WO2023130389A1 - 发热组件及其制备方法、雾化器、电子雾化装置 - Google Patents

发热组件及其制备方法、雾化器、电子雾化装置 Download PDF

Info

Publication number
WO2023130389A1
WO2023130389A1 PCT/CN2022/070832 CN2022070832W WO2023130389A1 WO 2023130389 A1 WO2023130389 A1 WO 2023130389A1 CN 2022070832 W CN2022070832 W CN 2022070832W WO 2023130389 A1 WO2023130389 A1 WO 2023130389A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
heating component
green body
ceramic
ceramic green
Prior art date
Application number
PCT/CN2022/070832
Other languages
English (en)
French (fr)
Inventor
蒋玥
陈智超
崔望
熊玉明
Original Assignee
江门思摩尔新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江门思摩尔新材料科技有限公司 filed Critical 江门思摩尔新材料科技有限公司
Priority to PCT/CN2022/070832 priority Critical patent/WO2023130389A1/zh
Publication of WO2023130389A1 publication Critical patent/WO2023130389A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means

Definitions

  • the present application relates to the technical field of electronic atomization, in particular to a heating component and a preparation method thereof, an atomizer, and an electronic atomization device.
  • the electronic atomization device is composed of an atomizer and a power supply assembly.
  • the atomizer includes a liquid storage cavity and a heating component, the liquid storage cavity is used for storing the aerosol generating substrate, and the heating component is used for atomizing the aerosol generating substrate.
  • the heating element is the core device of the atomization of the electronic atomization device, and its atomization effect determines the quality and taste of the smoke.
  • the heating component and its preparation method, atomizer, and electronic atomization device provided by the present application solve the problem in the prior art that the heating component is easy to absorb the flavor components in the aerosol generating matrix and cause the reduction degree to decrease.
  • the first technical solution provided by this application is to provide a method for preparing a heating component, including: obtaining a ceramic green body; setting a patterned heating film on the surface of the ceramic green body; A plurality of micropores are formed on the ceramic green body, wherein the micropores are through holes along the thickness direction of the ceramic green body; the ceramic green body provided with the heating film and the micropores is curled into a hollow column body; sintering the hollow columnar body to make the ceramic green body into a dense ceramic.
  • the step of curling the ceramic green body provided with the heating film and the micropores into a hollow column specifically includes: winding the ceramic green body on the outside of the auxiliary rod, wherein the heating film Towards the auxiliary rod; remove the auxiliary rod.
  • the step of obtaining a ceramic green body specifically includes: obtaining a ceramic slurry; and preparing the ceramic slurry into the ceramic green body by tape casting.
  • the ceramic slurry includes yttrium oxide and zirconia; or, the ceramic slurry includes aluminum oxide and zirconia.
  • the thickness of the ceramic green body is 0.2mm-0.5mm.
  • the diameter of the micropore is 10 ⁇ m-50 ⁇ m.
  • the thickness of the heating film is 20 ⁇ m-50 ⁇ m.
  • the shape of the heating film is meandering and extending.
  • the inner diameter of the hollow columnar body is 2mm-4mm.
  • the second technical solution provided by this application is: provide a heating component, the heating component includes a dense ceramic and a heating film; the dense ceramic is a hollow column; the dense ceramic has multiple micropores, the micropores are through holes along the thickness direction of the dense ceramic; the heating film is arranged on the inner surface of the dense ceramic.
  • the thickness of the dense ceramic is 0.2mm-0.5mm.
  • the diameter of the micropore is 10 ⁇ m-50 ⁇ m.
  • the thickness of the heating film is 20 ⁇ m-50 ⁇ m.
  • the shape of the heating film is meandering and extending.
  • the inner diameter of the dense ceramics is 2mm-4mm.
  • the third technical solution provided by this application is: provide an atomizer, including a liquid storage cavity and a heating component; the liquid storage cavity is used to store an aerosol generating substrate; the heating component is used For atomizing the aerosol-generating substrate, the heating component is the heating component described in any one of the above.
  • the fourth technical solution provided by this application is: provide an electronic atomization device, including an atomizer and a host; the atomizer is used to store and atomize an aerosol generating substrate, and the atomizer The atomizer is the atomizer mentioned above; the host is used to provide energy for the heating component and control the heating component to atomize the aerosol generating substrate.
  • the present application discloses a method for preparing a heating component, including obtaining a ceramic green body; setting a patterned heating film on the surface of the ceramic green body; forming a plurality of Micropores, wherein the micropores are through holes along the thickness direction of the ceramic green body; the ceramic green body provided with the heating film and the micropores is curled into a hollow columnar body; the hollow columnar body is sintered to make the ceramic green body into a dense ceramic.
  • the heating element prepared by the above method has a dense structure, which will not absorb the flavor components in the aerosol generating matrix, so that the aerosol generating matrix has a high degree of reduction; the heating element has a dense structure so that its strength is high, and powder dropping is avoided The problem arises.
  • Fig. 1 is a schematic flow chart of the preparation method of the heating component provided by the embodiment of the present application
  • Fig. 2 is a schematic structural view of step S1 in the method for preparing the heating element provided in Fig. 1;
  • Fig. 3 is a schematic structural diagram of step S2 in the preparation method of the heating component provided in Fig. 1;
  • Fig. 4 is a schematic structural diagram of step S3 in the preparation method of the heating component provided in Fig. 1;
  • Fig. 5 is a schematic structural view of step S4 in the method for preparing the heating element provided in Fig. 1;
  • Fig. 6 is a schematic structural diagram of a heating component provided by an embodiment of the present application.
  • Fig. 7 is a schematic structural diagram of the atomizer provided by the embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of an electronic atomization device provided in an embodiment of the present application.
  • first”, “second”, and “third” in this application are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first”, “second” and “third” may explicitly or implicitly include at least one of said features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present application are only used to explain the relative positional relationship between the various components in a certain posture (as shown in the drawings) , sports conditions, etc., if the specific posture changes, the directional indication also changes accordingly.
