WO2022103086A1 - 소직경 장축 수소저장탱크의 라이너 및 그 제조방법 - Google Patents

소직경 장축 수소저장탱크의 라이너 및 그 제조방법 Download PDF

Info

Publication number
WO2022103086A1
WO2022103086A1 PCT/KR2021/016024 KR2021016024W WO2022103086A1 WO 2022103086 A1 WO2022103086 A1 WO 2022103086A1 KR 2021016024 W KR2021016024 W KR 2021016024W WO 2022103086 A1 WO2022103086 A1 WO 2022103086A1
Authority
WO
WIPO (PCT)
Prior art keywords
dome
liner
cylinder part
storage tank
small
Prior art date
Application number
PCT/KR2021/016024
Other languages
English (en)
French (fr)
Inventor
허석봉
전상진
허애린
이창욱
Original Assignee
주식회사 에스첨단소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스첨단소재 filed Critical 주식회사 에스첨단소재
Priority to DE112021005956.4T priority Critical patent/DE112021005956T5/de
Publication of WO2022103086A1 publication Critical patent/WO2022103086A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/063Arrangement of tanks
    • B60K15/067Mounting of tanks
    • B60K15/07Mounting of tanks of gas tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • B60K2001/0438Arrangement under the floor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K2015/03309Tanks specially adapted for particular fuels
    • B60K2015/03315Tanks specially adapted for particular fuels for hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/063Arrangement of tanks
    • B60K2015/0634Arrangement of tanks the fuel tank is arranged below the vehicle floor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/20Energy converters
    • B60Y2400/202Fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0673Polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0134Two or more vessels characterised by the presence of fluid connection between vessels
    • F17C2205/0142Two or more vessels characterised by the presence of fluid connection between vessels bundled in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0134Two or more vessels characterised by the presence of fluid connection between vessels
    • F17C2205/0146Two or more vessels characterised by the presence of fluid connection between vessels with details of the manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0305Bosses, e.g. boss collars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2118Moulding by injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2127Moulding by blowing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/219Working processes for non metal materials, e.g. extruding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/221Welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/018Adapting dimensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0173Railways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0176Buses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0178Cars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to a liner for a small-diameter long-axis hydrogen storage tank for storing hydrogen for a fuel cell and a method for manufacturing the same, and more particularly, to a liner having a small diameter and a long length by separating each part according to its shape, and then manufacturing them It relates to a liner for a fused small-diameter long-axis hydrogen storage tank and a method for manufacturing the same.
  • Hydrogen is the most common element in the universe, has high energy per unit weight, and is an energy source that can be stored in large quantities.
  • Hydrogen fuel cells generate electricity by reacting hydrogen with air and are supplied with hydrogen through a hydrogen storage tank. Accordingly, the hydrogen storage tank has a hydrogen inflow and outflow boss installed on the liner, and carbon fiber is wound to reinforce the strength to withstand high pressure.
  • a method of manufacturing a liner used in such a small-diameter long-axis type hydrogen storage tank there are generally an injection-extrusion fusion molding method, a rotational molding method, a blow molding method, and the like.
  • the liner of the small-diameter long-axis hydrogen storage tank has a small diameter and a long length, there is a problem in that the thickness and weight increase due to the need for a draft taper when manufactured by the injection molding method.
  • the rotational molding method is a method of high-speed rotation after inputting the molten raw material into the molding die, it is difficult to form the dome-shaped part constituting both ends of the liner, so that the part has an incomplete shape or is impossible to mold. there is.
  • the present invention was conceived to solve these problems, and the present invention is a result of the research project as follows.
  • the present invention is to solve the above problems, and the liner of a small-diameter long-axis hydrogen storage tank for storing hydrogen for fuel cells is separated into a cylinder part, a first dome part, and a second dome part according to the shape, and each is manufactured by an optimal method.
  • An object of the present invention is to provide a liner for a small-diameter long-axis hydrogen storage tank in which they are fused to each other and a method for manufacturing the same.
