WO2023128096A1 - 고압 수소 이송 파이프용 부재, 이의 제조방법 및 이를 이용한 고압 수소 이송 파이프 제조방법 - Google Patents

고압 수소 이송 파이프용 부재, 이의 제조방법 및 이를 이용한 고압 수소 이송 파이프 제조방법 Download PDF

Info

Publication number
WO2023128096A1
WO2023128096A1 PCT/KR2022/010222 KR2022010222W WO2023128096A1 WO 2023128096 A1 WO2023128096 A1 WO 2023128096A1 KR 2022010222 W KR2022010222 W KR 2022010222W WO 2023128096 A1 WO2023128096 A1 WO 2023128096A1
Authority
WO
WIPO (PCT)
Prior art keywords
barrier
powder
pressure hydrogen
fiber
manufacturing
Prior art date
Application number
PCT/KR2022/010222
Other languages
English (en)
French (fr)
Inventor
임준혁
이재섭
Original Assignee
한화첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화첨단소재 주식회사 filed Critical 한화첨단소재 주식회사
Publication of WO2023128096A1 publication Critical patent/WO2023128096A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2274/00Thermoplastic elastomer material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes

Definitions

  • the present invention relates to a member for a high-pressure hydrogen transport pipe, a method for manufacturing the same, and a method for manufacturing a high-pressure hydrogen transport pipe using the same.
  • Conventional hydrogen transfer piping used carbon steel-based metal piping.
  • the conventional hydrogen production method mainly utilizes hydrogen (by-product hydrogen) incidentally generated during the petrochemical process and steel manufacturing process.
  • hydrogen by-product hydrogen
  • metal materials including carbon steel have hydrogen embrittlement, elongation decreases and cracks easily occur when exposed to high-pressure hydrogen for a long period of time. Since this hydrogen embrittlement becomes more intensified as the required pressure resistance performance increases, an alternative to metal piping is required for hydrogen transport in a high-pressure environment.
  • reinforced thermoplastics pipe As an alternative to metal piping, there is a reinforced thermoplastics pipe (Reinforced Thermoplastics Pipe). This is a reinforcement material such as reinforcing fiber, steel cord, and aluminum on a non-metallic pipe mainly used for low-pressure water pipes and oil pipelines. While conventional non-metallic piping is used only under low-pressure conditions of 10 Bar or less, reinforced non-metallic piping has the same level of resistance to metal piping and can be used even in high-pressure conditions of about 500 bar or more. In addition, depending on the type of reinforcing material used, various functions can be given.
  • HDPE high-density polyethylene
  • One object of the present invention is to provide a member for a high-pressure hydrogen transport pipe having excellent pressure resistance, hydrogen barrier properties and hydrogen embrittlement resistance.
  • Another object of the present invention is to provide a member for a high-pressure hydrogen transport pipe having excellent adhesion and durability of a barrier layer.
  • Another object of the present invention is to provide a member for a high-pressure hydrogen transport pipe having excellent formability and surface quality during pipe molding.
  • Another object of the present invention is to provide a member for a high-pressure hydrogen transport pipe having excellent productivity and economy.
  • Another object of the present invention is to provide a method for manufacturing the member for the high-pressure hydrogen transport pipe.
  • Another object of the present invention is to provide a method for manufacturing a high-pressure hydrogen transport pipe using the high-pressure hydrogen transport member.
  • the member for the high-pressure hydrogen transport pipe is a fiber-reinforced composite sheet; and a barrier layer formed on at least one surface of the fiber-reinforced composite sheet, wherein the barrier layer has a structure in which barrier powder is dispersed in a binder, and the barrier powder is graphene-based powder, molybdenum-based powder, or nanoclay-based powder. It includes at least one of powder and synthetic rubber-based powder.
  • the barrier layer may include 5 to 50% by weight of a binder and 50 to 95% by weight of a barrier powder.
  • the barrier layer may have a thickness of 0.01 ⁇ m to 500 ⁇ m.
  • the member may have a hydrogen gas permeability of 3.5 x 10 -9 mol ⁇ m/m 2 ⁇ s ⁇ MPa or less measured according to ISO 15105-1 standards.
  • the method for manufacturing a member for a high-pressure hydrogen transport pipe includes forming a barrier layer by applying and curing a barrier coating agent on at least one surface of a fiber-reinforced composite sheet, wherein the barrier coating agent is a binder and a barrier powder.
  • the barrier powder includes at least one of graphene-based powder, molybdenum-based powder, nanoclay-based powder, and synthetic rubber-based powder.
  • the barrier coating agent may include 5 to 50% by weight of a binder and 50 to 95% by weight of a barrier powder.
  • the barrier powder is plate-shaped, has an average size of 0.1 nm to 10 ⁇ m, and an aspect ratio of 10 to 3000.
  • the binder is polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, ethylene vinyl acetate, polyvinyl alcohol, polyvinylamine, silicate compound, poly(ethylene 2,5-furandicarboxylate) and poly(propylene 2,5-furandicarboxylate).
  • the curing may be carried out at 20 to 120 °C. It can be easily cured under the above conditions.
  • 50 to 300 parts by weight of a solvent may be further included based on 100 parts by weight of the total of the barrier powder and the binder.
  • the fiber-reinforced composite sheet may include a matrix resin and continuous fibers impregnated in the matrix resin.
  • the matrix resin includes a thermoplastic resin
  • the continuous fibers may include at least one of carbon fibers, glass fibers, and aramid fibers.
  • the high-pressure hydrogen transfer pipe manufacturing method includes manufacturing a preform using the member; and forming a pipe-shaped main body using the preform.
  • the preform may be manufactured by laminating one or more layers of the member.
  • the body may be formed on an outer circumferential surface of the liner.
  • the member for a high-pressure hydrogen transport pipe according to the present invention has excellent pressure resistance, hydrogen tightness, and hydrogen embrittlement resistance, excellent adhesion and durability of the barrier layer, excellent formability and surface quality, and excellent productivity and economy. .
  • FIG. 1 shows a member for a high-pressure hydrogen transport pipe according to one embodiment of the present invention.
  • Figure 2 (a) shows a barrier layer of a member for pipes formed according to the present invention
  • Figure 2 (b) shows a conventional member for pipes.
  • the barrier powder may be included to improve hydrogen barrier properties under high pressure conditions.
  • the hydrogen barrier property may mean barrier property against hydrogen (H 2 ) molecules, hydrogen radicals, and hydrogen ions (H+).
  • Another aspect of the present invention relates to a member for a high-pressure hydrogen transport pipe.
  • a member 100 for a high-pressure hydrogen transport pipe includes a fiber-reinforced composite sheet 10; and a barrier layer 20 formed on at least one surface of the fiber-reinforced composite sheet 10.
  • the fiber-reinforced composite sheet may include a matrix resin and continuous fibers impregnated in the matrix resin.
  • continuous fibers impregnated in the matrix resin.
  • continuous production is possible and productivity and economic efficiency may be excellent.
  • continuous fiber reinforced thermoplastic CFRP
  • CFRTPC continuous fiber reinforced thermoplastic
  • the matrix resin may include a thermoplastic resin.
  • the thermoplastic resin may include at least one of a polyolefin-based resin, a polyester-based resin, a poly(meth)acrylate-based resin, a polyarylene sulfide-based resin, a polyamide-based resin, and a polyvinyl chloride-based resin.
  • the polyolefin-based resin may include at least one of polyethylene and polypropylene resins.
  • the continuous fibers may include at least one of carbon fibers, glass fibers, and aramid fibers.
  • mechanical strength may be excellent while lightness, flexibility, impregnability, and moldability may be excellent.
  • the continuous fiber may have a diameter of 5 to 50 ⁇ m. Under these conditions, it can be easily impregnated with the matrix resin.
  • continuous fibers may have a diameter of 5 to 15 ⁇ m.
  • the fiber-reinforced composite sheet may include 30 to 90% by weight of the matrix resin and 10 to 70% by weight of continuous fibers. Under the above conditions, when the fiber-reinforced composite sheet is manufactured, impregnability, appearance, and mechanical properties may be excellent.
  • the fiber-reinforced composite sheet contains the matrix resin 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48 , 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73 , 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89 or 90% by weight.
  • the fiber-reinforced composite sheet contains 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 continuous fibers. , 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53 , 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69 or 70% by weight.
  • the fiber-reinforced composite sheet may have the continuous fibers arranged in one direction (uni direction, UD).
  • the mechanical strength of the present invention may be excellent.
  • the barrier layer includes a binder and a barrier powder, and the barrier layer has a structure in which the barrier powder is dispersed in the binder.
  • the binder is polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, ethylene vinyl acetate, polyvinyl alcohol, polyvinylamine, silicate compound, poly(ethylene 2,5-furandicarboxylate) and poly(propylene 2,5-furandicarboxylate).
  • the binder of the above conditions is included, adhesion between the fiber-reinforced composite sheet and the barrier layer and dispersibility of the barrier powder may be excellent.
  • polyvinylamine may be included.
  • the barrier powder includes at least one of graphene-based powder, molybdenum-based powder, nanoclay-based powder, and synthetic rubber-based powder.
  • the barrier powder under the above conditions it has excellent mixing and dispersibility with the binder, excellent pressure resistance and excellent hydrogen barrier properties at high pressure, and may be suitable for use as a high-pressure hydrogen transfer pipe.
  • nanoclay-based powders may be included.
  • the graphene-based powder may include at least one of graphene, graphene oxide, and graphite.
  • the molybdenum-based powder may include molybdenum disulfide.
  • the nanoclay-based powder may include one or more of montmorillonite, kaolinite, hectorite, saponite, and smectite.
  • the synthetic rubber-based powder is butyl rubber (IIR), chloroprene rubber (CR), ethylene / acrylic rubber (AEM), epichlorohydrin rubber (ECO), ethylene-propylene-diene-monomer rubber (EPDM), nitrile -At least one of butadiene rubber (NBR), fluororubber (FKM), and hydrogenated nitrile-butadiene rubber (HNBR) may be included.
  • IIR butyl rubber
  • CR chloroprene rubber
  • AEM ethylene / acrylic rubber
  • ECO epichlorohydrin rubber
  • EPDM ethylene-propylene-diene-monomer rubber
  • NBR butadiene rubber
  • FKM fluororubber
  • HNBR hydrogenated nitrile-butadiene rubber
  • the barrier powder may be plate-shaped. Under the above conditions, the barrier layer may have excellent hydrogen barrier properties at high pressure.
  • the barrier powder may have an average size of 0.1 nm to 10 ⁇ m.
  • the average size may be the maximum length of the barrier powder.
  • the barrier powder may have an average size of 0.1 to 1000 nm.
  • the barrier powder may include plate-shaped powder having an average size of 0.1 nm to 10 ⁇ m and an aspect ratio of 10 to 3000.
  • the barrier powder may include plate-like powder having an average size of 0.5 ⁇ m to 2 ⁇ m and an aspect ratio of 500 to 2500.
  • the barrier layer may include 50 to 95% by weight of the barrier powder and 5 to 50% by weight of the binder. Within the above content range, pressure resistance and hydrogen barrier properties may be excellent, and the dispersibility of the barrier powder may be excellent.
  • the barrier layer may include 50 to 85 wt % of the barrier powder and 15 to 50 wt % of the binder.
  • the barrier layer contains 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68 , 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93 , 94 or 95% by weight.
  • the barrier layer contains the binder 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49 or 50% by weight.
