WO2022000279A1 - 一种灭火系统、服务器、消防机器人和灭火方法 - Google Patents

一种灭火系统、服务器、消防机器人和灭火方法 Download PDF

Info

Publication number
WO2022000279A1
WO2022000279A1 PCT/CN2020/099332 CN2020099332W WO2022000279A1 WO 2022000279 A1 WO2022000279 A1 WO 2022000279A1 CN 2020099332 W CN2020099332 W CN 2020099332W WO 2022000279 A1 WO2022000279 A1 WO 2022000279A1
Authority
WO
WIPO (PCT)
Prior art keywords
fire
extinguishing
source
fire source
camera
Prior art date
Application number
PCT/CN2020/099332
Other languages
English (en)
French (fr)
Inventor
李长龙
仇文庆
于琪
Original Assignee
西门子股份公司
西门子(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子股份公司, 西门子(中国)有限公司 filed Critical 西门子股份公司
Priority to PCT/CN2020/099332 priority Critical patent/WO2022000279A1/zh
Priority to CN202080101467.9A priority patent/CN115666738A/zh
Priority to EP20943530.4A priority patent/EP4154946A4/en
Publication of WO2022000279A1 publication Critical patent/WO2022000279A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C27/00Fire-fighting land vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/12Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions
    • G08B17/125Actuation by presence of radiation or particles, e.g. of infrared radiation or of ions by using a video camera to detect fire or smoke

