WO2020083333A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2020083333A1
WO2020083333A1 PCT/CN2019/112987 CN2019112987W WO2020083333A1 WO 2020083333 A1 WO2020083333 A1 WO 2020083333A1 CN 2019112987 W CN2019112987 W CN 2019112987W WO 2020083333 A1 WO2020083333 A1 WO 2020083333A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
uplink
terminal device
random access
quality threshold
Prior art date
Application number
PCT/CN2019/112987
Other languages
English (en)
French (fr)
Inventor
耿婷婷
严乐
张宏平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19877199.0A priority Critical patent/EP3860195A4/en
Publication of WO2020083333A1 publication Critical patent/WO2020083333A1/zh
Priority to US17/239,046 priority patent/US20210243614A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/563Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • This application relates to the field of communications, and in particular, to a communication method and device.
  • the communication system introduces a coverage enhancement (CE) mechanism.
  • the coverage enhancement mechanism may include different CE levels, which may reflect the coverage of uplink and / or downlink carriers to a certain extent, or may reflect the uplink and / or downlink signal quality of a location.
  • different CE levels may correspond to different repetition times and / or modulation methods.
  • the network side and the terminal device can repeatedly transmit or receive uplink and downlink data according to the number of repetitions corresponding to the CE level. For example, in a long term evolution (LTE) system, for areas with a high CE level, the number of repetitions of uplink and / or downlink data transmission of the terminal device may be reduced or not repeated. For areas with a low CE level, the number of repetitions of the uplink and / or downlink data transmission of the terminal device can be increased.
  • LTE long term evolution
  • the carrier frequency band is extended to high frequencies, and the coverage of the uplink and downlink carriers is not the same as that in the LTE system. Therefore, how to communicate based on the CE level in the future communication system is an urgent problem to be solved in the industry.
  • the embodiments of the present application provide a communication method and device.
  • the present application provides a communication method and device, and provides a communication scheme based on the CE level, which can improve communication efficiency.
  • a communication method including: determining a downlink signal quality; determining a downlink CE level of a terminal device according to the downlink signal quality and a first coverage enhancement CE level quality threshold; and according to the downlink signal quality and the first
  • the second CE level quality threshold determines the uplink CE level of the terminal device, and the first CE level quality threshold and the second CE level quality threshold are different.
  • the uplink CE level and the downlink CE level of the terminal device may be separately determined based on different CE level quality thresholds, so that the signal quality of the uplink and downlink carriers may be more accurately indicated through the CE level to improve communication efficiency.
  • the method further includes: receiving first configuration information from a network device, where the first configuration information is used to indicate a correspondence between an uplink CE level and a random access configuration; The correspondence relationship is used to determine a first random access configuration corresponding to the uplink CE level of the terminal device; according to the first random access configuration, a random access signal is sent.
  • the terminal device can report the uplink CE level to the network device through the random access configuration of the random access signal without sending additional information, thereby saving signaling overhead.
  • the method further includes: receiving second configuration information from a network device, where the second configuration information is used to indicate a combination of an uplink CE level and a downlink CE level and a random access configuration Correspondence relationship; according to the correspondence relationship, determine the second random access configuration corresponding to the combination of the uplink CE level and the downlink CE level of the terminal device; according to the second random access configuration, send a random access signal.
  • the terminal device may report the uplink CE level and the downlink CE level to the network device through the random access configuration of the random access signal without sending additional information, thereby saving signaling overhead.
  • the random access configuration includes at least one of the following: random access preamble information and random access resources.
  • the method further includes: receiving third configuration information from a network device, where the third configuration information is used to indicate the second CE level quality threshold.
  • the method further includes: receiving fourth configuration information from a network device, where the fourth configuration information is used to indicate a quality threshold difference; according to the first CE level quality threshold And the difference between the quality thresholds to determine the second CE level quality threshold.
  • a second CE level quality threshold for judging the upstream CE level is introduced, and further, a quality threshold difference value for determining the second CE level quality threshold is introduced.
  • the terminal device may be based on the The second CE level quality threshold determines the upstream CE level, so that the CE level can be determined more accurately and the communication efficiency is improved.
  • the uplink CE level of the terminal device is the uplink CE level of the first uplink carrier, and further includes: the uplink CE level of the first uplink carrier is higher than the supplemental uplink
  • the SUL carrier is used for uplink transmission, wherein the frequency of the first uplink carrier is higher than the frequency of the SUL carrier, and a higher uplink CE level indicates its corresponding coverage capability Smaller; or, in the case where the uplink CE level of the first uplink carrier is lower than the uplink CE level of the SUL carrier, use the SUL carrier for uplink transmission, where the frequency of the first uplink carrier is higher than For the frequency of the SUL carrier, a higher uplink CE level indicates a greater coverage capability.
  • the method further includes: receiving indication information from a network device, where the indication information is used to indicate that the uplink CE level on the uplink carrier is higher than that on the SUL carrier In the case of a level, the SUL carrier is used for uplink transmission, and a higher uplink CE level indicates a smaller corresponding coverage capability; or, the indication information is used to indicate an uplink CE level on the first uplink carrier When the uplink CE level of the SUL carrier is lower than that, the SUL carrier is used for uplink transmission, wherein the frequency of the first uplink carrier is higher than the frequency of the SUL carrier, and a higher uplink CE level indicates that The corresponding coverage capacity is greater.
  • a communication method including: a network device acquiring a downlink coverage enhancement CE level of a terminal device, the downlink CE level of the terminal device is determined according to a downlink signal quality and a first CE level quality threshold; The network device obtains the uplink CE level of the terminal device, the uplink CE level of the terminal device is determined according to the downlink signal quality and the second CE level quality threshold, the first CE level quality threshold and the second The CE quality threshold is different.
  • the method further includes: the network device sends first configuration information to the terminal device, where the first configuration information is used to indicate the uplink CE level and random access configuration.
  • the network device acquiring the uplink CE level of the terminal device includes: the network device receiving a random access signal sent by the terminal device; the network device random access according to the random access signal The configuration and the corresponding relationship determine the uplink CE level of the terminal device.
  • the method further includes: the network device sends second configuration information to the terminal device, where the second configuration information is used to indicate a combination of an uplink CE level and a downlink CE level Correspondence with random access configuration; the network device acquiring the uplink CE level of the terminal device includes: the network device receiving a random access signal sent by the terminal device; the network device according to the random access The random access configuration of the incoming signal and the corresponding relationship determine the uplink CE level and the downlink CE level of the terminal device.
  • the method further includes: the network device sends third configuration information to the terminal device, where the third configuration information is used to indicate the second CE level quality threshold.
  • the method further includes: the network device sends fourth configuration information to the terminal device, where the fourth configuration information is used to indicate a quality threshold difference value, wherein the first The second CE level quality threshold is determined according to the difference between the first CE level quality threshold and the quality threshold.
  • the uplink CE level of the terminal device is the uplink CE level of the first uplink carrier
  • the network device sends indication information to the terminal device.
  • the indication information is used to indicate that when the uplink CE level of the first uplink carrier is higher than the uplink CE level of the supplemental uplink SUL carrier, the SUL carrier is used for uplink transmission, wherein the frequency of the first uplink carrier is higher than The frequency of the SUL carrier, a higher uplink CE level indicates a smaller corresponding coverage capability; or the indication information is used to indicate that the uplink CE level on the first uplink carrier is lower than the uplink of the SUL carrier
  • the SUL carrier is used for uplink transmission, wherein the frequency of the first uplink carrier is higher than the frequency of the SUL carrier, and a higher uplink CE level indicates a greater corresponding coverage capability.
  • the present application provides a communication device having the method function of implementing the above-mentioned first aspect.
  • These functions can be realized by hardware, and can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the present application provides a communication device having the function of implementing the method of the second aspect.
  • These functions can be realized by hardware, and can also be realized by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • a communication device includes a memory, a communication interface, and a processor.
  • the memory is used to store a computer program or instruction.
  • the processor is coupled to the memory and the communication interface.
  • the computer program or instruction causes the communication device to execute the method of the first aspect described above.
  • a communication device includes a memory, a communication interface, and a processor.
  • the memory is used to store a computer program or instruction.
  • the processor is coupled to the memory and the communication interface.
  • the computer program or instruction causes the communication device to execute the method of the second aspect above.
  • a computer program product includes: computer program code, which, when the computer program code runs on a computer, causes the computer to perform the method of the first aspect.
  • a computer program product includes: computer program code, which, when the computer program code runs on a computer, causes the computer to perform the method of the second aspect.
  • the present application provides a chip system that includes a processor for implementing the method of the first aspect, for example, for example, receiving or processing data and / or information involved in the above method.
  • the chip system further includes a memory, and the memory is used to store program instructions and / or data.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • the present application provides a chip system that includes a processor for implementing the method of the second aspect, for example, for example, receiving or processing data and / or information involved in the above method.
  • the chip system further includes a memory, and the memory is used to store program instructions and / or data.
  • the chip system may be composed of chips, and may also include chips and other discrete devices.
  • the present application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed, implements the method of the first aspect described above.
  • the present application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed, implements the method of the second aspect described above.
  • FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the CE level of the embodiment of the present application.
  • FIG. 3 is a schematic diagram of coverage of an uplink carrier according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of coverage of uplink carriers and downlink carriers according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a communication method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a communication method according to another embodiment of the present application.
  • FIG. 7 is a schematic diagram of coverage areas of uplink carriers and downlink carriers according to yet another embodiment of the present application.
  • FIG. 8 is a schematic diagram of an apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a device according to yet another embodiment of the present application.
  • FIG. 10 is a schematic diagram of a device according to yet another embodiment of the present application.
  • LTE long term evolution
  • 5G future 5th generation
  • NR new radio
  • the terminal device in the embodiment of the present application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or User device.
  • Terminal devices can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (personal digital assistants, PDAs), and wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in future 5G networks or public land mobile communications networks (PLMN) in the future evolution
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • the terminal device and the like are not limited in this embodiment of the present application.
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device.
  • the network device may be an evolved base station (evoled NodeB, eNB, or eNodeB) in an LTE system, or may be a cloud wireless access network (cloud wireless controller in the context of radio access (CRAN), or the network device may be a relay station, an access point, a vehicle-mounted device, a wearable device, a network device in a future 5G network, or a network device in a future evolved PLMN network, etc.
  • the embodiments of the present application are not limited.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes central processing unit (CPU), memory management unit (memory management unit, MMU), and memory (also called main memory) and other hardware.
  • the operating system may be any one or more computer operating systems that implement business processes through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes browser, address book, word processing software, instant messaging software and other applications.
  • the embodiment of the present application does not specifically limit the specific structure of the execution body of the method provided in the embodiment of the present application, as long as it can run the program that records the code of the method provided by the embodiment of the present application to provide according to the embodiment of the present application
  • the method may be used for communication.
  • the execution body of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • FIG. 1 is a schematic diagram of a possible application scenario of an embodiment of the present application.
  • the application scenario may include terminal devices and network devices.
  • the terminal device may be a mobile terminal
  • the network device may be an access network device.
  • the terminal device can access the network through the network device, and the terminal device and the network device can communicate through a wireless link.
  • the application scenarios of the embodiments of the present application may also include a carrier aggregation scenario, a dual link scenario, or a coordinated multi-point transmission scenario.
  • CE level of an embodiment of the present application.
  • multiple CE levels may be used to represent the carrier coverage or coverage capability, where the carrier coverage or coverage capability may be characterized by signal quality.
  • the CE mechanism may include CE levels 0-3.
  • the signal quality corresponding to CE level 0 to CE level 3 in turn is from high to low.
  • CE level 0 corresponds to the best signal quality
  • CE level 3 corresponds to the worst signal quality.
  • the CE level and the signal quality may also adopt other association relationships, for example, the signal quality corresponding to the CE levels 0-3 in turn may be from low to high.
  • the signal quality corresponding to the CE levels 0-3 in turn is described as an example from high to low.
  • more or fewer CE levels can also be used to indicate the coverage capability of the signal. This application is not limited.
  • the terminal device may compare the downlink signal quality and the CE level quality threshold of the serving cell actually measured.
  • the CE level quality threshold can be obtained through a system message broadcast by a network device.
  • the above-mentioned different CE levels can correspond to different data transmission repetition times and / or modulation methods to achieve a balance between coverage and capacity.
  • the above repetition times may refer to the number of times the same data is scheduled in the same resource block of consecutive subframes.
  • the receiving end can combine the received data through hybrid automatic repeat request (HARQ) to obtain the combining gain to improve the edge coverage performance.
