WO2023130281A1 - 交织方法、解交织方法和设备 - Google Patents

交织方法、解交织方法和设备 Download PDF

Info

Publication number
WO2023130281A1
WO2023130281A1 PCT/CN2022/070395 CN2022070395W WO2023130281A1 WO 2023130281 A1 WO2023130281 A1 WO 2023130281A1 CN 2022070395 W CN2022070395 W CN 2022070395W WO 2023130281 A1 WO2023130281 A1 WO 2023130281A1
Authority
WO
WIPO (PCT)
Prior art keywords
interleaver
bandwidth
parameters
columns
rows
Prior art date
Application number
PCT/CN2022/070395
Other languages
English (en)
French (fr)
Inventor
李雅璞
黄磊
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/070395 priority Critical patent/WO2023130281A1/zh
Publication of WO2023130281A1 publication Critical patent/WO2023130281A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present application relates to the communication field, and more specifically, relates to an interleaving method, a deinterleaving method and equipment.
  • the communication standard includes various types of RU (Resource Unit, resource unit), and also includes MRU (Multiple Resource Unit, multiple resource units) composed of multiple RUs. If one RU or MRU is directly allocated to one STA, the benefits of large bandwidth cannot be enjoyed.
  • RU Resource Unit
  • MRU Multiple Resource Unit, multiple resource units
  • Embodiments of the present application provide an interleaving method, a deinterleaving method, and a device, which are applicable to the transmission of multi-STA large bandwidth scenarios.
  • An embodiment of the present application provides an interleaving method, including: a first device interleaves resource units RU according to first information, where the first information includes at least one of bandwidth, interleaving granularity, punctured channel information, and interleaver type.
  • An embodiment of the present application provides a deinterleaving method, including: performing deinterleaving on resource units RU by a second device according to first information, where the first information includes at least one of interleaving granularity, puncturing channel information, and interleaver type.
  • An embodiment of the present application provides a method for controlling an interleaver, including: starting from the right-angled side of the triangular interleaver, writing the index of the element to be interleaved in the first order, and writing the unit of the triangular interleaver row by row; from the Starting from the right-angled side, the indices of the elements in the unit of the triangular interleaver are read column by column.
  • An embodiment of the present application provides a method for controlling an interleaver, including: according to at least one of the number of spiral matrix columns of the spiral interleaver, the group size written in each group, and the step size of the spiral matrix, indexing the index of the element to be interleaved according to The first sequence is written into the units of the spiral interleaver column by column; the indices of the elements in the units of the spiral interleaver are read out row by row.
  • An embodiment of the present application provides a method for controlling an interleaver, including: according to at least one of the number of columns of the ladder matrix and the number of rows of the ladder matrix of the ladder-shaped interleaver, the indexes of the elements to be interleaved are written column by column in a first order The ladder interleaving unit; read out the indexes of the elements in the ladder interleaver unit row by row.
  • An embodiment of the present application provides a communication method, including: a first device sends second information, where the second information is used to indicate an RU allocation mode and/or an interleaving granularity.
  • An embodiment of the present application provides a communication method, including: a second device receives second information, where the second information is used to indicate an RU allocation mode and/or an interleaving granularity.
  • An embodiment of the present application provides a first device, including: a processing unit configured to interleave resource units RU according to first information, where the first information includes at least one of bandwidth, interleaving granularity, punctured channel information, and interleaver type one.
  • An embodiment of the present application provides a second device, including: a processing unit configured to deinterleave resource units RU according to first information, where the first information includes at least one of interleaving granularity, punctured channel information, and interleaver type .
  • An embodiment of the present application provides a communication device, including: a first writing unit, configured to write the indexes of the elements to be interleaved in the first order from the right-angle side of the triangular interleaver, and write the index of the triangular interleaver row by row from the right-angled side, the index of the element in the unit of the triangular interleaver is read column by column.
  • a first writing unit configured to write the indexes of the elements to be interleaved in the first order from the right-angle side of the triangular interleaver, and write the index of the triangular interleaver row by row from the right-angled side, the index of the element in the unit of the triangular interleaver is read column by column.
  • An embodiment of the present application provides a communication device, including: a second writing unit, configured to, according to at least one of the column number of the spiral matrix of the spiral interleaver, the group size written in each group, and the step size of the spiral matrix, write The index of the interleaving element is written into the units of the spiral interleaver column by column according to the first sequence; the index of the elements in the unit of the spiral interleaver is read out row by row.
  • An embodiment of the present application provides a communication device, including: a third writing unit, configured to, according to at least one of the number of columns of the ladder matrix and the number of rows of the ladder matrix of the ladder interleaver, index the elements to be interleaved in the first order Write the ladder-shaped interleaving units one by one column by column; read out the index of elements in the ladder-shaped interleaver unit one by one row.
  • a third writing unit configured to, according to at least one of the number of columns of the ladder matrix and the number of rows of the ladder matrix of the ladder interleaver, index the elements to be interleaved in the first order Write the ladder-shaped interleaving units one by one column by column; read out the index of elements in the ladder-shaped interleaver unit one by one row.
  • An embodiment of the present application provides a first device, including: a sending unit, configured to send second information, where the second information is used to indicate an RU allocation mode and/or an interleaving granularity.
  • An embodiment of the present application provides a second device, including: a receiving unit configured to receive second information, where the second information is used to indicate an RU allocation mode and/or an interleaving granularity.
  • An embodiment of the present application provides a terminal device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the first device executes the interleaving and deinterleaving method of any embodiment of the present application.
  • An embodiment of the present application provides a network device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the second device executes the interleaving and deinterleaving method of any embodiment of the present application.
  • An embodiment of the present application provides a chip configured to implement the above interleaving and deinterleaving methods.
  • the chip includes: a processor, configured to invoke and run a computer program from a memory, so that a device installed with the chip executes the interleaving and deinterleaving methods of any embodiment of the present application.
  • An embodiment of the present application provides a computer-readable storage medium, which is used to store a computer program, and when the computer program is executed by a device, the device executes the interleaving and deinterleaving method of any embodiment of the present application.
  • An embodiment of the present application provides a computer program product, including computer program instructions, where the computer program instructions cause a computer to execute the interleaving and deinterleaving methods of any embodiment of the present application.
  • An embodiment of the present application provides a computer program, which, when running on a computer, causes the computer to execute the interleaving and deinterleaving method of any embodiment of the present application.
  • the resource unit RU is interleaved according to the first information, which is better applicable to the transmission of multi-STA large-bandwidth scenarios.
  • Fig. 1 is a schematic diagram of an application scenario according to an embodiment of the present application.
  • Fig. 2 is a schematic flowchart of an interleaving method 200 according to an embodiment of the present application.
  • Fig. 3 is a schematic flowchart of a deinterleaving method 300 according to an embodiment of the present application.
  • Fig. 4 is a schematic flowchart of a method 400 for controlling an interleaver according to an embodiment of the present application.
  • Fig. 5 is a schematic flowchart of a method 500 for controlling an interleaver according to an embodiment of the present application.
  • Fig. 6 is a schematic flowchart of a method 600 for controlling an interleaver according to an embodiment of the present application.
  • Fig. 7 is a schematic flowchart of a communication method 700 according to an embodiment of the present application.
  • Fig. 8 is a schematic flowchart of a communication method 800 according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a first device 900 according to an embodiment of the present application.
  • Fig. 10 is a schematic block diagram of a second device 1000 according to an embodiment of the present application.
  • Fig. 11 is a schematic block diagram of a communication device 1100 according to an embodiment of the present application.
  • Fig. 12 is a schematic block diagram of a communication device 1200 according to an embodiment of the present application.
  • Fig. 13 is a schematic block diagram of a communication device 1300 according to an embodiment of the present application.
  • Fig. 14 is a schematic block diagram of a first device 1400 according to an embodiment of the present application.
  • Fig. 15 is a schematic block diagram of a second device 1500 according to an embodiment of the present application.
  • Figure 16A is a schematic diagram of the EHT MU PPDU format.
  • Figure 16B is a schematic diagram of the EHT TB PPDU format.
  • Figure 17 shows the UL or DL non-MU-MIMO transmission flow chart of the LDPC coded data field when the RU or MRU is less than or equal to 996-tone.
  • Fig. 18 is a schematic diagram of an example of RU interleaving in the case of a punctured channel with an interleaving granularity of 52-tone.
  • FIG. 19 is a schematic diagram of an interleaving mapping process of RUs in a triangle interleaver.
  • FIG. 20 is a schematic diagram of an interleaving mapping process of RUs in a spiral interleaver.
  • FIG. 21 is a schematic diagram of an interleaving and mapping process of RUs in a ladder interleaver.
  • Figure 22 is a schematic diagram of the RU interleaving mode indication field in the trigger frame requesting uplink EHT TB PPDU transmission.
  • Fig. 23 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Fig. 24 is a schematic block diagram of a chip according to an embodiment of the present application.
  • Fig. 25 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • WLAN wireless local area network
  • WiFi wireless Fidelity
  • WiFi wireless Fidelity
  • the communication system 100 may include an access point (Access Point, AP) 110, and a station (STATION, STA) 120 accessing a network through the access point 110.
  • Access Point Access Point
  • STA station
  • an AP is also called an AP STA, that is, in a sense, an AP is also a kind of STA.
  • STA is also called non-AP STA (non-AP STA).
  • the communication in the communication system 100 may be the communication between the AP and the non-AP STA, or the communication between the non-AP STA and the non-AP STA, or the communication between the STA and the peer STA, wherein, the peer STA It can refer to the device that communicates with the STA peer.
  • the peer STA may be an AP or a non-AP STA.
  • the AP is equivalent to a bridge connecting the wired network and the wireless network. Its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
  • the AP device can be a terminal device (such as a mobile phone) or a network device (such as a router).
  • the terminal device or network device has a chip for implementing communication functions, such as a WLAN or WiFi chip.
  • the role of the STA in the communication system is not absolute.
  • the mobile phone when the mobile phone is connected to the router, the mobile phone is a non-AP STA, and when the mobile phone is used as a hotspot for other mobile phones, the mobile phone acts as an AP. .
  • AP and non-AP STA can be applied to the equipment in the Internet of Vehicles, IoT nodes and sensors in the Internet of Things (IoT), smart cameras in smart homes, smart remote controls, smart water meters, etc. And sensors in smart cities, etc.
  • IoT Internet of Things
  • the non-AP STA can support the 802.11be standard.
  • the non-AP STA can also support 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a and other current and future wireless local area networks (wireless local area networks, WLAN) standards of the 802.11 family.
  • 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a and other current and future wireless local area networks (wireless local area networks, WLAN) standards of the 802.11 family.
  • WLAN wireless local area networks
  • the AP may be a device supporting the 802.11be standard.
  • the AP may also be a device supporting various current and future WLAN standards of the 802.11 family, such as 802.11ax, 802.11ac, 802.11n, 802.11g, 802.11b, and 802.11a.
  • the STA may be a mobile phone (Mobile Phone), tablet computer (Pad), computer, virtual reality (Virtual Reality, VR) device, augmented reality (Augmented Reality, AR) device, Wireless devices in industrial control, set-top boxes, wireless devices in self driving, vehicle communication devices, wireless devices in remote medical, wireless devices in smart grid , wireless devices in transportation safety, wireless devices in smart city or wireless devices in smart home, wireless communication chips/ASIC/SOC/etc.
  • the frequency bands supported by the WLAN technology may include but not limited to: low frequency bands (eg 2.4GHz, 5GHz, 6GHz) and high frequency bands (eg 60GHz).
  • low frequency bands eg 2.4GHz, 5GHz, 6GHz
  • high frequency bands eg 60GHz
  • FIG. 1 exemplarily shows one AP STA and two non-AP STAs.
  • the communication system 100 may include multiple AP STAs and other numbers of non-AP STAs. This embodiment of the present application does not include Do limited.
  • the "indication" mentioned in the embodiments of the present application may be a direct indication, may also be an indirect indication, and may also mean that there is an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also indicate that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also indicate that there is an association between A and B relation.
  • the term "corresponding" may indicate that there is a direct or indirect correspondence between the two, or that there is an association between the two, or that it indicates and is indicated, configuration and is configuration etc.
  • Eight kinds of RUs are included in IEEE 802.11be, and an MRU composed of a plurality of RUs is included.
  • One RU or MRU can be allocated to one STA, as follows.
  • the RU used for uplink and downlink OFDMA (Orthogonal Frequency Division Multiple Access, Orthogonal Frequency Division Multiple Access) transmission in EHT (Extremely High Throughput) PPDU can Including: 26-tone (subcarrier or pass) RU, 52-tone RU, 106-tone RU, 242-tone RU, 484-tone RU, 996-tone RU, and 2 ⁇ 996-tone RU.
  • RUs can be divided into large-sized RUs and small-sized RUs, examples are as follows:
  • Large-sized RU RU size greater than or equal to 242-tone, including 242-tone RU, 484-tone RU, 996-tone RU, and 2 ⁇ 996-tone RU
  • Small size RU is smaller than 242-tone, including 26-tone RU, 52-tone RU and 106-tone RU.
  • the small size RU can be used in 20MHz, 40MHz, 80MH, 160MHz or 320MHz OFDMA EHT PPDU.
  • 242-tone RU can be used in 40MHz, 80MH, 160MHz or 320MHz OFDMA EHT PPDU;
  • 484-tone RU can be used in 80MH, 160MHz or 320MHz OFDMA EHT PPDU;
  • 996-tone RU can be used in 160MHz or 320MHz OFDMA EHT PPDU Used in;
  • 2 ⁇ 996-tone RU can be used in 320MHz OFDMA EHT PPDU.
  • Small-sized RUs can generally only be combined with small-sized RUs to form a small-sized MRU; large-sized RUs can generally only be combined with large-sized RUs to form a large-sized MRU.
  • the small size MRU used by EHT PPDU for uplink and downlink OFDMA transmission can include: 52+26-tone MRU (indicates the MRU composed of 52-tone RU and 26-tone RU, the following similar expressions have similar meanings) and 106+26-tone tone MRU.
  • 52+26-tone MRU indicates the MRU composed of 52-tone RU and 26-tone RU, the following similar expressions have similar meanings
  • 106+26-tone tone MRU The 52-tone RU and 26-tone RU in any 52+26-tone MRU need to come from the same 20MHz subchannel.
  • the 106-tone RU and 26-tone RU in any 106+26-tone MRU need to come from the same 20MHz subchannel.
  • the large-size MRUs used by EHT PPDU for uplink and downlink OFDMA transmission can include: 484+242-tone MRU, 996+484-tone MRU, 2 ⁇ 996+484-tone MRU, 3 ⁇ 996-tone MRU and 3 ⁇ 996+484 -tone MRU.
  • 484+242-tone MRU is allowed to be used in 80MHz, 160MHz and 320MHz OFDMA EHT PPDU, and the 484-tone RU and 242-tone RU in any 484+242-tone MRU need to come from the same 80MHz subchannel;
  • 996+484-tone MRU is allowed to be used in 160MHz and 320MHz OFDMA EHT PPDU; and the 996-tone RU and 484-tone RU in any 996+484-tone MRU need to come from the same 160MHz subchannel;
  • 2 ⁇ 996+484-tone MRU, 3 ⁇ 996-tone MRU and 3 ⁇ 996+484-tone MRU are allowed to be used in 320MHz OFDMA EHT PPDU.
  • the 996-tone RU and 484-tone RU in any 2 ⁇ 996+484-tone MRU need to come from three consecutive 80MHz sub-channels.
  • each STA is allocated a 242-tone RU
  • the RU allocated to 1 STA or MRU can only enjoy limited frequency diversity gain, but cannot enjoy the benefits brought by large bandwidth.
  • Fig. 2 is a schematic flowchart of an interleaving method 200 according to an embodiment of the present application.
  • the method can optionally be applied to the system shown in Fig. 1, but is not limited thereto.
  • the method includes at least some of the following:
  • the first device interleaves resource units (RUs) according to first information, where the first information includes at least one of bandwidth, interleaving granularity, punctured channel information, and an interleaver type.
  • RUs resource units
  • the first device may be an AP.
  • the interleaving granularity may be referred to as RU interleaving granularity.
  • the RU interleaving granularity can include 26-tone (26 subcarriers, which can also be expressed as 26tones), 52-tone (52 subcarriers, which can also be expressed as 52tones), 106-tone (106 subcarriers, which can also be expressed as 106tones) wait.
  • the first device may send the interleaved RUs to one or more second devices.
  • the second device may be an STA.
  • the received RUs may be deinterleaved on the second device.
  • the bandwidth is PPDU bandwidth.
  • the PPDU bandwidth may include a single RU or MRU.
  • RUs to be interleaved may include single RUs and/or MRUs.
  • the punctured channel information includes at least one of subcarriers of the punctured channel, bandwidth of the punctured channel, and the number of punctured channels. For example, if the minimum sub-channel for puncturing is 20 MHz, the sub-carriers of the punctured channel correspond to 242-tone (242 sub-carriers) RU. According to at least one of the subcarriers of the punctured channel, the bandwidth of the punctured channel, and the number of the punctured channels, the number of punctured RUs that do not need to participate in the interleaving can be determined.
  • the first device interleaves the RU according to the first information, including:
  • the bandwidth is divided according to the interleaving granularity to obtain multiple first physical RUs.
  • the first device interleaves the RU according to the first information, and further includes:
  • Interleave the first physical RU to be interleaved by using an interleaver Interleave the first physical RU to be interleaved by using an interleaver.
  • the number of punched RUs is the first number
  • the number of the first physical RUs obtained by dividing the bandwidth is the second number
  • the number of the first physical RUs after removing the punched RUs is the third number .
  • a first number of punctured RUs is obtained; according to the interleaving granularity, the bandwidth is divided to obtain a second number of first physical RUs; from the second number of first The first number of punctured RUs is removed from the physical RUs to obtain a third number of first physical RUs; an interleaver is used to interleave the third number of first physical RUs.
  • the first device interleaves the RU according to the first information, and further includes:
  • the punctured RU is removed from the interleaved first physical RU.
  • a first number of punctured RUs is obtained; according to the interleaving granularity, the bandwidth is divided to obtain a second number of first physical RUs; the second number of first physical RUs is obtained; The physical RUs are interleaved, and the first number of punctured RUs are removed from the second number of interleaved first physical RUs to obtain a third number of interleaved first physical RUs.
  • the punched RU may be called a punched reference RU
  • the first physical RU may be called a physical reference RU
  • the reference RU may represent the smallest interleaving unit in this embodiment of the present application.
  • the first number of punctured RUs obtained according to the same punctured channel information may be different. For example, if the subcarrier of the punctured channel is 242-tone RU, the interleaving granularity is 26-tone and the number of punctured RUs is 9; the interleaving granularity is 52-tone and the number of punctured RUs is 4.
  • the second number of first physical RUs obtained according to the same bandwidth is different.
  • the second quantity minus the first quantity equals the third quantity.
  • the third number of first physical RUs obtained after removing the first number of punctured RUs from the second number of first physical RUs participate in interleaving. If the number of subcarriers of the punctured channel changes, the first number, the second number and the third number may all change.
  • dividing the bandwidth according to the interleaving granularity to obtain a plurality of first physical RUs includes: in the case where the interleaving granularity is 26 subcarriers, dividing the bandwidth according to the interleaving granularity to obtain A second number of first physical RUs; wherein, each of the first physical RUs includes 26 subcarriers.
  • the relationship between the bandwidth and the second quantity includes at least one of the following:
  • the bandwidth is 80MHz, and the second number is 36;
  • the bandwidth is 160MHz, and the second number is 72;
  • the bandwidth is 320MHz, and the second number is 144.
  • the bandwidth is divided according to the interleaving granularity to obtain the second number of first physical RUs, including:
  • the bandwidth is divided according to the interleaving granularity to obtain a second number of first physical RUs and a fourth number of second physical RUs; wherein, each of the first physical RUs includes There are 52 subcarriers, and each second physical subcarrier includes 26 subcarriers.
  • the interleaving granularity is 52 subcarriers
  • dividing the bandwidth may result in a part of the first physical RU including 52 subcarriers, and a part of the second physical RU including 26 subcarriers.
  • the first physical RU including 52 subcarriers participates in interleaving
  • the first physical RU including 26 subcarriers does not participate in interleaving.
  • the interleaving granularity is 106 subcarriers
  • dividing the bandwidth may result in a part of the first physical RU including 106 subcarriers, and a part of the second physical RU including 26 subcarriers.
  • the first physical RU including 106 subcarriers participates in interleaving
  • the second physical RU including 26 subcarriers does not participate in interleaving.
  • the relationship between the bandwidth and the second number and the fourth number includes at least one of the following:
  • the bandwidth is 80MHz, the second number is 16, and the fourth number is 4;
  • the bandwidth is 160MHz, the second number is 32, and the fourth number is 8;
  • the bandwidth is 320MHz, the second number is 64, and the fourth number is 16.
  • using an interleaver to interleave the first physical RU to be interleaved includes:
  • the interleaved first physical RU is mapped to at least one of a virtual RU, a virtual MRU, a logical RU, and a logical MRU according to the order in which the indexes of the interleaved first physical RU are arranged.
  • the writing order and reading order of the interleaver are different.
  • the index arrangement order (position) of the third number of first physical RUs is changed.
  • the indexes of the first physical RUs are mapped to the indexes of the virtual RUs in a one-to-one correspondence.
  • it can also be mapped to a virtual MRU, a logical RU, or an index of a logical MRU.
  • the index of each physical RU has a corresponding physical subcarrier index range
  • the index of each virtual RU has a corresponding virtual subcarrier index range.
  • 52-tone RU1 (the index of the physical RU) corresponds to the interval [-499,-448] of the physical subcarrier.
  • the arrangement order of the indexes of the physical RUs is changed, but the corresponding relationship between the indexes of the physical RUs and the interval ranges of the physical subcarrier indexes is not changed.
  • the interleaver is determined according to the interleaver type.
  • the interleaver type includes at least one of the following: a block interleaver, a triangle interleaver, a spiral interleaver, or a ladder interleaver. After interleaving is performed by different interleavers, the obtained new indexes of the first physical RU may be arranged in different order.
  • the parameter of the interleaver is determined according to the type of the interleaver and the number of first physical RUs to be interleaved. For example, in the manner of removing punctured RUs first and then interleaving, the number of first physical RUs to be interleaved is the third number. For another example, in the manner of interleaving first and then removing punctured RUs, the number of first physical RUs to be interleaved is the second number.
  • the type of the interleaver is a block interleaver
  • the parameters of the block interleaver include the number of columns and the number of rows.
  • the process of interleaving using a block interleaver may include: writing elements to be interleaved, such as the index of the first physical RU to be interleaved, in a first order, and writing the unit of the block interleaver row by row; then, Indexes of elements in the units of the block interleaver are read out column by column. In this way, the arrangement order of the indexes of the first physical RU after interleaving is changed to the second order.
  • the first order includes an order from small to large, or an order from large to small.
  • the interleaver type is a triangle interleaver, and the parameters of the triangle interleaver include the length of a right-angled side.
  • the process of interleaving by using the triangular interleaver may include: starting from the right angle side of the triangular interleaver, writing the elements to be interleaved, such as the index of the first physical RU to be interleaved, in a first order, and writing the A unit of the triangular interleaver; then, starting from the right-angled side, the indices of the elements in the unit of the triangular interleaver are read column by column. In this way, the arrangement order of the indexes of the first physical RU after interleaving is changed to the third order.
  • the process of interleaving by using the triangular interleaver may include: starting from the right angle side of the triangular interleaver, writing the index of the element to be interleaved, such as the index of the first physical RU to be interleaved, in a first order, and writing the A unit of the triangular interleaver; then, starting from the right-angled side, the indices of the elements in the unit of the triangular interleaver are read out row by row. In this way, the arrangement order of the indexes of the first physical RU after interleaving is changed to the third order.
  • the method further includes: when the total number of units of the triangle interleaver is greater than the number of elements to be interleaved, after writing all the elements to be interleaved into the units of the triangle interleaver, The remaining units of the interleaver are written with null values row by row.
  • nulls in the cells of the delta interleaver are avoided during the readout.
  • the method also includes:
  • the length of the right-angled side is used to determine the total number of units of the triangle interleaver, and the total number of units of the triangle interleaver is greater than or equal to the number of elements to be interleaved.
  • the type of the interleaver is a spiral interleaver
  • the parameters of the spiral interleaver include the number of spiral matrix columns, the group size written in each group, and the step size of the spiral matrix.
  • the process of interleaving using a spiral interleaver may include: according to at least one of the column number of the spiral matrix of the spiral interleaver, the group size written in each group, and the step size of the spiral matrix, the elements to be interleaved, such as to be The index of the first physical RU to be interleaved is written into the units of the spiral interleaver one by one according to the first order; then, the indexes of the elements in the units of the spiral interleaver are read out row by row. In this way, the arrangement order of the indexes of the first physical RU after interleaving is changed to the fourth order.
  • the elements to be interleaved are written into the units of the spiral interleaver one by one, include:
  • k is the column identifier
  • the value range of k is from 1 to C
  • C is the column number of the spiral matrix
  • R is the group size written in each group
  • S is the step size of the spiral matrix.
  • the number of columns of the spiral matrix of the spiral interleaver is 3, the group size of each write group is 2, and the step size of the spiral matrix is 1.
  • the value of the parameters of the spiral interleaver is only an example, not a limitation.
  • the number of spiral matrix columns, the group size written in each group, and the step size of the spiral matrix can also be other values, which can be flexibly selected according to the needs of actual applications. .
  • the number of columns of the spiral matrix can be 4, 5 or 6, etc.
  • the group size of each write group can be 3 or 4, etc.
  • the step size of the spiral matrix can be 2 or 3, etc.
  • the type of the interleaver is a ladder interleaver
  • parameters of the ladder interleaver include the number of columns of the ladder matrix and the number of rows of the ladder matrix.
  • the process of interleaving using the ladder interleaver may include: according to at least one of the number of columns of the ladder matrix and the number of rows of the ladder matrix of the ladder interleaver, the indexes of the elements to be interleaved are written column by column in a first order into the unit of the ladder interleaver; then, read out the index of the element in the unit of the ladder interleaver row by row. In this way, the arrangement order of the indexes of the first physical RU after interleaving is changed to the fifth order.
  • the elements to be interleaved are written one by one into the ladder-shaped interleaving unit, including:
  • the indexes of the elements to be interleaved are written into the non-null units of the ladder interleaver in columns.
  • null values in cells of the ladder interleaver are avoided during the readout.
  • the number of columns of the ladder interleaver is four.
  • the value of the number of columns of the ladder-shaped interleaver is only an example, not a limitation.
  • the number of columns of the ladder-shaped interleaver may also be other values, which can be flexibly selected according to actual application requirements.
  • the number of columns of the ladder interleaver is 5 or 6 or the like. If the number of columns of the ladder interleaver changes, the number of rows of the ladder interleaver may also change accordingly.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 9, or the number of columns is 6 and the number of rows is 6; the length of the right-angled side of the triangular interleaver is 8 ; The number of rows of the ladder matrix of the ladder interleaver is 11;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 6 and the number of rows is 12, or the number of columns is 8 and the number of rows is 9; the length of the right-angled side of the triangular interleaver is 12 ; The number of rows of the ladder matrix of the ladder interleaver is 20;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 8 and the number of rows is 18, or the number of columns is 9 and the number of rows is 16, or the number of columns is 12 and the number of rows is 12; The length of the right-angle side of the triangular interleaver is 17; the row number of the ladder matrix of the ladder interleaver is 38.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 4; the length of the right-angled side of the triangle interleaver is 6; the ladder matrix row of the ladder interleaver The number is 6;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 8; the length of the right-angled side of the triangle interleaver is 8; the ladder matrix row of the ladder interleaver The number is 10;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 8 and the number of rows is 8; the length of the right-angle side of the triangle interleaver is 11; the ladder matrix row of the ladder interleaver The number is 18.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 3 and the number of rows is 9; the length of the right-angled side of the triangular interleaver is 7; the ladder matrix row of the ladder interleaver The number is 9;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 7 and the number of rows is 9; the length of the right-angle side of the triangle interleaver is 11; the ladder matrix row of the ladder interleaver The number is 18;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 5 and the number of rows is 27; the length of the right-angle side of the triangle interleaver is 16; the ladder matrix row of the ladder interleaver The number is 36.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 3 and the number of rows is 4; the length of the right-angled side of the triangle interleaver is 5; the ladder matrix row of the ladder interleaver The number is 5;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 7; the length of the right-angle side of the triangle interleaver is 7; the ladder matrix row of the ladder interleaver The number is 9;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 6 and the number of rows is 10; the length of the right-angle side of the triangle interleaver is 11; the ladder matrix row of the ladder interleaver The number is 17.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 3 and the number of rows is 6; the length of the right-angled side of the triangle interleaver is 6; the ladder matrix row of the ladder interleaver The number is 6;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 6 and the number of rows is 9; the length of the right-angled side of the triangle interleaver is 10; the ladder matrix row of the ladder interleaver The number is 15;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 9 and the number of rows is 14; the length of the right-angle side of the triangle interleaver is 16; the ladder matrix row of the ladder interleaver The number is 33.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 2 and the number of rows is 4; the length of the right-angled side of the triangular interleaver is 4; the ladder matrix row of the ladder interleaver The number is 4;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 6; the length of the right-angled side of the triangle interleaver is 7; the ladder matrix row of the ladder interleaver The number is 8;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 7 and the number of rows is 8; the length of the right-angle side of the triangle interleaver is 11; the ladder matrix row of the ladder interleaver The number is 16.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 5 and the number of rows is 9; the length of the right-angle side of the triangle interleaver is 9; the ladder matrix row of the ladder interleaver The number is 13;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 9 and the number of rows is 13; the length of the right-angled side of the triangular interleaver is 15; the ladder matrix row of the ladder interleaver The number is 31.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 5; the length of the right-angled side of the triangle interleaver is 6; the ladder matrix row of the ladder interleaver The number is 7;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 13; the length of the right-angled side of the triangle interleaver is 10; the ladder matrix row of the ladder interleaver The number is 15.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 9; the length of the right-angled side of the triangle interleaver is 8; the ladder matrix row of the ladder interleaver The number is 11;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 9 and the number of rows is 12; the length of the right-angle side of the triangle interleaver is 15; the ladder matrix row of the ladder interleaver The number is 29.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 4; the length of the right-angled side of the triangle interleaver is 6; the ladder matrix row of the ladder interleaver The number is 6;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 6 and the number of rows is 8; the length of the right-angled side of the triangle interleaver is 10; the ladder matrix row of the ladder interleaver The number is 14.
  • the values of the parameters of the interleaver are only examples, not limiting, and the parameters of the interleaver can also be other The value can be flexibly selected according to the actual application requirements.
  • the relationship between punctured channel information, interleaving granularity, bandwidth and parameters of different types of interleavers may be stored in a form such as a table. In practical applications, check the table and select according to the requirements.
  • the method further includes: if the interleaver includes multiple sets of parameters, adopting one set of parameters in the multiple sets of parameters.
  • the interleaver includes multiple sets of parameters, adopting one set of parameters in the multiple sets of parameters.
  • the block interleaver includes multiple sets of parameters
  • the number of rows and the number of columns of one set of the multiple sets of parameters are used.
  • the triangle interleaver includes multiple sets of parameters
  • the length of the right-angled side of one set of the multiple sets of parameters is used.
  • the spiral interleaver includes multiple sets of parameters
  • the number of columns of the spiral matrix, the group size written in each set, and the step size of the spiral matrix among the multiple sets of parameters are used.
  • the ladder interleaver includes multiple sets of parameters
  • the number of columns of the ladder matrix and the number of rows of the ladder matrix of one of the multiple sets of parameters are used.
  • Fig. 3 is a schematic flowchart of a deinterleaving method 300 according to an embodiment of the present application.
  • the method can optionally be applied to the system shown in Fig. 1, but is not limited thereto.
  • the same terms used in the deinterleaving method as in the above interleaving method have the same meanings and will not be repeated here.
  • the method of deinterleaving includes at least some of the following:
  • the second device deinterleaves the resource unit (RU) according to the first information, where the first information includes at least one of interleaving granularity, punctured channel information, and interleaver type.
  • the first device may be an AP.
  • the interleaving granularity may be referred to as RU interleaving granularity.
  • the first device may send the interleaved RUs to one or more second devices.
  • the second device may be an STA.
  • the received RUs may be deinterleaved on the second device.
  • the second device deinterleaves the resource unit RU according to the first information, including:
  • a first physical RU corresponding to at least one of the virtual RU, the virtual MRU, the logical RU, and the logical MRU is acquired.
  • the second device deinterleaves the resource unit RU according to the first information, and further includes:
  • deinterleaving may be performed first and then combined with the punctured RUs.