Definitions

  • the present invention relates to the technical field of robots, in particular to a fire extinguishing system, a server, a fire fighting robot and a fire extinguishing method.
  • the automatic fire extinguishing system usually has the function of fire source detection, fire source location function and fire extinguishing function.
  • the fire source detection function is used to detect the occurrence of fire; the fire source location function is used to calculate the specific location of the fire source; the fire extinguishing function is used to extinguish the fire.
  • Firefighting robots are increasingly being used in the field of firefighting. How to use fire-fighting robots in automatic fire-extinguishing systems is a research hotspot.
  • the first method uses a fire monitor with infrared laser fire detection that is fixed to a high point (such as a high wall or column) and can automatically detect and extinguish fires.
  • the second method is to place the fire monitor on the inspection robot, which continuously inspects the entire workplace in a prescribed path. If there is a fire, the fire monitor on the patrol robot will put it out.
  • fire monitors usually have a limited range (e.g. only 30 to 50 meters), and one monitor can only cover a small area, so in large environments more monitors need to be deployed, which results in huge cost.
  • the disadvantage of the second method is that the inspection robot needs to move continuously, and the power is often insufficient.
  • the inspection robot is charging, there is a time window during which it cannot perform firefighting work, which brings security risks.
  • the embodiments of the present invention provide a fire extinguishing system, a server, a fire fighting robot and a fire extinguishing method.
  • a fire extinguishing system comprising:
  • a fire source detection device arranged at a fixed position in the monitoring area, is used to detect the fire source in the monitoring area;
  • the server is configured to determine the position of the fire source based on the detection parameters provided by the fire source detection device, determine the fire-extinguishing position of the fire-fighting robot based on the fire-source position, and send a first robot control command including the fire-extinguishing position;
  • a fire-fighting robot configured to move to the fire-extinguishing position based on the first robot control command, and perform fire-extinguishing operations for the fire source.
  • the embodiment of the present invention no longer adopts the fixedly deployed fire monitor, which reduces the cost and improves the fire extinguishing efficiency.
  • the fire-fighting robot of the embodiment of the present invention does not need to move continuously, which saves the power consumption of the fire-fighting robot, avoids the time window during which fire-fighting work cannot be performed, and improves fire-fighting safety.
  • the fire source detection device includes:
  • a camera arranged on the adjustable pan/tilt, for detecting fire sources
  • a distance sensor arranged on the adjustable pan/tilt or camera, for detecting the distance from the fire source
  • a communication module configured to send the detection parameter, wherein the detection parameter includes at least one of the following:
  • the embodiment of the present invention also proposes a specific structure of the fire source detection device, which is convenient for implementation. Moreover, the detection parameters are convenient to determine the location of the fire source and the scope of the fire field.
  • the server is configured to receive a two-dimensional navigation map of the surveillance area from the fire fighting robot, and determine the coordinates of the fire source in the two-dimensional navigation map based on the distance, the pitch angle of the camera and the yaw angle of the camera (x, y); where:
  • x is the abscissa of the fire source in the two-dimensional navigation map
  • y is the ordinate of the fire source in the two-dimensional navigation map
  • X is the abscissa of the fire source detection device in the two-dimensional navigation map
  • Y is the fire source detection
  • D is the distance
  • is the pitch angle
  • is the yaw angle.
  • the embodiments of the present invention can conveniently determine the position of the fire source based on the distance, the pitch angle of the camera and the yaw angle of the camera, the calculation process is simple, and the fire source can be quickly located.
  • the server is configured to determine the fire field range in the two-dimensional navigation map based on the fire field picture, and determine the fire-extinguishing position based on the fire field range, the maximum fire-extinguishing distance of the fire-fighting robot and the position of the fire source, wherein the fire-extinguishing position Not located in the fire field range, and the distance between the fire extinguishing position and the fire source position is not greater than the maximum fire extinguishing distance of the fire fighting robot.
  • the embodiment of the present invention can also determine the fire field range in the two-dimensional navigation map based on the fire field picture, and determine the safe and effective fire extinguishing distance based on the fire field range and the maximum fire extinguishing distance of the fire fighting robot, which not only ensures the fire fighting effect, but also improves the fire fighting robot. security.
  • a server that includes:
  • a communication module for receiving detection parameters from the fire source detection device
  • a fire source position determination module configured to determine the fire source position based on the detection parameters
  • a fire-extinguishing position determination module configured to determine the fire-extinguishing position of the fire-fighting robot based on the fire source position
  • a sending module configured to send a first robot control command including the fire-extinguishing position to the fire-fighting robot, so that the fire-fighting robot moves to the fire-extinguishing position based on the first robot control command, and executes fire-extinguishing for the fire source;
  • the fire source detection device is arranged at a fixed position in the monitoring area, and is used to detect the fire source in the monitoring area.
  • the embodiment of the present invention provides a server for fire extinguishing operation, which reduces the cost and improves the fire extinguishing efficiency.
  • the embodiment of the present invention saves the power loss of the fire-fighting robot, and also avoids a time window during which fire-fighting work cannot be performed, thereby improving fire-fighting safety.
  • the fire source detection device includes: an adjustable pan/tilt; a camera, arranged on the adjustable pan/tilt, for detecting a fire source; a distance sensor, arranged on the adjustable pan/tilt or the camera The upper part is used to detect the distance from the fire source; the communication module is used to send the detection parameters, wherein the detection parameters include at least one of the following: the distance; the pitch angle of the camera; the yaw angle of the camera; the fire field picture;
  • the fire source position determination module is used to receive the two-dimensional navigation map of the monitoring area from the fire-fighting robot, and determines the coordinates of the fire source in the two-dimensional navigation map based on the distance, the pitch angle of the camera and the yaw angle of the camera ( x, y); where:
  • x is the abscissa of the fire source in the two-dimensional navigation map
  • y is the ordinate of the fire source in the two-dimensional navigation map
  • X is the abscissa of the fire source detection device in the two-dimensional navigation map
  • Y is the fire source detection
  • D is the distance
  • is the pitch angle
  • is the yaw angle.
  • the server of the embodiment of the present invention can conveniently determine the position of the fire source based on the distance, the pitch angle of the camera, and the yaw angle of the camera, the calculation process is simple, and the fire source can be quickly located.
  • a fire-extinguishing position determination module is configured to determine the fire-field range in the two-dimensional navigation map based on the fire-field picture, and determine the fire-extinguishing position based on the fire-field range, the maximum fire-extinguishing distance of the fire-fighting robot and the fire source position, wherein all The fire-extinguishing position is not located in the fire field range, and the distance between the fire-extinguishing position and the fire source position is not greater than the maximum fire-extinguishing distance of the fire-fighting robot.
  • the server in the embodiment of the present invention can also determine the fire field range in the two-dimensional navigation map based on the fire field picture, and determine the safe and effective fire extinguishing distance based on the fire field range and the maximum fire extinguishing distance of the fire fighting robot, which not only ensures the fire fighting effect, but also improves the Safety of firefighting robots.
  • a fire fighting robot comprising:
  • a communication module for receiving, from the server, a first robot control command including the fire fighting position of the fire fighting robot
  • a moving module for moving to the fire-extinguishing position based on the first robot control command
  • a fire extinguishing module for performing fire extinguishing for the fire source
  • the server determines the fire source position based on detection parameters provided by a fire source detection device arranged at a fixed position in the monitoring area for detecting a fire source in the monitoring area, and determines the fire extinguishing position based on the fire source position.
  • the embodiment of the present invention provides a fire fighting robot, which reduces the cost and improves the fire extinguishing efficiency.
  • the embodiment of the present invention saves the power loss of the fire-fighting robot, and also avoids a time window during which fire-fighting work cannot be performed, thereby improving fire-fighting safety.
  • the fire source detection device includes: an adjustable pan/tilt; a camera, arranged on the adjustable pan/tilt, for detecting a fire source; a distance sensor, arranged on the adjustable pan/tilt or the camera, for detecting and the fire source a communication module for sending the detection parameters, wherein the detection parameters include at least one of the following: the distance; the pitch angle of the camera; the yaw angle of the camera; the picture of the fire scene;
  • the communication module is also used to send the two-dimensional navigation map of the monitoring area determined based on the automatic navigation method to the server, so that the server determines the location of the fire source based on the distance, the pitch angle of the camera and the yaw angle of the camera.
  • the coordinates (x, y) in the two-dimensional navigation map where:
  • x is the abscissa of the fire source in the two-dimensional navigation map
  • y is the ordinate of the fire source in the two-dimensional navigation map
  • X is the abscissa of the fire source detection device in the two-dimensional navigation map
  • Y is the fire source detection
  • D is the distance
  • is the pitch angle
  • is the yaw angle.
  • the fire fighting robot in the embodiment of the present invention can provide the server with a two-dimensional navigation map of the monitoring area, so that the server can conveniently determine the location of the fire source. Moreover, the fire fighting robot according to the embodiment of the present invention does not need to move continuously, thereby saving the power consumption of the fire fighting robot and improving the safety of the fire fighting robot.
  • a method of extinguishing fire comprising:
  • a first robot control command including the fire extinguishing position is sent, whereby a fire fighting robot moves to the fire extinguishing position based on the first robot control command and performs a fire extinguishing operation for the fire source.
  • the embodiment of the present invention no longer adopts the fixedly deployed fire monitor, which reduces the cost and improves the fire extinguishing efficiency.
  • the fire-fighting robot of the embodiment of the present invention does not need to move continuously, which saves the power consumption of the fire-fighting robot, avoids the time window during which fire-fighting work cannot be performed, and improves fire-fighting safety.
  • the fire source detection device includes: an adjustable pan/tilt; a camera, arranged on the adjustable pan/tilt, for detecting a fire source; a distance sensor, arranged on the adjustable pan/tilt or the camera The upper part is used to detect the distance from the fire source; the communication module is used to send the detection parameters, wherein the detection parameters include at least one of the following: the distance; the pitch angle of the camera; the yaw angle of the camera; the fire field picture;
  • the determining of the fire source position based on the detection parameters provided by the fire source detection device includes:
  • x is the abscissa of the fire source in the two-dimensional navigation map
  • y is the ordinate of the fire source in the two-dimensional navigation map
  • X is the abscissa of the fire source detection device in the two-dimensional navigation map
  • Y is the fire source detection
  • D is the distance
  • is the pitch angle
  • is the yaw angle.
  • the embodiments of the present invention can conveniently determine the position of the fire source based on the distance, the pitch angle of the camera, and the yaw angle of the camera, the calculation process is simple, and the fire source can be quickly located.
  • the determining of the fire fighting position of the fire fighting robot based on the fire source position includes:
  • the fire-extinguishing position is determined based on the fire-field range, the maximum fire-extinguishing distance of the fire-fighting robot and the fire source position, wherein the fire-extinguishing position is not located in the fire field range, and the distance between the fire-extinguishing position and the fire source position is not greater than The maximum fire-extinguishing distance of the fire-fighting robot.
  • the embodiment of the present invention can also determine the fire field range in the two-dimensional navigation map based on the fire field picture, and determine the safe and effective fire extinguishing distance based on the fire field range and the maximum fire fighting distance of the fire fighting robot, which not only ensures the fire fighting effect, but also improves the fire fighting effect. Robot safety.