  • Fig. 1 is a schematic flow chart of the preparation method of the heating component provided by the embodiment of the present application
  • Fig. 2 is a schematic structural diagram of step S1 in the preparation method of the heating component provided in Fig. 1
  • Fig. 3 is a schematic diagram of Fig. 1
  • the structure schematic diagram of step S2 in the preparation method of the heating component provided Fig. 4 is the structure schematic diagram of step S3 in the preparation method of the heating component provided in Fig. 1
  • Fig. 5 is the structure of step S4 in the preparation method of the heating component provided in Fig. 1 schematic diagram.
  • the preparation method of the heating component of an embodiment provided by the present application the specific steps include:
  • Step S1 Obtain a ceramic green body.
  • the step of obtaining ceramic green body comprises:
  • Step S11 Obtain ceramic slurry.
  • the ceramic powder can include yttrium oxide and zirconia, zirconia is stabilized by yttria; it can also include alumina and zirconia, zirconia is reinforced by alumina or alumina is reinforced by zirconia.
  • the above-mentioned materials have excellent thermal stability and thermal shock resistance, and can meet the impact of high and low temperature shocks and local high temperatures during the thermal cycle of the heating component 1 .
  • Step S12 preparing the ceramic slurry into a ceramic green body by tape casting.
  • a ceramic green body 11 with a thickness of 0.2mm-0.5mm is prepared by tape casting the prepared slurry, and a tough ceramic green body 11 is formed after complete drying. The ceramic green body 11 is trimmed and cut according to the required size.
  • the thickness of the ceramic green body 11 is less than 0.2 mm, the thickness of the dense ceramic obtained after sintering in step S5 may be too thin, so that the structural strength of the heating element 1 cannot be guaranteed.
  • the thickness of the ceramic green body 11 is greater than 0.5 mm, the perforation is difficult to penetrate when performing step S3, and the bending radius becomes smaller, making it difficult to bend and shape when performing step S4.
  • the thickness of the ceramic green body 11 is 0.2mm-0.4mm.
  • the ceramic green body 11 with high toughness can be prepared by adjusting the ratio of the materials, so that the ceramic green body 11 will not break during the subsequent crimping process and ensure the stability of the manufactured heating element 1 .
  • Step S2 setting a patterned heating film on the surface of the ceramic green body.
  • the pattern of the heating film 12 is printed through a thick film; wherein, the slurry forming the heating film 12 includes ruthenium oxide, which can be sintered together with the ceramic green body 11 in an air atmosphere, which is beneficial Reduce process. It can be understood that, in other implementation manners, the pattern of the heating film 12 can be formed by vapor deposition, and it can be specifically designed according to needs.
  • the thickness of the heating film 12 is 20 ⁇ m-50 ⁇ m. When the thickness of the heating film 12 is greater than 50 ⁇ m, there may be a phenomenon that the surface of the heating film 12 is partially dry-burned, which affects the taste.
  • the heat generating film 12 has a meandering shape.
  • the shape of the heating film 12 is S-shaped, which can ensure the consistency of temperature distribution to the greatest extent. Both ends of the heating film 12 serve as electrodes to be electrically connected to the host 200 .
  • the heating film 12 includes a main body 121 and a connecting portion 122 located at the end of the main body 121, wherein the main body 121 extends in a meandering manner; 12 electrodes are electrically connected to the host 200 .
  • the main body 121 includes N main heating elements 1211 extending axially along the dense ceramic 10 and arranged at intervals, and (N-1) connecting heating elements 1212 extending along the circumferential direction of the dense ceramic 10 , each connecting heating element 1212 connects two adjacent main heating elements 1211, so that N main heating elements 1211 are connected end to end.
  • N main heating elements 1211 are arranged at intervals along the circumferential direction of the dense ceramic 10 (as shown in FIG. 3 ).
  • Step S3 forming a plurality of micropores on the ceramic green body, wherein the micropores are through holes along the thickness direction of the ceramic green body.
  • a plurality of microholes 13 are formed by laser drilling or precision machining of CNC holes.
  • a plurality of microholes 13 are arranged in an array.
  • the diameter of the micropores 13 is 10 ⁇ m-50 ⁇ m. When the diameter of the micropore 13 is greater than 50 ⁇ m, the risk of liquid leakage may increase; when the diameter of the micropore 13 is less than 10 ⁇ m, the liquid supply rate will be reduced, which may lead to dry burning.
  • the pore size of the micropores 13 needs to consider the type of aerosol-generating substrate, and for aerosol-generating substrates with higher viscosity, the pore diameter of the micropores 13 needs to be increased to increase the liquid supply rate.
  • the density of punching holes on the ceramic green body 11 needs to consider the heating power and the atomization amount, that is, the spacing between the microholes 13 needs to consider the heating power and the atomization amount; When the liquid is sufficient, the amount of atomization is greater. Therefore, the density distribution of the micropores 13 can be adjusted according to the heating power required by the actual product and the desired atomization amount.
  • step S2 can be interchanged.
  • Step S4 Curling the ceramic green body provided with the heating film and micropores into a hollow columnar body.
  • the step of curling the ceramic green body 11 provided with the heating film 12 and the micropores 13 into a hollow columnar body specifically includes:
  • Step S41 Winding the ceramic green body on the outside of the auxiliary rod, wherein the heating film faces the auxiliary rod.
  • the ceramic green body 11 is wound around an auxiliary rod (not shown), and the ceramic green body 11 is curled. Wherein, the heating film 12 faces the auxiliary rod.
  • Step S42 removing the auxiliary rod.
  • the ceramic green body 11 after curling is placed in the isostatic press, fixed and formed by the isostatic press, and the auxiliary rod is removed to obtain a hollow columnar body.
  • the inner diameter of the hollow cylinder is 2mm-4mm.
  • the ceramic green body 11 is curled, that is, the heating film 12 is located inside the hollow column, so that the aerosol atomized by the heating film 12 is all concentrated inside the ceramic green body 11 In the space, it can bring a concentrated explosive feeling; and the inner membrane structure design is conducive to improving the heating efficiency, reducing the convective heat exchange area with the air, reducing the amount of aerosol condensation, and achieving a better taste.
