WO2023131014A1 - 储能系统及储能系统的消防方法 - Google Patents

储能系统及储能系统的消防方法 Download PDF

Info

Publication number
WO2023131014A1
WO2023131014A1 PCT/CN2022/142519 CN2022142519W WO2023131014A1 WO 2023131014 A1 WO2023131014 A1 WO 2023131014A1 CN 2022142519 W CN2022142519 W CN 2022142519W WO 2023131014 A1 WO2023131014 A1 WO 2023131014A1
Authority
WO
WIPO (PCT)
Prior art keywords
fire
fighting
energy storage
temperature
component
Prior art date
Application number
PCT/CN2022/142519
Other languages
English (en)
French (fr)
Inventor
班超锋
黄芳宇
延昊南
王志辉
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22918455.1A priority Critical patent/EP4354591A1/en
Publication of WO2023131014A1 publication Critical patent/WO2023131014A1/zh
Priority to US18/410,642 priority patent/US20240154243A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C31/00Delivery of fire-extinguishing material
    • A62C31/02Nozzles specially adapted for fire-extinguishing
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/04Control of fire-fighting equipment with electrically-controlled release
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/36Control of fire-fighting equipment an actuating signal being generated by a sensor separate from an outlet device
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/36Control of fire-fighting equipment an actuating signal being generated by a sensor separate from an outlet device
    • A62C37/44Control of fire-fighting equipment an actuating signal being generated by a sensor separate from an outlet device only the sensor being in the danger zone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/02Means for indicating or recording specially adapted for thermometers
    • G01K1/026Means for indicating or recording specially adapted for thermometers arrangements for monitoring a plurality of temperatures, e.g. by multiplexing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/673Containers for storing liquids; Delivery conduits therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/08Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values
    • G01K3/14Thermometers giving results other than momentary value of temperature giving differences of values; giving differentiated values in respect of space
    • G01K2003/145Hotspot localization
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the application belongs to the technical field of energy storage, and in particular relates to an energy storage system and a fire-fighting method for the energy storage system.
  • the battery cell may be a new renewable energy utilization system, a battery system, and an existing power system combined with each other.
  • Embodiments of the present application provide an energy storage system and a fire-fighting method for the energy storage system, which can improve the fire-fighting capability of the energy storage system and improve safety.
  • the first aspect of the implementation of the present application provides an energy storage system, including:
  • a storage assembly for storing battery cells
  • the fireproof component includes a plate and a temperature-measuring optical fiber arranged on the plate, the plate is arranged opposite to the storage component, and the temperature-measuring optical fiber is used to sense the temperature of the battery cell to Send a fire signal when the temperature of the battery cell reaches the threshold;
  • the temperature measuring optical fiber is arranged on the side of the plate facing the storage component and extends along a bending path.
  • the ignition point can be accurately found, and it is convenient to accurately locate the fire point.
  • the storage system can respond more sensitively to the fire situation, and the fire prevention measures can be quickly Start up and deal with the fire.
  • the temperature measurement fiber can get more parts facing the storage components, and the temperature measurement progress and response speed can be improved.
  • the side of the plate facing the storage assembly is provided with a plurality of fixing pieces, and the multiple fixing pieces are used to bend and extend the temperature measuring optical fiber on the plate Provide support.
  • the temperature measuring optical fiber can be fixed on the plate, which is convenient for bending and extending the temperature measuring optical fiber.
  • the measurement accuracy of the temperature-measuring optical fiber can be improved, and the occurrence of missed measurements can be reduced.
  • the energy storage system further includes a fire-fighting assembly, and the fire-fighting assembly includes a sprinkler head, and the sprinkler head is set corresponding to the storage assembly, and is used to reduce the temperature of the battery cells. When the threshold is reached, a fire fighting fluid is sprayed onto the battery cells.
  • the corresponding battery cells can be targeted for fire-fighting, so that the fire can be controlled at the ignition point, and the fire can be effectively prevented from spreading.
  • the fire-fighting assembly further includes a fire-fighting tank for accommodating a fire-fighting liquid, and the fire-fighting tank is configured to receive a storage assembly containing a battery cell with an abnormal temperature, so that the battery cell Immersed in said fire fighting fluid.
  • the fire protection effect can be improved, and the safety of the energy storage system can be ensured.
  • the fire fighting tank includes a tank body and a moving assembly
  • the tank body is used to accommodate the fire fighting liquid
  • the moving assembly is connected to the tank body, and can move along the tank body Moving in the extension direction, the moving assembly is used to move the storage assembly containing the battery cells with abnormal temperature into the tank and immerse in the fire fighting liquid.
  • the tank body is provided with a temperature sensor for detecting the temperature of the fire fighting liquid.
  • the energy storage system further includes a stacking device, the stacking device can move relative to the energy storage assembly, and is used to pick up the energy storage assembly and place it on the Mobile components.
  • the fully automatic processing of the fire-fighting process can be realized, and the frequent entry of staff into the energy storage system when a fire occurs can be reduced, the personal safety of the staff is ensured, and the safety of the energy storage system is improved.
  • the energy storage system further includes a control component, the control component is electrically connected to the fire protection component, the fire protection component and the stacking device, and is used to receive the fire protection signal transmitted by the fire protection component , controlling the opening or closing of the corresponding sprinkler head, controlling the movement or stop of the moving assembly, and controlling the stacking device to pick up the corresponding energy storage assembly and place it in the moving assembly.
  • the control component is electrically connected to the fire protection component, the fire protection component and the stacking device, and is used to receive the fire protection signal transmitted by the fire protection component , controlling the opening or closing of the corresponding sprinkler head, controlling the movement or stop of the moving assembly, and controlling the stacking device to pick up the corresponding energy storage assembly and place it in the moving assembly.
  • the storage assembly includes a tray and a plurality of partitions, and the plurality of partitions are arranged on the tray to form a plurality of accommodation chambers, and the accommodation chambers are used to place the battery cells.
  • multiple battery cells can be integrated into the same storage component, which facilitates the storage of a large number of battery cells in the energy storage system.
  • the energy storage system further includes a frame body, and a plurality of the storage components and a plurality of fire protection components are accommodated in the frame body, and a plurality of the storage components and a plurality of the fire protection components corresponding settings.
  • the structure between the storage component and the fireproof component can be further optimized through the setting of the frame body, which facilitates erecting more storage components and fireproof components in a unit space, and facilitates the storage of a large number of battery cells in the energy storage system.
  • the second aspect of the embodiment of the present application provides a fire-fighting method for an energy storage system, including the following steps:
  • the temperature-measuring optical fiber senses the temperature of the battery cells stored in the storage component, so as to send a fire-fighting signal when the temperature of the battery cells reaches a threshold;
  • the temperature measuring optical fiber is installed on a board, and the board is arranged opposite to the storage assembly.
  • the fire-fighting work automation in the energy storage system can be realized.
  • the fire-fighting signal is received by the control component, and the step of the control component performing fire-fighting treatment on the battery cells in the storage component when receiving the fire-fighting signal includes:
  • the first fire-fighting signal is a signal sent by the temperature-measuring optical fiber when the temperature inside the battery cell sensed reaches a threshold value
  • the second fire-fighting signal is a signal received after spraying for fire-fighting of the fire-fighting trough.
  • the step of controlling the fire trough to carry out fire fighting includes:
  • the third fire-fighting signal is a temperature signal sent by a temperature sensor in the tank or a received stop signal of fire-fighting work.
  • the ignition point can be accurately found, which facilitates the precise location of the fire point.
