/kg)
Figure PCTCN2023071074-appb-000066
大鼠的体内药代动力学实验表明,相比于甾体化合物阿比特龙,该类化合物展现出优异的药代动力学特性和成药性。相比于阿比特龙(ABT)C max提高了32-133倍,药物暴露量提高了138倍以上。代谢性质明显优于阿比特龙,具有很理性的成药性质。
7.体内抗雄性激素活性
使用Hershberger实验来检测本发明化合物体内抗雄性激素信号转导的活性。该测定中,在存在0.4mg/kg丙酸睾酮(TP)的情况下给青春期前阉割的雄性Sprague-Dawley大鼠施用本发明所述的化合物(14,33和37),并测量雄性激素依赖性器官的重量。继续给药10天,并在最后一次给药后24小时进行测量。通过与去势对照比较评估AR的拮抗程度和随后的器 官生长抑制。测试化合物口服给药20mg/kg QD并通过2个雄性激素敏感器官(ASO):具有液体和凝固腺体的精囊(SVCG)和腹侧前列腺(VP)的重量变化进行终点评估。以恩杂鲁胺(ENZ)为阳性对照,测试结果如下图2所示。
体内Hershberger实验表明,化合物14,33和37与去势组相比能够明显的抑制雄性激素依赖性器官的生长,且都展现出与恩杂鲁胺相当的活性。证明本发明化合物在体内依然能够有效地拮抗雄激素受体信号通路,用于治疗前列腺癌。
8.本发明化合物抑制膜丝氨酸蛋白酶2(TMPRSS2)和血管紧张素转化酶2(ACE2)表达活性
为了验证AR拮抗剂或AR降解剂是否能够有效的下调TMPRSS2和ACE2两个蛋白的表达,用于新冠肺炎的治疗,采用A549肺癌细胞,收集对数生长期细胞,计数,用完全培养基重新悬浮细胞,调整细胞浓度至3×10 5个/孔,接种12孔板中,每孔加1mL细胞培养基。细胞在37℃,100%相对湿度,5%CO 2培养箱中培养24小时。然后将含A549细胞的培养皿中的培养基丢弃,用PBS洗一次。将本专利化合物和阳性药普克鲁胺(Proxalutamide)(浓度为10μM),1nM DHT,与培养基混匀后,加入培养皿中,再置于37℃,100%相对湿度,5%CO 2培养箱中分别孵育48h。48h后,收集细胞,按照RNA提取试剂盒提取A549细胞中RNA。根据逆转录试剂盒说明书逆转录得到cDNA。qPCR法检测不同候选化合物对A549细胞细胞中ACE2蛋白和TMPRSS2蛋白的mRNA表达量的影响。测试结果如表7所示。
表7.化合物在A549细胞中ACE2蛋白和TMPRSS2蛋白的mRNA表达量
Figure PCTCN2023071074-appb-000067
表7测试结果表明,在A549细胞中,化合物21和35能够显著下调ACE2和TMPRSS2蛋白的表达,且优于对照药普克鲁胺。体外蛋白表达实验证实本发明化合物能够有效抑制AR-TMPRSS2/ACE2这条信号通路,能够用于新冠肺炎患者的治疗。
上述所有测试结果表明,本发明化合物将会是同时具有AR拮抗和降解双重作用机制、抗肿瘤活性更强的新一代抗前列腺癌药物,相比于单功能AR拮抗剂或雄性激素合成酶抑制剂展现出更好的疗效,对临床CRPC患者乃至整个阶段的前列腺癌患者会有更好的疗效。将来能够更好地用于与AR信号通路相关疾病的治疗。

Claims (10)

