WO2023130456A1 - 车辆的扭矩补偿方法及装置、计算机可读存储介质 - Google Patents

车辆的扭矩补偿方法及装置、计算机可读存储介质 Download PDF

Info

Publication number
WO2023130456A1
WO2023130456A1 PCT/CN2022/071057 CN2022071057W WO2023130456A1 WO 2023130456 A1 WO2023130456 A1 WO 2023130456A1 CN 2022071057 W CN2022071057 W CN 2022071057W WO 2023130456 A1 WO2023130456 A1 WO 2023130456A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
pressure
motor
control module
torque
Prior art date
Application number
PCT/CN2022/071057
Other languages
English (en)
French (fr)
Inventor
覃海明
李宝
吴凯
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22734083.3A priority Critical patent/EP4238809A1/en
Priority to KR1020227018955A priority patent/KR20230109092A/ko
Priority to JP2022535899A priority patent/JP2024504887A/ja
Priority to PCT/CN2022/071057 priority patent/WO2023130456A1/zh
Priority to CN202280006772.9A priority patent/CN116745184A/zh
Priority to US17/875,439 priority patent/US20230219543A1/en
Publication of WO2023130456A1 publication Critical patent/WO2023130456A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • B60L3/108Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels whilst braking, i.e. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1761Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS responsive to wheel or brake dynamics, e.g. wheel slip, wheel acceleration or rate of change of brake fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2072Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for drive off
    • B60L15/2081Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for drive off for drive off on a slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/745Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on a hydraulic system, e.g. a master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/171Detecting parameters used in the regulation; Measuring values used in the regulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18172Preventing, or responsive to skidding of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/09Engine drag compensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2220/00Monitoring, detecting driver behaviour; Signalling thereof; Counteracting thereof
    • B60T2220/04Pedal travel sensor, stroke sensor; Sensing brake request
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2250/00Monitoring, detecting, estimating vehicle conditions
    • B60T2250/04Vehicle reference speed; Vehicle body speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2260/00Interaction of vehicle brake system with other systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/88Pressure measurement in brake systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0004In digital systems, e.g. discrete-time systems involving sampling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/18Braking system
    • B60W2510/182Brake pressure, e.g. of fluid or between pad and disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/26Wheel slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/60Control of electric machines, e.g. problems related to electric motors or generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the field of vehicles, in particular to a vehicle torque compensation method, a vehicle torque compensation device and associated computer-readable storage media.
  • the present application provides a vehicle torque compensation method, a vehicle torque compensation device and associated computer-readable storage media, which can accurately determine the braking idle travel range of the vehicle, and control the motor of the vehicle to output compensation torque in a timely manner , so as to effectively restrain the vehicle from slipping during the braking idling and ensure driving safety.
  • the present application provides a torque compensation method for a vehicle, the vehicle includes a vehicle control module, and the torque compensation method includes: when the vehicle control module determines that the vehicle is in a braking idling rollback state , the vehicle control module obtains the pressure of the brake master cylinder of the vehicle, and controls the motor of the vehicle to output compensation torque according to the pressure of the brake master cylinder.
  • the applicant has found through research that, when the vehicle rolls in a braking idling, the braking force applied by the brake master cylinder to the vehicle wheels is not sufficient to brake the vehicle wheels. At this time, the pressure of the brake master cylinder can more accurately reflect the range of the brake idle stroke, and the motor of the vehicle can be controlled to output compensation torque in time according to the pressure of the brake master cylinder, which can effectively restrain the brake idle stroke of the vehicle and ensure that Driving safety.
  • the vehicle control module acquires the pressure of the brake master cylinder of the vehicle, and controlling the motor of the vehicle to output compensation torque according to the pressure of the brake master cylinder includes: in the vehicle control module When the obtained pressure of the brake master cylinder includes the first pressure, the vehicle control module controls the compensation torque output by the electric motor of the vehicle to include the first compensation torque; and when the obtained pressure of the vehicle control module When the pressure of the brake master cylinder includes the second pressure, the vehicle control module controls the compensation torque output by the motor of the vehicle to include the second compensation torque; wherein, the first pressure is smaller than the second pressure , the first compensation torque is greater than the second compensation torque.
  • the motor of the vehicle is precisely controlled to output appropriate compensation torque in time, and the vehicle's braking idling is effectively restrained from slipping.
  • the acquiring the pressure of the master brake cylinder of the vehicle by the vehicle control module includes: acquiring the pressure of the master brake cylinder of the vehicle in real time by the vehicle control module.
  • the real-time pressure of the brake master cylinder reflects the real-time braking force applied to the wheels, it can more accurately reflect the range of braking idle travel, thereby controlling the motor of the vehicle to output compensation torque in time , to further refine the torque compensation method of the vehicle.
  • the vehicle control module obtains the pressure of the master brake cylinder of the vehicle and the speed of the motor of the vehicle in real time, and according to the pressure of the master brake cylinder and the speed of the motor of the vehicle Controlling the motor of the vehicle to output compensation torque further includes: when the pressure of the brake master cylinder acquired by the vehicle control module includes a third pressure and the speed of the motor of the vehicle includes a first speed, the The compensation torque output by the motor of the vehicle controlled by the vehicle control module includes a third compensation torque; and the pressure of the brake master cylinder acquired by the vehicle control module includes the third pressure and the pressure of the motor of the vehicle When the rotation speed includes the second rotation speed, the vehicle control module controls the compensation torque output by the electric motor of the vehicle to include the fourth compensation torque; wherein, the first rotation speed is smaller than the second rotation speed, and the third compensation torque is The torque is less than the fourth compensating torque.
  • the motor of the vehicle is controlled to output the compensation torque in a timely manner in combination with the pressure of the brake master cylinder and the speed of the motor acquired in real time, and some factors such as the inertia of the vehicle can be taken into consideration, which is more effective. It can effectively restrain the vehicle from slipping during the braking idling.
  • the vehicle control module determining that the vehicle is in the braking idling rolling state includes: when the vehicle control module determines that the driving speed of the vehicle is in the first speed range corresponding to the low-speed driving mode and When the decrease value of the brake pedal opening of the vehicle exceeds the first opening value, the vehicle control module further determines whether the motor speed of the motor of the vehicle increases; when the vehicle control module determines that the vehicle When the rotational speed of the electric motor increases, the vehicle control module determines whether the vehicle is in the braking idling roll state according to the gear position of the vehicle and the direction of the electric motor rotational speed of the electric motor of the vehicle.
  • a computer-readable storage medium is provided.
  • Computer instructions are stored on the computer-readable storage medium.
  • the computing device realizes the torque compensation method.
  • a torque compensation device for a vehicle including a vehicle control module, wherein: the vehicle control module is used to acquire the braking force of the vehicle when it is determined that the vehicle is in the braking idling roll state. the pressure of the master cylinder, and control the motor of the vehicle to output compensation torque according to the pressure of the brake master cylinder.