  • HARQ hybrid automatic repeat request
  • the above-mentioned repetition times may refer to the maximum repetition times of the transmitted data.
  • the transmission data may include sending and / or receiving data.
  • the frequency band of the carrier is extended to the high-frequency band.
  • the above-mentioned high-frequency frequency band may include centimeter waves and millimeter waves.
  • the centimeter wave band may refer to the spectrum in the range of 3 gigahertz (GHz) to 20 GHz
  • the millimeter wave band generally refers to the spectrum in the range of 30 GHz to 300 GHz.
  • a high-frequency scenario where an uplink (UL) carrier belongs to a high-frequency band since the uplink transmission power of the terminal device is limited, there may be a case where the coverage of the uplink carrier is smaller than that of the downlink (DL) carrier.
  • the uplink carrier in the high-frequency band may be called an NR UL carrier.
  • a low-frequency supplementary uplink (SUL) carrier is also introduced.
  • the frequency of the SUL carrier is lower than the frequency of the NR UL carrier.
  • FIG. 3 shows a schematic diagram of coverage of an uplink carrier according to an embodiment of the present application.
  • the uplink carrier in FIG. 3 includes an NR UL carrier and a SUL carrier.
  • the coverage of the SUL carrier is usually greater than the coverage of the NR UL carrier.
  • the CE level is judged according to the downlink signal quality and the CE level quality threshold. That is, the uplink carrier and the downlink carrier of the terminal device use the same CE level judgment method. However, since the coverage area of the NR UL carrier is smaller than that of the downlink carrier, if the NR UL carrier and the downlink carrier use the same CE level quality threshold to determine the CE level, it may not reflect the true coverage of the NR UL carrier of the terminal device.
  • FIG. 4 shows a schematic diagram of coverage of uplink carriers and downlink carriers. The uplink carrier in FIG.
  • the CE level of the DL carrier is 0, and the actual coverage of the NR UL carrier should correspond to the CE level 1, that is, the signal quality of the NR UL carrier in this area is lower than that of the CE level 0. If the signal quality of the signal is transmitted using NR UL carrier according to CE level 0, the transmission quality may be degraded.
  • an embodiment of the present application proposes a communication method that can determine the uplink CE level and the downlink CE level of the terminal device based on different CE level quality thresholds, so that the CE level can be used to indicate the uplink and downlink carrier Signal quality to improve communication efficiency.
  • FIG. 5 is a schematic diagram of a communication method according to an embodiment of the present application.
  • the following uses terminal devices and network devices as examples for description. It can be understood that the method implemented by the terminal device can also be implemented by components (such as chips or circuits) that can be used for the terminal device, and the method implemented by the network device can also be implemented by components (such as chips or Circuit).
  • the method of Figure 5 includes:
  • the terminal device determines the downlink signal quality.
  • the downlink signal quality can be measured by downlink synchronization channel, channel state information reference signal (channel-state information reference (CSI-RS), demodulation reference signal (demodulation reference signal, DMRS), cell reference signal ( At least one of cell-specific reference (CRS) signal synchronization signal (synchronization signal, SS), synchronization signal / physical broadcast channel block (synchronization signal / physical broadcast channel block, SS / PBCH Block) or other downlink signals is obtained.
  • channel state information reference signal channel-state information reference (CSI-RS)
  • demodulation reference signal demodulation reference signal
  • DMRS demodulation reference signal
  • cell reference signal At least one of cell-specific reference (CRS) signal synchronization signal (synchronization signal, SS), synchronization signal / physical broadcast channel block (synchronization signal / physical broadcast channel block, SS / PBCH Block) or other downlink signals is obtained.
  • CRS cell-specific reference
  • the aforementioned downlink signal quality may include reference signal received power (RSRP), reference signal received quality (RSRQ), signal-to-noise ratio (SNR), signal and interference Add at least one of noise ratio (signal to interference plus ratio, SINR), reference signal strength indication (RSSI) or other signal quality.
  • RSRP reference signal received power
  • RSRQ reference signal received quality
  • SNR signal-to-noise ratio
  • SINR signal-to-noise ratio
  • SINR signal-to-noise ratio
  • SINR signal-to-noise ratio
  • RSSI reference signal strength indication
  • the downlink signal quality may be cell-level, beam-level, SS / PBCH-level, basic parameter set (numerology) level, slicing level, or partial bandwidth (BWP) Class.
  • a beam can be understood as a spatial resource, which can refer to a transmission or reception precoding vector with energy transmission directivity.
  • the transmitted or received precoding vector can be identified by index information, which can correspond to the resource identity (ID) of the configured terminal, for example, the index information can correspond to the configured CSI-RS identifier or resource ; It can also be the identifier or resource corresponding to the configured upstream sounding reference signal (SRS).
  • the index information may also be index information displayed or implicitly carried by a signal or channel carried by a beam.
  • the energy transmission directivity may refer to the precoding processing of the signal to be sent through the precoding vector, the signal after the precoding processing has a certain spatial directivity, and the precoding processing after receiving the precoding vector
  • the signal has better received power, such as satisfying the reception demodulation signal-to-noise ratio, etc .; the energy transmission directivity can also mean that the same signal sent from different spatial positions received by the precoding vector has different received power.
  • the same communication device (such as a terminal device or a network device) may have different precoding vectors, and different devices may also have different precoding vectors, that is, corresponding to different beams.
  • one communication device may use one or more of multiple different precoding vectors at the same time, that is, one beam or multiple beams may be formed at the same time.
  • numerology is a wireless configuration of terminal devices during communication.
  • numerology may include subcarrier spacing, cyclic prefix length, At least one of multiple access (multiple access) method, modulation and coding method (Modulation and Coding Scheme, MCS), frame structure (frame structure), radio resource control (Radio Resource Control, RRC), etc.
  • MCS Modulation and Coding Scheme
  • RRC Radio Resource Control
  • the terminal device determines the downlink CE level of the terminal device according to the downlink signal quality and the first CE level quality threshold.
  • the downlink CE level of the terminal device may refer to the CE level of the downlink carrier.
  • it may be the CE level of the NR carrier.
  • the first CE level quality threshold may include at least one threshold.
  • the terminal device may determine the downlink CE level of the terminal device according to the comparison result of the downlink signal quality and the first CE level quality threshold. For example, suppose that 4 downlink CE levels are used to represent the coverage of downlink carriers, which are DL CE level 0 to DL CE level 3 respectively. For the above four downlink CE levels, three first CE level quality thresholds can be configured.
  • the first CE level quality threshold may be configured by the network side for the terminal device.
  • the network device may send the first CE level quality threshold to a terminal device, and accordingly, the terminal device receives the first CE level quality threshold.
  • the first CE level quality threshold may be carried in system messages or other types of messages.
  • the uplink or downlink CE level quality thresholds in the embodiments of the present application may be based on at least one of the characteristics of RSRP threshold, RSRQ threshold, SNR threshold, SINR threshold, RSSI threshold, or other quality thresholds.
  • the terminal device determines the uplink CE level of the terminal device according to the downlink signal quality and the second CE level quality threshold.
  • the first CE level quality threshold and the second CE level quality threshold are different.
  • the uplink CE level may refer to the CE level of the uplink carrier.
  • the uplink CE level may refer to the CE level of the NR UL carrier, or may also refer to the CE level of the SUL carrier.
  • the NR UL carrier, SUL carrier, and downlink carrier may each use different CE level quality thresholds to determine the CE level.
  • the NR UL carrier and the downlink carrier may use different CE level quality thresholds to determine the CE level, and the SUL carrier may use the same CE level quality threshold as the downlink carrier to determine the CE level.
  • the second CE level quality threshold may include at least one threshold.
  • the first CE level quality threshold and the second CE level quality threshold are different, which may mean that at least one of the first CE level quality threshold and the second CE level quality threshold is different.
  • some thresholds in the first CE level quality threshold and the second CE level quality threshold are different.
  • each of the first CE level quality threshold and the second CE level quality threshold is different.
  • the second CE level quality threshold may be configured by the network side; or the network side may indicate to a terminal device a difference in quality threshold between the first CE level quality threshold and the second CE level quality threshold ,
  • the terminal device may determine the second CE level quality threshold according to the first CE level quality threshold and the quality threshold difference configured by the network side; or the network side may indicate the quality threshold difference to the terminal device,
  • the terminal device may determine the first CE level quality threshold according to the second CE level quality threshold configured by the network side and the quality threshold difference. For example, before the terminal device receives the quality threshold difference value, the second CE level quality threshold may be received from the network side.
  • the terminal device receives third configuration information from a network device, and accordingly, the network device sends the third configuration information to the terminal device, and the third configuration information is used to indicate the The second CE level quality threshold.
  • the terminal device receives fourth configuration information from a network device, and accordingly, the network device sends the fourth configuration information to the terminal device, the fourth configuration information is used to indicate quality Threshold difference; the terminal device determines the second CE level quality threshold according to the first CE level quality threshold and the quality threshold difference.
  • a second CE level quality threshold for judging the upstream CE level is introduced, and the terminal device can judge the upstream CE level based on the second CE level quality threshold, thereby being able to determine the CE level more accurately and improve communication effectiveness.
  • a quality threshold difference value for determining the quality threshold of the second CE level is also introduced, and the terminal device may determine the quality threshold of the second CE level according to the quality threshold of the first CE level and the quality threshold difference, thereby eliminating the need for a network
  • the device sends the second CE level quality threshold, which can save signaling overhead.
  • the quality threshold difference may be one, and the M quality thresholds in the first CE level quality threshold are respectively summed with the one quality threshold difference to obtain M in the second CE level quality threshold Quality threshold.
  • the M quality threshold difference values may be different, and the M quality thresholds in the first CE level quality threshold are respectively corresponding to the corresponding quality threshold difference values Summing them one by one to obtain M quality thresholds in the second CE level quality threshold.
  • the number of thresholds included in the first CE level quality threshold and the second CE level quality threshold may be the same or different.
  • both the upstream CE level and the downstream CE level include 4 levels, which are UL CE level 0 to UL CE level 3 and DL CE level 0 to DL CE level 3, respectively.
  • the terminal device may indicate the uplink CE level and the downlink CE level to the network side, respectively.
  • the terminal device may indicate the uplink and / or downlink CE levels in a display or implicit manner.
  • the terminal device may indicate the uplink CE level and / or the downlink CE level to the network side according to the random access configuration.
  • the terminal device may also send information indicating the uplink CE level and / or the downlink CE level to the network side.
  • the terminal device may send information indicating the uplink CE level and / or the downlink CE level to the network side through message 1 (message 1, MSG1) or message 3 (message 3, MSG3) during the random access process. Or, after random access is completed, other messages may be used to send information indicating the uplink CE level and / or downlink CE level.
  • message 1 messages 1, MSG1
  • message 3 messages 3, MSG3
  • other messages may be used to send information indicating the uplink CE level and / or downlink CE level.
  • the terminal device may notify the network side of the CE level of the terminal device, so that the network side determines the corresponding number of repetitions of the transmitted data based on the CE level of the terminal device.
  • the CE level includes an upstream CE level and a downstream CE level.
  • the terminal device may indicate the CE level to the network side according to the random access configuration.
  • Different CE levels can correspond to different random access configurations.
  • the foregoing random access configuration may include, for example, random access resources and / or random access preamble (preamble) information, or may also include other configuration information for random access.
  • the above-mentioned random access resource may refer to a time-frequency resource used for sending a preamble, such as a physical random access channel (physical random access channel, PRACH) resource.
  • the information of the random access preamble may be configuration information of the random access preamble.
  • the information of the random access preamble may include but not limited to at least one of the following: time-frequency resources used to send the preamble (for example, PRACH resource) indication information; preamble index (index), used to allocate preamble resources; root sequence indication information, used to generate a preamble.
  • the random access configuration may include at least one of the following: indication information of the maximum number of transmissions of the preamble; indication information of the reception window for the response of message 1 (message 1, MSG1), where MSG 1 usually refers to the preamble; preamble Indication information of the power increase step size; indication information of the subcarrier interval of the preamble; indication information of the scaling factor of the backoff indication, which is used when the random access is not completed, the terminal device initiates The determined delay time before the retransmission of the preamble.
  • the delay time of the terminal device is A.
  • the network device may determine the uplink CE level and / or the downlink CE level of the terminal device according to the random access configuration of the received random access signal and the correspondence between the random access configuration and the CE level.
  • the terminal device may also indicate the CE level corresponding to the SUL carrier to the network side.