  • the barrier layer may have a thickness of 0.01 ⁇ m to 500 ⁇ m. Under the above conditions, hydrogen barrier properties may be excellent under high temperature conditions.
  • the fiber-reinforced composite sheet may have a thickness of 0.1 to 50 mm. Flexibility, moldability, pressure resistance and rigidity may be excellent under the above conditions.
  • the member may have a hydrogen gas permeability of 3.5 x 10 -9 mol ⁇ m/m 2 ⁇ s ⁇ MPa or less measured according to ISO 15105-1 (gas permeability measurement method by differential pressure method) standards. Under these conditions, hydrogen gas barrier properties may be excellent.
  • the member may have a hydrogen gas permeability of 1.5 x 10 -12 mol ⁇ m/m 2 ⁇ s ⁇ MPa or less.
  • One aspect of the present invention relates to a method for manufacturing a member for a high pressure hydrogen transport pipe.
  • the method for manufacturing a member for a high-pressure hydrogen transport pipe includes forming a barrier layer by applying and curing a barrier coating agent on at least one surface of a fiber-reinforced composite sheet.
  • the fiber-reinforced composite sheet may include a matrix resin and continuous fibers impregnated in the matrix resin.
  • continuous fibers impregnated in the matrix resin.
  • continuous production is possible and productivity and economic efficiency may be excellent.
  • continuous fiber reinforced thermoplastic CFRP
  • CFRTPC continuous fiber reinforced thermoplastic
  • the member for the high-pressure hydrogen transport pipe may be manufactured using a member manufacturing device for a pipe.
  • the pipe member manufacturing apparatus includes a tension unit provided with a plurality of bobbins on which continuous fibers are wound; a spreading unit for arranging and spreading the continuous fibers supplied from the bobbin of the creel in one direction; a resin injection unit for injecting and impregnating the continuous fibers arranged in one direction with a matrix resin; a shaping die for forming a fiber-reinforced composite sheet by extruding the continuous fibers impregnated with the matrix resin; a cooling bath for cooling the fiber-reinforced composite sheet; A coating unit for forming a barrier layer by applying a barrier coating agent to the fiber-reinforced composite sheet cooled in the cooling bath; a puller for pulling the fiber-reinforced composite sheet on which the barrier layer is formed; and a cutting machine for cutting the fiber-reinforced composite sheet taken up by the take-up device.
  • the fiber-reinforced composite sheet winds the continuous fibers around a plurality of bobbins provided in the creel around which the continuous fibers are wound, and pulls the continuous fibers supplied while the bobbin rotates at a constant tension through a tension unit, while the spring
  • continuous fibers are arranged in one direction and spread.
  • matrix resin is injected and impregnated into the continuous fibers that have passed through the spreading unit, and the continuous fibers impregnated with the matrix resin are extruded through a shaping die to form a sheet, and then cooled in a cooling bath to be manufactured.
  • the manufactured fiber-reinforced composite sheet may be transferred to a coating unit, and a barrier layer may be formed by applying and curing a barrier coating agent on at least one surface of the fiber-reinforced composite sheet.
  • the barrier coating agent may be applied using a spray coating method or the like.
  • Figure 2 (a) shows a barrier layer of a member for pipes formed according to the present invention
  • Figure 2 (b) shows a conventional member for pipes.
  • the plate-shaped barrier component 24 is formed in a direction parallel to one surface of the fiber-reinforced composite sheet, and hydrogen The permeable pathway is extended, and hydrogen tightness and hydrogen barrier properties may be excellent.
  • conventional members for pipes are prepared by impregnating continuous fibers by mixing a barrier powder with a matrix resin such as polyolefin resin.
  • a matrix resin such as polyolefin resin.
  • the barrier powder 23 of the matrix resin 21 is not aligned in a direction parallel to the continuous fibers (longitudinal direction), and the hydrogen barrier property may deteriorate.
  • the continuous fiber may have a diameter of 5 to 50 ⁇ m. Under these conditions, it can be easily impregnated with the matrix resin.
  • continuous fibers may have a diameter of 5 to 15 ⁇ m.
  • the fiber-reinforced composite sheet may include 30 to 90% by weight of the matrix resin and 10 to 70% by weight of continuous fibers. Under the above conditions, when the fiber-reinforced composite sheet is manufactured, impregnability, appearance, and mechanical properties may be excellent.
  • the fiber-reinforced composite sheet may have the continuous fibers arranged in one direction (uni direction, UD).
  • the mechanical strength of the present invention may be excellent.
  • the barrier coating agent includes a binder and a barrier powder.
  • the binder is polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, ethylene vinyl acetate, polyvinyl alcohol, polyvinylamine, silicate compound, poly(ethylene 2,5-furandicarboxylate) and poly(propylene 2,5-furandicarboxylate).
  • the binder of the above conditions is included, adhesion between the fiber-reinforced composite sheet and the barrier layer and dispersibility of the barrier powder may be excellent.
  • polyvinylamine may be included.
  • the barrier powder includes at least one of graphene-based powder, molybdenum-based powder, nanoclay-based powder, and synthetic rubber-based powder.
  • the barrier powder under the above conditions it has excellent mixing and dispersibility with the binder, excellent pressure resistance and excellent hydrogen barrier properties at high pressure, and may be suitable for use as a high-pressure hydrogen transfer pipe.
  • nanoclay-based powders may be included.
  • the graphene-based powder may include at least one of graphene, graphene oxide, and graphite.
  • the molybdenum-based powder may include molybdenum disulfide.
  • the nanoclay-based powder may include one or more of montmorillonite, kaolinite, hectorite, saponite, and smectite.
  • the synthetic rubber-based powder is butyl rubber (IIR), chloroprene rubber (CR), ethylene / acrylic rubber (AEM), epichlorohydrin rubber (ECO), ethylene-propylene-diene-monomer rubber (EPDM), nitrile -At least one of butadiene rubber (NBR), fluororubber (FKM), and hydrogenated nitrile-butadiene rubber (HNBR) may be included.
  • IIR butyl rubber
  • CR chloroprene rubber
  • AEM ethylene / acrylic rubber
  • ECO epichlorohydrin rubber
  • EPDM ethylene-propylene-diene-monomer rubber
  • NBR butadiene rubber
  • FKM fluororubber
  • HNBR hydrogenated nitrile-butadiene rubber
  • the barrier powder may be plate-shaped. Under the above conditions, the barrier layer may have excellent hydrogen barrier properties at high pressure.
  • the barrier powder may have an average size of 0.1 nm to 10 ⁇ m.
  • the average size may be the maximum length of the barrier powder.
  • the barrier powder may have an average size of 0.1 to 1000 nm.
  • the barrier powder may be a plate-shaped powder having an average size of 0.1 nm to 10 ⁇ m and an aspect ratio of 10 to 3000.
  • the barrier powder may include plate-like powder having an average size of 0.5 ⁇ m to 2 ⁇ m and an aspect ratio of 500 to 2500.
  • the barrier coating agent may include 50 to 95% by weight of the barrier powder and 5 to 50% by weight of the binder. Within the above content range, pressure resistance and hydrogen barrier properties may be excellent, and the dispersibility of the barrier powder may be excellent.
  • the barrier coating agent may include 50 to 85 wt % of the barrier powder and 15 to 50 wt % of the binder.
  • the barrier coating may further include a solvent.
  • the solvent may be included for the purpose of improving mixability, dispersibility and workability.
  • the solvent may include at least one of water, alcohol having 1 to 10 carbon atoms, hexane, N-methyl-pyrrolidone (NMP), gamma butyrolactone, acetone, dimethylformamide, and monoethanolamine.
  • the alcohol having 1 to 10 carbon atoms may include at least one of ethanol, ethanol, and isopropanol.
  • the barrier coating agent may include 100 to 5000 parts by weight of the solvent based on 100 parts by weight of the total of the barrier powder and the binder. Mixability, dispersibility and workability may be excellent under the above conditions.
  • the solvent may be included in an amount of 1500 to 2500 parts by weight.
  • the barrier coating may be cured at 20 to 120 °C.
  • the barrier layer When cured under the above conditions, the barrier layer can be easily cured. For example, it may be cured at 80 ⁇ 100 °C.
  • the high-pressure hydrogen transport pipe manufacturing method includes manufacturing a preform using the member for the high-pressure hydrogen transport pipe; and forming a pipe-shaped main body using the preform.
  • the preform may be manufactured by laminating one or more layers of the member.
  • the pipe When one or more layers of the member are laminated and used, the pipe may have excellent hydrogen barrier properties, pressure resistance, and mechanical properties.
  • the orientation angles of the continuous fibers of the unit members may be the same or different from each other.
  • the body may be formed on an outer circumferential surface of the liner.
  • the liner may be included to improve pressure resistance and hydrogen barrier properties of the pipe.
  • the liner may include a metal such as aluminum (Al), but is not limited thereto.
  • a preform is manufactured by stacking (laminating) one or more layers of members cut to a certain size, winding the preform into a spiral using a winding device such as a coiler, and then at 80 to 100 ° C. While heating with, it is possible to form a pipe-shaped main body by pressing with pressure using winding tension.
  • the preform may be formed by winding the outer circumferential surface of the liner.
  • High-pressure hydrogen transport pipe manufactured by the high-pressure hydrogen transport pipe manufacturing method is the high-pressure hydrogen transport pipe manufacturing method
  • Another aspect of the present invention relates to a high-pressure hydrogen transport pipe manufactured by the method for manufacturing a high-pressure hydrogen transport pipe.
  • Fiber-reinforced composite sheet Continuous fibers (carbon fibers with a diameter of 5 to 10 ⁇ m) arranged in one direction are impregnated with a matrix resin (polypropylene resin), formed into a sheet shape, and cooled to form a sheet with a thickness of 0.2 to 1.0 mm. A fiber-reinforced composite sheet was prepared.
  • Barrier coating preparation 20% by weight of a binder (polyvinylamine resin) and 80% by weight of a barrier powder (plate-like montmorillonite having an average size (diameter) of 1 ⁇ m and an aspect ratio of 1000, manufacturer: KUNIMINE, product name: KUNIPIA-F)
  • a barrier coating agent was prepared by homogeneously mixing 2000 parts by weight of a solvent (water) with respect to 100 parts by weight of the sum of the binder and the barrier powder.
  • a barrier coating agent is applied (spray coating) to at least one surface of the fiber-reinforced composite sheet and cured at 80 to 100 ° C to form a barrier layer having a thickness of 30 to 70 ⁇ m to transfer high pressure hydrogen
  • a member for a pipe was manufactured.
  • a member for a high-pressure hydrogen transport pipe was manufactured in the same manner as in Example 1, except that polyvinyl acetate resin was applied as the binder.
  • a member for a high-pressure hydrogen transport pipe was manufactured in the same manner as in Example 1, except that polyamide 6 resin was applied as the binder.
  • a member for a high-pressure hydrogen transport pipe was manufactured in the same manner as in Example 1, except that 100 parts by weight of the barrier powder and 2000 parts by weight of the solvent were applied as the barrier coating agent.
  • the continuous fibers arranged in one direction are impregnated with a matrix resin composition homogeneously mixed with 10 parts by weight of the barrier powder in 100 parts by weight of polypropylene, formed into a sheet shape, and cooled to obtain a fiber-reinforced composite sheet having a thickness of 0.2 to 1.0 mm. was manufactured.
  • Hydrogen permeability (mol ⁇ m / m 2 ⁇ s ⁇ MPa): Based on ASTM 15105-1 standard (gas permeability measurement method by differential pressure method), the hydrogen permeability of the member was measured using a measuring device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

