WO2023131021A1 - 功率控制方法、通信装置和通信系统 - Google Patents

功率控制方法、通信装置和通信系统 Download PDF

Info

Publication number
WO2023131021A1
WO2023131021A1 PCT/CN2022/142731 CN2022142731W WO2023131021A1 WO 2023131021 A1 WO2023131021 A1 WO 2023131021A1 CN 2022142731 W CN2022142731 W CN 2022142731W WO 2023131021 A1 WO2023131021 A1 WO 2023131021A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
condition
time
frequency resource
interference
Prior art date
Application number
PCT/CN2022/142731
Other languages
English (en)
French (fr)
Inventor
崔建明
陈卫
武哲
张健
刘智华
周全
李靖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023131021A1 publication Critical patent/WO2023131021A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/248TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where transmission power control commands are generated based on a path parameter

Definitions

  • the present application relates to the technical field of communications, and more specifically, to a power control method, a communications device, and a communications system.
  • the downlink is generally planned according to full power.
  • An increase in power will lead to an increase in interference.
  • the interfered party will also increase its power to fight against interference, resulting in a further increase in interference.
  • the benefits brought by high power are relatively small, and the utilization rate of power is relatively low, but the power consumption caused by high power is large. Therefore, how to reduce the power consumption of the network equipment as much as possible while ensuring the communication performance is an urgent problem to be solved.
  • Embodiments of the present application provide a power control method, a communication device, and a communication system, which can reduce power consumption of network devices as much as possible while ensuring communication performance.
  • a communication method including:
  • the centralized control node determines whether the first condition is satisfied; wherein, the first condition is that there is an overlapping first time-frequency resource between the time-frequency resource for sending the first beam by the first network device and the time-frequency resource for sending the second beam by the second network device resources, the ratio of the interference of the first beam to the second beam to the noise floor of the receiver is greater than the first threshold, and the ratio of the interference of the second beam to the first beam to the noise floor of the receiver is greater than the first threshold; when the first condition is satisfied In this case, the centralized control node sends first instruction information to the first network device, and sends second instruction information to the second network device, the first instruction information indicates to reduce the transmission power of the first beam in the first time-frequency resource, and the second instruction The information indicates to reduce the transmit power of the second beam on the first time-frequency resource.
  • the centralized control node when the first condition is satisfied, can respectively instruct the first network device and the second network device to reduce beam transmission power, so as to achieve the goal of energy saving.
  • the signal-to-interference-noise ratio will not change greatly, that is, the communication performance of the network device will basically not be lost.
  • the method further includes:
  • the centralized control node determines whether the second condition is satisfied; wherein, the second condition is that the third network device transmits the third beam in the first time-frequency resource, and the ratio of the interference of the first beam to the third beam to the noise floor of the receiver is greater than the first Threshold, the ratio of the interference of the third beam to the first beam to the noise floor of the receiver is less than or equal to the first threshold; when the second condition is met, the centralized control node sends the third indication information to the third network device, and the third The instruction information indicates to reduce the transmit power of the third beam on the first time-frequency resource.
  • a communication method including:
  • the centralized control node sends fourth instruction information to the first network device, and sends fifth instruction information to the second network device; wherein, the fourth instruction information indicates to reduce the beam transmission power of the first network device, and the fifth instruction information indicates to reduce the beam transmission power of the second network device.
  • the beam transmission power of the network device; the centralized control node determines whether the first condition is satisfied; wherein, the first condition is between the time-frequency resource for the first network device to send the first beam and the time-frequency resource for the second network device to send the second beam There are overlapping first time-frequency resources, the ratio of the interference of the first beam to the second beam to the noise floor of the receiver is greater than the first threshold, and the ratio of the interference of the second beam to the first beam to the noise floor of the receiver is greater than the first threshold ;
  • the centralized control node sends sixth instruction information to the first network device, and sends seventh instruction information to the second network device; wherein, the sixth instruction information indicates to increase the emission of the first beam Power, the seventh instruction information indicates to increase the transmit power of the second beam.
  • the centralized control node may first notify the network device to reduce the beam transmission power, and then notify the network device to increase the beam transmission power when the first condition is not met. That is to say, when the first condition is met, the network device will reduce beam transmission power, so as to achieve the goal of energy saving. On the other hand, since both network devices reduce beam transmission power, the signal-to-interference-noise ratio will not change greatly, and the communication performance of the network devices will basically not be lost.
  • the method further includes:
  • the centralized control node sends eighth instruction information to the third network device, the eighth instruction information indicates to reduce the beam transmission power of the third network device; the centralized control node determines whether the second condition is met; wherein the second condition is that the third network device is in The first time-frequency resource transmits the third beam, the ratio of the interference of the first beam to the third beam to the noise floor of the receiver is greater than the first threshold, and the ratio of the interference of the third beam to the first beam to the noise floor of the receiver is less than or equal to The first threshold; when the second condition is not satisfied, the centralized control node sends ninth indication information to the third network device, where the ninth indication information indicates to increase the transmit power of the third beam.
  • the second beam generates the first interference to the first beam
  • the fourth beam sent by the fourth network device generates the second interference to the first beam
  • the ratio of the interference of the first beam to the fourth beam to the noise floor of the receiver is less than or equal to the first A threshold
  • the ratio of the interference of the second beam to the first beam and the noise floor of the receiver is greater than the first threshold, including:
  • a ratio of the first interference to the sum of the receiver noise floor plus the second interference is greater than the first threshold.
  • the method further includes:
  • the centralized control node receives first information from the first network device, and the first information indicates that the first network device sends the time-frequency resource of the first beam; the centralized control node receives second information from the second network device, and the second information indicates that the second network The device sends the time-frequency resource of the second beam.
  • the method further includes:
  • the centralized control node sends first configuration information to the first network device, and the first configuration information instructs the first network device to send the time-frequency resource of the first beam; the centralized control node sends second configuration information to the second network device, and the second configuration information Instructing the second network device to send the time-frequency resource of the second beam.
  • the method further includes:
  • the centralized control node determines a first decrease in transmit power of the first beam on the first time-frequency resource, and a second decrease in transmit power of the second beam on the first time-frequency resource.
  • the first reduction range is the same as the second reduction range.
  • a communication method including:
  • the first network device receives first instruction information from the centralized control node, and the first instruction information indicates to reduce the transmission power of the first beam on the first time-frequency resource; the first network device reduces the transmission power of the first beam on the first time-frequency resource according to the first instruction information.
  • the transmit power of the time-frequency resource wherein, the first indication information is sent when the first condition is met; the first condition is that the time-frequency resource for the first network device to send the first beam is the same as the time-frequency resource for the second network device to send the second beam.
  • the first time-frequency resource that overlaps between the time-frequency resources, the ratio of the interference of the first beam to the second beam to the receiver noise floor is greater than the first threshold, and the ratio of the interference of the second beam to the first beam to the receiver noise floor The ratio is greater than a first threshold.
  • a communication method including:
  • the first network device receives the fourth instruction information from the centralized control node, and the fourth instruction information indicates to reduce the beam transmission power of the first network device; the first network device receives the sixth instruction information from the centralized control node, and the sixth instruction information indicates to increase The transmit power of the first beam; the first network device increases the transmit power of the first beam according to the sixth indication information; wherein, the sixth indication information is sent when the first condition is not satisfied; the first condition is the first
  • the ratio of the interference of the first beam to the second beam to the noise floor of the receiver is the first time-frequency resource that overlaps between the time-frequency resource that the network device transmits the first beam and the time-frequency resource that the second network device transmits the second beam is greater than the first threshold, and the ratio of the interference of the second beam to the first beam to the noise floor of the receiver is greater than the first threshold.
  • the method further includes:
  • the first network device sends first information to the centralized control node, where the first information instructs the first network device to send the time-frequency resource of the first beam.
  • the method further includes:
  • the first network device receives first configuration information from the centralized control node, where the first configuration information instructs the first network device to send time-frequency resources of the first beam.
  • a communication method including:
  • the first network device sends first information to the second network device, and the first information indicates that the first network device sends the time-frequency resource of the first beam; the first network device receives second information from the second network device, and the second information indicates the first beam.
  • the second network device sends the time-frequency resource of the second beam; the first network device determines whether the first condition is satisfied according to the first information and the second information; wherein, the first condition is that the time-frequency resource for sending the first beam is the same as the time-frequency resource for sending the second beam.
  • the ratio of the interference of the first beam to the second beam to the noise floor of the receiver is greater than the first threshold, and the interference of the second beam to the first beam is equal to the noise floor of the receiver
  • the noise ratio is greater than a first threshold; when the first condition is satisfied, the first network device reduces the transmit power of the first beam on the first time-frequency resource.
  • the first network device judges whether the first condition is satisfied, and if it is satisfied, reduces beam transmission power, so as to achieve the goal of energy saving.
  • the second network device may also determine whether the first condition is satisfied, and if so, reduce beam transmission power, so as to achieve the goal of energy saving. In the case that both network devices reduce the transmission power, the communication performance of the two network devices will basically not be lost.
  • a communication method including:
  • the first network device reduces the transmission power of the beam; the first network device sends the first information to the second network device, and the first information indicates the first network device to send the time-frequency resource of the first beam; the first network device receives from the second network device receiving the second information, the second information instructs the second network device to send the time-frequency resource of the second beam; the first network device determines whether the first condition is satisfied according to the first information and the second information; wherein, the first condition is to send the second beam There is a first time-frequency resource overlapping between the time-frequency resource of one beam and the time-frequency resource of the second beam, the ratio of the interference of the first beam to the second beam to the noise floor of the receiver is greater than the first threshold, and the second beam The ratio of the interference to the first beam to the noise floor of the receiver is greater than a first threshold; if the first condition is not met, the first network device increases the transmit power of the first beam.
  • the first network device may first reduce beam transmission power, and then determine whether the first condition is satisfied, and then increase beam transmission power if the first condition is not satisfied.
  • the second network device may first reduce beam transmission power, and then determine whether the first condition is satisfied, and then increase beam transmission power if the first condition is not satisfied. That is to say, when the first condition is satisfied, both network devices will reduce beam transmission power, so as to achieve the goal of energy saving, and the communication performance of the two network devices will basically not be lost.
  • the method further includes:
  • the first network device receives third information from the fourth network device, and the third information instructs the fourth network device to send the time-frequency resource of the fourth beam; the second beam generates first interference to the first beam, and the fourth beam generates first interference to the first beam.
  • the second interference is generated, the ratio of the interference of the first beam to the fourth beam to the noise floor of the receiver is less than or equal to the first threshold; the ratio of the interference of the second beam to the first beam to the noise floor of the receiver is greater than the first threshold, including :
  • a ratio of the first interference to the sum of the receiver noise floor plus the second interference is greater than the first threshold.
  • the time-frequency resource for sending the first beam includes the first time domain and the first ratio of occupying the specific frequency domain, and the time-frequency resource for sending the second beam includes the second time domain and the second ratio of occupying the specific frequency domain; determine the first condition Whether it is satisfied, including:
  • the first network device determines that the time-frequency resource for sending the first beam and the time for sending the second beam First time-frequency resources that overlap among the frequency resources.
  • a communication method including:
  • the network device determines whether the third condition is satisfied; wherein, the third condition is that there is an overlapping second time-frequency resource between the time-frequency resource for transmitting the fifth beam and the time-frequency resource for transmitting the sixth beam, and the fifth beam is opposite to the sixth beam.
  • the ratio of the interference of the fifth beam to the noise floor of the receiver is greater than the fifth threshold, and the ratio of the interference of the sixth beam to the fifth beam to the noise floor of the receiver is greater than the fifth threshold; when the third condition is met, the network device reduces the fifth beam and the transmit power of the sixth beam in the second time-frequency resource.
  • the decreasing range of the transmitting power of the fifth beam is the same as the decreasing range of the transmitting power of the sixth beam.
  • a power control method comprising:
  • the first condition includes that there is overlap between the time-frequency resource for transmitting the first beam and the time-frequency resource for transmitting the second beam, and the interference of the first beam to the second beam is equal to
  • the ratio of the receiver noise floor is greater than a first threshold, and the ratio of the interference of the second beam to the first beam to the receiver noise floor is greater than the first threshold; when the first condition is met, reduce the transmit power of the first beam and the second beam.
  • the method further includes:
  • the second condition includes that there is overlap between the time-frequency resource for sending the first beam and the time-frequency resource for sending the third beam, and the first beam has an effect on the third beam
  • the ratio of the interference to the noise floor of the receiver is greater than a first threshold; if the second condition is met, the transmit power of the third beam is reduced.
  • the method is applicable to a system including a first network device, a second network device, and a third network device, where the first network device is configured to send the the first beam, the second network device is used to send the second beam, and the third network device is used to send the third beam.
  • the determining whether the first condition is met includes:
  • the first network device and the second network device determine whether the first condition is satisfied.
  • reducing the transmission power of the first beam and the second beam includes:
  • the first network device When the first condition is satisfied, the first network device reduces the transmit power of the first beam, and the second network device reduces the transmit power of the second beam.
  • determining whether the first condition is met by the first network device and the second network device includes:
  • the first network device sends first information to the second network device, where the first information includes the time-frequency resource for sending the first beam by the first network device, and the Beam interference: the second network device sends second information to the first network device, the second information includes the time-frequency resource for the second network device to send the second beam, and the first beam pair Interference of the second beam; the first network device and the second network device determine whether the first condition is met according to the first information and the second information.
  • the determining whether the second condition is met includes:
  • the third network device determines whether the second condition is met.
  • reducing the transmission power of the third beam includes:
  • the third network device reduces the transmit power of the third beam.
  • the method is applicable to a system including a centralized control node, a first network device, a second network device, and a third network device, and the centralized control device uses For managing the first network device, the second network device and the third network device, the first network device is used to send the first beam, and the second network device is used to send the first beam Two beams, the third network device is used to send the third beam.
  • the determining whether the first condition is met includes:
  • the centralized control node determines whether the first condition is satisfied.
  • reducing the transmission power of the first beam and the second beam includes:
  • the centralized control node When the first condition is met, the centralized control node sends first indication information to the first network device, and sends second indication information to the second network device, the first indication information indicating The transmit power of the first beam is reduced, and the second indication information indicates to reduce the transmit power of the second beam.
  • the determining whether the second condition is met includes:
  • the centralized control node determines whether the second condition is satisfied.
  • reducing the transmission power of the third beam includes:
  • the centralized control node When the second condition is satisfied, the centralized control node sends third indication information to the third network device, where the third indication information indicates to reduce the transmit power of the third beam.
  • the decrease range of the transmit power of the first beam is the same as the decrease range of the transmit power of the second beam.
  • a centralized control node including:
  • a transceiver unit and a processing unit connected to the transceiver unit;
  • a processing unit configured to determine whether the first condition is met
  • the first condition is that there is an overlapping first time-frequency resource between the time-frequency resource for the first network device to transmit the first beam and the time-frequency resource for the second network device to transmit the second beam, and the first beam to the second beam
  • the ratio of the interference to the receiver noise floor is greater than the first threshold, and the ratio of the interference of the second beam to the first beam to the receiver noise floor is greater than the first threshold
  • the transceiver unit is configured to send first indication information to the first network device, and send second indication information to the second network device, where the first indication information indicates to lower the first beam at the first time-frequency The transmit power of the resource, the second indication information indicates to reduce the transmit power of the second beam in the first time-frequency resource.
  • the processing unit is further configured to determine whether the second condition is met
  • the second condition is that the third network device transmits the third beam in the first time-frequency resource, the ratio of the interference of the first beam to the third beam to the noise floor of the receiver is greater than the first threshold, and the interference of the third beam to the first beam The ratio of the interference to the receiver noise floor is less than or equal to the first threshold;
  • the transceiving unit is further configured to send third instruction information to the third network device, where the third instruction information indicates to reduce the transmission power of the third beam on the first time-frequency resource.
  • a centralized control node including:
  • a transceiver unit and a processing unit connected to the transceiver unit;
  • transceiver unit configured to send fourth indication information to the first network device, and send fifth indication information to the second network device;
  • the fourth instruction information indicates to reduce the beam transmission power of the first network device
  • the fifth instruction information indicates to reduce the beam transmission power of the second network device
  • a processing unit configured to determine whether the first condition is met
  • the first condition is that there is an overlapping first time-frequency resource between the time-frequency resource for the first network device to transmit the first beam and the time-frequency resource for the second network device to transmit the second beam, and the first beam to the second beam
  • the ratio of the interference to the receiver noise floor is greater than the first threshold, and the ratio of the interference of the second beam to the first beam to the receiver noise floor is greater than the first threshold
  • the transceiver unit is configured to send sixth indication information to the first network device, and send seventh indication information to the second network device;
  • the sixth indication information indicates to increase the transmit power of the first beam
  • the seventh indication information indicates to increase the transmit power of the second beam
  • the transceiver unit is further configured to send eighth instruction information to the third network device, where the eighth instruction information indicates to reduce the beam transmission power of the third network device;
  • the processing unit is further configured to determine whether the second condition is met
  • the second condition is that the third network device transmits the third beam in the first time-frequency resource, the ratio of the interference of the first beam to the third beam to the noise floor of the receiver is greater than the first threshold, and the interference of the third beam to the first beam The ratio of the interference to the receiver noise floor is less than or equal to the first threshold;
  • the transceiving unit is further configured to send ninth indication information to the third network device, where the ninth indication information indicates to increase the transmit power of the third beam.
  • the transceiver unit is further configured to receive first information from the first network device, where the first information indicates the time-frequency resource for the first network device to send the first beam;
  • the transceiver unit is further configured to receive second information from the second network device, where the second information indicates the time-frequency resource for the second network device to send the second beam.
  • the transceiver unit is further configured to send first configuration information for performing first downlink data transmission to the first network device, where the first configuration information instructs the first network device to send time-frequency resources of the first beam;
  • the transceiver unit is further configured to send second configuration information for performing second downlink data transmission to the second network device, where the second configuration information instructs the second network device to send time-frequency resources of the second beam.
  • a processing unit configured to determine a first decrease in transmit power of the first beam on the first time-frequency resource, and a second decrease in transmit power of the second beam on the first time-frequency resource.
  • a first network device including:
  • a transceiver unit and a processing unit connected to the transceiver unit;
  • a transceiver unit configured to receive first indication information from the centralized control node, where the first indication information indicates to reduce the transmission power of the first beam on the first time-frequency resource;
  • a processing unit configured to reduce the transmit power of the first beam on the first time-frequency resource according to the first indication information.
  • a first network device including:
  • a transceiver unit and a processing unit connected to the transceiver unit;
  • a transceiver unit configured to receive fourth instruction information from the centralized control node, where the fourth instruction information indicates to reduce the beam transmission power of the first network device;
  • the transceiver unit is further configured to receive sixth indication information from the centralized control node, where the sixth indication information indicates to increase the transmission power of the first beam;
  • the processing unit is further configured to increase the transmit power of the first beam according to the sixth indication information.
  • the transceiver unit is further configured to send first information to the centralized control node, where the first information instructs the first network device to send the time-frequency resource of the first beam.
  • the transceiver unit is further configured to receive first configuration information from the centralized control node, where the first configuration information instructs the first network device to send the time-frequency resource of the first beam.
  • a first network device including:
  • a transceiver unit and a processing unit connected to the transceiver unit;
  • a transceiver unit configured to send first information to the second network device, the first information instructing the first network device to send the time-frequency resource of the first beam;
  • the transceiver unit is further configured to receive second information from the second network device, and the second information indicates the time-frequency resource for the second network device to send the second beam;
  • a processing unit configured to determine whether the first condition is met according to the first information and the second information
  • the first condition is that there is an overlapping first time-frequency resource between the time-frequency resource for transmitting the first beam and the time-frequency resource for transmitting the second beam, and the ratio of the interference of the first beam to the second beam to the noise floor of the receiver greater than the first threshold, the ratio of the interference of the second beam to the first beam to the noise floor of the receiver is greater than the first threshold;
  • the processing unit is further configured to reduce the transmit power of the first beam on the first time-frequency resource.
  • a first network device including:
  • a transceiver unit and a processing unit connected to the transceiver unit;
  • a transceiver unit configured to send first information to the second network device, the first information instructing the first network device to send the time-frequency resource of the first beam;
  • the transceiver unit is further configured to receive second information from the second network device, and the second information indicates the time-frequency resource for the second network device to send the second beam;
  • the processing unit is further configured to determine whether the first condition is met according to the first information and the second information;
  • the first condition is that there is an overlapping first time-frequency resource between the time-frequency resource for transmitting the first beam and the time-frequency resource for transmitting the second beam, and the ratio of the interference of the first beam to the second beam to the noise floor of the receiver greater than the first threshold, the ratio of the interference of the second beam to the first beam to the noise floor of the receiver is greater than the first threshold;
  • the processing unit is further configured to increase the transmit power of the first beam.
  • the transceiver unit is further configured to receive third information from the fourth network device, where the third information instructs the fourth network device to send the time-frequency resource of the fourth beam;
  • the second beam generates first interference to the first beam
  • the fourth beam generates second interference to the first beam
  • the ratio of the interference of the first beam to the fourth beam to the noise floor of the receiver is less than or equal to the first threshold
  • the second beam The ratio of the interference to the first beam to the receiver noise floor is greater than the first threshold, including:
  • a ratio of the first interference to the sum of the receiver noise floor plus the second interference is greater than the first threshold.
  • the time-frequency resource for sending the first beam includes a first time domain and a first ratio occupying a specific frequency domain
  • the time-frequency resource for sending a second beam includes a second time domain and a second ratio occupying a specific frequency domain
  • the processing unit determines the time-frequency resource for sending the first beam and the time-frequency resource for sending the second beam There is overlap between the first time-frequency resources.
  • a network device including:
  • a transceiver unit and a processing unit connected to the transceiver unit;
  • a processing unit configured to determine whether the third condition is satisfied
  • the third condition is that there is an overlapping second time-frequency resource between the time-frequency resource for sending the fifth beam and the time-frequency resource for sending the sixth beam, and the ratio of the interference of the fifth beam to the sixth beam and the noise floor of the receiver Greater than the fifth threshold, the ratio of the interference of the sixth beam to the fifth beam and the noise floor of the receiver is greater than the fifth threshold;
  • the processing unit is further configured to reduce the transmit power of the fifth beam and the sixth beam on the second time-frequency resource.
  • a communication device including a communication interface and a processor.
  • the processor executes the computer program or instruction stored in the memory, so that the communication device executes the method in any possible implementation manner of the first aspect to the seventh aspect.
  • the memory may be located in the processor, or implemented by a chip independent of the processor, which is not specifically limited in the present application.
  • a computer-readable storage medium including a computer program.
  • the computer program runs on a computer, the computer executes the method in any possible implementation manner of the first aspect to the seventh aspect.
  • a chip is provided, and a processing circuit is disposed on the chip, and the processing circuit is configured to execute the method in any possible implementation manner of the first aspect to the seventh aspect.
  • a computer program product includes: a computer program (also referred to as code, or an instruction), which, when the computer program is executed, causes the computer to execute any of the first to seventh aspects.
  • a computer program also referred to as code, or an instruction
  • a communication system including a first network device and a second network device, where the first network device and the second network device are configured to execute the method described in the eighth aspect.
  • the communication system may further include a third network device.
  • a twenty-first aspect provides a communication system, including a centralized control node, a first network device, a second network device, and a third network device, where the centralized control node is configured to execute the method described in the eighth aspect.
  • Fig. 1 shows the system architecture applicable to the embodiment of the present application.
  • Fig. 2 shows an example of a schematic interaction diagram of the method proposed in this application.
  • Fig. 3 shows the time-frequency resource for sending the first beam and the time-frequency resource for sending the second beam.
  • Fig. 4 shows a schematic interaction diagram of the method proposed in this application.
  • Figure 5 shows the situation of interference between multiple cells.
  • Fig. 6 shows a schematic interaction diagram of the method proposed in this application.
  • Fig. 7 shows a schematic interaction diagram of the method proposed in this application.
  • Fig. 8 shows the situation of interference between multiple cells.
  • Fig. 9 shows a schematic flowchart of the method proposed in this application.
  • Fig. 10 shows a schematic block diagram of a communication device provided in this application.
  • Fig. 11 shows a schematic block diagram of a communication device provided by this application.
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G Fifth Generation
  • NR new radio
  • the terminal equipment in the embodiment of the present application may refer to user equipment (user equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless Communication Device, User Agent, or User Device.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in 5G networks, terminal devices in future 6G networks or future evolution of public land mobile communication networks (public land mobile network (PLMN), etc., which are not limited in this embodiment of the present application.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may be a global system of mobile communication (GSM) system or a code division multiple access (CDMA)
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • the base transceiver station (BTS) in the system can also be the base station (nodeB, NB) in the wideband code division multiple access (WCDMA) system, or the evolved base station (evolutionary base station) in the LTE system.
  • NB base station
  • WCDMA wideband code division multiple access
  • evolutionary base station evolved base station
  • nodeB eNB or eNodeB
  • it can also be a wireless controller in the cloud radio access network (cloud radio access network, CRAN) scenario
  • the network device can be a relay station, access point, vehicle-mounted device, wearable device, 5G
  • the embodiments of the present application do not limit the network equipment in the network, the network equipment in the future 6G network or the network equipment in the future evolved PLMN network.
  • the two cells may be managed by the same network device, or may be managed by different network devices. Take network device #1 managing cell #1 and network device #2 managing cell #2 as an example.