  • the number of punctured RUs is the first number
  • the number of first physical RUs to be deinterleaved and the number of first physical RUs after deinterleaving is a third number
  • the number of first physical RUs obtained by combining is second quantity.
  • the combined first physical RUs of the second quantity may be used as the recovered first physical RUs. For example, in the case that the interleaving granularity is 26 subcarriers, the combined first physical RUs of the second quantity are used as the restored first physical RUs.
  • the second device deinterleaves the resource unit RU according to the first information, and further includes:
  • the punctured RUs may be combined with the punctured RUs before deinterleaving.
  • the number of punctured RUs is a first number
  • the number of first physical RUs to be deinterleaved and the number of first physical RUs after deinterleaving is a second number.
  • the second number of first physical RUs after deinterleaving may be used as restored first physical RUs. For example, in the case that the interleaving granularity is 26 subcarriers, the second number of first physical RUs after deinterleaving are used as the restored first physical RUs.
  • using an interleaver to perform deinterleaving on the first physical RU to be deinterleaved includes: using an interleaver to perform deinterleaving on the first physical RU to be deinterleaved, and restoring the first physical RU to be deinterleaved The index arrangement order of a physical RU.
  • the first physical RU when the interleaving granularity is 26 subcarriers, the first physical RU includes 26 subcarriers, and the relationship between the bandwidth and the second quantity includes at least one of the following:
  • the bandwidth is 80MHz, and the second number is 36;
  • the bandwidth is 160MHz, and the second number is 72;
  • the bandwidth is 320MHz, and the second number is 144.
  • the second device deinterleaves the resource unit RU according to the first information, and further includes:
  • the second number of first physical RUs and the fourth number of second physical RUs may be combined as restored first physical RUs.
  • the first physical RU when the interleaving granularity is 52 subcarriers, the first physical RU includes 52 subcarriers, the second physical RU includes 26 subcarriers, and the bandwidth is related to the second number and the fourth Quantitative relationships include at least one of the following:
  • the bandwidth is 80MHz, the second number is 16, and the fourth number is 4;
  • the bandwidth is 160MHz, the second number is 32, and the fourth number is 8;
  • the bandwidth is 320MHz, the second number is 64, and the fourth number is 16.
  • the index of each physical RU has a corresponding physical subcarrier index range
  • the index of each virtual RU has a corresponding virtual subcarrier index range
  • the interleaver is determined according to the interleaver type.
  • the interleaver type includes at least one of the following: a block interleaver, a triangle interleaver, a spiral interleaver, or a ladder interleaver.
  • the parameter of the interleaver is determined according to the type of the interleaver and the number of first physical RUs to be deinterleaved.
  • the deinterleaving process may be a reverse order of the interleaving process, and different types of interleavers may have different deinterleaving processes.
  • the type of the interleaver is a block interleaver
  • the parameters of the block interleaver include the number of columns and the number of rows.
  • the process of deinterleaving by using the block interleaver may write by column and read by row.
  • the specific process may include: according to the order of the indexes of the elements to be deinterleaved, and writing the indexes of the elements to be deinterleaved into the units of the block interleaver one by one in columns; then, the indexes of the elements in the units of the block interleaver by The lines are read out one by one. In this way, the order of index arrangement of the first physical RU after deinterleaving is restored to the first order.
  • the second sequence of indexes of the elements to be deinterleaved may be the received second sequence of the first physical RUs to be deinterleaved.
  • the first order includes an order from small to large, or an order from large to small.
  • the interleaver type is a triangle interleaver, and the parameters of the triangle interleaver include the length of a right-angled side.
  • the process of deinterleaving by using the triangular interleaver may include: starting from the right-angled side of the triangular interleaver, according to the order of the index of the element to be deinterleaved, and Writing the indices of the elements to be deinterleaved into the unit of the triangular interleaver one by one by column; then, starting from the right-angled side, reading the indices of the elements in the unit of the triangular interleaver row by row. In this way, the arrangement order of the indexes of the first physical RU after deinterleaving is restored to the first order.
  • the index arrangement order of the elements to be deinterleaved may be different from the third order of the index of the first physical RU received by the second device (some null values may not be read during interleaving) .
  • the index that needs to be rearranged and calculated according to the interleaving process can be used as the element to be deinterleaved.
  • the order in which the indexes of the received first physical RU are arranged is array A1 [1, 7, 12, 16, 2, 8, 13, 3, 9, 14, 4, 10, 15, 5, 11, 6].
  • the order of index arrangement of the elements to be deinterleaved can be obtained as array A2[1, 7, 12, 16, null, null, 2, 8, 13, null, null, 3, 9, 14, null, 4, 10, 15, 5, 11, 6].
  • array A2 [1, 7, 12, 16, null, null, 2, 8, 13, null, null, 3, 9, 14, null, 4, 10, 15, 5, 11, 6].
  • the method further includes: determining the length of a right-angled side of a triangle interleaver according to the number of elements to be deinterleaved;
  • the length of the right-angled side is used to determine the total number of units of the triangular interleaver, and the total number of units of the triangular interleaver is greater than or equal to the number of elements to be deinterleaved.
  • the type of the interleaver is a spiral interleaver
  • the parameters of the spiral interleaver include the number of spiral matrix columns, the group size written in each group, and the step size of the spiral matrix.
  • the process of interleaving by using the spiral interleaver may include: according to the order of the indexes of the elements to be deinterleaved, and writing the indexes of the elements to be deinterleaved row by row into the units of the spiral interleaver; and then , according to at least one of the number of columns of the spiral matrix of the spiral interleaver, the group size written in each group, and the step size of the spiral matrix, the indices of the elements in the units of the spiral interleaver are read column by column. In this way, the arrangement order of the indexes of the first physical RU after interleaving is restored to the first order.
  • the index of the element in the unit of the spiral interleaver is arranged by column Read out one by one, including:
  • each column reads R elements, and the k+1th column is S rows lower than the kth column;
  • k is the column identifier
  • the value range of k is from 1 to C
  • C is the column number of the spiral matrix
  • R is the group size written in each group
  • S is the step size of the spiral matrix.
  • the number of columns of the spiral matrix of the spiral interleaver is 3, the group size of each write group is 2, and the step size of the spiral matrix is 1.
  • the type of the interleaver is a ladder interleaver
  • parameters of the ladder interleaver include the number of columns of the ladder matrix and the number of rows of the ladder matrix.
  • the process of deinterleaving by using the ladder-shaped interleaver may include: At least one of the numbers, the index of the element to be deinterleaved is written row by row in the unit of the ladder interleave according to the first sequence; then, the index of the element in the unit of the ladder interleaver is read out column by column. In this way, the arrangement order of the indexes of the first physical RU after interleaving is changed to the fifth order.
  • the index arrangement order of the elements to be deinterleaved may be different from the fourth order of the index of the first physical RU received by the second device (some null values may not be read during interleaving ).
  • the index that needs to be rearranged by using the stepped interleaver that is first calculated according to the interleaving process can be used as the element to be deinterleaved.
  • the received first physical RU index sequence is array B1[18, 17, 12, 16, 11, 7, 15, 10, 6, 3, 14, 9, 5, 2, 13, 8, 4 ,1].
  • the column number of the ladder interleaver is 4, and the number of rows is 6.
  • the order of index arrangement of the elements to be deinterleaved can be obtained as array B2[18, null, null, null, 17, 12, null, null, 16, 11, 7, null, 15 , 10, 6, 3, 14, 9, 5, 2, 13, 8, 4, 1].
  • the array B2 is written in rows in the ladder interleaver and read out in columns.
  • the number of columns of the ladder interleaver is four.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 9, or the number of columns is 6 and the number of rows is 6; the length of the right-angled side of the triangular interleaver is 8 ; The number of rows of the ladder matrix of the ladder interleaver is 11;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 6 and the number of rows is 12, or the number of columns is 8 and the number of rows is 9; the length of the right-angled side of the triangular interleaver is 12 ; The number of rows of the ladder matrix of the ladder interleaver is 20;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 8 and the number of rows is 18, or the number of columns is 9 and the number of rows is 16, or the number of columns is 12 and the number of rows is 12; The length of the right-angle side of the triangular interleaver is 17; the row number of the ladder matrix of the ladder interleaver is 38.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 4; the length of the right-angled side of the triangle interleaver is 6; the ladder matrix row of the ladder interleaver The number is 6;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 8; the length of the right-angled side of the triangle interleaver is 8; the ladder matrix row of the ladder interleaver The number is 10;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 8 and the number of rows is 8; the length of the right-angle side of the triangle interleaver is 11; the ladder matrix row of the ladder interleaver The number is 18.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 3 and the number of rows is 9; the length of the right-angled side of the triangular interleaver is 7; the ladder matrix row of the ladder interleaver The number is 9;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 7 and the number of rows is 9; the length of the right-angle side of the triangle interleaver is 11; the ladder matrix row of the ladder interleaver The number is 18;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 5 and the number of rows is 27; the length of the right-angle side of the triangle interleaver is 16; the ladder matrix row of the ladder interleaver The number is 36.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 3 and the number of rows is 4; the length of the right-angled side of the triangle interleaver is 5; the ladder matrix row of the ladder interleaver The number is 5;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 7; the length of the right-angle side of the triangle interleaver is 7; the ladder matrix row of the ladder interleaver The number is 9;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 6 and the number of rows is 10; the length of the right-angle side of the triangle interleaver is 11; the ladder matrix row of the ladder interleaver The number is 17.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 3 and the number of rows is 6; the length of the right-angled side of the triangle interleaver is 6; the ladder matrix row of the ladder interleaver The number is 6;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 6 and the number of rows is 9; the length of the right-angled side of the triangle interleaver is 10; the ladder matrix row of the ladder interleaver The number is 15;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 9 and the number of rows is 14; the length of the right-angle side of the triangle interleaver is 16; the ladder matrix row of the ladder interleaver The number is 33.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 2 and the number of rows is 4; the length of the right-angled side of the triangular interleaver is 4; the ladder matrix row of the ladder interleaver The number is 4;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 6; the length of the right-angled side of the triangle interleaver is 7; the ladder matrix row of the ladder interleaver The number is 8;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 7 and the number of rows is 8; the length of the right-angle side of the triangle interleaver is 11; the ladder matrix row of the ladder interleaver The number is 16.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 5 and the number of rows is 9; the length of the right-angle side of the triangle interleaver is 9; the ladder matrix row of the ladder interleaver The number is 13;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 9 and the number of rows is 13; the length of the right-angled side of the triangular interleaver is 15; the ladder matrix row of the ladder interleaver The number is 31.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 5; the length of the right-angled side of the triangle interleaver is 6; the ladder matrix row of the ladder interleaver The number is 7;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 13; the length of the right-angled side of the triangle interleaver is 10; the ladder matrix row of the ladder interleaver The number is 15.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 9; the length of the right-angled side of the triangle interleaver is 8; the ladder matrix row of the ladder interleaver The number is 11;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 9 and the number of rows is 12; the length of the right-angle side of the triangle interleaver is 15; the ladder matrix row of the ladder interleaver The number is 29.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 4; the length of the right-angled side of the triangle interleaver is 6; the ladder matrix row of the ladder interleaver The number is 6;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 6 and the number of rows is 8; the length of the right-angled side of the triangle interleaver is 10; the ladder matrix row of the ladder interleaver The number is 14.
  • the method further includes: if the interleaver includes multiple sets of parameters, adopting one set of parameters in the multiple sets of parameters.
  • the bandwidth is PPDU bandwidth.
  • the punctured channel information includes at least one of subcarriers of the punctured channel, bandwidth of the punctured channel, and the number of punctured channels.
  • the values of the parameters of the interleaver are only examples, not limiting, and the parameters of the interleaver can also be other The value can be flexibly selected according to the actual application requirements.
  • the relationship between punctured channel information, interleaving granularity, bandwidth and parameters of different types of interleavers may be stored in a form such as a table. In practical applications, check the table and select according to the requirements.
  • Fig. 4 is a schematic flowchart of a method 400 for controlling an interleaver according to an embodiment of the present application.
  • the method can optionally be applied to the system shown in Fig. 1, but is not limited thereto.
  • the method includes at least some of the following:
  • the method further includes: when the total number of units of the triangle interleaver is greater than the number of elements to be interleaved, after writing all the elements to be interleaved into the units of the triangle interleaver, The remaining units of the interleaver are written with null values row by row.
  • nulls in the cells of the delta interleaver are avoided during the readout.
  • the method further includes: determining the length of a right-angled side of a triangle interleaver according to the number of elements to be interleaved;
  • the length of the right-angled side is used to determine the total number of units of the triangle interleaver, and the total number of units of the triangle interleaver is greater than or equal to the number of elements to be interleaved.
  • the first order includes an order from small to large, or an order from large to small.
  • Fig. 5 is a schematic flowchart of a method 500 for controlling an interleaver according to an embodiment of the present application.
  • the method can optionally be applied to the system shown in Fig. 1, but is not limited thereto.
  • the method includes at least some of the following:
  • the elements to be interleaved are written into the units of the spiral interleaver one by one, include:
  • k is the column identifier
  • the value range of k is from 1 to C
  • C is the column number of the spiral matrix
  • R is the group size written in each group
  • S is the step size of the spiral matrix.
  • C, R, and S are positive integers greater than 1.
  • the first order includes an order from small to large, or an order from large to small.
  • the specific example of the value of at least one of the number of spiral matrix columns, the group size written in each group, and the step size of the spiral matrix of the spiral interleaver can be implemented by referring to the above-mentioned interleaving method or deinterleaving method Relevant descriptions in the examples are not repeated here.
  • the process of interleaving and/or deinterleaving using a spiral interleaver reference may be made to relevant descriptions in the embodiments of the above interleaving method or deinterleaving method, and details are not repeated here.
  • Fig. 6 is a schematic flowchart of a method 600 for controlling an interleaver according to an embodiment of the present application.
  • the method can optionally be applied to the system shown in Fig. 1, but is not limited thereto.
  • the method includes at least some of the following:
  • the elements to be interleaved are written one by one into the ladder-shaped interleaving unit, including:
  • the indexes of the elements to be interleaved are written into the non-null units of the ladder interleaver in columns.
  • C, N, R, k are positive integers.
  • null values in cells of the ladder interleaver are avoided during the readout.
  • the first order includes an order from small to large, or an order from large to small.
  • the value of at least one of the number of columns of the ladder matrix and the number of rows of the ladder matrix of the ladder-shaped interleaver refer to the relevant descriptions in the above-mentioned embodiments of the interleaving method or the deinterleaving method. No longer.
  • the process of performing interleaving and/or deinterleaving by using a ladder interleaver reference may be made to relevant descriptions in the embodiments of the above interleaving method or deinterleaving method, and details are not repeated here.
  • interleavers may be combined with the above-mentioned interleaving method or deinterleaving method.
  • the interleaver in any embodiment of the interleaver control method may be used to perform interleaving or deinterleaving.
  • the elements to be interleaved may include physical RUs obtained by dividing RUs or MRUs in the above-mentioned interleaving method, or remaining physical RUs after removing punctured RUs.
  • the read and write order of the interleaver used in the deinterleaving process can be reversed to that of the interleaving process.
  • Fig. 7 is a schematic flowchart of a communication method 700 according to an embodiment of the present application.
  • the method can optionally be applied to the system shown in Fig. 1, but is not limited thereto.
  • the method includes at least some of the following:
  • the first device sends second information, where the second information is used to indicate an RU allocation mode and/or an interleaving granularity.
  • the first device may be an AP
  • the second device may be an STA.
  • the first device may send the second information to the second device.
  • the second information may carry a first indication bit, and the first indication bit is used to indicate the RU allocation mode.
  • the second information may include a second indication bit, where the second indication bit is used to indicate the allocation mode of the RU.
  • RU may include a single RU and/or MRU.
  • the RU allocation mode may also include a single RU allocation mode and/or an MRU allocation mode.
  • the interleaving granularity of a RU may include the interleaving granularity of a single RU and/or the interleaving granularity of an MRU.
  • the RUs and/or MRUs are interleaved on the first device, and the RUs and/or MRUs are deinterleaved on the second device.
  • the up-interleaving method and the de-interleaving method are related descriptions of the up-interleaving method and the de-interleaving method.
  • the second information is in the U-SIG field and/or the EHT-SIG field of the downlink signaling.
  • the PPDU sent by the AP to the STA includes a U-SIG field and/or an EHT-SIG field, and the U-SIG field and/or the EHT-SIG field may carry the second information.
  • the U-SIG field and/or the EHT-SIG field includes at least one of the following:
  • the second subfield used to indicate the interleaving granularity.
  • the first subfield and/or the second subfield use reserved fields.
  • the reserved field used by the first subfield and/or the second subfield is a verification field.
  • the reserved field used by the first subfield and/or the second subfield is an ignored field.
  • the first subfield is bit B22 in the U-SIG field
  • the second subfield is bit B23 in the U-SIG field.
  • the first subfield is bit B13 in the EHT-SIG field
  • the second subfield is bit B14 in the U-SIG field.
  • the first value of the first subfield indicates a RU interleaving allocation mode; the second value of the second subfield indicates another non-interleaving allocation mode.
  • a value of 1 in the first subfield indicates an RU interleaved allocation mode; a value of 0 in the second subfield indicates other non-interleaved allocation modes.
  • different values of the second subfield correspond to different RU interleaving granularities. For example, a value of 0 in the second subfield indicates that the RU interleaving granularity is 26-tone. For another example, a value of 1 in the second subfield indicates that the RU interleaving granularity is 52-tone. For another example, the value of the second subfield is 2, indicating that the RU interleaving granularity is 106-tone.
  • the downlink signaling is EHT TB PPDU and/or EHT MU PPDU.
  • the EHT TB PPDU and/or EHT MU PPDU further includes at least one of PPDU bandwidth, punctured channel information, and RU allocation information.
  • the punctured channel information includes at least one of subcarriers of the punctured channel, bandwidth of the punctured channel, and the number of punctured channels.
  • the method also includes:
  • the first device receives third information, where the third information is used to indicate an allocation mode and/or an interleaving granularity of RUs.
  • the third information is in the EHT variant general information field of the uplink signaling.
  • the third information is in the EHT reserved field of the EHT variant general information field of the uplink signaling.
  • the EHT reserved field includes at least one of the following:
  • the second subfield used to indicate the interleaving granularity.
  • the uplink signaling is a trigger frame requesting uplink EHT TB PPDU transmission.
  • Fig. 8 is a schematic flowchart of a communication method 800 according to an embodiment of the present application.
  • the method can optionally be applied to the system shown in Fig. 1, but is not limited thereto. Words in this communication method that are the same as those in the above-mentioned communication method 700 have the same meanings and will not be repeated here.
  • the method of communication includes at least some of the following:
  • the second device receives second information, where the second information is used to indicate an RU allocation mode and/or an interleaving granularity.
  • the first device may be an AP
  • the second device may be an STA.
  • the second device may receive the second information from the first device.
  • the second information may contain a first indication bit, and the first indication bit is used to indicate the RU allocation mode.
  • the second information may include a second indication bit, where the second indication bit is used to indicate the allocation mode of the RU.
  • RU may include a single RU and/or MRU.
  • the RU allocation mode may also include a single RU allocation mode and/or an MRU allocation mode.
  • the interleaving granularity of a RU may include the interleaving granularity of a single RU and/or the interleaving granularity of an MRU.
  • the RUs and/or MRUs are interleaved on the first device, and the RUs and/or MRUs are deinterleaved on the second device.
  • the up-interleaving method and the de-interleaving method are related descriptions of the up-interleaving method and the de-interleaving method.
  • the second information is in the U-SIG field and/or the EHT-SIG field of the downlink signaling.
  • the U-SIG field and/or the EHT-SIG field includes at least one of the following:
  • the second subfield used to indicate the interleaving granularity.
  • the first subfield and/or the second subfield use reserved fields.
  • the reserved field used by the first subfield and/or the second subfield is a verification field.
  • the reserved field used by the first subfield and/or the second subfield is an ignored field.
  • the first subfield is bit B22 in the U-SIG field
  • the second subfield is bit B23 in the U-SIG field.
  • the first subfield is bit B13 in the EHT-SIG field
  • the second subfield is bit B14 in the U-SIG field.
  • the first value of the first subfield indicates a RU interleaving allocation mode; the second subfield's second value indicates other non-interleaving allocation modes.
  • different values of the second subfield correspond to different RU interleaving granularities.
  • the downlink signaling is EHT TB PPDU and/or EHT MU PPDU.
  • the EHT TB PPDU and/or EHT MU PPDU further includes at least one of PPDU bandwidth, punctured channel information, and RU allocation information.
  • the punctured channel information includes at least one of subcarriers of the punctured channel, bandwidth of the punctured channel, and the number of punctured channels.
  • the method also includes:
  • the second device sends third information, where the third information is used to indicate the RU allocation mode and/or interleaving granularity.
  • the third information is in the EHT variant general information field of the uplink signaling.
  • the third information is in the EHT reserved field of the EHT variant general information field of the uplink signaling.
  • the EHT reserved field includes at least one of the following:
  • the second subfield used to indicate the interleaving granularity.
  • the uplink signaling is a trigger frame requesting uplink EHT TB PPDU transmission.
  • the method further includes: the second device determines an interleaver parameter according to the PPDU bandwidth, punctured channel information, and RU allocation information.
  • the downlink signaling received by the second device may further include at least one of PPDU bandwidth, punctured channel information, and RU allocation information, and interleaver parameters may be determined according to these information.
  • the allocation mode indicates the RU interleaving allocation mode
  • an interleaver may be constructed on the second device according to the interleaver parameters, and the received RUs and/or MRUs may be deinterleaved using the interleaver.
  • Fig. 9 is a schematic block diagram of a first device 900 according to an embodiment of the present application.
  • the first device 900 may include:
  • the processing unit 910 is configured to interleave the resource units RU according to first information, where the first information includes at least one of bandwidth, interleaving granularity, punctured channel information, and interleaver type.
  • the processing unit is used for:
  • the bandwidth is divided according to the interleaving granularity to obtain multiple first physical RUs.
  • the processing unit is also used for:
  • Interleave the first physical RU to be interleaved by using an interleaver Interleave the first physical RU to be interleaved by using an interleaver.
  • the processing unit is also used for:
  • the punctured RU is removed from the interleaved first physical RU.
  • the number of punched RUs is the first number
  • the number of the first physical RUs obtained by dividing the bandwidth is the second number
  • the number of the first physical RUs after removing the punched RUs is the third quantity.
  • the processing unit is configured to divide the bandwidth according to the interleaving granularity to obtain a plurality of first physical RUs, including: when the interleaving granularity is 26 subcarriers, according to the interleaving granularity, the The bandwidth is divided to obtain a second number of first physical RUs; each of the first physical RUs includes 26 subcarriers.
  • the relationship between the bandwidth and the second quantity includes at least one of the following:
  • the bandwidth is 80MHz, and the second number is 36;
  • the bandwidth is 160MHz, and the second number is 72;
  • the bandwidth is 320MHz, and the second number is 144.
  • the processing unit is configured to divide the bandwidth according to the interleaving granularity to obtain a plurality of first physical RUs, including: in the case that the interleaving granularity is 52 subcarriers, according to the interleaving granularity, the The bandwidth is divided to obtain a second number of first physical RUs and a fourth number of second physical RUs; wherein, each of the first physical RUs includes 52 subcarriers, and each of the second physical RUs includes 26 subcarriers.
  • the relationship between the bandwidth and the second number and the fourth number includes at least one of the following:
  • the bandwidth is 80MHz, the second number is 16, and the fourth number is 4;
  • the bandwidth is 160MHz, the second number is 32, and the fourth number is 8;
  • the bandwidth is 320MHz, the second number is 64, and the fourth number is 16.
  • using an interleaver to interleave the first physical RU to be interleaved includes:
  • interleaver to interleave the third number of first physical RUs, changing the index arrangement order of the third number of first physical RUs, to obtain the index arrangement order of the first physical RUs after interleaving;
  • the interleaved first physical RU is mapped to at least one of a virtual RU, a virtual MRU, a logical RU, and a logical MRU according to the order in which the indexes of the interleaved first physical RU are arranged.
  • the index of each physical RU has a corresponding physical subcarrier index range
  • the index of each virtual RU has a corresponding virtual subcarrier index range
  • the interleaver is determined according to the interleaver type.
  • the interleaver type includes at least one of the following: a block interleaver, a triangle interleaver, a spiral interleaver, or a ladder interleaver.
  • the parameter of the interleaver is determined according to the type of the interleaver and the number of first physical RUs to be interleaved.
  • the type of the interleaver is a block interleaver
  • the parameters of the block interleaver include the number of columns and the number of rows.
  • the interleaver type is a triangle interleaver, and the parameters of the triangle interleaver include the length of a right-angled side.
  • the type of the interleaver is a spiral interleaver
  • the parameters of the spiral interleaver include the number of spiral matrix columns, the group size written in each group, and the step size of the spiral matrix.
  • the number of columns of the spiral matrix of the spiral interleaver is 3, the group size of each write group is 2, and the step size of the spiral matrix is 1.
  • the type of the interleaver is a ladder interleaver
  • parameters of the ladder interleaver include the number of columns of the ladder matrix and the number of rows of the ladder matrix.
  • the number of columns of the ladder interleaver is four.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 9, or the number of columns is 6 and the number of rows is 6; the length of the right-angled side of the triangular interleaver is 8 ; The number of rows of the ladder matrix of the ladder interleaver is 11;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 6 and the number of rows is 12, or the number of columns is 8 and the number of rows is 9; the length of the right-angled side of the triangular interleaver is 12 ; The number of rows of the ladder matrix of the ladder interleaver is 20;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 8 and the number of rows is 18, or the number of columns is 9 and the number of rows is 16, or the number of columns is 12 and the number of rows is 12; The length of the right-angle side of the triangular interleaver is 17; the row number of the ladder matrix of the ladder interleaver is 38.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 4; the length of the right-angled side of the triangle interleaver is 6; the ladder matrix row of the ladder interleaver The number is 6;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 8; the length of the right-angled side of the triangle interleaver is 8; the ladder matrix row of the ladder interleaver The number is 10;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 8 and the number of rows is 8; the length of the right-angle side of the triangle interleaver is 11; the ladder matrix row of the ladder interleaver The number is 18.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 3 and the number of rows is 9; the length of the right-angled side of the triangular interleaver is 7; the ladder matrix row of the ladder interleaver The number is 9;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 7 and the number of rows is 9; the length of the right-angle side of the triangle interleaver is 11; the ladder matrix row of the ladder interleaver The number is 18;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 5 and the number of rows is 27; the length of the right-angle side of the triangle interleaver is 16; the ladder matrix row of the ladder interleaver The number is 36.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 3 and the number of rows is 4; the length of the right-angled side of the triangle interleaver is 5; the ladder matrix row of the ladder interleaver The number is 5;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 7; the length of the right-angle side of the triangle interleaver is 7; the ladder matrix row of the ladder interleaver The number is 9;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 6 and the number of rows is 10; the length of the right-angle side of the triangle interleaver is 11; the ladder matrix row of the ladder interleaver The number is 17.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 3 and the number of rows is 6; the length of the right-angled side of the triangle interleaver is 6; the ladder matrix row of the ladder interleaver The number is 6;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 6 and the number of rows is 9; the length of the right-angled side of the triangle interleaver is 10; the ladder matrix row of the ladder interleaver The number is 15;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 9 and the number of rows is 14; the length of the right-angle side of the triangle interleaver is 16; the ladder matrix row of the ladder interleaver The number is 33.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 2 and the number of rows is 4; the length of the right-angled side of the triangular interleaver is 4; the ladder matrix row of the ladder interleaver The number is 4;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 6; the length of the right-angled side of the triangle interleaver is 7; the ladder matrix row of the ladder interleaver The number is 8;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 7 and the number of rows is 8; the length of the right-angle side of the triangle interleaver is 11; the ladder matrix row of the ladder interleaver The number is 16.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 5 and the number of rows is 9; the length of the right-angle side of the triangle interleaver is 9; the ladder matrix row of the ladder interleaver The number is 13;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 9 and the number of rows is 13; the length of the right-angled side of the triangular interleaver is 15; the ladder matrix row of the ladder interleaver The number is 31.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 5; the length of the right-angled side of the triangle interleaver is 6; the ladder matrix row of the ladder interleaver The number is 7;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 13; the length of the right-angled side of the triangle interleaver is 10; the ladder matrix row of the ladder interleaver The number is 15.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 9; the length of the right-angled side of the triangle interleaver is 8; the ladder matrix row of the ladder interleaver The number is 11;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 9 and the number of rows is 12; the length of the right-angle side of the triangle interleaver is 15; the ladder matrix row of the ladder interleaver The number is 29.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 4; the length of the right-angled side of the triangle interleaver is 6; the ladder matrix row of the ladder interleaver The number is 6;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 6 and the number of rows is 8; the length of the right-angled side of the triangle interleaver is 10; the ladder matrix row of the ladder interleaver The number is 14.
  • the processing unit is further configured to adopt one set of parameters in the multiple sets of parameters when the interleaver includes multiple sets of parameters.
  • the bandwidth is PPDU bandwidth.
  • the punctured channel information includes at least one of subcarriers of the punctured channel, bandwidth of the punctured channel, and the number of punctured channels.
  • the first device 900 in the embodiment of the present application can implement the corresponding function of the first device in the foregoing method 200 embodiment.
  • each module (submodule, unit, or component, etc.) in the first device 900 refers to the corresponding descriptions in the above method embodiments, and details will not be repeated here.
  • the functions described by the modules (submodules, units or components, etc.) in the first device 900 of the embodiment of the application can be realized by different modules (submodules, units or components, etc.), or by the same A module (submodule, unit or component, etc.) implementation.
  • Fig. 10 is a schematic block diagram of a second device 1000 according to an embodiment of the present application.
  • the second device 1000 may include:
  • the processing unit 1010 is configured to deinterleave the resource units RU according to first information, where the first information includes at least one of interleaving granularity, punctured channel information, and interleaver type.
  • processing unit 1010 is also used for:
  • the number of the punctured RUs is the first number
  • the number of the deinterleaved first physical RUs is the third number
  • the number of the first physical RUs obtained through combination is the second number.
  • processing unit 1010 is also used for:
  • the number of punctured RUs is a first number
  • the number of deinterleaved first physical RUs is a second number
  • the processing unit 1010 is configured to use an interleaver to perform deinterleaving on the first physical RU to be deinterleaved, including: using an interleaver to perform deinterleaving on the first physical RU to be deinterleaved, and recovering the The order of index arrangement of the first physical RU to be deinterleaved.
  • the first physical RU when the interleaving granularity is 26 subcarriers, the first physical RU includes 26 subcarriers, and the relationship between the bandwidth and the second quantity includes at least one of the following:
  • the bandwidth is 80MHz, and the second number is 36;
  • the bandwidth is 160MHz, and the second number is 72;
  • the bandwidth is 320MHz, and the second number is 144.
  • the processing unit 1010 is further configured to combine the second number of first physical RUs and the fourth number of second physical RUs to obtain restored first physical RUs.
  • the first physical RU when the interleaving granularity is 52 subcarriers, the first physical RU includes 52 subcarriers, the second physical RU includes 26 subcarriers, and the bandwidth is related to the second number and the fourth Quantitative relationships include at least one of the following:
  • the bandwidth is 80MHz, the second number is 16, and the fourth number is 4;
  • the bandwidth is 160MHz, the second number is 32, and the fourth number is 8;
  • the bandwidth is 320MHz, the second number is 64, and the fourth number is 16.
  • the index of each physical RU has a corresponding physical subcarrier index range