본 발명은 고압 수소 이송 파이프용 부재, 이의 제조방법 및 이를 이용한 고압 수소 이송 파이프 제조방법에 관한 것이다. 한 구체예에서 상기 고압 수소 이송 파이프용 부재는 섬유강화 복합시트; 및 상기 섬유강화 복합시트의 적어도 일면에 형성된 배리어층;을 포함하고, 상기 배리어층은 바인더에 배리어성 분말이 분산된 구조를 가지며, 상기 배리어성 분말은 그래핀계 분말, 몰리브덴계 분말, 나노클레이계 분말 및 합성고무계 분말 중 하나 이상 포함한다.

Description

고압 수소 이송 파이프용 부재, 이의 제조방법 및 이를 이용한 고압 수소 이송 파이프 제조방법
본 발명은 고압 수소 이송 파이프용 부재, 이의 제조방법 및 이를 이용한 고압 수소 이송 파이프 제조방법에 관한 것이다.
전세계적으로 수소경제의 중요성이 부각되면서 수소의 생산, 이송, 활용과 관련하여 활발한 논의가 진행 중이다. 전세계 녹색 수소 생산량이 19년 4만톤 수준에서 30년 570만톤 규모로 성장할 예정이기 때문에 이를 수용 가능한 인프라의 개발도 동반되어야 한다. 특히, 일반적으로 수소에너지 생산지 고압 수소 이송용 배관 제조방법을 제공하는 것이다.
역은 주 활용지역인 도심지역과 거리가 있기 때문에 수소에너지의 이송 방법에 대해서는 상당히 구체적으로 방안이 수립되어 있는 상황이다. 우리나라에서는 2019년 1월 "수소경제 활성화 로드맵"을 통해 단기적으로는 고압가스 튜브트레일러를 활용하나, 장기적으로는 전국을 연결하는 수소 주배관을 설치할 것으로 발표하였으며, 해당 로드맵과 관련하여 에너지경제연구원에서는 에너지 수요 규모에 따라 중소규모 수요는 튜브트레일러 운송방식, 대규모 수요는 파이프 운송방식이 필요하다고 발표했다. 미국은 현재 걸프만 지역에 집중된 수소배관을 전국적으로 확대할 계획이며, 유럽은 북아프리카, 중동지역에서 생산된 수소를 파이프를 활용, 수입하는 계획에 대해 발표한 바 있다.
종래 수소 이송용 배관은 탄소강 기반의 금속배관을 사용하였다. 종래 수소 생산방식은 석유화학공정, 철강제조공정 중 부수적으로 발생하는 수소(부생수소)를 활용하는 것이 주된 방식으로, 저압 환경에서 수소가 운반되기 때문에 탄소강 기반의 금속배관을 활용하더라도 문제가 없었다. 그러나, 수소경제 확대에 따라 수소를 주에너지원 중 하나로 활용하는 경우, 수소 이송방식의 효율화를 위해 고압 이송이 필요하게 되면서 문제가 발생하게 된다. 탄소강을 포함한 금속재는 수소 취성을 가지고 있기 때문에 고압 수소에 장기간 노출될 경우 신율이 저하되고 균열이 발생하기 쉬워지는 특징을 갖고 있다. 이 수소 취성은 내압 요구 성능이 높아질수록 더욱 심화되기 때문에 고압환경에서의 수소 이송에 대해서는 금속배관이 아닌 대안이 필요한 상황이다.
금속배관의 대안으로는 강화 열가소성 플라스틱 등의 강화비금속배관 (Reinforced Thermoplastics Pipe)이 있다. 이는 저압 수도관 및 송유관 등에 주로 사용되는 비금속배관 상에 강화섬유, 스틸코드, 알루미늄 등의 강화재를 보강한 것이다. 종래 비금속배관이 10Bar 이하의 저압 조건에서만 활용된 반면, 강화비금속배관은 금속배관과 동등한 수준의 내압 특성을 가져서 약 500bar 이상의 고압 조건에서도 활용 가능한 특징이 있다. 아울러 어떤 강화재를 활용하느냐에 따라 기능성 또한 다양하게 부여 가능하다는 특징이 있다.
한편 라이너 소재로 주로 활용되는 고밀도폴리에틸렌(HDPE) 소재는, 수소기밀성이 낮기 때문에 알루미늄 층을 중간에 추가하여 사용하지만, 이로 인해 높은 내압성능의 구현이 불가능한 문제가 있었다.
본 발명과 관련한 배경기술은 일본 공개특허공보 제1994-344163호(1994.12.14. 공개, 발명의 명칭: 수지관 및 그 제조 방법)에 개시되어 있다.
본 발명의 하나의 목적은 내압성, 수소 배리어성 및 내수소 취성이 우수한 고압 수소 이송 파이프용 부재를 제공하는 것이다.
본 발명의 다른 목적은 배리어층의 부착력과 내구성이 우수한 고압 수소 이송 파이프용 부재를 제공하는 것이다.
본 발명의 또 다른 목적은 파이프 성형시 성형성과 표면 품질이 우수한 고압 수소 이송 파이프용 부재를 제공하는 것이다.
본 발명의 또 다른 목적은 생산성 및 경제성이 우수한 고압 수소 이송 파이프용 부재를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 고압 수소 이송 파이프용 부재의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 고압 수소 이송용 부재를 이용한 고압 수소 이송 파이프의 제조방법을 제공하는 것이다.
본 발명의 하나의 관점은 고압 수소 이송 파이프용 부재에 관한 것이다. 한 구체예에서 상기 고압 수소 이송 파이프용 부재는 섬유강화 복합시트; 및 상기 섬유강화 복합시트의 적어도 일면에 형성된 배리어층;을 포함하고, 상기 배리어층은 바인더에 배리어성 분말이 분산된 구조를 가지며, 상기 배리어성 분말은 그래핀계 분말, 몰리브덴계 분말, 나노클레이계 분말 및 합성고무계 분말 중 하나 이상 포함한다.
한 구체예에서 상기 배리어층은 바인더 5~50 중량% 및 배리어성 분말 50~95 중량%를 포함할 수 있다.
한 구체예에서 상기 배리어층은 두께가 0.01㎛~500㎛일 수 있다.
한 구체예에서 상기 부재는 ISO 15105-1 기준에 의거하여 측정된 수소가스 투과도가 3.5 x 10-9 mol·m/m2·s·MPa 이하일 수 있다.
본 발명의 다른 관점은 상기 고압 수소 이송 파이프용 부재의 제조방법에 관한 것이다. 한 구체예에서 상기 고압 수소 이송 파이프용 부재 제조방법은 섬유강화 복합시트의 적어도 일면에 배리어 코팅제를 도포 및 경화하여 배리어층을 형성하는 단계;를 포함하며, 상기 배리어 코팅제는 바인더 및 배리어성 분말을 포함하고, 상기 배리어성 분말은 그래핀계 분말, 몰리브덴계 분말, 나노클레이계 분말 및 합성고무계 분말 중 하나 이상 포함한다.
한 구체예에서 상기 배리어 코팅제는 바인더 5~50 중량% 및 배리어성 분말 50~95 중량%를 포함할 수 있다.
한 구체예에서 상기 배리어성 분말은 판상형이며, 평균 크기가 0.1nm~10㎛이며, 종횡비가 10~3000일 수 있다.
한 구체예에서 상기 바인더는 폴리에틸렌, 폴리프로필렌, 폴리에틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트, 에틸렌 비닐 아세테이트, 폴리비닐알코올, 폴리비닐아민, 실리케이트 화합물, 폴리(에틸렌 2,5-퓨란디카르복실레이트) 및 폴리(프로필렌 2,5-퓨란디카르복실레이트) 중 하나 이상 포함할 수 있다.
한 구체예에서 상기 경화는 20~120℃에서 실시될 수 있다. 상기 조건에서 용이하게 경화될 수 있다.
한 구체예에서 상기 배리어성 분말 및 바인더의 합 100 중량부에 대하여, 용제 50~300 중량부를 더 포함할 수 있다.
한 구체예에서 상기 섬유강화 복합시트는 매트릭스 수지 및 상기 매트릭스 수지에 함침된 연속섬유를 포함할 수 있다.
한 구체예에서 상기 매트릭스 수지는 열가소성 수지를 포함하고, 상기 연속섬유는 탄소 섬유, 유리 섬유 및 아라미드 섬유 중 하나 이상 포함할 수 있다.
본 발명의 또 다른 관점은 상기 고압 수소 이송 파이프용 부재를 이용한 고압 수소 이송 파이프 제조방법에 관한 것이다. 한 구체예에서 상기 고압 수소 이송 파이프 제조방법은 상기 부재를 이용하여 예비성형체를 제조하는 단계; 및 상기 예비성형체를 이용하여 파이프 형상의 본체를 성형하는 단계;를 포함한다.