  • the network device #2 can broadcast the reference signal, and multiple terminal devices in the cell #1 can receive the reference signal broadcast by the network device #2, and perform measurement to obtain the measurement result, for example, the measurement result can be the reference signal received power (resource signal received power, RSRP). Multiple terminal devices in cell #1 feed back measurement results to network device #1 respectively.
  • network device #2 may send the load of cell #2 to network device #1.
  • Network device #1 judges whether cell #2 is a strongly interfering neighboring cell of cell #1 according to the measurement results fed back by multiple terminal devices and the load of cell #2.
  • network device #2 may also determine whether cell #1 is a strongly interfering neighboring cell of cell #2.
  • cell #1 is a strongly interfering neighboring cell of cell #2
  • cell #2 is a strongly interfering neighboring cell of cell #1
  • cell #1 and cell #2 are interfering cooperating cells.
  • the interference cooperating cell group may include multiple cells, and any two cells in the multiple cells are mutually interfering cooperating cells.
  • Interference beam pairs can be understood as beams that interfere with each other.
  • the process of determining the interference beam pair in two cells may include the following steps.
  • Network device #1 managing cell #1 Take network device #1 managing cell #1, network device #2 managing cell #2, and terminal device #1 located in cell #1 as an example.
  • Step 1 Terminal device #1 sends a reference signal.
  • network device #1 receives the reference signal on multiple beams.
  • network device #2 receives the reference signal on multiple beams.
  • Step 2 Network device #1 measures the reference signals received on multiple beams, and obtains measurement results.
  • Network device #2 measures the reference signals received on multiple beams to obtain measurement results.
  • Step 3 Network device #2 sends the obtained measurement result and beam information to network device #1.
  • Step 4 The network device #1 determines the interference beam pair based on the measurement result of the network device #1 itself and the measurement result of the network device #2.
  • a centralized control node may be used to manage network equipment (eg, base stations).
  • the centralized control node may also be called a base station control node.
  • the centralized control node may be a base band processing unit (base band unit, BBU).
  • the signal-to-interference-noise ratio is a main technical indicator for measuring the communication quality of a communication system. Generally speaking, the higher the signal-to-interference-noise ratio, the better the communication quality.
  • S represents signal
  • I represents interference
  • N noise
  • cell #1 is adjacent to cell #2, and the interference from cell #2 to cell #1 belongs to the interference from neighboring cells received by cell #1.
  • inter-stream interference may be understood as interference between different data streams.
  • the network device During the communication between the network device and the terminal device, there may be interference among the multiple beams sent by the network device. For example, there is interference between beam #1 transmitted by network device #1 and beam #2 transmitted by network device #2. For another example, there is interference between two beams (beam #A and beam #B) sent by network device #1.
  • network devices increase the power of the transmit beam. However, increasing the power of the transmit beams leads to a further increase in interference between the beams. In the end, a large part of the power of the beams sent by the network equipment is used to resist interference, and the efficiency of power utilization is not high.
  • the present application proposes a variety of methods, which can reduce the power consumption of the network device as much as possible while ensuring the communication performance.
  • the network device or centralized control node in this application may be a module or a baseband board located in a baseband processing unit, which is not limited in this application.
  • FIG. 1 shows a communication system, which includes a centralized control node, cell #1, cell #2, cell #3 and cell #4.
  • the above four cells may be managed by the same network device, or may be managed by multiple network devices.
  • cell #1 and cell #2 are mutually interfering cooperating cells.
  • Cell #2, cell #3 and cell #4 are all neighbor cells of cell #1.
  • the communication system may also be referred to as a centralized communication system.
  • the first network device management cell #1, the second network device management cell #2, the third network device management cell #3, and the fourth network device management cell #4 are used as examples for description below.
  • the centralized control node manages the above four network devices.
  • the first network device is used to send the first beam to the terminal device #1 in the cell #1
  • the second network device is used to send the second beam to the terminal device #2 in the cell #2
  • the third network device is used to send the beam to the cell #2.
  • the terminal device #3 in #3 sends the third beam
  • the fourth network device is used to send the fourth beam to the terminal device #4 in the cell #4.
  • FIG. 1 shows another communication system which, compared with (a) in FIG. 1 , does not include a centralized control node.
  • the communication system may also be referred to as a distributed communication system.
  • FIG. 2 shows a method 200 provided by the present application, and the method 200 is applicable to the communication system shown in (a) in FIG. 1 .
  • the method 200 includes:
  • the centralized control node determines whether the first condition is met.
  • the first condition is that there is an overlapping first time-frequency resource between the time-frequency resource for the first network device to transmit the first beam and the time-frequency resource for the second network device to transmit the second beam, and the first beam to the second beam
  • the ratio of the interference to the receiver noise floor is greater than the first threshold, and the ratio of the interference of the second beam to the first beam to the receiver noise floor is greater than the first threshold.
  • the noise floor of the receiver can also be called the noise floor of the terminal or the noise floor of the terminal equipment. Factors affecting the terminal noise floor include thermal noise and noise figure. For different terminal devices, the terminal noise floor may be the same or different.
  • the first network device sends the first beam for first downlink data transmission with terminal device #1
  • the second network device sends the second beam for second downlink data transmission with terminal device #2.
  • the time-frequency resource for sending the first beam is transmission time interval (transmission time interval, TTI) #1-TTI#3 in the time domain, and frequency #1-frequency #3 in the frequency domain
  • the time-frequency resource for sending the second beam is TTI#2-TTI#4 in the time domain
  • the overlapping first time-frequency resource is TTI# in the time domain 2-TTI#3, frequency #2-frequency #3 in the frequency domain.
  • the centralized control node may obtain the magnitude of the interference of the first beam to the second beam according to the following steps:
  • Step 1 The first network device broadcasts the reference signal based on preset power.
  • Step 2 Terminal device #2 in cell #2 receives the reference signal broadcast by the first network device, performs measurement, and obtains a measurement result.
  • Step 3 Terminal device #2 sends the measurement result to the second network device.
  • Step 4 The second network device may determine the interference from the cell #1 to the terminal device #2 based on the measurement result.
  • the interference of the cell #1 to the terminal device #2 can also be regarded as the interference of the first beam transmitted by the first network device to the second beam based on the preset power.
  • Step 5 The second network device reports the interference of the cell #1 to the terminal device #2 to the centralized control node.
  • the second network device reports the interference of the first beam to the second beam to the centralized control node.
  • the centralized control node can also obtain the interference from the cell #2 to the terminal device #1, which means that the second network device transmits the second beam based on the preset power to the first beam interference.
  • the first beam will be denoted as beam #1
  • the second beam will be denoted as beam #2.
  • the interference of beam #1 to beam #2 (or the interference of cell #1 to terminal device #2) in the linear domain scale can be written as PL 12 *, and the interference of beam #2 to beam #1
  • the interference (or the interference of the cell #2 to the terminal device #1) can be recorded as PL 21 *, the noise floor of the terminal device #1 can be recorded as N 1 *, and the noise floor of the terminal device #2 can be recorded as N 2 *.
  • the ratio of the interference of the first beam to the second beam to the receiver noise floor (that is, the noise floor of terminal device #2) is greater than the first threshold, and the interference of the second beam to the first beam is related to the reception
  • H 1 * and >H 2 * may be the same or different, and are not limited.
  • the interference of beam #1 to beam #2 on the decibel domain scale (or called the logarithmic domain scale) can be written as PL 12
  • the interference of beam #2 to beam #1 can be written as PL 21
  • the noise floor of terminal device #1 can be recorded as N 1
  • the noise floor of terminal device #2 can be recorded as N 2 .
  • the ratio of the interference of the first beam to the second beam to the receiver noise floor i.e., the noise floor of terminal device #2
  • the interference of the second beam to the first beam is related to the reception
  • the ratio of the noise floor of the machine that is, the noise floor of the terminal device #1
  • the first threshold can be expressed by the following inequality:
  • H 1 and >H 2 may be the same or different, and are not limited.
  • the ratio of the interference of the first beam to the second beam to the noise floor of the receiver is greater than the first threshold, it can be considered that the interference of the first beam to the second beam is much greater than the noise floor of the receiver;
  • the ratio of the interference of a beam to the noise floor of the receiver is greater than the first threshold, it can be considered that the interference of the second beam to the first beam is much greater than the noise floor of the receiver.
  • the centralized control node can judge whether the interference of the second beam to the first beam is much greater than the noise floor of terminal device #1 and the interference of other adjacent cells, and the interference of the first beam to the second beam Whether it is much larger than the noise floor of terminal device #2 and the interference of other neighboring cells.
  • the neighboring cells of cell #1 include cell #4, and the centralized control node determines that the fourth network device transmits the fourth beam in the first time-frequency resource, the fourth beam interferes with the first beam, and the first beam interferes with the fourth beam.
  • the ratio of the interference to the noise floor of the receiver is less than or equal to the first threshold (for example, the first beam does not generate interference to the fourth beam).
  • the interference of the fourth beam to the first beam (or the interference of the cell #4 to the terminal device #1) is recorded as PL 41 , then in the decibel domain scale, the interference of the second beam to the first beam is much greater than that of the terminal
  • the noise floor of device #1 and the interference of other neighboring cells can be expressed by the following inequality:
  • the centralized control node determines that part of the time-frequency resources (denoted as time-frequency resource #N) of the fourth network device in the first time-frequency resources transmit the fourth beam, and the fourth beam pairs The first beam creates interference.
  • the interference of the second beam to the first beam may be much greater than the noise floor of the terminal device #1 and the interference of other neighboring cells.
  • the interference of the second beam to the first beam may be much greater than the noise floor of the terminal device #1.
  • the centralized control node when the first condition is satisfied, sends the first indication information to the first network device, and sends the second indication information to the second network device.
  • the first network device receives the first indication information
  • the second network device receives the second indication information.
  • the first instruction information indicates to reduce the transmit power of the first beam on the first time-frequency resource
  • the second instruction information indicates to reduce the transmit power of the second beam on the first time-frequency resource
  • the first indication information and the second indication information may further include the position of the first time-frequency resource in the time domain and the frequency domain.
  • the first time-frequency resource is TTI#2-TTI#3 in the time domain, and frequency #2-frequency #3 in the frequency domain.
  • the centralized control node may determine the first decrease in the transmit power of the first beam on the first time-frequency resource, and the second decrease in the transmit power of the second beam on the first time-frequency resource.
  • the magnitudes of the first drop and the second drop are different.
  • the first network device originally wants to transmit the first beam with preset power #1
  • the second network device originally wants to transmit the second beam with preset power #2.
  • the preset power #1 The decreasing range of power can be PL 21 -N 1
  • the decreasing range of preset power #2 can be PL 12 -N 2 .
  • the magnitude of the first decrease and the second decrease are the same.
  • the reduction in power on a decibel domain scale can be determined in several ways:
  • the reduction in power (denoted as, ⁇ ) can be determined by the following formula:
  • min(PL 12 -N 2 , PL 21 -N 1 ).
  • the reduction in power can be determined by the following formula:
  • min(PL 12 -N 2 -X, PL 21 -N 1 -X), where X is the reserved power.
  • the reduction in power can be determined by the following formula:
  • max(PL 12 ⁇ N 2 , PL 21 ⁇ N 1 ).
  • the reduction in power can be determined by the following formula:
  • max(PL 12 -N 2 -X, PL 21 -N 1 -X).
  • mode 1 and mode 2 have smaller power reductions. Therefore, on the premise of ensuring the communication performance, compared with the methods 3 and 4, adopting the method 1 or the method 2 can increase the transmission rate of the data transmission.
  • the first network device reduces the transmit power of the first beam on the first time-frequency resource according to the first indication information.
  • the first indication information further includes the above-mentioned first decreasing range.
  • the first network device determines the reduced transmit power of the first beam in the first time-frequency resource according to the first reduction.
  • the first indication information further includes the reduced transmit power of the first beam on the first time-frequency resource.
  • the second network device reduces the transmit power of the second beam on the first time-frequency resource according to the second indication information.
  • the second indication information further includes the above-mentioned second decrease.
  • the second network device determines the reduced transmit power of the second beam in the first time-frequency resource according to the second decrease.
  • the second indication information further includes the reduced transmit power of the second beam on the first time-frequency resource.
  • the signal-to-interference-noise ratio Since both the first network device and the second network device have reduced the transmission power, S and I are both reduced, which can reduce the impact on the signal-to-interference-noise ratio on the one hand and ensure the communication performance of the first network device and the second network device, and on the other hand On the one hand, it can also reduce the power consumption of network equipment.
  • the method also includes:
  • the centralized control node determines whether the second condition is met.
  • the second condition is that the third network device transmits the third beam on the first time-frequency resource, and the ratio of the interference of the first beam to the third beam to the noise floor of the receiver is greater than the first threshold.
  • the ratio of the interference of the third beam to the first beam to the noise floor of the receiver may be less than or equal to the first threshold (for example, the third beam does not generate interference to the first beam).
  • the ratio of the interference of the first beam to the third beam to the noise floor of the receiver (that is, the noise floor of the terminal device #3) is greater than the first threshold can be understood as before the transmission power of the first beam is not reduced, the first beam The interference to the third beam is much greater than the noise floor of terminal device #3.
  • the centralized control node also acquires the interference of the first beam transmitted by the first network device to the third beam based on the preset power (or cell #1 to terminal device #3 interference), and the third network device transmits the interference of the third beam to the first beam based on the preset power (or the interference of the cell #3 to the terminal device #1).
  • the first network device will send the first beam
  • the second network device will send the second beam
  • the third network device will send the third beam; wherein, the first beam and the second beam Mutual interference, the first beam interferes with the third beam.
  • S250 is performed when S230 needs to be executed.
  • the centralized control node sends third indication information to the third network device, where the third indication information indicates to reduce the transmission power of the third beam on the first time-frequency resource.
  • the third indication information further includes the position of the first time-frequency resource, and a decrease in transmit power of the third beam on the first time-frequency resource (denoted as a third decrease).
  • the third decreasing range may be the same as the first decreasing range and the second decreasing range, or may be different from the first decreasing range and the second decreasing range.
  • the third drop can be calculated by the following formula:
  • PL 13 -N 3 , where PL 13 is the interference generated by the first beam on the third beam (or the interference from cell #1 to terminal device #3).
  • the third network device transmits the third beam to the terminal device #3 with the preset power, a large part of the preset power is to overcome the interference of the first beam to the third beam. interference.
  • the third network device may Reduce the power of sending the third beam, so as to save power consumption; as another possible way, the third network device can still send the third beam according to the preset power, because the first beam to the third beam in the first time-frequency resource The interference is reduced, and the third network device can increase the transmission rate of downlink data transmission by sending the third beam according to the preset power.
  • time-frequency resource #M there is an overlapping time-frequency resource (denoted as time-frequency resource #M) between the time-frequency resource for transmitting the third beam and the time-frequency resource for transmitting the first beam, and the time-frequency resource #M may be the first time-frequency resource #M part of the audio resource.
  • the third indication information indicates to reduce the transmit power of the third beam on the time-frequency resource #M.
  • the method further includes S201-S203:
  • the first network device sends first information to the centralized control node.
  • the centralized control node receives the first information.
  • the first information includes information about the first beam, and a time-frequency resource (denoted as time-frequency resource #A) for sending the first beam by the first network device. That is, the first information directly indicates that the beam invoked for the first downlink data transmission is the first beam, and indicates the time-frequency resource for sending the first beam.
  • time-frequency resource #A a time-frequency resource for sending the first beam by the first network device.
  • the first information includes the time-frequency resource #A and the calling probability of each beam in the first beam group. That is, the first information does not directly indicate the beam invoked for the first downlink data transmission.
  • the plurality of beams included in the first beam group are beam #A, beam #B, and beam #C.
  • the probability of invoking beam #A by the first network device for the first downlink data transmission is probability #A
  • the probability of invoking beam #B is probability #B
  • the probability of invoking beam #C is probability #C.
  • the second network device sends the second information to the centralized control node.
  • the centralized control node receives the second information.
  • the second information includes information about the second beam, and a time-frequency resource (denoted as time-frequency resource #B) for sending the second beam by the second network device. That is, the second information directly indicates that the beam invoked for the second downlink data transmission is the second beam, and indicates the time-frequency resource for sending the second beam.
  • time-frequency resource #B a time-frequency resource
  • the second information includes the time-frequency resource #B, and the probability that each beam in the second beam group is invoked. That is, the second information does not directly indicate the beam invoked for the second downlink data transmission.
  • the plurality of beams included in the second beam group are beam #D, beam #E, and beam #F.
  • the probability of invoking beam #D by the first network device for the second downlink data transmission is probability #D
  • the probability of invoking beam #E is probability #E
  • the probability of invoking beam #F is probability #F.
  • the third network device sends third information to the centralized control node.
  • the centralized control node receives the third information.
  • the third information includes information about the third beam, and time-frequency resources for sending the third beam by the third network device.
  • the centralized control node may determine whether the first condition is met according to the first information and the second information.
  • the centralized control node may determine whether the time-frequency resource #A and the time-frequency resource #B overlap.
  • the centralized control node may determine whether the first beam and the second beam interfere with each other, in other words, the centralized control node may determine whether the first beam and the second beam are an interfering beam pair.
  • the centralized control node can determine whether the ratio of the interference of the first beam to the second beam to the noise floor of the receiver is greater than the first threshold, and the second beam to the first beam Whether the ratio of the interference to the receiver noise floor is greater than the first threshold.
  • the first beam group includes beam #A, beam #B, and beam #C
  • the second beam group includes beam #D, beam #E, and beam #F.
  • the probability of invoking beam #A is greater than the second threshold
  • the probability of invoking beam #B is less than the second threshold
  • the probability of invoking beam #C is less than the second threshold
  • the probability of invoking beam #D is greater than the third threshold
  • the probability of invoking beam#frequency is less than the third threshold.
  • the second threshold may be equal to the third threshold, or the second threshold may be different from the third threshold.
  • the centralized control node determines that the beam scheduled for the first downlink data transmission and the beam scheduled for the second downlink data transmission interfere with each other. Further, the centralized control node determines whether the ratio of the interference of beam #A to beam #D to the receiver noise floor is greater than the first threshold, and whether the ratio of the interference of beam #D to beam #A to the receiver noise floor is greater than the first threshold .
  • the centralized control node determines that the beam scheduled for the first downlink data transmission and the beam scheduled for the second downlink data transmission do not interfere with each other.
  • the method further includes S204-S206:
  • the centralized control node sends the first configuration information to the first network device.
  • the first configuration information instructs the first network device to send the time-frequency resource of the first beam.
  • the centralized control node sends the second configuration information to the second network device.
  • the second configuration information instructs the second network device to send the time-frequency resource of the second beam.
  • the centralized control node sends third configuration information to the third network device.
  • the third configuration information instructs the third network device to send the time-frequency resource of the third beam.
  • the centralized control node may determine whether the first condition is met according to the first configuration information and the second configuration information.
  • the time-frequency resource for sending the first beam is TTI#1-TTI#3 in the time domain, and frequency #1-frequency #3 in the frequency domain.
  • the time-frequency resource for sending the second beam is TTI#2-TTI#4 in the time domain, and frequency #2-frequency #4 in the frequency domain.
  • the overlapping first time-frequency resources are TTI#2-TTI#3 in the time domain, and frequency #2-frequency #3 in the frequency domain.
  • the centralized control node may also determine whether the first beam and the second beam interfere with each other. In the case that the first beam and the second beam are an interference beam pair, the centralized control node can determine whether the ratio of the interference of the first beam to the second beam to the noise floor of the receiver is greater than the first threshold, and the second beam to the first beam Whether the ratio of the interference to the receiver noise floor is greater than the first threshold.
  • the interfering cooperating cell group of cell #1 is (cell #1, cell #2, cell #3), if the centralized control node judges that cell #1, cell #2 and cell #3 transmit on the same time-frequency resource Beams (the beams in the three cells are respectively denoted as beam #1, beam #2 and beam #3), and the mutual interference between beam #1 and beam #2 is much greater than the receiver noise floor, the beam #1 and beam #3
  • the mutual interference is much greater than the receiver noise floor, and the mutual interference between beam #2 and beam #3 is much greater than the receiver noise floor, so the transmit power of beam #1, beam #2, and beam #3 can be reduced at the same time.
  • FIG. 4 shows a method 400 provided by the present application, and the method 400 is applicable to the communication system shown in (a) in FIG. 1 .
  • the method 400 includes:
  • the centralized control node sends fourth indication information to the first network device, and sends fifth indication information to the second network device.
  • the first network device receives the fourth indication information
  • the second network device receives the fifth indication information.
  • the fourth instruction information indicates to reduce the beam transmission power of the first network device
  • the fifth instruction information indicates to reduce the beam transmission power of the second network device.
  • the fourth indication information and the fifth indication information may further include a decrease in beam transmission power.
  • the drop rate of beam transmit power can be calculated with reference to the manner in S220.
  • the centralized control node determines whether the first condition is met.
  • the first condition is that there is an overlapping first time-frequency resource between the time-frequency resource for sending the first beam by the first network device and the time-frequency resource for sending the second beam by the second network device, and the interference of the first beam to the second beam is the same as
  • the ratio of the noise floor of the receiver is greater than the first threshold, and the ratio of the interference of the second beam to the first beam to the noise floor of the receiver is greater than the first threshold.
  • the centralized control node determines whether the first network device transmits the first beam according to the preset power (that is, the transmit power before the power is not reduced), and whether the interference to the second beam is much greater than the noise floor of the receiver, and It is determined whether the interference to the first beam by the second network device sending the second beam according to the preset power is much greater than the noise floor of the receiver.
  • the preset power for sending the first beam by the first network device may be the same as or different from the preset power for sending the second beam by the second network device.
  • the centralized control node can determine whether the interference of the second beam to the first beam is much greater than the noise floor of terminal device #1 and the interference of other adjacent cells, the interference of the first beam to the second beam Whether it is much larger than the noise floor of terminal device #2 and the interference of other neighboring cells.
  • the centralized control node sends sixth indication information to the first network device, and sends seventh indication information to the second network device.
  • the first network device receives the sixth indication information
  • the second network device receives the seventh indication information.
  • the sixth indication information indicates to increase the transmit power of the first beam.
  • the seventh indication information indicates to increase the transmit power of the second beam.
  • the preset power for sending the first beam by the first network device is 100W
  • the preset power for sending the second beam by the second network device is 150W
  • the centralized control node may instruct the first network device and the second network device to reduce power when sending beams.
  • the centralized control node judges that when the first network device sends the first beam at 100W and the second network device sends the second beam at 150W, the mutual interference between the first beam and the second beam is not much greater than the noise floor of the receiver.
  • the centralized control node may instruct the first network device to still send the first beam according to the preset power, and instruct the second network device to still send the second beam according to the preset power.
  • the first network device increases the transmit power of the first beam according to the sixth indication information; the second network device increases the transmit power of the second beam according to the seventh indication information.
  • the preset power of the first beam sent by the first network device is power #1.
  • the first network device adjusts the transmit power of the first beam from power #1 to power #2 according to the fourth indication information.
  • the first network device adjusts the transmit power of the first beam from power #2 to power #1 according to the sixth indication information, that is to say, the first network device can still transmit the first beam according to the preset power.
  • the second network device is similar.
  • the centralized control node may send a message #A to the first network device and the second network device, where the message #A indicates the location of the first time-frequency resource.
  • the first network device reduces the transmit power on the first time-frequency resource.
  • the first network device may transmit the first beam according to the original preset power.
  • the second network device is similar.
  • the centralized control node may first notify the network device to reduce the beam transmission power, and then notify the network device to increase the beam transmission power when the first condition is not met. That is to say, when the first condition is satisfied, both network devices will reduce beam transmission power, so as to achieve the goal of energy saving. On the other hand, since the beam transmission power of both network devices is reduced, the impact on the signal-to-interference-noise ratio can be reduced, and the communication performance of the first network device and the second network device can be guaranteed.
  • the centralized control node when the first condition is not met, notifies the two network devices to increase the transmission power, which can increase the transmission rate of the two network devices for downlink data transmission.
  • the method also includes S450-S480:
  • the centralized control node sends eighth instruction information to the third network device, where the eighth instruction information instructs to reduce beam transmission power of the third network device.
  • the third network device receives the eighth indication information.
  • the decrease in beam transmit power of the third network device may be equal to or not equal to the decrease in beam transmit power of the first network device and the second network device.
  • the decrease in beam transmission power of the third network device may be calculated with reference to the manner in S260.
  • the centralized control node determines whether the second condition is met.
  • the second condition is that the third network device transmits the third beam in the first time-frequency resource, the ratio of the interference of the first beam to the third beam to the noise floor of the receiver is greater than the first threshold, and the interference of the third beam to the first beam is equal to The ratio of the noise floor of the receiver is less than or equal to the first threshold (for example, the third beam does not interfere with the first beam).
  • time-frequency resource #M there is an overlapping time-frequency resource (denoted as time-frequency resource #M) between the time-frequency resource for sending the third beam and the time-frequency resource for sending the first beam
  • time-frequency resource #M may be the first time-frequency resource a part of.
  • the second condition is that the third network device transmits the third beam in the time-frequency resource #M, the ratio of the interference of the first beam to the third beam to the noise floor of the receiver is greater than the first threshold, and the interference of the third beam to the first beam The ratio to the noise floor of the receiver is less than or equal to the first threshold (for example, the third beam does not interfere with the first beam).
  • the centralized control node sends ninth indication information to the third network device, where the ninth indication information indicates to increase the transmit power of the third beam.
  • the third network device increases the transmit power of the third beam according to the ninth indication information.
  • the preset power of the third beam sent by the third network device is power #3.
  • the third network device may adjust the transmit power of the third beam from power #3 to power #4 according to the eighth indication information.
  • the third network device can adjust the transmit power of the third beam from power #4 to power #3 according to the ninth instruction information, that is, the third network device can still adjust the transmission power of the third beam according to the preset power Send the third beam.
  • the centralized control node may send message #B to the third network device.
  • the message #B indicates the location of the first time-frequency resource, and the third network device reduces the transmit power on the first time-frequency resource when sending the third beam.
  • the third network device may send the third beam according to preset power.
  • the message #B indicates the position of the time-frequency resource #M, and the third network device reduces the transmit power on the time-frequency resource #M when sending the third beam.
  • the third network device may send the third beam according to preset power.
  • the method further includes the above S201 and S202, which will not be repeated here.
  • the method further includes the above S204 and S205, which will not be repeated here.
  • the interfering cooperative cell group of cell #1 is (cell #1, cell #2, cell #3)
  • the centralized control node first instructs the network equipment managing cell #1, cell #2 and cell #3 to reduce beam transmission power.
  • the centralized control node judges that although cell #1, cell #2, and cell #3 transmit beams in the same time-frequency resource (the beams in the three cells are respectively denoted as beam #1, beam #2, and beam #3), the beam #1, beam #2 and beam #3 do not interfere with each other, then the centralized control node can instruct the network equipment managing cell #1, cell #2 and cell #3 to increase the transmit power of the beam.
  • the centralized control node determines that cell #1, cell #2 and cell #3 should transmit beams in the same time-frequency resource (the beams in the three cells are respectively denoted as Beam #1, Beam #2, and Beam #3), Beam #1 interferes with Beam #2, Beam #2 interferes with Beam #3, Beam #3 interferes with Beam #1, PL 12 is much larger than receiver bottom Noise, PL 23 is much greater than the receiver noise floor, PL 31 is much greater than the receiver noise floor, then the centralized control node notifies the network devices in the three cells to reduce the transmit power of beam #1, beam #2 and beam #3.
  • the power reductions of beam #1 to beam #3 are the same.
  • the decrease in power min(PL 12 -N, PL 23 -N, PL 31 -N).
  • power reduction min(PL 12 -NX, PL 23 -NX, PL 31 -NX).
  • the centralized control node determines that cells #1 to #4 will transmit beams in the same time-frequency resource (the beams in the four cells are respectively denoted as beams #1 to #4).
  • Beam #4 beam #1 interferes with beam #2
  • beam #2 interferes with beam #3