  • the index of each virtual RU has a corresponding virtual subcarrier index range
  • the interleaver is determined according to the interleaver type.
  • the interleaver type includes at least one of the following: a block interleaver, a triangle interleaver, a spiral interleaver, or a ladder interleaver.
  • the parameter of the interleaver is determined according to the type of the interleaver and the number of first physical RUs to be deinterleaved.
  • the type of the interleaver is a block interleaver
  • the parameters of the block interleaver include the number of columns and the number of rows.
  • the interleaver type is a triangle interleaver, and the parameters of the triangle interleaver include the length of a right-angled side.
  • the type of the interleaver is a spiral interleaver
  • the parameters of the spiral interleaver include the number of spiral matrix columns, the group size written in each group, and the step size of the spiral matrix.
  • the number of columns of the spiral matrix of the spiral interleaver is 3, the group size of each write group is 2, and the step size of the spiral matrix is 1.
  • the type of the interleaver is a ladder interleaver
  • parameters of the ladder interleaver include the number of columns of the ladder matrix and the number of rows of the ladder matrix.
  • the number of columns of the ladder interleaver is four.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 9, or the number of columns is 6 and the number of rows is 6; the length of the right-angled side of the triangular interleaver is 8 ; The number of rows of the ladder matrix of the ladder interleaver is 11;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 6 and the number of rows is 12, or the number of columns is 8 and the number of rows is 9; the length of the right-angled side of the triangular interleaver is 12 ; The number of rows of the ladder matrix of the ladder interleaver is 20;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 8 and the number of rows is 18, or the number of columns is 9 and the number of rows is 16, or the number of columns is 12 and the number of rows is 12; The length of the right-angle side of the triangular interleaver is 17; the row number of the ladder matrix of the ladder interleaver is 38.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 4; the length of the right-angled side of the triangle interleaver is 6; the ladder matrix row of the ladder interleaver The number is 6;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 8; the length of the right-angled side of the triangle interleaver is 8; the ladder matrix row of the ladder interleaver The number is 10;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 8 and the number of rows is 8; the length of the right-angle side of the triangle interleaver is 11; the ladder matrix row of the ladder interleaver The number is 18.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 3 and the number of rows is 9; the length of the right-angled side of the triangular interleaver is 7; the ladder matrix row of the ladder interleaver The number is 9;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 7 and the number of rows is 9; the length of the right-angled side of the triangle interleaver is 11; the ladder matrix row of the ladder interleaver The number is 18;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 5 and the number of rows is 27; the length of the right-angle side of the triangle interleaver is 16; the ladder matrix row of the ladder interleaver The number is 36.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 3 and the number of rows is 4; the length of the right-angled side of the triangle interleaver is 5; the ladder matrix row of the ladder interleaver The number is 5;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 7; the length of the right-angle side of the triangle interleaver is 7; the ladder matrix row of the ladder interleaver The number is 9;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 6 and the number of rows is 10; the length of the right-angle side of the triangle interleaver is 11; the ladder matrix row of the ladder interleaver The number is 17.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 3 and the number of rows is 6; the length of the right-angled side of the triangle interleaver is 6; the ladder matrix row of the ladder interleaver The number is 6;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 6 and the number of rows is 9; the length of the right-angled side of the triangle interleaver is 10; the ladder matrix row of the ladder interleaver The number is 15;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 9 and the number of rows is 14; the length of the right-angle side of the triangle interleaver is 16; the ladder matrix row of the ladder interleaver The number is 33.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 80MHz include at least one of the following: the number of columns of the block interleaver is 2 and the number of rows is 4; the length of the right-angled side of the triangular interleaver is 4; the ladder matrix row of the ladder interleaver The number is 4;
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 6; the length of the right-angled side of the triangle interleaver is 7; the ladder matrix row of the ladder interleaver number is 8;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 7 and the number of rows is 8; the length of the right-angle side of the triangle interleaver is 11; the ladder matrix row of the ladder interleaver The number is 16.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 5 and the number of rows is 9; the length of the right-angle side of the triangle interleaver is 9; the ladder matrix row of the ladder interleaver The number is 13;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 9 and the number of rows is 13; the length of the right-angled side of the triangular interleaver is 15; the ladder matrix row of the ladder interleaver The number is 31.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 5; the length of the right-angled side of the triangle interleaver is 6; the ladder matrix row of the ladder interleaver The number is 7;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 13; the length of the right-angled side of the triangle interleaver is 10; the ladder matrix row of the ladder interleaver The number is 15.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 9; the length of the right-angled side of the triangle interleaver is 8; the ladder matrix row of the ladder interleaver The number is 11;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 9 and the number of rows is 12; the length of the right-angle side of the triangle interleaver is 15; the ladder matrix row of the ladder interleaver The number is 29.
  • the relationship between the bandwidth and the parameters of different types of interleavers includes at least one of the following:
  • the parameters of the interleaver corresponding to the bandwidth of 160MHz include at least one of the following: the number of columns of the block interleaver is 4 and the number of rows is 4; the length of the right-angled side of the triangle interleaver is 6; the ladder matrix row of the ladder interleaver The number is 6;
  • the parameters of the interleaver corresponding to the bandwidth of 320MHz include at least one of the following: the number of columns of the block interleaver is 6 and the number of rows is 8; the length of the right-angled side of the triangle interleaver is 10; the ladder matrix row of the ladder interleaver The number is 14.
  • the processing unit is further configured to adopt one set of parameters in the multiple sets of parameters when the interleaver includes multiple sets of parameters.
  • the bandwidth is PPDU bandwidth.
  • the punctured channel information includes at least one of subcarriers of the punctured channel, bandwidth of the punctured channel, and the number of punctured channels.
  • the second device 1000 in the embodiment of the present application can implement the corresponding function of the second device in the foregoing method 300 embodiment.
  • functions, implementations and beneficial effects corresponding to each module (submodule, unit or component, etc.) in the second device 1000 refer to the corresponding description in the above method embodiment, and details are not repeated here.
  • the functions described by the modules (submodules, units or components, etc.) in the second device 1000 of the embodiment of the application can be realized by different modules (submodules, units or components, etc.), or by the same A module (submodule, unit or component, etc.) implementation.
  • Fig. 11 is a schematic block diagram of a communication device 1100 according to an embodiment of the present application.
  • the communication device 1100 may include:
  • the first writing unit 1110 is used to write the index of the elements to be interleaved in the first order from the right-angle side of the triangle interleaver, and write the units of the triangle interleaver row by row;
  • the first readout unit 1120 is configured to read out the indices of the elements in the unit of the triangular interleaver column by column from the right-angled side.
  • the first writing unit 1110 is further configured to write all the elements to be interleaved into the units of the triangle interleaver when the total number of units of the triangle interleaver is greater than the number of elements to be interleaved After that, the remaining cells of the triangle interleaver are written with null values row by row.
  • the first readout unit 1120 is also used for avoiding null values in the units of the delta interleaver during the readout process.
  • the device also includes:
  • a processing unit configured to determine the length of a right-angled side of a triangle interleaver according to the number of elements to be interleaved
  • the length of the right-angled side is used to determine the total number of units of the triangle interleaver, and the total number of units of the triangle interleaver is greater than or equal to the number of elements to be interleaved.
  • the first order includes an order from small to large, or an order from large to small.
  • the communication device 1100 in the embodiment of the present application can implement the corresponding functions of the communication device in the foregoing method 400 embodiment.
  • functions, implementations and beneficial effects corresponding to each module (submodule, unit or component, etc.) in the communication device 1100 refer to the corresponding description in the above method embodiments, and details are not repeated here.
  • the functions described by the modules (submodules, units or components, etc.) in the communication device 1100 of the embodiment of the application can be realized by different modules (submodules, units or components, etc.), or by the same Module (submodule, unit or component, etc.) implementation.
  • Fig. 12 is a schematic block diagram of a communication device 1200 according to an embodiment of the present application.
  • the communication device 1200 may include:
  • the second writing unit 1210 is configured to, according to at least one of the number of spiral matrix columns of the spiral interleaver, the group size written in each group, and the step size of the spiral matrix, index the elements to be interleaved column by column in the first order writing to a unit of the spiral interleaver;
  • the second readout unit 1220 is configured to read out the indexes of the elements in the units of the spiral interleaver row by row.
  • the second writing unit 1210 is used to write the elements to be interleaved one by one according to at least one of the column number of the spiral matrix of the spiral interleaver, the group size of each group written, and the step size of the spiral matrix
  • the elements of the spiral interleaver include:
  • k is the column identifier
  • the value range of k is from 1 to C
  • C is the column number of the spiral matrix
  • R is the group size written in each group
  • S is the step size of the spiral matrix.
  • C, R, and S are positive integers greater than 1.
  • the first order includes an order from small to large, or an order from large to small.
  • the communication device 1200 in the embodiment of the present application can implement the corresponding functions of the communication device in the foregoing method 500 embodiment.
  • each module (submodule, unit or component, etc.) in the communication device 1200 refers to the corresponding description in the above method embodiments, and details are not repeated here.
  • the functions described by the modules (submodules, units or components, etc.) in the communication device 1200 of the embodiment of the application can be realized by different modules (submodules, units or components, etc.), or by the same Module (submodule, unit or component, etc.) implementation.
  • Fig. 13 is a schematic block diagram of a communication device 1300 according to an embodiment of the present application.
  • the communication device 1300 may include:
  • the third writing unit 1310 is configured to write the index of the element to be interleaved column by column in the first order according to at least one of the number of columns of the ladder matrix and the number of rows of the ladder matrix of the ladder interleaver into the ladder interleaving unit ;
  • the third readout unit 1320 is configured to read out the indexes of the elements in the units of the ladder interleaver row by row.
  • the third writing unit 1310 is configured to write the elements to be interleaved one by one into the ladder-shaped interleaving unit according to at least one of the number of columns of the ladder matrix and the number of rows of the ladder matrix of the ladder-shaped interleaver, including :
  • the indexes of the elements to be interleaved are written into the non-null units of the ladder interleaver in columns.
  • the third readout unit 1320 is also used to avoid null values in the units of the ladder interleaver during the readout process.
  • the first order includes an order from small to large, or an order from large to small.
  • the communication device 1300 in the embodiment of the present application can implement the corresponding functions of the communication device in the foregoing method 600 embodiment.
  • each module (submodule, unit or component, etc.) in the communication device 1300 refers to the corresponding description in the above method embodiment, and details are not repeated here.
  • the functions described by the various modules (submodules, units or components, etc.) in the communication device 1300 of the embodiment of the application can be realized by different modules (submodules, units or components, etc.), or by the same Module (submodule, unit or component, etc.) implementation.
  • the first device 900 and/or the second device 1000 may also include a writing unit and/or a reading unit in any communication device, for performing interleaving and/or deinterleaving.
  • a writing unit and/or a reading unit in any communication device, for performing interleaving and/or deinterleaving.
  • Fig. 14 is a schematic block diagram of a first device 1400 according to an embodiment of the present application.
  • the first device 1400 may include:
  • the sending unit 1410 is configured to send second information, where the second information is used to indicate an RU allocation mode and/or an interleaving granularity.
  • the second information is in the U-SIG field and/or the EHT-SIG field of the downlink signaling.
  • the U-SIG field and/or the EHT-SIG field includes at least one of the following:
  • the second subfield used to indicate the interleaving granularity.
  • the first subfield and/or the second subfield use reserved fields.
  • the reserved field used by the first subfield and/or the second subfield is a verification field.
  • the reserved field used by the first subfield and/or the second subfield is an ignored field.
  • the first subfield is bit B22 in the U-SIG field
  • the second subfield is bit B23 in the U-SIG field.
  • the first subfield is bit B13 in the EHT-SIG field
  • the second subfield is bit B14 in the U-SIG field.
  • the first value of the first subfield indicates a RU interleaving allocation mode; the second value of the second subfield indicates another non-interleaving allocation mode.
  • different values of the second subfield correspond to different RU interleaving granularities.
  • the downlink signaling is EHT TB PPDU and/or EHT MU PPDU.
  • the EHT TB PPDU and/or EHT MU PPDU further includes at least one of PPDU bandwidth, punctured channel information, and RU allocation information.
  • the punctured channel information includes at least one of subcarriers of the punctured channel, bandwidth of the punctured channel, and the number of punctured channels.
  • the device also includes:
  • the receiving unit is configured to receive third information, where the third information is used to indicate the allocation mode and/or interleaving granularity of the RU.
  • the third information is in the EHT variant general information field of the uplink signaling.
  • the third information is in the EHT reserved field of the EHT variant general information field of the uplink signaling.
  • the EHT reserved field includes at least one of the following:
  • the second subfield used to indicate the interleaving granularity.
  • the uplink signaling is a trigger frame requesting uplink EHT TB PPDU transmission.
  • the first device 1400 in the embodiment of the present application can implement the corresponding function of the first device in the foregoing method 700 embodiment.
  • each module (submodule, unit, or component, etc.) in the first device 1400 refers to the corresponding descriptions in the above method embodiments, and details are not repeated here.
  • the functions described by the modules (submodules, units or components, etc.) in the first device 1400 of the embodiment of the application may be implemented by different modules (submodules, units or components, etc.), or by the same A module (submodule, unit or component, etc.) implementation.
  • Fig. 15 is a schematic block diagram of a second device 1500 according to an embodiment of the present application.
  • the second device 1500 may include:
  • the receiving unit 1510 is configured to receive second information, where the second information is used to indicate RU allocation mode and/or interleaving granularity.
  • the second information is in the U-SIG field and/or the EHT-SIG field of the downlink signaling.
  • the U-SIG field and/or the EHT-SIG field includes at least one of the following:
  • the second subfield used to indicate the interleaving granularity.
  • the first subfield and/or the second subfield use reserved fields.
  • the reserved field used by the first subfield and/or the second subfield is a verification field.
  • the reserved field used by the first subfield and/or the second subfield is an ignored field.
  • the first subfield is bit B22 in the U-SIG field
  • the second subfield is bit B23 in the U-SIG field.
  • the first subfield is bit B13 in the EHT-SIG field
  • the second subfield is bit B14 in the U-SIG field.
  • the first value of the first subfield indicates a RU interleaving allocation mode; the second value of the second subfield indicates another non-interleaving allocation mode.
  • different values of the second subfield correspond to different RU interleaving granularities.
  • the downlink signaling is EHT TB PPDU and/or EHT MU PPDU.
  • the EHT TB PPDU and/or EHT MU PPDU further includes at least one of PPDU bandwidth, punctured channel information, and RU allocation information.
  • the punctured channel information includes at least one of subcarriers of the punctured channel, bandwidth of the punctured channel, and the number of punctured channels.
  • the device also includes:
  • a sending unit configured to send third information, where the third information is used to indicate the allocation mode and/or interleaving granularity of the RU.
  • the third information is in the EHT variant general information field of the uplink signaling.
  • the third information is in the EHT reserved field of the EHT variant general information field of the uplink signaling.
  • the EHT reserved field includes at least one of the following:
  • the second subfield used to indicate the interleaving granularity.
  • the uplink signaling is a trigger frame requesting uplink EHT TB PPDU transmission.
  • the device also includes:
  • a processing unit configured to determine interleaver parameters according to PPDU bandwidth, punctured channel information, and RU allocation information.
  • the second device 1500 in the embodiment of the present application can implement the corresponding function of the second device in the foregoing method 800 embodiment.
  • each module (submodule, unit, or component, etc.) in the second device 1500 refers to the corresponding description in the above method embodiment, and details are not repeated here.
  • the functions described by the modules (submodules, units or components, etc.) in the second device 1500 of the embodiment of the application may be implemented by different modules (submodules, units or components, etc.), or by the same A module (submodule, unit or component, etc.) implementation.
  • the first device 1400 and/or the second device 1500 may also include a writing unit and/or a reading unit in any communication device, for performing interleaving and/or deinterleaving.
  • a writing unit and/or a reading unit in any communication device, for performing interleaving and/or deinterleaving.
  • deinterleaving for the specific interleaving and/or deinterleaving methods, refer to the relevant descriptions in the foregoing method embodiments.
  • One or more features of the first device 1400 and the first device 900 may be combined.
  • One or more features of the second device 1500 and the second device 1000 may be combined. There may also be other combinations between different embodiments, which are not limited in this embodiment of the present application.
  • the embodiment of the present application proposes an RU interleaving scheme used in the OFDMA EHT PPDU in the scenario of large-bandwidth OFDMA EHT PPDU transmission involving many STAs.
  • the RU or MRU allocated to STAs can obtain higher frequency diversity gain after interleaving and mapping.
  • the embodiment of the present application provides the RU interleaving process in the case of a punctured channel, adds the RU interleaving mapping as a module in the transmitter, and proposes the detailed process of the RU interleaving in the case of a punctured channel;
  • the embodiment of the present application provides several interleavers suitable for RU interleaving: a triangle interleaver, a spiral interleaver, and a ladder interleaver.
  • the embodiment of the present application provides a signaling indication of the RU interleaving mode.
  • the signaling may contain two subfields, RU/MRU allocation mode and RU/MRU interleaving granularity.
  • the RU/MRU allocation mode and RU/MRU interleaving granularity subfields are indicated in the U-SIG field or EHT-SIG field; during OFDMA EHT TB PPDU transmission, the RU/MRU allocation mode and RU
  • the /MRU interleaving granularity subfield is indicated in the trigger frame requesting uplink EHT TB PPDU transmission.
  • EHT PPDU Two forms of EHT PPDU are introduced: EHT MU PPDU and EHT TB PPDU.
  • EHT MU PPDU The format of the EHT MU PPDU is shown in Figure 16A and is used for transmission to one or more users.
  • L-STF, L-LTF, L-SIG, U-SIG and EHT-SIG are called pre-EHT (pre-EHT or forward EHT) modulation field;
  • EHT-STF, EHT-LTF, Data and PE are called EHT modulation fields.
  • the format of the EHT TB PPDU is shown in Figure 16B and is used to transmit a response trigger frame from an AP.
  • L-STF, L-LTF, L-SIG, and U-SIG are called pre-EHT modulation fields;
  • EHT-STF, EHT-LTF, Data, and PE are called EHT modulation fields.
  • the duration of the EHT-STF field in the EHT TB PPDU is twice the duration of the EHT-STF field in the EHT MU PPDU.
  • RU interleaving is performed at the transmitting end, and deinterleaving is performed at the receiving end. It is necessary to indicate the RU allocation mode and RU interleaving granularity through signaling.
  • the downlink transmission signaling indicates the U-SIG field or the EHT-SIG field, and the uplink transmission signaling indicates the EHT variant in the trigger frame requesting uplink EHT TB PPDU transmission. information field.
  • interleaver parameters no signaling instructions are required.
  • the receiver can use the PPDU bandwidth, punctured channel information, and RU information included in U-SIG and EHT-SIG. Allocate information to determine interleaver parameters.
  • Spatial mapping is to map spatial streams to corresponding RF links.
  • Frequency domain mapping is to map modulation symbols to corresponding physical subcarriers for each RF link. Specifically, for each RF link, frequency-domain mapping includes two steps: first, modulation symbols are mapped to virtual subcarriers, and then virtual subcarriers are mapped to physical subcarriers. Taking LDPC coded data domain transmission as an example, the position of RU interleaving in the transmission process is shown in the Spatial and Frequency Mapping (Spatial and Frequency Mapping) part in Figure 17.
  • Figure 17 shows the flow chart of UL or DL non-MU-MIMO transmission using LDPC coded data domain when RU or MRU is less than or equal to 996-tone.
  • RU or MRU is less than or equal to 996-tone
  • RU is interleaved in the space and frequency mapping (Spatial and Frequency Mapping) of the transmission process part.
  • the embodiment of the present application proposes an RU interleaving process in the case of a punctured channel, and the RU interleaving granularity is 26-tone (may also be expressed as 26tones) or 52-tone (may also be expressed as 52tones).
  • the minimum sub-channel for punching is 20MHz, corresponding to 242-tone RU.
  • the smallest interleaving unit may be referred to as a "reference RU".
  • the pre-designated interleaver may be a block interleaver, a triangle interleaver, a spiral interleaver, or a ladder interleaver.
  • the parameters of the interleaver depend on the interleaver type, interleaving granularity, PPDU bandwidth and punctured channel conditions. Exemplary interleaver parameters are shown in Table 2 to Table 7, including interleaver parameters for non-punctured channel situations and punctured channel situations;
  • Ng - Np physical reference RUs after interleaving are sequentially mapped to the virtual reference RUs.
  • a virtual reference RU may also be called a logical reference RU.
  • the pre-designated interleaver may be a block interleaver, a triangle interleaver, a spiral interleaver, or a ladder interleaver.
  • the parameters of the interleaver depend on the interleaver type, interleaving granularity and PPDU bandwidth. Exemplary interleaver parameters are shown in Table 2 to Table 7, including interleaver parameters for non-punctured channel situations and punctured channel situations;
  • Table 1 The number of RUs corresponding to different RU interleaving granularities under different bandwidths
  • the receiving end can determine whether the EHT modulation field of the EHT MU PPDU uses the RU interleaving mode according to the RU allocation mode indicated in the U-SIG or EHT-SIG field. If the EHT modulation field of the EHT MU PPDU adopts the RU interleaving mode, the receiving end can determine the PPDU bandwidth, puncturing channel information, RU interleaving granularity, and the RU allocation information of the receiving end indicated in the U-SIG and/or EHT-SIG fields. A physical subcarrier corresponding to the allocated virtual RU/MRU at the receiving end is determined.
  • IEEE802.11be D1.3 stipulates that a maximum of two 20MHz sub-channels can be punched per 80MHz bandwidth, then a maximum of four 20MHz sub-channels can be punched in a 160MHz bandwidth, and a maximum of eight 20MHz sub-channels can be punched in a 320MHz bandwidth.
  • Table 3 to Table 7 list the interleaver parameters corresponding to different RU interleaving granularities under different punctured channel situations and different bandwidths.
  • the 80MHz bandwidth is divided into 12 physical 52-tone RUs according to the interleaving granularity 52-tone after removing the punched channel.
  • 12 physical 52-tone RUs are interleaved, and the interleaved physical RU positions are mapped to virtual RU positions.
  • the virtual 52-tone RU5 (Virtual subcarrier position [-252, -201]) corresponds to physical 52-tone RU2 (physical subcarrier position [-445, -394])
  • virtual 52-tone RU6 (virtual subcarrier position [-198, -147] ) corresponds to physical 52-tone RU5 (physical subcarrier position [-252,-201])
  • virtual 26-tone RU is not interleaved
  • virtual 52-tone RU7 (virtual subcarrier position [-118,-67]) corresponds to physical 52 -tone RU8 (physical subcarrier position [-64,-13])
  • virtual 52-tone RU8 (virtual subcarrier position [-64,-13]) corresponds to physical 52-tone RU15 (physical subcarrier position [394,445])
  • the performance of the interleaver may affect the frequency diversity gain after RU interleaving.
  • the embodiment of the present application proposes three interleavers suitable for RU interleaving, which are triangular interleaver, spiral interleaver, and ladder interleaver. shape interleaver.
  • the receiving end can pre-designate one of the following according to the PPDU bandwidth, puncturing channel information, and RU allocation information contained in U-SIG and EHT-SIG An interleaver whose parameters are uniquely determined for interleaving.
  • the shape of the interleaver is an isosceles right triangle.
  • Q is the total number of elements that the triangle interleaver can write. If Q>N, then fill the void (null) after N RUs.
  • the triangle interleaver includes two steps of writing and reading.
  • Example 2 The specific implementation process of the triangle interleaver for RU interleaving.
  • virtual RU1 corresponds to physical RU1
  • virtual RU2 corresponds to physical RU7
  • virtual RU3 corresponds to physical RU12
  • virtual RU4 corresponds to physical RU16
  • virtual RU5 corresponds to physical RU2
  • virtual RU6 corresponds to physical RU8
  • virtual RU7 corresponds to physical RU13
  • virtual RU8 corresponds to Physical RU3
  • virtual RU9 corresponds to physical RU9
  • virtual RU10 corresponds to physical RU14
  • virtual RU11 corresponds to physical RU4
  • virtual RU12 corresponds to physical RU10
  • virtual RU13 corresponds to physical RU15
  • virtual RU14 corresponds to physical RU5
  • virtual RU16 corresponds to physical RU6 .
  • the shape of the interleaver is spiral.
  • the spiral interleaver includes two steps of writing and reading.
  • Example 3 The specific implementation process of the spiral interleaver.
  • virtual RU1 corresponds to physical RU1
  • virtual RU2 corresponds to physical RU2
  • virtual RU3 corresponds to physical RU3
  • virtual RU4 corresponds to physical RU7
  • virtual RU5 corresponds to physical RU4
  • virtual RU6 corresponds to physical RU5
  • virtual RU7 corresponds to physical RU8
  • virtual RU8 corresponds to Physical RU9
  • virtual RU9 corresponds to physical RU6
  • virtual RU10 corresponds to physical RU13
  • virtual RU11 corresponds to physical RU10
  • virtual RU12 corresponds to physical RU11
  • virtual RU13 corresponds to physical RU14
  • virtual RU14 corresponds to physical RU15
  • virtual RU15 corresponds to physical RU12
  • virtual RU16 corresponds to physical RU16 .
  • the shape of the interleaver is stepped.
  • the ladder interleaver includes two steps of writing and reading.
  • Example 4 The specific implementation process of the ladder interleaver.
  • virtual RU18 corresponds to physical RU18
  • virtual RU17 corresponds to physical RU17
  • virtual RU16 corresponds to physical RU12
  • virtual RU15 corresponds to physical RU16
  • virtual RU14 corresponds to physical RU11
  • virtual RU13 corresponds to physical RU7
  • virtual RU12 corresponds to physical RU15
  • virtual RU11 corresponds to Physical RU10
  • virtual RU10 corresponds to physical RU6
  • virtual RU9 corresponds to physical RU3
  • virtual RU8 corresponds to physical RU14
  • virtual RU7 corresponds to physical RU9
  • virtual RU6 corresponds to physical RU5
  • virtual RU4 corresponds to physical RU13
  • virtual RU3 corresponds to physical RU8
  • the downlink signaling will be indicated in the U-SIG field or the Common field of the EHT-SIG field, which contains two subfields: (1) RU/MRU allocation mode (2) RU interleaving granularity; uplink signaling will Indicated in the EHT variant general information field in the trigger frame requesting uplink EHT TB PPDU transmission, including two subfields: (1) RU/MRU allocation mode (2) RU interleaving granularity.
  • one bit B22 is used to indicate the RU/MRU allocation mode subfield, for example, 0 indicates the RU/MRU allocation mode specified in 11be, and 1 indicates the RU /MRU interleaving allocation mode.
  • One bit B23 is used to indicate the RU interleaving granularity subfield, for example, 0 indicates that the RU interleaving granularity is 26-tone, and 1 indicates that the RU interleaving granularity is 52-tone.
  • B22 can come from disregard (ignore field), or from validate (validate field), and validate can be preferred.
  • the RU interleaving granularity can also be indicated in EHT-SIG.
  • EHT-SIG EHT-SIG
  • one bit B13 is used to indicate the RU/MRU allocation mode subfield, for example, 0 indicates the RU/MRU allocation mode specified in 11be, and 1 indicates the RU /MRU interleaving allocation mode.
  • One bit B14 is used to indicate the RU interleaving granularity subfield, for example, 0 indicates that the RU interleaving granularity is 26-tone, and 1 indicates that the RU interleaving granularity is 52-tone.
  • Figure 22 shows the format of a trigger frame requesting the transmission of an upstream EHT TB PPDU.
  • the trigger frame may include an EHT variant general information field, a user information list field and a padding field.
  • the user information list field consists of one or more user information fields.
  • the format of the EHT variant general information field and user information list field depends on the type of trigger frame.
  • 1 bit is set to indicate the RU/MRU allocation mode subfield, for example, 0 indicates that the EHT TB PPDU adopts the RU/MRU allocation mode specified in 11be, and 1 indicates EHT TB PPDU adopts RU/MRU interleaving allocation mode; set 1 bit to indicate the interleaving granularity subfield, for example, 0 indicates that the RU interleaving granularity adopted by EHT TB PPDU is 26-tone, and 1 indicates that the RU interleaving granularity adopted by EHT TB PPDU is 52-tone tone.
  • the trigger frame requesting uplink EHT TB PPDU transmission includes the RU interleaving mode indication field.
  • the embodiment of this application proposes a specific RU interleaving scheme.
  • OFDMA EHT PPDU transmission is performed, and the RUs allocated to STAs are interleaved, so that STAs can obtain better frequency diversity gain, so that STAs can enjoy Benefits of large bandwidth.
  • the embodiment of this application proposes the RU interleaving process in the case of a punctured channel, which further improves the usage scenario of RU interleaving;
  • the embodiment of this application proposes the signaling indication of the uplink and downlink RU interleaving mode, based on the U-SIG and EHT-SIG fields in the existing IEEE 802.11be standard draft and the trigger frame requesting uplink EHT TB PPDU transmission Above, the RU interleaving mode indication subfield is added.
  • the solution in the above example is to remove the punctured subcarriers first, and then interleave. It is also possible to interleave first, and then remove the punctured subcarriers (that is, the punctured subcarriers also participate in RU interleaving). By first removing the punctured subcarriers and then interleaving, a segment of virtual RUs that can be continuously assigned to STAs can be formed, and the implementation complexity is low.
  • Fig. 23 is a schematic structural diagram of a communication device 2300 according to an embodiment of the present application.
  • the communication device 2300 includes a processor 2310, and the processor 2310 can invoke and run a computer program from a memory, so that the communication device 2300 implements the method in the embodiment of the present application.
  • the communication device 2300 may further include a memory 2320 .
  • the processor 2310 may invoke and run a computer program from the memory 2320, so that the communication device 2300 implements the method in the embodiment of the present application.
  • the memory 2320 may be an independent device independent of the processor 2310 , or may be integrated in the processor 2310 .
  • the communication device 2300 may further include a transceiver 2330, and the processor 2310 may control the transceiver 2330 to communicate with other devices, specifically, to send information or data to other devices, or to receive information sent by other devices. information or data.
  • the transceiver 2330 may include a transmitter and a receiver.
  • the transceiver 2330 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 2300 may be the second device in the embodiment of the present application, and the communication device 2300 may implement the corresponding processes implemented by the second device in each method of the embodiment of the present application. For the sake of brevity, the This will not be repeated here.
  • the communication device 2300 may be the first device in the embodiment of the present application, and the communication device 2300 may implement the corresponding processes implemented by the first device in each method of the embodiment of the present application. For the sake of brevity, the This will not be repeated here.
  • FIG. 24 is a schematic structural diagram of a chip 2400 according to an embodiment of the present application.
  • the chip 2400 includes a processor 2410, and the processor 2410 can call and run a computer program from the memory, so as to implement the method in the embodiment of the present application.
  • the chip 2400 may further include a memory 2420 .
  • the processor 2410 may call and run a computer program from the memory 2420, so as to implement the method executed by the first device or the second device in the embodiment of the present application.
  • the memory 2420 may be an independent device independent of the processor 2410 , or may be integrated in the processor 2410 .
  • the chip 2400 may further include an input interface 2430 .
  • the processor 2410 can control the input interface 2430 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the chip 2400 may further include an output interface 2440 .
  • the processor 2410 can control the output interface 2440 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the chip can be applied to the second device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the second device in the methods of the embodiment of the present application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • the chip can be applied to the first device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the first device in the various methods of the embodiment of the present application.
  • the Let me repeat for the sake of brevity, the Let me repeat.
  • the chips applied to the second device and the first device may be the same chip or different chips.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the processor mentioned above can be a general-purpose processor, a digital signal processor (DSP), an off-the-shelf programmable gate array (FPGA), an application specific integrated circuit (ASIC) or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA off-the-shelf programmable gate array
  • ASIC application specific integrated circuit
  • the general-purpose processor mentioned above may be a microprocessor or any conventional processor or the like.
  • the aforementioned memories may be volatile memories or nonvolatile memories, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM).
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • Fig. 25 is a schematic block diagram of a communication system 2500 according to an embodiment of the present application.
  • the communication system 2500 includes a first device 2510 and a second device 2520 .
  • the first device 2510 is configured to perform interleaving on resource units RU according to the first information.
  • the second device 2520 is configured to deinterleave resource units according to the first information.
  • the first information includes at least one of interleaving granularity, punctured channel information, and interleaver type.
  • the first device 2510 can be used to realize the corresponding functions realized by the first device in the above method 200, and the second device 2520 can be used to realize the corresponding functions realized by the second device in the above method 300. For the sake of brevity, details are not repeated here.
  • the first device 2510 is configured to send the second information.
  • the second device 2520 is configured to receive second information.
  • the second information is used to indicate the RU allocation mode and/or interleaving granularity.
  • the first device 2510 may be used to implement the corresponding functions implemented by the first device in the above-mentioned method 600
  • the second device 2520 may be used to implement the corresponding functions implemented by the second device in the above-mentioned method 700 .
  • details are not repeated here.
  • the first device 2510 may use any one type of interleaver control method in methods 400, 500, or 600 during the interleaving process.
  • the second device 2520 may use any one type of interleaver control method in methods 400, 500, or 600 during the deinterleaving process.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (Solid State Disk, SSD)), etc.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Error Detection And Correction (AREA)