  • the terminal device may display or implicitly indicate the CE level corresponding to the SUL carrier.
  • the protocol may define that the SUL CE level and the downlink CE level are the same, and the terminal device defaults to the same CE level of the SUL carrier and the downlink carrier. In this case, it is not necessary to separately indicate the CE level corresponding to the SUL carrier.
  • the SUL carrier may also use a different CE level determination mechanism than the NR UL carrier or downlink carrier.
  • the SUL carrier corresponds to the third CE level quality threshold
  • the uplink CE level and the third CE level quality threshold may be sent by the network device, or may be determined by the terminal device according to the first CE level quality threshold and / or the second CE level quality threshold and the quality threshold difference.
  • different uplink CE levels may correspond to different random access configurations, and the terminal device sends a random access signal on the random access configuration corresponding to its uplink CE level, so that the network device can use the random access signal Determine the upstream CE level of the terminal equipment.
  • the terminal device may send the downlink CE level of the terminal device to the network device, so that the network device determines the downlink CE level of the terminal device.
  • the terminal device may also send a random access signal according to the random access configuration corresponding to the downlink CE level, and after random access, the terminal device sends the uplink CE level of the terminal device to the network device.
  • There are fewer types of random access configuration introduced in this way which can save signaling and simplify configuration.
  • the terminal device can select the corresponding random access configuration according to the combination of the uplink CE level and the downlink CE level to send random Access signal.
  • the network side can be configured: ⁇ DL CE0, NR UL CE0 ⁇ , ⁇ DL CE0, NR UL CE1 ⁇ ... ⁇ DL CE0, NR UL CEn-1 ⁇ , ⁇ DL CE1, NR UL CE0 ⁇ ... ⁇ DL CEm- 1, NR ULn-1 ⁇ respectively correspond to different random access configurations, where m, n are integers greater than or equal to 2.
  • the network device may send the above correspondence to the terminal device.
  • the terminal device can select the random access configuration corresponding to ⁇ DL CE0, NR, UL, CE1 ⁇ to send a random access signal.
  • the random access configuration of the access signal can determine that the DL CE level of the terminal equipment is 0 and the NR UL CE level is 1.
  • the network device sends first configuration information to the terminal device, and accordingly, the terminal device receives the first configuration information from the network device, and accordingly, the network device sends the first configuration information to the terminal device,
  • the first configuration information is used to indicate the correspondence between the uplink CE level and the random access configuration;
  • the terminal device determines the first random access configuration corresponding to the uplink CE level of the terminal device according to the correspondence;
  • the terminal device sends a random access signal according to the first random access configuration.
  • the network device may receive the random access signal, and determine the uplink CE level of the terminal device according to the random access configuration of the random access signal and the corresponding relationship.
  • the terminal device may report the uplink CE level to the network device through the random access configuration of the random access signal without sending additional information, thereby saving signaling overhead.
  • the network device sends second configuration information to the terminal device, and accordingly, the terminal device receives second configuration information from the network device, and the second configuration information is used to indicate the combination of the uplink CE level and the downlink CE level with Correspondence of random access configuration; the terminal device determines the second random access configuration corresponding to the combination of the uplink CE level and the downlink CE level of the terminal device according to the correspondence relationship; Two random access configuration, send random access signal.
  • the network device may receive the random access signal, and determine the uplink CE level and the downlink CE level of the terminal device according to the random access configuration of the random access signal and the corresponding relationship.
  • the terminal device may report the uplink CE level and the downlink CE level to the network device through the random access configuration of the random access signal without sending additional information, thereby saving signaling overhead.
  • the terminal device uses the NR UL carrier for uplink transmission, and the CE level of the NR UL carrier is expressed by NR CE level; the CE level of the SUL carrier is expressed by SUL CE level; the CE level of the downlink carrier is expressed by DL CE level Said.
  • the process of the terminal device determining and indicating the CE level to the network side may be as follows.
  • the terminal device determines the quality threshold of its NR, UL, and CE levels.
  • the terminal device may receive the NR UL level CE quality threshold sent by the network device, and accordingly, the network device sends the NR UL level CE quality threshold.
  • the terminal device may receive the NR DL CE level quality threshold and the quality threshold difference value sent by the network device, and the terminal device determines the NR UL CE level quality threshold according to the NR DL CE quality threshold and the quality threshold difference value.
  • the terminal device receives the correspondence between the NR UL level and the random access configuration sent by the network device, and accordingly, the network device sends the correspondence to the terminal device.
  • the random access preamble corresponding to NR UL CE level 0/1/2/3 is preamble 10, 11, 12, 14 respectively.
  • the repetition times corresponding to CE level 0/1/2/3 are 1, 5, 10, and 20, respectively.
  • the number of repetitions corresponding to the same CE level is the same for both uplink and downlink carriers.
  • the terminal equipment determines the NR UL CE level and the DL CE level.
  • the NR UL CE level and DL CE level can be determined according to the results of the comparison of the downlink signal quality with different quality thresholds. As an example, it can be assumed that the NR UL CE level is 1, and the DL CE level is 0.
  • the terminal device determines a random access configuration corresponding to its NR UL CE level, and sends a preamble based on the random access configuration. Accordingly, the network device receives the preamble.
  • NR UL CE level 1 corresponds to preamble 11, and the terminal device can send preamble 11 to the network device.
  • the terminal device may repeatedly send the preamble 11 5 times according to the repetition number 5 corresponding to the NR UL CE level 1.
  • the preamble may also be referred to as MSG 1 in this application.
  • the terminal device receives the response message sent by the network device, and accordingly, the network device sends the response message.
  • the NR UL UL CE level of the terminal device can be determined to be 1 according to the correspondence between the NR UL CE level and the random access configuration.
  • the network device can temporarily send the downlink signal according to the NR UL level. That is, the network device repeatedly sends the response message to the terminal device 5 times. For the terminal device, the terminal device knows that its DL CE level is 0, so the terminal device can receive the response message only once according to the DL CE level 0.
  • the response message can also be called message 2 (MSG2, MSG2).
  • the NR UL signal quality is generally lower than the DL signal quality.
  • CE level 0 is lower than CE level 1, but CE level 0 has a better signal quality than CE level 1.
  • CE level 0 has a better signal quality than CE level 1.
  • the higher the CE level the greater the corresponding coverage capability or the better the signal quality.
  • the terminal device sends instruction information to the network device to indicate the DL CE level of the terminal device.
  • the terminal device DL CE level is 0.
  • the terminal device may indicate the DL CE level of the terminal device to the network side in the message 3 (message 3, MSG 3) to avoid the network side always repeatedly sending downlink signaling or data according to the NR UL level , Leading to waste of resources.
  • MSG3 may be RRC signaling or layer 2 signaling, such as medium access control (medium access control, MAC) control unit (control element, CE).
  • FIG. 6 is a flowchart of another communication method according to an embodiment of the present application.
  • the method may be executed by a terminal device, or may be executed by a chip of the terminal device.
  • the following uses a terminal device as an example for description. As shown in Figure 6, the method includes:
  • the terminal device determines the uplink CE level of the first uplink carrier and the uplink CE level of the SUL carrier.
  • the frequency of the first uplink carrier is higher than the frequency of the SUL carrier.
  • the first uplink carrier may be an NR UL carrier.
  • the terminal device determines the CE levels of the first uplink carrier and the SUL carrier.
  • the terminal device uses the SUL carrier for uplink transmission, where a higher uplink CE level corresponds to coverage The smaller the capability; or, in the case where the uplink CE level of the first uplink carrier is lower than the uplink CE level of the SUL carrier, the terminal device uses the SUL carrier for uplink transmission, where the higher the uplink CE level The corresponding coverage capacity is greater.
  • FIG. 7 shows a schematic diagram of coverage of a cell supporting NR UL carriers and SUL carriers.
  • the coverage level corresponding to the CE level of the NR UL carrier is smaller than the coverage level of the CE level of the SUL carrier.
  • the terminal device may choose to perform uplink transmission on the SUL carrier. It should be noted that, in some examples, the lower the CE level, the better the corresponding signal quality. For example, when the terminal device moves to the area indicated by the dotted line in FIG.
  • the SUL CE level is 0, the NR UL CE level is 1, the CE level of the SUL carrier is less than the CE level of the NR UL carrier, but the corresponding coverage of the SUL carrier
  • the capability is greater than the coverage capability of the NR UL carrier.
  • the higher the CE level the greater the corresponding coverage capability or the better the signal quality.
  • the terminal device may use the SUL carrier to transmit data to reduce energy consumption and resources of the terminal device consumption.
  • the terminal device may select a SUL carrier with a higher coverage capability corresponding to the CE level to transmit data, so as to reduce unnecessary information Repeat the command and data to reduce the air interface overhead and reduce the power consumption of the terminal equipment.
  • the terminal device may determine whether to use the SUL carrier for uplink transmission, or the terminal device may determine whether to use the SUL carrier for uplink transmission according to the indication information of the network device.
  • the terminal device may receive indication information from a network device, and accordingly, the network device sends the indication information, where the indication information is used to indicate the uplink CE of the terminal device on the uplink carrier
  • the SUL carrier is used for uplink transmission, where a higher uplink CE level corresponds to a smaller coverage capability; or, the indication information may also be used to indicate the
  • the terminal device uses the SUL carrier for uplink transmission, where a higher uplink CE level corresponds to a greater coverage capability.
  • the process of the terminal device falling back to the SUL carrier may be as follows. This example will be explained by taking an example in which the higher the CE level, the smaller the coverage capability. However, those skilled in the art can understand that this example can also be applied to scenarios where the higher the CE level, the greater the coverage capability.
  • the terminal device measures the downlink signal quality of the current location, and determines the NR UL CE level and SUL CE level of the terminal device.
  • the terminal device moves to the area indicated by the dotted line in FIG. 7, it can be determined that the NR CE level is 1, the DL CE level is 0, and the SUL CE level is 0 according to the measured downlink signal quality.
  • the terminal device finds that the NR UL CE level is higher than the SUL CE level, it falls back to the SUL carrier for uplink transmission
  • the terminal device can use the SUL carrier for transmission.
  • the terminal device may determine to fall back to the SUL carrier for transmission, or the terminal device may receive indication information sent by the network device, which is used to indicate when the terminal device finds that the NR UL CE level is higher than the SUL CE level , Fall back to the SUL carrier for uplink transmission.
  • the indication information can be represented by one or more bits. For example, when the bit is set to 1, it means to fall back to the SUL carrier for uplink transmission; when the bit is set to 0, it indicates not to fall back to the SUL carrier for transmission.
  • the network device may instruct the terminal device to fall back to the SUL carrier for uplink transmission. Further, the network device may send SUL configuration information to the terminal device, and the SUL configuration information may include a non-contention random access configuration on the SUL carrier, so that the terminal device quickly falls back to the SUL carrier. Alternatively, the SUL configuration information may also include a contentious random access configuration.
  • the network device can compare the size of NR UL CE level and SUL CE level by itself. Alternatively, the network device may also receive the level indication information sent by the terminal device, and the level indication information is used to indicate that the NR, UL, and CE levels of the terminal device are higher than the SUL and CE levels. CE level.
  • the terminal device can use the SUL carrier to transmit data to reduce the energy consumption and reduction Resource consumption.
  • the communication device 800 may be a terminal device, or may be a component (such as a chip or a circuit) that can be used for the terminal device, and can perform various steps performed by the terminal device in the method embodiments of the present application. Narrate.
  • the apparatus 800 may include: a first determining unit 810, a second determining unit 820, and a third determining unit 830.
  • the first determining unit 810 is used to determine the downlink signal quality.
  • the second determining unit 820 is configured to determine the downlink CE level of the terminal device according to the downlink signal quality and the first CE level quality threshold.
  • the third determining unit 830 is configured to determine the uplink CE level of the terminal device according to the downlink signal quality and the second CE level quality threshold, the first CE level quality threshold and the second CE level quality threshold are different .
  • the apparatus 900 may be a network device, or a component (such as a chip or a circuit) for a network device, and can perform various steps performed by the network device in the method embodiments of the present application. To avoid repetition, details are not described here. .
  • the apparatus 900 may include: a first acquiring unit 910 and a second acquiring unit 920.
  • the first obtaining unit 910 is configured to obtain the downlink CE level of the terminal device, the downlink CE level of the terminal device is determined according to the downlink signal quality and the quality threshold of the first CE level;
  • the second obtaining unit 920 is configured to obtain the uplink CE level of the terminal device, the uplink CE level of the terminal device is determined according to the downlink signal quality and the second CE level quality threshold, and the first CE level quality The threshold is different from the quality threshold of the second CE level.