  • beam #3 interferes with beam #1 and beam #4
  • PL12 is much greater than receiver noise floor
  • PL23 is much greater than Receiver noise floor
  • PL31 is much larger than receiver noise floor
  • PL34 is much larger than receiver noise floor.
  • the centralized control node notifies the network devices in the four cells to reduce the transmission power of beam #1 to beam #4.
  • the power reductions of beam #1-beam #4 are the same.
  • the decrease in power min(PL 12 -N, PL 23 -N, PL 31 -N, PL 34 -N).
  • power reduction min(PL 12 -NX, PL 23 -NX, PL 31 -NX, PL 34 -NX).
  • the centralized control node notifies the network devices in cell #1 to cell #3 to reduce the transmission power of beam #1 to beam #3. That is, the transmission power of beam #4 may not be reduced.
  • the centralized control node determines that cells #1 to #4 will transmit beams in the same time-frequency resource (the beams in the four cells are respectively denoted as beams #1 to #4).
  • beam #4 beam #1 interferes with beam #2
  • beam #2 interferes with beam #3
  • beam #3 interferes with beam #1
  • beam #4 interferes with beam #3
  • PL 12 is much greater than the receive Machine noise floor
  • PL 23 is much larger than receiver noise floor
  • PL 31 is much larger than receiver noise floor
  • PL 43 is much larger than receiver noise floor
  • the centralized control node notifies network devices in 4 cells to reduce beam #1 to beam# 4 transmit power.
  • the power reductions of beam #1-beam #4 are the same.
  • the decrease in power min(PL 12 -N, PL 23 -N, PL 31 -N, PL 43 -N).
  • power reduction min(PL 12 -NX, PL 23 -NX, PL 31 -NX, PL 43 -NX).
  • the centralized control node determines that cells #1 to #3 will transmit beams in the same time-frequency resource (the beams in the three cells are respectively denoted as beams #1 to Beam #3), beam #1 interferes with beam #2, beam #2 interferes with beam #3, beam #3 does not interfere with beam #1, PL12 is much greater than receiver noise floor, PL23 is much greater than receiver floor noise.
  • the centralized control node notifies the network devices in the three cells to reduce the transmit power of beam #1 to beam #3.
  • the power reductions of beam #1 to beam #3 are the same.
  • the decrease in power min(PL 12 -N, PL 23 -N).
  • power reduction min(PL 12 -NX, PL 23 -NX).
  • the centralized control node notifies the network devices in cell #1 and cell #2 to reduce the transmit power of beam #1 and beam #2. That is, the transmit power of beam #3 may remain unchanged. It should be understood that since the transmit power of beam #2 is reduced, PL 23 decreases, and if the transmit power of beam #3 remains unchanged, the downlink data transmission rate of the network equipment in cell #3 will increase.
  • FIG. 6 shows a method 600 provided by the present application, which is applicable to the communication system shown in (b) in FIG. 1 , where cell #1 and cell #2 are mutual interference cooperation cells.
  • the method 600 includes:
  • the first network device sends first information to the second network device.
  • the second network device receives the first information.
  • the first information includes the time-frequency resource (denoted as time-frequency resource #A) for the first network device to transmit the first beam, and the interference of the second beam to the first beam (or the interference of cell #2 to terminal device #1) . It should be understood that the first network device also stores the first information.
  • the first network device sends the first beam to perform the first downlink data transmission with terminal device #1.
  • the following describes how the first information indicates the time-frequency resource #A:
  • Time-frequency resource #A includes a first time domain and a first frequency domain. That is, the first information indicates the exact location of the time-frequency resource used for the first downlink data transmission.
  • the time-frequency resource #A includes a first time domain and occupies a first proportion of a specific frequency domain.
  • frequency domain resources that can be used by the first network device and the second network device are both in the specific frequency domain.
  • the specific frequency domain is frequency #A to frequency B
  • the first information indicates that frequency domain resources in time-frequency resource #A account for 80% of frequency #A to frequency #B.
  • the first network device may estimate whether the first network device performs the first downlink data transmission in the time domain resource #A. For example, the first network device may perform the estimation according to the amount of data buffered at the base station side, the scheduling queue and other information. The first information may indicate whether the first network device performs the first downlink data transmission on the time-frequency resource #A.
  • the first network device only sends the first information when the first ratio is greater than the fourth threshold, that is, at this time, the first information instructs the first network device to perform the first A downlink data transmission, and implicitly indicates that the first ratio is greater than the fourth threshold.
  • the first information includes the probability that each beam in the first beam group is invoked. That is, the first information does not directly indicate the beam invoked for the first downlink data transmission.
  • the first information includes the probability that each beam in the first beam group is invoked. That is, the first information does not directly indicate the beam invoked for the first downlink data transmission.
  • the second network device sends second information to the first network device.
  • the first network device receives the second information.
  • the second information includes the time-frequency resource (denoted as time-frequency resource #B) for the second network device to transmit the second beam, and the interference of the first beam to the second beam (or the interference of cell #1 to terminal device #2) . It should be understood that the second network device also stores the second information.
  • the second network device sends the second beam to perform second downlink data transmission.
  • Time-frequency resource #B includes a second time domain and a second frequency domain. That is, the second information indicates the exact location of the time-frequency resource #B used for the second downlink data transmission.
  • the time-frequency resource #B includes a second time domain and occupies a second proportion of a specific frequency domain.
  • frequency domain resources that can be used by the first network device and the second network device are both in the specific frequency domain.
  • the specific frequency domain is frequency #A to frequency B
  • the second information indicates that frequency domain resources in time-frequency resource #B account for 85% of frequency #A to frequency #B.
  • the second network device may estimate whether the second network device performs the first downlink data transmission in the time domain resource #B.
  • the second network device may perform the estimation according to the amount of data buffered at the base station side, the scheduling queue and other information.
  • the second information may indicate whether the second network device performs the second downlink data transmission on the time-frequency resource #B.
  • the first network device only sends the second information when the second ratio is greater than the fourth threshold. That is, at this time, the second information indicates that the second network device performs the second downlink data transmission in the second time domain, and implicitly indicates that the second ratio is greater than the fourth threshold.
  • the second information includes the probability that each beam in the second beam group is invoked. That is, the second information does not directly indicate the beam invoked for the second downlink data transmission.
  • the second information does not directly indicate the beam invoked for the second downlink data transmission.
  • S620 may also be performed before S610, or simultaneously with S610.
  • the first network device determines whether the first condition is met according to the first information and the second information.
  • the first condition is that there is an overlapping first time-frequency resource between time-frequency resource #A and time-frequency resource #B, the ratio of the interference of the first beam to the second beam to the noise floor of the receiver is greater than the first threshold, and the second beam A ratio of interference to the first beam to receiver noise floor is greater than a first threshold.
  • the following describes how the first network device determines whether the time-frequency resource #A overlaps with the time-frequency resource #B.
  • the first network device determines the time-frequency resource #A and the time-frequency resource #A according to the first time domain, the first frequency domain, the second time domain, and the second frequency domain. Whether resource #B overlaps.
  • the first network device may determine the position of the first time-frequency resource in the time domain and the frequency domain.
  • the first network device determines that Time-frequency resource #A overlaps with time-frequency resource #B.
  • the first network device may determine the position of the first time-frequency resource in the time domain. Because the first network device cannot accurately determine the position of the first time-frequency resource in the frequency domain.
  • a possible implementation manner is to use the above specific frequency domain as the position of the first time-frequency resource in the frequency domain. At this time, the range of the specific frequency domain may be larger than the actual frequency domain range of the first time-frequency resource in the frequency domain.
  • the first network device also determines whether the first beam and the second beam interfere with each other, and whether the mutual interference between the first beam and the second beam is much greater than the noise floor of the receiver.
  • the first network device may also determine, according to the probability that each beam in the first beam group is called and the probability that each beam in the second beam group is called, the beams to be called for the first downlink data transmission and Whether the beams invoked for the second downlink data transmission interfere with each other, and whether the mutual interference is much greater than the noise floor of the receiver.
  • the first information indicates that the first network device performs the first downlink data transmission in the first time domain, and implicitly indicates that the first ratio is greater than the fourth threshold
  • the second information indicates that the second network device transmits the first downlink data in the first time domain.
  • the second time domain performs the second downlink data transmission, and implicitly indicates that the second ratio is greater than the fourth threshold.
  • the method further includes: the fourth network device sending the third information to the first network device.
  • the first network device receives the third information.
  • the third information includes the time-frequency resource for sending the fourth beam by the fourth network device.
  • the first network device may also acquire the interference of the fourth beam to the first beam (or the interference of the cell #4 to the terminal device #1).
  • the first network device may determine whether the interference of the second beam to the first beam is much greater than the noise floor of terminal device #1 and the interference of other neighboring cells.
  • the first network device reduces the transmit power of the first beam on the first time-frequency resource.
  • the first network device may determine the reduction of the transmit power of the first beam based on the manner 1 or the manner 2 in S220.
  • the second network device determines whether the first condition is met according to the first information and the second information.
  • the process is similar to S630.
  • the second network device reduces the transmit power of the second beam on the first time-frequency resource.
  • the second network device may determine the reduction of the transmit power of the second beam based on the manner 1 or the manner 2 in S220.
  • the first network device and the second network device determine the decrease in transmit power according to the same rule. Decreases of transmit power of the first beam and the second beam may be the same or different, and there is no limitation.
  • the first network device and the second network device judge whether the first condition is satisfied based on the same method. There is basically no loss in communication performance.
  • the interfering cooperating cell group of cell #1 is (cell #1, cell #2, cell #3). If the network device in cell #1 judges that cell #1, cell #2 and cell #3 transmit beams on the same time-frequency resource (the beams in the three cells are respectively denoted as beam #1, beam #2 and beam #3) , the mutual interference between beam #1 and beam #2 is much greater than the receiver noise floor, and the mutual interference between beam #1 and beam #3 is much greater than the receiver noise floor, then the network equipment in cell #1 can reduce the emission of beam #1 power.
  • FIG. 7 shows a method 700 provided by the present application, which is applicable to the communication system shown in (b) in FIG. 1 , where cell #1 and cell #2 are interfering cooperating cells.
  • the method 700 includes:
  • the first network device reduces the transmit power of the beam.
  • the second network device reduces the transmit power of the beam.
  • the drop rate of beam transmit power can be calculated with reference to the manner in S220.
  • the first network device sends the first information to the second network device.
  • the second network device receives the first information.
  • the first information includes the time-frequency resource (denoted as time-frequency resource #A) for the first network device to transmit the first beam, and the interference of the second beam to the first beam (or the interference of cell #2 to terminal device #1) .
  • the first information includes the probability that each beam in the first beam group is invoked. That is, the first information does not directly indicate the beam invoked for the first downlink data transmission.
  • the first information includes the probability that each beam in the first beam group is invoked. That is, the first information does not directly indicate the beam invoked for the first downlink data transmission.
  • the second network device sends the second information to the first network device.
  • the first network device receives the second information.
  • the second information includes the time-frequency resource (denoted as time-frequency resource #B) for the second network device to transmit the second beam, and the interference of the first beam to the second beam (or the interference of cell #1 to terminal device #2) .
  • the second information includes the probability that each beam in the second beam group is invoked. That is, the second information does not directly indicate the beam invoked for the second downlink data transmission.
  • the second information does not directly indicate the beam invoked for the second downlink data transmission.
  • the first network device determines whether the first condition is met according to the first information and the second information.
  • the first condition is that there is an overlapping first time-frequency resource between time-frequency resource #A and time-frequency resource #B, the ratio of the interference of the first beam to the second beam to the noise floor of the receiver is greater than the first threshold, and the second beam A ratio of interference to the first beam to receiver noise floor is greater than a first threshold.
  • the method further includes: the fourth network device sending the third information to the first network device.
  • the third information includes the time-frequency resource for sending the fourth beam by the fourth network device.
  • the first network device may also acquire the interference of the fourth beam to the first beam (or the interference of the cell #4 to the terminal device #1).
  • the first network device may determine whether the interference of the second beam to the first beam is much greater than the noise floor of terminal device #1 and the interference of other neighboring cells.
  • the first network device increases the transmit power of the first beam.
  • the preset power for sending the first beam by the first network device is 100W
  • the preset power for sending the second beam by the second network device is 150W.
  • the first network device predicts to transmit the first beam with a power lower than 100W.
  • the first network device judges that when the first network device transmits the first beam at 100W and the second network device transmits the second beam at 150W, the mutual interference between the first beam and the second beam is not much greater than the bottom of the receiver. noise.
  • the first network device still sends the first beam according to the preset power.
  • the first network device determines the position of the first time-frequency resource, and when sending the first beam, the first network device reduces the transmit power on the first time-frequency resource, and for the first time-frequency resource
  • the transmit power of the first beam may be a preset power.
  • the second network device determines whether the first condition is met according to the first information and the second information.
  • the second network device increases the transmit power of the second beam.
  • the preset power of the first network device sending the first beam is 100W
  • the preset power of the second network device sending the second beam is 150W
  • the second network device predicts to send the second beam with a power lower than 150W.
  • the second network device judges that when the first network device transmits the first beam at 100W and the second network device transmits the second beam at 150W, the mutual interference between the first beam and the second beam is not much greater than the bottom of the receiver. noise.
  • the second network device still sends the second beam according to the preset power.
  • the second network device determines the position of the first time-frequency resource, and the second network device reduces the transmit power on the first time-frequency resource when sending the second beam.
  • the transmit power of the second beam may be preset power.
  • the first network device and the second network device can first reduce the transmission power of the beam, and then judge whether the first condition is satisfied based on the same method, and then increase the transmission power of the beam if the first condition is not satisfied. That is to say, when the first condition is satisfied, both the first network device and the second network device will reduce the transmit power, which can reduce the power consumption of the network device on the one hand, and reduce the impact on the signal-to-interference-noise ratio on the other hand. influence, to ensure the communication performance between the first network device and the second network device.
  • the interfering cooperating cell group of cell #1 is (cell #1, cell #2, cell #3).
  • the network equipment in cell #1 can first reduce the transmit power of the beam. If the network equipment in cell #1 judges that cell #1, cell #2 and cell #3 transmit beams in the same time-frequency resource (the beams in the three cells They are respectively recorded as beam #1, beam #2 and beam #3), but the mutual interference between the three beams is not much greater than the noise floor of the receiver, then the network equipment in cell #1 can transmit beam# according to the preset power 1.
  • cell #1 to cell #4 transmit beams in the same time-frequency resource (beams in the 4 cells are respectively denoted as beam #1 to beam #4), Beam #1 interferes with beam #2, beam #2 interferes with beam #3, beam #3 interferes with beam #4, beam #4 interferes with beam #1, PL 12 is much larger than receiver noise floor, PL 23 is much greater than the receiver noise floor, PL 34 is much greater than the receiver noise floor, and PL 41 is much greater than the receiver noise floor.
  • the network equipment in cell #1 can learn that cell #1 and cell #2 transmit beams in the same time-frequency resource, beam #1 interferes with beam #2, and PL 12 is much larger than the noise floor of the receiver , the network device in cell #1 reduces the transmit power of beam #1.
  • the network equipment in cell #2 can know that cell #2 and cell #3 transmit beams in the same time-frequency resource, beam #2 interferes with beam #3, and PL 23 is much larger than the noise floor of the receiver , the network device in cell #2 reduces the transmit power of beam #2. Similar to other districts.
  • the power reduction priority may be pre-configured in each cell. For example, the power reduction priorities of cell #1 to cell #4 decrease sequentially.
  • the network equipment in cell #1 can learn that cell #1 and cell #2 transmit beams in the same time-frequency resource, and since cell #1 has the highest power reduction priority, the network equipment in cell #1 The device reduces the transmit power of beam #1.
  • the network device in cell #2 can learn that cell #1 and cell #2 transmit beams in the same time-frequency resource. Since cell #1 has the highest power reduction priority, the network device in cell #1 The transmission power of beam #1 will be reduced, and on this basis, the network equipment in cell #2 will reduce the transmission power of beam #2.
  • the network equipment in cell #3 can know that cell #2 and cell #3 transmit beams on the same time-frequency resource, and since the power reduction priority of cell #2 is higher than that of cell #3, cell #2 The network device in cell #3 will reduce the transmit power of beam #2, and then the network device in cell #3 will reduce the transmit power of beam #3.
  • the network equipment in cell #4 can learn that cell #3 and cell #4 transmit beams in the same time-frequency resource, and since the power reduction priority of cell #3 is higher than that of cell #4, cell #3 The network device in cell #4 will reduce the transmit power of beam #3, and then the network device in cell #4 will reduce the transmit power of beam #4.
  • cell #1 to cell #5 transmit beams in the same time-frequency resource (the beams in the five cells are respectively denoted as beam #1 to beam #5), Beam #1 interferes with beam #2, beam #2 interferes with beam #3 and beam #5, beam #3 interferes with beam #4, beam #4 interferes with beam #1, PL 12 is much larger than thermal noise , PL 23 is much greater than thermal noise, PL 25 is much greater than thermal noise, PL 34 is much greater than thermal noise, PL 41 is much greater than thermal noise.
  • the network equipment in cell #1 can learn that cell #1 and cell #2 transmit beams in the same time-frequency resource, and the PL 12 is much larger than the thermal noise, then the network equipment in cell #1 reduces beam# 1 transmit power.
  • the network equipment in cell #2 can know that cell #2, cell #3 and cell #5 transmit beams in the same time-frequency resource, PL 23 is much larger than thermal noise, PL 25 is much larger than thermal noise, Then the network equipment in cell #2 reduces the transmit power of beam #2.
  • Both the cell #3 and the cell #4 are similar to the cell #1 and will not be repeated here.
  • the network device in cell #5 can learn that cell #2 and cell #5 transmit beams in the same time-frequency resource, and PL 25 is much larger than thermal noise. As a way, the network equipment in the cell #5 reduces the transmission power of the beam #5, so as to achieve the effect of saving power consumption. As another way, the network device in the cell #5 may transmit the beam #5 according to the preset power, that is, the transmission power of the beam #5 is not reduced. Since the network equipment in cell #2 reduces the transmit power of beam #2, the PL 25 decreases. If the network equipment in cell #5 transmits beam #5 according to the preset power, then the network equipment in cell #5 performs downlink data transmission rate will increase.
  • cell #1 to cell #5 transmit beams in the same time-frequency resource (the beams in the five cells are respectively denoted as beam #1 to beam #5)
  • Beam #1 interferes with beam #2
  • beam #2 interferes with beam #3
  • beam #3 interferes with beam #4
  • beam #4 interferes with beam #1
  • beam #5 interferes with beam #2
  • PL 12 is much greater than thermal noise
  • PL 23 is much greater than thermal noise
  • PL 25 is much greater than thermal noise
  • PL 34 is much greater than thermal noise
  • PL 41 is much greater than thermal noise
  • PL 52 is much greater than thermal noise.
  • the network equipment in cell #1 can learn that cell #1 and cell #2 transmit beams in the same time-frequency resource, and the PL 12 is much larger than the thermal noise, then the network equipment in cell #1 reduces beam# 1 transmit power.
  • the network equipment in cell #2 can learn that cell #2 and cell #3 transmit beams in the same time-frequency resource, and the PL 23 is much larger than the thermal noise, then the network equipment in cell #2 reduces beam# 2 transmit power.
  • Both the cell #3 and the cell #4 are similar to the cell #1 and will not be repeated here.
  • the network equipment in cell #5 can learn that cell #5 and cell #2 transmit beams in the same time-frequency resource, and the PL 52 is much larger than the thermal noise, then the network equipment in cell #5 reduces beam# 5 transmit power.
  • cell #1 to cell #3 transmit beams in the same time-frequency resource (the beams in the three cells are respectively denoted as beam #1 to beam #3), Beam #1 interferes with beam #2, beam #2 interferes with beam #3, beam #3 does not interfere with beam #1, PL 12 is much greater than thermal noise, and PL 23 is much greater than thermal noise.
  • the network equipment in cell #1 can learn that cell #1 and cell #2 transmit beams in the same time-frequency resource, and the PL 12 is much larger than the thermal noise, then the network equipment in cell #1 reduces beam# 1 transmit power.
  • the network equipment in cell #2 can learn that cell #2 and cell #3 transmit beams in the same time-frequency resource, and the PL 23 is much larger than the thermal noise, then the network equipment in cell #2 reduces beam# 2 transmit power.
  • the network device in cell #3 can learn that cell #2 and cell #3 transmit beams in the same time-frequency resource, and PL 23 is much larger than thermal noise. As a way, the network equipment in the cell #3 reduces the transmission power of the beam #3, so as to achieve the effect of saving power consumption. As another way, the network equipment in cell #3 does not reduce the transmit power of beam #3. Since the network equipment in cell #2 reduces the transmit power of beam #2, the PL 23 decreases. If the network equipment in cell #3 does not reduce the transmit power of beam #3, then the network equipment in cell #3 performs downlink data transmission rate will increase.
  • FIG. 9 shows a method 900 provided by the present application, and the method 900 includes:
  • the network device determines whether the first condition is met.
  • the first condition is that there is an overlapping second time-frequency resource between the time-frequency resource for sending the first beam and the time-frequency resource for sending the second beam, and the interference of the first beam to the second beam is the same as
  • the ratio of the noise floor of the receiver is greater than the first threshold, and the ratio of the interference of the second beam to the first beam to the noise floor of the receiver is greater than the first threshold.
  • the first beam corresponds to the first data stream
  • the second beam corresponds to the second data stream. Therefore, the first condition can also be understood as inter-stream interference is much greater than the noise floor of the receiver.
  • the first condition is that there is an overlapping second time-frequency resource between the time-frequency resource for transmitting the first beam and the time-frequency resource for transmitting the second beam, and the interference of the first beam to the second beam Far greater than the receiver noise floor and adjacent cell interference, the interference of the second beam to the first beam is much greater than the receiver noise floor and adjacent cell interference. That is, the first condition can also be understood as inter-stream interference is much greater than the sum of receiver noise floor and adjacent cell interference.
  • inter-flow interference is mainly related to inter-flow residual correlation and channel time-frequency correlation.
  • the magnitude of inter-stream interference can be determined.
  • the network equipment needs to send multiple data streams, and the network equipment generally cannot accurately obtain the information of the downlink channel, which is mainly determined by two factors: First, in the frequency division duplex system, the information of the downlink channel can be transmitted through the feedback signaling of the receiving end. This leads to the loss of channel information; secondly, due to the existence of feedback delay, it is generally based on the last channel state to predict the current information state, and there is a certain difference between the two. Considering the above two factors, there will be residual interference between multiple data streams.
  • RBG resource block group
  • first data stream and the second data stream may be different data streams of the network device for the same terminal device, or may be different data streams of the network device for different terminal devices, without limitation.
  • the network device When the first condition is met, the network device reduces transmit power of the first beam and the second beam on the second time-frequency resource.
  • the decrease range of the transmit power of the first beam is the same as the decrease range of the transmit power of the second beam.
  • the decrease rate of the transmit power of the first beam is different from the decrease rate of the transmit power of the second beam.
  • the decrease in transmit power of the first beam is the same as the decrease in transmit power of the second beam, the decrease in power can be determined in the following ways:
  • the reduction in power (denoted as, ⁇ ) can be determined by the following formula:
  • min(I 12 -N,I 21 -N), where I 12 is the interference from the first beam to the second beam, I 21 is the interference from the second beam to the first beam, and N is the noise floor of the receiver.
  • the reduction in power can be determined by the following formula:
  • min(I 12 -NX, I 21 -NX), where X is the reserved power.
  • the network device sends data to UE#1 through the first beam, and sends data to UE#2 through the second beam, and UE#1 and UE#2 perform resource block group (resource block group, RBG)#1.
  • resource block group resource block group, RBG
  • MU multi-user
  • the network device if the first condition is satisfied between the two beams sent by the network device, the network device reduces the transmission power of these two beams, which can also reduce the power consumption of the network device on the one hand, and reduce the power consumption of the two beams on the other hand.
  • the influence of signal to interference and noise ratio ensures the communication performance of network equipment.
  • FIG. 10 is a communication device provided in an embodiment of the present application, where the communication device includes a transceiver unit 1001 and a processing unit 1002 .
  • the transceiver unit 1001 may be used to implement corresponding communication functions.
  • the transceiver unit 1001 may also be called a communication interface or a communication unit.
  • the processing unit 1002 may be configured to perform processing operations.
  • the device further includes a storage unit, which can be used to store instructions and/or data, and the processing unit 1002 can read the instructions and/or data in the storage unit, so that the device implements the above-mentioned method embodiments. action of the device.
  • a storage unit which can be used to store instructions and/or data
  • the processing unit 1002 can read the instructions and/or data in the storage unit, so that the device implements the above-mentioned method embodiments. action of the device.
  • the device may be the centralized control node in the foregoing embodiments, or may be a component (such as a chip) of the centralized control node.
  • the transceiver unit and the processing unit may be used to implement related operations of the centralized control node in each method embodiment above.
  • the apparatus may be the first network device in the foregoing embodiments, or may be a component (such as a chip) of the first network device.
  • transceiver unit and the processing unit may be used to implement related operations of the first network device in each method embodiment above.
  • the apparatus may be the second network device in the foregoing embodiments, or may be a component (such as a chip) of the second network device.
  • transceiver unit and the processing unit may be used to implement related operations of the second network device in the above method embodiments.
  • the apparatus may be the network device in the foregoing embodiments, or may be a component (such as a chip) of the network device.
  • transceiver unit and the processing unit may be used to implement related operations of the network device in each method embodiment above.
  • unit here may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (such as a shared processor, a dedicated processor, or a group processor, etc.) and memory, incorporated logic, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • processor for executing one or more software or firmware programs (such as a shared processor, a dedicated processor, or a group processor, etc.) and memory, incorporated logic, and/or other suitable components to support the described functionality.
  • the device may specifically be the first network element in the above-mentioned embodiments, and may be used to execute each process corresponding to the first network element in the above-mentioned method embodiments and/or steps, or, the device may specifically be the network management network element in the above embodiments, and may be used to execute the various processes and/or steps corresponding to the network management network elements in the above method embodiments. In order to avoid repetition, it is not repeated here repeat.
  • the above-mentioned communication device has the function of implementing the corresponding steps performed by the device in the above-mentioned method.
  • the functions may be implemented by hardware, or may be implemented by executing corresponding software through hardware.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions; for example, the transceiver unit can be replaced by a transceiver (for example, the sending unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver ), and other units, such as a processing unit, can be replaced by a processor to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • transceiver unit 1001 may also be a transceiver circuit (for example, may include a receiving circuit and a sending circuit), and the processing unit may be a processing circuit.
  • the device in FIG. 10 may be the device in the foregoing method embodiment, or may be a chip or a system on a chip, such as a system on chip (system on chip, SoC).
  • the transceiver unit may be an input-output circuit or a communication interface;
  • the processing unit is a processor or a microprocessor or an integrated circuit integrated on the chip. It is not limited here.
  • the embodiment of the present application also provides a communication device, as shown in FIG. 11 , including: a processor 1101 and a communication interface 1102 .
  • the processor 1101 is configured to execute computer programs or instructions stored in the memory 1103, or read data stored in the memory 1103, so as to execute the methods in the above method embodiments.
  • the communication interface 1102 is used for receiving and/or sending signals.
  • the processor 1101 is configured to control the communication interface 1102 to receive and/or send signals.
  • the communication device further includes a memory 1103, and the memory 1103 is used to store computer programs or instructions and/or data.
  • the memory 1103 can be integrated with the processor 1101, or can also be set separately.
  • the processor 1101, the communication interface 1102, and the memory 1103 are interconnected via a bus 1104;
  • the bus 1104 may be a peripheral component interconnect standard (peripheral component interconnect, PCI) bus or an extended industry standard architecture (extended industry standard architecture, EISA ) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the above-mentioned bus 1104 can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 11 , but it does not mean that there is only one bus or one type of bus.
  • the processor 1101 is configured to execute computer programs or instructions stored in the memory 1103, so as to implement related operations of the network device in the foregoing method embodiments.
  • the processor 1101 is configured to execute the computer programs or instructions stored in the memory 1103, so as to realize the relevant operations of the centralized control node in the various method embodiments above.
  • the processor (such as the processor 1101) mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), a network processor (network processor, NP) or a combination of CPU and NP.
  • the processor may further include hardware chips.
  • the aforementioned hardware chip may be an application-specific integrated circuit (application-specific integrated circuit, ASIC), a programmable logic device (programmable logic device, PLD) or a combination thereof.
  • the aforementioned PLD may be a complex programmable logic device (complex programmable logic device, CPLD), a field-programmable gate array (field-programmable gate array, FPGA), a general array logic (generic array logic, GAL) or any combination thereof.
  • the memory (such as the memory 1103 ) mentioned in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种功率控制方法、通信装置和通信系统。该方法包括:确定第一条件是否满足,第一条件包括发送第一波束的时频资源与发送第二波束的时频资源之间存在重叠,且第一波束对第二波束的干扰与接收机底噪的比值大于第一阈值,第二波束对第一波束的干扰与接收机底噪的比值大于第一阈值;在第一条件满足的情况下,降低第一波束和第二波束的发射功率。根据本申请的方法,通过降低第一波束和第二波束的发射功率,一方面能够降低对信干噪比的影响,保证网络设备的通信性能,另一方面也能够降低网络设备的功耗。