  • the vehicle control module is configured to control the compensation torque output by the motor of the vehicle to include a second pressure when the pressure of the brake master cylinder acquired by the vehicle control module includes a first pressure. a compensation torque; and the vehicle control module is used to control the compensation torque output by the electric motor of the vehicle to include the second pressure when the pressure of the brake master cylinder acquired by the vehicle control module includes the second pressure Compensation torque; wherein, the first pressure is lower than the second pressure, and the first compensation torque is greater than the second compensation torque.
  • the vehicle control module is used to obtain the pressure of the brake master cylinder of the vehicle in real time.
  • the vehicle control module is configured to, when the pressure of the brake master cylinder obtained by the vehicle control module includes the third pressure and the speed of the electric motor of the vehicle includes the first speed, control The compensation torque output by the motor of the vehicle includes a third compensation torque; and the pressure of the brake master cylinder obtained by the vehicle control module at the vehicle control module includes the third pressure and the vehicle
  • the compensation torque output by the motor for controlling the vehicle includes the fourth compensation torque; wherein, the first rotation speed is smaller than the second rotation speed, and the third compensation torque is smaller than The fourth compensating torque.
  • the vehicle control module is configured to determine that the driving speed of the vehicle is in the first speed range corresponding to the low-speed driving mode and the reduction value of the brake pedal opening of the vehicle exceeds the first opening. When the speed value is higher, it is further determined whether the motor speed of the motor of the vehicle increases; the vehicle control module is used to determine whether the motor speed of the vehicle increases, according to the gear position of the vehicle, the motor speed of the vehicle The rotational speed direction of the electric motor determines whether the vehicle is in the braking idling rolling state.
  • FIG. 1 is a flow chart of a vehicle torque compensation method in some embodiments of the present application
  • Fig. 2 is a flowchart of a vehicle torque compensation method according to other embodiments of the present application.
  • the electric vehicle may be a pure electric vehicle (Battery Electric Vehicle, BEV), or a hybrid electric vehicle (Hybrid Electric Vehicle, HEV).
  • BEV Battery Electric Vehicle
  • HEV Hybrid Electric Vehicle
  • a pure electric vehicle is a vehicle powered entirely by a rechargeable battery such as a lead-acid battery, a nickel-cadmium battery, a nickel-metal hydride battery, or a lithium-ion battery.
  • a hybrid vehicle is a vehicle with a hybrid power source provided by a rechargeable battery and a traditional power source (such as gasoline, diesel, compressed natural gas, propane and ethanol fuel, etc.), and these two types of power sources work separately or together in different driving states of the vehicle Work.
  • the power source is provided by a rechargeable battery when the vehicle is running at a low speed.
  • the vehicle control unit is the core control component, the main function is to analyze the driver's needs, monitor the driving status of the vehicle, and coordinate control units such as battery management system BMS, micro control unit MCU, engine management system EMS, automatic transmission
  • the work of the control unit TCU, etc. realizes functions such as power on and off, drive control, energy recovery, accessory control, and fault diagnosis of the vehicle.
  • the brake master cylinder is the power source of the vehicle braking system.
  • the main function of the brake master cylinder is to convert the pedal force applied by the driver on the brake pedal into the pressure of the brake master cylinder, and then into the pressure applied to the vehicle wheels. braking force, so as to achieve the braking effect of the vehicle.
  • the vehicle control module will receive the analog signal of the brake pedal, and then control the output of the brake master cylinder to be applied to the wheels of the vehicle according to the analog signal of the brake pedal. Braking force.
  • master cylinder pressure accurately reflects brake pedal opening (ie, master cylinder pressure matches brake pedal opening).
  • the pressure of the brake master cylinder cannot accurately reflect the opening of the brake pedal (ie, the pressure of the brake master cylinder does not match the opening of the brake pedal).
  • These electric vehicles can appear braking idling slip car in running process.
  • the controller calculates the torque that the brake motor should produce, and the transmission device converts the torque into the servo braking force of the brake master cylinder.
  • the vehicle control module does not receive the analog signal of the brake pedal, and the opening of the brake pedal is derived from the displacement of the input rod. For example, the displacement of the input rod is multiplied by a certain coefficient such as 4.76 to obtain the opening of the brake pedal.
  • the opening of the brake pedal since the opening of the brake pedal is issued by the vehicle's braking system, it cannot directly reflect the range of the braking idling, which will lead to the occurrence of braking idling, which may cause traffic accidents such as collisions. Accidents can even endanger people's lives and have great potential safety hazards.
  • the opening of the brake pedal It may be different from vehicle to vehicle. If the opening of the brake pedal corresponding to the brake idling range does not match the compensation torque output by the motor of the vehicle, the braking idling cannot be effectively suppressed or wheel slippage may occur. Abnormal noise occurs after clamping.
  • the applicant has found that the The pressure of the brake master cylinder controls the vehicle's electric motor to output compensation torque. Specifically, the applicant's research has found that when the vehicle rolls in a braking idling, the braking force applied by the brake master cylinder to the vehicle wheels is not sufficient to brake the vehicle wheels. At this time, the pressure of the brake master cylinder can more accurately reflect the range of the brake idle stroke, and the motor of the vehicle can be controlled to output compensation torque in time according to the pressure of the brake master cylinder, which can effectively restrain the brake idle stroke of the vehicle and ensure that Driving safety.
  • the inventor has designed a torque compensation method for a vehicle after in-depth research.
  • the vehicle includes a vehicle control module.
  • the torque compensation method includes: Acquire the pressure of the brake master cylinder of the vehicle, and control the motor of the vehicle to output compensation torque according to the pressure of the brake master cylinder.
  • the motor of the vehicle is controlled to output compensation torque in time according to the pressure of the brake master cylinder, effectively suppressing the vehicle's braking idling .
  • the vehicle torque compensation method disclosed in the embodiment of the present application can be used in vehicles including but not limited to that the pressure of the brake master cylinder does not match the opening of the brake pedal. vehicle control module in the vehicle. By using the torque compensating method disclosed in the present application in such a vehicle, it is possible to timely and effectively stop braking idling and coasting, and effectively ensure driving safety.
  • Fig. 1 is a flowchart of a torque compensation method for a vehicle in some embodiments of the present application.
  • the vehicle includes a vehicle control module through which the torque compensation method is performed.
  • the torque compensation method for a vehicle in FIG. 1 starts with step S11.
  • the vehicle control module first determines whether the vehicle is in a low-speed driving mode (ie, creeping driving mode).
  • a low-speed driving mode ie, creeping driving mode.
  • the vehicle traveling speed in the low-speed traveling mode is 0-10km/h.
  • the range of vehicle traveling speed in the low-speed traveling mode may be changed.
  • the vehicle control module determines that the vehicle is in the low-speed driving mode, it is further judged whether the reduced value of the brake pedal opening of the vehicle exceeds a certain opening value (for example, whether the reduced value of the brake pedal opening exceeds 12%), That is, it is judged whether the driver intends to brake the vehicle. If the vehicle control module determines that the value of the brake pedal opening of the vehicle has not decreased or the decrease of the brake pedal opening is below 12%, it is determined that the driver does not intend to brake the vehicle, and then continue to return to real time It is judged accurately whether the decrease value of the brake pedal opening of the vehicle exceeds a certain opening value. If the vehicle control module determines that the reduction value of the brake pedal opening of the vehicle has exceeded a certain opening value (for example, the reduction value of the brake pedal opening exceeds 12%), then further determine the motor speed of the motor of the vehicle whether to increase.
  • a certain opening value for example, whether the reduced value of the brake pedal opening exceeds 12%
  • the vehicle control module determines that the motor speed of the electric motor of the vehicle is normally decreasing, then it is determined that the vehicle is normally braking and decelerating.