  • the storage The response of the system to the fire is more sensitive, so that the fire-fighting measures can be started quickly and the fire can be dealt with.
  • the temperature-measuring optical fiber can obtain more parts facing the storage components and improve the temperature-measuring progress and response speed.
  • Fig. 1 is a schematic structural diagram of an embodiment of an energy storage system in the present application.
  • Fig. 2 is a schematic structural diagram of another embodiment of the energy storage system in this application.
  • Fig. 3 is a partially enlarged schematic view of the embodiment shown in Fig. 1 .
  • Fig. 4 is a schematic structural view of the fire protection assembly of the embodiment shown in Fig. 1 .
  • Fig. 5 is a schematic structural view of the fire trough of the embodiment shown in Fig. 2 .
  • Fig. 6 is a schematic structural view of the tank body of the embodiment shown in Fig. 2 .
  • Fig. 7 is a schematic structural view of the storage assembly of the embodiment shown in Fig. 1 .
  • Fig. 8 is a schematic flowchart of an embodiment of the fire fighting method in the present application.
  • Fig. 9 is a schematic flowchart of another embodiment of the fire fighting method in the present application.
  • Fig. 10 is a schematic flowchart of still another embodiment of the fire fighting method in the present application.
  • battery cells have been widely used in various fields, such as It is used in energy storage power systems such as hydropower, thermal power, wind power and solar power plants. Due to the characteristics of the battery cells themselves, there are potential safety hazards when they are used in a concentrated manner, and chain reactions are likely to occur, such as the collective spontaneous combustion of the battery cells. energy storage utilization.
  • energy storage utilization due to the characteristics of the battery cells themselves, there are potential safety hazards when they are used in a concentrated manner, and chain reactions are likely to occur, such as the collective spontaneous combustion of the battery cells.
  • energy storage utilization is used.
  • most of the existing energy storage systems use smoke sensor temperature detectors, and their structures are relatively complicated. In an energy storage system with a large number of battery cells, the application of smoke sensor temperature detectors requires the introduction of more complex and numerous circuits. The structure not only increases the difficulty of early construction, but also easily affects fire protection operations.
  • the applicant found that by optimizing the overall structure of the energy storage system and selecting a new temperature measurement method to achieve high detection accuracy and simplify the overall energy storage system
  • the purpose of the structure is to facilitate fire-fighting operations, reduce construction difficulty and erection costs, and have universal applicability.
  • the inventor of the present application has designed an energy storage system and a fire protection method for the energy storage system after in-depth research.
  • the battery cells may include lithium-ion secondary battery cells, lithium-ion primary battery cells, lithium-sulfur battery cells, sodium-lithium-ion battery cells, sodium-ion battery cells, or magnesium-ion battery cells, etc.
  • the embodiment of the present application does not limit this.
  • the battery cell may be in the form of a cylinder, a flat body, a cuboid or other shapes, which are not limited in this embodiment of the present application.
  • FIG. 1 is a schematic structural view of an embodiment of the present application
  • FIG. 2 is a schematic structural view of another embodiment of the present application
  • FIG. 3 is a partially enlarged schematic view of the embodiment shown in FIG. 1 .
  • an energy storage system including a storage component 1 and a fireproof component 2 , and the storage component 1 is used for storing battery cells 10 .
  • the fireproof component 2 includes a plate 21 and a temperature-measuring optical fiber 22 arranged on the plate 21.
  • the plate 21 is arranged opposite to the storage assembly 1.
  • the temperature-measuring optical fiber 22 is used to sense the temperature of the battery cell 10, so that the battery cell 10 A fire signal is sent when the temperature reaches the threshold.
  • the temperature measuring optical fiber 22 is arranged on the side of the plate 21 facing the storage assembly 1 and extends along a bending path.
  • the fireproof component 2 is disposed on one side of the storage component 1 in the thickness direction.
  • the plate 21 is arranged above the storage assembly 1 in the thickness direction, and the plate 21 is arranged parallel to the storage assembly 1 , and the temperature measuring optical fiber 22 is arranged on the bottom surface of the plate 21 .
  • the temperature-measuring optical fiber 22 extends on the board 21 in a wave-like path.
  • the temperature-measuring optical fiber 22 extends on the plate 21 in a closed loop path.
  • the ignition point can be accurately found, and it is convenient to accurately locate the fire point.
  • the storage system can be more sensitive to the fire response, so that the fire protection measures can be started quickly , and deal with the fire, thirdly, through the bending setting of the temperature measuring optical fiber 22, the temperature measuring optical fiber 22 can obtain more parts facing the storage component 1, and improve the temperature measuring progress and response speed.
  • Fig. 4 is a schematic structural view of the fire protection assembly 2 of the embodiment shown in Fig. 1 .
  • the side of the plate 21 facing the storage assembly 1 is provided with a plurality of fixing parts 23, and the plurality of fixing parts 23 are used for mounting the temperature measuring optical fiber 22 on the board. Bending extensions on the member 21 provide support.
  • one end of the fixing member 23 can be fixed on the plate 21 , and the other end is bent into a ring shape, and the temperature measuring optical fiber 22 is passed through the ring shape.
  • the fixing part 23 can be a pressing plate screwed to the plate 21 , and when the pressing plate moves to the side close to the plate 21 , the temperature measuring optical fiber 22 can be fixed on the plate 21 .
  • the extension trajectory of the temperature measuring optical fiber 22 can be flexibly adjusted according to the actual working conditions, so that the temperature measuring optical fiber 22 can be bent and extended.
  • two temperature-measuring optical fibers 22 may be arranged in parallel, and extend along a bending path on the board 21 .
  • multiple temperature measuring optical fibers 22 extend along the same bending path on the board 21 .
  • the measurement accuracy of the temperature measuring optical fibers 22 can be significantly improved, and the occurrence of missed measurements caused by the damage of the temperature measuring optical fibers 22 can be reduced.
  • FIG. 1 is a schematic structural view of an embodiment of the present application
  • FIG. 3 is a partially enlarged schematic view of the embodiment shown in FIG. 1 .
  • the energy storage system also includes a fire-fighting component 3.
  • the fire-fighting component 3 includes a sprinkler 31.
  • the sprinkler 31 is arranged corresponding to the storage component 1, and is used to spray fire-fighting liquid to the battery cell 10 when the temperature in the storage component 1 reaches a threshold value.
  • the shower head 31 may be disposed at the center of the plate 21 .
  • the fire-fighting assembly 3 may also include a fire-fighting pipeline. One end of the fire-fighting pipeline communicates with the sprinkler head 31 , and the other end communicates with the fire-fighting liquid source.
  • water can be used as the fire fighting liquid.
  • fire-fighting can be carried out on the corresponding battery cells 10 in a targeted manner, so that the fire can be controlled at the ignition point and the fire can be effectively prevented from spreading.
  • FIG. 2 is a schematic structural view of another embodiment of the present application
  • FIG. 5 is a schematic structural view of the fire tank 32 of the embodiment shown in FIG. 2 .
  • the fire-fighting assembly 3 further includes a fire-fighting tank 32 for containing fire-fighting liquid, and the fire-fighting tank 32 is configured to receive the storage assembly 1 containing the battery cells 10 with abnormal temperature, so that the battery cells 10 are immersed in the fire-fighting liquid.
  • the fire-fighting liquid in the fire-fighting tank 32 can be the same as the fire-fighting liquid in the fire-fighting pipeline, and the fire-fighting tank 32 can be connected with the fire-fighting pipeline.
  • the fire tank 32 may be a water tank capable of accommodating the storage assembly 1 .
  • the fire-fighting liquid is sprayed through the sprinkler head 31 at the placement position to cool down and eliminate visible open flames, which not only quickly reduces the fire at the placement position of the storage component 1 It also reduces the danger of the storage component 1 during transfer, and finally transfers the storage component 1 with abnormal temperature to the fire trough 32 to achieve complete fire extinguishing, significantly improve the fire protection effect, and ensure the safety of the energy storage system.
  • FIG. 5 is a schematic structural view of the fire tank 32 of the embodiment shown in FIG. 2
  • FIG. 6 is a structural schematic view of the tank body 321 of the embodiment shown in FIG. 2 .
  • the fire tank 32 includes a tank body 321 and a moving assembly 322.
  • the tank body 321 is used to accommodate the fire fighting liquid.
  • the moving assembly 322 is connected with the tank body 321 and can move along the extending direction of the tank body 321.
  • the moving assembly 322 is used to accommodate the temperature