  • the moving of the fire fighting robot to the fire extinguishing position based on the first robot control command comprises: the fire fighting robot in the charging mode is moved from the charging position to the fire fighting position based on the first robot control command ; the method also includes:
  • a second robot control command instructing the fire fighting robot to move to the charging position is sent, so that the fire fighting robot moves to the charging position and enters a charging mode based on the second robot control command.
  • the fire-fighting robot in the embodiment of the present invention does not need to move continuously and stays in the charging position for a long time, which saves the power consumption of the fire-fighting robot, avoids the time window during which fire-fighting work cannot be performed, and improves fire-fighting safety.
  • a server comprising a processor, a memory, and a computer program stored on the memory and executable on the processor, the computer program being executed by the processor to implement the fire extinguishing method according to any one of the above .
  • an embodiment of the present invention also provides a server with a memory-processor architecture, including a computer program for implementing the above fire fighting method.
  • a computer-readable storage medium stores a computer program on the computer-readable storage medium, and when the computer program is executed by a processor, implements the fire extinguishing method according to any one of the above.
  • a computer-readable storage medium including a computer program for implementing the above fire-extinguishing method is also provided.
  • FIG. 1 is a structural block diagram of a fire extinguishing system according to an embodiment of the present invention.
  • FIG. 2 is an exemplary structural block diagram of a fire extinguishing system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of calculating a fire source position and a fire extinguishing position according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a fire extinguishing method according to an embodiment of the present invention.
  • FIG. 5 is an exemplary flowchart of a fire extinguishing method according to an embodiment of the present invention.
  • FIG. 6 is an exemplary structural block diagram of a server having a memory-processor architecture according to an embodiment of the present invention.
  • Fire extinguishing system 20
  • Fire source detection device 30
  • server 40
  • fire robot twenty one camera twenty two distance sensor twenty three
  • Adjustable gimbal twenty four
  • Communication module 31
  • Communication module 32
  • Fire source location determination module 33
  • Extinguishing Location Determination Module 34
  • sending module 41
  • Communication module 42
  • mobile module 43
  • Fire extinguishing module 44 charging location 45 safety circle 400
  • Fire fighting methods 401 ⁇ 404 step 500 ⁇ 511 step 600 server 601 processor 602 memory
  • a robot is a mechanical device that can perform work automatically. It can accept human command, run pre-programmed programs, and act according to principles and programs formulated with artificial intelligence technology. As a kind of robot, fire-fighting robot plays an increasingly important role in fire fighting and emergency rescue. Fire-fighting robots can replace fire-fighting personnel to enter the scene of dangerous disasters such as flammable, explosive, toxic, oxygen-deficient, and thick smoke to carry out fire-fighting work.
  • the embodiment of the present invention provides a fire extinguishing system for controlling a fire fighting robot to perform fire extinguishing work.
  • FIG. 1 is a structural block diagram of a fire extinguishing system according to an embodiment of the present invention.
  • the fire extinguishing system 10 includes:
  • a fire source detection device arranged at a fixed position in the surveillance area, for detecting a fire source in the surveillance area
  • the server 30 is configured to determine the fire source position based on the detection parameters provided by the fire source detection device 20, determine the fire extinguishing position of the fire fighting robot 40 based on the fire source position, and send a first robot control command including the fire extinguishing position;
  • the fire fighting robot 40 is configured to move to a fire extinguishing position based on the first robot control command, and perform fire extinguishing operations for the fire source.
  • the fire fighting robot 40 has an automatic navigation module (not shown in FIG. 1 ).
  • the automatic navigation module of the fire fighting robot 40 realizes the automatic navigation of the fire fighting robot 40 in the monitoring area (eg, garage, factory building, warehouse, etc.), and draws the two-dimensional navigation of the monitoring area map.
  • the fire fighting robot 40 transmits the two-dimensional navigation map to the server 30 based on the wired interface or the wireless interface with the server 30 .
  • the server 30 may obtain the two-dimensional navigation map of the surveillance area from other sources (eg, a dedicated navigation map server).
  • the automatic navigation module can be implemented as a visual navigation (Visual SLAM) module.
  • Visual SLAM is a technology based on computer vision. Its principle is to capture images of the surrounding environment through a visual camera, and then calculate the position and direction of the surrounding environment, that is, to construct a map of the unknown environment, so as to realize the automatic navigation of fire-fighting robots.
  • the fire source detection device 20 which is arranged at a fixed position in the monitoring area (such as on a high wall or a column), continuously detects the fire source in the monitoring area.
  • the fire source detection device 20 can be implemented as a camera (such as an infrared camera or an infrared thermal sensor) including an adjustable pan-tilt and ranging functions (such as laser ranging, ultrasonic ranging, etc.). camera). By adjusting the pan/tilt, the camera can scan the surveillance area in a full range. Cameras monitor the temperature in the monitored area to determine if there is a fire source. When there is a fire source, the fire source detection device 20 determines the distance to the fire source based on the ranging function. Since the camera judges the fire by detecting the temperature, it can also detect the dark fire in the surveillance area. Usually, the maximum detection range of both the camera and the ranging function is more than 300 meters, so it can cover a large surveillance area.
  • the server 30 may be arranged in the surveillance area, in the surrounding area of the surveillance area, or in the cloud.
  • the server 30 communicates with the fire source detection device 20 and with the fire fighting robot 40 through a wired interface or a wireless interface.
  • the wired interface includes at least one of the following: a universal serial bus interface, a controller area network interface, a serial port, etc.;
  • the wireless interface includes at least one of the following: an infrared interface, a near field communication interface, a Bluetooth interface, a ZigBee interface, a wireless interface Broadband interface, third-generation mobile communication interface, fourth-generation mobile communication interface, fifth-generation mobile communication interface, and so on.
  • the server 30 controls the pan/tilt of the fire source detection device 20 so that the camera of the fire source detection device 20 scans the entire monitoring area regularly.
  • the server 30 reads the pitch angle, yaw angle and fire source distance of the fire source detection device 20 at this time, and calculates the coordinates of the fire source in the two-dimensional navigation map.
  • the server comprehensively considers the safety and fire extinguishing efficiency of the fire fighting robot 40, calculates the fire fighting position of the fire fighting robot 40 based on the coordinates of the fire source, and sends a first robot control command including the fire fighting position to the fire fighting robot.
  • the fire fighting robot 40 Normally, the fire fighting robot 40 is charged at the charging point and stands by, waiting for a control command from the server 30 . After the fire fighting robot 40 receives the first robot control command sent by the server 30, the fire fighting robot moves to the extinguishing position and extinguishes the fire. After the fire fighting is completed, the fire fighting robot 40 returns to the charging point and charges and stands by again.
  • the fire fighting robot 40 includes: a movable platform; a liquid storage bucket, which is installed on the movable platform and is adapted to store fire-fighting media; a bracket, which is installed on the movable platform and has N degrees of freedom, where N is It is a positive integer of at least 2; the nozzle, fixed on the bracket, is adapted to spray the fire-fighting medium in the liquid storage tank to achieve fire-extinguishing.
  • FIG. 2 is an exemplary structural block diagram of a fire extinguishing system according to an embodiment of the present invention.
  • the fire source detection device 20 is arranged at a fixed position in the monitoring area for detecting a fire source in the monitoring area.
  • the fire source detection device 20 includes:
  • the adjustable head 23 for example, can be moved left and right/up and down;
  • a camera 21 for example, an infrared thermal imaging camera, arranged on the adjustable pan/tilt 23 for detecting fire sources;
  • a distance sensor 22 for example, a laser ranging sensor, arranged on the adjustable pan/tilt 23 or the camera 21, for detecting the distance from the fire source;
  • the communication module 24 is used to send detection parameters to the server 30 when the camera 21 detects the fire source, wherein the detection parameters include at least one of the following: the distance from the fire source detected by the distance sensor 22; the camera 21 The pitch angle of the camera 21 ; the yaw angle of the camera 21 ; the picture of the fire scene captured by the camera 21 , and so on.
  • the server 30 may be arranged in the surveillance area, in the surrounding area of the surveillance area, or in the cloud.
  • the server 30 includes:
  • the communication module 31 for receiving detection parameters from the communication module 24 of the fire source detection device 20;
  • the fire source position determination module 32 is used for determining the fire source position based on the detection parameter
  • the fire-extinguishing position determination module 33 is used to determine the fire-extinguishing position of the fire-fighting robot 40 based on the fire source position;
  • the sending module 34 is used to send the first robot control command including the fire extinguishing position to the fire fighting robot 40, so that the fire fighting robot 40 moves to the fire fighting position based on the first robot control command, and executes fire extinguishing for the fire source.
  • the fire fighting robot 40 may be arranged in the surveillance area, or in a peripheral area of the surveillance area. Preferably, the fire fighting robot 40 is arranged at the charging position.
  • the fire fighting robot 40 includes:
  • the communication module 41 for receiving the first robot control command including the fire extinguishing position of the fire fighting robot 40 from the server 30;
  • a moving module 42 used for moving to the fire-extinguishing position based on the first robot control command
  • the fire extinguishing module 43 is used to perform fire extinguishing for the fire source.
  • the parameter setting process of the fire extinguishing system includes: (a): the fire fighting robot 40 uses the automatic navigation function to scan the entire monitoring area to draw a two-dimensional navigation map of the monitoring area. (b): Record the coordinate points of the camera 21 in the two-dimensional navigation map. (c): Record the maximum extinguishing distance (ie, maximum range) of the fire fighting robot 40 . Then, the above-mentioned parameters are input into the server 30 .
  • an automatic navigation module is embedded in the mobile module 42 of the fire fighting robot 40 .
  • the automatic navigation module is used to realize the automatic navigation of the fire fighting robot 40 in the monitoring area, and draw a two-dimensional navigation map of the monitoring area.
  • the communication module 41 of the fire fighting robot 40 sends the two-dimensional navigation map to the communication module 31 of the server 30 .
  • the server 30 can make the camera 21 of the fire source detection device 20 scan the entire monitoring area regularly.
  • the distance sensor 22 detects the distance to the fire source.
  • the communication module 31 of the server 30 reads the pitch angle, yaw angle and the distance detected by the distance sensor 22 of the camera 21 when the camera 21 detects a fire.
  • the fire source position determination module 32 of the server 30 calculates that the fire source is at two Coordinates in a dimensional navigation map.
  • the fire fighting position determination module 33 of the server 30 comprehensively considers the safety and fire fighting efficiency of the fire fighting robot 40, calculates the fire fighting position of the fire fighting robot 40, and sends the first robot control command including the fire fighting position to the communication module 41 of the fire fighting robot 40.
  • the fire source position determination module 32 is configured to receive a two-dimensional navigation map of the monitoring area from the fire fighting robot 40, and determine the two-dimensional navigation of the fire source based on the distance, the pitch angle of the camera 21 and the yaw angle of the camera 21 coordinates (x, y) in the map;
  • x is the abscissa of the fire source in the two-dimensional navigation map
  • y is the ordinate of the fire source in the two-dimensional navigation map
  • X is the abscissa of the fire source detection device 20 in the two-dimensional navigation map
  • Y is the fire source
  • D is the distance between the camera 21 and the fire source
  • is the pitch angle of the camera 21
  • is the yaw angle of the camera 21 .
  • the camera 21 of the fire source detection device 20 when the camera 21 of the fire source detection device 20 detects an open flame, the camera 21 takes a picture of the fire scene. Furthermore, the communication module 24 of the fire source detection device 20 transmits the photo of the fire scene to the communication module 31 of the server 30 .