  • the vehicle control module in order to obtain the speed information of the vehicle, the vehicle control module sends a vehicle speed request command to the vehicle speed sensor. After receiving the vehicle speed request command, the vehicle speed sensor returns the current vehicle speed information to the vehicle control module. Similarly, in order to obtain the brake pedal opening degree of the vehicle, the vehicle control module sends a brake pedal opening degree request instruction to the brake pedal sensor of the vehicle, and after the brake pedal sensor receives the brake pedal opening degree request instruction, the current The brake pedal opening information is returned to the vehicle control module. Similarly, in order to obtain information such as the motor speed and the direction of the motor speed of the vehicle, the vehicle control module sends a request command for the motor speed and the direction of the motor speed to the motor of the vehicle.
  • the vehicle control module After the motor of the vehicle receives the request command for the motor speed and the direction of the motor speed, it will Return the current motor speed and motor speed direction information to the vehicle control module. Similarly again, in order to obtain the gear information of the vehicle, the vehicle control module sends the current gear request command of the vehicle to the gear controller of the vehicle. After the gear controller of the vehicle receives the current gear request command of the vehicle, it will The current gear information of the vehicle is returned to the vehicle control module.
  • step S14 the vehicle control module controls the motor of the vehicle to output compensation torque according to the pressure of the brake master cylinder. Since the pressure of the brake master cylinder can accurately reflect the range of the vehicle's braking idle stroke, the motor of the vehicle is controlled to output compensation torque in time, thereby effectively inhibiting the vehicle's braking idle stroke from slipping and ensuring driving safety.
  • a motor of a vehicle refers to an engine for providing a driving power source of the vehicle.
  • the direction of the compensating torque output by the motor of the vehicle is opposite to the direction of the rotation speed of the current wheel. For example, if it is judged in step S12 whether the vehicle is in the braking idling slipping state, the gear of the vehicle is forward gear D, and the rotation speed direction of the motor is reverse direction, then the motor of the vehicle is controlled according to the pressure of the brake master cylinder.
  • the direction of the output compensation torque should be forward direction.
  • step S12 if it is judged in step S12 whether the vehicle is in the braking idling slipping state, the gear of the vehicle is the reverse gear R gear, and the rotation speed direction of the motor is the forward rotation direction, then the pressure of the vehicle is controlled according to the pressure of the brake master cylinder.
  • the direction of the compensation torque output by the motor should be the reverse direction.
  • step S14 after obtaining the pressure of the brake master cylinder, the vehicle control module will query the stored brake master cylinder pressure-compensation torque table, and obtain the vehicle motor from the brake master cylinder pressure-compensation torque table The compensation torque that should be output.
  • the vehicle control module After the vehicle control module acquires the compensation torque that the motor of the vehicle should output, it outputs the command information of the compensation torque value to the motor of the vehicle, and the motor of the vehicle outputs the corresponding compensation torque value according to the command information.
  • the vehicle control module will store the master cylinder pressure-compensated torque table in the associated memory. After the vehicle control module acquires the pressure of the brake master cylinder, it will send a query request to the associated memory to obtain the compensation torque corresponding to the pressure of the brake master cylinder.
  • the brake master cylinder pressure-compensated torque table is formulated after considering many factors. These factors include, but are not limited to, vehicle weight, wheel drag coefficients, and the like.
  • the initial version of the brake master cylinder pressure-compensation torque table is formulated according to the maximum compensation torque required to maintain the vehicle stationary on a slope with a certain value of the vehicle with the mass of the vehicle half loaded. That is, when a vehicle with a half-load mass of the entire vehicle is placed on a slope with a certain value and the vehicle is kept stationary, the vehicle control module obtains the compensation that the motor of the vehicle should output under different pressures of the brake master cylinder torque.
  • the slope is chosen to be 7 degrees.
  • Fig. 2 is a flowchart of a vehicle torque compensation method according to other embodiments of the present application. Similar to that described with respect to FIG. 1 , the vehicle includes a vehicle control module through which the torque compensation method is performed.
  • the torque compensation method for a vehicle in FIG. 2 starts with step S21.
  • step S21 the vehicle control module controls the vehicle to run normally.
  • vehicle torque compensation method of the present invention may include step S21, or may be implemented independently of step S21.
  • step S22 similar to that described in relation to step S12 in FIG. 1 , the vehicle control module determines whether the vehicle is in a braking idling roll state.
  • the execution process of step S22 is similar to that of step S12 and will not be repeated here.
  • step S23 is performed to acquire the pressure of the brake master cylinder and the rotational speed of the motor of the vehicle. Since the vehicle control module is connected with the brake master cylinder and the motor of the vehicle, it can send the request command of the pressure of the brake master cylinder of the vehicle and the speed of the motor to the brake master cylinder of the vehicle. After the request command of the module, the pressure information of the brake master cylinder and the information of the motor speed will be returned to the vehicle control module.
  • step S24 the vehicle control module controls the motor of the vehicle to output compensation torque according to the pressure of the brake master cylinder and the speed of the motor.
  • step S24 after the vehicle control module acquires the pressure of the brake master cylinder and the speed of the motor, it will query the stored brake master cylinder pressure and speed-compensation torque table, from the brake master cylinder pressure and speed- The compensation torque that should be output by the motor of the vehicle is obtained from the compensation torque table.
  • the vehicle control module After the vehicle control module acquires the compensation torque that the motor of the vehicle should output, it outputs the command information of the compensation torque value to the motor of the vehicle, and the motor of the vehicle outputs the corresponding compensation torque value according to the command information.
  • the vehicle control module will store the master cylinder pressure and speed-compensation torque table in the associated memory. After the vehicle control module acquires the pressure of the brake master cylinder and the speed of the motor, it will send a query request to the associated memory to obtain the compensation torque corresponding to the pressure of the brake master cylinder and the speed of the motor.
  • the brake master cylinder pressure and speed-compensation torque table is formulated after considering many factors. These factors include, but are not limited to, vehicle weight, wheel drag coefficients, and the like.
  • the initial version of the brake master cylinder pressure-compensation torque table is formulated according to the maximum compensation torque required to maintain the vehicle stationary on a slope with a certain value of the vehicle with the mass of the vehicle half loaded. That is, when a vehicle with a half-load mass of the entire vehicle is placed on a slope with a certain value and the vehicle is kept stationary, the vehicle control module obtains the compensation that the motor of the vehicle should output under different pressures of the brake master cylinder torque.
  • the slope is chosen to be 7 degrees.
  • the driver will usually step on the brake pedal deeply and will not allow the car to roll; while when the slope is less than 7 degrees, the brake idling may cause the car to roll.
  • the calibration engineer will adjust the initial version of the brake master cylinder pressure and speed-compensation torque table according to the actual situation.
  • the vehicle control module obtains the pressure of the brake master cylinder of the vehicle and the motor speed of the vehicle motor in real time. Since the real-time pressure of the brake master cylinder and the motor speed of the vehicle motor reflect the real-time braking force applied to the wheels, it can more accurately reflect the range of braking idle travel, thereby controlling the motor output compensation torque of the vehicle and further refining the vehicle's Torque Compensation Method.
  • the brake idling range can be judged more accurately according to the pressure of the brake master cylinder. Based on this operating torque compensation method, the braking idling of the vehicle can be effectively suppressed from rolling, ensuring driving safety.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