  1. 一种通式(I)所示的化合物,或其对映异构体、非对映异构体、立体异构体、前药、氘代物、水合物、溶剂化物、外消旋体或其药学上可接受的盐,
    Figure PCTCN2023071074-appb-100001
    式中,A为
    Figure PCTCN2023071074-appb-100002
    -SO-或者C1-C3亚烷基;
    B为氢、取代或未取代的C 1-6烷基、取代或未取代的C 3-8环烷基、取代或未取代的4-8元杂环烷基、取代或未取代的C 6-10芳基、取代或未取代的5-10元杂芳基;
    X选自:取代或未取代的5-10元杂芳基、取代或未取代的4-8元杂环烷基;
    所述各取代独立地是指被选自下组的一个或多个基团取代:氘、羟基、羧基、氨基、巯基、C 1-6烷基、C 1-6烷氧基、砜基、卤素、氰基、NO 2、C 1-6卤代烷基、-SO-C 1-6烷基、-SO 2-C 1-6烷基、-CONH-C 1-6烷基、-NHCO-C 1-6烷基、C 3-6环烷基;
    所述杂环烷基、杂芳基的杂原子选自:O、N或S,杂原子的个数为1、2、3或4个。
  2. 如权利要求1所述的化合物,其特征在于,A为
    Figure PCTCN2023071074-appb-100003
    -SO-、-CH 2-、-CH 2CH 2-或-CH 2CH 2CH 2-。
  3. 如权利要求1所述的化合物,其特征在于,B为取代或未取代的C 1-4烷基、取代或未取代的C 3-6环烷基、取代或未取代的5-6元杂环烷基、取代或未取代的苯基、取代或未取代的5-7元杂芳基;所述取代是指被选自下组的1、2或3个基团取代:氘、羟基、羧基、氨基、巯基、C 1-4烷基、C 1-4烷氧基、砜基、F、Cl、Br、CN、NO 2、C 1-4卤代烷基、-SO-C 1-4烷基、-SO 2-C 1-4烷基、-CONH-C 1-4烷基、-NHCO-C 1-4烷基、C 3-6环烷基;所述杂环烷基、杂芳基的杂原子选自:O、N或S,杂原子的个数为1、2或3个。
  4. 如权利要求1所述的化合物,其特征在于,X选自:取代或未取代的5-9元杂芳基、取代或未取代的4-6元杂环烷基;所述取代是指被选自下组的1、2或3个基团取代:氘、羟基、羧基、氨基、巯基、C 1-4烷基、C 1-4烷氧基、砜基、F、Cl、Br、CN、NO 2、C 1-4卤代烷基、-SO-C 1-4烷基、-SO 2-C 1-4烷基、-CONH-C 1-4烷基、-NHCO-C 1-4烷基、C 3-6环烷基;
    所述杂环烷基、杂芳基的杂原子选自:O、N或S,杂原子的个数为1、2、3或4个。
  5. 如权利要求1所述的化合物,其特征在于,所述化合物或其药学上可接受的盐选自:
    Figure PCTCN2023071074-appb-100004
    Figure PCTCN2023071074-appb-100005
    Figure PCTCN2023071074-appb-100006
  6. 如权利要求1所述的化合物的制备方法,其特征在于,所述制备方法包括以下步骤:
    Figure PCTCN2023071074-appb-100007
    a)中间体I-1与甲磺酰氯反应得到中间体I-2;
    b)中间体I-2与叠氮基三甲基硅烷和三氟化硼乙醚反应得到中间体I-3;
    c)中间体I-3与四氢铝锂反应得到中间体I-4;
    d)中间体I-4与酰氯反应得到目标化合物I;或
    e)中间体I-4与羧酸发生缩合反应得到目标化合物I,
    各式中,X、A和B的定义如前所述。
  7. 如权利要求1所述的化合物的制备方法,其特征在于,化合物Ⅱ-1与硼酸或者硼酸酯进行Suzuki偶联反应得到所述中间体I-1,
    Figure PCTCN2023071074-appb-100008
    或者,所述中间体I-1的制备方法包括以下步骤:
    Figure PCTCN2023071074-appb-100009
    i)化合物Ⅱ-2发生加成消除反应得到化合物Ⅱ-3;
    ii)化合物Ⅱ-3脱除醛基得到化合物Ⅱ-4;
    iii)化合物Ⅱ-4水解得到中间体I-1,
    各式中,X的定义如前所述。
  8. 一种药物组合物,其特征在于,包含:如权利要求1所述的通式(I)所示的化合物,或其对映异构体、非对映异构体、立体异构体、前药、氘代物、水合物、溶剂化物、外消旋体或其药学上可接受的盐;和药学上可接受的载体。
  9. 如权利要求1所述的通式(I)所示的化合物,或其对映异构体、非对映异构体、立体异构体、前药、氘代物、水合物、溶剂化物、外消旋体或其药学上可接受的盐或权利要求8所述的药物组合物用途,其特征在于,用于制备预防和/或治疗与AR信号通路相关的疾病药物的药物。
  10. 如权利要求9所述的用途,其特征在于,所述与AR信号通路相关的疾病选自:前列腺癌、去势抵抗前列腺癌、乳腺癌、SARS-CoV-2感染性疾病、骨质疏松症、消化系统疾病。
PCT/CN2023/071074 2022-01-07 2023-01-06 甾体类化合物及制备方法和用途 WO2023131310A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210015953.XA CN116444599A (zh) 2022-01-07 2022-01-07 甾体类化合物及制备方法和用途
CN202210015953.X 2022-01-07

Publications (1)

Publication Number Publication Date
WO2023131310A1 true WO2023131310A1 (zh) 2023-07-13

Family

ID=87073263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071074 WO2023131310A1 (zh) 2022-01-07 2023-01-06 甾体类化合物及制备方法和用途

Country Status (2)