  • the liner of the small-diameter long-axis hydrogen storage tank is to store hydrogen for a fuel cell, and includes a cylinder part having a straight tube shape with both ends open; a first dome portion fused to one end of the cylinder portion and having a dome shape; a second dome part that is fused to the other end of the cylinder part and has a dome shape; and a nozzle boss coupled to at least one of the first dome part and the second dome part, and through which hydrogen flows in and out.
  • the cylinder part, the first dome part, and the second dome part be made of a synthetic resin material capable of storing hydrogen gas due to low hydrogen gas permeability.
  • the nozzle boss is made of a metal material and is insert injection molded into at least one of the first dome part and the second dome part made of the synthetic resin material, respectively.
  • the cylinder part, the first dome part, and the second dome part are made of a polyamide material.
  • the cylinder part is molded by extruding a molten raw material to dies, and further includes an outer shell covering the outer peripheral surface of the cylinder part, and forming a multi-layer structure including the cylinder part and the outer shell it is preferable
  • the outer shell has a waterproof function so that coolant does not flow into the extruded cylinder part.
  • an inner shell (inner shell) covering the inner circumferential surface of the cylinder part, and to form a multi-layer structure including the cylinder part and the inner shell.
  • the inner shell preferably includes a gas barrier resin layer.
  • the inner shell preferably includes a polyamide layer laminated on the exposed surface of the gas barrier resin layer.
  • the method for manufacturing a liner for a small-diameter long-axis hydrogen storage tank is to manufacture a liner for a small-diameter long-axis hydrogen storage tank for storing hydrogen for a fuel cell.
  • a partial molding step a second part forming step of forming a first dome having a dome shape; a third part forming step of forming a second dome having a dome shape; a first welding step of welding the first dome part to one end of the cylinder part; and a second fusing step of fusing the second dome part to the other end of the cylinder part.
  • the first partial molding step is a step of extruding the molten raw material to a die to shape the cylinder part, and extrusion molding into a multi-layer structure including an outer shell covering the outer circumferential surface of the cylinder part by a multi-layer extrusion molding machine.
  • a cooling step of spraying cooling water to the outer surface of the extrusion-molded multi-layer structure In addition, a cooling step of spraying cooling water to the outer surface of the extrusion-molded multi-layer structure; and a shell removing step of removing the outer shell after the cooling step.
  • the first partial molding step is a step of forming a multi-layer structure including an inner shell covering the inner circumferential surface of the cylinder part.
  • the present invention as described above provides a liner of a small-diameter long-axis hydrogen storage tank that can be used by connecting a plurality of hydrogen storage tanks in parallel.
  • the liner of the small-diameter long-axis hydrogen storage tank is separated into a straight tube-shaped cylinder part and dome-shaped first and second dome parts for each shape and manufactured by an optimal method, and then fused to each other to improve the liner characteristics. It can reduce manufacturing cost and time.
  • FIG. 1 is an exploded perspective view showing a liner of a small-diameter long-axis hydrogen storage tank according to the present invention.
  • FIG. 2 is an arrangement state diagram of a small-diameter long-axis hydrogen storage tank according to the present invention.
  • FIG. 3 is a diagram illustrating a small-diameter long-axis hydrogen storage tank according to the present invention applied to a hydrogen vehicle.
  • Figure 4 is a view showing the outer shell of the present invention.
  • FIG. 5 is a view showing a multi-layer extruder applicable to the present invention.
  • FIG. 6 is a view showing an inner shell of the present invention.
  • FIG. 7 is a flowchart illustrating a method for manufacturing a liner of a small-diameter long-axis hydrogen storage tank according to the present invention.
  • the liner 10 of the small-diameter long-axis hydrogen storage tank is for storing hydrogen for a fuel cell and supplying it to the fuel cell system (stack), and includes a cylinder part 11, a first dome part ( 12), the second dome portion 13 and the nozzle boss 14 are included.