一种车辆的扭矩补偿方法、车辆的扭矩补偿装置以及相关联的计算机可读存储介质。该方法包括:当车辆的车辆控制模块确定车辆处于制动空行程溜车状态时,车辆控制模块获取车辆的制动主缸的压力,根据制动主缸的压力控制车辆的电机输出补偿扭矩。本申请能够精确地判断车辆的制动空行程范围,控制车辆的电机及时输出补偿扭矩,有效地抑制车辆的制动空行程溜车,保证行车安全。

Description

车辆的扭矩补偿方法及装置、计算机可读存储介质 技术领域
本申请涉及车辆领域,具体涉及车辆的扭矩补偿方法、车辆的扭矩补偿装置以及相关联的计算机可读存储介质。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,控制技术又是关乎其发展的一项重要因素。
电动车辆在行驶过程中会出现制动空行程溜车,这会造成碰撞等交通事故,甚至会危及人的生命,具有极大的安全隐患。
发明内容
鉴于上述问题,本申请提供一种车辆的扭矩补偿方法、车辆的扭矩补偿装置以及相关联的计算机可读存储介质,能够精确地判断车辆的制动空行程范围,控制车辆的电机及时输出补偿扭矩,从而有效地抑制车辆的制动空行程溜车,保证行车安全。
第一方面,本申请提供了一种车辆的扭矩补偿方法,所述车辆包括车辆控制模块,所述扭矩补偿方法包括:当所述车辆控制模块确定所述车辆处于制动空行程溜车状态时,所述车辆控制模块获取所述车辆的制动主缸的压力,并且根据所述制动主缸的压力控制所述车辆的电机输出补偿扭矩。
在本申请实施例的技术方案中,申请人研究发现,在车辆出现制动空行程溜车时,制动主缸施加于车辆车轮上的制动力并不足以使得车辆车轮制动。此时,制动主缸的压力能够更精确地反映制动空行程范围,根据制动主缸的压力控制车辆的电机及时输出补偿扭矩,可以有效地抑制车辆的制动空行程溜车,保证行车安全。
在一些实施例中,所述车辆控制模块获取所述车辆的制动主缸的压力,并且根据所述制动主缸的压力控制所述车辆的电机输出补偿扭矩包括:在所述车辆控制模块获取的所述制动主缸的压力包括第一压力的情况下,所 述车辆控制模块控制所述车辆的电机所输出的补偿扭矩包括第一补偿扭矩;以及在所述车辆控制模块获取的所述制动主缸的压力包括第二压力的情况下,所述车辆控制模块控制所述车辆的电机所输出的补偿扭矩包括第二补偿扭矩;其中,所述第一压力小于所述第二压力,所述第一补偿扭矩大于所述第二补偿扭矩。在本申请实施例的扭矩补偿方法中,制动主缸的压力越小,车辆的电机应当输出的补偿扭矩越大;制动主缸的压力越大,车辆的电机应当输出的补偿扭矩越小。根据制动主缸的压力大小来精确地控制车辆的电机及时输出适当的补偿扭矩,有效地抑制车辆的制动空行程溜车。
在一些实施例中,所述车辆控制模块获取所述车辆的制动主缸的压力包括:所述车辆控制模块实时获取所述车辆的制动主缸的压力。在本申请实施例的扭矩补偿方法中,由于制动主缸的实时压力反映了施加于车轮上的实时制动力,能够更精确地反映制动空行程范围,从而控制车辆的电机及时输出补偿扭矩,进一步细化车辆的扭矩补偿方法。
在一些实施例中,所述车辆控制模块获取所述车辆的制动主缸的压力,并且根据所述制动主缸的压力控制所述车辆的电机输出补偿扭矩还包括:所述车辆控制模块实时获取所述车辆的制动主缸的压力以及所述车辆的电机的转速,并且根据所述制动主缸的压力以及所述车辆的电机的转速控制所述车辆的电机输出补偿扭矩。
在一些实施例中,所述车辆控制模块实时获取所述车辆的制动主缸的压力以及所述车辆的电机的转速,并且根据所述制动主缸的压力以及所述车辆的电机的转速控制所述车辆的电机输出补偿扭矩还包括:在所述车辆控制模块获取的所述制动主缸的压力包括第三压力以及所述车辆的电机的转速包括第一转速的情况下,所述车辆控制模块控制所述车辆的电机所输出的补偿扭矩包括第三补偿扭矩;以及在所述车辆控制模块获取的所述制动主缸的压力包括所述第三压力以及所述车辆的电机的转速包括第二转速的情况下,所述车辆控制模块控制所述车辆的电机所输出的补偿扭矩包括第四补偿扭矩;其中,所述第一转速小于所述第二转速,所述第三补偿扭矩小于所述第四补偿扭矩。
在本申请实施例的扭矩补偿方法中,结合实时获取的车辆的制动主缸 的压力以及电机的转速控制车辆的电机及时输出补偿扭矩,能够将车辆的惯性等一些因素考虑在内,更有效地抑制车辆的制动空行程溜车。
在一些实施例中,所述车辆控制模块确定所述车辆处于制动空行程溜车状态包括:当所述车辆控制模块确定所述车辆的行驶速度处于低速行驶模式所对应的第一速度范围且所述车辆的制动踏板开度的减小值超过第一开度值时,所述车辆控制模块进一步确定所述车辆的电机的电机转速是否增大;当所述车辆控制模块确定所述车辆的电机转速增大时,所述车辆控制模块根据所述车辆的挡位、所述车辆的电机的电机转速方向确定所述车辆是否处于制动空行程溜车状态。
第二方面,提供了一种计算机可读存储介质,在所述计算机可读存储介质上存储有计算机指令,所述计算机指令被计算设备执行时使得所述计算设备实现根据上述实施例中所述的扭矩补偿方法。
第三方面,提供了一种车辆的扭矩补偿装置,包括车辆控制模块,其中:所述车辆控制模块用于当确定所述车辆处于制动空行程溜车状态时,获取所述车辆的制动主缸的压力,并且根据所述制动主缸的压力控制所述车辆的电机输出补偿扭矩。
在一些实施例中,所述车辆控制模块用于在所述车辆控制模块获取的所述制动主缸的压力包括第一压力的情况下,控制所述车辆的电机所输出的补偿扭矩包括第一补偿扭矩;以及所述车辆控制模块用于在所述车辆控制模块获取的所述制动主缸的压力包括第二压力的情况下,控制所述车辆的电机所输出的补偿扭矩包括第二补偿扭矩;其中,所述第一压力小于所述第二压力,所述第一补偿扭矩大于所述第二补偿扭矩。
在一些实施例中,所述车辆控制模块用于实时获取所述车辆的制动主缸的压力。
在一些实施例中,所述车辆控制模块用于实时获取所述车辆的制动主缸的压力以及所述车辆的电机的转速,并且根据所述制动主缸的压力以及所述车辆的电机的转速控制所述车辆的电机输出补偿扭矩。
在一些实施例中,所述车辆控制模块用于在所述车辆控制模块获取的所述制动主缸的压力包括第三压力以及所述车辆的电机的转速包括第一转速的情况下,控制所述车辆的电机所输出的补偿扭矩包括第三补偿扭矩; 以及所述车辆控制模块用于在所述车辆控制模块获取的所述制动主缸的压力包括所述第三压力以及所述车辆的电机的转速包括第二转速的情况下,控制所述车辆的电机所输出的补偿扭矩包括第四补偿扭矩;其中,所述第一转速小于所述第二转速,所述第三补偿扭矩小于所述第四补偿扭矩。
在一些实施例中,所述车辆控制模块用于当确定所述车辆的行驶速度处于低速行驶模式所对应的第一速度范围且所述车辆的制动踏板开度的减小值超过第一开度值时,进一步确定所述车辆的电机的电机转速是否增大;所述车辆控制模块用于当确定所述车辆的电机转速增大时,根据所述车辆的挡位、所述车辆的电机的电机转速方向确定所述车辆是否处于制动空行程溜车状态。
应理解,本申请第三方面及其实施例能够实现与本申请的第一方面及其实施例相同的技术效果。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1为本申请一些实施例的车辆的扭矩补偿方法的流程图;
图2为本申请另一些实施例的车辆的扭矩补偿方法的流程图。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了 描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”、“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本文中按顺序陈述步骤未必意味着,实施例或方面限于所陈述的顺序。相反,可以想象还以不同的顺序或者彼此并行地执行所述步骤,除非后一步骤基于前一步骤建立,这必然需要首先执行前一步骤,然后执行后一步骤(此种情况将在具体实施例中更加明了)。所陈述的顺序可以是优选的实施例。
目前,从市场形势的发展来看,对于节能减排的要求越来越高。电动车辆由于其节能环保的优势,市场的需求量也在不断地扩增。而对于电动车辆,人们对其控制技术也提出了越来越高的要求。