  • the storage assembly 1 of the abnormal battery cell 10 moves into the tank body 321 and is immersed in the fire fighting liquid.
  • the moving assembly 322 may include a hydraulic moving rod 3221 and a placement table 3222. 3222 are connected, and can drive the placing table 3222 to move into the tank body 321.
  • the tank body 321 is arranged below the moving assembly 322 in the vertical direction, and the hydraulic moving rod 3221 can drive the placement table 3222 to reciprocate in the vertical direction, so that the placement table 3222 moves into the tank body 321 or moves out of the tank body 321 .
  • a liquid inlet pipe 326 and a liquid outlet pipe 325 may also be provided on the tank body 321, and the liquid inlet pipe 326 may be connected with a fire fighting liquid source.
  • a liquid level sensor 324 may also be provided on the tank body 321 , and the liquid sensor is used to sense the liquid level in the tank body 321 .
  • a starting position can also be set on the fire trough 32, which is the starting point for preventing the reciprocating movement of the platform.
  • an over-edge detector can be provided around the starting position, and the over-edge detector can be used to detect whether the storage assembly 1 to be fire-fighting is completely placed in the placement platform 3222 .
  • the hyperedge detector may use a laser position finder.
  • a through-shooting switch may also be provided at the starting position, and when the storage assembly 1 to be fire-fighting is placed in the placement table 3222, the through-shooting switch will pass through.
  • the liquid inlet pipe 326 is used to introduce the fire fighting liquid into the tank body 321
  • the liquid outlet pipe 325 is used to export the fire fighting liquid in the tank body 321 .
  • the liquid level sensor 324 it can be prevented that the fire fighting liquid in the tank body 321 is too little to immerse the storage assembly 1, or the fire fighting liquid in the tank body 321 is too much. The case of overflow in body 321 occurs.
  • the ultra-edge detector Through the setting of the ultra-edge detector, it can prevent the storage assembly 1 to be fire-fighting from protruding from the placement table 3222, causing the structure on the fire-fighting tank 32 to collide with the structure on the fire-fighting tank 32 when moving, causing secondary damage or causing secondary combustion, and can also facilitate the The fire-fighting storage unit can be completely submerged in the tank body 321 .
  • the shooting switch Through the setting of the shooting switch, it is convenient to wake up the fire chute 32, so that the fire chute 32 returns to the working state from the standby state, such as facilitating the super edge detector to enter the working state.
  • FIG. 6 is a schematic structural view of the tank body 321 in the embodiment shown in FIG. 2 . In some optional implementation manners, optionally, as shown in FIG. 6 .
  • the tank body 321 is provided with a temperature sensor 323 for detecting the temperature of the fire fighting liquid.
  • the temperature sensor 323 may be disposed on the inner wall of the tank body 321 and be in contact with the fire fighting liquid. Specifically, the temperature sensor 323 can transmit the temperature of the fire-fighting liquid in the tank body 321 to the control assembly 6 .
  • Automated immersion firefighting work can be realized, the contact time between workers and the battery cells 10 on fire can be reduced, and the safety of the energy storage system can be improved.
  • Fig. 2 is a schematic structural diagram of another embodiment of the present application. In some optional implementation manners, optionally, as shown in FIG. 2 .
  • the energy storage system also includes a stacking device 4 , the stacking device 4 can move relative to the energy storage assembly, and is used to pick up the energy storage assembly and place it on the moving assembly 322 .
  • a moving channel and a safety channel may be provided in the energy storage system, and the stacking device 4 can move along the moving channel and the safety channel. Specifically, when a fire occurs, the stacking device 4 can avoid a safe passage.
  • the setting of the avoidance mechanism can also reduce the obstacle effect of the stacking device 4 when a fire occurs, so that the staff can quickly leave the energy storage system or quickly reach the fire point.
  • Fig. 2 is a schematic structural diagram of another embodiment of the present application. In some optional implementation manners, optionally, as shown in FIG. 2 .
  • the energy storage system also includes a control component 6, which is electrically connected to the fire protection component 2, the fire protection component 3 and the stacking device 4, and is used to receive the fire protection signal transmitted by the fire protection component 2, and control the corresponding sprinkler head 31 to open or close, The movement or stop of the moving assembly 322 is controlled, and the stacking device 4 is controlled to pick up the corresponding energy storage assembly and place it in the moving assembly 322 .
  • control component 6 may be a processing terminal, a processor, and the like. Specifically, the control assembly 6 can control the stacking device 4 to avoid the safe passage.
  • the automatic control of the fire protection function in the energy storage system can be realized, the number of personnel deployed in the energy storage system can be reduced, and the safety of the energy storage system can be improved.
  • FIG. 7 is a schematic structural diagram of the storage assembly 1 of the embodiment shown in FIG. 1 .
  • the storage assembly 1 includes a tray 11 and a plurality of partitions 12 .
  • the plurality of partitions 12 are disposed on the tray 11 to form a plurality of accommodation chambers 13 for storing the battery cells 10 .
  • each accommodation chamber 13 is relatively independent, so as to prevent one of the battery cells from burning and rapidly ignite the surrounding battery cells.
  • FIG. 1 is a schematic structural view of an embodiment of the present application
  • FIG. 2 is a schematic structural view of another embodiment of the present application.
  • the energy storage system also includes a frame body 5, and multiple storage components 1 and fireproof components 2 are accommodated in the frame body 5, and multiple storage components 1 and multiple fireproof components 2 are arranged correspondingly.
  • multiple installation grooves can be arranged in array along the height direction and width direction on the frame body 5, the energy storage components are installed in the installation grooves, and the fireproof components 2 are installed in the installation grooves in the height direction of the frame body 5 on the top.
  • two frames 5 can be provided and arranged oppositely, and the stacking device 4 can move from between the two frames 5 and take out the energy storage assembly in the installation slot on the frame 5 .
  • the structure between the storage component 1 and the fireproof component 2 can be further optimized, so that more storage components 1 and fireproof components 2 can be erected in a unit space, and it is convenient to store a large number of battery cells 10 in the energy storage system. .
  • Fig. 8 is a schematic flowchart of an embodiment of the fire fighting method in the present application. In some optional implementation manners, optionally, as shown in FIG. 8 .
  • the embodiment of the present application also provides a fire-fighting method for an energy storage system, including the following steps:
  • the temperature measuring optical fiber 22 senses the temperature of the battery cell 10 stored in the storage component 1, and sends a fire signal when the temperature of the battery cell 10 reaches a threshold;
  • the temperature measuring optical fiber 22 is installed on the board 21 , and the board 21 is arranged opposite to the storage assembly 1 .
  • Fig. 9 is a schematic flowchart of another embodiment of the fire fighting method in the present application. In some optional implementation manners, optionally, as shown in FIG. 9 .
  • step S200 the fire-fighting signal is received by the control component 6, and when the control component 6 receives the fire-fighting signal, the steps of performing fire-fighting treatment on the battery cells 10 in the storage component 1 include:
  • the first fire-fighting signal is a signal sent by the temperature-measuring optical fiber 22 when the temperature in the battery cell 10 sensed reaches a threshold value
  • the second fire-fighting signal is a signal received after spraying to carry out fire-fighting of the fire-fighting tank 32, such as spraying After showering, the temperature measuring optical fiber 22 detects that the temperature reading of the battery cell 10 drops to a threshold or the spraying time reaches a time threshold.
  • Fig. 10 is a schematic flowchart of still another embodiment of the fire fighting method in the present application. In some optional implementation manners, optionally, as shown in FIG. 10 . S40.
  • the steps of controlling the fire-fighting tank 32 to carry out fire-fighting include:
  • the third fire-fighting signal is a temperature signal sent by the temperature sensor 323 in the tank body 321 or a fire-fighting stop signal received, for example, the temperature measured by the temperature sensor 323 is lower than the threshold or the immersion time reaches the time threshold.
  • the ignition point can be accurately found, which facilitates the precise location of the fire point.
  • the temperature measuring optical fiber 22 It can make the response of the storage system to the fire more sensitive, so that the fire-fighting measures can be started quickly, and the fire can be dealt with.
  • the temperature-measuring optical fiber 22 can obtain more protection against the storage component 1. Part, improve the temperature measurement progress and response speed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