  • Step S5 Sintering the hollow columnar body to make the ceramic green body into a dense ceramic.
  • the formed hollow columnar body is sintered under certain conditions, so that the ceramic green body 11 becomes a dense ceramic, that is, the heating component 1 provided by the present application is obtained.
  • the heating element 1 prepared by the above method has a dense structure, and will not absorb the flavor components in the aerosol generating matrix, so that the aerosol generating matrix has a higher degree of reduction; the heating element 1 has a dense structure, so that its strength is higher and completely The problem of falling powder is avoided.
  • FIG. 6 is a schematic structural diagram of a heating component provided by an embodiment of the present application.
  • the heating component 1 provided in the embodiment of the present application is prepared by the above method.
  • the heating component 1 includes a dense ceramic 10 and a heating film 12.
  • the dense ceramic 10 is a hollow columnar body structure, and the heating film 12 is arranged on the inner side of the hollow columnar body structure, that is, the heating film 12 is arranged on the inner surface of the dense ceramic 10;
  • a plurality of micropores 13 are provided on the ceramic 10 , and the plurality of micropores 13 are through holes penetrating through the thickness direction of the dense ceramic 10 .
  • a plurality of microholes 13 are arranged in an array.
  • the thickness of the dense ceramic 10 is 0.2mm-0.5mm.
  • the thickness of the dense ceramic 10 is less than 0.2 mm, its strength is insufficient; when the thickness of the dense ceramic 10 is greater than 0.5 mm, it is difficult to form micropores 13 on the dense ceramic 10 .
  • the thickness of the dense ceramic 10 is 0.2mm-0.4mm.
  • the inner diameter of the dense ceramic 10 is 2mm-4mm.
  • the central axis of the microhole 13 is parallel to the radial direction of the dense ceramic 10 .
  • the diameter of the micropores 13 is 10 ⁇ m-50 ⁇ m. When the diameter of the micropore 13 is greater than 50 ⁇ m, the risk of liquid leakage may increase; when the diameter of the micropore 13 is less than 10 ⁇ m, the liquid supply rate will be reduced, which may lead to dry burning.
  • the thickness of the heating film 12 is 20 ⁇ m-50 ⁇ m. When the thickness of the heating film 12 is greater than 50 ⁇ m, there may be a phenomenon that the surface of the heating film 12 is partially dry-burned, which affects the taste. When the thickness of the heating film 12 is less than 20 ⁇ m, it is difficult to form a continuous film, which affects the effect of heating and atomization.
  • the shape of the heating film 12 extends in a meandering manner to ensure the consistency of temperature distribution to the greatest extent.
  • the heating film 12 includes a main body 121 and a connecting portion 122 positioned at the end of the main body 121, wherein the main body 121 extends in a meandering manner; the width of the connecting portion 122 is greater than that of the main body 121 (as shown in FIG. 3 ), and the connecting portion 122 serves as an electrode of the heating film 12 and is electrically connected to the host 200 .
  • the main body 121 includes N main heating elements 1211 extending axially along the dense ceramic 10 and arranged at intervals, and (N-1) connecting heating elements 1212 extending along the circumferential direction of the dense ceramic 10 , each connecting heating element 1212 connects two adjacent main heating elements 1211, so that N main heating elements 1211 are connected end to end.
  • N main heating elements 1211 are arranged at intervals along the circumferential direction of the dense ceramic 10 (as shown in FIG. 3 ).
  • the heating element 1 has a dense structure, which will not absorb the flavor components in the aerosol generating matrix, so that the aerosol generating matrix has a high degree of reduction; the heating element 1 has a dense structure, which makes it stronger and completely avoids the problem of powder falling generation; the inner film structure of the heating film 12 makes the aerosol atomized by the heating film 12 all concentrate in the inner space formed by the dense ceramic 10, which can bring a concentrated sense of explosion; and the inner film structure design is conducive to Improving the heating efficiency can reduce the convective heat exchange area with the air, reduce the amount of aerosol condensation, and achieve better taste.
  • FIG. 7 is a schematic structural diagram of the atomizer provided in the embodiment of the present application.
  • the atomizer 100 includes a heating component 1 and a liquid storage cavity 2, the liquid storage cavity 2 is used for storing the aerosol generating substrate, and the heating component 1 is used for atomizing the aerosol generating substrate. It can be understood that the heating component 1 is in fluid communication with the liquid storage cavity 2 .
  • the aerosol-generating matrix in the liquid storage chamber 2 enters the inner side of the dense ceramic 10 from the outer side, and is heated and atomized by the heating film 12 located on the inner side.
  • the atomizer 100 also includes a mist outlet channel 3, the port of the mist outlet channel 3 forms a suction port (not shown), the mist outlet channel 3 communicates with the inner space of the dense ceramic 10 of the heating element 1, and the user sucks food through the suction port aerosol.
  • FIG. 8 is a schematic structural diagram of an electronic atomization device provided in an embodiment of the present application.
  • the electronic atomization device can be used for atomization of aerosol-generating substrates.
  • the electronic atomization device includes an atomizer 100 and a host 200 electrically connected to each other.
  • the atomizer 100 is used for storing the aerosol-generating substrate and atomizing the aerosol-generating substrate to form an aerosol that can be inhaled by a user.
  • the atomizer 100 can be used in different fields, such as medical treatment, cosmetics, recreational smoking, etc.; Generate an aerosol for the inhaler to inhale.
  • the following embodiments are all taking leisure smoking as an example; of course, in other embodiments, the atomizer 100 can also be applied to hairspray equipment to atomize for hair Hairspray for styling; or equipment for the treatment of upper and lower respiratory diseases to aerosolize medical drugs.
  • the host 200 includes a battery (not shown) and a controller (not shown).
  • the battery is used to provide electric energy for the operation of the atomizer 100, so that the atomizer 100 can atomize the aerosol generating substrate to form an aerosol; the controller is used to control the operation of the atomizer 100.
  • the host 200 also includes other components such as a battery holder and an airflow sensor.
  • the atomizer 100 and the host 200 can be integrated or detachably connected, and can be designed according to specific needs.