  • the fire-extinguishing position determination module 33 of the server 30 is configured to determine the fire field range in the two-dimensional navigation map based on the fire field picture, and determine the fire-extinguishing position based on the fire field range, the maximum fire-extinguishing distance of the fire-fighting robot 40 and the fire source position, wherein the fire-extinguishing position is not located in the fire field range , and the distance between the fire-extinguishing position and the fire source position is not greater than the maximum fire-extinguishing distance of the fire-fighting robot 40 .
  • the fire-extinguishing position determined by the embodiment of the present invention is not located in the fire field range, so as to ensure the safety of the fire-fighting robot 40 .
  • the distance between the fire-extinguishing position and the fire source position is not greater than the maximum fire-extinguishing distance of the fire-fighting robot 40, thereby ensuring that the fire-fighting robot 40 can directly extinguish the fire.
  • the fire-extinguishing position determination module 33 of the server 30 is configured to determine the fire-extinguishing position based on the maximum fire-extinguishing distance of the fire-fighting robot 40 and the fire source position, wherein the fire-extinguishing position is sufficiently close to the fire source position (for example, between the fire-extinguishing position and the fire source position) The distance is less than or equal to a predetermined value, and the predetermined value is less than the maximum fire extinguishing distance).
  • the distance between the fire extinguishing position determined by the embodiment of the present invention and the fire source position is close enough to ensure that the fire fighting robot 40 can directly extinguish fire with high efficiency.
  • FIG. 3 is a schematic diagram of calculating a fire source position and a fire extinguishing position according to an embodiment of the present invention.
  • the main functions of the server 30 include:
  • the main function of the server 30 is to calculate the coordinate points of the fire source from the two-dimensional navigation map automatically navigated by the fire fighting robot 40 .
  • the pan/tilt in the fire source detection device 20 provides the server 30 with the pitch angle and yaw angle of the camera 21 when the camera in the fire source detection device 20 finds the fire source, which are assumed to be ⁇ and ⁇ respectively.
  • the distance sensor in the fire source detection device 20 provides the server 30 with the distance between the camera and the fire source, which is assumed to be D meters.
  • the server 30 has learned the coordinate points (X, Y) of the camera in the two-dimensional navigation map.
  • the server 30 determines the coordinates (x, y) of the fire source in the two-dimensional navigation map; wherein:
  • x is the abscissa of the fire source in the two-dimensional navigation map
  • y is the ordinate of the fire source in the two-dimensional navigation map
  • X is the abscissa of the fire source detection device in the two-dimensional navigation map
  • Y is the fire source detection
  • D is the distance from the camera to the fire source determined by the distance sensor
  • is the pitch angle of the camera
  • is the yaw angle of the camera
  • d is the two-dimensional navigation map.
  • ⁇ x is the difference between X and x;
  • ⁇ y is the difference between Y and y.
  • the server 30 can calculate the safety circle 45 of the fire-fighting robot according to the maximum range of the fire-fighting robot and the picture of the fire scene obtained from the camera.
  • the fire-extinguishing position needs to be located outside the safety circle 45 to ensure the safety of the robot.
  • the safety circle 45 may be implemented as a peripheral outline of a fire field range determined based on a fire field picture or a circle containing the fire field range.
  • the fire-extinguishing position is not located in the safety circle 45 to ensure the safety of the robot, and the distance between the fire-extinguishing position and the fire source position is not greater than the maximum fire-extinguishing distance of the fire-fighting robot 40, thereby ensuring the fire-fighting effectiveness.
  • the fire fighting robot 40 is usually charged and on standby at the charging position 44 waiting for a control command from the server 30 . After the fire fighting robot 40 receives the first robot control command sent by the server 30, the fire fighting robot 40 moves to the extinguishing position and extinguishes the fire. After the fire fighting is completed, the fire fighting robot 40 returns to the charging position 44 and recharges and stands by.
  • the following is an example to describe a typical example of calculating the fire source location and the fire extinguishing location according to the embodiment of the present invention.
  • the coordinate point of the camera on the two-dimensional navigation map is (100, 200).
  • the fire robot has a maximum gun range of 40 meters.
  • the yaw angle ⁇ 60 degrees.
  • the distance D reported by the ranging sensor to the server 30 is 100 meters.
  • the server 30 can calculate the coordinates of the fire source:
  • the radius of the safety circle calculated by the server 30 is 20 meters, which can protect the safety of the robot and extinguish the fire as much as possible.
  • the best position given by the server to put out a fire is (75, 176.7).
  • the server 30 sends the fire fighting command including the optimal position (75, 176.7) to the fire fighting robot 40.
  • the fire fighting robot 40 After the fire fighting robot 40 receives the request, it will move to the coordinates (75, 176.7) and start extinguishing the fire.
  • the fire fighting robot 40 sends a response to the server 30, and then the fire fighting robot 40 returns to the charging area.
  • the server 30 enters the loop again.
  • an embodiment of the present invention also provides a fire extinguishing method.
  • FIG. 4 is a flowchart of a fire extinguishing method according to an embodiment of the present invention.
  • the method includes:
  • Step 401 Enable the fire source detection device arranged at a fixed position of the monitoring area to detect the fire source in the monitoring area.
  • Step 402 Determine the location of the fire source based on the detection parameters provided by the fire source detection device.
  • Step 403 Determine the fire extinguishing position of the fire fighting robot based on the fire source position.
  • Step 404 Send a first robot control command including a fire extinguishing position, so that the fire fighting robot moves to the fire extinguishing position based on the first robot control command and performs a fire extinguishing operation for the fire source.
  • the fire source detection device includes: an adjustable pan/tilt; a camera, arranged on the adjustable pan/tilt, for detecting a fire source; a distance sensor, arranged on the adjustable pan/tilt or the camera, used to detect the distance from the fire source; a communication module, used to send the detection parameter, wherein the detection parameter includes at least one of the following: the distance; the pitch angle of the camera; the yaw angle of the camera; the picture of the fire scene;
  • determining the location of the fire source based on the detection parameters provided by the fire source detection device includes: receiving a two-dimensional navigation map of the monitoring area from the fire-fighting robot; determining the location of the fire source based on the distance, the pitch angle of the camera and the yaw angle of the camera.
  • determining the fire-extinguishing position of the fire-fighting robot based on the fire source position in step 403 includes:
  • FIG. 5 is an exemplary flowchart of a fire extinguishing method according to an embodiment of the present invention.
  • the fire fighting robot 40 is located in the charging area by default and waits for a request from the server 30 .
  • the server 30 controls the pan/tilt so that the camera periodically scans the entire surveillance area.
  • the server 30 obtains the fire alarm report from the camera, then: (1): move the pan/tilt so that the fire source is located in the center of the image of the camera; 2), read the distance between the fire source and the laser; (3), read from the pan/tilt The pitch angle and yaw angle of the camera; (4) Calculate the coordinate points of the fire source in the two-dimensional navigation map; (5) Calculate the safety circle of the fire-fighting robot 40, and determine the fire extinguishing coincident with the safety circle or outside the safety circle (6), send a fire extinguishing request with a fire extinguishing position to the fire fighting robot 40; (7), wait for the response from the fire fighting robot 40; (8), enter the loop again after receiving the response from the fire fighting robot 40.
  • the fire fighting robot 40 After receiving the fire extinguishing request from the server 30, the fire fighting robot 40 moves to the fire extinguishing position and extinguishes the fire. After extinguishing the fire, the fire fighting robot 40 sends a completion response to the server 30, and returns to the charging area to charge again.
  • the fire extinguishing method includes:
  • Step 500 the fire fighting robot 40 stands by at the charging position, waiting for a command issued by the server 30 .
  • Step 501 The server 30 sends a pan/tilt control instruction to the fire source detection device 20 , where the pan/tilt control instruction is used to control the pan/tilt in the fire source detection device 20 to move periodically.
  • Step 502 the pan/tilt in the fire source detection device 20 executes the pan/tilt control instruction, so that the camera in the fire source detection device 20 arranged on the pan/tilt periodically scans the entire monitoring area.
  • Step 503 The camera in the fire source detection device 20 finds the fire source based on the temperature detection, and sends an alarm message to the server 30 .
  • Step 504 The server 30 sends a pan/tilt control instruction to the fire source detection device 20, where the pan/tilt control instruction is used to move the pan/tilt so that the fire source is located at the center of the image captured by the camera.
  • Step 505 The server 30 reads the distance between the camera and the fire source obtained by the ranging sensor arranged on the pan/tilt.
  • Step 506 The server 30 reads the pitch angle and yaw angle of the camera from the gimbal.
  • Step 507 The server 30 calculates the coordinates of the fire source in the two-dimensional navigation map based on the distance between the camera and the fire source, the pitch angle and yaw angle of the camera, and the coordinates of the fire source detection device 20 in the two-dimensional navigation map. .
  • Step 508 The server 30 calculates the safety circle of the fire fighting robot 40 , determines the fire extinguishing position that is coincident with the safety circle or outside the safety circle, and sends a movement instruction including the fire fighting position to the fire fighting robot 40 .
  • Step 509 The fire fighting robot 40 moves to the fire fighting distance and performs fire fighting work.
  • Step 510 the server 30 starts the next cycle and returns to step 500 .
  • an embodiment of the present invention also proposes a server having a memory-processor architecture.
  • FIG. 6 is an exemplary structural block diagram of a server having a memory-processor architecture according to an embodiment of the present invention.
  • the server 600 includes a processor 601, a memory 602, and a computer program stored on the memory 602 and executable on the processor 601, the computer program being executed by the processor 601 to implement any of the above The described fire extinguishing method.
  • the memory 602 can be specifically implemented as various storage media such as Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash Memory (Flash memory), Programmable Program Read-Only Memory (PROM).
  • the processor 601 may be implemented to include one or more central processing units or one or more field programmable gate arrays, wherein the field programmable gate arrays integrate one or more central processing unit cores.
  • the central processing unit or the central processing unit core may be implemented as a CPU or an MCU or a DSP or the like.
  • the embodiment of the present invention no longer adopts the fixedly deployed fire monitor, which reduces the cost and improves the fire extinguishing efficiency.
  • the embodiment of the present invention saves the power consumption of the fire fighting robot and improves the safety of the fire fighting robot.
  • the embodiment of the present invention can ensure that fire monitoring is not interrupted, and the fire fighting robot has enough energy to put out the fire when a fire occurs, so as to provide a safe area for the fire fighting robot to put out fire.
  • the hardware modules in various embodiments may be implemented mechanically or electronically.
  • a hardware module may include specially designed permanent circuits or logic devices (eg, special purpose processors, such as FPGAs or ASICs) for performing specific operations.
  • Hardware modules may also include programmable logic devices or circuits (eg, including general-purpose processors or other programmable processors) temporarily configured by software for performing particular operations.
  • programmable logic devices or circuits eg, including general-purpose processors or other programmable processors
  • the present invention also provides a machine-readable storage medium storing instructions for causing a machine to perform the method as described herein.
  • a system or device equipped with a storage medium on which software program codes for realizing the functions of any one of the above-described embodiments are stored, and make the computer (or CPU or MPU of the system or device) ) to read and execute the program code stored in the storage medium.
  • a part or all of the actual operation can also be completed by an operating system or the like operating on the computer based on the instructions of the program code.
  • the program code read from the storage medium can also be written into the memory provided in the expansion board inserted into the computer or into the memory provided in the expansion unit connected to the computer, and then the instructions based on the program code make the device installed in the computer.
  • the CPU on the expansion board or the expansion unit or the like performs part and all of the actual operations, so as to realize the functions of any one of the above-mentioned embodiments.
  • Embodiments of storage media for providing program code include floppy disks, hard disks, magneto-optical disks, optical disks (eg, CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, DVD+RW), Magnetic tapes, non-volatile memory cards and ROMs.
  • the program code may be downloaded from a server computer or cloud over a communications network.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Alarm Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)

