WO2023128745A1 - Batterie avec système autonome et intégré de diagnostic - Google Patents

Batterie avec système autonome et intégré de diagnostic Download PDF

Info

Publication number
WO2023128745A1
WO2023128745A1 PCT/MA2022/050012 MA2022050012W WO2023128745A1 WO 2023128745 A1 WO2023128745 A1 WO 2023128745A1 MA 2022050012 W MA2022050012 W MA 2022050012W WO 2023128745 A1 WO2023128745 A1 WO 2023128745A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery according
energy
lot
lot battery
Prior art date
Application number
PCT/MA2022/050012
Other languages
English (en)
Inventor
Khadija EL KAMOUNY
Ayoub Lahlalia
Mouad MOUAQ
Original Assignee
Moroccan Foundation For Advanced Science, Innovation And Research (Mascir)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moroccan Foundation For Advanced Science, Innovation And Research (Mascir) filed Critical Moroccan Foundation For Advanced Science, Innovation And Research (Mascir)
Publication of WO2023128745A1 publication Critical patent/WO2023128745A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/106PTC

Definitions

  • This disclosure generally relates to the field of rechargeable batteries. It relates in particular to a battery comprising an energy harvesting system to supply the battery diagnostic system.
  • a device self-powered with multiple micro-sensors, detects an environmental change (in-situ) in order to predict the early detection of the failure of the cell.
  • the sensors are placed on a single integrated chip, for example, an application-specific integrated circuit (ASIC) that includes a pressure, humidity and temperature sensor.
  • ASIC application-specific integrated circuit
  • the ASIC may also include other environmental sensors, a processor, and memory.
  • B MS battery management system
  • Such a miniature device can be discreetly embedded in a battery.
  • a new energy harvesting system has been implemented inside the battery cap in order to take full advantage of the variation in gas pressure and the vibrations generated by various elements, in particular the cooling.
  • the battery with internet of things (loT) hosts piezoelectric cantilevers to convert mechanical energy into electrical energy stored in a supercapacitor.
  • This multi-micro-sensor device can continuously monitor the Health Index (SoH), including pressure, temperature, and humidity.
  • SoH Health Index
  • Figure 1 is a cross-sectional view of the cap structure of a commercial 18650 lithium-ion (Li-ion) battery cap;
  • Figure 2 is a cross-sectional view of the structure of the cap of a battery of the new self-diagnosing loT battery
  • Figure 3 is a top view of the central disk (middle disk) integrated in the cap of a Li-ion 18650 battery, on which are welded a thin film supercapacitor, a CMOS device and RX / TX pins ;
  • FIG. 4 represents the internal architecture of the CMOS device connected to an energy collection system, a supercapacitor and an antenna.
  • Figure 5 shows the energy flow of a piezoelectric generator.
  • FIG 6 is a top view of the energy collection system with S-shaped cantilevers lead titano-zirconate (PZT);
  • Figure 7 is a top view of the bottom disk (bottom disk) with two vent holes placed in a direction perpendicular to the center of the bottom disk;
  • Figure 8 is a sectional view of the energy collection system;
  • the disclosed loT battery includes an important novelty making it possible to reinforce its security.
  • the enhancement includes an in-battery self-contained monitoring system depicted in at least Figure 2.
  • Figure 1 shows the cap structure of a commercial 18650 Li-ion battery 100 with conventional protection components.
  • the current flows from the cathode 11 to the tongue (tab) 10 fixed to the metallic foil (metallic foil) 9, to the lower disk (bottom disk) 8, to the upper disk (top disk) 6, at the coefficient of positive temperature (PTC) 5, to the contact of the terminal (terminal contact) 4 and to the upper button (button top) 1, respectively.
  • Current flow may be cut off during unusual activity, if battery pressure exceeds a predefined threshold.
  • the electrical contact between the upper disc 6 and the lower disc 8 will be lost due to the high pressure pushing the upper disc 6 upwards. If the pressure continues to increase, the upper disc may detach from the weakened part (weakening part) 15 to allow the gas to escape through the vent hole (vent hole) 14. The battery is considered completely damaged and cannot be exploited. It should be mentioned that the PTC 5 can also cut off the current at high temperatures. Its resistance increases significantly above 100°C.
  • FIG. 2 shows the structure of the cap of the new loT battery, in which an autonomous monitoring system is integrated.
  • Energy is harvested, from the pressure variation between the battery core and cap and other vibrations of the mechanism, through the piezoelectric cantilevers 22, which convert mechanical energy into electrical energy.
  • the CMOS device 18 is powered directly by the energy harvesting system or by a thin-film supercapacitor 20.
  • Data collected by the environmental sensors can be transmitted wirelessly via a custom connector 19, an insulator-conductor-insulator sandwich layer 16 and an antenna 17, respectively.
  • the custom connector 19 includes two pins for data transmission (TX) 28 and data reception (RX) 29.
  • Wireless communication between the loT battery and the BMS is based on the ZigBee protocol. It should be emphasized that the custom connector guarantees (the total tightness) the absence of air flow entering and leaving the battery.