Landscapes

  • Resistance Heating (AREA)

Abstract

一种发热组件(1)及其制备方法、雾化器、电子雾化装置,发热组件(1)的制备方法包括获取陶瓷生坯;在陶瓷生坯表面设置图案化的发热膜(12);在陶瓷生坯上形成多个微孔(13),其中,微孔(13)为沿着陶瓷生坯厚度方向的通孔;将设置有发热膜(12)和微孔(13)的陶瓷生坯卷曲成中空柱状体;烧结中空柱状体,使陶瓷生坯成为致密陶瓷(10)。通过上述方法制备的发热组件(1)为致密结构,不会吸附气溶胶生成基质中的香精成分,使得气溶胶生成基质具有较高的还原度;发热组件(1)为致密结构使其强度较高,避免了掉粉问题的产生。

Description

发热组件及其制备方法、雾化器、电子雾化装置 技术领域
本申请涉及电子雾化技术领域,尤其涉及一种发热组件及其制备方法、雾化器、电子雾化装置。
背景技术
电子雾化装置由雾化器和电源组件构成。雾化器包括储液腔和发热组件,储液腔用于储存气溶胶生成基质,发热组件用于雾化气溶胶生成基质。发热组件作为电子雾化装置雾化的核心装置,其雾化效果决定了烟雾的质量与口感。
现有的发热组件多采用多孔陶瓷加发热膜的方式,发热膜通过丝网印刷等工艺成形于多孔陶瓷表面。在雾化过程中,储液腔中的气溶胶生成基质吸附在多孔陶瓷上,然后被表面的发热膜加热雾化。这种雾化模型存在其本征缺陷:多孔陶瓷多为一种天然的吸附材料,当气溶胶生成基质通过时,会吸附气溶胶生成基质中的香精成分,造成气溶胶生成基质中致香物质的损失,导致气溶胶生成基质还原度下降,影响口感。
发明内容
本申请提供的发热组件及其制备方法、雾化器、电子雾化装置,解决现有技术中发热组件易吸附气溶胶生成基质中的香精成分造成的还原度下降的问题。
为了解决上述技术问题,本申请提供的第一个技术方案为:提供一种发热组件的制备方法,包括:获取陶瓷生坯;在所述陶瓷生坯表面设置图案化的发热膜;在所述陶瓷生坯上形成多个微孔,其中,所述微孔为沿着所述陶瓷生坯厚度方向的通孔;将设置有所述发热膜和所述微孔的陶瓷生坯卷曲成中空柱状体;烧结所述中空柱状体,使所 述陶瓷生坯成为致密陶瓷。
其中,所述将设置有所述发热膜和所述微孔的陶瓷生坯卷曲成中空柱状体的步骤具体包括:将所述陶瓷生坯绕设于辅助杆的外侧,其中,所述发热膜朝向所述辅助杆;移除所述辅助杆。
其中,所述获取陶瓷生坯的步骤具体包括:获取陶瓷浆料;通过流延成型将所述陶瓷浆料制备成所述陶瓷生坯。
其中,所述陶瓷浆料包括氧化钇和氧化锆;或,所述陶瓷浆料包括氧化铝和氧化锆。
其中,所述陶瓷生坯的厚度为0.2mm-0.5mm。
其中,所述微孔的孔径为10μm-50μm。
其中,所述发热膜的厚度为20μm-50μm。
其中,所述发热膜的形状呈蜿蜒延伸。
其中,所述中空柱状体的内径为2mm-4mm。
为了解决上述技术问题,本申请提供的第二个技术方案为:提供一种发热组件,所述发热组件包括致密陶瓷和发热膜;所述致密陶瓷为中空柱状体;所述致密陶瓷具有多个微孔,所述微孔为沿着所述致密陶瓷厚度方向的通孔;所述发热膜设于所述致密陶瓷的内表面。
其中,所述致密陶瓷的厚度为0.2mm-0.5mm。
其中,所述微孔的孔径为10μm-50μm。
其中,所述发热膜的厚度为20μm-50μm。
其中,所述发热膜的形状呈蜿蜒延伸。
其中,所述致密陶瓷的内径为2mm-4mm。
为了解决上述技术问题,本申请提供的第三个技术方案为:提供一种雾化器,包括储液腔和发热组件;所述储液腔用于储存气溶胶生成基质;所述发热组件用于雾化所述气溶胶生成基质,所述发热组件为上述任一项所述的发热组件。
为了解决上述技术问题,本申请提供的第四个技术方案为:提供一种电子雾化装置,包括雾化器和主机;所述雾化器用于存储并雾化气溶胶生成基质,所述雾化器为上述所述的雾化器;主机用于为所述发热组件提供能量并控制所述发热组件雾化所述气溶胶生成基质。
本申请的有益效果:区别于现有技术,本申请公开了一种发热组件的制备方法,包括获取陶瓷生坯;在陶瓷生坯表面设置图案化的发热膜;在陶瓷生坯上形成多个微孔,其中,微孔为沿着陶瓷生坯厚度方向的通孔;将设置有发热膜和微孔的陶瓷生坯卷曲成中空柱状体;烧结中空柱状体,使陶瓷生坯成为致密陶瓷。通过上述方法制备的发热组件为致密结构,不会吸附气溶胶生成基质中的香精成分,使得气溶胶生成基质具有较高的还原度;发热组件为致密结构使其强度较高,避免了掉粉问题的产生。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的发热组件的制备方法的流程示意图;
图2是图1提供的发热组件的制备方法中步骤S1的结构示意图;
图3是图1提供的发热组件的制备方法中步骤S2的结构示意图;
图4是图1提供的发热组件的制备方法中步骤S3的结构示意图;
图5是图1提供的发热组件的制备方法中步骤S4的结构示意图;
图6是本申请实施例提供的发热组件的结构示意图;
图7是本申请实施例提供的雾化器的结构示意图;