一种储能系统及储能系统的消防方法,储能系统包括:储存组件(1),用于存储电池单体(10);防火组件(2),包括板件(21)及设置于板件(21)的测温光纤(22),板件(21)与储存组件(1)相对设置,测温光纤(22)用于感测电池单体(10)的温度,以在电池单体(10)的温度达到阈值时发送消防信号;其中,测温光纤(22)设置于板件(21)上面向储存组件(1)的一侧并沿弯折路径延伸。

Description

储能系统及储能系统的消防方法
相关申请的交叉引用
本申请要求享有于2022年1月4日提交的名称为“储能系统及储能系统的消防方法”的中国专利申请202210003582.3的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于储能技术领域,尤其涉及一种储能系统及储能系统的消防方法。
背景技术
随着自然资源的消耗及环境的破坏日益加重,各领域中对可以储存能量并有效地利用储存的能量的系统的兴趣增长。同样地,对在发电的过程中不引起或几乎不引起污染(例如,引起微少的污染)的新的可再生能量的兴趣增长。电池单体可以是彼此结合的利用新的可再生能量的系统、电池系统和现有的电力系统。
在电池单体的储能领域中应用时,安全问题也是一个不可忽视的问题。因此,如何增强电池单体在储能领域中应用的安全性,是储能领域中一个亟待解决的技术问题。
发明内容
本申请实施方式提供了一种储能系统及储能系统的消防方法,能够改善储能系统的消防能力,提高安全性。
本申请实施方式的第一方面,提供了一种储能系统,包括:
储存组件,用于存储电池单体;
防火组件,包括板件及设置于所述板件的测温光纤,所述板件与 所述储存组件相对设置,所述测温光纤用于感测所述电池单体的温度,以在所述电池单体的温度达到阈值时发送消防信号;
其中,所述测温光纤设置于所述板件上面向所述储存组件的一侧并沿弯折路径延伸。
采用上述结构,通过防火组件与储存组件的对应设置,能够精确的发现着火点,便于精确定位起火点,其次,通过使用测温光纤,能够使储存系统对火情的响应更灵敏,使消防措施迅速启动,并处理火情,其三,通过测温光纤的弯折设置,能够使测温光纤获得更多面向储存组件的部分,提高测温进度及响应速度。
在一些可选实施方式中,所述板件面向所述储存组件的一侧设有多个固定件,多个所述固定件用于为所述测温光纤在所述板件上弯折延伸提供支撑。
采用上述结构,能够使测温光纤固定于板件上,便于测温光纤弯折延伸。
在一些可选实施方式中,所述板件上设置的测温光纤可设置有多个。
采用上述结构,能够提升测温光纤的测量精度,减少漏测的情况发生。
在一些可选实施方式中,所述储能系统还包括消防组件,所述消防组件包括喷淋头,所述喷淋头与所述储存组件对应设置,用于在所述电池单体的温度达到所述阈值时,向所述电池单体喷射消防液体。
采用上述结构,能够根据防火组件所获得的精确信号,针对性的对相应电池单体进行消防灭火,使火情控制在起火点处,有效防止火情扩散。
在一些可选实施方式中,所述消防组件还包括消防槽,用于容纳消防液体,所述消防槽被配置为接收容纳有温度异常的电池单体的储存组件,以使所述电池单体浸没在所述消防液体内。
采用上述结构,能够提高消防效果,保证储能系统的安全性。
在一些可选实施方式中,所述消防槽包括槽体及移动组件,所述 槽体用于容纳所述消防液体,所述移动组件与所述槽体相连接,并能够沿所述槽体延伸方向移动,所述移动组件用于将容纳有温度异常的电池单体的储存组件移动至所述槽体内,并浸没在所述消防液体内。
在一些可选实施方式中,所述槽体设置有温度传感器,用于检测所述消防液体温度。
采用上述结构,能够实现自动化的浸没消防工作,减少工作人员与起火的电池单体的接触时间,提高储能系统的安全性。
在一些可选实施方式中,所述储能系统还还包括堆垛装置,所述堆垛装置能够相对于所述储能组件移动,用于拾取所述储能组件并将其放置于所述移动组件。
采用上述结构,能够实现消防过程的全自动化处理,减少工作人员在出现火情时频繁进入储能系统内,保证了工作人员的人身安全,提高储能系统的安全性。
在一些可选实施方式中,所述储能系统还包括控制组件,所述控制组件与所述防火组件、消防组件及堆垛装置电连接,用于接收所述防火组件传递的所述消防信号,控制对应的所述喷淋头开启或关闭,控制所述移动组件的移动或停止,控制所述堆垛装置拾取对应所述储能组件并放置于所述移动组件内。
采用上述结构,能够实现储能系统中的消防功能自动化控制,减少储能系统内配置的人员,提高储能系统的安全性。
在一些可选实施方式中,所述储存组件包括托盘及多个隔板,多个所述隔板设置于托盘上形成多个容纳室,所述容纳室用于放置所述电池单体。
采用上述结构,能够使多个电池单体集成与同一储存组件中,便于储能系统中存储大量电池单体。
在一些可选实施方式中,所述储能系统还包括架体,多个所述储存组件及多个防火组件均容纳于所述架体内,多个所述储存组件与多个所述防火组件对应设置。
采用上述结构,通过架体的设置,能够使储存组件及防火组件间 的架构进一步优化,便于在单位空间内架设更多的储存组件及防火组件,便于储能系统中存储大量电池单体。
本申请实施方式的第二方面,提供了一种储能系统的消防方法,包括以下步骤:
测温光纤感测存储于储存组件中的电池单体的温度,以在所述电池单体的温度达到阈值时发送消防信号;
接收到所述消防信号时对所述储存组件内的所述电池单体进行消防处理;
其中,所述测温光纤安装于板件,所述板件与所述储存组件相对设置。
采用上述方案,能够实现储能系统内的消防工作自动化。
在一些可选实施方式中,所述消防信号被控制组件接收,所述控制组件在接收到所述消防信号时对所述储存组件内的所述电池单体进行消防处理的步骤包括:
接收第一消防信号;
控制所述消防组件的喷淋头喷洒;
接收第二消防信号;
控制堆垛装置将对应的所述储存组件转移至所述消防组件的消防槽;
控制消防槽进行消防;
其中,所述第一消防信号为测温光纤在感测到的所述电池单体内温度达到阈值时发出的信号,所述第二消防信号为喷淋后接收到的进行消防槽消防的信号。
在一些可选实施方式中,所述控制消防槽进行消防步骤包括:
控制移动组件将储存组件在槽体内浸没;
接收第三消防信号;
控制移动组件将储存组件从槽体内移出;
其中,所述第三消防信号为槽体内温度传感器发出的温度信号或者接收到的消防工作停止信号。
采用上述方案,能够实现消防槽内的消防工作自动化。
与现有技术相比,本申请实施方式的储能系统中,通过防火组件与储存组件的对应设置,能够精确的发现着火点,便于精确定位起火点,其次,通过使用测温光纤,能够使储存系统对火情的响应更灵敏,使消防措施迅速启动,并处理火情,其三,通过测温光纤的弯折设置,能够使测温光纤获得更多面向储存组件的部分,提高测温进度及响应速度。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是本申请中储能系统一实施方式的结构示意图。
图2是本申请中储能系统另一实施方式的结构示意图。
图3是图1所示实施方式的局部放大示意图。
图4是图1所示实施方式的防火组件的结构示意图。
图5是图2所示实施方式的消防槽的结构示意图。