Description

功率控制方法、通信装置和通信系统
本申请要求于2022年01月04日提交中国专利局、申请号为202210003272.1、申请名称为“通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,并且更具体地,涉及一种功率控制方法、通信装置和通信系统。
背景技术
当前第四代通信系统(the 4th generation communication system,4G)、第五代通信系统(the 5th generation communication system,5G)中,下行链路一般按照满功率进行规划。功率升高会导致干扰的升高,为平衡干扰的影响,被干扰的一方同样会升高功率对抗干扰,从而导致干扰进一步升高。最终,高功率所带来的收益比较小,功率的利用率比较低,但是高功率导致的功耗却很大。因此,如何才能在保证通信性能的情况下,尽可能地降低网络设备的功耗,是一个亟需解决的问题。
发明内容
本申请实施例提供一种功率控制方法、通信装置和通信系统,能够在保证通信性能的情况下,尽可能地降低网络设备的功耗。
第一方面,提供了一种通信方法,包括:
集中控制节点确定第一条件是否满足;其中,第一条件为第一网络设备发送第一波束的时频资源与第二网络设备发送第二波束的时频资源之间存在重叠的第一时频资源,第一波束对第二波束的干扰与接收机底噪的比值大于第一阈值,第二波束对第一波束的干扰与接收机底噪的比值大于第一阈值;在第一条件满足的情况下,集中控制节点向第一网络设备发送第一指示信息,向第二网络设备发送第二指示信息,第一指示信息指示降低第一波束在第一时频资源的发射功率,第二指示信息指示降低第二波束在第一时频资源的发射功率。
根据本申请的方法,在第一条件满足的情况下,集中控制节点可以分别指示第一网络设备和第二网络设备降低波束发射功率,从而达到节能的目标。另一方面,由于第一网络设备和第二网络设备均降低了波束发射功率,信干噪比不会有较大的改变,即,网络设备的通信性能基本不会有损失。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:
集中控制节点确定第二条件是否满足;其中,第二条件为第三网络设备在第一时频资源发送第三波束,第一波束对第三波束的干扰与接收机底噪的比值大于第一阈值,第三波 束对第一波束的干扰与接收机底噪的比值小于或等于第一阈值;在第二条件满足的情况下,集中控制节点向第三网络设备发送第三指示信息,第三指示信息指示降低第三波束在第一时频资源的发射功率。
第二方面,提供了一种通信方法,包括:
集中控制节点向第一网络设备发送第四指示信息,向第二网络设备发送第五指示信息;其中,第四指示信息指示降低第一网络设备的波束发射功率,第五指示信息指示降低第二网络设备的波束发射功率;集中控制节点确定第一条件是否满足;其中,第一条件为第一网络设备发送第一波束的时频资源与第二网络设备发送第二波束的时频资源之间存在重叠的第一时频资源,第一波束对第二波束的干扰与接收机底噪的比值大于第一阈值,第二波束对第一波束的干扰与接收机底噪的比值大于第一阈值;在第一条件不满足的情况下,集中控制节点向第一网络设备发送第六指示信息,向第二网络设备发送第七指示信息;其中,第六指示信息指示升高第一波束的发射功率,第七指示信息指示升高第二波束的发射功率。
根据本申请的方案,集中控制节点可以先通知网络设备降低波束发射功率,在第一条件不满足的情况下,再通知网络设备升高波束发射功率。也就是说,在第一条件满足的情况下,网络设备会降低波束发射功率,从而达到节能的目标。另一方面,由于两个网络设备均降低了波束发射功率,信干噪比不会有较大的改变,网络设备的通信性能基本不会有损失。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:
集中控制节点向第三网络设备发送第八指示信息,第八指示信息指示降低第三网络设备的波束发射功率;集中控制节点确定第二条件是否满足;其中,第二条件为第三网络设备在第一时频资源发送第三波束,第一波束对第三波束的干扰与接收机底噪的比值大于第一阈值,第三波束对第一波束的干扰与接收机底噪的比值小于或等于第一阈值;在第二条件不满足的情况下,集中控制节点向第三网络设备发送第九指示信息,第九指示信息指示升高第三波束的发射功率。
结合第一方面或第二方面,在第一方面或第二方面的某些实现方式中:
第二波束对第一波束产生第一干扰,第四网络设备发送的第四波束对第一波束产生第二干扰,第一波束对第四波束的干扰与接收机底噪的比值小于或等于第一阈值;第二波束对第一波束的干扰与接收机底噪的比值大于第一阈值,包括:
第一干扰与接收机底噪加上第二干扰之和的比值大于第一阈值。
结合第一方面或第二方面,在第一方面或第二方面的某些实现方式中,该方法还包括:
集中控制节点从第一网络设备接收第一信息,第一信息指示第一网络设备发送第一波束的时频资源;集中控制节点从第二网络设备接收第二信息,第二信息指示第二网络设备发送第二波束的时频资源。
结合第一方面或第二方面,在第一方面或第二方面的某些实现方式中:该方法还包括:
集中控制节点向第一网络设备发送第一配置信息,第一配置信息指示第一网络设备发送第一波束的时频资源;集中控制节点向第二网络设备发送第二配置信息,第二配置信息指示第二网络设备发送第二波束的时频资源。。
结合第一方面或第二方面,在第一方面或第二方面的某些实现方式中:该方法还包括:
集中控制节点确定第一波束在第一时频资源的发射功率的第一降幅,以及第二波束在第一时频资源的发射功率的第二降幅。
结合第一方面或第二方面,在第一方面或第二方面的某些实现方式中,第一降幅与第二降幅相同。
第三方面,提供了一种通信方法,包括:
第一网络设备从集中控制节点接收第一指示信息,第一指示信息指示降低第一波束在第一时频资源的发射功率;第一网络设备根据第一指示信息,降低第一波束在第一时频资源的发射功率;其中,第一指示信息为第一条件满足的情况下发送的;第一条件为第一网络设备发送第一波束的时频资源与第二网络设备发送第二波束的时频资源之间存在重叠的第一时频资源,第一波束对第二波束的干扰与接收机底噪的比值大于第一阈值,第二波束对第一波束的干扰与接收机底噪的比值大于第一阈值。
第四方面,提供了一种通信方法,包括:
第一网络设备从集中控制节点接收第四指示信息,第四指示信息指示降低第一网络设备的波束发射功率;第一网络设备从集中控制节点接收第六指示信息,第六指示信息指示升高第一波束的发射功率;第一网络设备根据第六指示信息,升高第一波束的发射功率;其中,第六指示信息为第一条件不满足的情况下发送的;第一条件为第一网络设备发送第一波束的时频资源与第二网络设备发送第二波束的时频资源之间存在重叠的第一时频资源,第一波束对第二波束的干扰与接收机底噪的比值大于第一阈值,第二波束对第一波束的干扰与接收机底噪的比值大于第一阈值。
结合第三方面或第四方面,在第三方面或第四方面的某些实现方式中,该方法还包括:
第一网络设备向集中控制节点发送第一信息,第一信息指示第一网络设备发送第一波束的时频资源。
结合第三方面或第四方面,在第三方面或第四方面的某些实现方式中,该方法还包括:
第一网络设备从集中控制节点接收第一配置信息,第一配置信息指示第一网络设备发送第一波束的时频资源。
第五方面,提供一种通信方法,包括:
第一网络设备向第二网络设备发送第一信息,第一信息指示第一网络设备发送第一波束的时频资源;第一网络设备从第二网络设备接收第二信息,第二信息指示第二网络设备发送第二波束的时频资源;第一网络设备根据第一信息和第二信息,确定第一条件是否满足;其中,第一条件为发送第一波束的时频资源与发送第二波束的时频资源之间存在重叠的第一时频资源,第一波束对第二波束的干扰与接收机底噪的比值大于第一阈值,第二波束对第一波束的干扰与接收机底噪的比值大于第一阈值;在第一条件满足的情况下,第一网络设备降低第一波束在第一时频资源的发射功率。
根据本申请的方法,第一网络设备判断第一条件是否满足,在满足的情况下,降低波束发射功率,从而达到节能的目标。类似地,第二网络设备也可以判断第一条件是否满足,在满足的情况下,降低波束发射功率,从而达到节能的目标。在两个网络设备均降低发射功率的情况下,两个网络设备的通信性能基本不会有损失。
第六方面,提供一种通信方法,包括:
第一网络设备降低波束的发射功率;第一网络设备向第二网络设备发送第一信息,第 一信息指示第一网络设备发送第一波束的时频资源;第一网络设备从第二网络设备接收第二信息,第二信息指示第二网络设备发送第二波束的时频资源;第一网络设备根据第一信息和第二信息,确定第一条件是否满足;其中,第一条件为发送第一波束的时频资源与发送第二波束的时频资源之间存在重叠的第一时频资源,第一波束对第二波束的干扰与接收机底噪的比值大于第一阈值,第二波束对第一波束的干扰与接收机底噪的比值大于第一阈值;在第一条件不满足的情况下,第一网络设备升高第一波束的发射功率。
根据本申请的方法,第一网络设备可以先降低波束发射功率,再判断第一条件是否满足,如果第一条件不满足再升高波束发射功率。类似地,第二网络设备可以先降低波束发射功率,再判断第一条件是否满足,如果第一条件不满足再升高波束发射功率。也就是说,在第一条件满足的情况下,两个网络设备均会降低波束发射功率,从而达到节能的目标,两个网络设备的通信性能基本不会有损失。
结合第五方面或第六方面,在第五方面或第六方面的某些实现方式中,该方法还包括:
第一网络设备从第四网络设备接收第三信息,第三信息指示第四网络设备发送第四波束的时频资源;第二波束对第一波束产生第一干扰,第四波束对第一波束产生第二干扰,第一波束对第四波束的干扰与接收机底噪的比值小于或等于第一阈值;第二波束对第一波束的干扰与接收机底噪的比值大于第一阈值,包括:
第一干扰与接收机底噪加上第二干扰之和的比值大于第一阈值。
结合第五方面或第六方面,在第五方面或第六方面的某些实现方式中:
发送第一波束的时频资源包括第一时域和占用特定频域的第一比例,发送第二波束的时频资源包括第二时域和占用特定频域的第二比例;确定第一条件是否满足,包括:
在第一时域与第二时域相互重叠,并且第一比例和第二比例均大于第四阈值的情况下,第一网络设备确定发送第一波束的时频资源与发送第二波束的时频资源之间存在重叠的第一时频资源。
第七方面,提供一种通信方法,包括:
网络设备确定第三条件是否满足;其中,第三条件为发送第五波束的时频资源和发送第六波束的时频资源之间存在重叠的第二时频资源,第五波束对第六波束的干扰与接收机底噪的比值大于第五阈值,第六波束对第五波束的干扰与接收机底噪的比值大于第五阈值;在第三条件满足的情况下,网络设备降低第五波束和第六波束在第二时频资源的发射功率。
结合第七方面,在第七方面的某些实现方式中:
第五波束的发射功率的降幅与第六波束的发射功率的降幅相同。
第八方面,提供一种功率控制方法,所述方法包括:
确定第一条件是否满足,所述第一条件包括发送第一波束的时频资源与发送第二波束的时频资源之间存在重叠,且所述第一波束对所述第二波束的干扰与接收机底噪的比值大于第一阈值,所述第二波束对所述第一波束的干扰与接收机底噪的比值大于第一阈值;在所述第一条件满足的情况下,降低所述第一波束和所述第二波束的发射功率。
结合第八方面,在第八方面的某些实现方式中,所述方法还包括:
确定第二条件是否满足,所述第二条件包括发送所述第一波束的时频资源与发送第三波束的时频资源之间存在重叠,且所述第一波束对所述第三波束的干扰与接收机底噪的比 值大于第一阈值;在所述第二条件满足的情况下,降低所述第三波束的发射功率。
结合第八方面,在第八方面的某些实现方式中,所述方法适用于包括第一网络设备、第二网络设备和第三网络设备的系统中,所述第一网络设备用于发送所述第一波束,所述第二网络设备用于发送所述第二波束,所述第三网络设备用于发送所述第三波束。
结合第八方面,在第八方面的某些实现方式中,所述确定第一条件是否满足,包括:
所述第一网络设备和所述第二网络设备确定所述第一条件是否满足。
在所述第一条件满足的情况下,降低所述第一波束和所述第二波束的发射功率,包括:
在所述第一条件满足的情况下,所述第一网络设备降低所述第一波束的发射功率,所述第二网络设备降低所述第二波束的发射功率。
结合第八方面,在第八方面的某些实现方式中,所述第一网络设备和所述第二网络设备确定所述第一条件是否满足,包括:
所述第一网络设备向所述第二网络设备发送第一信息,所述第一信息包括所述第一网络设备发送第一波束的时频资源,以及所述第二波束对所述第一波束的干扰;所述第二网络设备向所述第一网络设备发送第二信息,所述第二信息包括所述第二网络设备发送第二波束的时频资源,以及所述第一波束对所述第二波束的干扰;所述第一网络设备和所述第二网络设备根据所述第一信息和所述第二信息,确定所述第一条件是否满足。
结合第八方面,在第八方面的某些实现方式中,所述确定第二条件是否满足,包括:
所述第三网络设备确定所述第二条件是否满足。
在所述第二条件满足的情况下,降低所述第三波束的发射功率,包括:
在所述第二条件满足的情况下,所述第三网络设备降低所述第三波束的发射功率。
结合第八方面,在第八方面的某些实现方式中,所述方法适用于包括集中控制节点、第一网络设备、第二网络设备和第三网络设备的系统中,所述集中控制设备用于管理所述第一网络设备、所述第二网络设备和所述第三网络设备,所述第一网络设备用于发送所述第一波束,所述第二网络设备用于发送所述第二波束,所述第三网络设备用于发送所述第三波束。
结合第八方面,在第八方面的某些实现方式中,所述确定第一条件是否满足,包括:
所述集中控制节点确定所述第一条件是否满足。
在所述第一条件满足的情况下,降低所述第一波束和所述第二波束的发射功率,包括:
在所述第一条件满足的情况下,所述集中控制节点向所述第一网络设备发送第一指示信息,并且向所述第二网络设备发送第二指示信息,所述第一指示信息指示降低所述第一波束的发射功率,所述第二指示信息指示降低所述第二波束的发射功率。
结合第八方面,在第八方面的某些实现方式中,所述确定第二条件是否满足,包括:
所述集中控制节点确定所述第二条件是否满足。
在所述第二条件满足的情况下,降低所述第三波束的发射功率,包括:
在所述第二条件满足的情况下,所述集中控制节点向所述第三网络设备发送第三指示信息,所述第三指示信息指示降低所述第三波束的发射功率。
结合第八方面,在第八方面的某些实现方式中,所述第一波束的发射功率的降幅与所述第二波束的发射功率的降幅相同。
第九方面,提供一种集中控制节点,包括:
收发单元,以及与收发单元连接的处理单元;
处理单元,用于确定第一条件是否满足;
其中,第一条件为第一网络设备发送第一波束的时频资源与第二网络设备发送第二波束的时频资源之间存在重叠的第一时频资源,第一波束对第二波束的干扰与接收机底噪的比值大于第一阈值,第二波束对第一波束的干扰与接收机底噪的比值大于第一阈值;
在第一条件满足的情况下,收发单元,用于向第一网络设备发送第一指示信息,向第二网络设备发送第二指示信息,第一指示信息指示降低第一波束在第一时频资源的发射功率,第二指示信息指示降低第二波束在第一时频资源的发射功率。
结合第九方面,在第九方面的某些实现方式中:
处理单元,还用于确定第二条件是否满足;
其中,第二条件为第三网络设备在第一时频资源发送第三波束,第一波束对第三波束的干扰与接收机底噪的比值大于第一阈值,第三波束对第一波束的干扰与接收机底噪的比值小于或等于第一阈值;
在第二条件满足的情况下,收发单元,还用于向第三网络设备发送第三指示信息,第三指示信息指示降低第三波束在第一时频资源的发射功率。
第十方面,提供一种集中控制节点,包括:
收发单元,以及与收发单元连接的处理单元;
收发单元,用于向第一网络设备发送第四指示信息,向第二网络设备发送第五指示信息;
其中,第四指示信息指示降低第一网络设备的波束发射功率,第五指示信息指示降低第二网络设备的波束发射功率;
处理单元,用于确定第一条件是否满足;
其中,第一条件为第一网络设备发送第一波束的时频资源与第二网络设备发送第二波束的时频资源之间存在重叠的第一时频资源,第一波束对第二波束的干扰与接收机底噪的比值大于第一阈值,第二波束对第一波束的干扰与接收机底噪的比值大于第一阈值;
在第一条件不满足的情况下,收发单元,用于向第一网络设备发送第六指示信息,向第二网络设备发送第七指示信息;
其中,第六指示信息指示升高第一波束的发射功率,第七指示信息指示升高第二波束的发射功率。
结合第十方面,在第十方面的某些实现方式中:
收发单元,还用于向第三网络设备发送第八指示信息,第八指示信息指示降低第三网络设备的波束发射功率;
处理单元,还用于确定第二条件是否满足;
其中,第二条件为第三网络设备在第一时频资源发送第三波束,第一波束对第三波束的干扰与接收机底噪的比值大于第一阈值,第三波束对第一波束的干扰与接收机底噪的比值小于或等于第一阈值;
在第二条件不满足的情况下,收发单元,还用于向第三网络设备发送第九指示信息, 第九指示信息指示升高第三波束的发射功率。
结合第九方面或第十方面,在第九方面或第十方面的某些实现方式中:
收发单元,还用于从第一网络设备接收第一信息,第一信息指示第一网络设备发送第一波束的时频资源;
收发单元,还用于从第二网络设备接收第二信息,第二信息指示第二网络设备发送第二波束的时频资源。
结合第九方面或第十方面,在第九方面或第十方面的某些实现方式中:
收发单元,还用于向第一网络设备发送进行第一下行数据传输的第一配置信息,第一配置信息指示第一网络设备发送第一波束的时频资源;
收发单元,还用于向第二网络设备发送进行第二下行数据传输的第二配置信息,第二配置信息指示第二网络设备发送第二波束的时频资源。
结合第九方面或第十方面,在第九方面或第十方面的某些实现方式中:
处理单元,用于确定第一波束在第一时频资源的发射功率的第一降幅,以及第二波束在第一时频资源的发射功率的第二降幅。
第十一方面,提供一种第一网络设备,包括:
收发单元,以及与收发单元连接的处理单元;
收发单元,用于从集中控制节点接收第一指示信息,第一指示信息指示降低第一波束在第一时频资源的发射功率;
处理单元,用于根据第一指示信息,降低第一波束在第一时频资源的发射功率。
第十二方面,提供一种第一网络设备,包括:
收发单元,以及与收发单元连接的处理单元;
收发单元,用于从集中控制节点接收第四指示信息,第四指示信息指示降低第一网络设备的波束发射功率;
收发单元,还用于从集中控制节点接收第六指示信息,第六指示信息指示升高第一波束的发射功率;
处理单元,还用于根据第六指示信息,升高第一波束的发射功率。
结合第十一方面或第十二方面,在第十一方面或第十二方面的某些实现方式中:
收发单元,还用于向集中控制节点发送第一信息,第一信息指示第一网络设备发送第一波束的时频资源。
结合第十一方面或第十二方面,在第十一方面或第十二方面的某些实现方式中:
收发单元,还用于从集中控制节点接收第一配置信息,第一配置信息指示第一网络设备发送第一波束的时频资源。
第十三方面,提供一种第一网络设备,包括:
收发单元,以及与收发单元连接的处理单元;
收发单元,用于向第二网络设备发送第一信息,第一信息指示第一网络设备发送第一波束的时频资源;
收发单元,还用于从第二网络设备接收第二信息,第二信息指示第二网络设备发送第二波束的时频资源;
处理单元,用于根据第一信息和第二信息,确定第一条件是否满足;
其中,第一条件为发送第一波束的时频资源与发送第二波束的时频资源之间存在重叠的第一时频资源,第一波束对第二波束的干扰与接收机底噪的比值大于第一阈值,第二波束对第一波束的干扰与接收机底噪的比值大于第一阈值;
在第一条件满足的情况下,处理单元,还用于降低第一波束在第一时频资源的发射功率。
第十四方面,提供一种第一网络设备,包括:
收发单元,以及与收发单元连接的处理单元;
处理单元,用于降低波束的发射功率;
收发单元,用于向第二网络设备发送第一信息,第一信息指示第一网络设备发送第一波束的时频资源;
收发单元,还用于从第二网络设备接收第二信息,第二信息指示第二网络设备发送第二波束的时频资源;
处理单元,还用于根据第一信息和第二信息,确定第一条件是否满足;
其中,第一条件为发送第一波束的时频资源与发送第二波束的时频资源之间存在重叠的第一时频资源,第一波束对第二波束的干扰与接收机底噪的比值大于第一阈值,第二波束对第一波束的干扰与接收机底噪的比值大于第一阈值;
在第一条件不满足的情况下,处理单元,还用于升高第一波束的发射功率。
结合第十三方面或第十四方面,在第十三方面或第十四方面的某些实现方式中:
收发单元,还用于从第四网络设备接收第三信息,第三信息指示第四网络设备发送第四波束的时频资源;
第二波束对第一波束产生第一干扰,第四波束对第一波束产生第二干扰,第一波束对第四波束的干扰与接收机底噪的比值小于或等于第一阈值;第二波束对第一波束的干扰与接收机底噪的比值大于第一阈值,包括:
第一干扰与接收机底噪加上第二干扰之和的比值大于第一阈值。
结合第十三方面或第十四方面,在第十三方面或第十四方面的某些实现方式中:
发送第一波束的时频资源包括第一时域和占用特定频域的第一比例,发送第二波束的时频资源包括第二时域和占用特定频域的第二比例;
在第一时域与第二时域相互重叠,并且第一比例和第二比例均大于第四阈值的情况下,处理单元确定发送第一波束的时频资源与发送第二波束的时频资源之间存在重叠的第一时频资源。
第十五方面,提供一种网络设备,包括:
收发单元,以及与收发单元连接的处理单元;
处理单元,用于确定第三条件是否满足;
其中,第三条件为发送第五波束的时频资源和发送第六波束的时频资源之间存在重叠的第二时频资源,第五波束对第六波束的干扰与接收机底噪的比值大于第五阈值,第六波束对第五波束的干扰与接收机底噪的比值大于第五阈值;