图8是本申请实施例提供的电子雾化装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结 构、接口、技术之类的具体细节,以便透彻理解本申请。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个所述特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果所述特定姿态发生改变时,则所述方向性指示也相应地随之改变。本申请实施例中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或组件。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现所述短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面结合附图和实施例对本申请进行详细的说明。
请参阅图1-图5,图1是本申请实施例提供的发热组件的制备方法的流程示意图,图2是图1提供的发热组件的制备方法中步骤S1的结构示意图,图3是图1提供的发热组件的制备方法中步骤S2的结构示意图,图4是图1提供的发热组件的制备方法中步骤S3的结构示意图,图5是图1提供的发热组件的制备方法中步骤S4的结构示意图。
本申请提供的一实施例的发热组件的制备方法,具体步骤包括:
步骤S1:获取陶瓷生坯。
具体地,获取陶瓷生坯的步骤包括:
步骤S11:获取陶瓷浆料。
获取陶瓷粉体配置成流延成型用的浆料;通过调节粘结剂及增塑剂的含量及比例,形成粘度在一定范围内的浆料配方。
其中,陶瓷粉体可以包括氧化钇和氧化锆,通过氧化钇稳定氧化锆;也可以包括氧化铝和氧化锆,通过氧化铝增强氧化锆或氧化锆增强氧化铝。上述材料的热稳定性、抗热震性能优良,在发热组件1工作的热循环之中,可以满足高低温冲击以及局部高温的影响。
步骤S12:通过流延成型将陶瓷浆料制备成陶瓷生坯。
将配置好的浆料通过流延成型制备出厚度为0.2mm-0.5mm的陶瓷生坯11,完全干燥后形成具有韧性的陶瓷生坯11。根据需要的大小尺寸对陶瓷生坯11进行裁剪切割。
当陶瓷生坯11的厚度小于0.2mm时,可能会存在步骤S5烧结后得到的致密陶瓷的厚度太薄,使得发热组件1的结构强度无法保证。当陶瓷生坯11的厚度大于0.5mm时,在进行步骤S3时打孔不易穿透,且会使其弯曲半径变小,在进行步骤S4时难以弯曲成型。在一实施方式中,陶瓷生坯11的厚度为0.2mm-0.4mm。
可以理解,通过调节物料的比例可以制备出高韧性的陶瓷生坯11,从而满足在后续的卷曲的过程中,陶瓷生坯11不会发生断裂,保证制成的发热组件1的稳定性。
步骤S2:在陶瓷生坯表面设置图案化的发热膜。
具体地,在制备好的陶瓷生坯上,通过厚膜印刷发热膜12图案;其中,形成发热膜12的浆料包括氧化钌,可以在空气气氛下,与陶瓷生坯11共同进行烧结,利于减少工序。可以理解,在其他实施方式中,可以通过气相沉积的方法形成发热膜12图案,具体根据需要进行设计。
发热膜12的厚度为20μm-50μm。当发热膜12的厚度大于50μm,可能存在发热膜12的表面出现部分干烧的现象,影响口感。
发热膜12的形状呈蜿蜒延伸。在本实施例中,发热膜12的形状呈S性,可以最大程度保证温度分布的一致。发热膜12的两端作为电极,以与主机200电连接。
具体地,发热膜12包括主体部121和位于主体部121端部的连 接部122,其中,主体部121呈蜿蜒延伸;连接部122的宽度大于主体部121的宽度,连接部122作为发热膜12的电极,与主机200电连接。在本实施例中,主体部121包括N个沿着致密陶瓷10轴向延伸且间隔设置的主发热体1211,以及(N-1)个沿着致密陶瓷10的周向延伸的连接发热体1212,每个连接发热体1212将相邻的两个主发热体1211连接,使得N个主发热体1211首尾相连。其中,N个主发热体1211沿着致密陶瓷10的周向间隔设置(如图3所示)。
步骤S3:在陶瓷生坯上形成多个微孔,其中,微孔为沿着陶瓷生坯厚度方向的通孔。
具体地,通过激光打孔或精密加工CNC成孔的方式形成多个微孔13。可选的,多个微孔13呈阵列排布。微孔13的孔径为10μm-50μm。当微孔13的孔径大于50μm时,可能会导致漏液的风险增加;当微孔13的孔径小于10μm时,会降低供液速率,可能导致干烧。
可以理解,微孔13的孔径大小需要考虑气溶胶生成基质的种类,对于粘度较高的气溶胶生成基质,需要增大微孔13的孔径,以便提高供液速率。在陶瓷生坯11上打孔的密度需要考虑加热功率及雾化量,即微孔13之间的间距设置需要考虑加热功率及雾化量;在雾化过程中,加热功率越大,在供液充足的情况下,雾化量也就越大,因此,可以根据实际产品所需的加热功率及其希望达到的雾化量,调整微孔13的密度分布。
可以理解,步骤S2和步骤S3之间的先后顺序可以互换。
步骤S4:将设置有发热膜和微孔的陶瓷生坯卷曲成中空柱状体。
在本实施例中,将设置有发热膜12和微孔13的陶瓷生坯11卷曲成中空柱状体的步骤,具体包括:
步骤S41:将陶瓷生坯绕设于辅助杆的外侧,其中,发热膜朝向辅助杆。