在本申请实施例的描述中,电动车辆可以是纯电动车辆(Battery Electric Vehicle,BEV),也可以是混合动力车辆(Hybrid Electric Vehicle,HEV)。纯电动车辆是完全由可充电电池诸如铅酸电池、镍镉电池、镍氢电池或锂离子电池提供动力源的车辆。混合动力车辆是由可充电电池与传统 动力源(例如,汽油、柴油、压缩天然气、丙烷和乙醇燃料等)提供混合动力源的车辆,这两类动力源在车辆的不同行驶状态分别工作或者一起工作。针对本申请实施例的混合动力车辆,在车辆低速行驶时由可充电电池提供动力源。
在电动车辆中,车辆控制单元是核心控制部件,主要功能是解析驾驶员的需求,监控车辆的行驶状态,协调控制单元如电池管理系统BMS、微控制单元MCU、发动机管理系统EMS、自动变速箱控制单元TCU等的工作,实现车辆的上下电、驱动控制、能量回收、附件控制和故障诊断等功能。制动主缸是车辆制动系统的动力源,制动主缸的主要作用是将驾驶员施加在制动踏板上的踏板力转换成制动主缸的压力,进而转换成施加于车辆车轮上的制动力,从而实现车辆的制动效果。
本发明人注意到,在现有技术中的一些车辆中,车辆控制模块会接收到制动踏板的模拟信号,然后根据制动踏板的模拟信号来控制制动主缸输出施加于车辆车轮上的制动力。在这些车辆中,制动主缸的压力能够精确地反映制动踏板的开度(即,制动主缸的压力与制动踏板的开度匹配)。
然而,在现有技术中还存在一些电动车辆,制动主缸的压力不能够精确地反映制动踏板的开度(即,制动主缸的压力与制动踏板的开度不匹配)。这些电动车辆在行驶过程中会出现制动空行程溜车。例如,在一种现有电动车辆中,当驾驶员踩踏制动踏板时,与制动踏板相连接的输入杆产生位移,制动踏板行程传感器探测到输入杆的位移,将该位移信号发送至控制器,控制器计算出制动电机应该产生的扭矩,由传动装置将该扭矩转化为制动主缸的伺服制动力。此时,车辆控制模块并不会接收到制动踏板的模拟信号,制动踏板的开度是由输入杆的位移所推导出来的。例如,输入杆的位移乘以某一系数诸如4.76即可得到制动踏板的开度。在这种情况下,由于制动踏板的开度是由车辆的制动系统发出的,并不能够直接反映制动空行程范围,会导致出现制动空行程溜车,有可能造成碰撞等交通事故,甚至会危及人的生命,具有极大的安全隐患。另外,在这些车辆中,尽管标定工程师能够进行测试以对对应于制动空行程范围的制动踏板的开度进行标定,从而控制车辆的电机输出适当的补偿扭矩,但是制动踏板的开度可能在各个车辆之间彼此不同,如果对应于制动空行程范围的制动踏板的 开度与车辆的电机输出的补偿扭矩不匹配,也不能有效地抑制制动空行程溜车或者会出现车轮夹紧后出现异响的情况。
为了解决制动主缸的压力与制动踏板的开度不匹配时所出现的问题,从而有效地抑制车辆的制动空行程溜车,申请人研究发现,可以在车辆行驶过程中根据车辆的制动主缸的压力控制车辆的电机输出补偿扭矩。具体而言,申请人研究发现,在车辆出现制动空行程溜车时,制动主缸施加于车辆车轮上的制动力并不足以使得车辆车轮制动。此时,制动主缸的压力能够更精确地反映制动空行程范围,根据制动主缸的压力控制车辆的电机及时输出补偿扭矩,可以有效地抑制车辆的制动空行程溜车,保证行车安全。
基于以上考虑,发明人经过深入研究,设计了一种车辆的扭矩补偿方法,车辆包括车辆控制模块,扭矩补偿方法包括:当车辆控制模块确定车辆处于制动空行程溜车状态时,车辆控制模块获取车辆的制动主缸的压力,并且根据制动主缸的压力控制车辆的电机输出补偿扭矩。在这种扭矩补偿方法中,在车辆即将或者已经出现制动空行程溜车时,根据制动主缸的压力来控制车辆的电机及时输出补偿扭矩,有效地抑制车辆的制动空行程溜车。
本申请实施例公开的车辆的扭矩补偿方法可以用于包括但不限于制动主缸的压力与制动踏板的开度不匹配的车辆中,还可以适用于制动踏板的模拟信号不传输至车辆控制模块的车辆中。通过在这样的车辆中使用本申请公开的扭矩补偿方法,能够及时、有效地制止制动空行程溜车,有效地确保行车安全。
图1为本申请一些实施例的车辆的扭矩补偿方法的流程图。车辆包括车辆控制模块,扭矩补偿方法通过车辆控制模块来执行。
图1中的车辆的扭矩补偿方法以步骤S11开始。
在步骤S11中,车辆控制模块控制车辆正常行驶。车辆控制单元是电动车辆的核心控制部件,与车辆的车速传感器、加速踏板传感器、制动踏板传感器、电机、挡位控制器、制动主缸等连接,能够协调控制单元诸如电池管理系统BMS、微控制单元MCU、发动机管理系统EMS、自动变速箱控制单元TCU等的工作,从而控制车辆进行正常行驶。本领域技术人员应理解,本发明的车辆的扭矩补偿方法可以包括步骤S11,也可以独立于步骤S11来实现。
在步骤S12中,车辆控制模块判断车辆是否处于制动空行程溜车状态。
例如,首先车辆控制模块判断车辆是否处于低速行驶模式(即,蠕行行驶模式)。在本申请中,低速行驶模式时的车辆行驶速度为0-10km/h。然而,应理解,根据应用场景的不同,低速行驶模式时的车辆行驶速度的范围可改变。
如果车辆控制模块确定车辆未处于低速行驶模式,则确定车辆处于中高速行驶模式;在这种情况下,并不会产生制动溜车。此时,车辆控制模块确定车辆不会处于制动空行程溜车状态,继续返回实时地判断车辆是否处于低速行驶模式。应理解,应当尽可能地避免在车辆中高速行驶模式时运行本申请的车辆的扭矩补偿方法,以避免为车辆带来巨大冲击。
如果车辆控制模块确定车辆处于低速行驶模式,则进一步判断车辆的制动踏板开度的减小值是否超过某一开度值(例如,制动踏板开度的减小值是否超过12%),即判断驾驶员是否意图对车辆进行制动。如果车辆控制模块确定车辆的制动踏板开度的值并未减小或者制动踏板开度的减小值在12%以下,则确定驾驶员并没有意图对车辆进行制动,之后继续返回实时地判断车辆的制动踏板开度的减小值是否超过某一开度值。如果车辆控制模块确定车辆的制动踏板开度的减小值已超过某一开度值(例如,制动踏板开度的减小值超过了12%),则进一步判断车辆的电机的电机转速是否增大。
如果车辆控制模块确定车辆的电机的电机转速正常减小,则确定车辆正在正常制动减速。
如果车辆控制模块确定车辆的电机的电机转速异常增大,则确定车辆有可能处于制动空行程溜车状态,进一步结合车辆的挡位与电机的电机转速方向来确认车辆是否处于制动空行程溜车状态。例如,如果此时车辆的挡位为前进挡D挡,而电机的转速方向为逆转,则有可能车辆处于平地或下坡制动空行程溜车状态。再例如,如果此时车辆的挡位为倒车档R挡,而电机的转速方向为正转,则有可能车辆处于上坡制动空行程溜车状态。
在本申请中,为了获取车辆的速度信息,车辆控制模块向车辆的车速传感器发送车速请求指令,车速传感器接收到车速请求指令之后,会将当前的车速信息返回给车辆控制模块。类似地,为了获取车辆的制动踏板开度,车辆控制模块向车辆的制动踏板传感器发送制动踏板开度请求指令,制动踏板 传感器接收到制动踏板开度请求指令之后,会将当前的制动踏板开度信息返回给车辆控制模块。同样类似地,为了获取车辆的电机转速以及电机转速方向等信息,车辆控制模块向车辆的电机发送电机转速以及电机转速方向请求指令,车辆的电机接收到电机转速以及电机转速方向请求指令之后,会将当前的电机转速以及电机转速方向信息返回给车辆控制模块。再次类似地,为了获取车辆的挡位信息,车辆控制模块向车辆的挡位控制器发送车辆的当前挡位请求指令,车辆的挡位控制器接收到车辆的当前挡位请求指令之后,会将车辆的当前挡位信息返回给车辆控制模块。
由于车辆控制单元是电动车辆的核心控制部件,与车辆的上述这些构件连接,能够向这些构件发送请求信息来获得关于车速、制动踏板开度、电机转速以及电机转速方向等信息,进而判断车辆是否处于低速行驶模式。
返回图1,如果车辆控制模块确定车辆未处于制动空行程溜车状态,则返回步骤S11,继续控制车辆正常行驶,不运行本申请的车辆的扭矩补偿方法。如果车辆控制模块确定车辆处于制动空行程溜车状态,则执行步骤S13,获取车辆的制动主缸的压力。由于车辆控制模块与车辆的制动主缸连接,可以向车辆的制动主缸发送车辆的制动主缸的压力的请求指令,制动主缸在接收到该请求指令之后,会将制动主缸的压力信息返回给车辆控制模块。