  • a thin film supercapacitor based on Graphene a robust and atomically thin carbon layer, is deposited on top of the central disc 21, as shown in Figure 3. This technology was chosen over conventional technology because of its large energy storage capacity, long life and high power output, rivaling Li-ion batteries.
  • the CMOS device 18 comprises various interconnected units: a power supply module, environmental sensors, a very low power controller and a radio frequency (RF) module to allow the acquisition and the data processing and wireless communication.
  • a power supply module for supplying power to various components.
  • environmental sensors for detecting obstacles in the environment
  • a very low power controller for detecting obstacles in the environment
  • RF radio frequency
  • the power supply module rectifies, manages and regulates the energy harvested in order to guarantee a stable DC power supply to the other modules.
  • the output power must meet all requirements in order to provide continuous power to the sensors and to periodically send wireless data.
  • a personalized firmware is embedded in the control unit, making it possible to read the incoming information, to monitor the current state, to process the data in memory, to modify them and to transfer them to another module.
  • the sensor module can accommodate any environmental sensor based on CMOS technology, miniaturized and with low power consumption, such as a pressure, temperature and humidity sensor.
  • a variation in the internal state of the battery returns essential information on the SoH indicator, which makes it possible to predict early failures.
  • the battery pressure reaches a pre-set level, it is considered out of the safe zone, and appropriate precautionary measures should be considered.
  • Internal temperature is also one of the crucial factors for SoH monitoring. The recovery voltage transition depends on temperature and aging (number of cycles), allowing to provide new elements to verify the SoH of the battery.
  • the data collected by the environmental sensors are transmitted by an SMD antenna 17 to the external BMS of the battery module.
  • the RF module supports the Zigbee 3.0 standard to optimize the interoperability and energy saving characteristics of the Zigbee network.
  • the mechanical vibration of the cantilevers is converted into electrical energy by the piezoelectric effect. This phase involves a certain loss of energy by the electromechanical losses of the piezoelectric material.
  • the electromechanical coupling factor (k) signifies the efficiency of the process of converting mechanical energy into electrical energy.
  • the current generated is transformed from alternating current (AC) to direct current (DC) by rectification and DC/DC conversion. This phase involves some losses due to the consumption of energy by the electronic circuits.
  • the input to the energy harvesting system 300 is excited by the process of generating and absorbing gases through the cathode and anode of the battery, as well as by the vibrations induced by the cooling system , vehicle transmission assemblies and road surface irregularities.
  • the cathode electrode When cycling the battery, the cathode electrode releases the gases carbon monoxide (CO) and carbon dioxide (CO2), while the anode electrode releases ethylene (C2H4), CO and hydrogen (H2).
  • the gases CO2, CO and H2 are generated by the decomposition of the electrolyte.
  • the gas generated by one electrode can be absorbed or consumed by the other.
  • Carbon dioxide is the most consumed reaction in Li-ion batteries, allowing interactions with lithium counter electrodes and placing carbon deposits in the electrode surface.
  • the energy harvesting system 300 is based on S-shaped PZT 34 cantilevers allowing the resonant frequency to be pushed below ⁇ 30 Hz. Instead of a traditional straight beam, this design cantilevers feature a sinuous S-shaped beam (as shown in Figure 6), reducing the stiffness of the cantilever in order to achieve a low resonant frequency.
  • the two ends of the cantilevers are occupied, on one side by the standard mass (proof mass) 23 of cylindrical shape and on the other side by the anchor (anchor) 26.
  • the cantilevers 22 are electrically connected in series with a conductor metal 38, placing two electrodes 30 for connection with the CMOS device 18.
  • the aforementioned components are enclosed in a custom laser cut lead-free cantilever carrier 25 to enhance the system.
  • Figure 7 shows the design of the lower disc 8, where two circular openings are drilled.
  • the cavity 31 represents an outlet during the release of gas caused by the battery, while the cavity 32 acts as an inlet during the gas consumption process.
  • the two openings 31-32 are placed in a direction perpendicular to the center of the disc 8.
  • the spring-mass components (spring-mass) 23-24-27 constitute the primary battery system. excitation, responding to the change in input pressure between the battery cap and its core.
  • the secondary component is an S-shaped PZT cantilever array that harvests mechanical energy.
  • the mechanical energy is transferred via the insulating layer 37 to the elastic layer 35, then to the piezoelectric material 34, which causes them to vibrate at their natural resonant frequency (FIG. 8).
  • a network of narrow positive and negative electrodes 33 is placed alternately on the surface of a piezoelectric material during its manufacture. It should be noted that the 33 interdigital electrodes are used due to its higher energy efficiency compared to the standard electrode configuration. To allow electrical contact between the energy harvesting system 300 and the CMOS device 18, the energy harvested is transmitted to the electrode pads 30 through two vias 36.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