Abstract

一种灭火系统(10)、服务器(30)、消防机器人(40)和灭火方法(400)。火源检测装置(20),布置在监视区域的固定位置处,用于检测监视区域中的火源;服务器(30),用于基于火源检测装置(20)提供的检测参数确定火源位置,基于火源位置确定消防机器人(40)的灭火位置,发送包含灭火位置的第一机器人控制命令;消防机器人(40),用于基于第一机器人控制命令移动到灭火位置,并针对火源执行灭火操作,不再采用固定部署的消防炮,降低了成本,提高了灭火效率,节约了消防机器人的电力损耗,并且提高了消防机器人的安全性。

Description

一种灭火系统、服务器、消防机器人和灭火方法 技术领域
本发明涉及机器人技术领域,特别是涉及一种灭火系统、服务器、消防机器人和灭火方法。
背景技术
当发生火灾时,越早发现并扑灭火灾,就越安全。为了在车库、工厂大楼等无人值守的操作环境中发现并扑灭火灾,可以部署自动灭火系统。自动灭火系统通常具有火源检测功能、火源定位功能和灭火功能。火源检测功能用于检测着火状况的发生;火源定位功能用于计算火源的具体位置;灭火功能用于灭火。
消防机器人在消防领域越来越多地被使用。如何在自动灭火系统中使用消防机器人是一个研究热点。目前,主要有两种方法建立自动灭火系统。第一种方法使用具有红外激光火灾探测功能的消防炮,该消防炮固定到高点(例如高墙或立柱)上,可以自动探测并扑灭火灾。第二种方法是将消防炮放置在巡检机器人上,巡检机器人持续地以规定的路径检查整个工作场所。如果发生火灾,巡检机器人上的消防炮将扑灭它。
第一种方法的缺点是:消防炮的射程通常有限(比如只有30至50米),一门消防炮只能覆盖一小块区域,因此在大型环境中需要部署更多的消防炮,这导致了巨大的成本。第二种方法的缺点是:巡检机器人需要持续移动,电力经常不足。而且,当巡检机器人充电时,存在无法执行消防工作的时间窗口,从而带来安全隐患。
发明内容
本发明实施方式提出一种灭火系统、服务器、消防机器人和灭火方法。
本发明实施方式的技术方案如下:
一种灭火系统,包括:
火源检测装置,布置在监视区域的固定位置处,用于检测监视区域中的火源;
服务器,用于基于火源检测装置提供的检测参数确定火源位置,基于所述火源位置确定消防机器人的灭火位置,发送包含所述灭火位置的第一机器人控制命令;
消防机器人,用于基于所述第一机器人控制命令移动到所述灭火位置,并针对所述火源执行灭火操作。
可见,本发明实施方式不再采用固定部署的消防炮,降低了成本,提高了灭火效率。另外,本发明实施方式的消防机器人无需持续移动,节约了消防机器人的电力损耗,还避免了无法执行消防工作的时间窗口,提高了消防安全性。
在一个实施方式中,所述火源检测装置包括:
可调节云台;
摄像头,布置在所述可调节云台上,用于检测火源;
距离传感器,布置在所述可调节云台或摄像头上,用于检测与火源的距离;
通信模块,用于发送所述检测参数,其中所述检测参数包含下列中的至少一个:
所述距离;摄像头的俯仰角((pitch angle);摄像头的偏航角(yaw angle);火场图片。
因此,本发明实施方式还提出了火源检测装置的具体结构,便于实施。而且,检测参数便于确定火源位置和火场范围。
在一个实施方式中,服务器,用于从消防机器人接收监视区域的二维导航地图,基于所述距离、摄像头的俯仰角和摄像头的偏航角确定火源在所述二维导航地图中的坐标(x,y);其中:
x=X–D*sin(α)*cos(β);
y=Y–D*sin(α)*sin(β);
其中x为火源在二维导航地图中的横坐标;y为火源在二维导航地图中的纵坐标;X为火源检测装置在二维导航地图中的横坐标;Y为火源检测装置在二维导航地图中的纵坐标;D为所述距离;α为所述俯仰角;β为所述偏航角。
可见,本发明实施方式可以基于距离、摄像头的俯仰角和摄像头的偏航角方便地确定火源位置,计算过程简便,可以快速定位出火源。
在一个实施方式中,服务器,用于基于火场图片确定二维导航地图中的火场范围,基于所述火场范围、消防机器人的最大灭火距离和火源位置确定所述灭火位置,其中所述灭火位置不位于所述火场范围中,且所述灭火位置与所述火源位置的距离不大于所述消防机器人的最大灭火距离。
因此,本发明实施方式还可以基于火场图片确定二维导航地图中的火场范围,并基于火场范围和消防机器人的最大灭火距离确定出安全且有效的灭火距离,既保证灭火效果,还提高消防机器人的安全性。
一种服务器,包括:
通信模块,用于从火源检测装置接收检测参数;
火源位置确定模块,用于基于所述检测参数确定火源位置;
灭火位置确定模块,用于基于所述火源位置确定消防机器人的灭火位置;
发送模块,用于向消防机器人发送包含所述灭火位置的第一机器人控制命令,从而消防机器人基于所述第一机器人控制命令移动到所述灭火位置,并针对所述火源执行灭火;
其中所述火源检测装置布置在监视区域的固定位置处,用于检测监视区域中的火源。
因此,本发明实施方式提出了一种用于灭火操作的服务器,降低了成本,提高了灭火效率。另外,本发明实施方式节约了消防机器人的电力损耗,还避免了无法执行消防工作的时间窗口,提高了消防安全性。
在一个实施方式中,所述火源检测装置包括:可调节云台;摄像头,布置在所述可调节云台上,用于检测火源;距离传感器,布置在所述可调节云台或摄像头上,用于检测与火源的距离;通信模块,用于发 送所述检测参数,其中所述检测参数包含下列中的至少一个:所述距离;摄像头的俯仰角;摄像头的偏航角;火场图片;
其中火源位置确定模块,用于从消防机器人接收监视区域的二维导航地图,基于所述距离、摄像头的俯仰角和摄像头的偏航角确定火源在所述二维导航地图中的坐标(x,y);其中:
x=X–D*sin(α)*cos(β);
y=Y–D*sin(α)*sin(β);
其中x为火源在二维导航地图中的横坐标;y为火源在二维导航地图中的纵坐标;X为火源检测装置在二维导航地图中的横坐标;Y为火源检测装置在二维导航地图中的纵坐标;D为所述距离;α为所述俯仰角;β为所述偏航角。
可见,本发明实施方式的服务器可以基于距离、摄像头的俯仰角和摄像头的偏航角方便地确定火源位置,计算过程简便,可以快速定位出火源。
在一个实施方式中,灭火位置确定模块,用于基于火场图片确定二维导航地图中的火场范围,基于所述火场范围、消防机器人的最大灭火距离和火源位置确定所述灭火位置,其中所述灭火位置不位于所述火场范围中,且所述灭火位置与所述火源位置的距离不大于所述消防机器人的最大灭火距离。
因此,本发明实施方式的服务器还可以基于火场图片确定二维导航地图中的火场范围,并基于火场范围和消防机器人的最大灭火距离确定出安全且有效的灭火距离,既保证灭火效果,还提高消防机器人的安全性。
一种消防机器人,包括:
通信模块,用于从服务器接收包含消防机器人的灭火位置的第一机器人控制命令;
移动模块,用于基于所述第一机器人控制命令移动到所述灭火位置;
灭火模块,用于针对所述火源执行灭火;
其中服务器基于布置在监视区域的固定位置处的、用于检测监视区域中的火源的火源检测装置所提供的检测参数确定火源位置,基于所述火源位置确定所述灭火位置。
可见,本发明实施方式提出了一种消防机器人,降低了成本,提高了灭火效率。另外,本发明实施方式节约了消防机器人的电力损耗,还避免了无法执行消防工作的时间窗口,提高了消防安全性。
在一个实施方式中,
火源检测装置包括:可调节云台;摄像头,布置在所述可调节云台上,用于检测火源;距离传感器,布置在所述可调节云台或摄像头上,用于检测与火源的距离;通信模块,用于发送所述检测参数,其中所述检测参数包含下列中的至少一个:所述距离;摄像头的俯仰角;摄像头的偏航角;火场图片;
所述通信模块,还用于向服务器发送基于自动导航方式所确定的、监视区域的二维导航地图,从而由服务器基于所述距离、摄像头的俯仰角和摄像头的偏航角确定火源在所述二维导航地图中的坐标(x,y); 其中:
x=X–D*sin(α)*cos(β);
y=Y–D*sin(α)*sin(β);
其中x为火源在二维导航地图中的横坐标;y为火源在二维导航地图中的纵坐标;X为火源检测装置在二维导航地图中的横坐标;Y为火源检测装置在二维导航地图中的纵坐标;D为所述距离;α为所述俯仰角;β为所述偏航角。
可见,本发明实施方式的消防机器人可以向服务器提供监视区域的二维导航地图,便于服务器方便地确定火源位置。而且,本发明实施方式的消防机器人无需持续移动,从而还节约了消防机器人的电力损耗,并且提高了消防机器人的安全性。
一种灭火方法,包括:
使能布置在监视区域的固定位置处的火源检测装置检测监视区域中的火源;
基于火源检测装置提供的检测参数确定火源位置;
基于所述火源位置确定消防机器人的灭火位置;
发送包含所述灭火位置的第一机器人控制命令,从而由消防机器人基于所述第一机器人控制命令移动到所述灭火位置且针对所述火源执行灭火操作。
可见,本发明实施方式不再采用固定部署的消防炮,降低了成本,提高了灭火效率。另外,本发明实施方式的消防机器人无需持续移动,节约了消防机器人的电力损耗,还避免了无法执行消防工作的时间窗口,提高了消防安全性。
在一个实施方式中,所述火源检测装置包括:可调节云台;摄像头,布置在所述可调节云台上,用于检测火源;距离传感器,布置在所述可调节云台或摄像头上,用于检测与火源的距离;通信模块,用于发送所述检测参数,其中所述检测参数包含下列中的至少一个:所述距离;摄像头的俯仰角;摄像头的偏航角;火场图片;
所述基于火源检测装置提供的检测参数确定火源位置包括:
从消防机器人接收监视区域的二维导航地图;
基于所述距离、摄像头的俯仰角和摄像头的偏航角确定火源在所述二维导航地图中的坐标(x,y);其中:
x=X–D*sin(α)*cos(β);
y=Y–D*sin(α)*sin(β);
其中x为火源在二维导航地图中的横坐标;y为火源在二维导航地图中的纵坐标;X为火源检测装置在二维导航地图中的横坐标;Y为火源检测装置在二维导航地图中的纵坐标;D为所述距离;α为所述俯仰角;β为所述偏航角。
因此,本发明实施方式可以基于距离、摄像头的俯仰角和摄像头的偏航角方便地确定火源位置,计算过程简便,可以快速定位出火源。
在一个实施方式中,所述基于所述火源位置确定消防机器人的灭火位置包括:
基于火场图片确定二维导航地图中的火场范围;
基于所述火场范围、消防机器人的最大灭火距离和火源位置确定所述灭火位置,其中所述灭火位置不位于所述火场范围中,且所述灭火位置与所述火源位置的距离不大于所述消防机器人的最大灭火距离。
可见,本发明实施方式还可以基于火场图片确定二维导航地图中的火场范围,并基于火场范围和消防机器人的最大灭火距离确定出安全且有效的灭火距离,既保证了灭火效果,还提高消防机器人的安全性。
在一个实施方式中,所述消防机器人基于所述第一机器人控制命令移动到所述灭火位置包括:处于充电模式的消防机器人从充电位置处基于所述第一机器人控制命令移动到所述灭火位置;该方法还包括:
在消防机器人执行灭火操作后,发送指示消防机器人移动到所述充电位置的第二机器人控制命令,从而由消防机器人基于所述第二机器人控制命令移动到所述充电位置且进入充电模式。
因此,本发明实施方式的消防机器人无需持续移动,长时间处于充电位置,节约了消防机器人的电力损耗,还避免了无法执行消防工作的时间窗口,提高了消防安全性。
一种服务器,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上任一项所述的灭火方法。
因此,本发明实施方式还提出了一种包含实现如上灭火方法的计算机程序的、具有存储器-处理器架构的服务器。
一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上任一项所述的灭火方法。
可见,在本发明实施方式中,还提出了一种包含实现如上灭火方法的计算机程序的计算机可读存储介质。
附图说明
图1为本发明实施方式的灭火系统的结构框图。
图2为本发明实施方式的灭火系统的示范性结构框图。
图3为本发明实施方式的计算火源位置和灭火位置的示意图。
图4为本发明实施方式的灭火方法的流程图。
图5为本发明实施方式的灭火方法的示范性流程图。
图6为本发明实施方式的具有存储器-处理器架构的服务器的示范性结构框图。
其中,附图标记如下:
10 灭火系统
20 火源检测装置
30 服务器
40 消防机器人
21 摄像头
22 距离传感器
23 可调节云台
24 通信模块
31 通信模块
32 火源位置确定模块
33 灭火位置确定模块
34 发送模块
41 通信模块
42 移动模块
43 灭火模块
44 充电位置
45 安全圈
400 灭火方法
401~404 步骤
500~511 步骤
600 服务器
601 处理器
602 存储器
具体实施方式
为了使本发明的技术方案及优点更加清楚明白,以下结合附图及实施方式,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施方式仅仅用以阐述性说明本发明,并不用于限定本发明的保护范围。
为了描述上的简洁和直观,下文通过描述若干代表性的实施方式来对本发明的方案进行阐述。实施方式中大量的细节仅用于帮助理解本发明的方案。但是很明显,本发明的技术方案实现时可以不局限于这些细节。为了避免不必要地模糊了本发明的方案,一些实施方式没有进行细致地描述,而是仅给出了框架。下文中,“包括”是指“包括但不限于”,“根据……”是指“至少根据……,但不限于仅根据……”。由于 汉语的语言习惯,下文中没有特别指出一个成分的数量时,意味着该成分可以是一个也可以是多个,或可理解为至少一个。
机器人(Robot)是能够自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,还可以根据以人工智能技术制定的原则纲领行动。消防机器人作为机器人的一种,在灭火和抢险救援中愈加发挥举足轻重的作用。消防机器人能代替消防救援人员进入易燃易爆、有毒、缺氧、浓烟等危险灾害事故现场执行灭火工作。
本发明实施方式提出了一种控制消防机器人执行灭火工作的灭火系统。
图1为本发明实施方式的灭火系统的结构框图。
如图1所示,灭火系统10包括:
火源检测装置20,布置在监视区域的固定位置处,用于检测监视区域中的火源;
服务器30,用于基于火源检测装置20提供的检测参数确定火源位置,基于火源位置确定消防机器人40的灭火位置,发送包含灭火位置的第一机器人控制命令;
消防机器人40,用于基于第一机器人控制命令移动到灭火位置,并针对火源执行灭火操作。