然后执行步骤S14,车辆控制模块根据制动主缸的压力控制车辆的电机输出补偿扭矩。由于根据制动主缸的压力能够精确地反映车辆的制动空行程范围,控制车辆的电机及时输出补偿扭矩,从而有效地抑制车辆的制动空行程溜车,保证行车安全。
在本申请中,车辆的电机指的是用于提供车辆驱动动力源的发动机。另外,车辆的电机所输出的补偿扭矩的方向与当前车轮的转速方向是相反的。例如,如果在步骤S12判断车辆是否处于制动空行程溜车状态时,车辆的挡位为前进挡D挡,电机的转速方向为逆转方向,则根据制动主缸的压力控制车辆的电机所输出的补偿扭矩的方向应当为正转方向。再例如,如果在步骤S12判断车辆是否处于制动空行程溜车状态时,车辆的挡位为倒车档R挡,电机的转速方向为正转方向,则根据制动主缸的压力控制车辆的电机所输出的补偿扭矩的方向应当为逆转方向。
在步骤S14中,车辆控制模块在获取了制动主缸的压力之后,会查询 所存储的制动主缸压力-补偿扭矩表,从该制动主缸压力-补偿扭矩表中获取车辆的电机应当输出的补偿扭矩。
在本申请中,车辆控制模块在获取了车辆的电机应当输出的补偿扭矩之后,向车辆的电机输出该补偿扭矩值的命令信息,车辆的电机根据该命令信息输出相应的补偿扭矩值。
在本申请中,车辆控制模块会在相关联的存储器中存储制动主缸压力-补偿扭矩表。在车辆控制模块获取了制动主缸的压力之后,会向相关联的存储器发送查询请求,以获得该制动主缸压力所对应的补偿扭矩。
该制动主缸压力-补偿扭矩表是在考虑诸多因素之后制定的。这些因素包括但不限于车辆的车重、车轮阻力系数等。初始版本的制动主缸压力-补偿扭矩表根据具有整车半载质量的车辆于坡度为某一值的斜坡上维持车辆静止时所需的最大补偿扭矩来制定。即,当将具有整车半载质量的车辆置于坡度为某一值的斜坡上且维持车辆静止时,车辆控制模块获取车辆在制动主缸的不同压力下,车辆的电机应当输出的补偿扭矩。优选地,坡度选择为7度。通常情况下,在坡度大于7度时,驾驶员通常会深踩制动踏板,不会放任溜车现象发生;而在坡度小于7度时,有可能会发生制动空行程溜车现象。在实际驾驶过程中,标定工程师会根据实际情况对初始版本的制动主缸压力-补偿扭矩表进行调整。
制动主缸压力-补偿扭矩表的一个实施例如表1所示。
表1 制动主缸压力-补偿扭矩表
主缸压力/bar 0 1 1.5 2
补偿扭矩/Nm 45 40 20 10
在表1中,当主缸压力为0bar时,车辆的电机应当输出的补偿扭矩为45Nm;当主缸压力为1bar时,车辆的电机应当输出的补偿扭矩为40Nm;当主缸压力为1.5bar时,车辆的电机应当输出的补偿扭矩为20Nm;当主缸压力为2bar时,车辆的电机应当输出的补偿扭矩为10Nm。
从表1的制动主缸压力-补偿扭矩表可以看到,制动主缸的压力越小,车辆的电机应当输出的补偿扭矩越大。随着驾驶员继续深踩制动踏板,制动主缸的压力增大,车辆的电机应当输出的补偿扭矩逐渐减小。当制动踏板开度超出了制动空行程范围时,制动主缸的压力已经足够大,车辆的电 机无需输出补偿扭矩。
优选地,在步骤S12中,车辆控制模块实时地获取车辆的制动主缸的压力。由于制动主缸的实时压力反映了施加于车轮上的实时制动力,能够更精确地反映制动空行程范围,从而控制车辆的电机输出补偿扭矩,进一步细化车辆的扭矩补偿方法。
图2为本申请另一些实施例的车辆的扭矩补偿方法的流程图。类似于关于图1所描述的,车辆包括车辆控制模块,扭矩补偿方法通过车辆控制模块来执行。
图2中的车辆的扭矩补偿方法以步骤S21开始。
在步骤S21中,车辆控制模块控制车辆正常行驶。本领域技术人员应理解,本发明的车辆的扭矩补偿方法可以包括步骤S21,也可以独立于步骤S21来实现。
在步骤S22中,类似于关于图1中的步骤S12所描述的,车辆控制模块判断车辆是否处于制动空行程溜车状态。步骤S22的执行过程与步骤S12类似,在此不再赘述。
如果车辆控制模块确定车辆未处于制动空行程溜车状态,则返回步骤S21,继续控制车辆正常行驶,不运行本申请的车辆的扭矩补偿方法。如果车辆控制模块确定车辆处于制动空行程溜车状态,则执行步骤S23,获取车辆的制动主缸的压力和电机的转速。由于车辆控制模块与车辆的制动主缸以及电机连接,可以向车辆的制动主缸发送车辆的制动主缸的压力以及电机转速的请求指令,制动主缸以及主机在接收到车辆控制模块的请求指令之后,会将制动主缸的压力信息以及电机转速的信息返回给车辆控制模块。
然后执行步骤S24,车辆控制模块根据制动主缸的压力和电机的转速控制车辆的电机输出补偿扭矩。
本申请发明人发现,车辆的电机应当输出的补偿扭矩除了与车辆的制动主缸的压力有关之外,与车辆的电机的转速也存在一定的关系。在车辆的电机的转速不同时,车辆的电机需要输出的补偿扭矩也并不相同。在图2的车辆的扭矩补偿方法,结合获取的车辆的制动主缸的压力以及电机的转速控制车辆的电机及时输出补偿扭矩,能够将车辆的惯性等一些因素考虑在内,更有效地抑制车辆的制动空行程溜车。
类似于关于图1中的步骤S14所描述的,车辆的电机指的是用于提供车辆驱动动力源的发动机。另外,车辆的电机所输出的补偿扭矩的方向与当前车轮的转速方向是相反的。
在步骤S24中,车辆控制模块在获取了制动主缸的压力以及电机的转速之后,会查询所存储的制动主缸压力及转速-补偿扭矩表,从该制动主缸压力及转速-补偿扭矩表表中获取车辆的电机应当输出的补偿扭矩。
在本申请中,车辆控制模块在获取了车辆的电机应当输出的补偿扭矩之后,向车辆的电机输出该补偿扭矩值的命令信息,车辆的电机根据该命令信息输出相应的补偿扭矩值。
在本申请中,车辆控制模块会在相关联的存储器中存储制动主缸压力及转速-补偿扭矩表。在车辆控制模块获取了制动主缸的压力以及电机的转速之后,会向相关联的存储器发送查询请求,以获得该制动主缸压力以及电机的转速所对应的补偿扭矩。
该制动主缸压力及转速-补偿扭矩表是在考虑诸多因素之后制定的。这些因素包括但不限于车辆的车重、车轮阻力系数等。初始版本的制动主缸压力-补偿扭矩表根据具有整车半载质量的车辆于坡度为某一值的斜坡上维持车辆静止时所需的最大补偿扭矩来制定。即,当将具有整车半载质量的车辆置于坡度为某一值的斜坡上且维持车辆静止时,车辆控制模块获取车辆在制动主缸的不同压力下,车辆的电机应当输出的补偿扭矩。优选地,坡度选择为7度。通常情况下,在坡度大于7度时,驾驶员通常会深踩制动踏板,不会放任溜车现象发生;而在坡度小于7度时,有可能会发生制动空行程溜车现象。在实际驾驶过程中,标定工程师会根据实际情况对初始版本的制动主缸压力及转速-补偿扭矩表进行调整。
制动主缸压力及转速-补偿扭矩表的一个实施例如表2所示。
表2 制动主缸压力及转速-补偿扭矩表
Figure PCTCN2022071057-appb-000001
Figure PCTCN2022071057-appb-000002
在表2中,当制动主缸压力为0bar时,车辆的电机转速为50rps时,车辆的电机应当输出的补偿扭矩为25Nm,车辆的电机转速为100rps时,车辆的电机应当输出的补偿扭矩为45Nm,车辆的电机转速为200rps时,车辆的电机应当输出的补偿扭矩为65Nm。也就是说,当制动主缸压力为0bar时,车辆的电机转速越大,车辆的电机应当输出的补偿扭矩越大。对于相同的制动主缸压力1bar、1.5bar和2bar,同样如此。
从表1的制动主缸压力及转速-补偿扭矩表可以看到,在相同的制动主缸压力时,车辆的电机转速越大,车辆的电机应当输出的补偿扭矩越大。车辆的电机转速越大,需要考虑车辆的惯性等一系列因素,车辆的电机应当输出的补偿扭矩越大。
优选地,在步骤S22中,车辆控制模块实时地获取车辆的制动主缸的压力以及车辆电机的电机转速。由于制动主缸的实时压力以及车辆电机的电机转速反映了施加于车轮上的实时制动力,能够更精确地反映制动空行程范围,从而控制车辆的电机输出补偿扭矩,进一步细化车辆的扭矩补偿方法。
根据本申请的一些实施例,根据制动主缸的压力来更精确地判断制动空行程范围,基于此运行扭矩补偿方法,可以有效地抑制车辆的制动空行程溜车,保证行车安全。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (13)