将陶瓷生坯11绕设于辅助杆(未图示)的外侧,将陶瓷生坯11卷曲。其中,发热膜12朝向辅助杆。
步骤S42:移除辅助杆。
将卷曲后的陶瓷生坯11放置于等静压机内,通过等静压机固定 成型,移除辅助杆,得到中空柱状体。可选的,中空柱状体的内径为2mm-4mm。
可以理解,通过将发热膜12朝向辅助杆对陶瓷生坯11进行卷曲,即,发热膜12位于中空柱状体的内侧,使得发热膜12雾化好的气溶胶全部集中在陶瓷生坯11的内部空间中,可以带来集中的爆发感;且该内膜式结构设计利于提高加热效率,可以减小与空气的对流换热面积,降低气溶胶冷凝量,可以实现较佳的口感。
步骤S5:烧结中空柱状体,使陶瓷生坯成为致密陶瓷。
具体地,将成型后的中空柱状体在一定条件下进行烧结,使陶瓷生坯11成为致密陶瓷,即得到本申请提供的发热组件1。
通过上述方法制备的发热组件1为致密结构,不会吸附气溶胶生成基质中的香精成分,使得气溶胶生成基质具有较高的还原度;发热组件1为致密结构,使其强度较高,完全避免了掉粉问题的产生。
请参阅图6,图6是本申请实施例提供的发热组件的结构示意图。
本申请实施例提供的发热组件1通过上述方法制备得到。发热组件1包括致密陶瓷10和发热膜12,致密陶瓷10为中空柱状体结构,发热膜12设置于该中空柱状体结构的内侧,即,发热膜12设于致密陶瓷10的内表面;在致密陶瓷10上设置有多个微孔13,多个微孔13为贯穿致密陶瓷10厚度方向的通孔。可选的,多个微孔13呈阵列排布。
其中,致密陶瓷10的厚度为0.2mm-0.5mm。当致密陶瓷10的厚度小于0.2mm时,其强度不够;当致密陶瓷10的厚度大于0.5mm时,不易在致密陶瓷10上形成微孔13。在一实施方式中,致密陶瓷10的厚度为0.2mm-0.4mm。致密陶瓷10的内径为2mm-4mm。
可选的,微孔13的中轴线与致密陶瓷10的径向平行。
微孔13的孔径为10μm-50μm。当微孔13的孔径大于50μm时,可能会导致漏液的风险增加;当微孔13的孔径小于10μm时,会降低供液速率,可能导致干烧。
发热膜12的厚度为20μm-50μm。当发热膜12的厚度大于50μm,可能存在发热膜12的表面出现部分干烧的现象,影响口感。 当发热膜12的厚度小于20μm,不易形成连续的膜,影响加热雾化效果。发热膜12的形状呈蜿蜒延伸,最大程度保证温度分布的一致。
发热膜12包括主体部121和位于主体部121端部的连接部122,其中,主体部121呈蜿蜒延伸;连接部122的宽度大于主体部121的宽度(如图3所示),连接部122作为发热膜12的电极,与主机200电连接。
在本实施例中,主体部121包括N个沿着致密陶瓷10轴向延伸且间隔设置的主发热体1211,以及(N-1)个沿着致密陶瓷10的周向延伸的连接发热体1212,每个连接发热体1212将相邻的两个主发热体1211连接,使得N个主发热体1211首尾相连。其中,N个主发热体1211沿着致密陶瓷10的周向间隔设置(如图3所示)。
发热组件1为致密结构,不会吸附气溶胶生成基质中的香精成分,使得气溶胶生成基质具有较高的还原度;发热组件1为致密结构,使其强度较高,完全避免了掉粉问题的产生;发热膜12的内膜式结构,使得发热膜12雾化好的气溶胶全部集中在致密陶瓷10形成的内部空间中,可以带来集中的爆发感;且该内膜式结构设计利于提高加热效率,可以减小与空气的对流换热面积,降低气溶胶冷凝量,可以实现较佳的口感。
请参阅图7,图7是本申请实施例提供的雾化器的结构示意图。
雾化器100包括发热组件1和储液腔2,储液腔2用于储存气溶胶生成基质,发热组件1用于雾化气溶胶生成基质。可以理解,发热组件1与储液腔2流体连通。储液腔2中的气溶胶生成基质从致密陶瓷10的外侧进入其内侧,被位于其内侧的发热膜12加热雾化。
雾化器100还包括出雾通道3,出雾通道3的端口形成抽吸口(未图示),出雾通道3与发热组件1的致密陶瓷10的内部空间连通,用户通过抽吸口吸食气溶胶。
请参阅图8,图8是本申请实施例提供的电子雾化装置的结构示意图。
该电子雾化装置可用于气溶胶生成基质的雾化。电子雾化装置包括相互电连接的雾化器100和主机200。
其中,雾化器100用于存储气溶胶生成基质并雾化气溶胶生成基质以形成可供用户吸食的气溶胶。该雾化器100具体可用于不同的领域,比如,医疗、美容、休闲吸食等;在本实施例中,该雾化器100可用于电子气溶胶化装置,用于雾化气溶胶生成基质并产生气溶胶,以供抽吸者抽吸,以下实施例均以此休闲吸食为例;当然,在其他实施例中,该雾化器100也可应用于喷发胶设备,以雾化用于头发定型的喷发胶;或者应用于治疗上下呼吸系统疾病的设备,以雾化医用药品。
主机200包括电池(图未示)和控制器(图未示)。电池用于为雾化器100的工作提供电能,以使得雾化器100能够雾化气溶胶生成基质形成气溶胶;控制器用于控制雾化器100工作。主机200还包括电池支架、气流传感器等其他元件。
雾化器100与主机200可以是一体设置,也可以是可拆卸连接,可以根据具体需要进行设计。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (17)