Abstract

本申请涉及一种交织和解交织的方法和设备,该交织和解交织的方法,包括:第一设备根据第一信息对资源单元RU进行交织,该第一信息包括带宽、交织粒度、打孔信道信息和交织器类型的至少之一。本申请实施例能够适用于多STA的大带宽场景的传输。

Description

交织方法、解交织方法和设备 技术领域
本申请涉及通信领域,更具体地,涉及一种交织方法、解交织方法和设备。
背景技术
在通信标准中包括多种类型的RU(Resource Unit,资源单元),还包括由多个RU组成的MRU(Multiple Resource Unit,多个资源单元)。如果将一个RU或MRU直接分配给一个STA,无法享受大带宽带来的好处。
发明内容
本申请实施例提供一种交织方法、解交织方法和设备,能够适用于多STA的大带宽场景的传输。
本申请实施例提供一种交织方法,包括:第一设备根据第一信息对资源单元RU进行交织,该第一信息包括带宽、交织粒度、打孔信道信息和交织器类型的至少之一。
本申请实施例提供一种解交织方法,包括:第二设备根据第一信息对资源单元RU进行解交织,该第一信息包括交织粒度、打孔信道信息和交织器类型的至少之一。
本申请实施例提供一种交织器的控制方法,包括:从三角形交织器的直角边起,将待交织元素的索引按照第一顺序,并且按行逐个写入该三角形交织器的单元;从该直角边起,将该三角形交织器的单元中的元素的索引按列逐个读出。
本申请实施例提供一种交织器的控制方法,包括:根据螺旋形交织器的螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长的至少之一,将待交织元素的索引按照第一顺序按列逐个写入该螺旋形交织器的单元;将该螺旋形交织器的单元中的元素的索引按行逐个读出。
本申请实施例提供一种交织器的控制方法,包括:根据阶梯形交织器的阶梯矩阵列数和阶梯矩阵行数的至少之一,将待交织元素的索引按照第一顺序按列逐个写入该阶梯形交织的单元;将该阶梯形交织器的单元中的元素的索引按行逐个读出。
本申请实施例提供一种通信方法,包括:第一设备发送第二信息,该第二信息用于指示RU的分配模式和/或交织粒度。
本申请实施例提供一种通信方法,包括:第二设备接收第二信息,该第二信息用于指示RU的分配模式和/或交织粒度。
本申请实施例提供一种第一设备,包括:处理单元,用于根据第一信息对资源单元RU进行交织,该第一信息包括带宽、交织粒度、打孔信道信息和交织器类型的至少之一。
本申请实施例提供一种第二设备,包括:处理单元,用于根据第一信息对资源单元RU进行解交织,该第一信息包括交织粒度、打孔信道信息和交织器类型的至少之一。
本申请实施例提供一种通信设备,包括:第一写入单元,用于从三角形交织器的直角边起,将待交织元素的索引按照第一顺序,并且按行逐个写入该三角形交织器的单元;从该直角边起,将该三角形交织器的单元中的元素的索引按列逐个读出。
本申请实施例提供一种通信设备,包括:第二写入单元,用于根据螺旋形交织器的螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长的至少之一,将待交织元素的索引按照第一顺序按列逐个写入该螺旋形交织器的单元;将该螺旋形交织器的单元中的元素的索引按行逐个读出。
本申请实施例提供一种通信设备,包括:第三写入单元,用于根据阶梯形交织器的阶梯矩阵列数和阶梯矩阵行数的至少之一,将待交织元素的索引按照第一顺序按列逐个写入该阶梯形交织的单元;将该阶梯形交织器的单元中的元素的索引按行逐个读出。
本申请实施例提供一种第一设备,包括:发送单元,用于发送第二信息,该第二信息用于指示RU的分配模式和/或交织粒度。
本申请实施例提供一种第二设备,包括:接收单元,用于接收第二信息,该第二信息用于指示RU的分配模式和/或交织粒度。
本申请实施例提供一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该第一设备执行本申请任一实施例的交织和解交织的方法。
本申请实施例提供一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该第二设备执行本申请任一实施例的交织和解交织的方法。
本申请实施例提供一种芯片,用于实现上述的交织和解交织的方法。具体地,该芯片包括:处理器, 用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行本申请任一实施例的交织和解交织的方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序被设备运行时使得该设备执行本申请任一实施例的交织和解交织的方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行本申请任一实施例的交织和解交织的方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行本申请任一实施例的交织和解交织的方法。
本申请实施例,根据第一信息对资源单元RU进行交织,能够更好地适用于多STA的大带宽场景的传输。
附图说明
图1是根据本申请实施例的应用场景的示意图。
图2是根据本申请一实施例的交织方法200的示意性流程图。
图3是根据本申请一实施例的解交织方法300的示意性流程图。
图4是根据本申请一实施例的交织器的控制方法400的示意性流程图。
图5是根据本申请一实施例的交织器的控制方法500的示意性流程图。
图6是根据本申请一实施例的交织器的控制方法600的示意性流程图。
图7是根据本申请一实施例的通信方法700的示意性流程图。
图8是根据本申请一实施例的通信方法800的示意性流程图。
图9是根据本申请一实施例的第一设备900的示意性框图。
图10是根据本申请一实施例的第二设备1000的示意性框图。
图11是根据本申请一实施例的通信设备1100的示意性框图。
图12是根据本申请一实施例的通信设备1200的示意性框图。
图13是根据本申请一实施例的通信设备1300的示意性框图。
图14是根据本申请一实施例的第一设备1400的示意性框图。
图15是根据本申请一实施例的第二设备1500的示意性框图。
图16A是EHT MU PPDU格式的示意图。
图16B是EHT TB PPDU格式的示意图。
图17表示RU或MRU小于等于996-tone时,使用LDPC编码的数据域的UL或DL non-MU-MIMO传输流程图。
图18是打孔信道情形且交织粒度为52-tone的RU交织示例的示意图。
图19是RU在三角形交织器的交织映射过程的示意图。
图20是RU在螺旋形交织器的交织映射过程的示意图。
图21是RU在阶梯形交织器的交织映射过程的示意图。
图22是请求上行EHT TB PPDU传输的触发帧中RU交织模式指示字段的示意图。
图23是根据本申请实施例的通信设备示意性框图。
图24是根据本申请实施例的芯片的示意性框图。
图25是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:无线局域网(WLAN)、无线保真(Wireless Fidelity,WiFi)或其他通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括接入点(Access Point,AP)110,以及通过接入点110接入网络的站点(STATION,STA)120。
在一些场景中,AP或称AP STA,即在某种意义上来说,AP也是一种STA。
在一些场景中,STA或称非AP STA(non-AP STA)。
通信系统100中的通信可以是AP与non-AP STA之间的通信,也可以是non-AP STA与non-AP STA之间的通信,或者STA和peer STA之间的通信,其中,peer STA可以指与STA对端通信的设备,例如,peer STA可能为AP,也可能为non-AP STA。
AP相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。AP设备可以是终端设备(如手机)或者网络设备(如路由器)。该终端设备或者网 络设备具有实现通信功能的芯片,例如WLAN或者WiFi芯片。
应理解,STA在通信系统中的角色不是绝对的,例如,在一些场景中,手机连接路由的时候,手机是non-AP STA,手机作为其他手机的热点的情况下,手机充当了AP的角色。
AP和non-AP STA可以是应用于车联网中的设备,物联网(Internet Of Things,IoT)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表等,以及智慧城市中的传感器等。
在一些实施例中,non-AP STA可以支持802.11be制式。non-AP STA也可以支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的无线局域网(wireless local area networks,WLAN)制式。
在一些实施例中,AP可以为支持802.11be制式的设备。AP也可以为支持802.11ax、802.11ac、802.11n、802.11g、802.11b及802.11a等多种当前以及未来的802.11家族的WLAN制式的设备。
在本申请实施例中,STA可以是支持WLAN/WiFi技术的手机(Mobile Phone)、平板电脑(Pad)、电脑、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、工业控制(industrial control)中的无线设备、机顶盒、无人驾驶(self driving)中的无线设备、车载通信设备、远程医疗(remote medical)中的无线设备、智能电网(smart grid)中的无线设备、运输安全(transportation safety)中的无线设备、智慧城市(smart city)中的无线设备或智慧家庭(smart home)中的无线设备、无线通信芯片/ASIC/SOC/等。
WLAN技术可支持频段可以包括但不限于:低频段(例如2.4GHz、5GHz、6GHz)、高频段(例如60GHz)。
图1示例性地示出了一个AP STA和两个non-AP STA,可选地,该通信系统100可以包括多个AP STA以及包括其它数量的non-AP STA,本申请实施例对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
在IEEE 802.11be中包括8种RU,并且包括由多个RU组成的MRU。可以将1个RU或MRU分配给1个STA,具体如下。
(1)RU
EHT(Extremely High Throughput,极高的吞吐量)PPDU(Physical Layer Protocol Data Unit,物理层协议数据单元)中用于上下行OFDMA(Orthogonal Frequency Division Multiple Access,正交频分多址)传输的RU可以包括:26-tone(子载波或通)RU、52-tone RU、106-tone RU、242-tone RU、484-tone RU、996-tone RU、和2×996-tone RU。
RU可以划分为大尺寸RU和小尺寸RU,示例如下:
大尺寸RU:RU尺寸大于等于242-tone,包括242-tone RU、484-tone RU、996-tone RU和2×996-tone RU
小尺寸RU:RU尺寸小于242-tone,包括26-tone RU、52-tone RU和106-tone RU。
小尺寸RU可以在20MHz、40MHz、80MH、160MHz或320MHz OFDMA EHT PPDU中使用。例如,242-tone RU可以在40MHz、80MH、160MHz或320MHz OFDMA EHT PPDU中使用;484-tone RU可以在80MH、160MHz或320MHz OFDMA EHT PPDU中使用;996-tone RU可以在160MHz或320MHz OFDMA EHT PPDU中使用;2×996-tone RU可以在320MHz OFDMA EHT PPDU中使用。
(2)MRU
小尺寸的RU一般只能与小尺寸的RU结合形成小尺寸的MRU;大尺寸的RU一般只能与大尺寸的RU结合形成大尺寸的MRU。
(a)小尺寸MRU
EHT PPDU用于上下行OFDMA传输的小尺寸MRU可以包括:52+26-tone MRU(表示52-tone RU和26-tone RU组成的MRU,以下类似的表达具有类似的含义)和106+26-tone MRU。任意一个52+26-tone MRU中的52-tone RU和26-tone RU需来自同一个20MHz子信道。任意一个106+26-tone MRU中的106-tone RU和26-tone RU需来自同一个20MHz子信道。
(b)大尺寸MRU
EHT PPDU用于上下行OFDMA传输的大尺寸MRU可以包括:484+242-tone MRU、996+484-tone MRU、2×996+484-tone MRU、3×996-tone MRU和3×996+484-tone MRU。
484+242-tone MRU允许在80MHz,160MHz和320MHz OFDMA EHT PPDU中使用,且任意一个484+242-tone MRU中的484-tone RU和242-tone RU需来自同一个80MHz子信道;
996+484-tone MRU允许在160MHz和320MHz OFDMA EHT PPDU中使用;且任意一个996+484-tone MRU中的996-tone RU和484-tone RU需来自同一个160MHz子信道;
2×996+484-tone MRU,3×996-tone MRU和3×996+484-tone MRU允许在320MHz OFDMA EHT PPDU中使用。且任意一个2×996+484-tone MRU中的996-tone RU和484-tone RU需来自三个连续的80MHz子信道。
在一个涉及到众多STA的大带宽OFDMA EHT PPDU传输的情况下(例如一个涉及到16个STA的320MHz EHT PPDU传输,每个STA被分配一个242-tone RU),分配给1个STA的RU或MRU只能享受有限的频率分集增益,无法享受大带宽带来的好处。
图2是根据本申请一实施例的交织方法200的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容:
S210、第一设备根据第一信息对资源单元(RU)进行交织,该第一信息包括带宽、交织粒度、打孔信道信息和交织器类型的至少之一。
在本申请实施例中,第一设备可以为AP。交织粒度可以称为RU交织粒度。例如RU交织粒度可以包括26-tone(26个子载波,也可以表示为26tones)、52-tone(52个子载波,也可以表示为52tones)、106-tone(106个子载波,也可以表示为106tones)等。第一设备对RU进行交织后,可以将交织后的RU发送给一个或多个第二设备。例如,第二设备可以为STA。在第二设备上可以对收到的RU进行解交织。
在一种实施方式中,该带宽为PPDU带宽。该PPDU带宽可以包括单个RU或者MRU。需要进行交织的RU可以包括单个RU和/或MRU。
在一种实施方式中,该打孔信道信息(Punctured Channel Information)包括打孔信道的子载波、打孔信道的带宽和打孔信道的个数的至少之一。例如,如果打孔最小子信道为20MHz,打孔信道的子载波对应于242-tone(242个子载波)RU。根据打孔信道的子载波、打孔信道的带宽和打孔信道的个数的至少之一,可以确定出无需参与交织的打孔RU的数量。
在一种实施方式中,该第一设备根据第一信息对RU进行交织,包括:
根据该交织粒度和该打孔信道信息,得到打孔RU;
根据该交织粒度对该带宽进行划分,得到多个第一物理RU。
在一种实施方式中,该第一设备根据第一信息对RU进行交织,还包括:
从该多个第一物理RU中去除该打孔RU,得到待交织的第一物理RU;
使用交织器对该待交织的第一物理RU进行交织。
在一种实施方式中,打孔RU的数量为第一数量,划分带宽得到的该第一物理RU的数量为第二数量,去除该打孔RU后的第一物理RU的数量为第三数量。
例如,根据该交织粒度和该打孔信道信息,得到第一数量个打孔RU;根据该交织粒度对该带宽进行划分,得到第二数量个第一物理RU;从该第二数量个第一物理RU中去除该第一数量个打孔RU,得到第三数量个第一物理RU;使用交织器对该第三数量个第一物理RU进行交织。
在一种实施方式中,该第一设备根据第一信息对RU进行交织,还包括:
将划分带宽得到的该多个第一物理RU作为待交织的第一物理RU,使用交织器对该待交织的第一物理RU进行交织;
从交织后的第一物理RU中去除该打孔RU。
例如,根据该交织粒度和该打孔信道信息,得到第一数量个打孔RU;根据该交织粒度对该带宽进行划分,得到第二数量个第一物理RU;对该第二数量个第一物理RU进行交织,再第二数量个交织后的第一物理RU中中去除该第一数量个打孔RU,得到第三数量个交织后的第一物理RU。
在本申请实施例中,打孔RU可以称为打孔基准RU,第一物理RU可以称为物理基准RU。基准RU可以表示本申请实施例中的最小交织单元。
在一种实施方式中,在不同的交织粒度下,根据相同的打孔信道信息得到的打孔RU的第一数量可能不同。例如,如果打孔信道的子载波为242-tone RU,交织粒度是26-tone对应打孔RU的数量为9;交织粒度是52-tone对应打孔RU的数量为4。
在一种实施方式中,在不同的交织粒度下,根据相同的带宽得到的第一物理RU的第二数量不同。第二数量减去第一数量等于第三数量。从第二数量个第一物理RU中去除该第一数量个打孔RU后得到 的第三数量个第一物理RU参与交织。如果打孔信道的子载波数量发生变化,第一数量、第二数量和第三数量都可能发生变化。
在一种实施方式中,根据该交织粒度对该带宽进行划分,得到多个第一物理RU,包括:在该交织粒度为26个子载波的情况下,根据该交织粒度对该带宽进行划分,得到第二数量个第一物理RU;其中,每个该第一物理包括26个子载波。
在一种实施方式中,在该交织粒度为26个子载波的情况下,该带宽与该第二数量的关系包括以下至少之一:
该带宽为80MHz,该第二数量为36;
该带宽为160MHz,该第二数量为72;
该带宽为320MHz,该第二数量为144。
在一种实施方式中,根据该交织粒度对该带宽进行划分,得到第二数量个第一物理RU,包括:
在该交织粒度为52个子载波的情况下,根据该交织粒度对该带宽进行划分,得到第二数量个第一物理RU和第四数量个第二物理RU;其中,每个该第一物理包括52个子载波,每个该第二物理包括26个子载波。
在本申请实施例中,如果交织粒度为52个子载波,划分带宽可以得到一部分包括52个子载波的第一物理RU,以及一部分包括26个子载波的第二物理RU。其中,包括52个子载波的第一物理RU参与交织,包括26个子载波的第一物理RU不参与交织。
类似地,如果交织粒度为106个子载波,划分带宽可以得到一部分包括106个子载波的第一物理RU,以及一部分包括26个子载波的第二物理RU。其中,包括106个子载波的第一物理RU参与交织,包括26个子载波第二物理RU不参与交织。
在一种实施方式中,在该交织粒度为52个子载波的情况下,该带宽与该第二数量和该第四数量的关系包括以下至少之一:
该带宽为80MHz,该第二数量为16,该第四数量为4;
该带宽为160MHz,该第二数量为32,该第四数量为8;
该带宽为320MHz,该第二数量为64,该第四数量为16。
在一种实施方式中,使用交织器对该待交织的第一物理RU进行交织,包括:
使用交织器对该待交织的第一物理RU进行交织,改变该待交织的第一物理RU的索引排列顺序,得到交织后的第一物理RU的索引排列顺序;
按照该交织后的第一物理RU的索引排列顺序映射到虚拟RU、虚拟MRU、逻辑RU和逻辑MRU中的至少之一。
例如,交织器的写入顺序和读出顺序是不同的。将第三数量个第一物理RU的索引按照第一顺序逐个写入交织器的单元,再按照第二顺序将第三数量个第一物理RU的索引逐个从交织器的单元中读出,可以改变该第三数量个第一物理RU的索引排列顺序(位置)。按照交织后的第一物理RU的新的索引排列顺序,将第一物理RU的索引一一对应的映射到虚拟RU的索引。可选地,也可以映射到虚拟MRU、逻辑RU或逻辑MRU的索引。
在一种实施方式中,每个物理RU的索引具有对应的物理子载波索引区间范围,每个虚拟RU的索引具有对应的虚拟子载波索引区间范围。例如,52-tone RU1(物理RU的索引)对应物理子载波为区间[-499,-448]。
在一种实施方式中,交织后,改变物理RU的索引排列顺序,并不改变物理RU的索引与物理子载波索引的区间范围的对应关系。
在一种实施方式中,该交织器是根据该交织器类型确定的。
在一种实施方式中,该交织器类型包括以下至少之一:块交织器、三角形交织器、螺旋形交织器或阶梯形交织器。利用不同的交织器进行交织后,得到的第一物理RU的新的索引排列顺序可能不同。
在一种实施方式中,该交织器的参数是根据该交织器类型和该待交织的第一物理RU的数量确定的。例如,在先去除打孔RU再交织的方式中,待交织的第一物理RU的数量为第三数量。再如,在先交织再去除打孔RU的方式中,待交织的第一物理RU的数量为第二数量。
在一种实施方式中,该交织器类型为块交织器,该块交织器的参数包括列数和行数。
示例性地,利用块交织器进行交织的过程可以包括:将待交织元素例如待交织的第一物理RU的索引按照第一顺序,并且按行逐个写入该块交织器的单元;然后,将该块交织器的单元中的元素的索引按列逐个读出。这样,交织后的第一物理RU的索引的排列顺序改变为第二顺序。
在一种实施方式中,该第一顺序包括从小到大的顺序,或者从大到小的顺序。
在一种实施方式中,该交织器类型为三角形交织器,该三角形交织器的参数包括直角边长。
示例性地,利用三角形交织器进行交织的过程可以包括:从三角形交织器的直角边起,将待交织元素例如待交织的第一物理RU的索引按照第一顺序,并且按行逐个写入该三角形交织器的单元;然后,从该直角边起,将该三角形交织器的单元中的元素的索引按列逐个读出。这样,交织后的第一物理RU的索引的排列顺序改变为第三顺序。
示例性地,利用三角形交织器进行交织的过程可以包括:从三角形交织器的直角边起,将待交织元素例如待交织的第一物理RU的索引按照第一顺序,并且按列逐个写入该三角形交织器的单元;然后,从该直角边起,将该三角形交织器的单元中的元素的索引按行逐个读出。这样,交织后的第一物理RU的索引的排列顺序改变为第三顺序。
在一种实施方式中,该方法还包括:在该三角形交织器的单元总数大于该待交织元素的数量的情况下,将该待交织元素全部写入该三角形交织器的单元后,将该三角形交织器的剩余单元按行写入空值。
在一种实施方式中,在该读出的过程中,避开该三角形交织器的单元中的空值。
在一种实施方式中,该方法还包括:
根据该待交织元素的数量确定三角形交织器直角边长;
其中,该直角边长用于确定该三角形交织器的单元总数,该三角形交织器的单元总数大于或等于该待交织元素的数量。
在一种实施方式中,该交织器类型为螺旋形交织器,该螺旋形交织器的参数包括螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长。
示例性地,利用螺旋形交织器进行交织的过程可以包括:根据螺旋形交织器的螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长的至少之一,将待交织元素例如待交织的第一物理RU的索引按照第一顺序逐个写入该螺旋形交织器的单元;然后,将该螺旋形交织器的单元中的元素的索引按行逐个读出。这样,交织后的第一物理RU的索引的排列顺序改变为第四顺序。
在一种实施方式中,根据螺旋形交织器的螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长的至少之一,将待交织元素逐个写入该螺旋形交织器的单元,包括:
按照该待交织元素的第一顺序,从第k列起,每列写入R个元素,第k+1列比第k列低S行;
其中,k是列标识,k的取值范围是从1到C,C为螺旋矩阵列数,R为每组写入的组尺寸,S为螺旋矩阵步长。
在一种实施方式中,该螺旋形交织器的螺旋矩阵列数为3,每组写入的组尺寸为2,螺旋矩阵步长为1。该螺旋形交织器的参数的取值仅为示例,并非限制,螺旋矩阵列数、每组写入的组尺寸以及螺旋矩阵步长也可以为其他取值,具体可以根据实际应用的需求灵活选择。例如,螺旋矩阵列数可以为4、5或6等,每组写入的组尺寸可以为3或4等,螺旋矩阵步长可以为2或3等。
在一种实施方式中,该交织器类型为阶梯形交织器,该阶梯形交织器的参数包括阶梯矩阵列数和阶梯矩阵行数。
示例性地,利用阶梯形交织器进行交织的过程可以包括:根据阶梯形交织器的阶梯矩阵列数和阶梯矩阵行数的至少之一,将待交织元素的索引按照第一顺序按列逐个写入该阶梯形交织的单元;然后,将该阶梯形交织器的单元中的元素的索引按行逐个读出。这样,交织后的第一物理RU的索引的排列顺序改变为第五顺序。
在一种实施方式中,根据阶梯形交织器的阶梯矩阵列数和阶梯矩阵行数的至少之一,将待交织元素逐个写入该阶梯形交织的单元,包括:
根据该阶梯矩阵列数C和待交织元素数量N,确定阶梯矩阵行数R;
在第k列的前k-1行填入空值,其中k的取值范围是1到C;
按照该待交织元素的第一顺序,将该待交织元素的索引按列写入该阶梯形交织器的非空值的单元。
在一种实施方式中,在该读出的过程中,避开该阶梯形交织器的单元中的空值。
在一种实施方式中,该阶梯形交织器的列数为4。该阶梯形交织器的列数的取值仅为示例,并非限制,该阶梯形交织器的列数也可以为其他取值,具体可以根据实际应用的需求灵活选择。例如,该阶梯形交织器的列数5或6等。如果该阶梯形交织器的列数发生变化,该阶梯形交织器的行数也可能随之发生变化。
在一种实施方式中,在无打孔信道且该交织粒度为26个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为9,或者列数为6行数为6;该三角形交织器的直角边长为8;该阶梯形交织器的阶梯矩阵行数为11;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为6行数为12,或者列数为8行数为9;该三角形交织器的直角边长为12;该阶梯形交织器的阶梯矩阵行数为20;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为8行数为18,或者列数为9行数为16,或者列数为12行数为12;该三角形交织器的直角边长为17;该阶梯形交织器的阶梯矩阵行数为38。
在一种实施方式中,在无打孔信道且该交织粒度为52个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为4;该三角形交织器的直角边长为6;该阶梯形交织器的阶梯矩阵行数为6;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为8;该三角形交织器的直角边长为8;该阶梯形交织器的阶梯矩阵行数为10;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为8行数为8;该三角形交织器的直角边长为11;该阶梯形交织器的阶梯矩阵行数为18。
在一种实施方式中,在打孔1个20MHz信道且该交织粒度为26个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为3行数为9;该三角形交织器的直角边长为7;该阶梯形交织器的阶梯矩阵行数为9;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为7行数为9;该三角形交织器的直角边长为11;该阶梯形交织器的阶梯矩阵行数为18;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为5行数为27;该三角形交织器的直角边长为16;该阶梯形交织器的阶梯矩阵行数为36。
在一种实施方式中,在打孔1个20MHz信道且该交织粒度为52个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为3行数为4;该三角形交织器的直角边长为5;该阶梯形交织器的阶梯矩阵行数为5;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为7;该三角形交织器的直角边长为7;该阶梯形交织器的阶梯矩阵行数为9;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为6行数为10;该三角形交织器的直角边长为11;该阶梯形交织器的阶梯矩阵行数为17。
在一种实施方式中,在打孔2个20MHz信道且该交织粒度为26个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为3行数为6;该三角形交织器的直角边长为6;该阶梯形交织器的阶梯矩阵行数为6;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为6行数为9;该三角形交织器的直角边长为10;该阶梯形交织器的阶梯矩阵行数为15;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为9行数为14;该三角形交织器的直角边长为16;该阶梯形交织器的阶梯矩阵行数为33。
在一种实施方式中,在打孔2个20MHz信道且该交织粒度为52个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为2行数为4;该三角形交织器的直角边长为4;该阶梯形交织器的阶梯矩阵行数为4;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为6;该三角形交织器的直角边长为7;该阶梯形交织器的阶梯矩阵行数为8;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为7行数为8;该三角形交织器的直角边长为11;该阶梯形交织器的阶梯矩阵行数为16。
在一种实施方式中,在打孔3个20MHz信道且该交织粒度为26个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为5行数为9;该三角形交织器的直角边长为9;该阶梯形交织器的阶梯矩阵行数为13;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为9行数为13;该三角形交织器的直角边长为15;该阶梯形交织器的阶梯矩阵行数为31。
在一种实施方式中,在打孔3个20MHz信道且该交织粒度为52个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为5;该三 角形交织器的直角边长为6;该阶梯形交织器的阶梯矩阵行数为7;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为13;该三角形交织器的直角边长为10;该阶梯形交织器的阶梯矩阵行数为15。
在一种实施方式中,在打孔4个20MHz信道且该交织粒度为26个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为9;该三角形交织器的直角边长为8;该阶梯形交织器的阶梯矩阵行数为11;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为9行数为12;该三角形交织器的直角边长为15;该阶梯形交织器的阶梯矩阵行数为29。
在一种实施方式中,在打孔4个20MHz信道且该交织粒度为52个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为4;该三角形交织器的直角边长为6;该阶梯形交织器的阶梯矩阵行数为6;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为6行数为8;该三角形交织器的直角边长为10;该阶梯形交织器的阶梯矩阵行数为14。
在本申请实施例中,打孔信道信息、交织粒度、带宽与不同类型的交织器的参数的关系中,交织器的参数的取值仅为示例,并非限制,交织器的参数也可以为其他取值,具体可以根据实际应用的需求灵活选择。例如,可以采用表格等方式保存打孔信道信息、交织粒度、带宽与不同类型的交织器的参数的关系。在实际应用中根据需求查表选择。
在一种实施方式中,该方法还包括:在交织器包括多组参数的情况下,采用该多组参数中一组参数。例如,在块交织器包括多组参数的情况下,采用该多组参数中一组的行数和列数。再如,在三角形交织器包括多组参数的情况下,采用该多组参数中一组的直角边长。再如,在螺旋形交织器包括多组参数的情况下,采用该多组参数中一组的螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长。再如,在阶梯形交织器包括多组参数的情况下,采用该多组参数中一组的阶梯矩阵列数和阶梯矩阵行数。
图3是根据本申请一实施例的解交织方法300的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该解交织方法中与上述交织方法相同的用词具有相同的含义,在此不做赘述。该解交织方法包括以下内容的至少部分内容:
S310、第二设备根据第一信息对资源单元(RU)进行解交织,该第一信息包括交织粒度、打孔信道信息和交织器类型的至少之一。
在本申请实施例中,第一设备可以为AP。交织粒度可以称为RU交织粒度。第一设备对RU进行交织后,可以将交织后的RU发送给一个或多个第二设备。例如,第二设备可以为STA。在第二设备上可以对收到的RU进行解交织。
在一种实施方式中,第二设备根据第一信息对资源单元RU进行解交织,包括:
获取虚拟RU、虚拟MRU、逻辑RU和逻辑MRU中的至少之一对应的第一物理RU。
在一种实施方式中,第二设备根据第一信息对资源单元RU进行解交织,还包括:
将获取的第一物理RU作为待解交织的第一物理RU,使用交织器对该待解交织的第一物理RU进行解交织,得到解交织后的第一物理RU;
将解交织后的第一物理RU与打孔RU组合。
例如,如果在交织过程中是先去除打孔RU再交织,则在解交织过程中,可以先解交织,再与打孔RU组合。在该实施方式中,该打孔RU的数量为第一数量,待解交织的第一物理RU以及解交织后的第一物理RU的数量为第三数量,组合得到第一物理RU的数量为第二数量。组合得到的第二数量个第一物理RU可以作为恢复的第一物理RU。例如,在交织粒度为26个子载波的情况下,将组合得到的第二数量个第一物理RU作为恢复的第一物理RU。
在一种实施方式中,第二设备根据第一信息对资源单元RU进行解交织,还包括:
将获取的第一物理RU和打孔RU组合得到待解交织的第一物理RU;
使用交织器对该待解交织的第一物理RU进行解交织,得到解交织后的第一物理RU。
例如,如果在交织过程中是先交织再去除打孔RU,则在解交织过程中,可以先与打孔RU组合,再解交织。在该实施方式中,该打孔RU的数量为第一数量,待解交织的第一物理RU以及解交织后的第一物理RU的数量为第二数量。解交织后的第二数量个第一物理RU可以作为恢复的第一物理RU。例如,在交织粒度为26个子载波的情况下,将解交织后的第二数量个第一物理RU作为恢复的第一物理RU。
在一种实施方式中,使用交织器对该待解交织的第一物理RU进行解交织,包括:使用交织器对该 待解交织的第一物理RU进行解交织,恢复该待解交织的第一物理RU的索引排列顺序。
在一种实施方式中,在该交织粒度为26个子载波的情况下,该第一物理RU包括26个子载波,该带宽与该第二数量的关系包括以下至少之一:
该带宽为80MHz,该第二数量为36;
该带宽为160MHz,该第二数量为72;
该带宽为320MHz,该第二数量为144。
在一种实施方式中,第二设备根据第一信息对资源单元RU进行解交织,还包括:
将第二数量个第一物理RU和第四数量个第二物理RU组合,得到恢复的第一物理RU。
例如,在该交织粒度为52个子载波的情况下,可以将第二数量个第一物理RU和第四数量个第二物理RU组合,作为恢复的第一物理RU。
在一种实施方式中,在该交织粒度为52个子载波的情况下,该第一物理RU包括52个子载波,该第二物理RU包括26个子载波,该带宽与该第二数量和该第四数量的关系包括以下至少之一:
该带宽为80MHz,该第二数量为16,该第四数量为4;
该带宽为160MHz,该第二数量为32,该第四数量为8;
该带宽为320MHz,该第二数量为64,该第四数量为16。
在一种实施方式中,每个物理RU的索引具有对应的物理子载波索引区间范围,每个虚拟RU的索引具有对应的虚拟子载波索引区间范围。
在一种实施方式中,该交织器是根据该交织器类型确定的。
在一种实施方式中,该交织器类型包括以下至少之一:块交织器、三角形交织器、螺旋形交织器或阶梯形交织器。
在一种实施方式中,该交织器的参数是根据该交织器类型和该待解交织的第一物理RU的数量确定的。
在本申请实施例中,解交织过程可以是交织过程的逆序,不同类型的交织器的解交织过程可能有所不同。
在一种实施方式中,该交织器类型为块交织器,该块交织器的参数包括列数和行数。
示例性地,如果交织过程是按行写入按列读出,则利用块交织器进行解交织的过程可以按列写入按行读出。具体过程可以包括:按照待解交织元素的索引排列顺序,并且按列将待解交织元素的索引逐个写入该块交织器的单元;然后,将该块交织器的单元中的元素的索引按行逐个读出。这样,解交织后的第一物理RU的索引排列顺序恢复为第一顺序。其中,待解交织元素的索引的第二顺序可以为收到的待解交织的第一物理RU的第二顺序。
此外,如果交织过程是按列写入按行读出,则利用块交织器进行解交织可以按行写入按列读出。具体过程不再赘述。
在一种实施方式中,该第一顺序包括从小到大的顺序,或者从大到小的顺序。
在一种实施方式中,该交织器类型为三角形交织器,该三角形交织器的参数包括直角边长。