Country Link
CN (1) CN116444599A (zh)
WO (1) WO2023131310A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091299A2 (en) * 2009-02-05 2010-08-12 Tokai Pharmaceuticals Novel combination cancer therapies
WO2012083112A2 (en) * 2010-12-16 2012-06-21 Biomarin Pharmaceutical Inc. Cyp11b, cyp17, and/or cyp21 inhibitors
WO2013096907A1 (en) * 2011-12-22 2013-06-27 Tokai Pharmaceuticals, Inc. Methods and compositions for combination therapy using p13k/mtor inhibitors
WO2014153215A1 (en) * 2013-03-14 2014-09-25 University Of Maryland,Baltimore Office Of Technology Transfer Androgen receptor down-regulating agents and uses thereof
CN107365343A (zh) * 2016-05-12 2017-11-21 四川海思科制药有限公司 一种苯并咪唑雄甾衍生物及其制备方法和医药用途
CN108707177A (zh) * 2018-09-03 2018-10-26 中国药科大学 20-三氮唑基-20-羟基-孕甾衍生物及其制备方法和医药用途
WO2019160889A1 (en) * 2018-02-13 2019-08-22 Dana-Farber Cancer Institute, Inc. Cyclin-dependent kinase inhibitors and methods of use

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091299A2 (en) * 2009-02-05 2010-08-12 Tokai Pharmaceuticals Novel combination cancer therapies
WO2012083112A2 (en) * 2010-12-16 2012-06-21 Biomarin Pharmaceutical Inc. Cyp11b, cyp17, and/or cyp21 inhibitors
WO2013096907A1 (en) * 2011-12-22 2013-06-27 Tokai Pharmaceuticals, Inc. Methods and compositions for combination therapy using p13k/mtor inhibitors
WO2014153215A1 (en) * 2013-03-14 2014-09-25 University Of Maryland,Baltimore Office Of Technology Transfer Androgen receptor down-regulating agents and uses thereof
CN107365343A (zh) * 2016-05-12 2017-11-21 四川海思科制药有限公司 一种苯并咪唑雄甾衍生物及其制备方法和医药用途
WO2019160889A1 (en) * 2018-02-13 2019-08-22 Dana-Farber Cancer Institute, Inc. Cyclin-dependent kinase inhibitors and methods of use
CN108707177A (zh) * 2018-09-03 2018-10-26 中国药科大学 20-三氮唑基-20-羟基-孕甾衍生物及其制备方法和医药用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VINCENT C. O. NJAR, ANGELA M. H. BRODIE: "Discovery and Development of Galeterone (TOK-001 or VN/124-1) for the Treatment of All Stages of Prostate Cancer", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 58, no. 5, 12 March 2015 (2015-03-12), US , pages 2077 - 2087, XP055346419, ISSN: 0022-2623, DOI: 10.1021/jm501239f *

Also Published As

Publication number Publication date
CN116444599A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
WO2023046034A1 (zh) 一种含氮杂环化合物、其制备方法、其中间体及其应用
WO2020177653A1 (zh) 吡嗪类衍生物及其在抑制shp2中的应用
WO2018223909A1 (zh) 一种嵌合分子及其制备和应用
US8445491B2 (en) Wnt protein signalling inhibitors
EP2423208A1 (en) Pharmaceutically active compounds as Axl inhibitors
WO2020011246A1 (zh) 含苯环的化合物、其制备方法及应用
WO2021023233A1 (zh) Egfr蛋白降解剂及其抗肿瘤应用
IL155618A (en) Derivatives of indolyl malayamide as inhibitors of protein-kinase C
WO2017152874A1 (zh) 一种脲类化合物、其制备方法及其医药用途
WO2020211853A1 (zh) 新型egfr三突变抑制剂及其应用
WO2015180685A1 (zh) Alk激酶抑制剂及其制备方法和应用
CN110194770A (zh) 肽酰精氨酸脱亚胺酶抑制剂及其用途
WO2022012510A1 (zh) 一种作为btk抑制剂的化合物及其制备方法与用途
CN108863850B (zh) 联芳基类化合物及其制备方法和用途
WO2023016543A1 (zh) 脲类多靶点酪氨酸激酶抑制剂及其多种医药应用
WO2018145653A1 (zh) 联芳基类化合物及其制备方法和用途
KR102379959B1 (ko) 신규 2,4,6-트리치환된-s-트리아진 화합물, 그 제조방법 및 용도
WO2023131310A1 (zh) 甾体类化合物及制备方法和用途
TW202140427A (zh) 一種苯并氮雜環類化合物、其製備方法及用途
TW202126618A (zh) 磺基取代的聯芳基類化合物或其鹽及其製備方法和用途
WO2020200160A1 (zh) 一种含喹啉基化合物、药物组合物以及其用途
WO2022253152A1 (zh) 7-硝基-8-羟基喹啉衍生物、其制备方法及其医药用途
WO2023016530A1 (zh) 一类3,4-二氢-2H-苯并[b][1,4]噁嗪类化合物及其制备方法
WO2022161166A1 (zh) 靶向嵌合化合物、含其的药物组合物及其制备方法和用途
WO2022068815A1 (zh) Fxr小分子激动剂及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23737172

Country of ref document: EP

Kind code of ref document: A1