La présente invention divulgue une batterie rechargeable à système "autodiagnostic". Généralement, les batteries rechargeables intègrent des composants de protection qui peuvent couper le courant et libérer des gaz lorsque la pression de la batterie atteint une limite prédéfinie. Dans la présente invention, la batterie comprend un dispositif CMOS et un système interne pour la récolte d'énergie, embarqué dans une enveloppe extérieure métallique permettant de renforcer la sécurité de la batterie. Les capteurs intégrés avec des circuits électroniques peuvent être alimentés en utilisant l'énergie récupérée, provenant principalement de la variation de la pression interne de la batterie. Cette énergie mécanique peut être convertie en énergie électrique grâce à un matériau piézoélectrique. Le dispositif de diagnostic peut être intégré à l'intérieur du capuchon de la batterie et connecté sans fil au système de gestion de celle-ci.

Description

BATTERIE AVEC SYSTEME AUTONOME ET INTEGRE DE DIAGNOSTIC
DOMAINE TECHNIQUE
[0001] La présente divulgation concerne généralement le domaine des batteries rechargeables. Elle concerne en particulier une batterie comprenant système de récolte de l’énergie pour alimenter le système de diagnostic de la batterie.
ART ANTERIEUR
[0002] Les batteries sont largement utilisées dans les véhicules électriques, les appareils portables et même les applications spatiales. Leur capacité a augmenté de manière exponentielle au cours des dernières décennies et atteint une quantité importante d'énergie par volume.
[0003] L'augmentation de la densité énergétique fait peser de nouvelles menaces sur la sécurité des batteries. Le phénomène de l'emballement thermique (thermal runaway) d'une cellule, est considéré comme un mode de défaillance fatal. Il se produit lorsque la température à l'intérieur d'une batterie atteint un point qui déclenche une réaction chimique pouvant provoquer un incendie ou une explosion. [0004] Bien que l'enveloppe extérieure métallique des cellules de puissance offre une excellente résistance mécanique, il pourrait y avoir des conséquences désastreuses lorsque la batterie s’explose. Celles-ci sont considérées comme la principale cause de l'explosion dans le domaine de la mobilité électrique, ce qui incite les utilisateurs des batteries à accorder une très grande attention à la sécurité des cellules.
[0005] Les fabricants de batteries intègrent des composants de protection pour empêcher les cellules de fonctionner dans la zone de non-sécurité et sensibiliser le public au risque de sécurité lié à une mauvaise utilisation de celles-ci.
[0006] Les dispositifs de protection, notamment le dispositif d'interruption de courant (CID), le coefficient de température positif (PTC), le circuit de protection, l'évent supérieur et l'évent inférieur, sont intégrés dans les batteries ordinaires afin de renforcer leur sécurité. Il convient de noter que l'implémentation des composants de protection change en fonction du modèle et du constructeur de la batterie.
[0007] De nos jours, les systèmes de protection des batteries ont beaucoup de difficultés à prévoir la détection précoce des défaillances, ce qui permet d'éviter les accidents graves. Les dispositifs de protection commercialisés ne sont pas suffisants pour maintenir un niveau de sécurité élevé, n'offrent pas toujours la protection attendue en cas de besoin. [0008] Un dispositif, autoalimenté à micro-capteurs multiples, détecte un changement environnemental (in-situ) afin de prévoir la détection précoce de la défaillance de la cellule. Les capteurs sont placés sur une seule puce intégrée, par exemple, un circuit intégré spécifique à une application (ASIC) qui comprend un capteur de pression, d'humidité et de température. L'ASIC peut également comporter d'autres capteurs environnementaux, un processeur et une mémoire. Les données recueillies sont transmises sans fil au système externe de management de la batterie (B MS) en utilisant le protocole de communication ZigBee. Un tel dispositif miniature peut être embarqué de manière discrète dans une batterie.