在第三条件满足的情况下,处理单元,还用于降低第五波束和第六波束在第二时频资源的发射功率。
第十六方面,提供一种通信设备,包括通信接口和处理器。当该通信设备运行时,处 理器执行存储器存储的计算机程序或指令,使得该通信设备执行第一方面至第七方面中任一种可能实现方式中的方法。该存储器可以位于处理器中,也可以为与处理器通过相互独立的芯片来实现,本申请对此不具体限定。
第十七方面,提供一种计算机可读存储介质,包括计算机程序,当计算机程序在计算机上运行时,使得计算机执行第一方面至第七方面中任一种可能实现方式中的方法。
第十八方面,提供一种芯片,芯片上设置有处理电路,处理电路用于执行该第一方面至第七方面中任一种可能实现方式中的方法。
第十九方面,提供了一种计算机程序产品,计算机程序产品包括:计算机程序(也可以称为代码,或指令),当计算机程序被运行时,使得计算机执行第一方面至第七方面中任一种可能实现方式中的方法。
第二十方面,提供一种通信系统,包括第一网络设备和第二网络设备,该第一网络设备和第二网络设备用于执行第八方面所述的方法。可选地,该通信系统中还可以包括第三网络设备。
第二十一方面,提供一种通信系统,包括集中控制节点、第一网络设备、第二网络设备和第三网络设备,该集中控制节点用于执行第八方面所述的方法。
附图说明
图1示出了本申请实施例适用的系统架构。
图2示出了本申请所提出的方法的一例示意性交互图。
图3示出了发送第一波束的时频资源和发送第二波束的时频资源。
图4示出了本申请所提出的方法的示意性交互图。
图5示出了多个小区之间干扰的情况。
图6示出了本申请所提出的方法的示意性交互图。
图7示出了本申请所提出的方法的示意性交互图。
图8示出了多个小区之间干扰的情况。
图9示出了本申请所提出的方法的示意性流程图。
图10示出本申请提供的通信装置的一种示意性框图。
图11示出本申请提供的通信设备的一种示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(global system for mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th Generation,5G)系统或新无线(new radio,NR)、未来第六代(6th  Generation,6G)系统等。
为了方便理解,首先对本申请中的一些术语进行说明。
(1)终端设备
本申请实施例中的终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端设备,未来6G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
(2)网络设备
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(global system of mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(nodeB,NB),还可以是LTE系统中的演进型基站(evolutional nodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、5G网络中的网络设备以及未来6G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
(3)干扰协作小区组
以两个小区为例,该两个小区可以由同一个网络设备管理,也可以由不同的网络设备管理。以网络设备#1管理小区#1,网络设备#2管理小区#2为例。
网络设备#2可以广播参考信号,小区#1中的多个终端设备可以接收网络设备#2广播的参考信号,并进行测量,得到测量结果,例如该测量结果可以为参考信号接收功率(resource signal received power,RSRP)。小区#1中的多个终端设备分别向网络设备#1反馈测量结果。此外,网络设备#2可以向网络设备#1发送小区#2的负载。网络设备#1根据多个终端设备反馈的测量结果、小区#2的负载,判断小区#2是否为小区#1的强干扰邻区。
类似地,网络设备#2也可以判断小区#1是否为小区#2的强干扰邻区。
如果小区#1为小区#2的强干扰邻区,并且小区#2为小区#1的强干扰邻区,则小区#1和小区#2互为干扰协作小区。
干扰协作小区组中可以包括多个小区,该多个小区中任意两个小区互为干扰协作小区。
(4)干扰波束对
干扰波束对可以理解为互相干扰的波束。
示例性地,作为一种可能的情况,确定两个小区中的干扰波束对的过程可以包括如下步骤。
以网络设备#1管理小区#1,网络设备#2管理小区#2,终端设备#1位于小区#1为例。
步骤1:终端设备#1发送参考信号。相应地,网络设备#1在多个波束上接收该参考信号。网络设备#2在多个波束上接收该参考信号。
步骤2:网络设备#1对在多个波束上接收到的参考信号进行测量,获取测量结果。网络设备#2对在多个波束上接收到的参考信号进行测量,获取测量结果。
步骤3:网络设备#2向网络设备#1发送获取到的测量结果以及波束的信息。
步骤4:网络设备#1基于网络设备#1自身的测量结果以及网络设备#2的测量结果,确定干扰波束对。
(5)集中控制节点
集中控制节点可以用于管理网络设备(例如,基站)。集中控制节点也可以称为基站控制节点。示例性地,集中控制节点可以为基带处理单元(base band unit,BBU)。
(6)信干噪比(signal to interference noise ratio,SINR)
信干噪比是度量通信系统通信质量的一个主要技术指标,一般而言,信干噪比越大通信质量越好。
Figure PCTCN2022142731-appb-000001
其中,S表示信号,I表示干扰,N表示噪声。
(7)邻区干扰
例如,小区#1和小区#2相邻,小区#2对小区#1的干扰属于小区#1受到的邻区干扰。
(8)流间干扰
本申请实施例中,流间干扰可以理解为不同数据流之间的干扰。
在网络设备与终端设备进行通信的过程中,网络设备发送的多个波束之间可能会存在干扰。例如,网络设备#1发送的波束#1与网络设备#2发送的波束#2之间存在干扰。又例如,网络设备#1发送的两个波束(波束#A和波束#B)之间存在干扰。为了降低干扰对通信的影响,网络设备会升高发送波束的功率。然而,升高发送波束的功率会导致波束之间的干扰进一步增加。最终,网络设备发送波束的功率中有很大一部分用于抵抗干扰,功率的利用效率不高。
基于此,本申请提出了多种方法,能够在保证通信性能的情况下,尽可能地降低网络设备的功耗。
应理解的是,本申请中的网络设备或者集中控制节点,均可以为位于基带处理单元中的模块或者基带板,本申请并不限定。
图1中的(a)示出了一种通信系统,该通信系统中包括集中控制节点、小区#1、小区#2、小区#3和小区#4。其中,上述4个小区可以由同一个网络设备管理,也可以由多个网络设备管理。并且,小区#1和小区#2互为干扰协作小区。小区#2、小区#3和小区#4均为小区#1的邻区。该通信系统也可以称为集中式通信系统。
为了方便描述,下文中以第一网络设备管理小区#1、第二网络设备管理小区#2、第三网络设备管理小区#3、第四网络设备管理小区#4为例进行描述。并且,集中控制节点管理上述4个网络设备。
第一网络设备用于向小区#1中的终端设备#1发送第一波束,第二网络设备用于向小区#2中的终端设备#2发送第二波束,第三网络设备用于向小区#3中的终端设备#3发送第三波束,第四网络设备用于向小区#4中的终端设备#4发送第四波束。
图1中的(b)示出了另一种通信系统,该通信系统与图1中的(a)相比,不包括集中控制节点。该通信系统也可以称为分布式通信系统。
图2示出了本申请提供的方法200,该方法200适用于图1中的(a)所示的通信系统。具体地,该方法200包括:
S210,集中控制节点确定第一条件是否满足。
其中,第一条件为第一网络设备发送第一波束的时频资源与第二网络设备发送第二波束的时频资源之间存在重叠的第一时频资源,第一波束对第二波束的干扰与接收机底噪的比值大于第一阈值,第二波束对第一波束的干扰与接收机底噪的比值大于第一阈值。
可以理解的是,接受机底噪也可以称为终端底噪、终端设备底噪。影响终端底噪的因素包括热噪声和噪声系数。对于不同的终端设备而言,终端底噪可以是相同的,也可以是不同的。
应理解,第一网络设备发送第一波束是为了与终端设备#1进行第一下行数据传输,第二网络设备发送第二波束是为了与终端设备#2进行第二下行数据传输。
例如,如图3所示,发送第一波束的时频资源在时域上为传输时间间隔(transmission time interval,TTI)#1-TTI#3、在频域上为频率#1-频率#3,发送第二波束的时频资源在时域上为TTI#2-TTI#4、在频域上为频率#2-频率#4,则重叠的第一时频资源在时域上为TTI#2-TTI#3、在频域上为频率#2-频率#3。
可选地,作为一种可能的情况,集中控制节点可以按照如下步骤获取第一波束对第二波束的干扰的大小:
步骤1:第一网络设备基于预设功率广播参考信号。
步骤2:小区#2中的终端设备#2接收到第一网络设备广播的参考信号,并进行测量,获取测量结果。
步骤3:终端设备#2向第二网络设备发送该测量结果。
步骤4:第二网络设备可以基于该测量结果,确定小区#1对终端设备#2的干扰。
在本申请中,小区#1对终端设备#2的干扰也可以认为是第一网络设备基于预设功率发送第一波束对第二波束的干扰。
步骤5:第二网络设备将小区#1对终端设备#2的干扰上报给集中控制节点。
也就是说,第二网络设备将第一波束对第二波束的干扰上报给集中控制节点。
可以理解的是,与上述步骤1至步骤5类似,集中控制节点也可以获取小区#2对终端设备#1的干扰,也就获取了第二网络设备基于预设功率发送第二波束对第一波束的干扰。
下面将第一波束记为波束#1,将第二波束记为波束#2。
作为一种方式,在线性域标度下波束#1对波束#2的干扰(或者说,小区#1对终端设备#2的干扰)可以记为PL 12*,波束#2对波束#1的干扰(或者说,小区#2对终端设备#1的干扰)可以记为PL 21*,终端设备#1底噪可以记为N 1*,终端设备#2的底噪可以记为N 2*。
在线性域标度下,第一波束对第二波束的干扰与接收机底噪(即,终端设备#2的底噪)的比值大于第一阈值,第二波束对第一波束的干扰与接收机底噪(即,终端设备#1 的底噪)的比值大于第一阈值可以通过下述不等式表示:
PL 12*/N 2*>H 1*,PL 21*/N 1*>H 2*。其中,H 1*与>H 2*可以相同,也可以不同,不予限制。
作为另一种方式,在分贝域标度(或者称为对数域标度)下波束#1对波束#2的干扰可以记为PL 12,波束#2对波束#1的干扰可以记为PL 21,终端设备#1底噪可以记为N 1,终端设备#2的底噪可以记为N 2
在分贝域标度下,第一波束对第二波束的干扰与接收机底噪(即,终端设备#2的底噪)的比值大于第一阈值,第二波束对第一波束的干扰与接收机底噪(即,终端设备#1的底噪)的比值大于第一阈值可以通过下述不等式表示:
PL 12-N 2>H 1,PL 21-N 1>H 2。其中,H 1与>H 2可以相同,也可以不同,不予限制。
应理解,当第一波束对第二波束的干扰与接收机底噪的比值大于第一阈值时,可以认为第一波束对第二波束的干扰远大于接收机底噪;当第二波束对第一波束的干扰与接收机底噪的比值大于第一阈值时,可以认为第二波束对第一波束的干扰远大于接收机底噪。
此外,作为另一种可能的情况,集中控制节点可以判断第二波束对第一波束的干扰是否远大于终端设备#1的底噪和其他邻区的干扰,第一波束对第二波束的干扰是否远大于终端设备#2的底噪和其他邻区的干扰。
例如,小区#1的邻区包括小区#4,集中控制节点确定第四网络设备在第一时频资源发送第四波束,第四波束对第一波束产生干扰,第一波束对第四波束的干扰与接收机底噪的比值小于或等于第一阈值(例如,第一波束对第四波束不产生干扰)。
如果将第四波束对第一波束的干扰(或者说小区#4对终端设备#1的干扰)记为PL 41,那么在分贝域标度下,第二波束对第一波束的干扰远大于终端设备#1的底噪和其他邻区的干扰可以通过下述不等式表示:
PL 21-(N 1+PL 41)>H 3
还应理解,作为另一种可能的情况,集中控制节点确定第四网络设备在第一时频资源中的部分时频资源(记为时频资源#N)发送第四波束,第四波束对第一波束产生干扰。
那么在此情况下,在时频资源#N,第二波束对第一波束的干扰可以远大于终端设备#1的底噪和其他邻区的干扰。
在第一时频资源中除时频资源#N之外的时频资源上,第二波束对第一波束的干扰可以远大于终端设备#1的底噪。
S220,在第一条件满足的情况下,集中控制节点向第一网络设备发送第一指示信息,向第二网络设备发送第二指示信息。相应地,第一网络设备接收第一指示信息,第二网络设备接收第二指示信息。
第一指示信息指示降低第一波束在第一时频资源的发射功率,第二指示信息指示降低第二波束在第一时频资源的发射功率。
可选地,第一指示信息和第二指示信息中还可以包括第一时频资源在时域和频域的位置。
例如,第一时频资源在时域上为TTI#2-TTI#3,在频域上为频率#2-频率#3。
应理解,集中控制节点可以确定第一波束在第一时频资源的发射功率的第一降幅,以及第二波束在第一时频资源的发射功率的第二降幅。
作为一种方式,第一降幅和第二降幅的大小不同。
例如,第一网络设备原本要以预设功率#1发送第一波束,第二网络设备原本要以预设功率#2发送第二波束,在第一条件满足的情况下,预设功率#1的降幅可以为PL 21-N 1,预设功率#2的降幅可以为PL 12-N 2
作为另一种方式,第一降幅和第二降幅的大小相同。
如果第一降幅和第二降幅相同,在分贝域标度下功率的降幅可以通过以下几种方式确定:
方式1:
功率的降低幅度(记为,Δ)可以由下述公式确定:
Δ=min(PL 12-N 2,PL 21-N 1)。
方式2:
功率的降低幅度可以由下述公式确定:
Δ=min(PL 12-N 2-X,PL 21-N 1-X),其中,X为预留的功率。
应理解,通过设置该预留的功率,可以减小降功率之后对信干噪比的影响。关于设置该预留的功率的有益效果,下文不再赘述。
方式3:
功率的降低幅度可以由下述公式确定:
Δ=max(PL 12-N 2,PL 21-N 1)。
方式4:
功率的降低幅度可以由下述公式确定:
Δ=max(PL 12-N 2-X,PL 21-N 1-X)。
可以理解的是,方式1和方式2相对于方式3和方式4而言,功率的降幅较小。因此,在保证通信性能的前提下,相对于方式3和方式4,采用方式1或方式2能够提高数据传输的传输速率。
S230,第一网络设备根据第一指示信息,降低第一波束在第一时频资源的发射功率。
作为一种可能的方式,第一指示信息还包括上述第一降幅。
在此方式下,第一网络设备根据第一降幅,确定降低之后第一波束在第一时频资源的发射功率。
作为另一种可能的方式,第一指示信息还包括降低之后第一波束在第一时频资源的发射功率。
S240,第二网络设备根据第二指示信息,降低第二波束在第一时频资源的发射功率。
作为一种可能的方式,第二指示信息还包括上述第二降幅。
在此方式下,第二网络设备根据第二降幅,确定降低之后第二波束在第一时频资源的发射功率。
作为另一种可能的方式,第二指示信息还包括降低之后第二波束在第一时频资源的发射功率。
根据本申请的方法,在干扰远大于接收机底噪的情况,信干噪比
Figure PCTCN2022142731-appb-000002
由于第一网络设备和第二网络设备均降低了发射功率,S和I均降低,一方面能够降低对 信干噪比的影响,保证第一网络设备和第二网络设备的通信性能,另一方面也能够降低网络设备的功耗。
可选地,该方法还包括:
S250,集中控制节点确定第二条件是否满足。
第二条件为第三网络设备在第一时频资源发送第三波束,第一波束对第三波束的干扰与接收机底噪的比值大于第一阈值。其中,第三波束对第一波束的干扰与接收机底噪的比值可以小于或等于第一阈值(例如,第三波束对第一波束不产生干扰)。
其中,第一波束对第三波束的干扰与接收机底噪(即,终端设备#3的底噪)的比值大于第一阈值可以理解为在第一波束的发射功率未降低之前,第一波束对第三波束的干扰远大于终端设备#3的底噪。
可以理解的是,与S210中的步骤1至步骤5类似,集中控制节点也获取第一网络设备基于预设功率发送第一波束对第三波束的干扰(或者说小区#1对终端设备#3的干扰),以及第三网络设备基于预设功率发送第三波束对第一波束的干扰(或者说小区#3对终端设备#1的干扰)。
换句话说,在第一时频资源,第一网络设备要发送第一波束,第二网络设备要发送第二波束,第三网络设备要发送第三波束;其中,第一波束和第二波束相互干扰,第一波束对第三波束产生干扰。
应理解,S250是在需要执行S230的情况下进行的。
S260,在第二条件满足的情况下,集中控制节点向第三网络设备发送第三指示信息,第三指示信息指示降低第三波束在第一时频资源的发射功率。
可选地,第三指示信息还包括第一时频资源的位置,以及第三波束在第一时频资源的发射功率的降幅(记为第三降幅)。
其中,第三降幅可以与第一降幅和第二降幅相同,也可以与第一降幅和第二降幅不同。
例如,第三降幅可以通过如下公式计算:
Δ=PL 13-N 3,其中PL 13为第一波束对第三波束产生的干扰(或者说小区#1对终端设备#3的干扰)。
应理解,如果第二条件满足,意味着如果第三网络设备以预设功率向终端设备#3发送第三波束,该预设功率中有很大一部分是为了克服第一波束对第三波束的干扰。
由于第一波束在第一时频资源的发射功率降低了,即,在第一时频资源第一波束对第三波束的干扰降低了,那么,作为一种可能的方式,第三网络设备可以降低发送第三波束的功率,从而节省功耗;作为另一种可能的方式,第三网络设备仍然可以按照预设功率发送第三波束,由于在第一时频资源第一波束对第三波束的干扰降低了,第三网络设备按照预设功率发送第三波束可以提高进行下行数据传输的传输速率。
可选地,发送第三波束的时频资源与发送第一波束的时频资源之间存在重叠的时频资源(记为时频资源#M),该时频资源#M可以为第一时频资源的一部分。此时,第三指示信息指示降低第三波束在时频资源#M的发射功率。
此外,可选地,作为一种情形,在S210之前,该方法还包括S201-S203:
S201,第一网络设备向集中控制节点发送第一信息。相应地,集中控制节点接收第一信息。
第一信息包括第一波束的信息,以及第一网络设备发送第一波束的时频资源(记为时频资源#A)。即,第一信息直接指示进行第一下行数据传输所调用的波束为第一波束,并指示了发送第一波束的时频资源。
作为另一种方式,第一信息包括时频资源#A以及第一波束组中每个波束被调用的概率。即,第一信息未直接指示进行第一下行数据传输所调用的波束。
例如,第一波束组中包括的多个波束为波束#A、波束#B、波束#C。第一网络设备进行第一下行数据传输调用波束#A的概率为概率#A,调用波束#B的概率为概率#B,调用波束#C的概率为概率#C。
S202,第二网络设备向集中控制节点发送第二信息。相应地,集中控制节点接收第二信息。
第二信息包括第二波束的信息,以及第二网络设备发送第二波束的时频资源(记为时频资源#B)。即,第二信息直接指示进行第二下行数据传输所调用的波束为第二波束,并指示了发送第二波束的时频资源。
作为另一种方式,第二信息包括时频资源#B,以及第二波束组中每个波束被调用的概率。即,第二信息未直接指示进行第二下行数据传输所调用的波束。
例如,第二波束组中包括的多个波束为波束#D、波束#E、波束#F。第一网络设备进行第二下行数据传输调用波束#D的概率为概率#D,调用波束#E的概率为概率#E,调用波束#F的概率为概率#F。
S203,第三网络设备向集中控制节点发送第三信息。相应地,集中控制节点接收第三信息。
该第三信息包括第三波束的信息,以及第三网络设备发送第三波束的时频资源。
该过程与S201和S202类似,不再赘述。
在该方法还包括S201和S202的基础上,S210中集中控制节点可以根据第一信息和第二信息,确定第一条件是否满足。
其中,集中控制节点可以确定时频资源#A和时频资源#B是否重叠。
集中控制节点可以确定第一波束和第二波束是否相互干扰,换句话说,集中控制节点可以确定第一波束和第二波束是否为干扰波束对。
在第一波束和第二波束为干扰波束对的情况下,集中控制节点可以确定第一波束对第二波束的干扰与接收机底噪的比值是否大于第一阈值,第二波束对第一波束的干扰与接收机底噪的比值是否大于第一阈值。
或者,示例性地,第一波束组中包括波束#A、波束#B、波束#C,第二波束组中包括波束#D、波束#E、波束#F。调用波束#A的概率大于第二阈值、调用波束#B的概率小于第二阈值、调用波束#C的概率小于第二阈值,调用波束#D的概率大于第三阈值、调用波束#E的概率小于第三阈值、调用波束#频率的概率小于第三阈值。其中,第二阈值可以等于第三阈值,或者第二阈值与第三阈值不同。
如果波束#A和波束#D相互干扰,则集中控制节点确定进行第一下行数据传输所调度的波束和进行第二下行数据传输所调度的波束相互干扰。进一步地,集中控制节点确定波束#A对波束#D的干扰与接收机底噪的比值是否大于第一阈值,波束#D对波束#A的干扰与接收机底噪的比值是否大于第一阈值。
如果波束#A和波束#D不相互干扰,则集中控制节点确定进行第一下行数据传输所调度的波束和进行第二下行数据传输所调度的波束不相互干扰。
可选地,作为另一种情形,在S210之前,该方法还包括S204-S206:
S204,集中控制节点向第一网络设备发送第一配置信息。
第一配置信息指示第一网络设备发送第一波束的时频资源。