图6是图2所示实施方式的槽体的结构示意图。
图7是图1所示实施方式的储存组件的结构示意图。
图8是本申请中消防方法一实施方式的流程示意图。
图9是本申请中消防方法另一实施方式的流程示意图。
图10是本申请中消防方法再一实施方式的流程示意图。
附图中:
1、储存组件;11、托盘;12、隔板;13、容纳室;2、防火组件;21、板件;22、测温光纤;23、固定件;3、消防组件;31、喷淋头;32、消防槽;321、槽体;322、移动组件;3221、液压移动杆;3222、放置台;323、温度传感器;324、液位感测器;325、出液管;326、进液管;4、堆垛装置;5、架体;6、控制组件;10、电池单体。
在附图中,附图未必按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
目前,从市场形势的发展前景及应用趋势来看,由于电池单体具有能量密度高、功率密度高、循环使用次数多和存储时间长等优点,已经在多种领域中得到广泛的利用,如被应用于水力、火力、风力和太阳能电站等储能电源系统中。由于电池单体自身的特性,集中应用时出现安全隐患,易产生连锁反应,如电池单体集体自燃等,故目前本领域中储能系统多架设有专用的消防组件,以实现对电池单体的储能利用。但是目前,现有的储能系统中多采用烟感测温器,其结构较为复杂,在电池单体基数庞 大的储能系统中,应用烟感测温器需要引入更多复杂且众多的线路结构,不仅加重了前期施工的难度,还易对消防作业造成影响。
本申请发明人注意到,为了解决该问题,目前本领域中尝试采用片区检测的方式,具体为利用一烟感测温器检测储能系统中的一片区域,而在实际使用中,该方式不仅对控制系统的硬件具有较高要求,也会造成检测精度下降的问题。
为了缓解现有储能系统中的消防缺陷,申请人研究发现,可以通过优化储能系统的整体架构,并选择新型的测温方式来达到即获得较高检测精度,又精简了储能系统整体架构的目的,便于消防作业的进行,降低施工难度及架设成本,具有普遍适用性。
基于以上考虑,为了解决现有储能系统中的消防问题,本申请发明人经过深入研究,设计了一种储能系统及储能系统的消防方法。
本申请中,电池单体可以包括锂离子二次电池单体、锂离子一次电池单体、锂硫电池单体、钠锂离子电池单体、钠离子电池单体或镁离子电池单体等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此并不限定。
图1是本申请一实施方式的结构示意图,图2是本申请另一实施方式的结构示意图,图3是图1所示实施方式的局部放大示意图。在本申请一些实施方式中,如图1-图3所示,提供了一种储能系统,包括储存组件1及防火组件2,储存组件1用于存储电池单体10。防火组件2包括板件21及设置于板件21的测温光纤22,板件21与储存组件1相对设置,测温光纤22用于感测电池单体10的温度,以在电池单体10的温度达到阈值时发送消防信号。测温光纤22设置于板件21上面向储存组件1的一侧并沿弯折路径延伸。
参考图2及图3,不限地,防火组件2设置于储存组件1厚度方向的一侧。具体地,板件21设置于储存组件1厚度方向上的上方,且板件21与储存组件1平行设置,测温光纤22设置于板件21底面。不限地,测温光纤22在板件21上以波浪状路径延伸。不限地,测温光纤22在板件21上以闭合环状路径延伸。
通过防火组件2与储存组件1的对应设置,能够精确的发现着火点,便于精确定位起火点,其次,通过使用测温光纤22,能够使储存系统对火情的响应更灵敏,使消防措施迅速启动,并处理火情,其三,通过测温光纤22的弯折设置,能够使测温光纤22获得更多面向储存组件1的部分,提高测温进度及响应速度。
图4是图1所示实施方式的防火组件2的结构示意图。在一些可选实施方式中,可选地,如图4所示,板件21面向储存组件1的一侧设有多个固定件23,多个固定件23用于为测温光纤22在板件21上弯折延伸提供支撑。
参考图4,不限地,固定件23可以为一端固定于板件21上,另一端弯折成环状,测温光纤22穿设于环状内。不限地,固定件23可以为与板件21螺纹连接的压合板,压合板向靠近板件21一侧移动时,能够将测温光纤22固定在板件21上。
通过固定件23的设置,能够使测温光纤22的延伸轨迹根据实际工作时的情况,进行灵活调整,便于测温光纤22弯折延伸。
在一些可选实施方式中,可选地。板件21上设置的测温光纤22可设置有多个。
不限地,测温光纤22可并行设置有两条,在板件21上沿弯折路径延伸。不限地,多个测温光纤22在板件21上沿相同的弯折路径延伸。
通过多个测温光纤22的设置,能够显著提高测温光纤22的测量精度,降低由于测温光纤22损坏导致的漏测情况发生。
图1是本申请一实施方式的结构示意图,图3是图1所示实施方式的局部放大示意图。在一些可选实施方式中,可选地,如图1及图3所示。储能系统还包括消防组件3,消防组件3包括喷淋头31,喷淋头31与储存组件1对应设置,用于储存组件1内的温度达到阈值时,向电池单体10喷射消防液体。
不限地,喷淋头31可设置于板件21的中心位置。不限地,消防组件3还可包括消防管路,消防管路的一端与喷淋头31相连通,另一端与消防液体源相连通。不限地,消防液体可采用水。
通过消防组件3的设置,能够根据防火组件2所获得的精确信号,针对性的对相应电池单体10进行消防灭火,使火情控制在起火点处,有效防止火情扩散。
图2是本申请另一实施方式的结构示意图,图5是图2所示实施方式的消防槽32的结构示意图。在一些可选实施方式中,可选地,如图2及图5所示。消防组件3还包括消防槽32,用于容纳消防液体,消防槽32被配置为接收容纳有温度异常的电池单体10的储存组件1,以使电池单体10浸没在消防液体内。
不限地,消防槽32内的消防液体可与消防管路中的消防液体相同,消防槽32可与消防管路相连通。不限地,消防槽32可采用能够容纳储存组件1的水槽。
通过消防水槽的设置,能够在储能系统中实现两级消防,先通过放置位置的喷淋头31喷洒消防液体使其降温,并消灭可见的明火,不仅快速降低储存组件1放置位置处的起火隐患,还降低了储存组件1在转移时的危险性,最后将温度异常的储存组件1转移至消防槽32内,实现完全灭火,显著提高消防效果,保证储能系统的安全性。
图5是图2所示实施方式的消防槽32的结构示意图,图6是图2所示实施方式的槽体321的结构示意图。在一些可选实施方式中,可选地,如图5及图6所示。消防槽32包括槽体321及移动组件322,槽体321用于容纳消防液体,移动组件322与槽体321相连接,并能够沿槽体321延伸方向移动,移动组件322用于将容纳有温度异常的电池单体10的储存组件1移动至槽体321内,并浸没在消防液体内。