한 구체예에서 상기 예비성형체는 상기 부재를 한 층 이상 적층하여 제조될 수 있다.
한 구체예에서 상기 본체는 라이너의 외주면에 형성될 수 있다.
본 발명에 따른 고압 수소 이송 파이프용 부재는 내압성, 수소 기밀성 및 내수소 취성이 우수하고, 배리어층의 부착력과 내구성이 우수하며, 성형성 및 표면 품질이 우수하며, 생산성 및 경제성이 우수할 수 있다.
도 1은 본 발명의 한 구체예에 따른 고압 수소 이송 파이프용 부재를 나타낸 것이다.
도 2(a)는 본 발명에 따라 형성된 파이프용 부재의 배리어층을 나타낸 것이며, 도 2(b)는 종래 파이프용 부재를 나타낸 것이다.
본 발명을 설명함에 있어서 관련된 공지기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있으므로 그 정의는 본 발명을 설명하는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 명세서에서 배리어성 분말은 고압 조건에서 수소 배리어성 향상을 위해 포함될 수 있다. 상기 수소 배리어성은 수소(H2) 분자, 수소 라디칼 및 수소 이온(H+) 등에 대한 차단성을 의미하는 것일 수 있다.
고압 수소 이송 파이프용 부재
본 발명의 다른 관점은 고압 수소 이송 파이프용 부재에 관한 것이다.
도 1은 본 발명의 한 구체예에 따른 고압 수소 이송 파이프용 부재를 나타낸 것이다. 상기 도 1을 참조하면, 고압 수소 이송 파이프용 부재(100)는 섬유강화 복합시트(10); 및 섬유강화 복합시트(10)의 적어도 일면에 형성된 배리어층(20);을 포함한다.
한 구체예에서 상기 섬유강화 복합시트는 매트릭스 수지 및 상기 매트릭스 수지에 함침된 연속섬유를 포함할 수 있다. 상기 연속섬유를 적용시, 연속적인 생산이 가능하여 생산성 및 경제성이 우수할 수 있다. 예를 들면 연속섬유가 보강된 열가소성 플라스틱(continuous fiber reinforced thermoplastic, CFRTPC)을 포함할 수 있다.
한 구체예에서 상기 매트릭스 수지는 열가소성 수지를 포함할 수 있다. 상기 열가소성 수지는 폴리올레핀계 수지, 폴리에스테르계 수지, 폴리(메타)아크릴레이트계 수지, 폴리아릴렌설파이드계 수지, 폴리아미드계 수지 및 폴리염화비닐계 수지 중 하나 이상 포함할 수 있다. 상기 폴리올레핀계 수지는 폴리에틸렌 및 폴리프로필렌 수지 중 하나 이상 포함할 수 있다. 상기 종류의 열가소성 수지를 포함시 연속섬유의 함침성, 기계적 강도 및 성형성이 우수할 수 있다.
한 구체예에서 상기 연속섬유는 탄소 섬유, 유리 섬유 및 아라미드 섬유 중 하나 이상 포함할 수 있다. 상기 종류의 연속섬유를 포함시 기계적 강도가 우수하면서 경량성, 유연성, 함침성 및 성형성이 우수할 수 있다.
한 구체예에서 연속섬유는 직경이 5~50㎛일 수 있다. 상기 조건에서 매트릭스 수지에 용이하게 함침될 수 있다. 예를 들면 연속섬유는 직경이 5~15㎛일 수 있다.
한 구체예에서 상기 섬유강화 복합시트는 상기 매트릭스 수지 30~90 중량% 및 연속섬유 10~70 중량% 포함할 수 있다. 상기 조건에서 상기 섬유강화 복합시트 제조시 함침성, 외관성 및 기계적 물성이 우수할 수 있다.
예를 들면 상기 섬유강화 복합시트는 상기 매트릭스 수지를 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89 또는 90 중량% 포함할 수 있다.
예를 들면 상기 섬유강화 복합시트는 상기 연속섬유를 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69 또는 70 중량% 포함할 수 있다.
한 구체예에서 상기 섬유강화 복합시트는 상기 연속섬유가 일방향(uni direction, UD)으로 방향성을 가지며 배열될 수 있다. 상기 일방향으로 배열시, 본 발명의 기계적 강도가 우수할 수 있다.
한 구체예에서 상기 배리어층은 바인더 및 배리어성 분말을 포함하며, 상기 배리어층은 바인더에 배리어성 분말이 분산된 구조를 가진다.
한 구체예에서 상기 바인더는 폴리에틸렌, 폴리프로필렌, 폴리에틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트, 에틸렌 비닐 아세테이트, 폴리비닐알코올, 폴리비닐아민, 실리케이트 화합물, 폴리(에틸렌 2,5-퓨란디카르복실레이트) 및 폴리(프로필렌 2,5-퓨란디카르복실레이트) 중 하나 이상 포함할 수 있다. 상기 조건의 바인더를 포함시 상기 섬유강화 복합시트와 배리어층 사이의 부착력과, 배리어성 분말의 분산성이 우수할 수 있다. 예를 들면 폴리비닐아민을 포함할 수 있다.
한 구체예에서 상기 배리어성 분말은 그래핀계 분말, 몰리브덴계 분말, 나노클레이계 분말 및 합성고무계 분말 중 하나 이상 포함한다. 상기 조건의 배리어성 분말을 포함시 상기 바인더와 혼합성 및 분산성이 우수하면서, 내압성 및 고압에서의 수소 배리어 특성이 우수하여, 고압 수소 이송 파이프 용도로 사용하기 적합할 수 있다. 예를 들면 나노클레이계 분말을 포함할 수 있다.
한 구체예에서 상기 그래핀계 분말은 그래핀(graphene), 그래핀 옥사이드(graphene oxide), 그라파이트(graphite) 중 하나 이상 포함할 수 있다.
한 구체예에서 상기 몰리브덴계 분말은 이황화몰리브덴(molybdenum disulfide)를 포함할 수 있다.
한 구체예에서 상기 나노클레이계 분말은 몬모릴로나이트(montmorillonite), 카올리나이트(kaolinite), 헥토라이트(hectorite), 사포나이트(saponite) 및 스멕타이트(smectite) 중 하나 이상 포함할 수 있다.
예를 들면 상기 합성고무계 분말은 부틸고무(IIR), 클로로프렌 고무(CR), 에틸렌/아크릴 고무(AEM), 에피클로로히드린 고무(ECO), 에틸렌-프로필렌-디엔-모노머 고무(EPDM), 니트릴-부타디엔 고무(NBR), 불소 고무(FKM) 및 수소 첨가 니트릴-부타디엔 고무(HNBR) 중 하나 이상 포함할 수 있다. 상기 합성고무계 분말을 포함시 고압에서의 수소 배리어 특성이 우수할 수 있다.
한 구체예에서 상기 배리어성 분말은 판상형일 수 있다. 상기 조건에서 배리어층의 고압에서의 수소 배리어 특성이 우수할 수 있다.
한 구체예에서 상기 배리어성 분말은 평균 크기가 0.1nm~10㎛일 수 있다. 본 발명에서 상기 평균 크기는, 상기 배리어성 분말의 최대 길이일 수 있다. 상기 평균 크기와 종횡비 조건의 배리어성 분말을 적용시 혼합성과 분산성이 우수하면서 배리어층의 고압에서의 수소 배리어 특성이 우수할 수 있다. 예를 들면 상기 배리어성 분말은 평균 크기가 0.1~1000nm 일 수 있다. 다른 예를 들면 상기 배리어성 분말은 평균 크기가 0.1nm~10㎛이며, 종횡비가 10~3000인 판상형 분말을 포함할 수 있다. 예를 들면 상기 배리어성 분말은 평균 크기가 0.5㎛~2㎛ 이며, 종횡비가 500~2500인 판상형 분말을 포함할 수 있다.
한 구체예에서 상기 배리어층은 배리어성 분말 50~95 중량% 및 바인더 5~50 중량%를 포함할 수 있다. 상기 함량 범위에서 내압성, 수소 배리어성이 우수하고, 배리어성 분말의 분산성이 우수할 수 있다. 예를 들면 상기 배리어층은 배리어성 분말 50~85 중량% 및 바인더 15~50 중량% 포함할 수 있다.