[0009] Un nouveau système de récolte d'énergie a été mis en œuvre à l'intérieur du capuchon de la batterie afin de tirer pleinement parti de la variation de la pression du gaz et des vibrations générées par différents éléments, notamment le système de refroidissement. La batterie dotée de l'internet des objets (loT) accueille des cantilevers piézoélectriques pour convertir l'énergie mécanique en énergie électrique stockée dans un supercondensateur. Ce dispositif à micro-capteurs multiples peut surveiller en permanence l'indice d'état de santé (SoH), notamment la pression, la température et le taux d'humidité.
DESCRIPTION DE L'INVENTION
[0010] Dans tous les dessins, des numéros de référence similaires désignent le même objet ou acte, pour autant que le contexte n'indique pas le contraire. Les tailles et les positions relatives des objets dans les dessins ne sont pas nécessairement dessinées à l'échelle.
[0011] La figure 1 est une vue en coupe transversale de la structure du capuchon d'une batterie (battery cap) commerciale 18650 lithium-ion (Li-ion) ;
[0012] La figure 2 est une vue en coupe transversale de la structure du capuchon d'une batterie de la nouvelle batterie loT à autodiagnostic ;
[0013] La figure 3 est une vue de dessus du disque central (middle disk) intégré dans le capuchon d'une batterie Li-ion 18650, sur lequel sont soudés un supercondensateur à couche mince, un dispositif CMOS et des broches RX/TX;
[0014] La figure 4 représente l'architecture interne du dispositif CMOS connecté à un système de collecte d'énergie, un supercondensateur et une antenne.
[0015] La figure 5 représente le flux d'énergie d'un générateur piézoélectrique.
[0016] La figure 6 est une vue de dessus du système de collecte d'énergie avec des cantilevers en forme de S en titano-zirconate de plomb (PZT) ;
[0017] La figure 7 est une vue de dessus du disque inférieur (bottom disk) avec deux trous d'aération placés dans une direction perpendiculaire par rapport au centre du disque inférieur ; [0018] La figure 8 est une vue en coupe du système de collecte d'énergie ;
[0019] Dans la description qui suit, certains aspects sont décrits en détail afin de bien comprendre l'invention divulguée. Il convient de noter que les structures et les méthodes bien connues de fabrication de dispositifs électromécaniques n'ont pas été mentionnées.
[0020] La batterie loT divulguée comprend une nouveauté importante permettant de renforcer la sécurité de celle-ci. L'amélioration comprend un système de surveillance autonome intégré à la batterie décrite dans au moins la figure 2. Chaque mode de réalisation est décrit en détail ci-dessous. [0021] La figure 1 représente la structure du capuchon d'une batterie Li-ion 18650 commerciale 100 avec des composants de protection conventionnels. En fonctionnement normal, le courant circule de la cathode 11 à la languette (tab) 10 fixée à la feuille métallique (metallic foil) 9, au disque inférieur (bottom disk) 8, au disque supérieur (top disk) 6, au coefficient de température positif (PTC) 5, au contact de la borne (terminal contact) 4 et au bouton supérieur (button top) 1, respectivement. Le passage du courant peut être coupé lors d'une activité inhabituelle, si la pression de la batterie dépasse un seuil prédéfini. Initialement, le contact électrique entre le disque supérieur 6 et le disque inférieur 8 sera perdu en raison de la pression élevée qui pousse le disque supérieur 6 vers le haut. Si la pression continue d'augmenter, le disque supérieur peut se détacher de la partie affaiblie (weakening part) 15 pour laisser échapper le gaz par le trou de ventilation (vent hole) 14. La batterie est considérée comme complètement endommagée et ne peut pas être exploitée. Il convient de mentionner que le PTC 5 peut également couper le courant à haute température. Sa résistance augmente significativement au- delà de 100°C.