参考图5、6,不限地,移动组件322可包括液压移动杆3221及放置台3222,放置台3222用于容纳有温度异常的电池单体10的储存组件1,液压移动杆3221与放置台3222相连接,能够带动放置台3222移动至槽体321内。具体地,槽体321设置在移动组件322竖直方向的下方,液压移动杆3221能够带动放置台3222沿竖直方向往复运动,使放置台3222移动至槽体321内或从槽体321内移出。不限地,槽体321上还可设置有进液管326及出液管325,进液管326可与消防液体源相连通。不限地, 槽体321上还可设置有液位感测器324,液体感测器用于感测槽体321内的液面高度。不限地,消防槽32上还可设置有起始位,起始位为防止台往复运动的起始点,待消防的储存组件1在放置台3222处于起始位时,放置于放置台3222内。具体地,起始位周侧可设置超边检测器,超边检测器能够用于检测待消防的储存组件1是否被完全放置于放置台3222内。不限地,超边检测器可采用激光测位器。具体地,起始位处还可设置有对射开关,将待消防的储存组件1放置到放置台3222中时,经过对射开关。
通过移动组件322的设置,能够实现自动化的浸没消防工作,减少工作人员与起火的电池单体10的接触时间,提高储能系统的安全性。通过进液管326及出液管325的设置,进液管326用于向槽体321内导入消防液体,出液管325用于将槽体321内的消防液体导出。通过液位感测器324的设置,能够防止出现槽体321内的消防液体过少无法浸没储存组件1,或者槽体321内的消防液体过多,在浸没储存组件1时,消防液体从槽体321内溢出的情况发生。通过超边检测器的设置,能够防止由于待消防储存组件1从放置台3222内伸出,导致移动时与消防槽32上的结构碰撞,造成二次损害或者引起二次燃烧,也能够便于待消防的储存组价能够完全浸没于槽体321内。通过对射开关的设置,能够便于唤醒消防槽32,使消防槽32从待机状态回复到工作状态,如便于超边检测器进入工作状态。
图6是图2所示实施方式的槽体321的结构示意图。在一些可选实施方式中,可选地,如图6所示。槽体321设置有温度传感器323,用于检测消防液体温度。
参考图6,不限地,温度传感器323可设置在槽体321内壁上,并与消防液体相接触。具体地,温度传感器323能够向控制组件6传输槽体321内消防液体的温度。
能够实现自动化的浸没消防工作,减少工作人员与起火的电池单体10的接触时间,提高储能系统的安全性。
图2是本申请另一实施方式的结构示意图。在一些可选实施方式中,可选地,如图2所示。储能系统还还包括堆垛装置4,堆垛装置4能够相对于储能组件移动,用于拾取储能组件并将其放置于移动组件322。
不限地,储能系统内可设有移动通道及安全通道,堆垛装置4能够沿移动通道安全通道移动。具体地,当出现火情时,堆垛装置4能够避让安全通道。
通过堆垛装置4的设置,能够实现消防过程的全自动化处理,减少工作人员在出现火情时频繁进入储能系统内,保证了工作人员的人身安全,提高储能系统的安全性。通过避让机制的设置,也能够使出现火情时,减少堆垛装置4的障碍作用,使工作人员快速从储能系统中离开,或者快速到达起火点。
图2是本申请另一实施方式的结构示意图。在一些可选实施方式中,可选地,如图2所示。储能系统还包括控制组件6,控制组件6与防火组件2、消防组件3及堆垛装置4电连接,用于接收防火组件2传递的消防信号,控制对应的喷淋头31开启或关闭,控制移动组件322的移动或停止,控制堆垛装置4拾取对应储能组件并放置于移动组件322内。
其中,不限地,控制组件6可以为处理终端、处理器等。具体地,控制组件6能够控制堆垛装置4避让安全通道。
通过控制组件6的设置,能够实现储能系统中的消防功能自动化控制,减少储能系统内配置的人员,提高储能系统的安全性。
图7是图1所示实施方式的储存组件1的结构示意图。在一些可选实施方式中,可选地,如图7所示。储存组件1包括托盘11及多个隔板12,多个隔板12设置于托盘11上形成多个容纳室13,容纳室13用于放置电池单体10。
通过托盘11及隔板12的设置,能够使多个电池单体10集成与同一储存组件1中,便于储能系统中存储大量电池单体10,且多个隔板12能够将托盘11分隔,使各个容纳室13相对独立,避免其中一个电池单元燃烧,迅速引燃周围的电池单元。
图1是本申请一实施方式的结构示意图,图2是本申请另一实施方式的结构示意图。在一些可选实施方式中,可选地,如图1及图2所示。储能系统还包括架体5,多个储存组件1及防火组件2均容纳于架体5内,多个储存组件1与多个防火组件2对应设置。
参考图2,不限地,架体5上可沿高度方向及其宽度方向阵列设置有多个安装槽,储能组件安装在安装槽内,防火组件2安装在安装槽内架体5高度方向上的顶端。不限地,架体5可设置有多个。具体地,架体5可设置有两个,且相对设置,堆垛装置4可从两个架体5中间移动,并取出架体5上安装槽内的储能组件。
通过架体5的设置,能够使储存组件1及防火组件2间的架构进一步优化,便于在单位空间内架设更多的储存组件1及防火组件2,便于储能系统中存储大量电池单体10。
图8是本申请中消防方法一实施方式的流程示意图。在一些可选实施方式中,可选地,如图8所示。本申请实施方式还提供了一种储能系统的消防方法,包括以下步骤:
S100.感测,测温光纤22感测存储于储存组件1中的电池单体10的温度,在电池单体10的温度达到阈值时发送消防信号;
S200.消防处理,接收到消防信号时对储存组件1内的电池单体10进行消防处理;
其中,测温光纤22安装于板件21,板件21与储存组件1相对设置。
图9是本申请中消防方法另一实施方式的流程示意图。在一些可选实施方式中,可选地,如图9所示。步骤S200中消防信号被控制组件6接收,控制组件6在接收到消防信号时对储存组件1内的电池单体10进行消防处理的步骤包括:
S10.接收第一消防信号;
S20.喷淋,控制消防组件3的喷淋头31喷洒;
S30.接收第二消防信号;
S40.转移,控制堆垛装置4将对应的储存组件1转移至消防组件3的消防槽32;
S50.控制消防槽32进行消防;
其中,第一消防信号为测温光纤22在感测到的电池单体10内温度达到阈值时发出的信号,第二消防信号为喷淋后接收到的进行消防槽32 消防的信号,如喷淋后,测温光纤22测得电池单体10温读降低至阈值或者喷淋时间达到时间阈值。
图10是本申请中消防方法再一实施方式的流程示意图。在一些可选实施方式中,可选地,如图10所示。S40.控制消防槽32进行消防步骤包括:
S1.浸没,控制移动组件322将储存组件1在槽体321内浸没;
S2.接收第三消防信号;
S3.移出,控制移动组件322将储存组件1从槽体321内移出;
其中,第三消防信号为槽体321内温度传感器323发出的温度信号或者接收到的消防工作停止信号,如温度传感器323测得的温度低于阈值或者浸没时间达到时间阈值。
与现有技术相比,本申请实施方式的储能系统中,通过防火组件2与储存组件1的对应设置,能够精确的发现着火点,便于精确定位起火点,其次,通过使用测温光纤22,能够使储存系统对火情的响应更灵敏,使消防措施迅速启动,并处理火情,其三,通过测温光纤22的弯折设置,能够使测温光纤22获得更多面向储存组件1的部分,提高测温进度及响应速度。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件,尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (14)