示例性地,如果交织过程是按行写入按列读出,则利用三角形交织器进行解交织的过程可以包括:从三角形交织器的直角边起,按照待解交织元素的索引排列顺序,并且按列将待解交织元素的索引逐个写入该三角形交织器的单元;然后,从该直角边起,将该三角形交织器的单元中的元素的索引按行逐个读出。这样,解交织后的第一物理RU的索引的排列顺序恢复为第一顺序。
在利用三角形交织器进行解交织的过程中,待解交织元素的索引排列顺序与第二设备收到的第一物理RU的索引的第三顺序可能不同(有些空值交织时可能未读出)。可以按照交织过程先计算出的需要重新排列的索引,作为待解交织元素。例如,收到的第一物理RU的索引排列顺序为数组A1[1,7,12,16,2,8,13,3,9,14,4,10,15,5,11,6]。根据PPDU带宽、打孔信道信息、RU分配信息、最大索引号16等可以得到该三角形交织器的直角边长为6。按照交织顺序计算后可以得到待解交织的元素的索引排列顺序为数组A2[1,7,12,16,null,null,2,8,13,null,null,3,9,14,null,4,10,15,5,11,6]。将数组A2从三角形交织器的直角边起,按列写入,按行读出。
此外,如果交织过程是按列写入按行读出,则利用三角形交织器进行解交织可以按行写入按列读出。具体过程不再赘述。
在一种实施方式中,该方法还包括:根据该待解交织元素的数量确定三角形交织器直角边长;
其中,该直角边长用于确定该三角形交织器的单元总数,该三角形交织器的单元总数大于或等于该待解交织元素的数量。
在一种实施方式中,该交织器类型为螺旋形交织器,该螺旋形交织器的参数包括螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长。
示例性地,利用螺旋形交织器进行交织的过程可以包括:按照待解交织元素的索引排列顺序,并且按列将待解交织元素的索引按行逐个写入该螺旋形交织器的单元;然后,根据螺旋形交织器的螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长的至少之一,将该螺旋形交织器的单元中的元素的索引按列逐个读出。这样,交织后的第一物理RU的索引的排列顺序恢复为第一顺序。
在一种实施方式中,根据螺旋形交织器的螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长的至少之一,将该螺旋形交织器的单元中的元素的索引按列逐个读出,包括:
按照该待解交织元素的第一顺序,从第k列起,每列读出R个元素,第k+1列比第k列低S行;
其中,k是列标识,k的取值范围是从1到C,C为螺旋矩阵列数,R为每组写入的组尺寸,S为螺旋矩阵步长。
在一种实施方式中,该螺旋形交织器的螺旋矩阵列数为3,每组写入的组尺寸为2,螺旋矩阵步长为1。
在一种实施方式中,该交织器类型为阶梯形交织器,该阶梯形交织器的参数包括阶梯矩阵列数和阶梯矩阵行数。
示例性地,如果交织过程中阶梯形交织器是按列写入按行读出的,利用阶梯形交织器进行解交织的过程可以包括:根据阶梯形交织器的阶梯矩阵列数和阶梯矩阵行数的至少之一,将待解交织元素的索引按照第一顺序按行逐个写入该阶梯形交织的单元;然后,将该阶梯形交织器的单元中的元素的索引按列逐个读出。这样,交织后的第一物理RU的索引的排列顺序改变为第五顺序。
在利用阶梯形交织器进行解交织的过程中,待解交织元素的索引排列顺序与第二设备收到的第一物理RU的索引的第四顺序可能不同(有些空值交织时可能未读出)。可以按照交织过程先计算出的需要使用阶梯形交织器重新排列的索引,作为待解交织元素。例如,收到的第一物理RU的索引排列顺序为数组B1[18,17,12,16,11,7,15,10,6,3,14,9,5,2,13,8,4,1]。根据PPDU带宽、打孔信道信息、RU分配信息、最大索引号18等可以得到该阶梯形交织器的列数为4,行数为6。按照上述实施例中的交织方法计算后可以得到待解交织的元素的索引排列顺序为数组B2[18,null,null,null,17,12,null,null,16,11,7,null,15,10,6,3,14,9,5,2,13,8,4,1]。将数组B2在,在阶梯形交织器中按行写入,按列读出。
在一种实施方式中,该阶梯形交织器的列数为4。
在一种实施方式中,在无打孔信道且该交织粒度为26个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为9,或者列数为6行数为6;该三角形交织器的直角边长为8;该阶梯形交织器的阶梯矩阵行数为11;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为6行数为12,或者列数为8行数为9;该三角形交织器的直角边长为12;该阶梯形交织器的阶梯矩阵行数为20;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为8行数为18,或者列数为9行数为16,或者列数为12行数为12;该三角形交织器的直角边长为17;该阶梯形交织器的阶梯矩阵行数为38。
在一种实施方式中,在无打孔信道且该交织粒度为52个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为4;该三角形交织器的直角边长为6;该阶梯形交织器的阶梯矩阵行数为6;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为8;该三角形交织器的直角边长为8;该阶梯形交织器的阶梯矩阵行数为10;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为8行数为8;该三角形交织器的直角边长为11;该阶梯形交织器的阶梯矩阵行数为18。
在一种实施方式中,在打孔1个20MHz信道且该交织粒度为26个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为3行数为9;该三角形交织器的直角边长为7;该阶梯形交织器的阶梯矩阵行数为9;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为7行数为9;该三角形交织器的直角边长为11;该阶梯形交织器的阶梯矩阵行数为18;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为5行数为27;该三角形交织器的直角边长为16;该阶梯形交织器的阶梯矩阵行数为36。
在一种实施方式中,在打孔1个20MHz信道且该交织粒度为52个子载波的情况下,该带宽与不 同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为3行数为4;该三角形交织器的直角边长为5;该阶梯形交织器的阶梯矩阵行数为5;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为7;该三角形交织器的直角边长为7;该阶梯形交织器的阶梯矩阵行数为9;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为6行数为10;该三角形交织器的直角边长为11;该阶梯形交织器的阶梯矩阵行数为17。
在一种实施方式中,在打孔2个20MHz信道且该交织粒度为26个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为3行数为6;该三角形交织器的直角边长为6;该阶梯形交织器的阶梯矩阵行数为6;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为6行数为9;该三角形交织器的直角边长为10;该阶梯形交织器的阶梯矩阵行数为15;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为9行数为14;该三角形交织器的直角边长为16;该阶梯形交织器的阶梯矩阵行数为33。
在一种实施方式中,在打孔2个20MHz信道且该交织粒度为52个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为2行数为4;该三角形交织器的直角边长为4;该阶梯形交织器的阶梯矩阵行数为4;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为6;该三角形交织器的直角边长为7;该阶梯形交织器的阶梯矩阵行数为8;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为7行数为8;该三角形交织器的直角边长为11;该阶梯形交织器的阶梯矩阵行数为16。
在一种实施方式中,在打孔3个20MHz信道且该交织粒度为26个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为5行数为9;该三角形交织器的直角边长为9;该阶梯形交织器的阶梯矩阵行数为13;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为9行数为13;该三角形交织器的直角边长为15;该阶梯形交织器的阶梯矩阵行数为31。
在一种实施方式中,在打孔3个20MHz信道且该交织粒度为52个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为5;该三角形交织器的直角边长为6;该阶梯形交织器的阶梯矩阵行数为7;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为13;该三角形交织器的直角边长为10;该阶梯形交织器的阶梯矩阵行数为15。
在一种实施方式中,在打孔4个20MHz信道且该交织粒度为26个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为9;该三角形交织器的直角边长为8;该阶梯形交织器的阶梯矩阵行数为11;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为9行数为12;该三角形交织器的直角边长为15;该阶梯形交织器的阶梯矩阵行数为29。
在一种实施方式中,在打孔4个20MHz信道且该交织粒度为52个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为4;该三角形交织器的直角边长为6;该阶梯形交织器的阶梯矩阵行数为6;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为6行数为8;该三角形交织器的直角边长为10;该阶梯形交织器的阶梯矩阵行数为14。
在一种实施方式中,该方法还包括:在交织器包括多组参数的情况下,采用该多组参数中一组参数。
在一种实施方式中,该带宽为PPDU带宽。
在一种实施方式中,该打孔信道信息包括打孔信道的子载波、打孔信道的带宽和打孔信道的个数的至少之一。
在本申请实施例中,打孔信道信息、交织粒度、带宽与不同类型的交织器的参数的关系中,交织器 的参数的取值仅为示例,并非限制,交织器的参数也可以为其他取值,具体可以根据实际应用的需求灵活选择。例如,可以采用表格等方式保存打孔信道信息、交织粒度、带宽与不同类型的交织器的参数的关系。在实际应用中根据需求查表选择。
图4是根据本申请一实施例的交织器的控制方法400的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容:
S410、从三角形交织器的直角边起,将待交织元素的索引按照第一顺序,并且按行逐个写入该三角形交织器的单元;
S420从该直角边起,将该三角形交织器的单元中的元素的索引按列逐个读出。
在一种实施方式中,该方法还包括:在该三角形交织器的单元总数大于该待交织元素的数量的情况下,将该待交织元素全部写入该三角形交织器的单元后,将该三角形交织器的剩余单元按行写入空值。
在一种实施方式中,在该读出的过程中,避开该三角形交织器的单元中的空值。
在一种实施方式中,该方法还包括:根据该待交织元素的数量确定三角形交织器直角边长;
其中,该直角边长用于确定该三角形交织器的单元总数,该三角形交织器的单元总数大于或等于该待交织元素的数量。
在一种实施方式中,该第一顺序包括从小到大的顺序,或者从大到小的顺序。
在一种实施方式中,该三角形交织器的直角边长的取值的具体示例可以参见上述交织方法或解交织方法实施例中的相关描述,在此不再赘述。利用三角形交织器进行交织和/或解交织的过程,可以参见上述交织方法或解交织方法实施例中的相关描述,在此不再赘述。
图5是根据本申请一实施例的交织器的控制方法500的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容:
S510、根据螺旋形交织器的螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长的至少之一,将待交织元素的索引按照第一顺序按列逐个写入该螺旋形交织器的单元;
S520、将该螺旋形交织器的单元中的元素的索引按行逐个读出。
在一种实施方式中,根据螺旋形交织器的螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长的至少之一,将待交织元素逐个写入该螺旋形交织器的单元,包括:
按照该待交织元素的第一顺序,从第k列起,每列写入R个元素,第k+1列比第k列低S行;
其中,k是列标识,k的取值范围是从1到C,C为螺旋矩阵列数,R为每组写入的组尺寸,S为螺旋矩阵步长。
在一种实施方式中,C、R、S为大于1的正整数。
在一种实施方式中,该第一顺序包括从小到大的顺序,或者从大到小的顺序。
在一种实施方式中,该螺旋形交织器的螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长的至少之一的取值的具体示例可以参见上述交织方法或解交织方法实施例中的相关描述,在此不再赘述。利用螺旋形交织器进行交织和/或解交织的过程,可以参见上述交织方法或解交织方法实施例中的相关描述,在此不再赘述。
图6是根据本申请一实施例的交织器的控制方法600的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容:
S610、根据阶梯形交织器的阶梯矩阵列数和阶梯矩阵行数的至少之一,将待交织元素的索引按照第一顺序按列逐个写入该阶梯形交织的单元;
S620、将该阶梯形交织器的单元中的元素的索引按行逐个读出。
在一种实施方式中,根据阶梯形交织器的阶梯矩阵列数和阶梯矩阵行数的至少之一,将待交织元素逐个写入该阶梯形交织的单元,包括:
根据该阶梯矩阵列数C和待交织元素数量N,确定阶梯矩阵行数R;
在第k列的前k-1行填入空值,其中k的取值范围是1到C;
按照该待交织元素的第一顺序,将该待交织元素的索引按列写入该阶梯形交织器的非空值的单元。
其中,C、N、R、k为正整数。
在一种实施方式中,在该读出的过程中,避开该阶梯形交织器的单元中的空值。
在一种实施方式中,该第一顺序包括从小到大的顺序,或者从大到小的顺序。
在一种实施方式中,该阶梯形交织器的阶梯矩阵列数和阶梯矩阵行数的至少之一的取值的具体示例可以参见上述交织方法或解交织方法实施例中的相关描述,在此不再赘述。利用阶梯形交织器进行交织和/或解交织的过程,可以参见上述交织方法或解交织方法实施例中的相关描述,在此不再赘述。
在本申请实施例中,各种类型的交织器可以与上述的交织方法或解交织方法的结合。在上述的交织方法或解交织方法中,可以使用任一交织器控制方法实施例中的交织器进行交织或者解交织。例如,待 交织元素可以包括上述的交织方法的RU或MRU划分得到的物理RU,或者去除打孔RU后剩余的物理RU。解交织过程可以与交织过程的使用的交织器的读写顺序相反。
图7是根据本申请一实施例的通信方法700的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容:
S710、第一设备发送第二信息,该第二信息用于指示RU的分配模式和/或交织粒度。
例如,第一设备可以为AP,第二设备可以为STA。第一设备可以向第二设备发送该第二信息。第二信息中可以带有第一指示位,该第一指示位用于指示RU分配模式。第二信息中可以带有第二指示位,该第二指示位用于指示RU的分配模式。其中,RU可以包括单个RU和/或MRU。RU的分配模式也可以包括单个RU的分配模式和/或MRU的分配模式。RU的交织粒度可以包括单个RU的交织粒度和/MRU的交织粒度。
在一种实施方式中,在第一设备上对RU和/或MRU进行交织,在第二设备上对RU和/或MRU进行解交织。具体地,可以参见上交织方法和解交织方法的相关描述。
在一种实施方式中,该第二信息在下行信令的U-SIG字段和/或EHT-SIG字段中。例如,在AP向STA发送的PPDU中包括U-SIG字段和/或EHT-SIG字段,在该U-SIG字段和/或EHT-SIG字段中可以携带第二信息。
在一种实施方式中,该U-SIG字段和/或EHT-SIG字段中包括以下至少之一:
用于表示分配模式的第一子字段;
用于表示交织粒度的第二子字段。
在一种实施方式中,该第一子字段和/或该第二子字段使用保留字段。
在一种实施方式中,该第一子字段和/或该第二子字段使用的保留字段为验证字段。
在一种实施方式中,该第一子字段和/或该第二子字段使用的保留字段为忽略字段。
在一种实施方式中,该第一子字段在U-SIG字段中为比特B22,该第二子字段在U-SIG字段中为比特B23。
在一种实施方式中,该第一子字段在EHT-SIG字段中为比特B13,该第二子字段在U-SIG字段中为比特B14。
在一种实施方式中,该第一子字段的取值为第一值表示RU交织分配模式;该第二子字段的取值为第二值表示非交织的其他分配模式。
例如,该第一子字段的取值为1表示RU交织分配模式;该第二子字段的取值为0表示非交织的其他分配模式。再如,该第一子字段的取值为0表示RU交织分配模式;该第二子字段的取值为1表示非交织的其他分配模式。
在一种实施方式中,不同的该第二子字段的取值对应不同的RU交织粒度。例如,第二子字段的取值为0表示RU交织粒度为26-tone。再如,第二子字段的取值为1表示RU交织粒度为52-tone。再如,第二子字段的取值为2表示RU交织粒度为106-tone。这些具体的取值仅为示例而非限制,具体可以根据实际需求灵活设置。
在一种实施方式中,该下行信令为EHT TB PPDU和/或EHT MU PPDU。
在一种实施方式中,该EHT TB PPDU和/或EHT MU PPDU中还包括PPDU带宽、打孔信道信息和RU分配信息的至少之一。
在一种实施方式中,该打孔信道信息包括打孔信道的子载波、打孔信道的带宽和打孔信道的个数的至少之一。
在一种实施方式中,该方法还包括:
第一设备接收第三信息,该第三信息用于指示RU的分配模式和/或交织粒度。
在一种实施方式中,该第三信息在上行信令的EHT变体通用信息字段中。
在一种实施方式中,该第三信息在上行信令的EHT变体通用信息字段的EHT保留字段中。
在一种实施方式中,该EHT保留字段包括以下至少之一:
用于表示分配模式的第一子字段;
用于表示交织粒度的第二子字段。
在一种实施方式中,该上行信令为请求上行EHT TB PPDU传输的触发帧。
图8是根据本申请一实施例的通信方法800的示意性流程图。该方法可选地可以应用于图1所示的系统,但并不仅限于此。该通信方法中与上述通信方法700相同的用词具有相同的含义,在此不做赘述。该通信方法包括以下内容的至少部分内容:
S810、第二设备接收第二信息,该第二信息用于指示RU的分配模式和/或交织粒度。
例如,第一设备可以为AP,第二设备可以为STA。第二设备可以从第一设备接收该第二信息。第 二信息中可以带有第一指示位,该第一指示位用于指示RU分配模式。第二信息中可以带有第二指示位,该第二指示位用于指示RU的分配模式。其中,RU可以包括单个RU和/或MRU。RU的分配模式也可以包括单个RU的分配模式和/或MRU的分配模式。RU的交织粒度可以包括单个RU的交织粒度和/MRU的交织粒度。
在一种实施方式中,在第一设备上对RU和/或MRU进行交织,在第二设备上对RU和/或MRU进行解交织。具体地,可以参见上交织方法和解交织方法的相关描述。
在一种实施方式中,该第二信息在下行信令的U-SIG字段和/或EHT-SIG字段中。
在一种实施方式中,该U-SIG字段和/或EHT-SIG字段中包括以下至少之一:
用于表示分配模式的第一子字段;
用于表示交织粒度的第二子字段。
在一种实施方式中,该第一子字段和/或该第二子字段使用保留字段。
在一种实施方式中,该第一子字段和/或该第二子字段使用的保留字段为验证字段。
在一种实施方式中,该第一子字段和/或该第二子字段使用的保留字段为忽略字段。
在一种实施方式中,该第一子字段在U-SIG字段中为比特B22,该第二子字段在U-SIG字段中为比特B23。
在一种实施方式中,该第一子字段在EHT-SIG字段中为比特B13,该第二子字段在U-SIG字段中为比特B14。
在一种实施方式中,该第一子字段的取值为第一值表示RU交织分配模式;该第二子字段的取值为第二值表示非交织的其他分配模式。
在一种实施方式中,不同的该第二子字段的取值对应不同的RU交织粒度。
在一种实施方式中,该下行信令为EHT TB PPDU和/或EHT MU PPDU。
在一种实施方式中,该EHT TB PPDU和/或EHT MU PPDU中还包括PPDU带宽、打孔信道信息和RU分配信息的至少之一。
在一种实施方式中,该打孔信道信息包括打孔信道的子载波、打孔信道的带宽和打孔信道的个数的至少之一。
在一种实施方式中,该方法还包括:
第二设备发送第三信息,该第三信息用于指示RU的分配模式和/或交织粒度。
在一种实施方式中,该第三信息在上行信令的EHT变体通用信息字段中。
在一种实施方式中,该第三信息在上行信令的EHT变体通用信息字段的EHT保留字段中。
在一种实施方式中,该EHT保留字段包括以下至少之一:
用于表示分配模式的第一子字段;
用于表示交织粒度的第二子字段。
在一种实施方式中,该上行信令为请求上行EHT TB PPDU传输的触发帧。
在一种实施方式中,该方法还包括:该第二设备根据PPDU带宽、打孔信道信息和RU分配信息确定交织器参数。例如,第二设备收到的下行信令中还可以包括PPDU带宽、打孔信道信息和RU分配信息中的至少之一,根据这些信息可以确定交织器参数。进而,如果分配模式指示RU交织分配模式,则可以在第二设备上根据交织器参数构建交织器,使用交织器对收到的RU和/或MRU进行解交织。
图9是根据本申请一实施例的第一设备900的示意性框图。该第一设备900可以包括:
处理单元910,用于根据第一信息对资源单元RU进行交织,该第一信息包括带宽、交织粒度、打孔信道信息和交织器类型的至少之一。
在一种实施方式中,该处理单元用于:
根据该交织粒度和该打孔信道信息,得到打孔RU;
根据该交织粒度对该带宽进行划分,得到多个第一物理RU。
在一种实施方式中,该处理单元还用于:
从该多个第一物理RU中去除该打孔RU,得到待交织的第一物理RU;
使用交织器对该待交织的第一物理RU进行交织。
在一种实施方式中,该处理单元还用于:
将划分带宽得到的该多个第一物理RU作为待交织的第一物理RU,使用交织器对该待交织的第一物理RU进行交织;
从交织后的第一物理RU中去除该打孔RU。
在一种实施方式中,该打孔RU的数量为第一数量,划分带宽得到的该第一物理RU的数量为第二数量,去除该打孔RU后的第一物理RU的数量为第三数量。
在一种实施方式中,该处理单元用于根据该交织粒度对该带宽进行划分,得到多个第一物理RU,包括:在该交织粒度为26个子载波的情况下,根据该交织粒度对该带宽进行划分,得到第二数量个第一物理RU;其中,每个该第一物理包括26个子载波。
在一种实施方式中,在该交织粒度为26个子载波的情况下,该带宽与该第二数量的关系包括以下至少之一:
该带宽为80MHz,该第二数量为36;
该带宽为160MHz,该第二数量为72;
该带宽为320MHz,该第二数量为144。
在一种实施方式中,该处理单元用于根据该交织粒度对该带宽进行划分,得到多个第一物理RU,包括:在该交织粒度为52个子载波的情况下,根据该交织粒度对该带宽进行划分,得到第二数量个第一物理RU和第四数量个第二物理RU;其中,每个该第一物理包括52个子载波,每个该第二物理包括26个子载波。
在一种实施方式中,在该交织粒度为52个子载波的情况下,该带宽与该第二数量和该第四数量的关系包括以下至少之一:
该带宽为80MHz,该第二数量为16,该第四数量为4;
该带宽为160MHz,该第二数量为32,该第四数量为8;
该带宽为320MHz,该第二数量为64,该第四数量为16。
在一种实施方式中,使用交织器对该待交织的第一物理RU进行交织,包括:
使用该交织器对该第三数量个第一物理RU进行交织,改变该第三数量个第一物理RU的索引排列顺序,得到交织后的第一物理RU的索引排列顺序;
按照该交织后的第一物理RU的索引排列顺序映射到虚拟RU、虚拟MRU、逻辑RU和逻辑MRU中的至少之一。
在一种实施方式中,每个物理RU的索引具有对应的物理子载波索引区间范围,每个虚拟RU的索引具有对应的虚拟子载波索引区间范围。
在一种实施方式中,该交织器是根据该交织器类型确定的。
在一种实施方式中,该交织器类型包括以下至少之一:块交织器、三角形交织器、螺旋形交织器或阶梯形交织器。
在一种实施方式中,该交织器的参数是根据该交织器类型和该待交织的第一物理RU的数量确定的。
在一种实施方式中,该交织器类型为块交织器,该块交织器的参数包括列数和行数。
在一种实施方式中,该交织器类型为三角形交织器,该三角形交织器的参数包括直角边长。
在一种实施方式中,该交织器类型为螺旋形交织器,该螺旋形交织器的参数包括螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长。
在一种实施方式中,该螺旋形交织器的螺旋矩阵列数为3,每组写入的组尺寸为2,螺旋矩阵步长为1。
在一种实施方式中,该交织器类型为阶梯形交织器,该阶梯形交织器的参数包括阶梯矩阵列数和阶梯矩阵行数。
在一种实施方式中,该阶梯形交织器的列数为4。
在一种实施方式中,在无打孔信道且该交织粒度为26个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为9,或者列数为6行数为6;该三角形交织器的直角边长为8;该阶梯形交织器的阶梯矩阵行数为11;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为6行数为12,或者列数为8行数为9;该三角形交织器的直角边长为12;该阶梯形交织器的阶梯矩阵行数为20;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为8行数为18,或者列数为9行数为16,或者列数为12行数为12;该三角形交织器的直角边长为17;该阶梯形交织器的阶梯矩阵行数为38。
在一种实施方式中,在无打孔信道且该交织粒度为52个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为4;该三角形交织器的直角边长为6;该阶梯形交织器的阶梯矩阵行数为6;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为8;该三角形交织器的直角边长为8;该阶梯形交织器的阶梯矩阵行数为10;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为8行数为8;该三角形交织器的直角边长为11;该阶梯形交织器的阶梯矩阵行数为18。
在一种实施方式中,在打孔1个20MHz信道且该交织粒度为26个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为3行数为9;该三角形交织器的直角边长为7;该阶梯形交织器的阶梯矩阵行数为9;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为7行数为9;该三角形交织器的直角边长为11;该阶梯形交织器的阶梯矩阵行数为18;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为5行数为27;该三角形交织器的直角边长为16;该阶梯形交织器的阶梯矩阵行数为36。
在一种实施方式中,在打孔1个20MHz信道且该交织粒度为52个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为3行数为4;该三角形交织器的直角边长为5;该阶梯形交织器的阶梯矩阵行数为5;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为7;该三角形交织器的直角边长为7;该阶梯形交织器的阶梯矩阵行数为9;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为6行数为10;该三角形交织器的直角边长为11;该阶梯形交织器的阶梯矩阵行数为17。
在一种实施方式中,在打孔2个20MHz信道且该交织粒度为26个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为3行数为6;该三角形交织器的直角边长为6;该阶梯形交织器的阶梯矩阵行数为6;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为6行数为9;该三角形交织器的直角边长为10;该阶梯形交织器的阶梯矩阵行数为15;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为9行数为14;该三角形交织器的直角边长为16;该阶梯形交织器的阶梯矩阵行数为33。
在一种实施方式中,在打孔2个20MHz信道且该交织粒度为52个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为2行数为4;该三角形交织器的直角边长为4;该阶梯形交织器的阶梯矩阵行数为4;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为6;该三角形交织器的直角边长为7;该阶梯形交织器的阶梯矩阵行数为8;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为7行数为8;该三角形交织器的直角边长为11;该阶梯形交织器的阶梯矩阵行数为16。
在一种实施方式中,在打孔3个20MHz信道且该交织粒度为26个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为5行数为9;该三角形交织器的直角边长为9;该阶梯形交织器的阶梯矩阵行数为13;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为9行数为13;该三角形交织器的直角边长为15;该阶梯形交织器的阶梯矩阵行数为31。
在一种实施方式中,在打孔3个20MHz信道且该交织粒度为52个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为5;该三角形交织器的直角边长为6;该阶梯形交织器的阶梯矩阵行数为7;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为13;该三角形交织器的直角边长为10;该阶梯形交织器的阶梯矩阵行数为15。
在一种实施方式中,在打孔4个20MHz信道且该交织粒度为26个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为9;该三角形交织器的直角边长为8;该阶梯形交织器的阶梯矩阵行数为11;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为9行数为12;该三角形交织器的直角边长为15;该阶梯形交织器的阶梯矩阵行数为29。
在一种实施方式中,在打孔4个20MHz信道且该交织粒度为52个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为4;该三角形交织器的直角边长为6;该阶梯形交织器的阶梯矩阵行数为6;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为6行数为8;该三角形交织器的直角边长为10;该阶梯形交织器的阶梯矩阵行数为14。
在一种实施方式中,该处理单元还用于在交织器包括多组参数的情况下,采用该多组参数中一组参数。
在一种实施方式中,该带宽为PPDU带宽。
在一种实施方式中,该打孔信道信息包括打孔信道的子载波、打孔信道的带宽和打孔信道的个数的至少之一。
本申请实施例的第一设备900能够实现前述的方法200实施例中的第一设备的对应功能。该第一设备900中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的第一设备900中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图10是根据本申请一实施例的第二设备1000的示意性框图。该第二设备1000可以包括:
处理单元1010,用于根据第一信息对资源单元RU进行解交织,该第一信息包括交织粒度、打孔信道信息和交织器类型的至少之一。
在一种实施方式中,处理单元1010还用于:
将获取的第一物理RU作为待解交织的第一物理RU,使用交织器对该待解交织的第一物理RU进行解交织,得到解交织后的第一物理RU;
将解交织后的第一物理RU与打孔RU组合。
在该实施方式中,该打孔RU的数量为第一数量,该解交织后的第一物理RU的数量为第三数量,组合得到第一物理RU的数量为第二数量。
在一种实施方式中,处理单元1010还用于:
将获取的第一物理RU和打孔RU组合得到待解交织的第一物理RU;
使用交织器对该待解交织的第一物理RU进行解交织,得到解交织后的第一物理RU。
在该实施方式中,该打孔RU的数量为第一数量,该解交织后的第一物理RU的数量为第二数量。
在一种实施方式中,处理单元1010用于使用交织器对该待解交织的第一物理RU进行解交织,包括:使用交织器对该待解交织的第一物理RU进行解交织,恢复该待解交织的第一物理RU的索引排列顺序。
在一种实施方式中,在该交织粒度为26个子载波的情况下,该第一物理RU包括26个子载波,该带宽与该第二数量的关系包括以下至少之一:
该带宽为80MHz,该第二数量为36;
该带宽为160MHz,该第二数量为72;
该带宽为320MHz,该第二数量为144。
在一种实施方式中,处理单元1010还用于将第二数量个第一物理RU和第四数量个第二物理RU组合,得到恢复的第一物理RU。
在一种实施方式中,在该交织粒度为52个子载波的情况下,该第一物理RU包括52个子载波,该第二物理RU包括26个子载波,该带宽与该第二数量和该第四数量的关系包括以下至少之一:
该带宽为80MHz,该第二数量为16,该第四数量为4;
该带宽为160MHz,该第二数量为32,该第四数量为8;
该带宽为320MHz,该第二数量为64,该第四数量为16。
在一种实施方式中,每个物理RU的索引具有对应的物理子载波索引区间范围,每个虚拟RU的索引具有对应的虚拟子载波索引区间范围。
在一种实施方式中,该交织器是根据该交织器类型确定的。
在一种实施方式中,该交织器类型包括以下至少之一:块交织器、三角形交织器、螺旋形交织器或阶梯形交织器。
在一种实施方式中,该交织器的参数是根据该交织器类型和该待解交织的第一物理RU的数量确定的。
在一种实施方式中,该交织器类型为块交织器,该块交织器的参数包括列数和行数。
在一种实施方式中,该交织器类型为三角形交织器,该三角形交织器的参数包括直角边长。
在一种实施方式中,该交织器类型为螺旋形交织器,该螺旋形交织器的参数包括螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长。
在一种实施方式中,该螺旋形交织器的螺旋矩阵列数为3,每组写入的组尺寸为2,螺旋矩阵步长为1。
在一种实施方式中,该交织器类型为阶梯形交织器,该阶梯形交织器的参数包括阶梯矩阵列数和阶梯矩阵行数。
在一种实施方式中,该阶梯形交织器的列数为4。
在一种实施方式中,在无打孔信道且该交织粒度为26个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为9,或者列数为6行数为6;该三角形交织器的直角边长为8;该阶梯形交织器的阶梯矩阵行数为11;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为6行数为12,或者列数为8行数为9;该三角形交织器的直角边长为12;该阶梯形交织器的阶梯矩阵行数为20;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为8行数为18,或者列数为9行数为16,或者列数为12行数为12;该三角形交织器的直角边长为17;该阶梯形交织器的阶梯矩阵行数为38。
在一种实施方式中,在无打孔信道且该交织粒度为52个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为4;该三角形交织器的直角边长为6;该阶梯形交织器的阶梯矩阵行数为6;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为8;该三角形交织器的直角边长为8;该阶梯形交织器的阶梯矩阵行数为10;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为8行数为8;该三角形交织器的直角边长为11;该阶梯形交织器的阶梯矩阵行数为18。
在一种实施方式中,在打孔1个20MHz信道且该交织粒度为26个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为3行数为9;该三角形交织器的直角边长为7;该阶梯形交织器的阶梯矩阵行数为9;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为7行数为9;该三角形交织器的直角边长为11;该阶梯形交织器的阶梯矩阵行数为18;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为5行数为27;该三角形交织器的直角边长为16;该阶梯形交织器的阶梯矩阵行数为36。