  • each unit or module in the above communication device 800 or the communication device 900 may be provided separately or may be integrated together.
  • the above units or modules may also be referred to as components or circuits.
  • FIG. 10 is a schematic block diagram of a communication device 1000 according to an embodiment of the present application.
  • the apparatus 1000 may be a terminal device, or may be a component (such as a chip or a circuit) that can be used in the terminal device, which can implement various steps performed by the terminal device in the method embodiments of the present application.
  • the apparatus 1000 may be a network device, or may be a component (such as a chip or a circuit) that can be used in a network device, which can perform various steps performed by the network device in the method embodiments of the present application.
  • the device 1000 may include:
  • One or more memories 1010 for storing programs or codes
  • One or more processors 1030 are used to execute the programs or codes in the memory 1010. When the programs are executed, if the apparatus 1000 executes the steps corresponding to the terminal device in the method embodiment, the processor 1030 It can be used to determine the downlink signal quality; determine the downlink CE level of the terminal device according to the downlink signal quality and the first CE level quality threshold; determine the terminal device's downlink CE level according to the downlink signal quality and the second CE level quality threshold The uplink CE level, the first CE level quality threshold and the second CE level quality threshold are different.
  • the processor 1030 may also be used to obtain the downlink CE level of the terminal device.
  • the downlink CE level of the terminal device is based on the downlink signal quality and The first CE level quality threshold is determined; and the uplink CE level of the terminal device is obtained, the uplink CE level of the terminal device is determined according to the downlink signal quality and the second CE level quality threshold, the first CE The grade quality threshold is different from the second CE grade quality threshold.
  • the communication device 1000 may further include one or more communication interfaces 1020 for communicating with other devices.
  • the communication interface 1020 may be a transceiver.
  • the transceiver may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., for implementing the transceiver function of the communication device.
  • the apparatus 1000 may receive the first configuration information, the second configuration information, the third configuration information, and / or the like from the network device through the communication interface 1020. Or the fourth configuration information, or receiving instruction information from the network device through the communication interface 1020, or sending a random access signal to the network device through the communication interface 1020, and so on.
  • the device 1000 may send the first configuration information, the second configuration information, the third configuration information, and / or the Or fourth configuration information, or send instruction information to a terminal device through the communication interface 1020, or receive a random access signal from a network device through the communication interface 1020, and so on.
  • the memory 1010 may also be used to store data.
  • the above-mentioned processor, transceiver and memory can be set independently or integrated together.
  • the processor 1030 may also be referred to as a processing unit, and may implement a certain control function.
  • the processor 1030 may be a general-purpose processor or a dedicated processor.
  • it may be a baseband processor or a central processor.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, baseband chips, DU, or CU, etc.), execute software programs, and process data from software programs. .
  • the processor 1030 may also store an instruction, and the instruction may be executed by the processor, so that the communication apparatus 1000 executes the method corresponding to the terminal device or the network device in the foregoing method embodiment. step.
  • the communication device 1000 may include a circuit that can implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • processors and transceivers described in this application can be implemented in integrated circuits (IC), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application-specific integrated circuits (application specific integrated circuits (ASIC)), and printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • IC integrated circuits
  • analog ICs analog ICs
  • RFICs radio frequency integrated circuits
  • mixed-signal ICs mixed-signal ICs
  • ASIC application specific integrated circuits
  • PCB printed circuit board
  • the processor and transceiver can also be manufactured using various 1C process technologies, such as complementary metal oxide semiconductor (CMOS), N-type metal oxide semiconductor (N-type-metal-oxide-semiconductor, NMOS), P-type metal oxide semiconductor (positive channel metal oxide semiconductor (PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs )Wait.
  • CMOS complementary metal oxide semiconductor
  • N-type metal oxide semiconductor N-type-metal-oxide-semiconductor
  • PMOS positive channel metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device is described using a network device or a terminal device as an example, the scope of the communication device described in this application is not limited to the network device or the terminal device, and the structure of the communication device may not be 8-Restrictions in Figure 10.
  • the communication device may be an independent device or may be part of a larger device.
  • the device may be: (1) an independent integrated circuit IC, or chip, or chip system or subsystem; (2) a set of one or more ICs, optionally, the set of ICs may also include Storage components for storing data and / or instructions; (3) ASICs, such as modems (MSM); (4) modules that can be embedded in other devices; (5) receivers, terminals, cellular phones, wireless devices, handsets , Mobile units, network equipment, etc.
  • MSM modems
  • the terminal device and / or the network device may perform some or all of the steps in the foregoing embodiments, and these steps or operations are merely examples, and the embodiments of this application may also perform other operations or various Deformed.
  • the various steps may be performed in different orders presented in the above embodiments, and it is possible that not all operations in the above embodiments are to be performed.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units are integrated into one unit.
  • the above embodiments it can be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software when implemented using software, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions according to the embodiments of the present application are generated.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the usable media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, digital video disc (DVD), or semiconductor media (eg, solid state disk (SSD)) Wait.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法和装置,能够提高通信效率。该方法包括:确定下行信号质量;根据下行信号质量和第一覆盖增强CE等级质量门限,确定终端设备的下行CE等级;根据下行信号质量和第二CE等级质量门限,确定终端设备的上行CE等级,第一CE等级质量门限和第二CE等级质量门限不同。