在一个实施方式中,消防机器人40具有自动导航模块(图1中没有示出)。在灭火系统10的参数设置阶段中,消防机器人40的自动导航模块实现消防机器人40在监视区域(比如,车库、工厂大楼、仓库,等)中的自动导航,并绘制出监视区域的二维导航地图。消防机器人40基于与服务器30的有线接口或无线接口,将该二维导航地图发送到服务器30。可选地,服务器30可以从其它来源(比如,专门的导航地图服务器)获取监视区域的二维导航地图。
举例,自动导航模块可以实施为视觉导航(Visual SLAM)模块。Visual SLAM是一种基于计算机视觉的技术,其原理是通过视觉摄像机拍摄周围的图像,然后计算出周围环境的位置和方向,也就是对未知环境进行地图构建,从可以实现消防机器人的自动导航。
以上示范性描述了自动导航模块的典型实例,本领域技术人员可以意识到,这种描述仅是示范性的,并不用于对本发明实施方式的保护范围进行限定。
布置在监视区域的固定位置处(比如高墙或立柱上)的火源检测装置20,持续地检测监视区域中的火源。
优选地,火源检测装置20可以实施为一种包含可调节的云台(pan-tilt)和测距功能(比如激光测距、超声测距,等等)的摄像头(比如红外摄像头或红外热像仪)。通过调节云台,摄像头可以全范围地扫描监视区域。摄像头监测监视区域中的温度以确定是否存在火源。当存在火源时,火源检测装置20基于测距功能确定出与火源之间的距离。由于摄像头通过检测温度来判断火灾,因此还可以检测到监视区域中的暗火。通常,摄像头和测距功能的最大检测范围都超过300米,因此可以覆盖大面积的监视区域。
服务器30可以布置在监视区域中、监视区域的周边区域中或云端。服务器30通过有线接口或无线接 口与火源检测装置20通信以及与消防机器人40通信。
比如,有线接口包括下列中至少一个:通用串行总线接口、控制器局域网接口、串口,等等;无线接口包括下列中至少一个:红外接口、近场通讯接口、蓝牙接口、紫蜂接口、无线宽带接口,第三代移动通信接口、第四代移动通信接口、第五代移动通信接口,等等。
以上示范性描述了有线接口和无线接口的典型实例,本领域技术人员可以意识到,这种描述仅是示范性的,并不用于限定本发明实施方式的保护范围。
服务器30控制火源检测装置20的云台,使火源检测装置20的摄像头定期扫描整个监视区域。当火源检测装置20检测到火灾时,服务器30读取此时的火源检测装置20的俯仰角、偏航角和火源距离,计算出火源在二维导航地图中的坐标。而且,服务器综合考虑消防机器人40的安全性和灭火效率,基于火源坐标计算出消防机器人40的灭火位置,并向消防机器人发送包含灭火位置的第一机器人控制命令。
通常情况下,消防机器人40在充电点处充电并待机,以等待来自服务器30的控制命令。当消防机器人40收到服务器30发出的第一机器人控制命令后,消防机器人移动到灭火位置并灭火。灭火完成后,消防机器人40返回充电点并再次充电和待机。
举例,消防机器人40包括:可移动平台;储液桶,装设在可移动平台上,适配于储存消防介质;托架,装设在可移动平台上,具有N个自由度,其中N为至少为2的正整数;喷嘴,固定在托架上,适配于将储液桶中的消防介质喷出,以实现灭火。
以上示范性描述了消防机器人40的典型结构,本领域技术人员可意识到,这种描述仅是示范性的,并不用于限定本发明实施方式的保护范围。
基于上述描述,图2为本发明实施方式的灭火系统的示范性结构框图。
火源检测装置20布置在监视区域的固定位置处,用于检测监视区域中的火源。
具体地,火源检测装置20包括:
(1.1)、可调节云台23,比如可以左右/上下移动;
(1.2)、摄像头21(比如,红外热成像摄像头),布置在可调节云台23上,用于检测火源;
(1.3)、距离传感器22(比如,激光测距传感器),布置在可调节云台23或摄像头21上,用于检测与火源的距离;
(1.4)、通信模块24,用于当摄像头21检测到火源时,向服务器30发送检测参数,其中检测参数包含下列中的至少一个:距离传感器22检测到的与火源的距离;摄像头21的俯仰角;摄像头21的偏航角;摄像头21所拍摄的火场图片,等等。
服务器30可以布置在监视区域中、监视区域的周边区域中或云端。
具体地,服务器30包括:
(2.1)、通信模块31,用于从火源检测装置20的通信模块24接收检测参数;
(2.2)、火源位置确定模块32,用于基于检测参数确定火源位置;
(2.3)、灭火位置确定模块33,用于基于火源位置确定消防机器人40的灭火位置;
(2.4)、发送模块34,用于向消防机器人40发送包含灭火位置的第一机器人控制命令,从而消防机器人40基于第一机器人控制命令移动到灭火位置,并针对火源执行灭火。
消防机器人40可以布置在监视区域中,或监视区域的周边区域中。优选的,消防机器人40布置在充电位置处。
具体地,消防机器人40包括:
(3.1)、通信模块41,用于从服务器30接收包含消防机器人40的灭火位置的第一机器人控制命令;
(3.2)、移动模块42,用于基于第一机器人控制命令移动到所述灭火位置;
(3.3)、灭火模块43,用于针对火源执行灭火。
在本发明实施方式中,灭火系统的参数设置过程包括:(a):消防机器人40使用自动导航功能扫描整个监视区域,以绘制监视区域的二维导航地图。(b):将摄像头21的坐标点记录到二维导航地图中。(c):记录消防机器人40的最大灭火距离(即最大射程)。然后,将上述参数输入到服务器30中。
在一个实施方式中,在消防机器人40的移动模块42中嵌入有自动导航模块。利用该自动导航模块实现消防机器人40在监视区域中的自动导航,并绘制出监视区域的二维导航地图。消防机器人40的通信模块41将该二维导航地图发送到服务器30的通信模块31。
服务器30通过控制火源检测装置20的可调节云台23,可以使火源检测装置20的摄像头21定期扫描整个监视区域。当摄像头21检测到火灾时,距离传感器22检测出与火源之间的距离。而且,服务器30的通信模块31读取摄像头21检测到火灾时的摄像头21的俯仰角、偏航角和距离传感器22检测出的距离.服务器30的火源位置确定模块32计算出火源在二维导航地图中的坐标。另外,服务器30的灭火位置确定模块33综合考虑消防机器人40的安全性和灭火效率,计算出消防机器人40灭火位置,并向消防机器人40的通信模块41发送包含灭火位置的第一机器人控制命令。
在一个实施方式中,火源位置确定模块32,用于从消防机器人40接收监视区域的二维导航地图,基于距离、摄像头21的俯仰角和摄像头21的偏航角确定火源在二维导航地图中的坐标(x,y);其中:
x=X–D*sin(α)*cos(β);
y=Y–D*sin(α)*sin(β);
其中x为火源在二维导航地图中的横坐标;y为火源在二维导航地图中的纵坐标;X为火源检测装置20在二维导航地图中的横坐标;Y为火源检测装置20在二维导航地图中的纵坐标;D为摄像头21与火源之间的距离;α为摄像头21的俯仰角;β为摄像头21的偏航角。
在一个实施方式中,当火源检测装置20的摄像头21检测到明火时,摄像头21拍摄火场照片。而且,火源检测装置20的通信模块24向服务器30的通信模块31发送火场照片。服务器30的灭火位置确定模 块33,用于基于火场图片确定二维导航地图中的火场范围,基于火场范围、消防机器人40的最大灭火距离和火源位置确定灭火位置,其中灭火位置不位于火场范围中,且灭火位置与火源位置的距离不大于消防机器人40的最大灭火距离。
可见,当检测到明火时,本发明实施方式所确定的灭火位置不位于火场范围中,保证消防机器人40的安全性。而且,灭火位置与火源位置的距离不大于消防机器人40的最大灭火距离,从而还保证消防机器人40能够对火源直接灭火。
在一个实施方式中当火源检测装置20的摄像头21没有检测到明火时,摄像头21优选不拍摄照片。此时,服务器30的灭火位置确定模块33,用于基于消防机器人40的最大灭火距离和火源位置确定灭火位置,其中灭火位置与火源位置足够接近(比如,灭火位置与火源位置之间的距离小于等于预定值,该预定值小于该最大灭火距离)。
可见,当检测到暗火时,本发明实施方式所确定的灭火位置与火源位置之间的距离足够接近,从而保证了消防机器人40能够高效率直接灭火。
图3为本发明实施方式计算火源位置和灭火位置的示意图。
服务器30的主要功能包括:
(1):计算火源坐标
服务器30的主要功能是从消防机器人40自动导航出的二维导航地图中计算火源的坐标点。火源检测装置20中的云台向服务器30提供火源检测装置20中的摄像机发现火源时的、摄像机21的俯仰角和偏航角,假定分别是α和β。火源检测装置20中的距离传感器向服务器30提供摄像头与火源之间的距离,假设为D米。在系统设置阶段,服务器30已获知摄像头在二维导航地图中的坐标点(X,Y)。
服务器30确定火源在二维导航地图中的坐标(x,y);其中:
x=X–Δx=X–d*cos(β)=X–D*sin(α)*cos(β);
y=Y–Δy=Y–d*sin(β)=Y-D*sin(α)*sin(β);
其中x为火源在二维导航地图中的横坐标;y为火源在二维导航地图中的纵坐标;X为火源检测装置在二维导航地图中的横坐标;Y为火源检测装置在二维导航地图中的纵坐标;D为距离传感器所确定的、从摄像头到火源的距离;α为摄像机的俯仰角;β为摄像机的偏航角;d为二维导航地图中的坐标点(X,Y)与坐标点(x,y)的距离。Δx为X与x之间的差值;Δy为Y与y之间的差值。
(2)、计算消防机器人40的安全圈
服务器30可以根据消防机器人的最大射程和从摄像头获取的火场图片,计算出消防机器人的安全圈45。灭火位置需要位于该安全圈45之外,从而确保机器人的安全性。比如,安全圈45可以实施为基于火场图片所确定的火场范围的外围轮廓或包含该火场范围的圆形。灭火位置不位于安全圈45以确保机器人的安全性,且灭火位置与火源位置的距离不大于消防机器人40的最大灭火距离,从而保证灭火有效性。
消防机器人40通常在充电位置44处充电并待机,以等待来自服务器30的控制命令。当消防机器人40收到服务器30发出的第一机器人控制命令后,消防机器人40移动到灭火位置并灭火。灭火完成后,消防机器人40返回充电位置44并再次充电和待机。
下面举例描述本发明实施方式计算火源位置和灭火位置的典型实例。
假定摄像头在二维导航地图的坐标点为(100,200)。消防机器人的最大炮射程为40米。当摄像头报告火警时,摄像头的俯仰角α=30度,偏航角β=60度。测距传感器向服务器30报告的距离D为100米。
那么,服务器30可以计算火源坐标:
x=100–100*sin(30°)*cos(60°)=75;
y=200–100*sin(30°)*sin(60°)=156.7;
因此火源坐标为(75,156.7)。
而且,基于火场范围,服务器30计算出的安全圈半径为20米,这可以保护机器人安全并尽可能地扑灭大火。服务器给出灭火的最佳位置是(75,176.7)。然后,服务器30将包含该最佳位置(75、176.7)的灭火指令发送给消防机器人40。消防机器人40收到请求后,将移至坐标(75,176.7)并开始灭火。当消除火灾后,消防机器人40发送响应到服务器30,然后消防机器人40返回充电区域。服务器30再次进入循环。
基于上述描述,本发明实施方式还提出了一种灭火方法。
图4为本发明实施方式的灭火方法的流程图。
如图4所示,该方法包括:
步骤401:使能布置在监视区域的固定位置处的火源检测装置检测监视区域中的火源。
步骤402:基于火源检测装置提供的检测参数确定火源位置。
步骤403:基于所述火源位置确定消防机器人的灭火位置。
步骤404:发送包含灭火位置的第一机器人控制命令,从而由消防机器人基于所述第一机器人控制命令移动到所述灭火位置且针对火源执行灭火操作。
在一个实施方式中,火源检测装置包括:可调节云台;摄像头,布置在所述可调节云台上,用于检测火源;距离传感器,布置在所述可调节云台或摄像头上,用于检测与火源的距离;通信模块,用于发送所述检测参数,其中所述检测参数包含下列中的至少一个:所述距离;摄像头的俯仰角;摄像头的偏航角;火场图片;步骤402中基于火源检测装置提供的检测参数确定火源位置包括:从消防机器人接收监视区域的二维导航地图;基于所述距离、摄像头的俯仰角和摄像头的偏航角确定火源在所述二维导航地图中的坐标(x,y);其中:x=X–D*sin(α)*cos(β);y=Y–D*sin(α)*sin(β);其中x为火源在二维导航地图中的横坐标;y为火源在二维导航地图中的纵坐标;X为火源检测装置在二维导航地图中的横坐标;Y为火源检测装置在二维导航地图中的纵坐标;D为所述距离;α为所述俯仰角;β为所述偏航角。
在一个实施方式中,步骤403中基于火源位置确定消防机器人的灭火位置包括:
基于火场图片确定二维导航地图中的火场范围;基于所述火场范围、消防机器人的最大灭火距离和火源位置确定所述灭火位置,其中灭火位置不位于火场范围中,且灭火位置与火源位置的距离不大于消防机器人的最大灭火距离。
基于图1所示的系统架构和图4所示的方法流程,图5为本发明实施方式的灭火方法的示范性流程图。消防机器人40默认位于充电区域,等待来自服务器30的请求。服务器30控制云台,以使得摄像头定期扫描整个监视区域。如果服务器30从摄像头获取火警报告,则:(1):移动云台,使火源位于摄像头的图像的中心;2)、读取火源与激光的距离;(3)、从云台读取摄像头的俯仰角和偏航角;(4)、在二维导航地图中计算火源的坐标点;(5)、计算消防机器人40的安全圈,确定与安全圈重合或安全圈之外的灭火位置;(6)、向消防机器人40发送带有灭火位置的灭火请求;(7)、等待消防机器人40的回应;(8)、在收到消防机器人40的回应后,再次进入循环。消防机器人40从服务器30接收灭火请求后,移动到灭火位置并扑灭大火。灭火后,消防机器人40发送完成响应到服务器30,并再次回到充电区充电。
具体地,如图5所示,该灭火方法包括:
步骤500:消防机器人40在充电位置处待机,等待由服务器30发出的命令。
步骤501:服务器30向火源检测装置20发送云台控制指令,该云台控制指令用于控制火源检测装置20中的云台定期移动。
步骤502:火源检测装置20中的云台执行该云台控制指令,从而火源检测装置20中的、布置在云台上的摄像头定期扫描整个监视区域。
步骤503:火源检测装置20中的摄像头基于温度检测发现火源,向服务器30发出报警消息。
步骤504:服务器30向火源检测装置20发送云台控制指令,该云台控制指令用于移动云台以使得火源位于摄像头所拍摄的图像的中心。
步骤505:服务器30读取布置在云台上的测距传感器所获取的、摄像头与火源之间的距离。
步骤506:服务器30从云台中读取摄像头的俯仰角和偏航角。