  1. 一种发热组件的制备方法,其中,包括:
    获取陶瓷生坯;
    在所述陶瓷生坯表面设置图案化的发热膜;
    在所述陶瓷生坯上形成多个微孔,其中,所述微孔为沿着所述陶瓷生坯厚度方向的通孔;
    将设置有所述发热膜和所述微孔的陶瓷生坯卷曲成中空柱状体;
    烧结所述中空柱状体,使所述陶瓷生坯成为致密陶瓷。
  2. 根据权利要求1所述的发热组件的制备方法,其中,所述将设置有所述发热膜和所述微孔的陶瓷生坯卷曲成中空柱状体的步骤具体包括:
    将所述陶瓷生坯绕设于辅助杆的外侧,其中,所述发热膜朝向所述辅助杆;
    移除所述辅助杆。
  3. 根据权利要求1所述的发热组件的制备方法,其中,所述获取陶瓷生坯的步骤具体包括:
    获取陶瓷浆料;
    通过流延成型将所述陶瓷浆料制备成所述陶瓷生坯。
  4. 根据权利要求3所述的发热组件的制备方法,其中,所述陶瓷浆料包括氧化钇和氧化锆;或,所述陶瓷浆料包括氧化铝和氧化锆。
  5. 根据权利要求1所述的发热组件的制备方法,其中,所述陶瓷生坯的厚度为0.2mm-0.5mm。
  6. 根据权利要求1所述的发热组件的制备方法,其中,所述微孔的孔径为10μm-50μm。
  7. 根据权利要求1所述的发热组件的制备方法,其中,所述发热膜的厚度为20μm-50μm。
  8. 根据权利要求1所述的发热组件的制备方法,其中,所述发热膜的形状呈蜿蜒延伸。
  9. 根据权利要求2所述的发热组件的制备方法,其中,所述中空柱状体的内径为2mm-4mm。
  10. 一种发热组件,其中,包括:
    致密陶瓷,为中空柱状体;所述致密陶瓷具有多个微孔,所述微孔为沿着所述致密陶瓷厚度方向的通孔;
    发热膜,设于所述致密陶瓷的内表面。
  11. 根据权利要求10所述的发热组件,其中,所述致密陶瓷的厚度为0.2mm-0.5mm。
  12. 根据权利要求10所述的发热组件,其中,所述微孔的孔径为10μm-50μm。
  13. 根据权利要求10所述的发热组件,其中,所述发热膜的厚度为20μm-50μm。
  14. 根据权利要求10所述的发热组件,其中,所述发热膜的形状呈蜿蜒延伸。
  15. 根据权利要求10所述的发热组件,其中,所述致密陶瓷的内径为2mm-4mm。
  16. 一种雾化器,其中,包括:
    储液腔,用于储存气溶胶生成基质;
    发热组件,用于雾化所述气溶胶生成基质,所述发热组件为权利要求10至15任一项所述的发热组件。
  17. 一种电子雾化装置,其中,包括:
    雾化器,用于存储并雾化气溶胶生成基质,所述雾化器为权利要求16所述的雾化器;
    主机,用于为所述发热组件提供能量并控制所述发热组件雾化所述气溶胶生成基质。
PCT/CN2022/070832 2022-01-07 2022-01-07 发热组件及其制备方法、雾化器、电子雾化装置 WO2023130389A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/070832 WO2023130389A1 (zh) 2022-01-07 2022-01-07 发热组件及其制备方法、雾化器、电子雾化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/070832 WO2023130389A1 (zh) 2022-01-07 2022-01-07 发热组件及其制备方法、雾化器、电子雾化装置