[0022] La figure 2 montre la structure du capuchon de la nouvelle batterie loT, dans laquelle est intégré un système de surveillance autonome. L'énergie est récoltée, à partir de la variation de pression entre le noyau et le capuchon de la batterie et d'autres vibrations du mécanisme, par le biais des cantilevers piézoélectriques 22, qui convertissent l'énergie mécanique en énergie électrique. Le dispositif CMOS 18 est alimenté directement par le système de récolte d'énergie ou par un supercondensateur à couche mince 20. Les données collectées par les capteurs environnementaux peuvent être transmises sans fil via un connecteur personnalisé 19, une couche sandwich isolant- conducteur-isolant 16 et une antenne 17, respectivement.
[0023] Le connecteur personnalisé 19 comprend deux broches pour la transmission de données (TX) 28 et la réception de données (RX) 29. La communication sans fil entre la batterie loT et le BMS est basée sur le protocole ZigBee. Il convient de souligner que le connecteur personnalisé garantit (l'étanchéité totale) l'absence de flux d'air entrant et sortant de la batterie.
[0024] Un supercondensateur à couche mince à base de Graphène, une couche de carbone robuste et atomiquement mince, est déposé sur le dessus du disque central 21, comme illustré sur la figure 3. Cette technologie a été choisie à la place de la technologie conventionnelle en raison de sa grande capacité de stockage d'énergie, de sa longue durée de vie et de sa grande puissance de sortie, rivalisant avec les batteries Li-ion.
[0025] Comme le montre la figure 4, le dispositif CMOS 18 comprend différentes unités interconnectées : un module d'alimentation, des capteurs environnementaux, un contrôleur à très faible consommation et un module radio fréquence (RF) pour permettre l'acquisition et le traitement des données ainsi que la communication sans fil.
[0026] Le module d'alimentation redresse, gère et régule l'énergie récoltée afin de garantir une alimentation stable en courant continu aux autres modules. La puissance de sortie doit satisfaire à toutes les exigences afin d'assurer une alimentation continue des capteurs et d'envoyer périodiquement des données sans fil.
[0027] Un firmware personnalisé est embarqué dans l'unité de commande, permettant de lire les informations entrantes, de surveiller l'état actuel, de traiter les données en mémoire, de les modifier et les transférer à un autre module.
[0028] Le module capteur peut accueillir n'importe quel senseur environnemental basé sur la technologie CMOS, miniaturisée et à faible consommation d'énergie, tel qu'un capteur de pression, de température et d'humidité.
[0029] Une variation de l'état interne de la batterie renvoie des informations essentielles sur l'indicateur SoH, ce qui permet de prédire les défaillances précoces. Lorsque la pression de la batterie atteint un niveau prédéfini, elle est considérée comme hors de la zone de sécurité, et les mesures de précaution appropriées doivent être envisagées. La température interne est également l'un des facteurs cruciaux pour la surveillance du SoH. La transition de la tension de récupération dépend de la température et du vieillissement (nombre de cycles), permettant de fournir de nouveaux éléments pour vérifier le SoH de la batterie.
[0030] Les données recueillies par les capteurs environnementaux sont transmises par une antenne SMD 17 au BMS externe du module des batteries. Le module RF supporte la norme Zigbee 3.0 pour optimiser l'interopérabilité et les caractéristiques d'économie d'énergie du réseau Zigbee.
[0031] Lors de la conception du système de récolte d'énergie, certains aspects liés aux pertes d'énergie (FIG. 5) sont pris en compte comme indiqué ci-dessous :
• L'excitation de la source est convertie en vibration par l'ensemble mécanique. Cette phase entraîne une perte d'énergie par rétro-réflexion, impédance mécanique non adaptée et amortissement.
• La vibration mécanique des cantilevers est convertie en énergie électrique par l'effet piézoélectrique. Cette phase entraîne une certaine perte d'énergie par les pertes électromécaniques du matériau piézoélectrique. Le facteur de couplage électromécanique (k) signifie l'efficacité du processus de conversion de l'énergie mécanique en énergie électrique.