  1. 一种储能系统,包括:
    储存组件(1),用于存储电池单体(10);
    防火组件(2),包括板件(21)及设置于所述板件(21)的测温光纤(22),所述板件(21)与所述储存组件(1)相对设置,所述测温光纤(22)用于感测所述电池单体(10)的温度,以在所述电池单体(10)的温度达到阈值时发送消防信号;
    其中,所述测温光纤(22)设置于所述板件(21)面向所述储存组件(1)的一侧并沿弯折路径延伸。
  2. 根据权利要求1所述的储能系统,其中,所述板件(21)面向所述储存组件(1)的一侧设有多个固定件(23),多个所述固定件(23)用于为所述测温光纤(22)在所述板件(21)上弯折延伸提供支撑。
  3. 根据权利要求2所述的储能系统,其中,所述板件(21)设置有多个所述测温光纤(21)。
  4. 根据权利要求1-3任一项所述的储能系统,其中,还包括消防组件(3),所述消防组件(3)包括喷淋头(31),所述喷淋头(31)与所述储存组件(1)对应设置,用于在所述电池单体(10)的温度达到所述阈值时,向所述电池单体(10)喷射消防液体。
  5. 根据权利要求4所述的储能系统,其中,所述消防组件(3)还包括消防槽(32),用于容纳消防液体,所述消防槽(32)被配置为接收容纳有温度异常的电池单体的储存组件(1),以使所述电池单体(10)浸没在所述消防液体内。
  6. 根据权利要求5所述的储能系统,其中,所述消防槽(32)包括槽体(321)及移动组件(322),所述槽体(321)用于容纳所述消防液体,所述移动组件(322)与所述槽体(321)相连接,并能够沿所述槽体 (321)延伸方向移动,所述移动组件(322)用于将容纳有温度异常的电池单体(10)的储存组件(1)移动至所述槽体(321)内,并浸没在所述消防液体内。
  7. 根据权利要求6所述的储能系统,其中,所述槽体(321)设置有温度传感器(323),用于检测所述消防液体温度。
  8. 根据权利要求7所述的储能系统,其中,还包括堆垛装置(4),所述堆垛装置(4)能够相对于所述储能组件(1)移动,用于拾取所述储能组件(1)并将其放置于所述移动组件(322)。
  9. 根据权利要求8所述的储能系统,其中,还包括控制组件,所述控制组件与所述防火组件(2)、消防组件(3)及堆垛装置(4)电连接,用于接收所述防火组件(2)传递的所述消防信号,控制对应的所述喷淋头(31)开启或关闭,控制所述移动组件(322)的移动或停止,控制所述堆垛装置(4)拾取对应所述储能组件(1)并放置于所述移动组件(322)内。
  10. 根据权利要求1-9任一项所述的储能系统,其中,所述储存组件(1)包括托盘(11)及多个隔板(12),多个所述隔板(12)设置于托盘(11)上形成多个容纳室(13),所述容纳室(13)用于放置所述电池单体(10)。
  11. 根据权利要求1-10任一项所述的储能系统,其中,还包括架体(5),多个所述储存组件(1)及多个防火组件(2)均容纳于所述架体(5)内,多个所述储存组件(1)与多个所述防火组件(2)对应设置。
  12. 一种储能系统的消防方法,包括:
    测温光纤(22)感测存储于储存组件(1)中的电池单体(10)的温度,以在所述电池单体(10)的温度达到阈值时发送消防信号;
    接收到所述消防信号时对所述储存组件(1)内的所述电池单体(10) 进行消防处理;
    其中,所述测温光纤(22)安装于板件(21),所述板件(21)与所述储存组件(1)相对设置。
  13. 根据权利要求12所述的消防方法,其中,所述消防信号被控制组件接收,所述控制组件在接收到所述消防信号时对所述储存组件(1)内的所述电池单体(10)进行消防处理的步骤包括:
    接收第一消防信号;
    控制所述消防组件(3)的喷淋头喷洒;
    接收第二消防信号;
    控制堆垛装置(4)将对应的所述储存组件(1)转移至所述消防组件(3)的消防槽(32);
    控制消防槽(32)进行消防;
    其中,所述第一消防信号为测温光纤(22)在感测到的所述电池单体(10)内温度达到阈值时发出的信号,所述第二消防信号为喷淋后接收到的进行消防槽(32)消防的信号。
  14. 根据权利要求13所述的消防方法,其中,所述控制消防槽(32)进行消防步骤包括:
    控制移动组件(322)将储存组件(1)在槽体(321)内浸没;
    接收第三消防信号;
    控制移动组件(322)将储存组件(1)从槽体(321)内移出;
    其中,所述第三消防信号为槽体(321)内温度传感器发出的温度信号或者接收到的消防工作停止信号。
PCT/CN2022/142519 2022-01-04 2022-12-27 储能系统及储能系统的消防方法 WO2023131014A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22918455.1A EP4354591A1 (en) 2022-01-04 2022-12-27 Energy storage system and fire protection method for energy storage system
US18/410,642 US20240154243A1 (en) 2022-01-04 2024-01-11 Energy storage system and fire protection method for energy storage system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210003582.3A CN116435629A (zh) 2022-01-04 2022-01-04 储能系统及储能系统的消防方法
CN202210003582.3 2022-01-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/410,642 Continuation US20240154243A1 (en) 2022-01-04 2024-01-11 Energy storage system and fire protection method for energy storage system