다른 예를 들면 상기 배리어층은 상기 배리어성 분말을 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94 또는 95 중량% 포함할 수 있다.
예를 들면 상기 배리어층은 상기 바인더를 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 또는 50 중량% 포함할 수 있다.
한 구체예에서 상기 배리어층은 두께가 0.01㎛~500㎛ 일 수 있다. 상기 조건에서 고온 조건에서 수소 배리어성이 우수할 수 있다.
한 구체예에서 상기 섬유강화 복합시트는 두께가 0.1~50mm 일 수 있다. 상기 조건에서 유연성, 성형성, 내압성 및 강성이 우수할 수 있다.
한 구체예에서 상기 부재는 ISO 15105-1(차압법에 의한 기체 투과도 측정법) 기준에 의거하여 측정된 수소가스 투과도가 3.5 x 10-9 mol·m/m2·s·MPa 이하일 수 있다. 상기 조건에서 수소 가스 배리어성이 우수할 수 있다. 예를 들면 상기 부재는 수소가스 투과도가 1.5 x 10-12 mol·m/m2·s·MPa 이하일 수 있다.
고압 수소 이송 파이프용 부재 제조방법
본 발명의 하나의 관점은 고압 수소 이송 파이프용 부재 제조방법에 관한 것이다. 한 구체예에서 상기 고압 수소 이송 파이프용 부재 제조방법은 섬유강화 복합시트의 적어도 일면에 배리어 코팅제를 도포 및 경화하여 배리어층을 형성하는 단계;를 포함한다.
한 구체예에서 상기 섬유강화 복합시트는 매트릭스 수지 및 상기 매트릭스 수지에 함침된 연속섬유를 포함할 수 있다. 상기 연속섬유를 적용시, 연속적인 생산이 가능하여 생산성 및 경제성이 우수할 수 있다. 예를 들면 연속섬유가 보강된 열가소성 플라스틱(continuous fiber reinforced thermoplastic, CFRTPC)을 포함할 수 있다.
예를 들면 상기 고압 수소 이송 파이프용 부재는 파이프용 부재 제조장치를 이용하여 제조될 수 있다. 예를 들면 상기 파이프용 부재 제조장치는 연속섬유가 권취된 복수 개의 보빈이 구비되는 텐션 유닛; 상기 크릴의 보빈으로부터 공급되는 연속섬유를 일방향으로 배열하여 스프레딩하는 스프레딩 유닛; 상기 일방향으로 배열된 연속섬유에 매트릭스 수지를 주입하여 함침시키는 수지 주입 유닛; 상기 매트릭스 수지가 함침된 연속섬유를 압출하여 섬유강화 복합시트를 성형하는 쉐이핑 다이; 상기 섬유강화 복합시트를 냉각하는 냉각조; 상기 냉각조에서 냉각된 섬유강화 복합시트에 배리어 코팅제를 도포하여 배리어층을 형성하는 코팅유닛; 상기 배리어층이 형성된 섬유강화 복합시트를 인취하는 인취장치(puller); 및 상기 인취장치로 인취된 섬유강화 복합시트를 절단하는 커팅기;를 포함할 수 있다.
예를 들면 상기 섬유강화 복합시트는 상기 연속섬유가 권취된 크릴에 구비된 복수 개의 보빈에 연속섬유를 권취하고, 상기 보빈이 회전하면서 공급되는 연속섬유를 텐션 유닛을 통해 일정 장력으로 당기면서, 스프레딩 유닛을 통해 연속섬유를 일방향으로 배열하여 스프레딩한다. 그 다음에, 상기 스프레딩 유닛을 통과한 연속섬유에 매트릭스 수지를 주입하여 함침시키고, 상기 매트릭스 수지가 함침된 연속섬유를 쉐이핑 다이를 통해 압출하여 시트 형태로 성형하고, 냉각조에서 냉각하여 제조할 수 있다.
상기 제조된 섬유강화 복합시트는 코팅유닛으로 이송되어, 상기 섬유강화 복합시트의 적어도 일면에 배리어 코팅제를 도포 및 경화하여 배리어층을 형성할 수 있다. 한 구체예에서 상기 배리어 코팅제는 스프레이 코팅법 등을 이용하여 도포될 수 있다. 상기와 같이 섬유강화 복합시트의 표면에 코팅층을 형성하는 경우, 상기 배리어성 분말이 섬유강화 복합시트의 표면에 대하여 평행하게 배열되어, 수소 배리어성이 우수하고, 고압 조건에서 수소 배리어성이 우수할 수 있다.
도 2(a)는 본 발명에 따라 형성된 파이프용 부재의 배리어층을 나타낸 것이며, 도 2(b)는 종래 파이프용 부재를 나타낸 것이다. 상기 도 2(a)와 같이 섬유강화 복합시트 표면에 배리어 코팅제를 도포 및 경화하여 배리어층을 형성시, 판상의 배리어성 성분(24)은 섬유강화 복합시트 일면에 대하여 평행한 방향으로 형성되어 수소가 투과되는 pathway가 연장되어, 수소 기밀성 및 수소 배리어성이 우수할 수 있다.
반면 종래 파이프용 부재는, 폴리올레핀 수지 등 매트릭스 수지에 배리어성 분말을 혼합하여 연속섬유에 함침하여 제조된다. 이 경우, 상기 도 2(b)와 같이, 매트릭스 수지(21)의 배리어성 분말(23)이 연속섬유(길이방향)에 대하여 평행한 방향으로 배열되지 않아 수소 배리어성이 저하될 수 있다.
한 구체예에서 연속섬유는 직경이 5~50㎛일 수 있다. 상기 조건에서 매트릭스 수지에 용이하게 함침될 수 있다. 예를 들면 연속섬유는 직경이 5~15㎛일 수 있다.
한 구체예에서 상기 섬유강화 복합시트는 상기 매트릭스 수지 30~90 중량% 및 연속섬유 10~70 중량% 포함할 수 있다. 상기 조건에서 상기 섬유강화 복합시트 제조시 함침성, 외관성 및 기계적 물성이 우수할 수 있다.
한 구체예에서 상기 섬유강화 복합시트는 상기 연속섬유가 일방향(uni direction, UD)으로 방향성을 가지며 배열될 수 있다. 상기 일방향으로 배열시, 본 발명의 기계적 강도가 우수할 수 있다.
한 구체예에서 상기 배리어 코팅제는 바인더 및 배리어성 분말을 포함한다.
한 구체예에서 상기 바인더는 폴리에틸렌, 폴리프로필렌, 폴리에틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트, 에틸렌 비닐 아세테이트, 폴리비닐알코올, 폴리비닐아민, 실리케이트 화합물, 폴리(에틸렌 2,5-퓨란디카르복실레이트) 및 폴리(프로필렌 2,5-퓨란디카르복실레이트) 중 하나 이상 포함할 수 있다. 상기 조건의 바인더를 포함시 상기 섬유강화 복합시트와 배리어층 사이의 부착력과, 배리어성 분말의 분산성이 우수할 수 있다. 예를 들면 폴리비닐아민을 포함할 수 있다.
한 구체예에서 상기 배리어성 분말은 그래핀계 분말, 몰리브덴계 분말, 나노클레이계 분말 및 합성고무계 분말 중 하나 이상 포함한다. 상기 조건의 배리어성 분말을 포함시 상기 바인더와 혼합성 및 분산성이 우수하면서, 내압성 및 고압에서의 수소 배리어 특성이 우수하여, 고압 수소 이송 파이프 용도로 사용하기 적합할 수 있다. 예를 들면 나노클레이계 분말을 포함할 수 있다.
한 구체예에서 상기 그래핀계 분말은 그래핀(graphene), 그래핀 옥사이드(graphene oxide), 그라파이트(graphite) 중 하나 이상 포함할 수 있다.
한 구체예에서 상기 몰리브덴계 분말은 이황화몰리브덴(molybdenum disulfide)를 포함할 수 있다.
한 구체예에서 상기 나노클레이계 분말은 몬모릴로나이트(montmorillonite), 카올리나이트(kaolinite), 헥토라이트(hectorite), 사포나이트(saponite) 및 스멕타이트(smectite) 중 하나 이상 포함할 수 있다.
예를 들면 상기 합성고무계 분말은 부틸고무(IIR), 클로로프렌 고무(CR), 에틸렌/아크릴 고무(AEM), 에피클로로히드린 고무(ECO), 에틸렌-프로필렌-디엔-모노머 고무(EPDM), 니트릴-부타디엔 고무(NBR), 불소 고무(FKM) 및 수소 첨가 니트릴-부타디엔 고무(HNBR) 중 하나 이상 포함할 수 있다. 상기 합성고무계 분말을 포함시 고압에서의 수소 배리어 특성이 우수할 수 있다.