在一种实施方式中,在打孔1个20MHz信道且该交织粒度为52个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为3行数为4;该三角形交织器的直角边长为5;该阶梯形交织器的阶梯矩阵行数为5;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为7;该三角形交织器的直角边长为7;该阶梯形交织器的阶梯矩阵行数为9;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为6行数为10;该三角形交织器的直角边长为11;该阶梯形交织器的阶梯矩阵行数为17。
在一种实施方式中,在打孔2个20MHz信道且该交织粒度为26个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为3行数为6;该三角形交织器的直角边长为6;该阶梯形交织器的阶梯矩阵行数为6;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为6行数为9;该三角形交织器的直角边长为10;该阶梯形交织器的阶梯矩阵行数为15;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为9行数为14;该三角形交织器的直角边长为16;该阶梯形交织器的阶梯矩阵行数为33。
在一种实施方式中,在打孔2个20MHz信道且该交织粒度为52个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为80MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为2行数为4;该三 角形交织器的直角边长为4;该阶梯形交织器的阶梯矩阵行数为4;
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为6;该三角形交织器的直角边长为7;该阶梯形交织器的阶梯矩阵行数为8;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为7行数为8;该三角形交织器的直角边长为11;该阶梯形交织器的阶梯矩阵行数为16。
在一种实施方式中,在打孔3个20MHz信道且该交织粒度为26个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为5行数为9;该三角形交织器的直角边长为9;该阶梯形交织器的阶梯矩阵行数为13;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为9行数为13;该三角形交织器的直角边长为15;该阶梯形交织器的阶梯矩阵行数为31。
在一种实施方式中,在打孔3个20MHz信道且该交织粒度为52个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为5;该三角形交织器的直角边长为6;该阶梯形交织器的阶梯矩阵行数为7;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为13;该三角形交织器的直角边长为10;该阶梯形交织器的阶梯矩阵行数为15。
在一种实施方式中,在打孔4个20MHz信道且该交织粒度为26个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为9;该三角形交织器的直角边长为8;该阶梯形交织器的阶梯矩阵行数为11;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为9行数为12;该三角形交织器的直角边长为15;该阶梯形交织器的阶梯矩阵行数为29。
在一种实施方式中,在打孔4个20MHz信道且该交织粒度为52个子载波的情况下,该带宽与不同类型的交织器的参数的关系包括以下至少之一:
该带宽为160MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为4行数为4;该三角形交织器的直角边长为6;该阶梯形交织器的阶梯矩阵行数为6;
该带宽为320MHz对应的交织器的参数包括以下至少之一:该块交织器的列数为6行数为8;该三角形交织器的直角边长为10;该阶梯形交织器的阶梯矩阵行数为14。
在一种实施方式中,该处理单元还用于在交织器包括多组参数的情况下,采用该多组参数中一组参数。
在一种实施方式中,该带宽为PPDU带宽。
在一种实施方式中,该打孔信道信息包括打孔信道的子载波、打孔信道的带宽和打孔信道的个数的至少之一。
本申请实施例的第二设备1000能够实现前述的方法300实施例中的第二设备的对应功能。该第二设备1000中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的第二设备1000中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图11是根据本申请一实施例的通信设备1100的示意性框图。该通信设备1100可以包括:
第一写入单元1110,用于从三角形交织器的直角边起,将待交织元素的索引按照第一顺序,并且按行逐个写入该三角形交织器的单元;
第一读出单元1120,用于从该直角边起,将该三角形交织器的单元中的元素的索引按列逐个读出。
在一种实施方式中,该第一写入单元1110还用于在该三角形交织器的单元总数大于该待交织元素的数量的情况下,将该待交织元素全部写入该三角形交织器的单元后,将该三角形交织器的剩余单元按行写入空值。
在一种实施方式中,该第一读出单元1120还用于在该读出的过程中,避开该三角形交织器的单元中的空值。
在一种实施方式中,该设备还包括:
处理单元,用于根据该待交织元素的数量确定三角形交织器直角边长;
其中,该直角边长用于确定该三角形交织器的单元总数,该三角形交织器的单元总数大于或等于该待交织元素的数量。
在一种实施方式中,该第一顺序包括从小到大的顺序,或者从大到小的顺序。
本申请实施例的通信设备1100能够实现前述的方法400实施例中的通信设备的对应功能。该通信设备1100中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的通信设备1100中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图12是根据本申请一实施例的通信设备1200的示意性框图。该通信设备1200可以包括:
第二写入单元1210,用于根据螺旋形交织器的螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长的至少之一,将待交织元素的索引按照第一顺序按列逐个写入该螺旋形交织器的单元;
第二读出单元1220,用于将该螺旋形交织器的单元中的元素的索引按行逐个读出。
在一种实施方式中,第二写入单元1210用于根据螺旋形交织器的螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长的至少之一,将待交织元素逐个写入该螺旋形交织器的单元,包括:
按照该待交织元素的第一顺序,从第k列起,每列写入R个元素,第k+1列比第k列低S行;
其中,k是列标识,k的取值范围是从1到C,C为螺旋矩阵列数,R为每组写入的组尺寸,S为螺旋矩阵步长。
在一种实施方式中,C、R、S为大于1的正整数。
在一种实施方式中,该第一顺序包括从小到大的顺序,或者从大到小的顺序。
本申请实施例的通信设备1200能够实现前述的方法500实施例中的通信设备的对应功能。该通信设备1200中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的通信设备1200中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图13是根据本申请一实施例的通信设备1300的示意性框图。该通信设备1300可以包括:
第三写入单元1310,用于根据阶梯形交织器的阶梯矩阵列数和阶梯矩阵行数的至少之一,将待交织元素的索引按照第一顺序按列逐个写入该阶梯形交织的单元;
第三读出单元1320,用于将该阶梯形交织器的单元中的元素的索引按行逐个读出。
在一种实施方式中,第三写入单元1310用于根据阶梯形交织器的阶梯矩阵列数和阶梯矩阵行数的至少之一,将待交织元素逐个写入该阶梯形交织的单元,包括:
根据该阶梯矩阵列数C和待交织元素数量N,确定阶梯矩阵行数R;
在第k列的前k-1行填入空值,其中k的取值范围是1到C;
按照该待交织元素的第一顺序,将该待交织元素的索引按列写入该阶梯形交织器的非空值的单元。
在一种实施方式中,第三读出单元1320还用于在该读出的过程中,避开该阶梯形交织器的单元中的空值。
在一种实施方式中,该第一顺序包括从小到大的顺序,或者从大到小的顺序。
本申请实施例的通信设备1300能够实现前述的方法600实施例中的通信设备的对应功能。该通信设备1300中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的通信设备1300中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
在本申请实施例中,第一设备900和/或第二设备1000中,也可以包括任一通信设备中的写入单元和/或读出单元,用于执行交织和/或解交织。具体实现的交织和/或解交织的方法,可以参见上述方法实施例中的相关描述。
图14是根据本申请一实施例的第一设备1400的示意性框图。该第一设备1400可以包括:
发送单元1410,用于发送第二信息,该第二信息用于指示RU的分配模式和/或交织粒度。
在一种实施方式中,该第二信息在下行信令的U-SIG字段和/或EHT-SIG字段中。
在一种实施方式中,该U-SIG字段和/或EHT-SIG字段中包括以下至少之一:
用于表示分配模式的第一子字段;
用于表示交织粒度的第二子字段。
在一种实施方式中,该第一子字段和/或该第二子字段使用保留字段。
在一种实施方式中,该第一子字段和/或该第二子字段使用的保留字段为验证字段。
在一种实施方式中,该第一子字段和/或该第二子字段使用的保留字段为忽略字段。
在一种实施方式中,该第一子字段在U-SIG字段中为比特B22,该第二子字段在U-SIG字段中为 比特B23。
在一种实施方式中,该第一子字段在EHT-SIG字段中为比特B13,该第二子字段在U-SIG字段中为比特B14。
在一种实施方式中,该第一子字段的取值为第一值表示RU交织分配模式;该第二子字段的取值为第二值表示非交织的其他分配模式。
在一种实施方式中,不同的该第二子字段的取值对应不同的RU交织粒度。
在一种实施方式中,该下行信令为EHT TB PPDU和/或EHT MU PPDU。
在一种实施方式中,该EHT TB PPDU和/或EHT MU PPDU中还包括PPDU带宽、打孔信道信息和RU分配信息的至少之一。
在一种实施方式中,该打孔信道信息包括打孔信道的子载波、打孔信道的带宽和打孔信道的个数的至少之一。
在一种实施方式中,该设备还包括:
接收单元,用于接收第三信息,该第三信息用于指示RU的分配模式和/或交织粒度。
在一种实施方式中,该第三信息在上行信令的EHT变体通用信息字段中。
在一种实施方式中,该第三信息在上行信令的EHT变体通用信息字段的EHT保留字段中。
在一种实施方式中,该EHT保留字段包括以下至少之一:
用于表示分配模式的第一子字段;
用于表示交织粒度的第二子字段。
在一种实施方式中,该上行信令为请求上行EHT TB PPDU传输的触发帧。
本申请实施例的第一设备1400能够实现前述的方法700实施例中的第一设备的对应功能。该第一设备1400中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的第一设备1400中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图15是根据本申请一实施例的第二设备1500的示意性框图。该第二设备1500可以包括:
接收单元1510,用于接收第二信息,该第二信息用于指示RU的分配模式和/或交织粒度。
在一种实施方式中,该第二信息在下行信令的U-SIG字段和/或EHT-SIG字段中。
在一种实施方式中,该U-SIG字段和/或EHT-SIG字段中包括以下至少之一:
用于表示分配模式的第一子字段;
用于表示交织粒度的第二子字段。
在一种实施方式中,该第一子字段和/或该第二子字段使用保留字段。
在一种实施方式中,该第一子字段和/或该第二子字段使用的保留字段为验证字段。
在一种实施方式中,该第一子字段和/或该第二子字段使用的保留字段为忽略字段。
在一种实施方式中,该第一子字段在U-SIG字段中为比特B22,该第二子字段在U-SIG字段中为比特B23。
在一种实施方式中,该第一子字段在EHT-SIG字段中为比特B13,该第二子字段在U-SIG字段中为比特B14。
在一种实施方式中,该第一子字段的取值为第一值表示RU交织分配模式;该第二子字段的取值为第二值表示非交织的其他分配模式。
在一种实施方式中,不同的该第二子字段的取值对应不同的RU交织粒度。
在一种实施方式中,该下行信令为EHT TB PPDU和/或EHT MU PPDU。
在一种实施方式中,该EHT TB PPDU和/或EHT MU PPDU中还包括PPDU带宽、打孔信道信息和RU分配信息的至少之一。
在一种实施方式中,该打孔信道信息包括打孔信道的子载波、打孔信道的带宽和打孔信道的个数的至少之一。
在一种实施方式中,该设备还包括:
发送单元,用于发送第三信息,该第三信息用于指示RU的分配模式和/或交织粒度。
在一种实施方式中,该第三信息在上行信令的EHT变体通用信息字段中。
在一种实施方式中,该第三信息在上行信令的EHT变体通用信息字段的EHT保留字段中。
在一种实施方式中,该EHT保留字段包括以下至少之一:
用于表示分配模式的第一子字段;
用于表示交织粒度的第二子字段。
在一种实施方式中,该上行信令为请求上行EHT TB PPDU传输的触发帧。
在一种实施方式中,该设备还包括:
处理单元,用于根据PPDU带宽、打孔信道信息和RU分配信息确定交织器参数。
本申请实施例的第二设备1500能够实现前述的方法800实施例中的第二设备的对应功能。该第二设备1500中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的第二设备1500中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
在本申请实施例中,第一设备1400和/或第二设备1500中,也可以包括任一通信设备中的写入单元和/或读出单元,用于执行交织和/或解交织。具体实现的交织和/或解交织的方法,可以参见上述方法实施例中的相关描述。第一设备1400和第一设备900的一个或多个特征可以结合。第二设备1500和第二设备1000的一个或多个特征可以结合。不同的实施例之间也可有其他的结合方式,本申请实施例中不做限制。
本申请实施例提出了一种涉及到众多STA的大带宽OFDMA EHT PPDU传输的场景下的OFDMA EHT PPDU所使用的RU交织方案。相比IEEE 802.11的RU分配模式,分配给STA的RU或MRU经过交织映射后,可获得较高的频率分集增益。
本申请实施例提供了打孔信道情形的RU交织流程,将RU交织映射作为一个模块新增在传输器中,提出了打孔信道情形的RU交织详细过程;
为进一步增加RU交织性能,在块交织器的基础上,本申请实施例提供了几种适用于RU交织的交织器:三角形交织器、螺旋形交织器、阶梯形交织器。
本申请实施例提供了RU交织模式的信令指示。信令可以包含RU/MRU分配模式和RU/MRU交织粒度两个子字段。在进行OFDMA EHT MU PPDU传输时,RU/MRU分配模式和RU/MRU交织粒度子字段在U-SIG字段或EHT-SIG字段指示;在进行OFDMA EHT TB PPDU传输时,RU/MRU分配模式和RU/MRU交织粒度子字段在请求上行EHT TB PPDU传输的触发帧指示。
首先介绍两种形式的EHT PPDU:EHT MU PPDU和EHT TB PPDU。
(1)EHT MU PPDU
EHT MU PPDU的格式如图16A所示,用来传输给1个或多个用户。在EHT MU PPDU中,L-STF、L-LTF、L-SIG、U-SIG和EHT-SIG称为pre-EHT(预EHT或前向EHT)调制字段;EHT-STF、EHT-LTF、Data和PE称为EHT调制字段。
(2)EHT TB PPDU
EHT TB PPDU的格式如图16B所示,用于传输来自一个AP的响应触发帧。在EHT TB PPDU中,L-STF、L-LTF、L-SIG和U-SIG称为pre-EHT调制字段;EHT-STF、EHT-LTF、Data和PE称为EHT调制字段。EHT TB PPDU中的EHT-STF字段持续时间是EHT MU PPDU中的EHT-STF字段持续时间的2倍。
当进行OFDMA EHT PPDU传输时,在发射端进行RU交织,接收端进行解交织。需要通过信令指示RU分配模式和RU交织粒度,下行传输信令指示在U-SIG字段或EHT-SIG字段,上行传输信令指示在请求上行EHT TB PPDU传输的触发帧中的EHT变体通用信息字段。对于交织器参数,不需要信令指示,例如:当发射端设置完成RU分配模式和RU交织粒度后,接收端可以根据包含在U-SIG和EHT-SIG的PPDU带宽、打孔信道信息和RU分配信息去决定交织器参数。
1 打孔信道情形的RU交织流程
在产生OFDMA EHT PPDU时,RU交织发生在空间和频域映射阶段。空间映射是把空间流映射到相应的RF链路上。频域映射是对于每一个RF链路,把调制符号映射到相应的物理子载波上。具体来讲,对于每一个RF链路,频域映射包括两个步骤:首先调制符号映射至虚拟子载波,然后虚拟子载波映射至物理子载波。以LDPC编码的数据域传输为例,RU交织在传输流程的位置如图17中的空间和频率映射(Spatial and Frequency Mapping)部分所示。
图17表示当RU或MRU小于等于996-tone时,使用LDPC编码的数据域的UL或DL non-MU-MIMO传输流程图。如图17所示,当RU或MRU小于等于996-tone,使用LDPC编码的数据域的UL或DL non-MU-MIMO传输时,RU交织在传输流程的空间和频率映射(Spatial and Frequency Mapping)部分。
本申请实施例提出打孔信道情形的RU交织流程,RU交织粒度为26-tone(还可以表示为26tones)或52-tone(还可以表示为52tones)。例如,打孔最小子信道为20MHz,对应242-tone RU。本申请实施例可以称最小交织单元为“基准RU”。
1.1当RU交织粒度g等于26tones
(a)根据交织粒度和打孔信道的子载波,计算打孔(puncturing)基准RU的数量N p(例如,交织粒度是26tones,打孔信道对应于242-tone RU,则N p=9);
(b)将带宽BW按照交织粒度g,划分成N g个物理基准RU,并将每个物理基准RU标记为1,2,…,N g(N g可以根据表1确定);
(c)将去除N p个打孔基准RU后的N g-N p个物理基准RU使用一个预先指定的交织器进行交织。预先指定的交织器可以是块交织器、三角形交织器、螺旋形交织器或阶梯形交织器。交织器的参数取决于交织器类型、交织粒度、PPDU带宽和打孔信道情况。示例性的交织器参数如表2至表7所示,包含非打孔信道情形和打孔信道情形的交织器参数;
(d)交织后的N g-N p个物理基准RU按顺序映射到虚拟基准RU。虚拟基准RU也可以称为逻辑基准RU。
1.2当RU交织粒度g等于52tones
(a)根据交织粒度和打孔信道的子载波,计算打孔基准RU的数量N p(例如,交织粒度是52tones,打孔信道对应于242-tone RU,则N p=4);
(b)将带宽BW按照交织粒度g,划分成N g个物理基准RU和N 26-tone个26-tone RU,并将每个物理基准RU标记为1,2,…,N g(N g和N 26-tone可以根据表1确定);
(c)将去除N p个打孔基准RU后的N g-N p个物理基准RU使用一个预先指定的交织器进行交织。预先指定的交织器可以是块交织器、三角形交织器、螺旋形交织器或阶梯形交织器。交织器的参数取决于交织器类型、交织粒度和PPDU带宽。示例性的交织器参数如表2至表7所示,包含非打孔信道情形和打孔信道情形的交织器参数;
(d)交织后的N g-N p个物理基准RU按顺序映射到虚拟基准RU。
表1 不同带宽下对应于不同RU交织粒度的RU个数
Figure PCTCN2022070395-appb-000001
表2 不同带宽下对应于不同RU交织粒度的各交织器参数
Figure PCTCN2022070395-appb-000002
注:(1)对于块交织器的参数,当交织粒度是26tones时,对同样的PPDU带宽,表2列举了多个可能的取值。当预先指定的交织器是块交织器时,当交织粒度是26tones时,块交织器对特定的PPDU带宽,只使用其中一种预先指定的参数配置。
(2)当接收一个EHT MU PPDU时,接收端可以根据在U-SIG或EHT-SIG字段中指示的RU分配模式确定EHT MU PPDU的EHT调制字段是否采用了RU交织模式。如果EHT MU PPDU的EHT调制字段采用了RU交织模式,接收端可以根据在U-SIG和/或EHT-SIG字段中指示的PPDU带宽、打孔信道信息、RU交织粒度和接收端的RU分配信息去确定接收端的所分配虚拟RU/MRU对应的物理子载波。
对于打孔信道,IEEE802.11be D1.3规定了每80MHz带宽最多打孔2个20MHz子信道,则160MHz带宽最多可以打孔4个20MHz子信道,320MHz带宽最多可以打孔8个20MHz子信道。表3至表7列举了不同打孔信道情形下,不同带宽下对应于不同RU交织粒度的各交织器参数。
表3 打孔1个20MHz信道时,不同带宽下对应于不同RU交织粒度的各交织器参数
Figure PCTCN2022070395-appb-000003
表4 打孔2个20MHz信道时,不同带宽下对应于不同RU交织粒度的各交织器参数
Figure PCTCN2022070395-appb-000004
表5 打孔3个20MHz信道时,不同带宽下对应于不同RU交织粒度的各交织器参数
Figure PCTCN2022070395-appb-000005
Figure PCTCN2022070395-appb-000006
表6 打孔4个20MHz信道时,不同带宽下对应于不同RU交织粒度的各交织器参数
Figure PCTCN2022070395-appb-000007
表7 打孔5-8个20MHz信道时,320MHz对应于不同RU交织粒度的各交织器参数
Figure PCTCN2022070395-appb-000008
表8 交织器参数说明
Figure PCTCN2022070395-appb-000009
在本申请实施例的上述表格中,各种类型的交织器的参数仅是示例,而非限制。在实际应用中,可以根据实际需求进行调整,只要使得交织器包括的单元总数大于或等于需要写入的元素的个数即可。
示例一
打孔子信道的子载波索引为[13,252](对应图18中的叉),BW=80MHz,g=52-tone,N P=4,N g=16,N 26-tone=3,交织器:4×3块交织器,如图18所示。
将80MHz带宽,去掉打孔信道后,按照交织粒度52-tone,划分为12个物理52-tone RU。根据4×3块交织器规则,把12个物理52-tone RU进行交织,交织后的物理RU位置映射至虚拟RU位置。
假设给1个STA分配1个虚拟242-tone RU(图18中虚拟RU位置的绿色部分,包括虚拟52-tone RU5-8和1个26-tone RU),经过交织后,虚拟52-tone RU5(虚拟子载波位置[-252,-201])对应物理52-tone RU2(物理子载波位置[-445,-394]),虚拟52-tone RU6(虚拟子载波位置[-198,-147])对应物理52-tone RU5(物理子载波位置[-252,-201]),虚拟26-tone RU未交织,虚拟52-tone RU7(虚拟子载波位置[-118,-67])对应物理52-tone RU8(物理子载波位置[-64,-13]),虚拟52-tone RU8(虚拟子载波位置[-64,-13])对应物理52-tone RU15(物理子载波位置[394,445])。
2 RU交织器
交织器的性能可能会影响RU交织后的频率分集增益,本申请实施例在块交织器基础上,提出了3种适用于RU交织的交织器,分别是三角形交织器、螺旋形交织器、阶梯形交织器。当进行RU交织时,发射端设置完成RU分配模式和RU交织粒度后,接收端可以根据包含在U-SIG和EHT-SIG的PPDU带宽、打孔信道信息和RU分配信息,预先指定以下其中一种交织器,且该交织器参数唯一确定,进行交织。
2.1三角形交织器
该交织器形状为等腰直角三角形。
根据待交织元素数量N,计算三角交织器的直角边长s,计算公式如下
Figure PCTCN2022070395-appb-000010
其中,Q为该三角形交织器能够写入的元素总数。如果Q>N,则在N个RU后补空(null)。
三角形交织器包含写入和读出2个步骤。
(1)写入:从直角边起,将元素索引按照从大到小或从小到大的方式,按行逐个写入三角形交织器,如果Q>N,则继续按行写入null;
(2)读出:从直角边起,将元素的索引按列的顺序逐个读出,遇到null则避开。
示例二:三角形交织器对于RU交织的具体实施过程。
假设待交织的物理RU的数量N=16,根据公式(1)可得三角形边长s=6,则Q=21>N,需要补5个null。如图19所示,(1)写入:将RU索引按从小到大的顺序,按行写入,并在索引16后补5个null;(2)读出:按列顺序读出,遇到null则跳过。
经过交织映射后,虚拟RU1对应物理RU1,虚拟RU2对应物理RU7,虚拟RU3对应物理RU12,虚拟RU4对应物理RU16,虚拟RU5对应物理RU2,虚拟RU6对应物理RU8,虚拟RU7对应物理RU13,虚拟RU8对应物理RU3,虚拟RU9对应物理RU9,虚拟RU10对应物理RU14,虚拟RU11对应物理RU4,虚拟RU12对应物理RU10,虚拟RU13对应物理RU15,虚拟RU14对应物理RU5,虚拟RU15对应物理RU11,虚拟RU16对应物理RU6。
2.2螺旋形交织器
该交织器形状为螺旋形。
主要参数:
(1)螺旋矩阵列数C,例如C=3;
(2)组的尺寸R,例如R=2,则每次输入的元素个数为C×R;
(3)螺旋矩阵步长S,表示在螺旋矩阵的各列中,连续输入列之间分离的行数,例如S=1。
螺旋形交织器包含写入和读出2个步骤。
(1)写入:从第k列起,每列写入R个元素,第k+1列比第k列低S行,其中k=1,…,C,可以按照元素索引从小到大写入,也可以从大到小写入;
(2)读出:按行逐个读出。
示例三:螺旋形交织器的具体实施过程。
假设待交织的物理RU数量N=16,螺旋形交织器参数C=3,R=2,S=1。如图20所示。(1)写入:从第一列起,按照RU索引从大到小的顺序,每列写入2个RU索引,第二列比第一列低1行,第三列比第二列低1行;(2)读出:按行逐个读出RU索引。
经过交织映射后,虚拟RU1对应物理RU1,虚拟RU2对应物理RU2,虚拟RU3对应物理RU3,虚拟RU4对应物理RU7,虚拟RU5对应物理RU4,虚拟RU6对应物理RU5,虚拟RU7对应物理RU8,虚拟RU8对应物理RU9,虚拟RU9对应物理RU6,虚拟RU10对应物理RU13,虚拟RU11对应物理RU10,虚拟RU12对应物理RU11,虚拟RU13对应物理RU14,虚拟RU14对应物理RU15,虚拟RU15 对应物理RU12,虚拟RU16对应物理RU16。
2.3阶梯形交织器
该交织器的形状为阶梯形。
主要参数:
(1)阶梯矩阵列数C,例如C=4;
(2)待交织元素数量N,则阶梯矩阵行数
Figure PCTCN2022070395-appb-000011
(3)在第k列的前(k-1)行填入null,其中k=1,2,…,C。
阶梯形交织器包含写入和读出2个步骤。
(1)写入:将元素索引按照从大到小或从小到大的顺序,按列写入,遇到null则跳过;
(2)读出:按行读出,遇到null则跳过。
此外,亦可按行写入,按列读出。
示例四:阶梯形交织器的具体实施过程。
假设待交织物理RU数量N=18,阶梯形交织器参数C=4,计算得R=6。如图21所示,在第1列填入0个null,在第2列前1行填入1个null,在第3列前2行填入2个null,在第4列前3行填入3个null。(1)写入:将RU索引按照从大到小的顺序,按列写入,遇到null则避开;(2)读出:按行读出,遇到null则避开。
经过交织映射后,虚拟RU18对应物理RU18,虚拟RU17对应物理RU17,虚拟RU16对应物理RU12,虚拟RU15对应物理RU16,虚拟RU14对应物理RU11,虚拟RU13对应物理RU7,虚拟RU12对应物理RU15,虚拟RU11对应物理RU10,虚拟RU10对应物理RU6,虚拟RU9对应物理RU3,虚拟RU8对应物理RU14,虚拟RU7对应物理RU9,虚拟RU6对应物理RU5,虚拟RU5对应物理RU2,虚拟RU4对应物理RU13,虚拟RU3对应物理RU8,虚拟RU2对应物理RU4,虚拟RU1对应物理RU1。
3 RU交织信令指示
关于RU交织的说明,下行信令将在U-SIG字段或EHT-SIG字段的Common field进行指示,包含两个子字段:(1)RU/MRU分配模式(2)RU交织粒度;上行信令将在请求上行EHT TB PPDU传输的触发帧中的EHT变体通用信息字段进行指示,包含两个子字段:(1)RU/MRU分配模式(2)RU交织粒度。
3.1 U-SIG字段
例如,如表9所示,在一种示例性的U-SIG字段中,采用1个比特B22表示RU/MRU分配模式子字段,例如,0表示11be规定的RU/MRU分配模式,1表示RU/MRU交织分配模式。采用1个比特B23表示RU交织粒度子字段,例如,0表示RU交织粒度为26-tone,1表示RU交织粒度为52-tone。其中,B22可以来自disregard(忽略字段),也可以来自validate(验证字段),可以优选validate。
表9 RU交织粒度在U-SIG字段的指示
Figure PCTCN2022070395-appb-000012
Figure PCTCN2022070395-appb-000013
3.2 EHT-SIG字段
同样地,RU交织粒度亦可在EHT-SIG中指示。例如,如表10所示,在一种示例性的EHT-SIG字段中,采用1个比特B13表示RU/MRU分配模式子字段,例如,0表示11be规定的RU/MRU分配模式,1表示RU/MRU交织分配模式。采用1个比特B14表示RU交织粒度子字段,例如,0表示RU交织粒度为26-tone,1表示RU交织粒度为52-tone。
表10 RU交织粒度在EHT-SIG字段的指示
Figure PCTCN2022070395-appb-000014
Figure PCTCN2022070395-appb-000015
3.3请求上行EHT TB PPDU传输的触发帧
图22表示请求上行EHT TB PPDU传输的触发帧的格式。触发帧可以包括一个EHT变体通用信息字段,一个用户信息列表字段和一个填充字段。用户信息列表字段由一个或多个用户信息字段组成。EHT变体通用信息字段和用户信息列表字段的格式取决于触发器帧的类型。
本申请实施例在EHT变体通用信息字段中的EHT保留字段,设置1个比特指示RU/MRU分配模式子字段,例如,0表示EHT TB PPDU采用11be规定的RU/MRU分配模式,1表示EHT TB PPDU采用RU/MRU交织分配模式;设置1个比特表示交织粒度子字段,例如,0表示EHT TB PPDU采用的RU交织粒度为26-tone,1表示EHT TB PPDU采用的RU交织粒度为52-tone。如图22所示,请求上行EHT TB PPDU传输的触发帧中包括RU交织模式指示字段。
本申请实施例提出了具体的RU交织方案,在大带宽、多STA场景下进行OFDMA EHT PPDU传输,将分配给STA的RU进行交织,让STA获得较好的频率分集增益,由此让STA享受大带宽带来的好处。
本申请实施例还包括以下优点的一个或者多个:
(1)本申请实施例提出打孔信道情形的RU交织流程,进一步完善了RU交织的使用场景;
(2)本申请实施例提出了的3种RU交织器,在某些情形下,性能可能优于传统的块交织器;
(3)本申请实施例提出了上下行RU交织模式的信令指示,在现有的IEEE 802.11be标准草案中的U-SIG和EHT-SIG字段和请求上行EHT TB PPDU传输的触发帧的基础上,增加RU交织模式指示子字段。
在RU交织流程中,1.2的打孔信道情形,上述示例的方案是先去除打孔子载波,再交织。也可以先交织,再去除打孔子载波(即打孔子载波也参与RU交织)。先去除打孔子载波,再交织的方式,可以形成一段连续可分配给STA的虚拟RU,实施复杂度低。
图23是根据本申请实施例的通信设备2300示意性结构图。该通信设备2300包括处理器2310,处理器2310可以从存储器中调用并运行计算机程序,以使通信设备2300实现本申请实施例中的方法。
在一种实施方式中,通信设备2300还可以包括存储器2320。其中,处理器2310可以从存储器2320中调用并运行计算机程序,以使通信设备2300实现本申请实施例中的方法。
其中,存储器2320可以是独立于处理器2310的一个单独的器件,也可以集成在处理器2310中。
在一种实施方式中,通信设备2300还可以包括收发器2330,处理器2310可以控制该收发器2330与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器2330可以包括发射机和接收机。收发器2330还可以进一步包括天线,天线的数量可以为一个或多个。
在一种实施方式中,该通信设备2300可为本申请实施例的第二设备,并且该通信设备2300可以实现本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
在一种实施方式中,该通信设备2300可为本申请实施例的第一设备,并且该通信设备2300可以实 现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
图24是根据本申请实施例的芯片2400的示意性结构图。该芯片2400包括处理器2410,处理器2410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一种实施方式中,芯片2400还可以包括存储器2420。其中,处理器2410可以从存储器2420中调用并运行计算机程序,以实现本申请实施例中由第一设备或者第二设备执行的方法。
其中,存储器2420可以是独立于处理器2410的一个单独的器件,也可以集成在处理器2410中。
在一种实施方式中,该芯片2400还可以包括输入接口2430。其中,处理器2410可以控制该输入接口2430与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一种实施方式中,该芯片2400还可以包括输出接口2440。其中,处理器2410可以控制该输出接口2440与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一种实施方式中,该芯片可应用于本申请实施例中的第二设备,并且该芯片可以实现本申请实施例的各个方法中由第二设备实现的相应流程,为了简洁,在此不再赘述。
在一种实施方式中,该芯片可应用于本申请实施例中的第一设备,并且该芯片可以实现本申请实施例的各个方法中由第一设备实现的相应流程,为了简洁,在此不再赘述。
应用于第二设备和第一设备的芯片可以是相同的芯片或不同的芯片。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit,ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图25是根据本申请实施例的通信系统2500的示意性框图。该通信系统2500包括第一设备2510和第二设备2520。
在一种实施方式中,第一设备2510,用于根据第一信息对资源单元RU进行交织。第二设备2520,用于根据第一信息对资源单元进行解交织。该第一信息包括交织粒度、打孔信道信息和交织器类型的至少之一。其中,该第一设备2510可以用于实现上述方法200中由第一设备实现的相应的功能,以及该第二设备2520可以用于实现上述方法300中由第二设备实现的相应的功能。为了简洁,在此不再赘述。
在一种实施方式中,第一设备2510,用于发送第二信息。第二设备2520,用于接收第二信息。该第二信息用于指示RU的分配模式和/或交织粒度。其中,该第一设备2510可以用于实现上述方法600中由第一设备实现的相应的功能,以及该第二设备2520可以用于实现上述方法700中由第二设备实现的相应的功能。为了简洁,在此不再赘述。
在一种实施方式中,第一设备2510可以在交织过程中,可以使用方法400、500或600中的任意一种类型的交织器的控制方法。
在一种实施方式中,第二设备2520在解交织过程中,可以使用方法400、500或600中的任意一种类型的交织器的控制方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用 户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (123)