Description

通信方法和装置
本申请要求于2018年10月25日提交中国专利局、申请号为201811252098.4、申请名称为“通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法和装置。
背景技术
为了支持更大的覆盖深度和容量性能,通信系统引入了覆盖增强(coverage enhancement,CE)机制。覆盖增强机制可包括不同的CE等级,CE等级一定程度上可以反映上行和/或下行载波的覆盖情况,或者,可以反映某一位置的上行和/或下行信号质量。可选地,不同的CE等级可以对应不同的重复次数和/或调制方式。网络侧和终端设备可以根据CE等级对应的重复次数进行上下行数据的重复发送或接收。例如,在长期演进(long term evolution,LTE)系统中,对CE等级较高的区域,终端设备的上行和/或下行数据传输的重复次数可以减少或者不重复发送。对于CE等级较低的区域,终端设备的上行和/或下行数据传输的重复次数可以增加。
随着通信技术的发展,载波频段向高频扩展,上下行载波的覆盖范围与LTE系统中不尽相同,因此,如何在未来通信系统中基于CE等级进行通信,是业界亟待解决的问题。
发明内容
有鉴于此,本申请实施例提供了一种通信方法和装置,本申请提供一种通信方法和装置,提供了一种基于CE等级进行通信的方案,能够提高通信效率。
第一方面,提供了一种通信方法,包括:确定下行信号质量;根据所述下行信号质量和第一覆盖增强CE等级质量门限,确定终端设备的下行CE等级;根据所述下行信号质量和第二CE等级质量门限,确定所述终端设备的上行CE等级,所述第一CE等级质量门限和所述第二CE等级质量门限不同。
在本申请实施例中,可以基于不同的CE等级质量门限,分别确定终端设备的上行CE等级和下行CE等级,从而可以通过CE等级更加准确地指示上下行载波的信号质量,以提高通信效率。
结合第一方面,在一种可能的实现方式中,还包括:接收来自网络设备的第一配置信息,所述第一配置信息用于指示上行CE等级与随机接入配置的对应关系;根据所述对应关系,确定所述终端设备的上行CE等级对应的第一随机接入配置;根据所述第一随机接入配置,发送随机接入信号。
在本申请实施例中,终端设备可以通过随机接入信号的随机接入配置向网络设备上报 上行CE等级,无需另外发送信息,从而能够节约信令开销。
结合第一方面,在一种可能的实现方式中,还包括:接收来自网络设备的第二配置信息,所述第二配置信息用于指示上行CE等级和下行CE等级的组合与随机接入配置的对应关系;根据所述对应关系,确定所述终端设备的上行CE等级和下行CE等级的组合对应的第二随机接入配置;根据所述第二随机接入配置,发送随机接入信号。
在本申请实施例中,终端设备可以通过随机接入信号的随机接入配置向网络设备上报上行CE等级和下行CE等级,无需另外发送信息,从而能够节约信令开销。
结合第一方面,在一种可能的实现方式中,所述随机接入配置包括以下至少一项:随机接入前导码的信息、随机接入资源。
结合第一方面,在一种可能的实现方式中,还包括:接收来自网络设备的第三配置信息,所述第三配置信息用于指示所述第二CE等级质量门限。
结合第一方面,在一种可能的实现方式中,还包括:接收来自网络设备的第四配置信息,所述第四配置信息用于指示质量门限差值;根据所述第一CE等级质量门限和所述质量门限差值,确定所述第二CE等级质量门限。
在本申请实施例中,引入了用于进行上行CE等级判断的第二CE等级质量门限,进一步地,还引入了用于确定第二CE等级质量门限的质量门限差值,终端设备可以基于第二CE等级质量门限判断上行CE等级,从而能够更准确地确定CE等级,提高通信效率。
结合第一方面,在一种可能的实现方式中,所述终端设备的上行CE等级是第一上行载波的上行CE等级,还包括:在所述第一上行载波的上行CE等级高于补充上行SUL载波的上行CE等级的情况下,使用所述SUL载波进行上行传输,其中所述第一上行载波的频率高于所述SUL载波的频率,所述上行CE等级越高表示其对应的覆盖能力越小;或者,在所述第一上行载波的上行CE等级低于所述SUL载波的上行CE等级的情况下,使用所述SUL载波进行上行传输,其中所述第一上行载波的频率高于所述SUL载波的频率,所述上行CE等级越高表示其对应的覆盖能力越大。
结合第一方面,在一种可能的实现方式中,还包括:接收来自网络设备的指示信息,所述指示信息用于指示在所述上行载波的上行CE等级高于所述SUL载波的上行CE等级的情况下,使用所述SUL载波进行上行传输,所述上行CE等级越高表示其对应的覆盖能力越小;或者,所述指示信息用于指示在所述第一上行载波的上行CE等级低于所述SUL载波的上行CE等级的情况下,使用所述SUL载波进行上行传输,其中所述第一上行载波的频率高于所述SUL载波的频率,所述上行CE等级越高表示其对应的覆盖能力越大。
第二方面,提供了一种通信方法,包括:网络设备获取终端设备的下行覆盖增强CE等级,所述终端设备的下行CE等级是根据下行信号质量和第一CE等级质量门限确定的;所述网络设备获取所述终端设备的上行CE等级,所述终端设备的上行CE等级是根据所述下行信号质量和第二CE等级质量门限确定的,所述第一CE等级质量门限和所述第二CE等级质量门限不同。
结合第二方面,在一种可能的实现方式中,还包括:所述网络设备向所述终端设备发送第一配置信息,所述第一配置信息用于指示上行CE等级与随机接入配置的对应关系;所述网络设备获取所述终端设备的上行CE等级,包括:所述网络设备接收所述终端设备发送的随机接入信号;所述网络设备根据所述随机接入信号的随机接入配置以及所述对应 关系,确定所述终端设备的上行CE等级。
结合第二方面,在一种可能的实现方式中,还包括:所述网络设备向所述终端设备发送第二配置信息,所述第二配置信息用于指示上行CE等级和下行CE等级的组合与随机接入配置的对应关系;所述网络设备获取所述终端设备的上行CE等级,包括:所述网络设备接收所述终端设备发送的随机接入信号;所述网络设备根据所述随机接入信号的随机接入配置以及所述对应关系,确定所述终端设备的上行CE等级和下行CE等级。
结合第二方面,在一种可能的实现方式中,还包括:所述网络设备向所述终端设备发送第三配置信息,所述第三配置信息用于指示所述第二CE等级质量门限。
结合第二方面,在一种可能的实现方式中,还包括:所述网络设备向所述终端设备发送第四配置信息,所述第四配置信息用于指示质量门限差值,其中所述第二CE等级质量门限是根据所述第一CE等级质量门限和所述质量门限差值确定的。
结合第二方面,在一种可能的实现方式中,所述终端设备的上行CE等级是第一上行载波的上行CE等级,还包括:所述网络设备向所述终端设备发送指示信息,所述指示信息用于指示在所述第一上行载波的上行CE等级高于补充上行SUL载波的上行CE等级的情况下,使用所述SUL载波进行上行传输,其中所述第一上行载波的频率高于所述SUL载波的频率,所述上行CE等级越高表示其对应的覆盖能力越小;或者所述指示信息用于指示在所述第一上行载波的上行CE等级低于所述SUL载波的上行CE等级的情况下,使用所述SUL载波进行上行传输,其中所述第一上行载波的频率高于所述SUL载波的频率,所述上行CE等级越高表示其对应的覆盖能力越大。
第三方面,本申请提供了一种通信装置,该装置具有实现上述第一方面的方法功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或者模块。
第四方面,本申请提供了一种通信装置,该装置具有实现上述第二方面的方法的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或者模块。
第五方面,提供了一种通信装置,该通信装置包括存储器、通信接口以及处理器,其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述第一方面的方法。
第六方面,提供了一种通信装置,该通信装置包括存储器、通信接口以及处理器,其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述第二方面的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面的方法。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第二方面的方法。
第九方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述第一方面的方法,例如,例如接收或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述第二方面的方法,例如,例如接收或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十一方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述第一方面的方法。
第十二方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述第二方面的方法。
附图说明
图1是本申请实施例的应用场景的示意图。
图2是本申请实施例的CE等级的示意图。
图3是本申请实施例的上行载波的覆盖范围示意图。
图4是本申请实施例的上行载波和下行载波的覆盖范围示意图。
图5是本申请实施例的通信方法的示意图。
图6是本申请又一实施例的通信方法的示意图。
图7是本申请又一实施例的上行载波和下行载波的覆盖范围示意图。
图8是本申请实施例的装置的示意图。
图9是本申请又一实施例的装置的示意图。
图10是本申请又一实施例的装置的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是LTE系统中的演进型基站(evoled NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
图1是本申请实施例的可能的应用场景示意图。如图1所示,该应用场景可以包括终端设备和网络设备。关于终端设备和网络设备的具体描述可以参见前文的相关描述。作为一个示例,所述终端设备可以是移动终端,所述网络设备可以是接入网设备。如图1所示,终端设备可以通过网络设备接入网络,终端设备和网络设备之间可以通过无线链路进行通信。图1中并不限于单个网络设备和终端设备进行通信的场景,本申请实施例的应用场景还可以包括载波聚合场景,双链接场景,或者协作多点传输场景等。
图2是本申请实施例的CE等级(CE level)的示意图。在采用CE机制的情况下,可以采用多个CE等级表示载波的覆盖情况或覆盖能力,其中载波的覆盖情况或覆盖能力可以通过信号质量表征。如图2所示,作为示例而非限定,CE机制可以包括CE等级0-3。其中,CE等级0至CE等级3依次对应的信号质量由高到低。例如,CE等级0对应信号质量最好的情况,CE等级3对应信号质量最差的情况。应理解,CE等级与信号质量也可以采用其他关联关系对应,例如,CE等级0-3依次对应的信号质量可以由低至高。本申请实施例中以CE等级0-3依次对应的信号质量由高至低为例进行说明。另外,也可以使用更多或更少的CE等级表示信号的覆盖能力。本申请不作限定。
终端设备可以根据实际测量的服务小区的下行信号质量和CE等级质量门限进行比较。一种可能的方式中,该CE等级质量门限可以通过网络设备广播的系统消息获取。该CE等级质量门限可以包括至少一个门限。例如,针对上述4个CE等级,可以有三个CE等级质量门限。假设上述三个质量门限分别为:门限1=100,门限2=60,门限3=30,当测量的下行信号质量高于100时,则CE等级为CE等级0;当下行信号质量小于100但高于60时,则CE等级为CE等级1,依次类推。
上述不同的CE等级可以对应不同的数据传输重复次数和/或调制方式,以达到覆盖与容量的平衡。上述重复次数,可以指在连续子帧的相同资源块中调度相同的数据的次数。接收端可以通过混合自动重传请求(hybrid automatic repeat request,HARQ)对接收的数据进行合并获得合并增益,以提高边缘覆盖性能。其中,上述重复次数可以指传输数据的最大重复次数。本申请中,传输数据可以包括发送和/或接收数据。
在未来的通信系统中,例如,5G系统或NR系统中,载波的频段向高频频段扩展。上述高频频段可以包括厘米波(centimeter wave)和毫米波(millimeter wave)。例如,厘米波频段可以指3千兆赫兹(giga hertz,GHz)-20GHz范围内的频谱,毫米波频段通常指30GHz-300GHz范围内的频谱。在上行(uplink,UL)载波属于高频频段的高频场景下, 由于终端设备的上行发送功率有限,所以可能会存在上行载波覆盖范围小于下行(downlink,DL)载波覆盖范围的情况。在本申请中,可以将高频频段的上行载波称为NR UL载波。另外,在新的无线通信系统中,为了使上行载波的覆盖范围和下行载波的覆盖范围保持一致,还引入了低频的补充上行(supplementary uplink,SUL)载波。SUL载波的频率低于NR UL载波的频率。通常可以认为SUL载波的覆盖范围和DL载波的覆盖范围相对一致。例如,图3示出了本申请实施例的上行载波的覆盖范围示意图。图3中的上行载波包括NR UL载波和SUL载波,SUL载波的覆盖范围通常大于NR UL载波的覆盖范围。
在常用的判断CE等级的方法中,无论是上行载波还是下行载波,均根据下行信号质量和CE等级质量门限判断CE等级。即终端设备的上行载波和下行载波使用相同的CE等级判断方式。但是,由于NR UL载波的覆盖区域小于下行载波的覆盖区域,若NR UL载波和下行载波使用相同的CE等级质量门限确定CE等级,可能不能反映终端设备的NR UL载波的真正的覆盖情况。例如,图4示出了上行载波和下行载波的覆盖范围示意图。其中图4中的上行载波为NR UL载波,由于NR UL载波的覆盖范围小于下行载波。因此,在图4中虚线所示的区域,DL载波的CE等级为0,而NR UL载波的实际覆盖情况应该对应CE等级1,即该区域中NR UL载波的信号质量低于CE等级0对应的信号质量,若根据CE等级0利用NR UL载波传输数据,可能导致传输质量下降。
有鉴于此,本申请实施例提出了一种通信方法,可以基于不同的CE等级质量门限,分别确定终端设备的上行CE等级和下行CE等级,从而可以通过CE等级更加准确地指示上下行载波的信号质量,以提高通信效率。
图5是本申请实施例的通信方法的示意图。下文中以终端设备和网络设备为例进行描述。可以理解的是,由终端设备实现的方法,也可以由可用于终端设备的部件(例如芯片或者电路)实现,而由网络设备实现的方法,也可以由可用于网络设备的部件(例如芯片或者电路)实现。图5的方法包括:
S501、终端设备确定下行信号质量。
可选地,所述下行信号质量可以通过测量下行同步信道、信道状态信息参考信号(channel-state information reference signal,CSI-RS)、解调参考信号(demodulation reference signal,DMRS)、小区参考信号(cell-specific reference signal,CRS)信号同步信号(synchronization signal,SS)、同步信号/物理广播信道块(synchronization signal/physical broadcast channel block,SS/PBCH Block)或者其它下行信号中的至少一种获得。
可选地,上述下行信号质量可以包括参考信号接收功率(reference signal receiving power,RSRP)、参考信号接收质量(reference signal receiving quality,RSRQ)、信噪比(signal noise ratio,SNR)、信号与干扰加噪声比(signal to interference plus noise ratio,SINR)、参考信号强度指示(reference signal strength indication,RSSI)或其它信号质量中的至少一种。