  1. 一种车辆的扭矩补偿方法,所述车辆包括车辆控制模块,所述扭矩补偿方法包括:
    当所述车辆控制模块确定所述车辆处于制动空行程溜车状态时,所述车辆控制模块获取所述车辆的制动主缸的压力,并且根据所述制动主缸的压力控制所述车辆的电机输出补偿扭矩。
  2. 根据权利要求1所述的扭矩补偿方法,其中所述车辆控制模块获取所述车辆的制动主缸的压力,并且根据所述制动主缸的压力控制所述车辆的电机输出补偿扭矩包括:
    在所述车辆控制模块获取的所述制动主缸的压力包括第一压力的情况下,所述车辆控制模块控制所述车辆的电机所输出的补偿扭矩包括第一补偿扭矩;以及
    在所述车辆控制模块获取的所述制动主缸的压力包括第二压力的情况下,所述车辆控制模块控制所述车辆的电机所输出的补偿扭矩包括第二补偿扭矩;
    其中,所述第一压力小于所述第二压力,所述第一补偿扭矩大于所述第二补偿扭矩。
  3. 根据权利要求1所述的扭矩补偿方法,其中所述车辆控制模块获取所述车辆的制动主缸的压力包括:
    所述车辆控制模块实时获取所述车辆的制动主缸的压力。
  4. 根据权利要求1所述的扭矩补偿方法,其中所述车辆控制模块获取所述车辆的制动主缸的压力,并且根据所述制动主缸的压力控制所述车辆的电机输出补偿扭矩还包括:
    所述车辆控制模块实时获取所述车辆的制动主缸的压力以及所述车辆的电机的转速,并且根据所述制动主缸的压力以及所述车辆的电机的转速控制所述车辆的电机输出补偿扭矩。
  5. 根据权利要求4所述的扭矩补偿方法,其中所述车辆控制模块实时获取所述车辆的制动主缸的压力以及所述车辆的电机的转速,并且根据所述制动主缸的压力以及所述车辆的电机的转速控制所述车辆的电机输出补偿扭矩还包括:
    在所述车辆控制模块获取的所述制动主缸的压力包括第三压力以及所述车辆的电机的转速包括第一转速的情况下,所述车辆控制模块控制所述车辆的电机所输出的补偿扭矩包括第三补偿扭矩;以及
    在所述车辆控制模块获取的所述制动主缸的压力包括所述第三压力以及所述车辆的电机的转速包括第二转速的情况下,所述车辆控制模块控制所述车辆的电机所输出的补偿扭矩包括第四补偿扭矩;
    其中,所述第一转速小于所述第二转速,所述第三补偿扭矩小于所述第四补偿扭矩。
  6. 根据权利要求1所述的扭矩补偿方法,其中所述车辆控制模块确定所述车辆处于制动空行程溜车状态包括:
    当所述车辆控制模块确定所述车辆的行驶速度处于低速行驶模式所对应的第一速度范围且所述车辆的制动踏板开度的减小值超过第一开度值时,所述车辆控制模块进一步确定所述车辆的电机的电机转速是否增大;
    当所述车辆控制模块确定所述车辆的电机转速增大时,所述车辆控制模块根据所述车辆的挡位、所述车辆的电机的电机转速方向确定所述车辆是否处于制动空行程溜车状态。
  7. 一种计算机可读存储介质,在所述计算机可读存储介质上存储有计算机指令,所述计算机指令被计算设备执行时使得所述计算设备实现根据权利要求1至6中任一项所述的扭矩补偿方法。
  8. 一种车辆的扭矩补偿装置,包括车辆控制模块,其中:
    所述车辆控制模块用于当确定所述车辆处于制动空行程溜车状态时,获取所述车辆的制动主缸的压力,并且根据所述制动主缸的压力控制所述车辆的电机输出补偿扭矩。
  9. 根据权利要求8所述的扭矩补偿装置,其中:
    所述车辆控制模块用于在所述车辆控制模块获取的所述制动主缸的压力包括第一压力的情况下,控制所述车辆的电机所输出的补偿扭矩包括第一补偿扭矩;以及
    所述车辆控制模块用于在所述车辆控制模块获取的所述制动主缸的压力包括第二压力的情况下,控制所述车辆的电机所输出的补偿扭矩包括第二补偿扭矩;
    其中,所述第一压力小于所述第二压力,所述第一补偿扭矩大于所述第二补偿扭矩。
  10. 根据权利要求8所述的扭矩补偿装置,其中:
    所述车辆控制模块用于实时获取所述车辆的制动主缸的压力。
  11. 根据权利要求8所述的扭矩补偿装置,其中:
    所述车辆控制模块用于实时获取所述车辆的制动主缸的压力以及所述车辆的电机的转速,并且根据所述制动主缸的压力以及所述车辆的电机的转速控制所述车辆的电机输出补偿扭矩。
  12. 根据权利要求11所述的扭矩补偿装置,其中:
    所述车辆控制模块用于在所述车辆控制模块获取的所述制动主缸的压力包括第三压力以及所述车辆的电机的转速包括第一转速的情况下,控制所述车辆的电机所输出的补偿扭矩包括第三补偿扭矩;以及
    所述车辆控制模块用于在所述车辆控制模块获取的所述制动主缸的压力包括所述第三压力以及所述车辆的电机的转速包括第二转速的情况下,控制所述车辆的电机所输出的补偿扭矩包括第四补偿扭矩;
    其中,所述第一转速小于所述第二转速,所述第三补偿扭矩小于所述第四补偿扭矩。
  13. 根据权利要求8所述的扭矩补偿装置,其中:
    所述车辆控制模块用于当确定所述车辆的行驶速度处于低速行驶模式所对应的第一速度范围且所述车辆的制动踏板开度的减小值超过第一开度值时,进一步确定所述车辆的电机的电机转速是否增大;
    所述车辆控制模块用于当确定所述车辆的电机转速增大时,根据所述车辆的挡位、所述车辆的电机的电机转速方向确定所述车辆是否处于制动空行程溜车状态。
PCT/CN2022/071057 2022-01-10 2022-01-10 车辆的扭矩补偿方法及装置、计算机可读存储介质 WO2023130456A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP22734083.3A EP4238809A1 (en) 2022-01-10 2022-01-10 Torque compensation method and device for vehicle, and computer readable storage medium
KR1020227018955A KR20230109092A (ko) 2022-01-10 2022-01-10 차량의 토크 보상 방법 및 장치, 컴퓨터 판독 가능 저장 매체
JP2022535899A JP2024504887A (ja) 2022-01-10 2022-01-10 車両のトルク補償方法及び装置、コンピュータ可読記憶媒体
PCT/CN2022/071057 WO2023130456A1 (zh) 2022-01-10 2022-01-10 车辆的扭矩补偿方法及装置、计算机可读存储介质
CN202280006772.9A CN116745184A (zh) 2022-01-10 2022-01-10 车辆的扭矩补偿方法及装置、计算机可读存储介质
US17/875,439 US20230219543A1 (en) 2022-01-10 2022-07-28 Torque compensation method and apparatus of vehicle, and computer-readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/071057 WO2023130456A1 (zh) 2022-01-10 2022-01-10 车辆的扭矩补偿方法及装置、计算机可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/875,439 Continuation US20230219543A1 (en) 2022-01-10 2022-07-28 Torque compensation method and apparatus of vehicle, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2023130456A1 true WO2023130456A1 (zh) 2023-07-13