  1. 一种交织方法,包括:
    第一设备根据第一信息对资源单元RU进行交织,所述第一信息包括带宽、交织粒度、打孔信道信息和交织器类型的至少之一。
  2. 根据权利要求1所述的方法,其中,第一设备根据第一信息对RU进行交织,包括:
    根据所述交织粒度和所述打孔信道信息,得到打孔RU;
    根据所述交织粒度对所述带宽进行划分,得到多个第一物理RU。
  3. 根据权利要求2所述的方法,其中,第一设备根据第一信息对RU进行交织,还包括:
    从所述多个第一物理RU中去除所述打孔RU,得到待交织的第一物理RU;
    使用交织器对所述待交织的第一物理RU进行交织。
  4. 根据权利要求2所述的方法,其中,第一设备根据第一信息对RU进行交织,还包括:
    将划分带宽得到的所述多个第一物理RU作为待交织的第一物理RU,使用交织器对所述待交织的第一物理RU进行交织;
    从交织后的第一物理RU中去除所述打孔RU。
  5. 根据权利要求2至4中任一项所述的方法,其中,所述打孔RU的数量为第一数量,划分带宽得到的所述第一物理RU的数量为第二数量,去除所述打孔RU后的第一物理RU的数量为第三数量。
  6. 根据权利要求5所述的方法,其中,根据所述交织粒度对所述带宽进行划分,得到多个第一物理RU,包括:
    在所述交织粒度为26个子载波的情况下,根据所述交织粒度对所述带宽进行划分,得到第二数量个第一物理RU;其中,每个所述第一物理包括26个子载波。
  7. 根据权利要求6所述的方法,其中,在所述交织粒度为26个子载波的情况下,所述带宽与所述第二数量的关系包括以下至少之一:
    所述带宽为80MHz,所述第二数量为36;
    所述带宽为160MHz,所述第二数量为72;
    所述带宽为320MHz,所述第二数量为144。
  8. 根据权利要求5所述的方法,其中,根据所述交织粒度对所述带宽进行划分,得到多个第一物理RU,包括:
    在所述交织粒度为52个子载波的情况下,根据所述交织粒度对所述带宽进行划分,得到第二数量个第一物理RU和第四数量个第二物理RU;其中,每个所述第一物理包括52个子载波,每个所述第二物理包括26个子载波。
  9. 根据权利要求8所述的方法,其中,在所述交织粒度为52个子载波的情况下,所述带宽与所述第二数量和所述第四数量的关系包括以下至少之一:
    所述带宽为80MHz,所述第二数量为16,所述第四数量为4;
    所述带宽为160MHz,所述第二数量为32,所述第四数量为8;
    所述带宽为320MHz,所述第二数量为64,所述第四数量为16。
  10. 根据权利要求3或4所述的方法,其中,使用交织器对所述待交织的第一物理RU进行交织,包括:
    使用交织器对所述待交织的第一物理RU进行交织,改变所述待交织的第一物理RU的索引排列顺序,得到交织后的第一物理RU的索引排列顺序;
    按照所述交织后的第一物理RU的索引排列顺序映射到虚拟RU、虚拟MRU、逻辑RU和逻辑MRU中的至少之一。
  11. 根据权利要求2至10中任一项所述的方法,其中,每个物理RU的索引具有对应的物理子载波索引区间范围,每个虚拟RU的索引具有对应的虚拟子载波索引区间范围。
  12. 根据权利要求2至11中任一项所述的方法,其中,所述交织器是根据所述交织器类型确定的。
  13. 根据权利要求2至12中任一项所述的方法,其中,所述交织器类型包括以下至少之一:块交织器、三角形交织器、螺旋形交织器或阶梯形交织器。
  14. 根据权利要求2至13中任一项所述的方法,其中,所述交织器的参数是根据所述交织器类型和待交织的第一物理RU的数量确定的。
  15. 根据权利要求14所述的方法,其中,所述交织器类型为块交织器,所述块交织器的参数包括列数和行数。
  16. 根据权利要求14所述的方法,其中,所述交织器类型为三角形交织器,所述三角形交织器的参数包括直角边长。
  17. 根据权利要求14所述的方法,其中,所述交织器类型为螺旋形交织器,所述螺旋形交织器的参数包括螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长。
  18. 根据权利要求17所述的方法,其中,所述螺旋形交织器的螺旋矩阵列数为3,每组写入的组尺寸为2,螺旋矩阵步长为1。
  19. 根据权利要求14所述的方法,其中,所述交织器类型为阶梯形交织器,所述阶梯形交织器的参数包括阶梯矩阵列数和阶梯矩阵行数。
  20. 根据权利要求19所述的方法,其中,所述阶梯形交织器的列数为4。
  21. 根据权利要求1至20中任一项所述的方法,其中,在无打孔信道且所述交织粒度为26个子载波的情况下,所述带宽与不同类型的交织器的参数的关系包括以下至少之一:
    所述带宽为80MHz对应的交织器的参数包括以下至少之一:块交织器的列数为4行数为9,或者列数为6行数为6;三角形交织器的直角边长为8;阶梯形交织器的阶梯矩阵行数为11;
    所述带宽为160MHz对应的交织器的参数包括以下至少之一:块交织器的列数为6行数为12,或者列数为8行数为9;三角形交织器的直角边长为12;阶梯形交织器的阶梯矩阵行数为20;
    所述带宽为320MHz对应的交织器的参数包括以下至少之一:块交织器的列数为8行数为18,或者列数为9行数为16,或者列数为12行数为12;三角形交织器的直角边长为17;阶梯形交织器的阶梯矩阵行数为38。
  22. 根据权利要求1至21中任一项所述的方法,其中,在无打孔信道且所述交织粒度为52个子载波的情况下,所述带宽与不同类型的交织器的参数的关系包括以下至少之一:
    所述带宽为80MHz对应的交织器的参数包括以下至少之一:块交织器的列数为4行数为4;三角形交织器的直角边长为6;阶梯形交织器的阶梯矩阵行数为6;
    所述带宽为160MHz对应的交织器的参数包括以下至少之一:块交织器的列数为4行数为8;三角形交织器的直角边长为8;阶梯形交织器的阶梯矩阵行数为10;
    所述带宽为320MHz对应的交织器的参数包括以下至少之一:块交织器的列数为8行数为8;三角形交织器的直角边长为11;阶梯形交织器的阶梯矩阵行数为18。
  23. 根据权利要求1至22中任一项所述的方法,其中,在打孔1个20MHz信道且所述交织粒度为26个子载波的情况下,所述带宽与不同类型的交织器的参数的关系包括以下至少之一:
    所述带宽为80MHz对应的交织器的参数包括以下至少之一:块交织器的列数为3行数为9;三角形交织器的直角边长为7;阶梯形交织器的阶梯矩阵行数为9;
    所述带宽为160MHz对应的交织器的参数包括以下至少之一:块交织器的列数为7行数为9;三角形交织器的直角边长为11;阶梯形交织器的阶梯矩阵行数为18;
    所述带宽为320MHz对应的交织器的参数包括以下至少之一:块交织器的列数为5行数为27;三角形交织器的直角边长为16;阶梯形交织器的阶梯矩阵行数为36。
  24. 根据权利要求1至23中任一项所述的方法,其中,在打孔1个20MHz信道且所述交织粒度为52个子载波的情况下,所述带宽与不同类型的交织器的参数的关系包括以下至少之一:
    所述带宽为80MHz对应的交织器的参数包括以下至少之一:块交织器的列数为3行数为4;三角形交织器的直角边长为5;阶梯形交织器的阶梯矩阵行数为5;
    所述带宽为160MHz对应的交织器的参数包括以下至少之一:块交织器的列数为4行数为7;三角形交织器的直角边长为7;阶梯形交织器的阶梯矩阵行数为9;
    所述带宽为320MHz对应的交织器的参数包括以下至少之一:块交织器的列数为6行数为10;三角形交织器的直角边长为11;阶梯形交织器的阶梯矩阵行数为17。
  25. 根据权利要求1至24中任一项所述的方法,其中,在打孔2个20MHz信道且所述交织粒度为26个子载波的情况下,所述带宽与不同类型的交织器的参数的关系包括以下至少之一:
    所述带宽为80MHz对应的交织器的参数包括以下至少之一:块交织器的列数为3行数为6;三角形交织器的直角边长为6;阶梯形交织器的阶梯矩阵行数为6;
    所述带宽为160MHz对应的交织器的参数包括以下至少之一:块交织器的列数为6行数为9;三角形交织器的直角边长为10;阶梯形交织器的阶梯矩阵行数为15;
    所述带宽为320MHz对应的交织器的参数包括以下至少之一:块交织器的列数为9行数为14;三角形交织器的直角边长为16;阶梯形交织器的阶梯矩阵行数为33。
  26. 根据权利要求1至25中任一项所述的方法,其中,在打孔2个20MHz信道且所述交织粒度为52个子载波的情况下,所述带宽与不同类型的交织器的参数的关系包括以下至少之一:
    所述带宽为80MHz对应的交织器的参数包括以下至少之一:块交织器的列数为2行数为4;三角形交织器的直角边长为4;阶梯形交织器的阶梯矩阵行数为4;
    所述带宽为160MHz对应的交织器的参数包括以下至少之一:块交织器的列数为4行数为6;三角形交织器的直角边长为7;阶梯形交织器的阶梯矩阵行数为8;
    所述带宽为320MHz对应的交织器的参数包括以下至少之一:块交织器的列数为7行数为8;三角形交织器的直角边长为11;阶梯形交织器的阶梯矩阵行数为16。
  27. 根据权利要求1至26中任一项所述的方法,其中,在打孔3个20MHz信道且所述交织粒度为26个子载波的情况下,所述带宽与不同类型的交织器的参数的关系包括以下至少之一:
    所述带宽为160MHz对应的交织器的参数包括以下至少之一:块交织器的列数为5行数为9;三角形交织器的直角边长为9;阶梯形交织器的阶梯矩阵行数为13;
    所述带宽为320MHz对应的交织器的参数包括以下至少之一:块交织器的列数为9行数为13;三角形交织器的直角边长为15;阶梯形交织器的阶梯矩阵行数为31。
  28. 根据权利要求1至27中任一项所述的方法,其中,在打孔3个20MHz信道且所述交织粒度为52个子载波的情况下,所述带宽与不同类型的交织器的参数的关系包括以下至少之一:
    所述带宽为160MHz对应的交织器的参数包括以下至少之一:块交织器的列数为4行数为5;三角形交织器的直角边长为6;阶梯形交织器的阶梯矩阵行数为7;
    所述带宽为320MHz对应的交织器的参数包括以下至少之一:块交织器的列数为4行数为13;三角形交织器的直角边长为10;阶梯形交织器的阶梯矩阵行数为15。
  29. 根据权利要求1至28中任一项所述的方法,其中,在打孔4个20MHz信道且所述交织粒度为26个子载波的情况下,所述带宽与不同类型的交织器的参数的关系包括以下至少之一:
    所述带宽为160MHz对应的交织器的参数包括以下至少之一:块交织器的列数为4行数为9;三角形交织器的直角边长为8;阶梯形交织器的阶梯矩阵行数为11;
    所述带宽为320MHz对应的交织器的参数包括以下至少之一:块交织器的列数为9行数为12;三角形交织器的直角边长为15;阶梯形交织器的阶梯矩阵行数为29。
  30. 根据权利要求1至29中任一项所述的方法,其中,在打孔4个20MHz信道且所述交织粒度为52个子载波的情况下,所述带宽与不同类型的交织器的参数的关系包括以下至少之一:
    所述带宽为160MHz对应的交织器的参数包括以下至少之一:块交织器的列数为4行数为4;三角形交织器的直角边长为6;阶梯形交织器的阶梯矩阵行数为6;
    所述带宽为320MHz对应的交织器的参数包括以下至少之一:块交织器的列数为6行数为8;三角形交织器的直角边长为10;阶梯形交织器的阶梯矩阵行数为14。
  31. 根据权利要求13至30中任一项所述的方法,其中,所述方法还包括:
    在交织器包括多组参数的情况下,采用该多组参数中一组参数。
  32. 根据权利要求1至31中任一项所述的方法,其中,所述带宽为PPDU带宽。
  33. 根据权利要求1至32中任一项所述的方法,其中,所述打孔信道信息包括打孔信道的子载波、打孔信道的带宽和打孔信道的个数的至少之一。
  34. 一种解交织方法,包括:
    第二设备根据第一信息对资源单元进行解交织,所述第一信息包括交织粒度、打孔信道信息和交织器类型的至少之一。
  35. 根据权利要求34所述的方法,其中,第二设备根据第一信息对资源单元进行解交织,包括:
    获取虚拟RU、虚拟MRU、逻辑RU和逻辑MRU中的至少之一对应的第一物理RU。
  36. 根据权利要求35所述的方法,其中,第二设备根据第一信息对资源单元进行解交织,还包括:
    将获取的第一物理RU作为待解交织的第一物理RU,使用交织器对所述待解交织的第一物理RU进行解交织,得到解交织后的第一物理RU;
    将解交织后的第一物理RU与打孔RU组合;
    其中,所述打孔RU的数量为第一数量,所述解交织后的第一物理RU的数量为第三数量,组合得到第一物理RU的数量为第二数量。
  37. 根据权利要求35所述的方法,其中,第二设备根据第一信息对资源单元进行解交织,还包括:
    将获取的第一物理RU和打孔RU组合得到待解交织的第一物理RU;
    使用交织器对所述待解交织的第一物理RU进行解交织,得到解交织后的第一物理RU;
    其中,所述打孔RU的数量为第一数量,所述解交织后的第一物理RU的数量为第二数量。
  38. 根据权利要求36或37所述的方法,其中,使用交织器对所述待解交织的第一物理RU进行解交织,包括:
    使用交织器对所述待解交织的第一物理RU进行解交织,恢复所述待解交织的第一物理RU的索引排列顺序。
  39. 根据权利要求36或37所述的方法,其中,在所述交织粒度为26个子载波的情况下,所述第一物理RU包括26个子载波,所述带宽与所述第二数量的关系包括以下至少之一:
    所述带宽为80MHz,所述第二数量为36;
    所述带宽为160MHz,所述第二数量为72;
    所述带宽为320MHz,所述第二数量为144。
  40. 根据权利要求36至38中任一项所述的方法,其中,第二设备根据第一信息对资源单元进行解交织,还包括:
    将第二数量个第一物理RU和第四数量个第二物理RU组合,得到恢复的第一物理RU。
  41. 根据权利要求40所述的方法,其中,在所述交织粒度为52个子载波的情况下,所述第一物理RU包括52个子载波,所述第二物理RU包括26个子载波,所述带宽与所述第二数量和所述第四数量的关系包括以下至少之一:
    所述带宽为80MHz,所述第二数量为16,所述第四数量为4;
    所述带宽为160MHz,所述第二数量为32,所述第四数量为8;
    所述带宽为320MHz,所述第二数量为64,所述第四数量为16。
  42. 根据权利要求35至41中任一项所述的方法,其中,每个物理RU的索引具有对应的物理子载波索引区间范围,每个虚拟RU的索引具有对应的虚拟子载波索引区间范围。
  43. 根据权利要求36至42中任一项所述的方法,其中,所述交织器是根据所述交织器类型确定的。
  44. 根据权利要求36至43中任一项所述的方法,其中,所述交织器类型包括以下至少之一:块交织器、三角形交织器、螺旋形交织器或阶梯形交织器。
  45. 根据权利要求36至44中任一项所述的方法,其中,所述交织器的参数是根据所述交织器类型和所述待解交织的第一物理RU的数量确定的。
  46. 根据权利要求45所述的方法,其中,所述交织器类型为块交织器,所述块交织器的参数包括列数和行数。
  47. 根据权利要求45所述的方法,其中,所述交织器类型为三角形交织器,所述三角形交织器的参数包括直角边长。
  48. 根据权利要求45所述的方法,其中,所述交织器类型为螺旋形交织器,所述螺旋形交织器的参数包括螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长。
  49. 根据权利要求48所述的方法,其中,所述螺旋形交织器的螺旋矩阵列数为3,每组写入的组尺寸为2,螺旋矩阵步长为1。
  50. 根据权利要求45所述的方法,其中,所述交织器类型为阶梯形交织器,所述阶梯形交织器的参数包括阶梯矩阵列数和阶梯矩阵行数。
  51. 根据权利要求50所述的方法,其中,所述阶梯形交织器的列数为4。
  52. 根据权利要求35至51中任一项所述的方法,其中,在无打孔信道且所述交织粒度为26个子载波的情况下,所述带宽与不同类型的交织器的参数的关系包括以下至少之一:
    所述带宽为80MHz对应的交织器的参数包括以下至少之一:块交织器的列数为4行数为9,或者列数为6行数为6;三角形交织器的直角边长为8;阶梯形交织器的阶梯矩阵行数为11;
    所述带宽为160MHz对应的交织器的参数包括以下至少之一:块交织器的列数为6行数为12,或者列数为8行数为9;三角形交织器的直角边长为12;阶梯形交织器的阶梯矩阵行数为20;
    所述带宽为320MHz对应的交织器的参数包括以下至少之一:块交织器的列数为8行数为18,或者列数为9行数为16,或者列数为12行数为12;三角形交织器的直角边长为17;阶梯形交织器的阶梯矩阵行数为38。
  53. 根据权利要求35至52中任一项所述的方法,其中,在无打孔信道且所述交织粒度为52个子载波的情况下,所述带宽与不同类型的交织器的参数的关系包括以下至少之一:
    所述带宽为80MHz对应的交织器的参数包括以下至少之一:块交织器的列数为4行数为4;三角形交织器的直角边长为6;阶梯形交织器的阶梯矩阵行数为6;
    所述带宽为160MHz对应的交织器的参数包括以下至少之一:块交织器的列数为4行数为8;三角形交织器的直角边长为8;阶梯形交织器的阶梯矩阵行数为10;
    所述带宽为320MHz对应的交织器的参数包括以下至少之一:块交织器的列数为8行数为8;三角形交织器的直角边长为11;阶梯形交织器的阶梯矩阵行数为18。
  54. 根据权利要求35至53中任一项所述的方法,其中,在打孔1个20MHz信道且所述交织粒度为26个子载波的情况下,所述带宽与不同类型的交织器的参数的关系包括以下至少之一:
    所述带宽为80MHz对应的交织器的参数包括以下至少之一:块交织器的列数为3行数为9;三角 形交织器的直角边长为7;阶梯形交织器的阶梯矩阵行数为9;
    所述带宽为160MHz对应的交织器的参数包括以下至少之一:块交织器的列数为7行数为9;三角形交织器的直角边长为11;阶梯形交织器的阶梯矩阵行数为18;
    所述带宽为320MHz对应的交织器的参数包括以下至少之一:块交织器的列数为5行数为27;三角形交织器的直角边长为16;阶梯形交织器的阶梯矩阵行数为36。
  55. 根据权利要求35至54中任一项所述的方法,其中,在打孔1个20MHz信道且所述交织粒度为52个子载波的情况下,所述带宽与不同类型的交织器的参数的关系包括以下至少之一:
    所述带宽为80MHz对应的交织器的参数包括以下至少之一:块交织器的列数为3行数为4;三角形交织器的直角边长为5;阶梯形交织器的阶梯矩阵行数为5;
    所述带宽为160MHz对应的交织器的参数包括以下至少之一:块交织器的列数为4行数为7;三角形交织器的直角边长为7;阶梯形交织器的阶梯矩阵行数为9;
    所述带宽为320MHz对应的交织器的参数包括以下至少之一:块交织器的列数为6行数为10;三角形交织器的直角边长为11;阶梯形交织器的阶梯矩阵行数为17。
  56. 根据权利要求35至55中任一项所述的方法,其中,在打孔2个20MHz信道且所述交织粒度为26个子载波的情况下,所述带宽与不同类型的交织器的参数的关系包括以下至少之一:
    所述带宽为80MHz对应的交织器的参数包括以下至少之一:块交织器的列数为3行数为6;三角形交织器的直角边长为6;阶梯形交织器的阶梯矩阵行数为6;
    所述带宽为160MHz对应的交织器的参数包括以下至少之一:块交织器的列数为6行数为9;三角形交织器的直角边长为10;阶梯形交织器的阶梯矩阵行数为15;
    所述带宽为320MHz对应的交织器的参数包括以下至少之一:块交织器的列数为9行数为14;三角形交织器的直角边长为16;阶梯形交织器的阶梯矩阵行数为33。
  57. 根据权利要求35至56中任一项所述的方法,其中,在打孔2个20MHz信道且所述交织粒度为52个子载波的情况下,所述带宽与不同类型的交织器的参数的关系包括以下至少之一:
    所述带宽为80MHz对应的交织器的参数包括以下至少之一:块交织器的列数为2行数为4;三角形交织器的直角边长为4;阶梯形交织器的阶梯矩阵行数为4;
    所述带宽为160MHz对应的交织器的参数包括以下至少之一:块交织器的列数为4行数为6;三角形交织器的直角边长为7;阶梯形交织器的阶梯矩阵行数为8;
    所述带宽为320MHz对应的交织器的参数包括以下至少之一:块交织器的列数为7行数为8;三角形交织器的直角边长为11;阶梯形交织器的阶梯矩阵行数为16。
  58. 根据权利要求35至57中任一项所述的方法,其中,在打孔3个20MHz信道且所述交织粒度为26个子载波的情况下,所述带宽与不同类型的交织器的参数的关系包括以下至少之一:
    所述带宽为160MHz对应的交织器的参数包括以下至少之一:块交织器的列数为5行数为9;三角形交织器的直角边长为9;阶梯形交织器的阶梯矩阵行数为13;
    所述带宽为320MHz对应的交织器的参数包括以下至少之一:块交织器的列数为9行数为13;三角形交织器的直角边长为15;阶梯形交织器的阶梯矩阵行数为31。
  59. 根据权利要求35至58中任一项所述的方法,其中,在打孔3个20MHz信道且所述交织粒度为52个子载波的情况下,所述带宽与不同类型的交织器的参数的关系包括以下至少之一:
    所述带宽为160MHz对应的交织器的参数包括以下至少之一:块交织器的列数为4行数为5;三角形交织器的直角边长为6;阶梯形交织器的阶梯矩阵行数为7;
    所述带宽为320MHz对应的交织器的参数包括以下至少之一:块交织器的列数为4行数为13;三角形交织器的直角边长为10;阶梯形交织器的阶梯矩阵行数为15。
  60. 根据权利要求35至59中任一项所述的方法,其中,在打孔4个20MHz信道且所述交织粒度为26个子载波的情况下,所述带宽与不同类型的交织器的参数的关系包括以下至少之一:
    所述带宽为160MHz对应的交织器的参数包括以下至少之一:块交织器的列数为4行数为9;三角形交织器的直角边长为8;阶梯形交织器的阶梯矩阵行数为11;
    所述带宽为320MHz对应的交织器的参数包括以下至少之一:块交织器的列数为9行数为12;三角形交织器的直角边长为15;阶梯形交织器的阶梯矩阵行数为29。
  61. 根据权利要求35至60中任一项所述的方法,其中,在打孔4个20MHz信道且所述交织粒度为52个子载波的情况下,所述带宽与不同类型的交织器的参数的关系包括以下至少之一:
    所述带宽为160MHz对应的交织器的参数包括以下至少之一:块交织器的列数为4行数为4;三角形交织器的直角边长为6;阶梯形交织器的阶梯矩阵行数为6;
    所述带宽为320MHz对应的交织器的参数包括以下至少之一:块交织器的列数为6行数为8;三角 形交织器的直角边长为10;阶梯形交织器的阶梯矩阵行数为14。
  62. 根据权利要求44至61中任一项所述的方法,其中,所述方法还包括:
    在交织器包括多组参数的情况下,采用该多组参数中一组参数。
  63. 根据权利要求35至62中任一项所述的方法,其中,所述带宽为PPDU带宽。
  64. 根据权利要求35至63中任一项所述的方法,其中,所述打孔信道信息包括打孔信道的子载波、打孔信道的带宽和打孔信道的个数的至少之一。
  65. 一种交织器的控制方法,包括:
    从三角形交织器的直角边起,将待交织元素的索引按照第一顺序,并且按行逐个写入所述三角形交织器的单元;
    从所述直角边起,将所述三角形交织器的单元中的元素的索引按列逐个读出。
  66. 根据权利要求65所述的方法,其中,所述方法还包括:
    在所述三角形交织器的单元总数大于所述待交织元素的数量的情况下,将所述待交织元素全部写入所述三角形交织器的单元后,将所述三角形交织器的剩余单元按行写入空值。
  67. 根据权利要求65或66所述的方法,其中,在所述读出的过程中,避开所述三角形交织器的单元中的空值。
  68. 根据权利要求65至67中任一项所述的方法,其中,所述方法还包括:
    根据所述待交织元素的数量确定三角形交织器直角边长;
    其中,所述直角边长用于确定所述三角形交织器的单元总数,所述三角形交织器的单元总数大于或等于所述待交织元素的数量。
  69. 根据权利要求65至68中任一项所述的方法,其中,所述第一顺序包括从小到大的顺序,或者从大到小的顺序。
  70. 一种交织器的控制方法,包括:
    根据螺旋形交织器的螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长的至少之一,将待交织元素的索引按照第一顺序按列逐个写入所述螺旋形交织器的单元;
    将所述螺旋形交织器的单元中的元素的索引按行逐个读出。
  71. 根据权利要求70所述的方法,其中,根据螺旋形交织器的螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长的至少之一,将待交织元素逐个写入所述螺旋形交织器的单元,包括:
    按照所述待交织元素的第一顺序,从第k列起,每列写入R个元素,第k+1列比第k列低S行;
    其中,k是列标识,k的取值范围是从1到C,C为螺旋矩阵列数,R为每组写入的组尺寸,S为螺旋矩阵步长。
  72. 根据权利要求70至71中任一项所述的方法,其中,所述第一顺序包括从小到大的顺序,或者从大到小的顺序。
  73. 一种交织器的控制方法,包括:
    根据阶梯形交织器的阶梯矩阵列数和阶梯矩阵行数的至少之一,将待交织元素的索引按照第一顺序按列逐个写入所述阶梯形交织的单元;
    将所述阶梯形交织器的单元中的元素的索引按行逐个读出。
  74. 根据权利要求73所述的方法,其中,根据阶梯形交织器的阶梯矩阵列数和阶梯矩阵行数的至少之一,将待交织元素逐个写入所述阶梯形交织的单元,包括:
    根据所述阶梯矩阵列数C和待交织元素数量N,确定阶梯矩阵行数R;
    在第k列的前k-1行填入空值,其中k的取值范围是1到C;
    按照所述待交织元素的第一顺序,将所述待交织元素的索引按列写入所述阶梯形交织器的非空值的单元。
  75. 根据权利要求73或74所述的方法,其中,在所述读出的过程中,避开所述阶梯形交织器的单元中的空值。
  76. 根据权利要求73至75中任一项所述的方法,其中,所述第一顺序包括从小到大的顺序,或者从大到小的顺序。
  77. 一种通信方法,包括:
    第一设备发送第二信息,所述第二信息用于指示RU的分配模式和/或交织粒度。
  78. 根据权利要求77所述的方法,其中,所述第二信息在下行信令的U-SIG字段和/或EHT-SIG字段中。
  79. 根据权利要求78所述的方法,其中,所述U-SIG字段和/或EHT-SIG字段中包括以下至少之一:
    用于表示分配模式的第一子字段;
    用于表示交织粒度的第二子字段。
  80. 根据权利要求79所述的方法,其中,所述第一子字段和/或所述第二子字段使用保留字段。
  81. 根据权利要求80所述的方法,其中,所述第一子字段和/或所述第二子字段使用的保留字段为验证字段。
  82. 根据权利要求80所述的方法,其中,所述第一子字段和/或所述第二子字段使用的保留字段为忽略字段。
  83. 根据权利要求79至82中任一项所述的方法,其中,所述第一子字段在U-SIG字段中为比特B22,所述第二子字段在U-SIG字段中为比特B23。
  84. 根据权利要求79至82中任一项所述的方法,其中,所述第一子字段在EHT-SIG字段中为比特B13,所述第二子字段在U-SIG字段中为比特B14。
  85. 根据权利要求79至84中任一项所述的方法,其中,所述第一子字段的取值为第一值表示RU交织分配模式;所述第二子字段的取值为第二值表示非交织的其他分配模式。
  86. 根据权利要求79至85中任一项所述的方法,其中,不同的所述第二子字段的取值对应不同的RU交织粒度。
  87. 根据权利要求78至86中任一项所述的方法,其中,所述下行信令为EHT TB PPDU和/或EHT MU PPDU。
  88. 根据权利要求87所述的方法,其中,所述EHT TB PPDU和/或EHT MU PPDU中还包括PPDU带宽、打孔信道信息和RU分配信息的至少之一。
  89. 根据权利要求88所述的方法,其中,所述打孔信道信息包括打孔信道的子载波、打孔信道的带宽和打孔信道的个数的至少之一。
  90. 根据权利要求77至89中任一项所述的方法,其中,所述方法还包括:
    第一设备接收第三信息,所述第三信息用于指示RU的分配模式和/或交织粒度。
  91. 根据权利要求90所述的方法,其中,所述第三信息在上行信令的EHT变体通用信息字段中。
  92. 根据权利要求91所述的方法,其中,所述第三信息在上行信令的EHT变体通用信息字段的EHT保留字段中,所述EHT保留字段包括以下至少之一:
    用于表示分配模式的第一子字段;
    用于表示交织粒度的第二子字段。
  93. 根据权利要求91或92所述的方法,其中,所述上行信令为请求上行EHT TB PPDU传输的触发帧。
  94. 一种通信方法,包括:
    第二设备接收第二信息,所述第二信息用于指示RU的分配模式和/或交织粒度。
  95. 根据权利要求94所述的方法,其中,所述第二信息在下行信令的U-SIG字段和/或EHT-SIG字段中。
  96. 根据权利要求95所述的方法,其中,所述U-SIG字段和/或EHT-SIG字段中包括以下至少之一:
    用于表示分配模式的第一子字段;
    用于表示交织粒度的第二子字段。
  97. 根据权利要求96所述的方法,其中,所述第一子字段和/或所述第二子字段使用保留字段。
  98. 根据权利要求97所述的方法,其中,所述第一子字段和/或所述第二子字段使用的保留字段为验证字段。
  99. 根据权利要求97所述的方法,其中,所述第一子字段和/或所述第二子字段使用的保留字段为忽略字段。
  100. 根据权利要求96至99中任一项所述的方法,其中,所述第一子字段在U-SIG字段中为比特B22,所述第二子字段在U-SIG字段中为比特B23。
  101. 根据权利要求96至100中任一项所述的方法,其中,所述第一子字段在EHT-SIG字段中为比特B13,所述第二子字段在U-SIG字段中为比特B14。
  102. 根据权利要求96至101中任一项所述的方法,其中,所述第一子字段的取值为第一值表示RU交织分配模式;所述第二子字段的取值为第二值表示非交织的其他分配模式。
  103. 根据权利要求96至102中任一项所述的方法,其中,不同的所述第二子字段的取值对应不同的RU交织粒度。
  104. 根据权利要求95至103中任一项所述的方法,其中,所述下行信令为EHT TB PPDU和/或EHT MU PPDU。
  105. 根据权利要求104所述的方法,其中,所述EHT TB PPDU和/或EHT MU PPDU中还包括PPDU 带宽、打孔信道信息和RU分配信息的至少之一。
  106. 根据权利要求105所述的方法,其中,所述打孔信道信息包括打孔信道的子载波、打孔信道的带宽和打孔信道的个数的至少之一。
  107. 根据权利要求94至106中任一项所述的方法,其中,所述方法还包括:
    第二设备发送第三信息,所述第三信息用于指示RU的分配模式和/或交织粒度。
  108. 根据权利要求107所述的方法,其中,所述第三信息在上行信令的EHT变体通用信息字段中。
  109. 根据权利要求108所述的方法,其中,所述第三信息在上行信令的EHT变体通用信息字段的EHT保留字段中,所述EHT保留字段包括以下至少之一:
    用于表示分配模式的第一子字段;
    用于表示交织粒度的第二子字段。
  110. 根据权利要求106或109所述的方法,其中,所述上行信令为请求上行EHT TB PPDU传输的触发帧。
  111. 根据权利要求94至110中任一项所述的方法,其中,所述方法还包括:
    所述第二设备根据PPDU带宽、打孔信道信息和RU分配信息确定交织器参数。
  112. 一种第一设备,包括:处理单元,用于根据第一信息对资源单元RU进行交织,所述第一信息包括带宽、交织粒度、打孔信道信息和交织器类型的至少之一。
  113. 一种第二设备,包括:处理单元,用于根据第一信息对资源单元进行解交织,所述第一信息包括交织粒度、打孔信道信息和交织器类型的至少之一。
  114. 一种通信设备,包括:
    第一写入单元,用于从三角形交织器的直角边起,将待交织元素的索引按照第一顺序,并且按行逐个写入所述三角形交织器的单元;
    第一读出单元,用于从所述直角边起,将所述三角形交织器的单元中的元素的索引按列逐个读出。
  115. 一种通信设备,包括:
    第二写入单元,用于根据螺旋形交织器的螺旋矩阵列数、每组写入的组尺寸和螺旋矩阵步长的至少之一,将待交织元素的索引按照第一顺序按列逐个写入所述螺旋形交织器的单元;
    第二读出单元,用于将所述螺旋形交织器的单元中的元素的索引按行逐个读出。
  116. 一种通信设备,包括:
    第三写入单元,用于根据阶梯形交织器的阶梯矩阵列数和阶梯矩阵行数的至少之一,将待交织元素的索引按照第一顺序按列逐个写入所述阶梯形交织的单元;
    第三读出单元,用于将所述阶梯形交织器的单元中的元素的索引按行逐个读出。
  117. 一种第一设备,包括:
    发送单元,用于发送第二信息,所述第二信息用于指示RU的分配模式和/或交织粒度。
  118. 一种第二设备,包括:
    接收单元,用于接收第二信息,所述第二信息用于指示RU的分配模式和/或交织粒度。
  119. 一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述通信设备执行如权利要求1至33中任一项、34至64中任一项、65至69中任一项、70至72中任一项、73至76中任一项、77至93中任一项或94至111中任一项所述的方法。
  120. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至33中任一项、34至64中任一项、65至69中任一项、70至72中任一项、73至76中任一项、77至93中任一项或94至111中任一项所述的方法。
  121. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求1至33中任一项、34至64中任一项、65至69中任一项、70至72中任一项、73至76中任一项、77至93中任一项或94至111中任一项所述的方法。
  122. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至33中任一项、34至64中任一项、65至69中任一项、70至72中任一项、73至76中任一项、77至93中任一项或94至111中任一项所述的方法。
  123. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至33中任一项、34至64中任一项、65至69中任一项、70至72中任一项、73至76中任一项、77至93中任一项或94至111中任一项所述的方法。
PCT/CN2022/070395 2022-01-05 2022-01-05 交织方法、解交织方法和设备 WO2023130281A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/070395 WO2023130281A1 (zh) 2022-01-05 2022-01-05 交织方法、解交织方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/070395 WO2023130281A1 (zh) 2022-01-05 2022-01-05 交织方法、解交织方法和设备