한 구체예에서 상기 배리어성 분말은 판상형일 수 있다. 상기 조건에서 배리어층의 고압에서의 수소 배리어 특성이 우수할 수 있다.
한 구체예에서 상기 배리어성 분말은 평균 크기가 0.1nm~10㎛일 수 있다. 본 발명에서 상기 평균 크기는, 상기 배리어성 분말의 최대 길이일 수 있다. 상기 평균 크기와 종횡비 조건의 배리어성 분말을 적용시 혼합성과 분산성이 우수하면서 배리어층의 고압에서의 수소 배리어 특성이 우수할 수 있다. 예를 들면 상기 배리어성 분말은 평균 크기가 0.1~1000nm 일 수 있다. 다른 예를 들면 상기 배리어성 분말은 평균 크기가 0.1nm~10㎛이며, 종횡비가 10~3000인 판상형 분말일 수 있다. 예를 들면 상기 배리어성 분말은 평균 크기가 0.5㎛~2㎛ 이며, 종횡비가 500~2500인 판상형 분말을 포함할 수 있다.
한 구체예에서 상기 배리어 코팅제는 배리어성 분말 50~95 중량% 및 바인더 5~50 중량%를 포함할 수 있다. 상기 함량 범위에서 내압성, 수소 배리어성이 우수하고, 배리어성 분말의 분산성이 우수할 수 있다. 예를 들면 상기 배리어 코팅제는 배리어성 분말 50~85 중량% 및 바인더 15~50 중량% 포함할 수 있다.
한 구체예에서 상기 배리어 코팅제는 용제를 더 포함할 수 있다. 상기 용제는 혼합성, 분산성 및 작업성 향상을 목적으로 포함될 수 있다. 한 구체예에서 상기 용제는 물, 탄소수 1~10의 알코올, 헥산, N-메틸-피롤리돈(NMP), 감마부티로락톤, 아세톤, 디메틸포름아미드 및 모노에탄올아민 중 하나 이상 포함할 수 있다. 상기 탄소수 1~10의 알코올은 에탄올, 에탄올 및 이소프로판올 중 하나 이상 포함할 수 있다.
한 구체예에서 상기 배리어 코팅제는 상기 배리어성 분말 및 바인더의 합 100 중량부에 대하여, 상기 용제 100~5000 중량부를 포함할 수 있다. 상기 조건에서 혼합성, 분산성 및 작업성이 우수할 수 있다. 예를 들면 상기 용제는 1500~2500 중량부 포함될 수 있다.
한 구체예에서 상기 배리어 코팅제는 20~120℃에서 경화될 수 있다. 상기 조건으로 경화시 배리어층이 용이하게 경화될 수 있다. 예를 들면 80~100℃에서 경화될 수 있다.
고압 수소 이송 파이프용 부재를 이용한 고압 수소 이송 파이프 제조방법
본 발명의 또 다른 관점은 상기 고압 수소 이송 파이프용 부재를 이용한 고압 수소 이송 파이프 제조방법에 관한 것이다. 한 구체예에서 상기 고압 수소 이송 파이프 제조방법은 상기 고압 수소 이송 파이프용 부재를 이용하여 예비성형체를 제조하는 단계; 및 상기 예비성형체를 이용하여 파이프 형상의 본체를 성형하는 단계;를 포함한다.
한 구체예에서 상기 예비성형체는 상기 부재를 한 층 이상 적층하여 제조될 수 있다. 상기 부재를 한 층 이상 적층하여 사용시 상기 파이프의 수소 배리어성, 내압성 및 기계적 물성이 우수할 수 있다. 상기 부재를 적층시, 단위 부재의 연속섬유의 배향 각도가 동일하거나 서로 다르도록 적층할 수 있다.
한 구체예에서 상기 본체는 라이너의 외주면에 형성될 수 있다. 상기 라이너는 상기 파이프의 내압성과 수소 배리어성을 향상시키기 위해 포함될 수 있다. 한 구체예에서 상기 라이너는 알루미늄(Al) 등의 금속을 포함할 수 있으나 이에 제한되지 않는다.
예를 들면 일정한 크기로 절단된 부재를 한 층 이상 적층(라미네이션)하여 예비성형체를 제조하고, 상기 예비성형체를 코일러(coiler) 등의 권취 장치를 이용하여 나선형으로 와인딩한 다음, 80~100℃로 가열하면서, 권취 장력을 이용한 압력으로 압착하여 파이프 형상의 본체를 성형할 수 있다. 예를 들면 상기 예비성형체는 라이너의 외주면에 권취되어 형성될 수 있다.
고압 수소 이송 파이프 제조방법에 의해 제조된 고압 수소 이송 파이프
본 발명의 또 다른 관점은 상기 고압 수소 이송 파이프 제조방법에 의해 제조된 고압 수소 이송 파이프에 관한 것이다.
이하, 본 발명의 바람직한 실시예를 통하여 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다. 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.
실시예 및 비교예
실시예 1
(1) 섬유강화 복합시트 준비: 일방향으로 배열된 연속섬유(직경 5~10㎛의 탄소섬유)에 매트릭스 수지(폴리프로필렌 수지)를 함침하고, 시트 형상으로 성형 및 냉각하여 두께 0.2~1.0mm의 섬유강화 복합시트를 제조하였다.
(2) 배리어 코팅제 준비: 바인더(폴리비닐아민 수지) 20 중량% 및 배리어성 분말(평균크기(직경) 1㎛ 및 종횡비 1000의 판상형 몬모릴로나이트, 제조사: KUNIMINE, 제품명: KUNIPIA-F) 80 중량%를 준비하고, 상기 바인더 및 배리어성 분말의 합 100 중량부에 대하여 용제(물) 2000 중량부를 균질하게 혼합하여 배리어 코팅제를 준비하였다.
(3) 고압 수소 이송 파이프용 부재 제조: 상기 섬유강화 복합시트의 적어도 일면에 배리어 코팅제를 도포(스프레이 코팅)하고 80~100℃에서 경화하여 두께 30~70㎛의 배리어층을 형성하여 고압 수소 이송 파이프용 부재를 제조하였다.
실시예 2
상기 바인더로 폴리비닐아세테이트 수지를 적용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고압 수소 이송 파이프용 부재를 제조하였다.
실시예 3
상기 바인더로 폴리아미드 6 수지를 적용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고압 수소 이송 파이프용 부재를 제조하였다.
비교예 1
상기 배리어 코팅제로 배리어성 분말 100 중량부 및 용제 2000 중량부를 적용한 것을 제외하고, 상기 실시예 1과 동일한 방법으로 고압 수소 이송 파이프용 부재를 제조하였다.
비교예 2
상기 일방향으로 배열된 연속섬유를, 폴리프로필렌 100 중량부에 상기 배리어성 분말 10 중량부를 균질하게 혼합한 매트릭스 수지 조성물에 함침하고, 시트 형상으로 성형 및 냉각하여 두께 0.2~1.0mm의 섬유강화 복합시트를 제조하였다.
상기 실시예 1~3 및 비교예 1~2의 고압 수소 이송 파이프용 부재에 대하여 물성을 측정하여 그 결과를 하기 표 1에 나타내었다.
(1) 수소투과도(mol·m/m2·s·MPa): ASTM 15105-1 기준(차압법에 의한 기체 투과도 측정법)에 의거하여 측정장비를 이용하여 부재의 수소투과도를 측정하였다.
(2) 외관성: 부재의 표면을 육안으로 관찰하여 배리어층의 이탈이나 박리 여부를 관찰하여 하기 기준으로 평가하여 그 결과를 하기 표 1에 나타내었다 (◎: 매우 양호, ○: 양호, △: 배리어층 일부 박리 발생, X: 배리어층의 심각한 박리 발생).
Figure PCTKR2022010222-appb-img-000001
상기 표 1을 참조하면, 본 발명의 실시예 1~3의 경우 비교예 1~2에 비해 수소 배리어성이 우수하면서, 배리어 코팅제의 분산성이 우수하였고, 배리어층의 박리나 탈리가 발생하지 않아 파이프용 부재 외관이 우수한 것을 알 수 있었다.
이제까지 본 발명에 대하여 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (15)