Publications (1)

Publication Number Publication Date
WO2023130389A1 true WO2023130389A1 (zh) 2023-07-13

Family

ID=87072755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070832 WO2023130389A1 (zh) 2022-01-07 2022-01-07 发热组件及其制备方法、雾化器、电子雾化装置

Country Status (1)

Country Link
WO (1) WO2023130389A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135888A1 (ko) * 2017-01-18 2018-07-26 주식회사 케이티앤지 에어로졸 생성 장치, 이의 제어 방법 및 이를 포함하는 충전 시스템
CN110037349A (zh) * 2019-04-02 2019-07-23 湖南聚能陶瓷材料有限公司 一种用于电子烟的微孔陶瓷加热器及其制备方法
CN110731543A (zh) * 2019-09-23 2020-01-31 珠海惠友电子有限公司 一种雾化器用微孔陶瓷发热件的制备方法
CN110934343A (zh) * 2019-11-25 2020-03-31 深圳麦克韦尔科技有限公司 发热体组件及其制作方法、电子雾化装置
CN112043011A (zh) * 2020-08-11 2020-12-08 深圳麦克韦尔科技有限公司 一种雾化芯的制造方法、雾化芯及其电子雾化装置
CN112806613A (zh) * 2021-01-20 2021-05-18 珠海亿特立新材料有限公司 一种具有纳米银的多孔陶瓷制备方法、多孔陶瓷、电子烟雾化芯及电子烟

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135888A1 (ko) * 2017-01-18 2018-07-26 주식회사 케이티앤지 에어로졸 생성 장치, 이의 제어 방법 및 이를 포함하는 충전 시스템
CN110037349A (zh) * 2019-04-02 2019-07-23 湖南聚能陶瓷材料有限公司 一种用于电子烟的微孔陶瓷加热器及其制备方法
CN110731543A (zh) * 2019-09-23 2020-01-31 珠海惠友电子有限公司 一种雾化器用微孔陶瓷发热件的制备方法
CN110934343A (zh) * 2019-11-25 2020-03-31 深圳麦克韦尔科技有限公司 发热体组件及其制作方法、电子雾化装置
CN112043011A (zh) * 2020-08-11 2020-12-08 深圳麦克韦尔科技有限公司 一种雾化芯的制造方法、雾化芯及其电子雾化装置
CN112806613A (zh) * 2021-01-20 2021-05-18 珠海亿特立新材料有限公司 一种具有纳米银的多孔陶瓷制备方法、多孔陶瓷、电子烟雾化芯及电子烟

Similar Documents

Publication Publication Date Title
US20220125113A1 (en) Atomization core
JP7369525B2 (ja) 液体貯蔵体および蒸発器として使用するための多孔性焼結体
WO2021142786A1 (zh) 电子雾化装置及其雾化器和发热体
CN110384258A (zh) 电子雾化装置及其雾化器和发热组件
CN104582513B (zh) 电子蒸汽提供装置
WO2022033267A1 (zh) 一种雾化芯的制造方法、雾化芯及其电子雾化装置
CN110022622B (zh) 一种氧化铝蜂窝陶瓷发热体及其制备方法
CN111109665A (zh) 电子雾化装置及其雾化器和发热体
EP4135478A1 (en) Atomizing element, atomizer, and electronic atomizing device
CN109349681A (zh) 多孔发热体、包含多孔发热体的雾化器及多孔体制备方法
JP2022500082A (ja) エアロゾル送達装置用のウィッキング要素
WO2023077765A1 (zh) 一种电子雾化装置及电子雾化系统
CN209898288U (zh) 一种电子烟的雾化装置和主体电源装置
WO2020248230A1 (zh) 电子雾化装置及其雾化器和发热组件
WO2023165208A1 (zh) 电子雾化装置、雾化器、雾化芯及其雾化芯的制造方法
CN216821765U (zh) 加热组件、热交换器及气溶胶发生装置
JP2023020970A (ja) 調味部品及び電子霧化装置
CN114190608A (zh) 用于气雾生成装置的电阻加热器及气雾生成装置
WO2023130389A1 (zh) 发热组件及其制备方法、雾化器、电子雾化装置
CN114931238A (zh) 气溶胶生成基质
CN216931907U (zh) 发热组件、雾化器、电子雾化装置
CN116439430A (zh) 发热组件及其制备方法、雾化器、电子雾化装置
CN218474035U (zh) 雾化器及电子雾化装置
CN114190607A (zh) 用于气雾生成装置的电阻加热器及气雾生成装置
WO2024140089A1 (zh) 雾化器及电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22917861

Country of ref document: EP

Kind code of ref document: A1