Publications (1)

Publication Number Publication Date
WO2023131014A1 true WO2023131014A1 (zh) 2023-07-13

Family

ID=87073117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142519 WO2023131014A1 (zh) 2022-01-04 2022-12-27 储能系统及储能系统的消防方法

Country Status (4)

Country Link
US (1) US20240154243A1 (zh)
EP (1) EP4354591A1 (zh)
CN (1) CN116435629A (zh)
WO (1) WO2023131014A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117728100B (zh) * 2024-02-08 2024-05-03 武汉理工大学 一种基于光纤传感的电池监测结构及装配方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276426A (ja) * 1996-04-16 1997-10-28 Hochiki Corp 倉庫用固定式消火設備
CN207323916U (zh) * 2017-09-30 2018-05-08 中航锂电(江苏)有限公司 一种大型立体库新型自动化灭火系统
CN207379631U (zh) * 2017-11-17 2018-05-18 深圳伊讯科技有限公司 一种电动汽车充换电站测温系统
CN109308784A (zh) * 2017-07-27 2019-02-05 上海电巴新能源科技有限公司 充电架、充电异常判断方法、换电站及储能站
CN109883569A (zh) * 2019-02-13 2019-06-14 辽宁达能电气股份有限公司 基于分布式光纤测温的锂电池仓储温度监测系统
CN210521585U (zh) * 2019-05-16 2020-05-15 上海蔚来汽车有限公司 用于充换电站的消防系统及包括该系统的充换电站
CN217086826U (zh) * 2021-11-25 2022-07-29 中建科技集团有限公司 锂电池模组、动力电池包及电池仓

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276426A (ja) * 1996-04-16 1997-10-28 Hochiki Corp 倉庫用固定式消火設備
CN109308784A (zh) * 2017-07-27 2019-02-05 上海电巴新能源科技有限公司 充电架、充电异常判断方法、换电站及储能站
CN207323916U (zh) * 2017-09-30 2018-05-08 中航锂电(江苏)有限公司 一种大型立体库新型自动化灭火系统
CN207379631U (zh) * 2017-11-17 2018-05-18 深圳伊讯科技有限公司 一种电动汽车充换电站测温系统
CN109883569A (zh) * 2019-02-13 2019-06-14 辽宁达能电气股份有限公司 基于分布式光纤测温的锂电池仓储温度监测系统
CN210521585U (zh) * 2019-05-16 2020-05-15 上海蔚来汽车有限公司 用于充换电站的消防系统及包括该系统的充换电站
CN217086826U (zh) * 2021-11-25 2022-07-29 中建科技集团有限公司 锂电池模组、动力电池包及电池仓

Also Published As

Publication number Publication date
CN116435629A (zh) 2023-07-14
EP4354591A1 (en) 2024-04-17
US20240154243A1 (en) 2024-05-09

Similar Documents

Publication Publication Date Title
WO2023131014A1 (zh) 储能系统及储能系统的消防方法
CN104001297B (zh) 一种自带自动报警及灭火系统的锂离子电池消防试验柜
JP7233597B2 (ja) 消火ユニットを含むバッテリーパック
KR20200118280A (ko) Ess 소화 시스템
CN206192964U (zh) 一种动力锂电池火灾灭火试验装置
CN209446740U (zh) 一种电池生产用具有灭火功能的防爆性能检测装置
CN109283468A (zh) 一种电池生产用具有灭火功能的防爆性能检测装置
CN106338255B (zh) 一种应用于水库坝体监测系统的基准点检测器
CN210403943U (zh) 一种化成仓及化成柜
CN111084954B (zh) 一种基于大数据技术的消防在线监控系统
CN216773451U (zh) 一种消防隔离储能系统
KR102432910B1 (ko) Ess 자동 소화 시스템
WO2024002383A1 (zh) 浸没式储能电池热管理系统及消防控制方法
WO2023093233A1 (zh) 储能装置
WO2022000279A1 (zh) 一种灭火系统、服务器、消防机器人和灭火方法
KR102241956B1 (ko) 화재 확산 방지 포메이션 장비 시스템
US20220052393A1 (en) Novel lithium ion batteries and battery modules
CN108767945A (zh) 安全充电柜
WO2024066209A1 (zh) 检测装置
CN210182525U (zh) 液态全浸式锂电池热管理实验平台
CN116111234A (zh) 一种浸没式安全储能电池
CN113413563B (zh) 一种智能化集成式气体灭火装置
CN114404859A (zh) 一种锂电池灭火剂的制备方法及锂电池灭火测试装置
CN112684357A (zh) 一种电池模组过充过放安全性检测系统及方法
CN110161412A (zh) 一种集装箱式锂离子电池储能系统用热失控特征分析系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22918455

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022918455

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022918455

Country of ref document: EP

Effective date: 20240109