  1. 섬유강화 복합시트; 및
    상기 섬유강화 복합시트의 적어도 일면에 형성된 배리어층;을 포함하고,
    상기 배리어층은 바인더에 배리어성 분말이 분산된 구조를 가지며,
    상기 배리어성 분말은 그래핀계 분말, 몰리브덴계 분말, 나노클레이계 분말 및 합성고무계 분말 중 하나 이상 포함하는, 고압 수소 이송 파이프 부재.
  2. 제1항에 있어서, 상기 배리어층은 바인더 5~50 중량% 및 배리어성 분말 50~95 중량%를 포함하는 것을 특징으로 하는 고압 수소 이송 파이프용 부재.
  3. 제1항에 있어서, 상기 배리어층은 두께가 0.01㎛~500㎛인 것을 특징으로 하는 고압 수소 이송 파이프용 부재.
  4. 제1항에 있어서, 상기 부재는 ISO 15105-1 기준에 의거하여 측정된 수소가스 투과도가 3.5 x 10-9 mol·m/m2·s·MPa 이하인 것을 특징으로 하는 고압 수소 이송 파이프용 부재.
  5. 섬유강화 복합시트의 적어도 일면에 배리어 코팅제를 도포 및 경화하여 배리어층을 형성하는 단계;를 포함하며,
    상기 배리어 코팅제는 바인더 및 배리어성 분말을 포함하고,
    상기 배리어성 분말은 그래핀계 분말, 몰리브덴계 분말, 나노클레이계 분말 및 합성고무계 분말 중 하나 이상 포함하는 고압 수소 이송 파이프용 부재 제조방법.
  6. 제5항에 있어서, 상기 배리어 코팅제는 바인더 5~50 중량% 및 배리어성 분말 50~95 중량%를 포함하는 것을 특징으로 하는 고압 수소 이송 파이프용 부재 제조방법.
  7. 제5항에 있어서, 상기 배리어성 분말은 판상형이며, 평균 크기가 0.1nm~10㎛이며, 종횡비가 10~3000인 것을 특징으로 하는 고압 수소 이송 파이프용 부재 제조방법.
  8. 제5항에 있어서, 상기 바인더는 폴리에틸렌, 폴리프로필렌, 폴리에틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트, 에틸렌 비닐 아세테이트, 폴리비닐알코올, 폴리비닐아민, 실리케이트 화합물, 폴리(에틸렌 2,5-퓨란디카르복실레이트) 및 폴리(프로필렌 2,5-퓨란디카르복실레이트) 중 하나 이상 포함하는 것을 특징으로 하는 고압 수소 이송 파이프용 부재 제조방법.
  9. 제5항에 있어서, 상기 경화는 20~120℃에서 실시되는 것을 특징으로 하는 고압 수소 이송 파이프용 부재 제조방법.
  10. 제5항에 있어서, 상기 배리어성 분말 및 바인더의 합 100 중량부에 대하여, 용제 50~300 중량부를 더 포함하는 고압 수소 이송 파이프용 부재 제조방법.
  11. 제5항에 있어서, 상기 섬유강화 복합시트는 매트릭스 수지 및 상기 매트릭스 수지에 함침된 연속섬유를 포함하는 것을 특징으로 하는 고압 수소 이송 파이프용 부재 제조방법.
  12. 제11항에 있어서, 상기 매트릭스 수지는 열가소성 수지를 포함하고,
    상기 연속섬유는 탄소 섬유, 유리 섬유 및 아라미드 섬유 중 하나 이상 포함하는 것을 특징으로 하는 고압 수소 이송 파이프용 부재 제조방법.
  13. 제1항의 고압 수소 이송 파이프용 부재를 이용하여 예비성형체를 제조하는 단계; 및
    상기 예비성형체를 이용하여 파이프 형상의 본체를 성형하는 단계;를 포함하는 것을 특징으로 하는 고압 수소 이송 파이프 제조방법.
  14. 제14항에 있어서, 상기 예비성형체는 상기 부재를 한 층 이상 적층하여 제조되는 것을 특징으로 하는 고압 수소 이송 파이프 제조방법.
  15. 제14항에 있어서, 상기 본체는 라이너의 외주면에 형성되는 것을 특징으로 하는 고압 수소 이송 파이프 제조방법.
PCT/KR2022/010222 2021-12-31 2022-07-13 고압 수소 이송 파이프용 부재, 이의 제조방법 및 이를 이용한 고압 수소 이송 파이프 제조방법 WO2023128096A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210194135A KR20230103327A (ko) 2021-12-31 2021-12-31 고압 수소 이송 파이프용 부재, 이의 제조방법 및 이를 이용한 고압 수소 이송 파이프 제조방법
KR10-2021-0194135 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023128096A1 true WO2023128096A1 (ko) 2023-07-06