步骤507:服务器30基于摄像头与火源之间的距离、摄像头的俯仰角和偏航角以及火源检测装置20在二维导航地图中的坐标,计算出火源在二维导航地图中的坐标。
步骤508:服务器30计算出消防机器人40的安全圈,确定与安全圈重合或安全圈之外的灭火位置,向消防机器人40发出包含灭火位置的移动指令。
步骤509:消防机器人40移动到灭火距离,执行灭火工作。
步骤510:服务器30开始下一循环,返回执行步骤500。
基于上述描述,本发明实施方式还提出了具有存储器-处理器架构的服务器。
图6为本发明实施方式的具有存储器-处理器架构的服务器的示范性结构框图。
如图6所示,服务器600包括处理器601、存储器602及存储在存储器602上并可在处理器601上运行的计算机程序,所述计算机程序被所述处理器601执行时实现如上任一项所述的灭火方法。
其中,存储器602具体可以实施为电可擦可编程只读存储器(EEPROM)、快闪存储器(Flash memory)、可编程程序只读存储器(PROM)等多种存储介质。处理器601可以实施为包括一或多个中央处理器或一或多个现场可编程门阵列,其中现场可编程门阵列集成一或多个中央处理器核。具体地,中央处理器或中央处理器核可以实施为CPU或MCU或DSP等等。
综上所示,本发明实施方式不再采用固定部署的消防炮,降低了成本,提高了灭火效率。另外,本发明实施方式节约了消防机器人的电力损耗,并且提高了消防机器人的安全性。本发明实施方式可以确保火灾监控没有中断,并且灭火机器人具有足够的能量在发生火灾时扑灭火灾,为消防机器人灭火提供安全区域。
需要说明的是,上述各流程和各结构图中不是所有的步骤和模块都是必须的,可以根据实际的需要忽略某些步骤或模块。各步骤的执行顺序不是固定的,可以根据需要进行调整。各模块的划分仅仅是为了便于描述采用的功能上的划分,实际实现时,一个模块可以分由多个模块实现,多个模块的功能也可以由同一个模块实现,这些模块可以位于同一个设备中,也可以位于不同的设备中。
各实施方式中的硬件模块可以以机械方式或电子方式实现。例如,一个硬件模块可以包括专门设计的永久性电路或逻辑器件(如专用处理器,如FPGA或ASIC)用于完成特定的操作。硬件模块也可以包括由软件临时配置的可编程逻辑器件或电路(如包括通用处理器或其它可编程处理器)用于执行特定操作。至于具体采用机械方式,或是采用专用的永久性电路,或是采用临时配置的电路(如由软件进行配置)来实现硬件模块,可以根据成本和时间上的考虑来决定。
本发明还提供了一种机器可读的存储介质,存储用于使一机器执行如本申请所述方法的指令。具体地,可以提供配有存储介质的系统或者装置,在该存储介质上存储着实现上述实施例中任一实施方式的功能的软件程序代码,且使该系统或者装置的计算机(或CPU或MPU)读出并执行存储在存储介质中的程序代码。此外,还可以通过基于程序代码的指令使计算机上操作的操作系统等来完成部分或者全部的实际操作。还可以将从存储介质读出的程序代码写到插入计算机内的扩展板中所设置的存储器中或者写到与计算机相连接的扩展单元中设置的存储器中,随后基于程序代码的指令使安装在扩展板或者扩展单元上的CPU等来执行部分和全部实际操作,从而实现上述实施方式中任一实施方式的功能。
用于提供程序代码的存储介质实施方式包括软盘、硬盘、磁光盘、光盘(如CD-ROM、CD-R、CD-RW、DVD-ROM、DVD-RAM、DVD-RW、DVD+RW)、磁带、非易失性存储卡和ROM。可选择地,可以由通信网络从服务器计算机或云上下载程序代码。
在本文中,“示意性”表示“充当实例、例子或说明”,不应将在本文中被描述为“示意性”的任何图示、实施方式解释为一种更优选的或更具优点的技术方案。为使图面简洁,各图中的只示意性地表示出了 与本发明相关部分,而并不代表其作为产品的实际结构。另外,以使图面简洁便于理解,在有些图中具有相同结构或功能的部件,仅示意性地绘示了其中的一个,或仅标出了其中的一个。在本文中,“一个”并不表示将本发明相关部分的数量限制为“仅此一个”,并且“一个”不表示排除本发明相关部分的数量“多于一个”的情形。在本文中,“上”、“下”、“前”、“后”、“左”、“右”、“内”、“外”等仅用于表示相关部分之间的相对位置关系,而非限定这些相关部分的绝对位置。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种灭火系统(10),其特征在于,包括:
    火源检测装置(20),布置在监视区域的固定位置处,用于检测监视区域中的火源;
    服务器(30),用于基于火源检测装置(20)提供的检测参数确定火源位置,基于所述火源位置确定消防机器人(40)的灭火位置,发送包含所述灭火位置的第一机器人控制命令;
    消防机器人(40),用于基于所述第一机器人控制命令移动到所述灭火位置,并针对所述火源执行灭火操作。
  2. 根据权利要求1所述的灭火系统(10),其特征在于,
    所述火源检测装置(20)包括:
    可调节云台(23);
    摄像头(21),布置在所述可调节云台(23)上,用于检测火源;
    距离传感器(22),布置在所述可调节云台(23)或摄像头(21)上,用于检测与火源的距离;
    通信模块(24),用于发送所述检测参数,其中所述检测参数包含下列中的至少一个:
    所述距离;摄像头(21)的俯仰角;摄像头(21)的偏航角;火场图片。
  3. 根据权利要求2所述的灭火系统(10),其特征在于,
    服务器(30),用于从消防机器人(40)接收监视区域的二维导航地图,基于所述距离、摄像头(21)的俯仰角和摄像头(21)的偏航角确定火源在所述二维导航地图中的坐标(x,y);其中:
    x=X–D*sin(α)*cos(β);
    y=Y–D*sin(α)*sin(β);
    其中x为火源在二维导航地图中的横坐标;y为火源在二维导航地图中的纵坐标;X为火源检测装置(20)在二维导航地图中的横坐标;Y为火源检测装置(20)在二维导航地图中的纵坐标;D为所述距离;α为所述俯仰角;β为所述偏航角。
  4. 根据权利要求2或3所述的灭火系统(10),其特征在于,
    服务器(30),用于基于火场图片确定二维导航地图中的火场范围,基于所述火场范围、消防机器人(40)的最大灭火距离和火源位置确定所述灭火位置,其中所述灭火位置不位于所述火场范围中,且所述灭火位置与所述火源位置的距离不大于所述消防机器人(40)的最大灭火距离。
  5. 一种服务器(30),其特征在于,包括:
    通信模块(31),用于从火源检测装置(20)接收检测参数;
    火源位置确定模块(32),用于基于所述检测参数确定火源位置;
    灭火位置确定模块(33),用于基于所述火源位置确定消防机器人(40)的灭火位置;
    发送模块(34),用于向消防机器人(40)发送包含所述灭火位置的第一机器人控制命令,从而消防机器人(40)基于所述第一机器人控制命令移动到所述灭火位置,并针对所述火源执行灭火;
    其中所述火源检测装置(20)布置在监视区域的固定位置处,用于检测监视区域中的火源。
  6. 根据权利要求5所述的服务器(30),其特征在于,
    所述火源检测装置(20)包括:可调节云台(23);摄像头(21),布置在所述可调节云台(23)上,用于检测火源;距离传感器(22),布置在所述可调节云台(23)或摄像头(21)上,用于检测与火源的距离;通信模块(24),用于发送所述检测参数,其中所述检测参数包含下列中的至少一个:所述距离;摄像头(21)的俯仰角;摄像头(21)的偏航角;火场图片;
    其中火源位置确定模块(32),用于从消防机器人(40)接收监视区域的二维导航地图,基于所述距离、摄像头(21)的俯仰角和摄像头(21)的偏航角确定火源在所述二维导航地图中的坐标(x,y);其中:
    x=X–D*sin(α)*cos(β);
    y=Y–D*sin(α)*sin(β);
    其中x为火源在二维导航地图中的横坐标;y为火源在二维导航地图中的纵坐标;X为火源检测装置(20)在二维导航地图中的横坐标;Y为火源检测装置(20)在二维导航地图中的纵坐标;D为所述距离;α为所述俯仰角;β为所述偏航角。
  7. 根据权利要求5或6所述的服务器(30),其特征在于,
    灭火位置确定模块(33),用于基于火场图片确定二维导航地图中的火场范围,基于所述火场范围、消防机器人(40)的最大灭火距离和火源位置确定所述灭火位置,其中所述灭火位置不位于所述火场范围中,且所述灭火位置与所述火源位置的距离不大于所述消防机器人(40)的最大灭火距离。
  8. 一种消防机器人(40),其特征在于,包括:
    通信模块(41),用于从服务器(30)接收包含消防机器人(40)的灭火位置的第一机器人控制命令;
    移动模块(42),用于基于所述第一机器人控制命令移动到所述灭火位置;
    灭火模块(43),用于针对所述火源执行灭火;
    其中服务器(30)基于布置在监视区域的固定位置处的、用于检测监视区域中的火源的火源检测装置(20)所提供的检测参数确定火源位置,基于所述火源位置确定所述灭火位置。
  9. 根据权利要求8所述的消防机器人(40),其特征在于,
    火源检测装置(20)包括:可调节云台(23);摄像头(21),布置在所述可调节云台(23)上,用于检测火源;距离传感器(22),布置在所述可调节云台(23)或摄像头(21)上,用于检测与火源的距离;通信模块(24),用于发送所述检测参数,其中所述检测参数包含下列中的至少一个:所述距离;摄像头(21)的俯仰角;摄像头(21)的偏航角;火场图片;
    所述通信模块(41),还用于向服务器(30)发送基于自动导航方式所确定的、监视区域的二维导航地图,从而由服务器(30)基于所述距离、摄像头(21)的俯仰角和摄像头(21)的偏航角确定火源在所述二维导航地图中的坐标(x,y);其中:
    x=X–D*sin(α)*cos(β);
    y=Y–D*sin(α)*sin(β);
    其中x为火源在二维导航地图中的横坐标;y为火源在二维导航地图中的纵坐标;X为火源检测装置(20)在二维导航地图中的横坐标;Y为火源检测装置(20)在二维导航地图中的纵坐标;D为所述距离;α为所述俯仰角;β为所述偏航角。
  10. 一种灭火方法(400),其特征在于,包括:
    使能布置在监视区域的固定位置处的火源检测装置检测监视区域中的火源(401);
    基于火源检测装置提供的检测参数确定火源位置(402);
    基于所述火源位置确定消防机器人的灭火位置(403);
    发送包含所述灭火位置的第一机器人控制命令,从而由消防机器人基于所述第一机器人控制命令移动到所述灭火位置且针对所述火源执行灭火操作(404)。
  11. 根据权利要求10所述的灭火方法(400),其特征在于,
    所述火源检测装置包括:可调节云台;摄像头,布置在所述可调节云台上,用于检测火源;距离传感器,布置在所述可调节云台或摄像头上,用于检测与火源的距离;通信模块,用于发送所述检测参数,其中所述检测参数包含下列中的至少一个:所述距离;摄像头的俯仰角;摄像头的偏航角;火场图片;
    所述基于火源检测装置提供的检测参数确定火源位置(402)包括:
    从消防机器人接收监视区域的二维导航地图;
    基于所述距离、摄像头的俯仰角和摄像头的偏航角确定火源在所述二维导航地图中的坐标(x,y);其中:
    x=X–D*sin(α)*cos(β);
    y=Y–D*sin(α)*sin(β);
    其中x为火源在二维导航地图中的横坐标;y为火源在二维导航地图中的纵坐标;X为火源检测装置在二维导航地图中的横坐标;Y为火源检测装置在二维导航地图中的纵坐标;D为所述距离;α为所述俯仰角;β为所述偏航角。
  12. 根据权利要求11所述的灭火方法(400),其特征在于,
    所述基于所述火源位置确定消防机器人的灭火位置(403)包括:
    基于火场图片确定二维导航地图中的火场范围;
    基于所述火场范围、消防机器人的最大灭火距离和火源位置确定所述灭火位置,其中所述灭火位置不位于所述火场范围中,且所述灭火位置与所述火源位置的距离不大于所述消防机器人的最大灭火距离。
  13. 根据权利要求10所述的灭火方法(400),其特征在于,
    所述消防机器人基于所述第一机器人控制命令移动到所述灭火位置包括:处于充电模式的消防机器人 从充电位置处基于所述第一机器人控制命令移动到所述灭火位置;该方法还包括:
    在消防机器人执行灭火操作后,发送指示消防机器人移动到所述充电位置的第二机器人控制命令,从而由消防机器人基于所述第二机器人控制命令移动到所述充电位置且进入充电模式。
  14. 一种服务器(600),其特征在于,包括处理器(601)、存储器(602)及存储在所述存储器(602)上并可在所述处理器(601)上运行的计算机程序,所述计算机程序被所述处理器(601)执行时实现如权利要求10至13中任一项所述的灭火方法(400)。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求10至13中任一项所述的灭火方法(400)。
PCT/CN2020/099332 2020-06-30 2020-06-30 一种灭火系统、服务器、消防机器人和灭火方法 WO2022000279A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/099332 WO2022000279A1 (zh) 2020-06-30 2020-06-30 一种灭火系统、服务器、消防机器人和灭火方法
CN202080101467.9A CN115666738A (zh) 2020-06-30 2020-06-30 一种灭火系统、服务器、消防机器人和灭火方法
EP20943530.4A EP4154946A4 (en) 2020-06-30 2020-06-30 FIRE EXTINGUISHING SYSTEM, SERVER, FIRE EXTINGUISHING ROBOTS AND FIRE EXTINGUISHING PROCEDURES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/099332 WO2022000279A1 (zh) 2020-06-30 2020-06-30 一种灭火系统、服务器、消防机器人和灭火方法