• Le courant généré est transformé de courant alternatif (CA) en courant continue (CC) par redressement et une conversion CC/CC. Cette phase entraîne quelques pertes dues à la consommation d'énergie par les circuits électroniques.
[0032] L'entrée du système de collecte d'énergie 300 est excitée grâce au processus de génération et d'absorption des gaz à travers la cathode et l'anode de la batterie, ainsi que grâce aux vibrations induites par le système de refroidissement, les ensembles de transmission du véhicule et les irrégularités de surface des routes.
[0033] Lors du cyclage de la batterie, l'électrode cathodique libère les gaz monoxyde de carbone (CO) et dioxyde de carbone (CO2), tandis que l'électrode anodique libère de l'éthylène (C2H4), du CO et de l'hydrogène (H2). Les gaz CO2, CO et H2 sont générés par la décomposition de l'électrolyte.
[0034] Le gaz généré par une électrode peut être absorbé ou consommé par l'autre. Le dioxyde de carbone est la réaction la plus consommée dans les batteries Li-ion, permettant des interactions avec les contre-électrodes de lithium et plaçant des dépôts de carbone dans la surface de l'électrode.
[0035] Le système de récolte d'énergie 300 est basé sur des cantilevers PZT 34 en forme de S permettant de pousser la fréquence de résonance en dessous de <30 Hz. Au lieu d'une poutre (beam) droite classique, cette conception de cantilevers présente une poutre sinueuse en forme de S (comme illustré sur la figure 6), réduisant la rigidité du cantilever afin d'obtenir une fréquence de résonance basse. Les deux extrémités des cantilevers sont occupées, d'un côté par la masse étalon (proof mass) 23 de forme cylindrique et de l'autre côté par l'ancre (anchor) 26. Les cantilevers 22 sont connectés électriquement en série avec un conducteur métallique 38, plaçant deux électrodes 30 pour la connexion avec le dispositif CMOS 18. Les composants mentionnés ci-dessus sont enfermés dans un support de cantilevers sans plomb 25 découpé au laser sur mesure en vue d'améliorer le système.
[0036] La figure 7 montre la conception du disque inférieur 8, où deux ouvertures circulaires sont percées. La cavité 31 représente une sortie lors de la libération du gaz causé par la batterie, tandis que la cavité 32 joue le rôle d'une entrée lors du processus de consommation du gaz. Afin de séparer les mouvements mécaniques impliqués pendant la génération et l'absorption de gaz, les deux ouvertures 31-32 sont placées dans une direction perpendiculaire par rapport au centre du disque 8.
[0037] Lorsque la pression de la batterie augmente en raison de la libération de gaz et de l'élévation de température pendant l’usage, les composants ressort-masse (spring-mass) 23-24-27 constituent le système primaire d'excitation, répondant à la variation de la pression d'entrée entre le capuchon de la batterie et son noyau. Le composant secondaire est un réseau de cantilevers PZT en forme de S qui récolte l'énergie mécanique. Lorsque la masse étalon 23 se met à vibrer, l'énergie mécanique est transférée via la couche isolante 37 à la couche élastique 35, puis au matériau piézoélectrique 34, ce qui les fait vibrer à leur fréquence de résonance naturelle (FIG. 8).
[0038] Les mécanismes mentionnés en haut sont reproduits de la même façon pour la récolte d'énergie mécanique lorsque la pression de la batterie diminue, profitant pleinement de la variation de la pression pendant l’utilisation et les périodes d'inactivité. La seule différence est que les composants du système ressort-masse se déplacent vers le bas pendant l'excitation, laissant les gaz passer à travers l'ouverture 32 du capuchon de la batterie vers son noyau.
[0039] Un réseau d'étroites électrodes positives et négatives 33 est placé alternativement sur la surface d'un matériau piézoélectrique lors de sa fabrication. Il convient de noter que les électrodes interdigitées 33 sont utilisées en raison de son rendement énergétique plus élevé par rapport à la configuration d'électrode standard. Pour permettre un contact électrique entre le système de récolte d'énergie 300 et le dispositif CMOS 18, l'énergie récoltée est transmise aux plots d'électrodes 30 grâce à deux vias 36.