可选地,所述下行信号质量可以是小区级的、波束级的、SS/PBCH级的、基础参数集合(numerology)级的、切片(slicing)级的,或部分带宽(bandwidth part,BWP)级的。
可选地,在本申请各个实施例中,波束(beam)可以理解为空间资源,可以指具有能量传输指向性的发送或接收预编码向量。并且,该发送或接收预编码向量能够通过索引信 息进行标识,所述索引信息可以对应配置终端的资源标识(identity,ID),比如,所述索引信息可以对应配置的CSI-RS的标识或者资源;也可以是对应配置的上行探测参考信号(sounding reference signal,SRS)的标识或者资源。可选地,所述索引信息也可以是通过波束承载的信号或信道显示或隐式承载的索引信息。所述能量传输指向性可以指通过该预编码向量对所需发送的信号进行预编码处理,经过该预编码处理的信号具有一定的空间指向性,接收经过该预编码向量进行预编码处理后的信号具有较好的接收功率,如满足接收解调信噪比等;所述能量传输指向性也可以指通过该预编码向量接收来自不同空间位置发送的相同信号具有不同的接收功率。可选地,同一通信装置(比如终端设备或网络设备)可以有不同的预编码向量,不同的设备也可以有不同的预编码向量,即对应不同的波束。针对通信装置的配置或者能力,一个通信装置在同一时刻可以使用多个不同的预编码向量中的一个或者多个,即同时可以形成一个波束或者多个波束。
可选地,numerology为终端设备在通信时的一种无线配置,例如,在长期演进(Long Term Evolution,LTE)中乃至第五代移动通信系统中,numerology可以包括子载波间隔、循环前缀长度、多址接入(multiple access)方式、调制编码方式(Modulation and Coding Scheme,MCS)、帧结构(frame structure)、无线资源控制(Radio Resource Control,RRC)等的至少一种。
S502、所述终端设备根据所述下行信号质量和第一CE等级质量门限,确定所述终端设备的下行CE等级。
可选地,所述终端设备的下行CE等级可以指下行载波的CE等级。例如,可以是NR DL载波的CE等级。
可选地,所述第一CE等级质量门限可以包括至少一个门限。所述终端设备可以根据所述下行信号质量与所述第一CE等级质量门限的比较结果,确定所述终端设备的下行CE等级。例如,假设采用4个下行CE等级表示下行载波的覆盖情况,分别为DL CE等级0~DL CE等级3,针对上述4个下行CE等级,可以配置三个第一CE等级质量门限。例如上述三个门限分别为:DL门限1=100,DL门限2=60,DL门限3=30,当测量的下行信号质量高于100时,则下行CE等级为DL CE等级0;当下行信号质量小于100但高于60时,则下行CE等级为DL CE等级1,依次类推。
可选地,所述第一CE等级质量门限可以是网络侧为终端设备配置的。例如,网络设备可以向终端设备发送所述第一CE等级质量门限,相应地,所述终端设备接收所述第一CE等级质量门限。本申请实施例中,所述第一CE等级质量门限可以承载于系统消息中或者其他类型的消息中。
可选地,本申请实施例中的上行或下行CE等级质量门限可以基于RSRP门限、RSRQ门限,SNR门限,SINR门限,RSSI门限或其他质量门限中的至少一种表征。
S503、所述终端设备根据所述下行信号质量和第二CE等级质量门限,确定所述终端设备的上行CE等级,所述第一CE等级质量门限和所述第二CE等级质量门限不同。
可选地,本申请实施例中,上行CE等级可以指上行载波的CE等级。例如,所述上行CE等级可以指NR UL载波的CE等级,或者也可以指SUL载波的CE等级。在一个示例中,所述NR UL载波、SUL载波、下行载波可以各自采用不同的CE等级质量门限判断CE等级。或者,在又一个示例中,所述NR UL载波和下行载波的可以采用不同的CE 等级质量门限判断CE等级,所述SUL载波可以采用与下行载波相同的CE等级质量门限判断CE等级。
可选地,所述第二CE等级质量门限可以包括至少一个门限。所述第一CE等级质量门限和所述第二CE等级质量门限不同,可以指所述第一CE等级质量门限与所述第二CE等级质量门限中的至少一个门限不同。例如,所述第一CE等级质量门限和所述第二CE等级质量门限中的部分门限不同。或者,所述第一CE等级质量门限和所述第二CE等级质量门限中的每一个门限值均不相同。
可选地,所述第二CE等级质量门限可以由网络侧配置;或者网络侧可以向终端设备指示所述第一CE等级质量门限与所述第二CE等级质量门限之间的质量门限差值,所述终端设备可以根据网络侧配置的第一CE等级质量门限和所述质量门限差值,确定所述第二CE等级质量门限;或者网络侧可以向终端设备指示所述质量门限差值,所述终端设备可以根据网络侧配置的第二CE等级质量门限和所述质量门限差值,确定所述第一CE等级质量门限。例如,在终端设备接收所述质量门限差值之前,可以从网络侧接收所述第二CE等级质量门限。
在一个示例中,所述终端设备接收来自网络设备的第三配置信息,相应地,所述网络设备向所述终端设备发送所述第三配置信息,所述第三配置信息用于指示所述第二CE等级质量门限。
在另一个示例中,所述终端设备接收来自网络设备的第四配置信息,相应地,所述网络设备向所述终端设备发送所述第四配置信息,所述第四配置信息用于指示质量门限差值;所述终端设备根据所述第一CE等级质量门限和所述质量门限差值,确定所述第二CE等级质量门限。
在本申请实施例中,引入了用于进行上行CE等级判断的第二CE等级质量门限,终端设备可以基于第二CE等级质量门限判断上行CE等级,从而能够更准确地确定CE等级,提高通信效率。
进一步地,还引入了用于确定第二CE等级质量门限的质量门限差值,终端设备可以根据第一CE等级质量门限和所述质量门限差值,确定第二CE等级质量门限,从而无需网络设备发送第二CE等级质量门限,能够节约信令开销。
可选地,若第一CE等级质量门限和第二CE等级质量门限分别包括M个质量门限,M是大于等于2的整数。则所述质量门限差值可以是1个,所述第一CE等级质量门限中的M个质量门限分别与所述1个质量门限差值求和,得到第二CE等级质量门限中的M个质量门限。例如,假设网络设备向终端设备指示第一CE等级质量门限为:DL门限1=100,DL门限2=60,DL门限3=30;并指示质量门限差值为10,则所述终端设备可以确定第二CE等级质量门限分别为:UL门限1=110,UL门限2=70,UL门限3=40。
或者也可以是与M个门限对应的M个质量门限差值,所述M个质量门限差值可以不同,所述第一CE等级质量门限中的M个质量门限分别与对应的质量门限差值分别一一求和,得到第二CE等级质量门限中的M个质量门限。例如,假设网络设备向终端设备指示第一CE等级质量门限为:DL门限1=100,DL门限2=60,DL门限3=30;并指示质量门限差值分别为5,10,15,则所述终端设备可以确定第二CE等级质量门限分别为:UL门限1=105,UL门限2=70,UL门限3=45。
可选地,所述第一CE等级质量门限和所述第二CE等级质量门限包括的门限个数可以相同,也可以不同。
在一个示例中,假设上行CE等级和下行CE等级均包括4个等级,分别为UL CE等级0~UL CE等级3以及DL CE等级0~DL CE等级3。对应地,第一CE等级质量门限可以包括三个门限,假设分别为:DL门限1=100,DL门限2=60,DL门限3=30;第二CE等级质量门限也可以包括三个门限,假设分别为:UL门限1=110,UL门限2=70,UL门限3=40。若测量的下行信号质量大于110,则终端设备的上行CE等级为0,下行CE等级为0。若下行信号的质量大于100小于110,则终端设备的上行CE等级为1,下行CE等级为0,其余类推。
进一步地,在本申请实施例中,由于上行CE等级和下行CE等级的判断机制不同,因此终端设备可以分别向网络侧指示上行CE等级和下行CE等级。终端设备可以通过显示或隐式的方式指示上行和/或下行CE等级。例如,终端设备可以根据随机接入配置向网络侧指示上行CE等级和/或下行CE等级。或者,终端设备也可以向网络侧发送指示上行CE等级和/或下行CE等级的信息。例如,终端设备可以在随机接入过程中,通过消息1(message 1,MSG1)或消息3(message 3,MSG3)向网络侧发送指示上行CE等级和/或下行CE等级的信息。或者也可以在随机接入完成之后,采用其他消息发送指示上行CE等级和/或下行CE等级的信息。
一种可能的方式中,为了提高终端设备的业务传输性能,终端设备可以向网络侧通知终端设备的CE等级,使得网络侧基于终端设备的CE等级确定对应的传输数据的重复次数。该CE等级包括上行CE等级和下行CE等级。可选地,终端设备可以根据随机接入配置向网络侧指示CE等级。不同的CE等级可以对应不同的随机接入配置。上述随机接入配置例如可以包括随机接入资源和/或随机接入前导码(preamble)的信息,或者也可以包括用于随机接入的其他配置信息。上述随机接入资源可以指用于发送前导码的时频资源,比如物理随机接入信道(physical random access channel,PRACH)资源。上述随机接入前导码的信息可以是随机接入前导码的配置信息,例如,随机接入前导码的信息可以包括但不限于以下至少一项:用于发送前导码的时频资源(例如,PRACH资源)的指示信息;前导码索引(index),用于分配前导码资源;根序列的指示信息,用于生成前导码。或者随机接入配置可以包括以下至少一项:前导码的最大传输次数的指示信息;针对消息1(message 1,MSG1)的响应的接收窗口的指示信息,其中MSG 1通常指前导码;前导码的功率攀升步长的指示信息;前导码的子载波间隔的指示信息;退避指示(back off indication)的缩放因子(scaling factor)的指示信息,用于在随机接入未完成时,终端设备发起前导码重传之前,确定的延迟时间。例如,假设终端设备根据网络的回退指示确定延迟时间为200毫秒(ms),终端设备从0到200ms×缩放因子之间随机选择一个值A,则终端设备的延迟时间为A。
网络设备可以根据接收的随机接入信号的随机接入配置,以及随机接入配置与CE等级的对应关系,确定终端设备的上行CE等级和/或下行CE等级。
另外,在包括SUL载波的场景中,如果终端设备支持SUL载波并且在SUL上进行业务传输,终端设备也可以向网络侧指示SUL载波对应的CE等级。可选地,终端设备可以显示或隐式地指示SUL载波对应的CE等级。例如,协议可以定义SUL CE等级和下行 CE等级相同,则终端设备默认SUL载波和下行载波的CE等级相同,此种情况下,可以不用单独指示SUL载波对应的CE等级。或者,SUL载波也可以使用与NR UL载波或下行载波不同的CE等级判断机制。例如,假设DL载波对应第一CE等级质量门限,NR UL载波对应第二CE等级质量门限,SUL载波对应第三CE等级质量门限,可以根据下行信号质量和第三CE等级质量门限确定SUL载波的上行CE等级,第三CE等级质量门限可以是网络设备发送的,也可以是终端设备根据第一CE等级质量门限和/或第二CE等级质量门限以及质量门限差值确定的。
在一种方式中,不同的上行CE等级可以对应不同的随机接入配置,终端设备通过在其上行CE等级对应的随机接入配置上发送随机接入信号,以便于网络设备根据随机接入信号确定终端设备的上行CE等级。终端设备可以在随机接入之后,向网络设备发送终端设备的下行CE等级,以便于网络设备确定终端设备的下行CE等级。或者,终端设备也可以根据下行CE等级对应的随机接入配置发送随机接入信号,在随机接入之后,终端设备再向网络设备发送终端设备的上行CE等级。这种方式引入的随机接入配置的种类较少,可以节约信令和简化配置。
在另一种方式中,不同的上行CE等级和下行CE等级的组合可以对应不同的随机接入配置,终端设备可以根据上行CE等级和下行CE等级的组合,选择对应的随机接入配置发送随机接入信号。例如网络侧可以配置:{DL CE0,NR UL CE0},{DL CE0,NR UL CE1}……{DL CE0,NR UL CEn-1},{DL CE1,NR UL CE0}……{DL CEm-1,NR ULn-1}分别对应不同的随机接入配置,其中,m,n为大于等于2的整数。网络设备可以将上述对应关系发送给终端设备。例如,若终端设备确定NR UL CE等级为1,DL CE等级为0,则终端设备可以选择{DL CE0,NR UL CE1}对应的随机接入配置发送随机接入信号,网络设备根据接收到随机接入信号的随机接入配置,便可以确定终端设备的DL CE等级为0,NR UL CE等级为1。
例如,网络设备向终端设备发送第一配置信息,相应地,所述终端设备接收来自网络设备的第一配置信息,相应地,所述网络设备向所述终端设备发送所述第一配置信息,所述第一配置信息用于指示上行CE等级与随机接入配置的对应关系;所述终端设备根据所述对应关系,确定所述终端设备的上行CE等级对应的第一随机接入配置;所述终端设备根据所述第一随机接入配置,发送随机接入信号。相应地,所述网络设备可以接收所述随机接入信号,并根据所述随机接入信号的随机接入配置和所述对应关系,确定所述终端设备的上行CE等级。
在本申请实施例中,终端设备可以通过随机接入信号的随机接入配置向网络设备上报上行CE等级,无需另外发送信息,从而能够节约信令开销。
又例如,网络设备向终端设备发送第二配置信息,相应地,所述终端设备接收来自网络设备的第二配置信息,所述第二配置信息用于指示上行CE等级和下行CE等级的组合与随机接入配置的对应关系;所述终端设备根据所述对应关系,确定所述终端设备的上行CE等级和下行CE等级的组合对应的第二随机接入配置;所述终端设备根据所述第二随机接入配置,发送随机接入信号。相应地,所述网络设备可以接收所述随机接入信号,并根据所述随机接入信号的随机接入配置和所述对应关系,确定所述终端设备的上行CE等级和下行CE等级。
在本申请实施例中,终端设备可以通过随机接入信号的随机接入配置向网络设备上报上行CE等级和下行CE等级,无需另外发送信息,从而能够节约信令开销。
在一个具体示例中,假设终端设备使用NR UL载波进行上行传输,且NR UL载波的CE等级用NR CE等级表示;SUL载波的CE等级用SUL CE等级表示;下行载波的CE等级用DL CE等级表示。则终端设备确定并向网络侧指示CE等级的过程可以如下所示。
S01、终端设备确定其NR UL CE等级质量门限。
例如,终端设备可以接收网络设备发送的NR UL CE等级质量门限,相应地,网络设备发送所述NR UL CE等级质量门限。
又例如,终端设备可以接收网络设备发送的NR DL CE等级质量门限以及质量门限差值,终端设备根据所述NR DL CE质量门限和所述质量门限差值,确定NR UL CE等级质量门限。
S02、终端设备接收网络设备发送的NR UL CE等级与随机接入配置的对应关系,相应地,网络设备向终端设备发送所述对应关系。
例如,假设根据所述对应关系,NR UL CE等级0/1/2/3对应的随机接入前导码分别为preamble 10,11,12,14。而CE等级0/1/2/3对应的重复次数分别为1,5,10,20。其中,在这里,无论对于上行还是下行载波,相同的CE等级对应的重复次数是相同的。
S03、终端设备确定NR UL CE等级以及DL CE等级。
例如,可以根据下行信号质量与不同的质量门限进行比较的结果,确定NR UL CE等级以及DL CE等级。作为一个示例,可以假设NR UL CE等级为1,DL CE等级为0。
S04、终端设备确定其NR UL CE等级对应的随机接入配置,并基于该随机接入配置发送前导码,相应地,网络设备接收所述前导码。
例如,NR UL CE等级1对应preamble 11,终端设备可以向网络设备发送preamble 11。为了避免网络侧无法正确接收preamble 11,终端设备可以根据NR UL CE等级1对应的重复次数5,重复发送5次preamble 11。
可选地,本申请中也可以将前导码称为MSG 1。
S05、终端设备接收网络设备发送的响应消息,相应地,网络设备发送所述响应消息。
例如,若网络设备正确接收preamble 11,则可以根据NR UL CE等级和随机接入配置的对应关系,确定终端设备的NR UL CE等级为1。
由于不确定终端设备的DL CE等级,网络设备可以暂时根据NR UL CE等级发送下行信号。即网络设备向终端设备重复发送5次响应消息。对于终端设备来说,终端设备已知其DL CE等级为0,因此终端设备可以根据DL CE等级0仅接收一次响应消息。该响应消息通常也可以称为消息2(message 2,MSG 2)。
其中,在同一位置,NR UL信号质量一般低于DL信号质量。而信号质量越低,意味着CE等级可能越低,而重复传输次数越高。因此在仅获知NR UL CE等级的情况下,如果网络侧根据NR UL CE等级确定上行和下行重复传输次数,则可以保证终端设备的上行和下行的传输性能。