S205,集中控制节点向第二网络设备发送第二配置信息。
第二配置信息指示第二网络设备发送第二波束的时频资源。
S206,集中控制节点向第三网络设备发送第三配置信息。
第三配置信息指示第三网络设备发送第三波束的时频资源。
在该方法还包括S204和S205的基础上,S210中集中控制节点可以根据第一配置信息和第二配置信息,确定第一条件是否满足。
例如,发送第一波束的时频资源在时域上为TTI#1-TTI#3、在频域上为频率#1-频率#3。发送第二波束的时频资源在时域上为TTI#2-TTI#4、在频域上为频率#2-频率#4。此时,该重叠的第一时频资源在时域上为TTI#2-TTI#3、在频域上为频率#2-频率#3。
集中控制节点还可以确定第一波束和第二波束是否相互干扰。在第一波束和第二波束为干扰波束对的情况下,集中控制节点可以确定第一波束对第二波束的干扰与接收机底噪的比值是否大于第一阈值,第二波束对第一波束的干扰与接收机底噪的比值是否大于第一阈值。
应理解,上述方法200是以两个小区互为干扰协作小区为例所进行的描述,显然,本申请的方法同样适用于多个小区相互干扰的场景。可以理解的是,集中控制节点可以确定每个小区对应的干扰协作小区组。
一示例,小区#1的干扰协作小区组为(小区#1,小区#2,小区#3),如果集中控制节点判断小区#1、小区#2和小区#3在相同的时频资源上发送波束(3个小区中的波束分别记为波束#1、波束#2和波束#3),并且波束#1与波束#2的相互干扰远大于接收机底噪,波束#1与波束#3的相互干扰远大于接收机底噪,波束#2与波束#3的相互干扰远大于接收机底噪,则可以同时降低波束#1、波束#2和波束#3的发射功率。
图4示出了本申请提供的方法400,该方法400适用于图1中的(a)所示的通信系统。具体地,该方法400包括:
S410,集中控制节点向第一网络设备发送第四指示信息,向第二网络设备发送第五指示信息。相应地,第一网络设备接收第四指示信息,第二网络设备接收第五指示信息。
第四指示信息指示降低第一网络设备的波束发射功率,第五指示信息指示降低第二网络设备的波束发射功率。
可选地,第四指示信息和第五指示信息中还可以包括波束发射功率的降幅。其中,波束发射功率的降幅可以参考S220中的方式计算。
S420,集中控制节点确定第一条件是否满足。
第一条件为第一网络设备发送第一波束的时频资源与第二网络设备发送第二波束的时频资源之间存在重叠的第一时频资源,第一波束对第二波束的干扰与接收机底噪的比值大于第一阈值,第二波束对第一波束的干扰与接收机底噪的比值大于第一阈值。
换句话说,在S420中,集中控制节点确定第一网络设备按照预设功率(即,未降低 功率之前的发射功率)发送第一波束对第二波束的干扰是否远大于接收机底噪,并且确定第二网络设备按照预设功率发送第二波束对第一波束的干扰是否远大于接受机底噪。
可以理解的是,第一网络设备发送第一波束的预设功率和第二网络设备发送第二波束的预设功率可以相同,也可以不同。
此外,作为另一种可能的情况,集中控制节点可以确定第二波束对第一波束的干扰是否远大于终端设备#1的底噪和其他邻区的干扰,第一波束对第二波束的干扰是否远大于终端设备#2的底噪和其他邻区的干扰。
S420具体可以参考S210的描述。
S430,在第一条件不满足的情况下,集中控制节点向第一网络设备发送第六指示信息,向第二网络设备发送第七指示信息。相应地,第一网络设备接收第六指示信息,第二网络设备接收第七指示信息。
第六指示信息指示升高第一波束的发射功率。第七指示信息指示升高第二波束的发射功率。
举例而言,第一网络设备发送第一波束的预设功率为100W,第二网络设备发送第二波束的预设功率为150W。在S410中集中控制节点可以指示第一网络设备和第二网络设备在发送波束时降低功率。在S420中集中控制节点判断第一网络设备按照100W发送第一波束、第二网络设备按照150W发送第二波束时,第一波束和第二波束之间的相互干扰没有远大于接受机底噪。在S430中集中控制节点可以指示第一网络设备仍然按照预设功率发送第一波束,并且指示第二网络设备仍然按照预设功率发送第二波束。
S440,第一网络设备根据第六指示信息,升高第一波束的发射功率;第二网络设备根据第七指示信息,升高第二波束的发射功率。
例如,第一网络设备发送第一波束的预设功率为功率#1,在S410中第一网络设备根据第四指示信息将第一波束的发射功率由功率#1调整为功率#2,在S440中第一网络设备根据第六指示信息将第一波束的发射功率由功率#2调整为功率#1,也就是说第一网络设备可以仍然按照预设功率发送第一波束。第二网络设备与此类似。
可选地,在第一条件满足的情况下,集中控制节点可以向第一网络设备和第二网络设备发送消息#A,该消息#A指示第一时频资源的位置。第一网络设备在发送第一波束时,降低在第一时频资源的发射功率。对于第一时频资源之外的其他时频资源,第一网络设备可以按照原先的预设功率发送第一波束。第二网络设备与此类似。
根据本申请的方案,集中控制节点可以先通知网络设备降低波束发射功率,在第一条件不满足的情况下,再通知网络设备升高波束发射功率。也就是说,在第一条件满足的情况下,两个网络设备均会降低波束发射功率,从而达到节能的目标。另一方面,由于两个网络设备均降低了波束发射功率,能够降低对信干噪比的影响,保证第一网络设备和第二网络设备的通信性能。此外,相比于方法200,在第一条件不满足的情况下,集中控制节点通知两个网络设备升高发射功率,可以提高两个网络设备进行下行数据传输的传输速率。
可选地,该方法还包括S450-S480:
S450,集中控制节点向第三网络设备发送第八指示信息,第八指示信息指示降低第三网络设备的波束发射功率。相应地,第三网络设备接收第八指示信息。
可选地,第三网络设备的波束发射功率的降幅可以等于/不等于第一网络设备和第二网络设备的波束发射功率的降幅。
例如,第三网络设备的波束发射功率的降幅可以参考S260中的方式计算。
S460,集中控制节点确定第二条件是否满足。
第二条件为第三网络设备在第一时频资源发送第三波束,第一波束对第三波束的干扰与接收机底噪的比值大于第一阈值,第三波束对第一波束的干扰与接收机底噪的比值小于或等于第一阈值(例如,第三波束对第一波束不产生干扰)。
或者,发送第三波束的时频资源与发送第一波束的时频资源之间存在重叠的时频资源(记为时频资源#M),该时频资源#M可以为第一时频资源的一部分。该第二条件为第三网络设备在时频资源#M发送第三波束,第一波束对第三波束的干扰与接收机底噪的比值大于第一阈值,第三波束对第一波束的干扰与接收机底噪的比值小于或等于第一阈值(例如,第三波束对第一波束不产生干扰)。
S470,在第二条件不满足的情况下,集中控制节点向第三网络设备发送第九指示信息,第九指示信息指示升高第三波束的发射功率。
S480,第三网络设备根据第九指示信息,升高第三波束的发射功率。
例如,第三网络设备发送第三波束的预设功率为功率#3,在S450中第三网络设备可以根据第八指示信息将第三波束的发射功率由功率#3调整为功率#4,在S480中由于第二第二条件不满足,第三网络设备可以根据第九指示信息将第三波束的发射功率由功率#4调整为功率#3,也就是第三网络设备仍然可以按照预设功率发送第三波束。
可选地,在第二条件满足的情况下,集中控制节点可以向第三网络设备发送消息#B。该消息#B指示第一时频资源的位置,第三网络设备在发送第三波束时,降低在第一时频资源的发射功率。对于第一时频资源之外的其他时频资源,第三网络设备可以按照预设功率发送第三波束。
或者,该消息#B指示时频资源#M的位置,第三网络设备在发送第三波束时,降低在时频资源#M的发射功率。对于时频资源#M之外的其他时频资源,第三网络设备可以按照预设功率发送第三波束。
可选地,作为一种情形,在S420之前,该方法还包括上述S201和S202,在此不再赘述。
可选地,作为另一种情形,在S420之前,该方法还包括上述S204和S205,在此不再赘述。
应理解,上述方法400是以两个小区互为干扰协作小区为例所进行的描述,显然,本申请的方法同样适用于多个小区的场景。
一示例,小区#1的干扰协作小区组为(小区#1,小区#2,小区#3),集中控制节点首先指示管理小区#1、小区#2和小区#3的网络设备降低波束的发射功率。集中控制节点然后判断小区#1、小区#2和小区#3虽然在相同的时频资源发送波束(3个小区中的波束分别记为波束#1、波束#2和波束#3),但是波束#1、波束#2和波束#3并没有相互干扰,那么集中控制节点可以指示管理小区#1、小区#2和小区#3的网络设备升高波束的发射功率。
此外,在集中式控制方式下,还可能出现以下几种情况。
情况1:
如图5中的a所示,以3个小区为例,集中控制节点确定小区#1、小区#2和小区#3要在相同的时频资源发送波束(3个小区中的波束分别记为波束#1、波束#2和波束#3),波束#1对波束#2产生干扰,波束#2对波束#3产生干扰,波束#3对波束#1产生干扰,PL 12远大于接收机底噪,PL 23远大于接收机底噪,PL 31远大于接收机底噪,则集中控制节点通知3个小区中的网络设备,降低波束#1、波束#2和波束#3的发射功率。
应理解,本申请中PLij的含义为波束i对波束j的干扰。
可选地,波束#1至波束#3的功率降幅相同。
例如,功率的降幅=min(PL 12-N,PL 23-N,PL 31-N)。
又例如,功率的降幅=min(PL 12-N-X,PL 23-N-X,PL 31-N-X)。
情况2:
如图5中的b所示,以4个小区为例,集中控制节点确定小区#1至小区#4要在相同的时频资源发送波束(4个小区中的波束分别记为波束#1至波束#4),波束#1对波束#2产生干扰,波束#2对波束#3产生干扰,波束#3对波束#1和波束#4产生干扰,PL12远大于接收机底噪,PL23远大于接收机底噪,PL31远大于接收机底噪,PL34远大于接收机底噪。
作为一种情形,集中控制节点通知4个小区中的网络设备,降低波束#1至波束#4的发射功率。
可选地,波束#1-波束#4的功率降幅相同。
例如,功率的降幅=min(PL 12-N,PL 23-N,PL 31-N,PL 34-N)。
例如,功率的降幅=min(PL 12-N-X,PL 23-N-X,PL 31-N-X,PL 34-N-X)。
作为另一种情形,集中控制节点通知小区#1至小区#3中的网络设备,降低波束#1至波束#3的发射功率。即,可以不降低波束#4的发射功率。
情况3:
如图5中的c所示,以4个小区为例,集中控制节点确定小区#1至小区#4要在相同的时频资源发送波束(4个小区中的波束分别记为波束#1至波束#4),波束#1对波束#2产生干扰,波束#2对波束#3产生干扰,波束#3对波束#1产生干扰,波束#4对波束#3产生干扰,PL 12远大于接收机底噪,PL 23远大于接收机底噪,PL 31远大于接收机底噪,PL 43远大于接收机底噪,集中控制节点通知4个小区中的网络设备,降低波束#1至波束#4的发射功率。
可选地,波束#1-波束#4的功率降幅相同。
例如,功率的降幅=min(PL 12-N,PL 23-N,PL 31-N,PL 43-N)。
例如,功率的降幅=min(PL 12-N-X,PL 23-N-X,PL 31-N-X,PL 43-N-X)。
情况4:
如图5中的d所示,以3个小区为例,集中控制节点确定小区#1至小区#3要在相同的时频资源发送波束(3个小区中的波束分别记为波束#1至波束#3),波束#1对波束#2产生干扰,波束#2对波束#3产生干扰,波束#3对波束#1不产生干扰,PL12远大于接收机底噪,PL23远大于接收机底噪。
作为一种可能的情形,集中控制节点通知3个小区中的网络设备,降低波束#1至波 束#3的发射功率。
可选地,波束#1至波束#3的功率降幅相同。
例如,功率的降幅=min(PL 12-N,PL 23-N)。
又例如,功率的降幅=min(PL 12-N-X,PL 23-N-X)。
作为另一种可能的情形,集中控制节点通知小区#1和小区#2中的网络设备,降低波束#1和波束#2的发射功率。即,波束#3的发射功率可以保持不变。应理解,由于降低了波束#2的发射功率,PL 23减小,如果波束#3的发射功率保持不变,则小区#3中的网络设备进行下行数据传输的速率会有所提高。
图6示出了本申请提供的方法600,该方法适用于图1中的(b)所示的通信系统,其中,小区#1和小区#2互为干扰协作小区。具体地,该方法600包括:
S610,第一网络设备向第二网络设备发送第一信息。相应地,第二网络设备接收第一信息。
第一信息包括第一网络设备发送第一波束的时频资源(记为时频资源#A),以及第二波束对第一波束的干扰(或者说小区#2对终端设备#1的干扰)。应理解,第一网络设备也存储了第一信息。
应理解,第一网络获取第二波束对第一波束的干扰的方式可以参考S210,第一网络设备发送第一波束是为了进行与终端设备#1第一下行数据传输。
下面介绍第一信息指示时频资源#A的方式:
方式A:
时频资源#A包括第一时域和第一频域。即,第一信息指示进行第一下行数据传输所使用的时频资源的准确位置。
方式B:
时频资源#A包括第一时域以及占用特定频域的第一比例。
作为一种可能的方式,第一网络设备和第二网络设备可以使用的频域资源均为该特定频域。
例如,该特定频域为频率#A至频率B,第一信息指示时频资源#A中的频域资源占频率#A至频率#B的80%。
可选地,第一网络设备可以预估在时域资源#A第一网络设备是否进行第一下行数据传输。例如,第一网络设备可以根据基站侧缓存的数据量,调度队列等信息进行该预估。第一信息可以指示第一网络设备在时频资源#A是否进行第一下行数据传输。
作为一种特殊情况,在该第一比例大于第四阈值的情况下,第一网络设备才发送该第一信息,即,此时,第一信息指示第一网络设备在第一时域进行第一下行数据传输,并且隐式地指示第一比例大于第四阈值。
可选地,作为另一种情况,第一信息包括第一波束组中每个波束被调用的概率。即,第一信息未直接指示进行第一下行数据传输所调用的波束。具体可以参考上文中的描述。
S620,第二网络设备向第一网络设备发送第二信息。相应地,第一网络设备接收第二信息。
第二信息包括第二网络设备发送第二波束的时频资源(记为时频资源#B),以及第一波束对第二波束的干扰(或者说小区#1对终端设备#2的干扰)。应理解,第二网络设备 也存储了第二信息。
应理解,第二网络获取第一波束对第二波束的干扰的方式可以参考S210,第二网络设备发送第二波束是为了进行第二下行数据传输。
下面介绍第二信息指示时频资源#B的方式:
方式A:
时频资源#B包括第二时域和第二频域。即,第二信息指示进行第二下行数据传输所使用的时频资源#B的准确位置。
方式B:
时频资源#B包括第二时域以及占用特定频域的第二比例。
作为一种可能的方式,第一网络设备和第二网络设备可以使用的频域资源均为该特定频域。
例如,该特定频域为频率#A至频率B,第二信息指示时频资源#B中的频域资源占频率#A至频率#B的85%。
可选地,第二网络设备可以预估在时域资源#B第二网络设备是否进行第一下行数据传输。例如,第二网络设备可以根据基站侧缓存的数据量,调度队列等信息进行该预估。第二信息可以指示第二网络设备在时频资源#B是否进行第二下行数据传输。
作为一种特殊情况,在该第二比例大于第四阈值的情况下,第一网络设备才发送该第二信息。即,此时,第二信息指示第二网络设备在第二时域进行第二下行数据传输,并且隐式地指示第二比例大于第四阈值。
可选地,作为另一种情况,第二信息包括第二波束组中每个波束被调用的概率。即,第二信息未直接指示进行第二下行数据传输所调用的波束。具体可以参考上文中的描述。
应理解,S620也可以在S610之前,或者与S610同时进行。
S630,第一网络设备根据第一信息和第二信息,确定第一条件是否满足。
第一条件为时频资源#A与时频资源#B之间存在重叠的第一时频资源,第一波束对第二波束的干扰与接收机底噪的比值大于第一阈值,第二波束对第一波束的干扰与接收机底噪的比值大于第一阈值。
下面介绍第一网络设备如何确定时频资源#A与时频资源#B是否重叠。
情况A:
如果S610按照方式#A进行、S620按照方式#A进行,则第一网络设备根据第一时域、第一频域、第二时域、第二频域,确定时频资源#A与时频资源#B是否重叠。
进一步地,第一网络设备可以确定第一时频资源在时域和频域的位置。
情况B:
如果S610按照方式#B进行、S620按照方式#B进行,在第一时域与第二时域相互重叠,并且第一比例和第二比例均大于第四阈值的情况下,第一网络设备确定时频资源#A与时频资源#B重叠。
进一步地,第一网络设备可以确定第一时频资源在时域的位置。由于第一网络设备无法准确地确定第一时频资源在频域的位置。一种可能的实现方式是将上述特定频域作为第一时频资源在频域的位置。此时,该特定频域的范围可能比第一时频资源在频域的实际频域范围大。
第一网络设备还确定第一波束和第二波束是否相互干扰,以及第一波束和第二波束的相互干扰是否远大于接收机底噪。
可选地,第一网络设备还可以根据第一波束组中每个波束被调用的概率、第二波束组中每个波束被调用的概率,确定进行第一下行数据传输所调用的波束和进行第二下行数据传输所调用的波束是否相互干扰,以及该相互干扰是否远大于接收机底噪。
作为一种特殊情况,第一信息指示第一网络设备在第一时域进行第一下行数据传输,并且隐式地指示第一比例大于第四阈值,第二信息指示第二网络设备在第二时域进行第二下行数据传输,并且隐式地指示第二比例大于第四阈值,此时,如果第一时域与第二时域重叠,则第一网络设备确定时频资源#A与时频资源#B之间存在重叠的第一时频资源。
可选地,该方法还包括:第四网络设备向第一网络设备发送第三信息。相应地,第一网络设备接收第三信息。第三信息包括第四网络设备发送第四波束的时频资源。
此外,第一网络设备也可以获取第四波束对第一波束的干扰(或者说小区#4对终端设备#1的干扰)。
作为一种可能的情况,第一网络设备可以判断第二波束对第一波束的干扰是否远大于终端设备#1的底噪和其他邻区的干扰。
S640,在第一条件满足的情况下,第一网络设备降低第一波束在第一时频资源的发射功率。
作为一种方式,第一网络设备可以基于S220中的方式1或方式2确定第一波束的发射功率的降幅。
S650,第二网络设备根据第一信息和第二信息,确定第一条件是否满足。
该过程与S630类似。
S660,在第一条件满足的情况下,第二网络设备降低第二波束在第一时频资源的发射功率。
作为一种方式,第二网络设备可以基于S220中的方式1或方式2确定第二波束的发射功率的降幅。
第一网络设备和第二网络设备按照同样的规则确定发射功率的降幅。第一波束和第二波束的发射功率的降幅可以是相同的,也可以是不同的,不予限制。
根据本申请的方法,第一网络设备和第二网络设备基于同样的方法判断第一条件是否满足,在满足的情况下,两个网络设备均降低波束的发射功率,从而达到节能的目标,同时通信性能基本不会有损失。
应理解,上述方法600是以两个小区相互干扰为例所进行的描述,显然,本申请的方法同样适用于多个小区相互干扰的场景。
一示例,小区#1的干扰协作小区组为(小区#1,小区#2,小区#3)。如果小区#1中的网络设备判断小区#1、小区#2和小区#3在相同的时频资源发送波束(3个小区中的波束分别记为波束#1、波束#2和波束#3),波束#1与波束#2的相互干扰远大于接收机底噪,波束#1与波束#3的相互干扰远大于接收机底噪,那么小区#1中的网络设备可以降低波束#1的发射功率。
图7示出了本申请提供的方法700,该方法适用于图1中的(b)所示的通信系统,其中,小区#1和小区#2互为干扰协作小区。具体地,该方法700包括:
S710,第一网络设备降低波束的发射功率。第二网络设备降低波束的发射功率。
其中,波束发射功率的降幅可以参考S220中的方式计算。
S720,第一网络设备向第二网络设备发送第一信息。相应地,第二网络设备接收第一信息。
第一信息包括第一网络设备发送第一波束的时频资源(记为时频资源#A),以及第二波束对第一波束的干扰(或者说小区#2对终端设备#1的干扰)。
该过程具体可以参考S610的描述。
可选地,作为另一种情况,第一信息包括第一波束组中每个波束被调用的概率。即,第一信息未直接指示进行第一下行数据传输所调用的波束。具体可以参考上文中的描述。
S730,第二网络设备向第一网络设备发送第二信息。相应地,第一网络设备接收第二信息。
第二信息包括第二网络设备发送第二波束的时频资源(记为时频资源#B),以及第一波束对第二波束的干扰(或者说小区#1对终端设备#2的干扰)。
该过程具体可以参考S620的描述。
可选地,作为另一种情况,第二信息包括第二波束组中每个波束被调用的概率。即,第二信息未直接指示进行第二下行数据传输所调用的波束。具体可以参考上文中的描述。
S740,第一网络设备根据第一信息和第二信息,确定第一条件是否满足。
第一条件为时频资源#A与时频资源#B之间存在重叠的第一时频资源,第一波束对第二波束的干扰与接收机底噪的比值大于第一阈值,第二波束对第一波束的干扰与接收机底噪的比值大于第一阈值。
该过程具体可以参考S630的描述。
可选地,该方法还包括:第四网络设备向第一网络设备发送第三信息。第三信息包括第四网络设备发送第四波束的时频资源。
此外,第一网络设备也可以获取第四波束对第一波束的干扰(或者说小区#4对终端设备#1的干扰)。
作为一种可能的情况,第一网络设备可以判断第二波束对第一波束的干扰是否远大于终端设备#1的底噪和其他邻区的干扰。
S750,在第一条件不满足的情况下,第一网络设备升高第一波束的发射功率。