Claims

REVENDICATIONS
1. Batterie loT avec une sécurité renforcée et un autodiagnostic autonome, comprenant : une enveloppe extérieure métallique (2) qui inclut : un premier insert en plastique (3) incluant une feuille métallique (9), un disque inférieur (8), un système de récolte d'énergie (300), un disque central (21), un deuxième insert en plastique (7), un disque supérieur (6), un connecteur personnalisé (19), un PTC (5), une couche isolant-conducteur-isolant (16), une antenne (17), un contact de borne (4) et un bouton supérieur (1) ; un « jelly-roll » incluant une cathode (11), un séparateur (13), une anode (12), une languette positive et une languette négative.
2. Batterie loT selon la revendication 1, caractérisée en ce que le système de collecte d'énergie (300) inclut un support de cantilevers (25), une ancre (26), des cantilevers en forme de S (22), une masse étalon (23), des ressorts (24) et des arrêts (27).
3. Batterie loT selon la revendication 1, caractérisée en ce que le disque central (21) inclut un dispositif CMOS (18), un supercondensateur (20), et des connecteurs à broches RX/TX (28-29).
4. Batterie loT selon la revendication 3, caractérisée en ce que le disque central (21) est constitué d'une couche mince de graphène et d'une couche de carbone robuste atomiquement mince.
5. Batterie loT selon la revendication 3, caractérisée en ce que le dispositif CMOS (18) inclut un module d’alimentation, un contrôleur à ultra-basse puissance, des capteurs environnementaux et un module RF fabriqués dans la même puce.
6. Batterie loT selon la revendication 5, caractérisée en ce que les données de température, d'humidité et de pression in-situ collectées par les capteurs environnementaux sont transmises sans fil au BMS via une antenne (17).
7. Batterie loT selon la revendication 6, caractérisée en ce que les données collectées par les capteurs environnementaux sont définies comme paramètres d'entrée pour le calcul du SoH.
8. Batterie loT selon les revendications 3 et 5, caractérisée en ce que le dispositif CMOS est alimenté par le système de récolte d’énergie (300) ou par le supercondensateur (20) embarqués à l’intérieur de la batterie.
9. Batterie loT selon les revendications 1 et 2, caractérisée en ce que les énergies mécaniques suivantes excitent le système de collecte d’énergie : la variation de la pression interne entre le couvercle de la batterie et le noyau de la batterie, les vibrations induites par le moteur électrique ou leurs ensembles de transmission, les irrégularités de surface des routes, et les différents systèmes de refroidissement ; ledit système de collecte d'énergie convertit ensuite sa propre vibration en énergie électrique.
7
10. Batterie loT selon la revendication 2, caractérisée en ce que les cantilevers en forme de S sont mis en configuration circulaire et sont connectés en série pour augmenter la puissance électrique de sortie.
8
PCT/MA2022/050012 2021-12-29 2022-08-18 Batterie avec système autonome et intégré de diagnostic WO2023128745A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MA55253 2021-12-29
MA55253A MA55253B1 (fr) 2021-12-29 2021-12-29 Batterie avec systeme autonome et integre de diagnostic