其中,需要说明的是,在一些示例中,CE等级越低,则表示其对应的覆盖能力越大或者信号质量越好。例如,CE等级0低于CE等级1,但是CE等级0比CE等级1对应的信号质量好。或者,在另一些示例中,CE等级越高,则表示其对应的覆盖能力越大或 者信号质量越好。
S06、终端设备向网络设备发送指示信息,以指示终端设备的DL CE等级。
例如,可以指示终端设备DL CE等级为0。
例如,接收到响应消息之后,终端设备可以在消息3(message 3,MSG 3)中向网络侧指示终端设备的DL CE等级,以避免网络侧一直根据NR UL CE等级重复发送下行信令或数据,导致资源浪费。MSG3可以是RRC信令或者层2信令,比如媒体接入控制(medium access control,MAC)控制单元(control element,CE)。
图6是本申请实施例的又一通信方法的流程图,该方法可以由终端设备执行,或者可以由终端设备的芯片执行,下面以终端设备为例进行描述。如图6所示,该方法包括:
S601、终端设备确定第一上行载波的上行CE等级和SUL载波的上行CE等级,所述第一上行载波的频率高于所述SUL载波的频率。
其中,所述第一上行载波可以是NR UL载波。可选地,所述终端设备确定所述第一上行载波和SUL载波的CE等级的具体方式可以参考前文描述的方式,或者也可以采取其他方式确定,此处不再赘述。
S602、在所述第一上行载波的上行CE等级高于所述SUL载波的上行CE等级的情况下,所述终端设备使用所述SUL载波进行上行传输,其中,上行CE等级越高对应的覆盖能力越小;或者,在所述第一上行载波的上行CE等级低于所述SUL载波的上行CE等级的情况下,所述终端设备使用所述SUL载波进行上行传输,其中上行CE等级越高对应的覆盖能力越大。
例如,图7示出了小区支持NR UL载波和SUL载波的覆盖范围示意图。如图7所示,在虚线所示的区域内,NR UL载波的CE等级对应的覆盖能力小于SUL载波的CE等级覆盖能力。若终端设备支持NR UL载波和SUL载波,则终端设备可以选择在SUL载波上进行上行传输。需要说明的是,在一些示例中,CE等级越低,可以表示其对应的信号质量越好。例如,当终端设备移动到图7中虚线所示的区域内时,SUL CE等级为0,NR UL CE等级为1,SUL载波的CE等级小于NR UL载波的CE等级,但是SUL载波对应的覆盖能力大于NR UL载波的覆盖能力。或者,在另一些示例中,CE等级越高,则表示其对应的覆盖能力越大或者信号质量越好。
考虑到CE等级对应的覆盖能力较大的情况下,数据重传的次数也较少,额外的数据重传不仅降低终端设备的数据传输速率,还会带来更多的终端设备耗能和资源消费,因此,在第一上行载波的CE等级对应的覆盖能力低于SUL载波的CE等级对应的覆盖能力的情况下,终端设备可以使用SUL载波传输数据,以减少终端设备的耗能以及减少资源消费。
在本申请实施例中,在终端设备的第一上行载波和SUL载波的CE等级不一致的情况下,终端设备可以选择CE等级对应的覆盖能力较高的SUL载波传输数据,以减少不必要的信令和数据重复,减少空口开销,同时减少终端设备的功耗。
可选地,所述终端设备可以自行确定是否使用SUL载波进行上行传输,或者,所述终端设备可以根据网络设备的指示信息确定是否使用SUL载波进行上行传输。
在一个示例中,所述终端设备可以接收来自网络设备的指示信息,相应地,所述网络设备发送所述指示信息,所述指示信息用于指示所述终端设备在所述上行载波的上行CE等级高于所述SUL载波的上行CE等级的情况下,使用所述SUL载波进行上行传输,其 中上行CE等级越高对应的覆盖能力越小;或者,所述指示信息也可以用于指示所述终端设备在所述上行载波的上行CE等级低于所述SUL载波的上行CE等级的情况下,使用所述SUL载波进行上行传输,其中上行CE等级越高对应的覆盖能力越大。
在一个具体示例中,假设终端设备支持SUL载波和NR UL载波,则终端设备回退到SUL载波的过程可以如下所述。该示例以CE等级越高对应的覆盖能力越小为例进行说明。但本领域技术人员能够理解,该示例也可以应用于CE等级越高对应的覆盖能力越大的场景。
S11、终端设备测量当前位置的下行信号质量,并确定终端设备的NR UL CE等级和SUL CE等级。
例如,若终端设备移动到图7中的虚线所示的区域中,可以根据测量的下行信号质量确定NR UE CE等级为1,DL CE等级为0,SUL CE等级为0。
S12、当终端设备发现NR UL CE等级高于SUL CE等级时,回退到SUL载波上进行上行传输
例如,若终端设备移动到图7中虚线所示的区域时,NR UE CE等级为1,而SUL CE等级为0,此时终端设备可以使用SUL载波进行传输。
可选地,终端设备可以自行确定回退到SUL载波上进行传输,或者终端设备可以接收网络设备发送的指示信息,该指示信息用于指示当终端设备发现NR UL CE等级高于SUL CE等级时,回退到SUL载波上进行上行传输。
该指示信息可以用1个或多个比特表示。例如,当比特设置为1时,表示回退到SUL载波上进行上行传输;当比特设置为0时,指示不回退到SUL载波上进行传输。
或者,在又一个示例中,在网络设备确定终端设备的NR UL CE等级高于SUL CE等级时,网络设备可以指示终端设备回退至SUL载波上进行上行传输。进一步地,网络设备可以向终端设备发送SUL配置信息,该SUL配置信息可以包括SUL载波上的非竞争的随机接入配置,以便于终端设备快速回退至SUL载波。或者,该SUL配置信息也可以包括竞争的随机接入配置。可选地,网络设备可以自行比较NR UL CE等级和SUL CE等级的大小。或者,网络设备也可以接收终端设备发送的等级指示信息,该等级指示信息用于指示终端设备的NR UL CE等级高于SUL CE等级,在这种情况下,终端设备可以无需向网络设备上报SUL CE等级。
在本申请实施例中,考虑到CE等级对应的覆盖能力较大的情况下,数据传输的重复次数也较少,额外的数据重传不仅降低终端设备的数据传输速率,还会带来更多的终端设备耗能和资源消费,因此,在NR UL CE等级对应的覆盖能力小于SUL CE等级对应的覆盖能力的情况下,终端设备可以使用SUL载波传输数据,以减少终端设备的耗能以及减少资源消费。
上文结合图1至图7介绍了本申请实施例的通信方法,下文将结合图8至图10,介绍本申请实施例中的装置。
图8是本申请实施例的通信装置800的示意性框图。通信装置800可以是终端设备,也可以是可用于终端设备的部件(例如芯片或者电路),能够执行本申请的方法实施例中由终端设备执行的各个步骤,为了避免重复,此处不再详述。一种可能的方式中,装置800可以包括:第一确定单元810、第二确定单元820以及第三确定单元830。
第一确定单元810,用于确定下行信号质量。
第二确定单元820,用于根据所述下行信号质量和第一CE等级质量门限,确定终端设备的下行CE等级。
第三确定单元830,用于根据所述下行信号质量和第二CE等级质量门限,确定所述终端设备的上行CE等级,所述第一CE等级质量门限和所述第二CE等级质量门限不同。
图9是本申请实施例的通信装置900的示意性框图。装置900可以是网络设备,也可以是用于网络设备的部件(例如芯片或者电路),能够执行本申请的方法实施例中由网络设备执行的各个步骤,为了避免重复,此处不再详述。一种可能的方式中,装置900可以包括:第一获取单元910和第二获取单元920。
第一获取单元910,用于获取终端设备的下行CE等级,所述终端设备的下行CE等级是根据下行信号质量和第一CE等级质量门限确定的;
第二获取单元920,用于获取所述终端设备的上行CE等级,所述终端设备的上行CE等级是根据所述下行信号质量和第二CE等级质量门限确定的,所述第一CE等级质量门限和所述第二CE等级质量门限不同。
可以理解的是,上述通信装置800或者通信装置900中的各个单元或模块可以单独设置,也可以集成在一起。上述各个单元或模块也可以称为部件或者电路。
图10是本申请实施例的通信装置1000的示意性框图。应理解,装置1000可以为终端设备,也可以是可用于终端设备的部件(例如芯片或者电路),其能够实现本申请的方法实施例中由终端设备执行的各个步骤。或者装置1000可以为网络设备,也可以是可用于网络设备的部件(例如芯片或者电路),其能够执行本申请的方法实施例中由网络设备执行的各个步骤。为了避免重复,此处不再详述。一种可能的方式中,装置1000可以包括:
一个或多个存储器1010,用于存储程序或者代码;
一个或多个处理器1030,用于执行存储器1010中的程序或者代码,当所述程序被执行时,若装置1000执行对应于方法实施例中终端设备执行的各个步骤,则所述处理器1030可以用于确定下行信号质量;根据所述下行信号质量和第一CE等级质量门限,确定终端设备的下行CE等级;根据所述下行信号质量和第二CE等级质量门限,确定所述终端设备的上行CE等级,所述第一CE等级质量门限和所述第二CE等级质量门限不同。
或者,若装置1000执行对应于方法实施例中网络设备执行的各个步骤,则该处理器1030还可以用于获取终端设备的下行CE等级,所述终端设备的下行CE等级是根据下行信号质量和第一CE等级质量门限确定的;以及获取所述终端设备的上行CE等级,所述终端设备的上行CE等级是根据所述下行信号质量和第二CE等级质量门限确定的,所述第一CE等级质量门限和所述第二CE等级质量门限不同。
可选地,该通信装置1000,还可以包括一个或多个通信接口1020,用于和其他设备进行通信。该通信接口1020可以为收发器。所述收发器可以称为收发单元、收发机、收发电路、或者收发器等,用于实现通信装置的收发功能。
例如,若装置1000执行对应于方法实施例中终端设备执行的各个步骤,则装置1000可以通过所述通信接口1020接收来自网络设备的第一配置信息、第二配置信息、第三配置信息和/或第四配置信息,或者通过所述通信接口1020接收来自网络设备的指示信息, 或者通过所述通信接口1020向网络设备发送随机接入信号等。
又例如,若装置1000执行对应于方法实施例中网络设备执行的各个步骤,则装置1000可以通过所述通信接口1020向终端设备发送第一配置信息、第二配置信息、第三配置信息和/或第四配置信息,或者通过所述通信接口1020向终端设备发送指示信息,或者通过所述通信接口1020接收来自网络设备的随机接入信号等。
可以理解的是,存储器1010还可以用于存储数据。上述的处理器、收发器和存储器可以独立设置,也可以集成在一起。
可选地,所述处理器1030也可以称为处理单元,可以实现一定的控制功能。所述处理器1030可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,DU,或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选地设计中,处理器1030也可以存有指令,所述指令可以被所述处理器运行,使得所述通信装置1000执行上述方法实施例中的对应于终端设备或者网络设备的步骤。
在又一种可能的设计中,通信装置1000可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种1C工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semi-conductor,CMOS)、N型金属氧化物半导体(N type-metal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
虽然在以上的实施例描述中,通信装置以网络设备或者终端设备为例来描述,但本申请中描述的通信装置的范围并不限于网络设备或终端设备,而且通信装置的结构可以不受图8-图10的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述设备可以是:(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;(2)具有一个或多个IC的集合,可选地,该IC集合也可以包括用于存储数据和/或指令的存储部件;(3)ASIC,例如调制解调器(MSM);(4)可嵌入在其他设备内的模块;(5)接收机、终端、蜂窝电话、无线设备、手持机、移动单元,网络设备等。
可以理解的,在本申请中,终端设备和/或网络设备可以执行上述实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照上述实施例呈现的不同的顺序来执行,并且有可能并非要执行上述实施例中的全部操作。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通 过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。例如,当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种通信方法,其特征在于,包括:
    确定下行信号质量;
    根据所述下行信号质量和第一覆盖增强CE等级质量门限,确定终端设备的下行CE等级;
    根据所述下行信号质量和第二CE等级质量门限,确定所述终端设备的上行CE等级,所述第一CE等级质量门限和所述第二CE等级质量门限不同。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:接收来自网络设备的第一配置信息,所述第一配置信息用于指示上行CE等级与随机接入配置的对应关系;
    根据所述对应关系,确定所述终端设备的上行CE等级对应的第一随机接入配置;
    根据所述第一随机接入配置,发送随机接入信号。
  3. 如权利要求1所述的方法,其特征在于,所述方法还包括:接收来自网络设备的第二配置信息,所述第二配置信息用于指示上行CE等级和下行CE等级的组合与随机接入配置的对应关系;
    根据所述对应关系,确定所述终端设备的上行CE等级和下行CE等级的组合对应的第二随机接入配置;
    根据所述第二随机接入配置,发送随机接入信号。
  4. 如权利要求2或3所述的方法,其特征在于,所述随机接入配置包括以下至少一项:随机接入前导码的信息、随机接入资源。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备的第三配置信息,所述第三配置信息用于指示所述第二CE等级质量门限。
  6. 如权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备的第四配置信息,所述第四配置信息用于指示质量门限差值;
    根据所述第一CE等级质量门限和所述质量门限差值,确定所述第二CE等级质量门限。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述终端设备的上行CE等级是第一上行载波的上行CE等级,所述方法还包括:
    在所述第一上行载波的上行CE等级高于补充上行SUL载波的上行CE等级的情况下,使用所述SUL载波进行上行传输,其中所述第一上行载波的频率高于所述SUL载波的频率,所述上行CE等级越高表示其对应的覆盖能力越小。
  8. 如权利要求7所述的方法,其特征在于,所述方法还包括:
    接收来自网络设备的指示信息,所述指示信息用于指示在所述上行载波的上行CE等级高于所述SUL载波的上行CE等级的情况下,使用所述SUL载波进行上行传输,其中,所述上行CE等级越高表示其对应的覆盖能力越小。
  9. 一种通信方法,其特征在于,包括:
    网络设备获取终端设备的下行覆盖增强CE等级,所述终端设备的下行CE等级是根 据下行信号质量和第一CE等级质量门限确定的;
    所述网络设备获取所述终端设备的上行CE等级,所述终端设备的上行CE等级是根据所述下行信号质量和第二CE等级质量门限确定的,所述第一CE等级质量门限和所述第二CE等级质量门限不同。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:所述网络设备向所述终端设备发送第一配置信息,所述第一配置信息用于指示上行CE等级与随机接入配置的对应关系;
    所述网络设备获取所述终端设备的上行CE等级,包括:
    所述网络设备接收所述终端设备发送的随机接入信号;
    所述网络设备根据所述随机接入信号的随机接入配置以及所述对应关系,确定所述终端设备的上行CE等级。
  11. 如权利要求9所述的方法,其特征在于,所述方法还包括:所述网络设备向所述终端设备发送第二配置信息,所述第二配置信息用于指示上行CE等级和下行CE等级的组合与随机接入配置的对应关系;
    所述网络设备获取所述终端设备的上行CE等级,包括:
    所述网络设备接收所述终端设备发送的随机接入信号;
    所述网络设备根据所述随机接入信号的随机接入配置以及所述对应关系,确定所述终端设备的上行CE等级和下行CE等级。