  • a large number of small-diameter long-axis hydrogen storage tanks (HT) are connected and used through a manifold (MF) according to the supply capacity, and although it varies depending on the manufacturer, the ratio of diameter and length is usually 1:10 ⁇ 20, which is small in diameter and long. Therefore, since the diameter of the hydrogen storage tank (HT) is small, it can be installed with a larger capacity in the same installation space.
  • MF manifold
  • the small-diameter long-axis hydrogen storage tank (HT) can be installed in place of the hydrogen storage tank (HT) without modification of the design space for the battery pack when installed on the electric vehicle platform. Therefore, it is advantageous for space utilization, space diversion and modularization.
  • the present invention is divided into a straight tube or a cylindrical cylinder 11 and a dome-shaped first dome 12 and a second dome 13, respectively. After they are manufactured by the method of Accordingly, it is possible to reduce manufacturing cost and manufacturing time while improving liner properties.
  • the cylinder part 11 is formed in the shape of a straight tube with both ends open. Since the cylinder part 11 is independently manufactured from the first dome part 12 and the second dome part 13, it can be manufactured by a method advantageous for forming a straight pipe. For example, the cylinder part 11 is manufactured through injection molding or extrusion molding.
  • the first dome portion 12 constitutes one end of the liner 10 of the small-diameter long-axis hydrogen storage tank and has a dome shape.
  • the first dome portion 12 is fusion-bonded in its inner direction to one end of the cylinder portion 11 in a shape-fitting manner.
  • the second dome portion 13 constitutes the other end of the liner 10 of the small-diameter long-axis hydrogen storage tank and has a dome shape as well.
  • the second dome portion 13 is fusion-bonded to the other end of the cylinder portion 11 in the inner direction in a shape-fitting manner.
  • first dome part 12 and the second dome part 13 are also manufactured separately from the cylinder part 11, it is possible to manufacture by a method suitable for the dome shape.
  • the first dome portion 12 and the second dome portion 13 are each manufactured by an injection molding method.
  • first dome portion 12 and the second dome portion 13 mean the longitudinal ends of the liner 10 of the small-diameter long-axis hydrogen storage tank, the first dome portion 12 and the second dome portion
  • the dome shape defining (13) includes a shape deformed from an intact hemispherical shape.
  • the nozzle boss 14 is coupled to at least one of the first dome portion 12 and the second dome portion 13 . That is, it is coupled to the first dome portion 12 or the second dome portion 13, or both, depending on the use or capacity.
  • the nozzle boss 14 provides a pipe through which hydrogen, which is an energy source, flows in and out, and is made of a metal material.
  • the metal nozzle boss 14 is connected to the manifold MF or various valves.
  • the first dome portion 12 and the second dome portion 13 to which the nozzle boss 14 is coupled are fused to both ends of the cylinder portion 11 , respectively, to constitute the integral liner 10 .
  • the liner 10 is wound with a carbon fiber impregnated with a thermosetting resin or a thermoplastic resin to reinforce the strength.
  • the cylinder part 11, the first dome part 12, and the second dome part 13 are made of a synthetic resin material to reduce weight and facilitate molding.
  • synthetic resins a synthetic resin capable of storing hydrogen gas is adopted due to its low hydrogen gas permeability.
  • Synthetic resins include polyketone (PK), polyoxymethylene (POM, polyacetal), polyethylene (PE), high-density polyethylene (HDPE), polyamide (PA, nylon), and reinforced polyamide that block or minimize the permeation of hydrogen.
  • PK polyketone
  • POM polyoxymethylene
  • PE polyethylene
  • HDPE high-density polyethylene
  • PA polyamide
  • nylon nylon
  • reinforced polyamide that block or minimize the permeation of hydrogen.
  • a polymer material may be applied.
  • polyamide is a high molecular compound having an amide bond, and has excellent high strength, abrasion resistance, heat resistance and cold resistance, as well as very low permeability to hydrogen gas having a very small molecular size, which is advantageous for hydrogen storage.
  • the cylinder part 11, the first dome part 12, and the second dome part 13 are molded by a method optimized for each shape using polyamide, and these are fused by shape fitting so that the ends abut each other to form a liner. (10) is provided.