Publications (1)

Publication Number Publication Date
WO2022000279A1 true WO2022000279A1 (zh) 2022-01-06

Family

ID=79317798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099332 WO2022000279A1 (zh) 2020-06-30 2020-06-30 一种灭火系统、服务器、消防机器人和灭火方法

Country Status (3)

Country Link
EP (1) EP4154946A4 (zh)
CN (1) CN115666738A (zh)
WO (1) WO2022000279A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114602088A (zh) * 2022-04-13 2022-06-10 创泽智能机器人集团股份有限公司 一种机器人自动灭火方法、设备、存储介质
CN117156234A (zh) * 2023-06-30 2023-12-01 陕西浩悦博纳网络科技有限公司 具有烟雾报警功能的消防监控摄像头
CN117138291A (zh) * 2023-10-27 2023-12-01 江苏庆亚电子科技有限公司 一种消防机器人灭火方法和系统
CN117180687A (zh) * 2023-09-08 2023-12-08 江苏铭星供水设备有限公司 一种智慧消防远程监控系统及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130112440A1 (en) * 2011-11-04 2013-05-09 King Saud University Smart compact Indoor Firefighting Robot for Extinguishing a Fire at an Early Stage
CN205182046U (zh) * 2015-12-04 2016-04-27 西安科技大学 智能消防机器人
CN105954718A (zh) * 2016-02-18 2016-09-21 青岛克路德机器人有限公司 火灾现场火源定位方法、定位系统及消防机器人
KR20160139305A (ko) * 2015-05-27 2016-12-07 양동국 화재 진압 소방로봇
CN109801358A (zh) * 2018-12-06 2019-05-24 宁波市电力设计院有限公司 一种基于slam扫描和点云影像融合的变电站三维勘测方法
CN109910010A (zh) * 2019-03-23 2019-06-21 广东石油化工学院 一种高效控制机器人的系统及方法
CN210228953U (zh) * 2019-06-05 2020-04-03 山东国兴智能科技股份有限公司 一种无人机与消防机器人协同侦察灭火作业系统
CN210228955U (zh) * 2019-06-05 2020-04-03 山东国兴智能科技股份有限公司 消防机器人协同定位、侦察、火源识别与瞄准灭火系统
CN111111074A (zh) * 2019-12-16 2020-05-08 山东康威通信技术股份有限公司 一种电力隧道消防机器人灭火调度方法及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3648517B2 (ja) * 2001-09-18 2005-05-18 滋賀県 火災等の自動検知装置
CN103871192A (zh) * 2014-03-29 2014-06-18 哈尔滨工业大学 一种高效的智能防火预警系统及其方法
DE102016212645B4 (de) * 2016-07-12 2018-06-14 Minimax Gmbh & Co. Kg Unbemanntes Fahrzeug, System und Verfahren zur Einleitung einer Brandlöschaktion
CN110320522A (zh) * 2018-03-30 2019-10-11 浙江宇视科技有限公司 火源监控方法、装置和系统
CN108992825A (zh) * 2018-06-06 2018-12-14 北方工业大学 智能消防机器人及其控制方法
CN108873908B (zh) * 2018-07-12 2020-01-24 重庆大学 基于视觉slam和网络地图结合的机器人城市导航系统
CN109646853A (zh) * 2018-12-17 2019-04-19 华北科技学院 一种自主消防机器人装置及监测系统
CN110082781B (zh) * 2019-05-20 2021-12-17 东北大学秦皇岛分校 基于slam技术与图像识别的火源定位方法及系统
CN111150953A (zh) * 2019-12-23 2020-05-15 新松服务机器人(天津)有限公司 一种复合型多功能智能消防机器人

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130112440A1 (en) * 2011-11-04 2013-05-09 King Saud University Smart compact Indoor Firefighting Robot for Extinguishing a Fire at an Early Stage
KR20160139305A (ko) * 2015-05-27 2016-12-07 양동국 화재 진압 소방로봇
CN205182046U (zh) * 2015-12-04 2016-04-27 西安科技大学 智能消防机器人
CN105954718A (zh) * 2016-02-18 2016-09-21 青岛克路德机器人有限公司 火灾现场火源定位方法、定位系统及消防机器人
CN109801358A (zh) * 2018-12-06 2019-05-24 宁波市电力设计院有限公司 一种基于slam扫描和点云影像融合的变电站三维勘测方法
CN109910010A (zh) * 2019-03-23 2019-06-21 广东石油化工学院 一种高效控制机器人的系统及方法
CN210228953U (zh) * 2019-06-05 2020-04-03 山东国兴智能科技股份有限公司 一种无人机与消防机器人协同侦察灭火作业系统
CN210228955U (zh) * 2019-06-05 2020-04-03 山东国兴智能科技股份有限公司 消防机器人协同定位、侦察、火源识别与瞄准灭火系统
CN111111074A (zh) * 2019-12-16 2020-05-08 山东康威通信技术股份有限公司 一种电力隧道消防机器人灭火调度方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4154946A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114602088A (zh) * 2022-04-13 2022-06-10 创泽智能机器人集团股份有限公司 一种机器人自动灭火方法、设备、存储介质
CN117156234A (zh) * 2023-06-30 2023-12-01 陕西浩悦博纳网络科技有限公司 具有烟雾报警功能的消防监控摄像头
CN117180687A (zh) * 2023-09-08 2023-12-08 江苏铭星供水设备有限公司 一种智慧消防远程监控系统及方法
CN117138291A (zh) * 2023-10-27 2023-12-01 江苏庆亚电子科技有限公司 一种消防机器人灭火方法和系统
CN117138291B (zh) * 2023-10-27 2024-02-06 江苏庆亚电子科技有限公司 一种消防机器人灭火方法和系统

Also Published As

Publication number Publication date
CN115666738A (zh) 2023-01-31
EP4154946A1 (en) 2023-03-29
EP4154946A4 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
WO2022000279A1 (zh) 一种灭火系统、服务器、消防机器人和灭火方法
CN111494853B (zh) 一种多模式视觉伺服控制消防系统及其工作方法
WO2021115343A1 (zh) 一种变电站智能消防系统及方法
US11257341B2 (en) System and method for monitoring and suppressing fire
CN105031868B (zh) 基于火焰规模的自适应灭火方法
JP2019016119A (ja) 火災監視システム
CN111408089A (zh) 一种消防机器人及消防机器人灭火系统
CN104436501B (zh) 一种基于消防炮技术的控制灭火方法、装置及系统
CN104952201A (zh) 一种视频火警监测系统和方法
CN212439798U (zh) 一种消防机器人
CN112399138B (zh) 光伏电站的视频监控方法和系统
KR20200113391A (ko) 무인 비행 소화기 및 이를 이용한 화재 진압 방법
CN113521616A (zh) 一种消防机器人、调度方法及灭火系统
KR20230080522A (ko) 인공 지능을 이용한 화재 감시 시스템 및 그 제어 방법
CN115337581B (zh) 一种基于多目视觉消防系统的消防灭火方法
KR102550069B1 (ko) 충전식 모바일로봇을 활용한 화재감지 및 조기대응시스템
KR20200048408A (ko) 자동 소화 로봇
CN111973925B (zh) 机器人协作灭火的方法、装置及系统
CN112650285A (zh) 联合巡检方法及系统
JPH03121081A (ja) 消火装置
KR102632567B1 (ko) 화재 감시 로봇
JP3112760B2 (ja) 移動体用煙感知装置
RU139636U1 (ru) Система пожаротушения
CN114602088B (zh) 一种机器人自动灭火方法、设备、存储介质
CN117771595B (zh) 一种基于多模式视觉系统的举高消防灭火方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020943530

Country of ref document: EP

Effective date: 20221223

NENP Non-entry into the national phase

Ref country code: DE