Publications (1)

Publication Number Publication Date
WO2023128745A1 true WO2023128745A1 (fr) 2023-07-06

Family

ID=83457197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MA2022/050012 WO2023128745A1 (fr) 2021-12-29 2022-08-18 Batterie avec système autonome et intégré de diagnostic

Country Status (2)

Country Link
MA (1) MA55253B1 (fr)
WO (1) WO2023128745A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026761A1 (fr) * 1998-08-25 2000-08-09 Matsushita Electric Industrial Co., Ltd. Batterie secondaire
JP2012123934A (ja) * 2010-12-06 2012-06-28 Sony Corp 二次電池セル、電池パック及び電力消費機器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026761A1 (fr) * 1998-08-25 2000-08-09 Matsushita Electric Industrial Co., Ltd. Batterie secondaire
JP2012123934A (ja) * 2010-12-06 2012-06-28 Sony Corp 二次電池セル、電池パック及び電力消費機器

Also Published As

Publication number Publication date
MA55253A1 (fr) 2023-08-31
MA55253B1 (fr) 2023-11-30

Similar Documents

Publication Publication Date Title
EP2782181B1 (fr) Cellule en couche et pile assemblée comprenant une cellule en couche
JP2021180611A (ja) 蓄電システム
TWI237918B (en) Lead terminal and power supply device
JP4527601B2 (ja) 二次電池
CN103178308B (zh) 锂二次电池的充电方法及充电装置
CN109560340B (zh) 蓄电装置及包括其的电器设备
WO2013001585A1 (fr) Support de piles
JP7464309B2 (ja) バッテリバルブ及びこれを含むバッテリ
CN113140703B (zh) 蓄电装置和蓄电组件
JP2014194925A (ja) 電気化学デバイス
US20230223581A1 (en) Electrochemical cell
JP2004273139A (ja) リチウム二次電池
JP5344223B2 (ja) 燃料電池システムおよび電子機器
WO2023128745A1 (fr) Batterie avec système autonome et intégré de diagnostic
Choi et al. Development of NiMH-based fuel cell/battery (FCB) system: characterization of Ni (OH) 2/MnO2 positive electrode for FCB
JP2010015729A (ja) 二次電池および電池モジュール並びにこれらの充電方法
FR3024291B1 (fr) Systeme de production d&#39;energie associant une pile a combustible et une batterie rechargeable et procedes mettant en œuvre un tel dispositif
EP2745347B1 (fr) Groupement de microbatteries à film mince à multiples cellules
JP2011171112A (ja) アルカリ亜鉛蓄電池
FR3034261A1 (fr) Batterie electrique modulaire comprenant un dispositif de regulation thermique
KR101128667B1 (ko) 향상된 안전성의 이차전지
EP3673278B1 (fr) Element electrochimique et batterie avec capteur et/ou actionneur integre
Hahn Autonomous energy supply for electronic grains and wireless sensors
Braquet et al. Design of an ultra-low-power energy-harvesting audio sensor for ecosystem monitoring
JP2014187865A (ja) 可搬型電源システム、並びに該可搬型電源システムを用いた計測又は観測システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22777735

Country of ref document: EP

Kind code of ref document: A1