举例而言,第一网络设备发送第一波束的预设功率为100W,第二网络设备发送第二波束的预设功率为150W。在S710中第一网络设备预计以低于100W的功率发送第一波束。在S740中,第一网络设备判断第一网络设备按照100W发送第一波束、第二网络设备按照150W发送第二波束时,第一波束和第二波束之间的相互干扰没有远大于接受机底噪。在S750中第一网络设备仍然按照预设功率发送第一波束。
可选地,在第一条件满足的情况下,第一网络设备确定第一时频资源的位置,第一网络设备在发送第一波束时,降低在第一时频资源的发射功率,对于第一时频资源之外的其他时频资源,第一波束的发射功率可以为预设功率。
S760,第二网络设备根据第一信息和第二信息,确定第一条件是否满足。
S770,在第一条件不满足的情况下,第二网络设备升高第二波束的发射功率。
举例而言,第一网络设备发送第一波束的预设功率为100W,第二网络设备发送第二 波束的预设功率为150W。在S710中第二网络设备预计以低于150W的功率发送第二波束。在S760中,第二网络设备判断第一网络设备按照100W发送第一波束、第二网络设备按照150W发送第二波束时,第一波束和第二波束之间的相互干扰没有远大于接受机底噪。在S770中第二网络设备仍然按照预设功率发送第二波束。
可选地,在第一条件满足的情况下,第二网络设备确定第一时频资源的位置,第二网络设备在发送第二波束时,降低在第一时频资源的发射功率。对于第一时频资源之外的其他时频资源,第二波束的发射功率可以为预设功率。
根据本申请的方法,第一网络设备和第二网络设备可以先降低波束的发射功率,再基于相同的方法判断第一条件是否满足,如果第一条件不满足再升高波束的发射功率。也就是说,在第一条件满足的情况下,第一网络设备和第二网络设备均会降低发射功率,一方面也能够降低网络设备的功耗,另一方面能够降低对信干噪比的影响,保证第一网络设备和第二网络设备的通信性能。
应理解,上述方法700是以两个小区相互干扰为例所进行的描述,显然,本申请的方法同样适用于多个小区相互干扰的场景。
一示例,小区#1的干扰协作小区组为(小区#1,小区#2,小区#3)。小区#1中的网络设备可以先降低波束的发射功率,如果小区#1中的网络设备判断小区#1、小区#2和小区#3在相同的时频资源发送波束(3个小区中的波束分别记为波束#1、波束#2和波束#3),但是3个波束之间的相互干扰并没有远大于接收机底噪,那么小区#1中的网络设备可以按照预设功率发送波束#1。
此外,在分布式控制方式下,还可能出现以下几种情况。
情况1:
如图8中的a所示,以4个小区为例,小区#1至小区#4在相同的时频资源发送波束(4个小区中的波束分别记为波束#1至波束#4),波束#1对波束#2产生干扰,波束#2对波束#3产生干扰,波束#3对波束#4产生干扰,波束#4对波束#1产生干扰,PL 12远大于接收机底噪,PL 23远大于接收机底噪,PL 34远大于接收机底噪,PL 41远大于接收机底噪。
对于小区#1而言,小区#1中的网络设备可以获知小区#1和小区#2在相同的时频资源发送波束,波束#1对波束#2产生干扰,PL 12远大于接收机底噪,则小区#1中的网络设备降低波束#1的发射功率。对于小区#2而言,小区#2中的网络设备可以获知小区#2和小区#3在相同的时频资源发送波束,波束#2对波束#3产生干扰,PL 23远大于接收机底噪,则小区#2中的网络设备降低波束#2的发射功率。其他小区类似。
或者,可以预先向每个小区中配置降功率优先级。例如,小区#1至小区#4的降功率优先级依次减小。
对于小区#1而言,小区#1中的网络设备可以获知小区#1和小区#2在相同的时频资源发送波束,由于小区#1的降功率优先级最高,则小区#1中的网络设备降低波束#1的发射功率。
对于小区#2而言,小区#2中的网络设备可以获知小区#1和小区#2在相同的时频资源发送波束,由于小区#1的降功率优先级最高,小区#1中的网络设备会降低波束#1的发射功率,在此基础上小区#2中的网络设备降低波束#2的发射功率。
对于小区#3而言,小区#3中的网络设备可以获知小区#2和小区#3在相同的时频资源 发送波束,由于小区#2的降功率优先级高于小区#3,小区#2中的网络设备会降低波束#2的发射功率,在此基础上小区#3中的网络设备降低波束#3的发射功率。
对于小区#4而言,小区#4中的网络设备可以获知小区#3和小区#4在相同的时频资源发送波束,由于小区#3的降功率优先级高于小区#4,小区#3中的网络设备会降低波束#3的发射功率,在此基础上小区#4中的网络设备降低波束#4的发射功率。
情况2:
如图8中的b所示,以5个小区为例,小区#1至小区#5在相同的时频资源发送波束(5个小区中的波束分别记为波束#1至波束#5),波束#1对波束#2产生干扰,波束#2对波束#3和波束#5产生干扰,波束#3对波束#4产生干扰,波束#4对波束#1产生干扰,PL 12远大于热噪声,PL 23远大于热噪声,PL 25远大于热噪声,PL 34远大于热噪声,PL 41远大于热噪声。
对于小区#1而言,小区#1中的网络设备可以获知小区#1和小区#2在相同的时频资源发送波束,PL 12远大于热噪声,则小区#1中的网络设备降低波束#1的发射功率。
对于小区#2而言,小区#2中的网络设备可以获知小区#2、小区#3和小区#5在相同的时频资源发送波束,PL 23远大于热噪声,PL 25远大于热噪声,则小区#2中的网络设备降低波束#2的发射功率。
小区#3、小区#4均与小区#1类似,不再赘述。
对于小区#5而言,小区#5中的网络设备可以获知小区#2和小区#5在相同的时频资源发送波束,PL 25远大于热噪声。作为一种方式,小区#5中的网络设备降低波束#5的发射功率,从而达到节省功耗的效果。作为另一种方式,小区#5中的网络设备可以按照预设功率发送波束#5,即,不降低波束#5的发射功率。由于小区#2中的网络设备降低波束#2的发射功率,则PL 25降低,如果小区#5中的网络设备按照预设功率发送波束#5,那么小区#5中的网络设备进行下行数据传输的速率会有所提高。
情况3:
如图8中的c所示,以5个小区为例,小区#1至小区#5在相同的时频资源发送波束(5个小区中的波束分别记为波束#1至波束#5),波束#1对波束#2产生干扰,波束#2对波束#3产生干扰,波束#3对波束#4产生干扰,波束#4对波束#1产生干扰,波束#5对波束#2产生干扰,PL 12远大于热噪声,PL 23远大于热噪声,PL 25远大于热噪声,PL 34远大于热噪声,PL 41远大于热噪声,PL 52远大于热噪声。
对于小区#1而言,小区#1中的网络设备可以获知小区#1和小区#2在相同的时频资源发送波束,PL 12远大于热噪声,则小区#1中的网络设备降低波束#1的发射功率。
对于小区#2而言,小区#2中的网络设备可以获知小区#2和小区#3在相同的时频资源发送波束,PL 23远大于热噪声,则小区#2中的网络设备降低波束#2的发射功率。
小区#3、小区#4均与小区#1类似,不再赘述。
对于小区#5而言,小区#5中的网络设备可以获知小区#5和小区#2在相同的时频资源发送波束,PL 52远大于热噪声,则小区#5中的网络设备降低波束#5的发射功率。
情况4:
如图8中的d所示,以3个小区为例,小区#1至小区#3在相同的时频资源发送波束(3个小区中的波束分别记为波束#1至波束#3),波束#1对波束#2产生干扰,波束#2对 波束#3产生干扰,波束#3对波束#1不产生干扰,PL 12远大于热噪声,PL 23远大于热噪声。
对于小区#1而言,小区#1中的网络设备可以获知小区#1和小区#2在相同的时频资源发送波束,PL 12远大于热噪声,则小区#1中的网络设备降低波束#1的发射功率。
对于小区#2而言,小区#2中的网络设备可以获知小区#2和小区#3在相同的时频资源发送波束,PL 23远大于热噪声,则小区#2中的网络设备降低波束#2的发射功率。
对于小区#3而言,小区#3中的网络设备可以获知小区#2和小区#3在相同的时频资源发送波束,PL 23远大于热噪声。作为一种方式,小区#3中的网络设备降低波束#3的发射功率,从而达到节省功耗的效果。作为另一种方式,小区#3中的网络设备不降低波束#3的发射功率。由于小区#2中的网络设备降低波束#2的发射功率,则PL 23降低,如果小区#3中的网络设备不降低波束#3的发射功率,那么小区#3中的网络设备进行下行数据传输的速率会有所提高。
图9示出了本申请提供的方法900,该方法900包括:
S910,网络设备确定第一条件是否满足。
作为一种可能的情况,该第一条件为发送第一波束的时频资源与发送第二波束的时频资源之间存在重叠的第二时频资源,第一波束对第二波束的干扰与接收机底噪的比值大于第一阈值,第二波束对第一波束的干扰与接收机底噪的比值大于第一阈值。
应理解,第一波束与第一数据流对应,第二波束与第二数据流对应。因此,第一条件也可以理解为流间干扰远大于接收机底噪。
作为另一种可能的情况,该第一条件为发送第一波束的时频资源与发送第二波束的时频资源之间存在重叠的第二时频资源,第一波束对第二波束的干扰远大于接收机底噪和邻区干扰,第二波束对第一波束的干扰远大于接收机底噪和邻区干扰。即,第一条件也可以理解为流间干扰远大于接收机底噪与邻区干扰之和。
根据流间干扰的成因,可知流间干扰主要和流间残留相关性和信道时频相关性有关。通过计算流间残留相关性和信道时频相关性,可以确定流间干扰的大小。
流间残留相关性:
网络设备要发送多个数据流,而网络设备一般不能准确获知下行信道的信息,这主要由两方面因素决定:首先,在频分双工系统中,下行信道的信息可以通过接收端的反馈信令获得,这导致了信道信息的损失;其次,由于反馈延迟的存在,一般都是根据上次的信道状态,预测当前的信息状态,两者存在一定的差异。考虑到上述两方面的因素,多个数据流之间会存在残留的干扰。
信道时频相关性:
考虑到同一个资源块组(resource block group,RBG)内不同子载波之间信道差异较大,可能会导致流间干扰的产生。另外,考虑到信道时变(信道老化问题),也可能会导致流间干扰的产生。
还应理解,第一数据流和第二数据流可以为网络设备针对同一终端设备的不同数据流,也可以为网络设备针对不同终端设备的不同数据流,不予限制。
S920,在第一条件满足的情况下,网络设备降低第一波束和第二波束在第二时频资源的发射功率。
作为一种方式,第一波束的发射功率的降幅和第二波束的发射功率的降幅相同。作为另一种方式,第一波束的发射功率的降幅和第二波束的发射功率的降幅不同。
如果第一波束的发射功率的降幅和第二波束的发射功率的降幅相同,功率的降幅可以通过以下几种方式确定:
方式1:
功率的降低幅度(记为,Δ)可以由下述公式确定:
Δ=min(I 12-N,I 21-N),其中,I 12为第一波束对第二波束的干扰,I 21为第二波束对第一波束的干扰,N为接收机底噪。
方式2:
功率的降低幅度可以由下述公式确定:
Δ=min(I 12-N-X,I 21-N-X),其中,X为预留的功率。
一示例,网络设备通过第一波束向UE#1发送数据,通过第二波束向UE#2发送数据,并且UE#1和UE#2在资源块组(resource block group,RBG)#1上做了多用户(multi-user,MU)配对,如果第一波束和第二波束在RBG#1上满足第一条件,则网络设备降低第一波束和第二波束在RBG#1的发射功率。
根据本申请的方案,如果网络设备发送的两个波束之间满足第一条件,则网络设备降低这两个波束的发射功率,一方面也能够降低网络设备的功耗,另一方面能够降低对信干噪比的影响,保证网络设备的通信性能。
根据前述方法,图10为本申请实施例提供的一种通信装置,该通信装置包括收发单元1001和处理单元1002。
其中,收发单元1001可以用于实现相应的通信功能。收发单元1001还可以称为通信接口或通信单元。处理单元1002可以用于进行处理操作。
可选地,该装置还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1002可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中的装置的动作。
作为第一种设计,该装置可以是前述实施例中的集中控制节点,也可以是集中控制节点的组成部件(如芯片)。
其中,收发单元和处理单元,可以用于实现上文各个方法实施例中集中控制节点的相关操作。
作为第二种设计,该装置可以是前述实施例中的第一网络设备,也可以是第一网络设备的组成部件(如芯片)。
其中,收发单元和处理单元,可以用于实现上文各个方法实施例中第一网络设备的相关操作。
作为第三种设计,该装置可以是前述实施例中的第二网络设备,也可以是第二网络设备的组成部件(如芯片)。
其中,收发单元和处理单元,可以用于实现上文各个方法实施例中第二网络设备的相关操作。
作为第四种设计,该装置可以是前述实施例中的网络设备,也可以是网络设备的组成部件(如芯片)。
其中,收发单元和处理单元,可以用于实现上文各个方法实施例中网络设备的相关操作。
应理解,各单元执行上述相应步骤的具体过程在上述各方法实施例中已经详细说明,为了简洁,在此不再赘述。
还应理解,这里的装置以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置可以具体为上述实施例中的第一网元,可以用于执行上述各方法实施例中与第一网元对应的各个流程和/或步骤,或者,装置可以具体为上述实施例中的网络管理网元,可以用于执行上述各方法实施例中与网络管理网元对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述通信装置具有实现上述方法中的装置所执行的相应步骤的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元1001还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
需要指出的是,图10中的装置可以是前述方法实施例中的装置,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
本申请实施例还提供一种通信设备,如图11所示,包括:处理器1101和通信接口1102。处理器1101用于执行存储器1103存储的计算机程序或指令,或读取存储器1103存储的数据,以执行上文各方法实施例中的方法。可选地,处理器1101为一个或多个。通信接口1102用于信号的接收和/或发送。例如,处理器1101用于控制通信接口1102进行信号的接收和/或发送。
可选地,如图11所示,该通信设备还包括存储器1103,存储器1103用于存储计算机程序或指令和/或数据。该存储器1103可以与处理器1101集成在一起,或者也可以分离设置。可选地,存储器1103为一个或多个。
可选地,处理器1101、通信接口1102以及存储器1103通过总线1104相互连接;总线1104可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。上述总线1104可以分为地址总线、数据总线和控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
例如,处理器1101用于执行存储器1103存储的计算机程序或指令,以实现上文各个方法实施例中网络设备的相关操作。
又如,处理器1101用于执行存储器1103存储的计算机程序或指令,以实现上文各个 方法实施例中集中控制节点的相关操作。
应理解,本申请实施例中提及的处理器(如处理器1101)可以是中央处理器(central processing unit,CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
还应理解,本申请实施例中提及的存储器(如存储器1103)可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代 码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种功率控制方法,其特征在于,所述方法包括:
    确定第一条件是否满足,所述第一条件包括发送第一波束的时频资源与发送第二波束的时频资源之间存在重叠,且所述第一波束对所述第二波束的干扰与接收机底噪的比值大于第一阈值,所述第二波束对所述第一波束的干扰与接收机底噪的比值大于第一阈值;
    在所述第一条件满足的情况下,降低所述第一波束和所述第二波束的发射功率。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定第二条件是否满足,所述第二条件包括发送所述第一波束的时频资源与发送第三波束的时频资源之间存在重叠,且所述第一波束对所述第三波束的干扰与接收机底噪的比值大于第一阈值;
    在所述第二条件满足的情况下,降低所述第三波束的发射功率。
  3. 根据权利要求2所述的方法,其特征在于,所述方法适用于包括第一网络设备、第二网络设备和第三网络设备的系统中,所述第一网络设备用于发送所述第一波束,所述第二网络设备用于发送所述第二波束,所述第三网络设备用于发送所述第三波束。
  4. 根据权利要求3所述的方法,其特征在于,所述确定第一条件是否满足,包括:
    所述第一网络设备和所述第二网络设备确定所述第一条件是否满足;
    在所述第一条件满足的情况下,降低所述第一波束和所述第二波束的发射功率,包括:
    在所述第一条件满足的情况下,所述第一网络设备降低所述第一波束的发射功率,所述第二网络设备降低所述第二波束的发射功率。
  5. 根据权利要求4所述的方法,其特征在于,所述第一网络设备和所述第二网络设备确定所述第一条件是否满足,包括:
    所述第一网络设备向所述第二网络设备发送第一信息,所述第一信息包括所述第一网络设备发送第一波束的时频资源,以及所述第二波束对所述第一波束的干扰;
    所述第二网络设备向所述第一网络设备发送第二信息,所述第二信息包括所述第二网络设备发送第二波束的时频资源,以及所述第一波束对所述第二波束的干扰;
    所述第一网络设备和所述第二网络设备根据所述第一信息和所述第二信息,确定所述第一条件是否满足。
  6. 根据权利要求3所述的方法,其特征在于,所述确定第二条件是否满足,包括:
    所述第三网络设备确定所述第二条件是否满足;
    在所述第二条件满足的情况下,降低所述第三波束的发射功率,包括:
    在所述第二条件满足的情况下,所述第三网络设备降低所述第三波束的发射功率。
  7. 根据权利要求2所述的方法,其特征在于,所述方法适用于包括集中控制节点、第一网络设备、第二网络设备和第三网络设备的系统中,所述集中控制设备用于管理所述第一网络设备、所述第二网络设备和所述第三网络设备,所述第一网络设备用于发送所述第一波束,所述第二网络设备用于发送所述第二波束,所述第三网络设备用于发送所述第三波束。
  8. 根据权利要求7所述的方法,其特征在于,所述确定第一条件是否满足,包括:
    所述集中控制节点确定所述第一条件是否满足;
    在所述第一条件满足的情况下,降低所述第一波束和所述第二波束的发射功率,包括:
    在所述第一条件满足的情况下,所述集中控制节点向所述第一网络设备发送第一指示信息,并且向所述第二网络设备发送第二指示信息,所述第一指示信息指示降低所述第一波束的发射功率,所述第二指示信息指示降低所述第二波束的发射功率。
  9. 根据权利要求7所述的方法,其特征在于,所述确定第二条件是否满足,包括:
    所述集中控制节点确定所述第二条件是否满足;
    在所述第二条件满足的情况下,降低所述第三波束的发射功率,包括:
    在所述第二条件满足的情况下,所述集中控制节点向所述第三网络设备发送第三指示信息,所述第三指示信息指示降低所述第三波束的发射功率。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述第一波束的发射功率的降幅与所述第二波束的发射功率的降幅相同。
  11. 通信装置,其特征在于,包括用于执行权利要求1至10中任一项方法的单元。
  12. 通信设备,其特征在于,包括:通信接口和处理器,所述处理器用于执行计算机程序或指令,使得所述通信设备执行如权利要求1至10中任一项所述的方法。
  13. 一种计算机可读存储介质,其特征在于,包括计算机程序或指令,当所述计算机程序或所述指令在计算机上运行时,使得所述计算机执行如权利要求1至10中任意一项所述的方法。
  14. 一种计算机程序产品,其特征在于,包含指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1至10中任意一项所述的方法。
  15. 一种通信系统,其特征在于,包括第一网络设备和第二网络设备,所述第一网络设备和所述第二网络设备用于执行如权利要求1所述的方法。
  16. 根据权利要求15所述的方法,其特征在于,所述通信系统中还包括第三网络设备,所述第三网络设备用于执行如权利要求2所述的方法。
  17. 一种通信系统,其特征在于,包括集中控制节点、第一网络设备、第二网络设备和第三网络设备,所述集中控制节点用于执行如权利要求1或2所述的方法。
PCT/CN2022/142731 2022-01-04 2022-12-28 功率控制方法、通信装置和通信系统 WO2023131021A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210003272.1A CN116437425A (zh) 2022-01-04 2022-01-04 通信方法和装置
CN202210003272.1 2022-01-04