Publications (1)

Publication Number Publication Date
WO2023130281A1 true WO2023130281A1 (zh) 2023-07-13

Family

ID=87072891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070395 WO2023130281A1 (zh) 2022-01-05 2022-01-05 交织方法、解交织方法和设备

Country Status (1)

Country Link
WO (1) WO2023130281A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388751A (zh) * 2008-10-28 2009-03-18 重庆重邮信科通信技术有限公司 解速率匹配方法
US20130182782A1 (en) * 2012-01-17 2013-07-18 Lsi Corporation Interleaving, modulation, and layer mapping in an lte physical control channel
CN110352573A (zh) * 2017-08-07 2019-10-18 联发科技股份有限公司 用于极化编码链的信道比特交织器设计
CN110521150A (zh) * 2017-04-10 2019-11-29 高通股份有限公司 用于极性码的高效交织器设计
CN110535556A (zh) * 2019-03-29 2019-12-03 中兴通讯股份有限公司 一种资源调度方法、装置和存储介质
CN113824532A (zh) * 2020-06-18 2021-12-21 华为技术有限公司 发送数据帧的方法、接收数据帧的方法及通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388751A (zh) * 2008-10-28 2009-03-18 重庆重邮信科通信技术有限公司 解速率匹配方法
US20130182782A1 (en) * 2012-01-17 2013-07-18 Lsi Corporation Interleaving, modulation, and layer mapping in an lte physical control channel
CN110521150A (zh) * 2017-04-10 2019-11-29 高通股份有限公司 用于极性码的高效交织器设计
CN110352573A (zh) * 2017-08-07 2019-10-18 联发科技股份有限公司 用于极化编码链的信道比特交织器设计
CN110535556A (zh) * 2019-03-29 2019-12-03 中兴通讯股份有限公司 一种资源调度方法、装置和存储介质
CN113824532A (zh) * 2020-06-18 2021-12-21 华为技术有限公司 发送数据帧的方法、接收数据帧的方法及通信装置

Similar Documents

Publication Publication Date Title
JP5567219B2 (ja) フィードバック情報送信方法及びユーザ機器
CN110663205B (zh) 一种数据处理方法及数据处理装置
KR102078647B1 (ko) 물리 계층 프로토콜 데이터 유닛 전송 방법 및 장치
JP7130747B2 (ja) 位相追従参照信号送信方法及び装置
WO2022002206A1 (zh) 一种ppdu的传输方法及相关装置
CN113395143B (zh) 数据传输方法及设备、芯片系统、计算机可读存储介质
US20230121851A1 (en) Data transmission method and related apparatus
CN109150378B (zh) 一种数据处理方法及数据处理装置
WO2020187132A1 (zh) 数据信道的传输方法及装置
WO2023130281A1 (zh) 交织方法、解交织方法和设备
JP2023523813A (ja) 無線ローカルエリアネットワークにおいて適用される帯域幅指示方法及び通信装置
WO2022237520A1 (zh) 资源分配方法、通信装置及计算机可读存储介质
WO2023066050A1 (zh) 一种物理上行控制信道的发送方法、接收方法及通信装置
WO2023020349A1 (zh) 发送物理层协议数据单元的方法和通信装置
WO2022184032A1 (zh) 一种资源分配方法及通信装置
WO2023130277A1 (zh) 一种交织方法、解交织方法和设备
JP2024519184A (ja) データ伝送方法および装置
WO2020114317A1 (zh) 一种参考信号的传输方法及装置
WO2019137475A1 (zh) 一种资源映射方法及设备
WO2023284548A1 (zh) 发送物理层协议数据单元的方法和装置
WO2024020973A1 (zh) 通信方法和站点
WO2022179506A1 (zh) 基于循环移位分集进行通信的方法和装置
WO2024020969A1 (zh) 通信方法和站点
WO2023071901A1 (zh) 通信方法和通信装置
WO2023225961A1 (zh) 通信方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22917757

Country of ref document: EP

Kind code of ref document: A1