  12. 如权利要求9至11中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第三配置信息,所述第三配置信息用于指示所述第二CE等级质量门限。
  13. 如权利要求9至11中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第四配置信息,所述第四配置信息用于指示质量门限差值,其中所述第二CE等级质量门限是根据所述第一CE等级质量门限和所述质量门限差值确定的。
  14. 如权利要求9至13中任一项所述的方法,其特征在于,所述终端设备的上行CE等级是第一上行载波的上行CE等级,所述方法还包括:
    所述网络设备向所述终端设备发送指示信息,所述指示信息用于指示在所述第一上行载波的上行CE等级高于补充上行SUL载波的上行CE等级的情况下,使用所述SUL载波进行上行传输,其中所述第一上行载波的频率高于所述SUL载波的频率,所述上行CE等级越高表示其对应的覆盖能力越小。
  15. 一种通信装置,其特征在于,包括:
    第一确定模块,用于确定下行信号质量;
    第二确定模块,用于根据所述下行信号质量和第一覆盖增强CE等级质量门限,确定终端设备的下行CE等级;
    第三确定模块,用于根据所述下行信号质量和第二CE等级质量门限,确定所述终端设备的上行CE等级,所述第一CE等级质量门限和所述第二CE等级质量门限不同。
  16. 如权利要求15所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收来自网络设备的第一配置信息,所述第一配置信息用于指示上行 CE等级与随机接入配置的对应关系;
    第四确定模块,用于根据所述对应关系,确定所述终端设备的上行CE等级对应的第一随机接入配置;
    发送模块,用于根据所述第一随机接入配置,发送随机接入信号。
  17. 如权利要求15所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收来自网络设备的第二配置信息,所述第二配置信息用于指示上行CE等级和下行CE等级的组合与随机接入配置的对应关系;
    第四确定模块,用于根据所述对应关系,确定所述终端设备的上行CE等级和下行CE等级的组合对应的第二随机接入配置;
    发送模块,用于根据所述第二随机接入配置,发送随机接入信号。
  18. 如权利要求16或17所述的装置,其特征在于,所述随机接入配置包括以下至少一项:随机接入前导码的信息、随机接入资源。
  19. 如权利要求15至18中任一项所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收来自网络设备的第三配置信息,所述第三配置信息用于指示所述第二CE等级质量门限。
  20. 如权利要求15至18中任一项所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收来自网络设备的第四配置信息,所述第四配置信息用于指示质量门限差值;
    第五确定模块,用于根据所述第一CE等级质量门限和所述质量门限差值,确定所述第二CE等级质量门限。
  21. 如权利要求15至20中任一项所述的装置,其特征在于,所述终端设备的上行CE等级是第一上行载波的上行CE等级,所述装置还包括:
    发送模块,用于在所述第一上行载波的上行CE等级高于补充上行SUL载波的上行CE等级的情况下,使用所述SUL载波进行上行传输,其中所述第一上行载波的频率高于所述SUL载波的频率,所述上行CE等级越高表示其对应的覆盖能力越小。
  22. 如权利要求21所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收来自网络设备的指示信息,所述指示信息用于指示在所述上行载波的上行CE等级高于所述SUL载波的上行CE等级的情况下,使用所述SUL载波进行上行传输,其中,所述上行CE等级越高表示其对应的覆盖能力越小。
  23. 一种通信装置,其特征在于,所述装置为网络设备,包括:
    第一获取模块,用于获取终端设备的下行覆盖增强CE等级,所述终端设备的下行CE等级是根据下行信号质量和第一CE等级质量门限确定的;
    第二获取模块,用于获取所述终端设备的上行CE等级,所述终端设备的上行CE等级是根据所述下行信号质量和第二CE等级质量门限确定的,所述第一CE等级质量门限和所述第二CE等级质量门限不同。
  24. 如权利要求23所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向所述终端设备发送第一配置信息,所述第一配置信息用于指示上行CE等级与随机接入配置的对应关系;
    所述第二获取模块具体用于接收所述终端设备发送的随机接入信号;以及根据所述随 机接入信号的随机接入配置以及所述对应关系,确定所述终端设备的上行CE等级。
  25. 如权利要求23所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向所述终端设备发送第二配置信息,所述第二配置信息用于指示上行CE等级和下行CE等级的组合与随机接入配置的对应关系;
    所述第二获取模块具体用于接收所述终端设备发送的随机接入信号;以及根据所述随机接入信号的随机接入配置以及所述对应关系,确定所述终端设备的上行CE等级和下行CE等级。
  26. 如权利要求23至25中任一项所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向所述终端设备发送第三配置信息,所述第三配置信息用于指示所述第二CE等级质量门限。
  27. 如权利要求23至26中任一项所述的装置,其特征在于,所述装置还包括:
    发送模块,用于向所述终端设备发送第四配置信息,所述第四配置信息用于指示质量门限差值,其中所述第二CE等级质量门限是根据所述第一CE等级质量门限和所述质量门限差值确定的。
  28. 如权利要求23至27中任一项所述的装置,其特征在于,所述终端设备的上行CE等级是第一上行载波的上行CE等级,所述装置还包括:
    发送模块,用于向所述终端设备发送指示信息,所述指示信息用于指示在所述第一上行载波的上行CE等级高于补充上行SUL载波的上行CE等级的情况下,使用所述SUL载波进行上行传输,其中所述第一上行载波的频率高于所述SUL载波的频率,所述上行CE等级越高表示其对应的覆盖能力越小。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,用于实现如权利要求1至8中任一项所述的方法或者如权利要求9-14中任一项所述的方法。
PCT/CN2019/112987 2018-10-25 2019-10-24 通信方法和装置 WO2020083333A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19877199.0A EP3860195A4 (en) 2018-10-25 2019-10-24 COMMUNICATION PROCESS AND APPARATUS
US17/239,046 US20210243614A1 (en) 2018-10-25 2021-04-23 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811252098.4A CN111107574B (zh) 2018-10-25 2018-10-25 通信方法和装置
CN201811252098.4 2018-10-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/239,046 Continuation US20210243614A1 (en) 2018-10-25 2021-04-23 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2020083333A1 true WO2020083333A1 (zh) 2020-04-30

Family

ID=70330397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112987 WO2020083333A1 (zh) 2018-10-25 2019-10-24 通信方法和装置

Country Status (4)

Country Link
US (1) US20210243614A1 (zh)
EP (1) EP3860195A4 (zh)
CN (1) CN111107574B (zh)
WO (1) WO2020083333A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023015535A1 (zh) * 2021-08-12 2023-02-16 北京小米移动软件有限公司 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质
CN116628770B (zh) * 2023-07-19 2023-11-28 北京芯驰半导体科技有限公司 芯片的数据保护方法、装置、芯片、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105659687A (zh) * 2013-08-07 2016-06-08 交互数字专利控股公司 在上行链路/下行链路解耦情形中的低成本mtc设备的覆盖增强
CN107135473A (zh) * 2014-09-25 2017-09-05 株式会社Kt Mtc ue发送/接收信号的方法及其装置
CN107432042A (zh) * 2015-04-03 2017-12-01 高通股份有限公司 覆盖限制下的随机接入过程
US20180063722A1 (en) * 2015-04-07 2018-03-01 Lg Electronics Inc. Method and device for applying value on basis of coverage extension level
CN108684017A (zh) * 2013-08-27 2018-10-19 华为技术有限公司 一种数据传输方法、终端和基站

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4333506A3 (en) * 2014-03-19 2024-05-29 InterDigital Patent Holdings, Inc. Method and apparatus for system information block (sib) acquisition for wireless transmit/receive units (wtrus) in non-ce and coverage enhanced (ce) modes
WO2017061939A1 (en) * 2015-10-05 2017-04-13 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device, network node and methods performed therein

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105659687A (zh) * 2013-08-07 2016-06-08 交互数字专利控股公司 在上行链路/下行链路解耦情形中的低成本mtc设备的覆盖增强
CN108684017A (zh) * 2013-08-27 2018-10-19 华为技术有限公司 一种数据传输方法、终端和基站
CN107135473A (zh) * 2014-09-25 2017-09-05 株式会社Kt Mtc ue发送/接收信号的方法及其装置
CN107432042A (zh) * 2015-04-03 2017-12-01 高通股份有限公司 覆盖限制下的随机接入过程
US20180063722A1 (en) * 2015-04-07 2018-03-01 Lg Electronics Inc. Method and device for applying value on basis of coverage extension level

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CMCC: "DL and UL CE Level Non-corresponding Issue in NB-IoT", 3GPP TSG-RAN WG2 MEETING #100 R2-1713239, 1 December 2017 (2017-12-01), XP051372030 *
See also references of EP3860195A4

Also Published As

Publication number Publication date
EP3860195A1 (en) 2021-08-04
CN111107574A (zh) 2020-05-05
EP3860195A4 (en) 2021-12-08
US20210243614A1 (en) 2021-08-05
CN111107574B (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
EP3567966B1 (en) Semi-static scheduling method, network device and terminal device
EP2606617B1 (en) Transmission of reference signals
US20190335496A1 (en) Channel listening method and apparatus
WO2021012265A1 (zh) 用于传输数据的方法和终端设备
WO2018028271A1 (zh) 一种控制信息传输方法、设备以及通信系统
US11026195B2 (en) Communication method and device
WO2018126952A1 (zh) 通信方法、网络设备、及终端设备
CN109392135B (zh) 一种资源调度方法及装置
CN109392182B (zh) 一种信息发送、信息接收方法及装置
US10819397B2 (en) Information transmission method and related device
KR20200007038A (ko) 지시 정보 전송 방법, 지시 정보 수신 방법, 기기 및 시스템
CN113271683A (zh) 一种基于ue能力进行通信的方法和ue及网络侧设备
CN111867084A (zh) 一种prach资源配置和指示配置的方法、装置及设备
US20220167380A1 (en) Communication Method And Apparatus
CN108476491B (zh) 一种无线通信方法、设备及系统
US20210243614A1 (en) Communication method and apparatus
CN114375046A (zh) Pucch重复传输方法及相关装置
US20220104247A1 (en) Information transmission method, apparatus, device and storage medium
WO2023010288A1 (zh) 资源选择方法、装置和存储介质
CN108702691B (zh) 一种发送通信消息的方法和装置
CN115868135A (zh) 载波切换方法、装置、设备及存储介质
EP4176520A1 (en) Apparatus, method, and computer program
WO2021030996A1 (zh) 一种信道处理方法、终端设备及存储介质
WO2020248281A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023066381A1 (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19877199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019877199

Country of ref document: EP

Effective date: 20210429