Family

ID=86999530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010222 WO2023128096A1 (ko) 2021-12-31 2022-07-13 고압 수소 이송 파이프용 부재, 이의 제조방법 및 이를 이용한 고압 수소 이송 파이프 제조방법

Country Status (2)

Country Link
KR (1) KR20230103327A (ko)
WO (1) WO2023128096A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120627A (ja) * 2007-11-10 2009-06-04 Kyushu Institute Of Technology ガスバリア性の炭素繊維強化プリプレグ及び炭素繊維強化プラスチック並びにそれらの製造方法
KR101679698B1 (ko) * 2016-05-19 2016-11-25 전자부품연구원 방열특성이 향상된 섬유강화형 고분자 복합기판 및 그의 제조방법
KR20170021260A (ko) * 2014-06-24 2017-02-27 플라스틱 옴니엄 어드벤스드 이노베이션 앤드 리서치 복합 압력 용기용의 플라스틱 라이너
KR20190123420A (ko) * 2018-04-24 2019-11-01 도레이첨단소재 주식회사 섬유강화 프라이머 도료 조성물이 코팅된 섬유강화 플라스틱
KR20200018039A (ko) * 2018-08-10 2020-02-19 (주)엘지하우시스 섬유 강화 복합재의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120627A (ja) * 2007-11-10 2009-06-04 Kyushu Institute Of Technology ガスバリア性の炭素繊維強化プリプレグ及び炭素繊維強化プラスチック並びにそれらの製造方法
KR20170021260A (ko) * 2014-06-24 2017-02-27 플라스틱 옴니엄 어드벤스드 이노베이션 앤드 리서치 복합 압력 용기용의 플라스틱 라이너
KR101679698B1 (ko) * 2016-05-19 2016-11-25 전자부품연구원 방열특성이 향상된 섬유강화형 고분자 복합기판 및 그의 제조방법
KR20190123420A (ko) * 2018-04-24 2019-11-01 도레이첨단소재 주식회사 섬유강화 프라이머 도료 조성물이 코팅된 섬유강화 플라스틱
KR20200018039A (ko) * 2018-08-10 2020-02-19 (주)엘지하우시스 섬유 강화 복합재의 제조방법

Also Published As

Publication number Publication date
KR20230103327A (ko) 2023-07-07

Similar Documents

Publication Publication Date Title
CN109882664B (zh) 钢带增强螺旋波纹管及其生产工艺
WO2019107991A1 (ko) 연속섬유 보강 열가소성 수지 복합재료 및 그 제조방법
WO2012096506A2 (ko) 함침성이 우수한 고강도 복합시트 제조 장치 및 이를 이용한 고강도 복합시트 제조 방법
WO2014104730A1 (ko) 연속 탄소섬유 강화 열가소성 프리프레그의 제조 방법
RU2008143994A (ru) Композитный материал
WO2023128096A1 (ko) 고압 수소 이송 파이프용 부재, 이의 제조방법 및 이를 이용한 고압 수소 이송 파이프 제조방법
WO2021137612A1 (ko) 연료 튜브용 조성물, 상기 조성물을 포함하는 복합재료 및 이를 이용한 연료 튜브
US11894647B2 (en) Electrically-conductive corrosion-protective covering
WO2017204558A1 (ko) 보강 복합재 및 이를 포함하는 물품
CN104534187A (zh) 一种纤维增强热塑性复合管道及其制备工艺
WO2013154256A1 (ko) 친환경 고강도 수지 복합재
CN112477213B (zh) 一种钢丝网骨架聚乙烯复合管生产工艺及其制备的复合管
WO2024049049A1 (ko) 가스저장용기용 폴리아미드 수지 조성물 및 이를 이용한 가스 저장 탱크 라이너
CN113531225A (zh) 一种高分子复合材料拉挤成型防腐管及其制作工艺
KR20190094501A (ko) 시트형 외부 피복재로 형성된 광통신망 덕트
CN1285851C (zh) 多层结构纤维增强弹性体管道补偿器及其成型方法
CN115264189A (zh) 一种输氢用塑料复合管及其制备方法
WO2023027309A1 (ko) 강재 코팅용 복합 필름 및 이의 제조 방법
WO2015178662A1 (ko) 연속섬유 강화 복합재 및 그의 제조방법
CN209743883U (zh) 一种石油化工用计量油管
CN107057190B (zh) 一种隔离混凝土保护预留钢筋用的套管
ITMI980174A1 (it) Tubo riciclabile completamente al termine della propria vita utile
WO2022103086A1 (ko) 소직경 장축 수소저장탱크의 라이너 및 그 제조방법
JPH09207197A (ja) 補強条材入り熱可塑性樹脂パイプの成形方法およびそれに用いる装置
WO2017159921A1 (ko) 연료 저장 탱크용 라이너 및 이를 포함하는 연료 저장 탱크

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916251

Country of ref document: EP

Kind code of ref document: A1