Family

ID=87070061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071057 WO2023130456A1 (zh) 2022-01-10 2022-01-10 车辆的扭矩补偿方法及装置、计算机可读存储介质

Country Status (6)

Country Link
US (1) US20230219543A1 (zh)
EP (1) EP4238809A1 (zh)
JP (1) JP2024504887A (zh)
KR (1) KR20230109092A (zh)
CN (1) CN116745184A (zh)
WO (1) WO2023130456A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274684A (ja) * 2008-05-19 2009-11-26 Nissan Motor Co Ltd 電動倍力式液圧ブレーキ装置
EP2743151A1 (de) * 2012-12-11 2014-06-18 Robert Bosch Gmbh Steuervorrichtung für ein rekuperatives Bremssystem eines Fahrzeugs und Verfahren zum Betreiben eines rekuperativen Bremssystems eines Fahrzeugs
CN109080499A (zh) * 2017-06-14 2018-12-25 联合汽车电子有限公司 整车控制器、电动交通工具及电动交通工具驻坡控制方法
CN110461665A (zh) * 2017-03-28 2019-11-15 大众汽车有限公司 用于补偿机动车的机械制动器的低执行器动态特性的方法和控制装置
CN110605971A (zh) * 2019-09-17 2019-12-24 中国第一汽车股份有限公司 电动汽车坡道驻车控制方法、控制系统及电动汽车
CN112078556A (zh) * 2020-08-11 2020-12-15 天津中科华誉科技有限公司 一种汽车制动力补偿方案及其控制方法
CN112440758A (zh) * 2019-09-03 2021-03-05 比亚迪股份有限公司 车辆及其起步的控制方法和控制装置
CN113581152A (zh) * 2021-07-20 2021-11-02 浙江万安科技股份有限公司 一种线控制动系统及一种主缸液压力时滞补偿控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009274684A (ja) * 2008-05-19 2009-11-26 Nissan Motor Co Ltd 電動倍力式液圧ブレーキ装置
EP2743151A1 (de) * 2012-12-11 2014-06-18 Robert Bosch Gmbh Steuervorrichtung für ein rekuperatives Bremssystem eines Fahrzeugs und Verfahren zum Betreiben eines rekuperativen Bremssystems eines Fahrzeugs
CN110461665A (zh) * 2017-03-28 2019-11-15 大众汽车有限公司 用于补偿机动车的机械制动器的低执行器动态特性的方法和控制装置
CN109080499A (zh) * 2017-06-14 2018-12-25 联合汽车电子有限公司 整车控制器、电动交通工具及电动交通工具驻坡控制方法
CN112440758A (zh) * 2019-09-03 2021-03-05 比亚迪股份有限公司 车辆及其起步的控制方法和控制装置
CN110605971A (zh) * 2019-09-17 2019-12-24 中国第一汽车股份有限公司 电动汽车坡道驻车控制方法、控制系统及电动汽车
CN112078556A (zh) * 2020-08-11 2020-12-15 天津中科华誉科技有限公司 一种汽车制动力补偿方案及其控制方法
CN113581152A (zh) * 2021-07-20 2021-11-02 浙江万安科技股份有限公司 一种线控制动系统及一种主缸液压力时滞补偿控制方法

Also Published As

Publication number Publication date
CN116745184A (zh) 2023-09-12
US20230219543A1 (en) 2023-07-13
EP4238809A1 (en) 2023-09-06
JP2024504887A (ja) 2024-02-02
KR20230109092A (ko) 2023-07-19

Similar Documents

Publication Publication Date Title
US9409577B2 (en) Method and apparatus for controlling torque intervention of hybrid electric vehicle
JP5074876B2 (ja) ハイブリッド車両のアイドルストップモード制御方法
US10768635B2 (en) Hybrid electric vehicle and platooning control method therefor
US6915782B2 (en) Control apparatus for hybrid vehicle
JP4394061B2 (ja) ベルト型ハイブリッド車両の回生制動制御方法
US8886374B2 (en) Torque control method for hybrid electric vehicle
US9944277B2 (en) Method for learning engine clutch kiss point of hybrid vehicle
US10457285B2 (en) Vehicle control device for controlling inertia operation of vehicle
WO2013061678A1 (ja) ハイブリッド車両の制御装置
JP2012006575A (ja) ハイブリッド車両の発進制御装置及び方法
US20130151044A1 (en) System and method of controlling torque in hybrid vehicle
US20050228554A1 (en) Control apparatus for hybrid vehicle
JP2016028913A (ja) 車両の前後振動制御装置
KR101684535B1 (ko) 하이브리드 차량의 토크 저감 제어 장치 및 방법
US6705686B2 (en) Method and apparatus for braking a hybrid electric vehicle
US11414064B2 (en) Hybrid vehicle and driving control method for the same
US11085530B2 (en) Active shift control method for power-off downshift of hybrid vehicle
JP4023625B2 (ja) ハイブリッド車両の制御装置
US20030205930A1 (en) High idle creep control by brake-by-wire braking
US10668810B2 (en) Vehicle stabilization for a hybrid vehicle in the event of brake slip of the drive wheels or increased risk thereof
WO2023130456A1 (zh) 车辆的扭矩补偿方法及装置、计算机可读存储介质
JP5418033B2 (ja) ハイブリッド車両の制御装置
KR20170028682A (ko) 하이브리드 차량의 토크 저감 제어 장치 및 방법
CN112622634A (zh) 电动汽车的扭矩控制方法及系统
WO2021062929A1 (zh) 油电混合动力汽车、控制方法、计算机设备及可读存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022535899

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022734083

Country of ref document: EP

Effective date: 20220707

WWE Wipo information: entry into national phase

Ref document number: 202280006772.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22734083

Country of ref document: EP

Kind code of ref document: A1