Publications (1)

Publication Number Publication Date
WO2023131021A1 true WO2023131021A1 (zh) 2023-07-13

Family

ID=87073142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142731 WO2023131021A1 (zh) 2022-01-04 2022-12-28 功率控制方法、通信装置和通信系统

Country Status (2)

Country Link
CN (1) CN116437425A (zh)
WO (1) WO2023131021A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6256477B1 (en) * 1998-09-30 2001-07-03 Conexant Systems, Inc. Avoiding interference from a potentially interfering transmitter in a wireless communication system
US20140301339A1 (en) * 2011-11-04 2014-10-09 Ericsson Modems Sa Non-Contiguous Carrier Aggregation
US20160360536A1 (en) * 2015-06-04 2016-12-08 Electronics And Telecommunications Research Institute Method and apparatus for controlling inter-beam interference
JP2017034338A (ja) * 2015-07-29 2017-02-09 日本電信電話株式会社 受信装置及び干渉推定方法
CN112543507A (zh) * 2019-09-23 2021-03-23 成都鼎桥通信技术有限公司 基于上行干扰的载波选择方法、装置、基站及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6256477B1 (en) * 1998-09-30 2001-07-03 Conexant Systems, Inc. Avoiding interference from a potentially interfering transmitter in a wireless communication system
US20140301339A1 (en) * 2011-11-04 2014-10-09 Ericsson Modems Sa Non-Contiguous Carrier Aggregation
US20160360536A1 (en) * 2015-06-04 2016-12-08 Electronics And Telecommunications Research Institute Method and apparatus for controlling inter-beam interference
JP2017034338A (ja) * 2015-07-29 2017-02-09 日本電信電話株式会社 受信装置及び干渉推定方法
CN112543507A (zh) * 2019-09-23 2021-03-23 成都鼎桥通信技术有限公司 基于上行干扰的载波选择方法、装置、基站及存储介质

Also Published As

Publication number Publication date
CN116437425A (zh) 2023-07-14

Similar Documents

Publication Publication Date Title
CN110999477B (zh) 信息指示方法及相关设备
CN108811083B (zh) 一种寻呼指示的传输方法及装置
US11552749B2 (en) Data transmission method and terminal device
WO2020233692A1 (zh) 通信方法及装置
JP2020503803A (ja) 通信方法、ネットワークデバイス、および端末デバイス
US20190140805A1 (en) Communication control apparatus, communication control method, and program
CN109150445B (zh) 一种下行控制信息发送与接收方法及设备
WO2020191636A1 (zh) 通信方法、终端设备和网络设备
WO2022063261A1 (zh) 一种上行参考信号的关联方法及通信装置
US20230026327A1 (en) Sidelink transmission method and apparatus
WO2021017893A1 (zh) 波束测量方法及装置
TW202207719A (zh) 下行定位參考信號收發方法、終端、基地台、設備及裝置
CN115176492A (zh) 通信方法、装置及设备
US11082960B2 (en) Method and device for transmitting or receiving channel state information
WO2021228117A1 (zh) 资源确定方法及装置
WO2018202168A1 (zh) 信息传输方法及装置
CN109756935B (zh) 一种调整工作带宽的方法和装置
WO2021000239A1 (zh) 无线通信方法、网络设备和终端设备
US10419097B2 (en) CSI receiving method and access network device
WO2023131021A1 (zh) 功率控制方法、通信装置和通信系统
US20220417967A1 (en) Information transmission method and apparatus, and devices
TW202019215A (zh) 一種載波處理方法、終端、網路設備和存儲媒介
CN112715050B (zh) 用于控制信息和用户数据之间的自适应优先级控制的方法和装置
CN110087325B (zh) 一种降低谐波干扰的方法及装置
WO2020083333A1 (zh) 通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918462

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022918462

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022918462

Country of ref document: EP

Effective date: 20240619