  • the nozzle boss 14 is made of a metal material.
  • the nozzle boss 14 is shaped by forging after cutting an aluminum billet to have a tube portion through which hydrogen flows in and out, and improves physical properties through heat treatment.
  • the nozzle boss 14 is provided at the longitudinal end of the liner, that is, at least one of the first dome portion 12 and the second dome portion 13, and the metal nozzle boss 14 is made of a synthetic resin material. It is coupled to the first dome portion 12 or the second dome portion 13 .
  • the nozzle boss 14 is inserted into the insert cavity of the molding mold corresponding to the dome portion (the first dome portion and/or the second dome portion) and then molten synthetic resin is injected to the dome portion, whereby the nozzle boss 14 is coupled to the dome portion Insert injection method is applied.
  • the cylinder part 11 may further include an outer shell 11-O.
  • the outer shell 11-O is a layer that imparts functionality to the tubular cylinder part 11 and is closely stacked on the outer circumferential surface of the cylinder part 11 to cover the outer circumferential surface.
  • each molten raw material can be extruded to the dies 21 , and the outer shell 11-O is laminated on the cylinder part 11 in a multi-layer structure to form
  • the outer shell 11-O provides a waterproof function so that coolant does not flow into the extruded cylinder part 11 as an example of functionality. Therefore, the outer shell 11-O serves as a waterproof layer when cooling water is sprayed for cooling after extruding the molten raw material.
  • the polyamide (PA) when the cylinder part 11 is molded of polyamide (PA), the polyamide (PA) has a low hydrogen permeability and is easy to store hydrogen, but has excellent moisture absorption properties. Therefore, when the polyamide cylinder part 11 is cooled with cooling water after extrusion, the cooling water is absorbed.
  • the cylinder unit 11 disposed inside the cylinder unit 11 can prevent absorption (moisture absorption) of the cooling water. make it possible
  • a synthetic resin material may also be applied to the functional outer shell 11-O having a waterproof function, and the synthetic resin providing a waterproof function includes polyethylene (PE).
  • PE polyethylene
  • the epoxy adhesive used to wind the carbon fiber on the liner 10 as a subsequent process does not adhere to the polyethylene (PE), it must be removed so that the cylinder part 11 is exposed to the outside after the coolant is sprayed.
  • Epoxy resin is a synthetic resin that can be extruded with a waterproof function.
  • the epoxy resin constituting the outer shell 11-O is mixed with the carbon fiber bonding epoxy wound around the liner 10 to further increase bonding strength.
  • glass fiber reinforced polyamide can be used as an outer shell (11-O) that has a waterproof function and reinforces strength.
  • the cylinder part 11 may include an inner shell 11-I.
  • the inner shell 11-I is also a layer that imparts functionality to the tubular cylinder part 11 and is closely stacked on the inner circumferential surface of the cylinder part 11 to cover the inner circumferential surface.
  • the inner shell 11-I is formed in a tubular shape having a diameter smaller than that of the cylinder part 11 .
  • a separately manufactured inner shell 11-I may be attached.
  • the inner shell 11-I may also be extrusion-molded together with the cylinder part 11 according to a material or a method.
  • the inner shell 11-I may include the gas barrier resin layer 11a.
  • the gas barrier resin layer 11a blocks the permeation of hydrogen, and preferably, ethylene vinyl alcohol (EVOH) or a synthetic resin containing the same may be applied.
  • EVOH ethylene vinyl alcohol
  • the inner shell 11-I itself may also have a multi-layer structure.
  • the inner shell 11-I includes a polyamide layer 11b laminated on the exposed surface of the gas barrier resin layer 11a. It is preferable to do
  • a polyamide layer ( 11b) is further laminated.
  • the present invention as described above provides a liner 10 of a small-diameter long-axis hydrogen storage tank that can be used by connecting a plurality of fuel cell tanks.
  • the liner 10 of the small-diameter long-axis hydrogen storage tank is divided into a straight tube-shaped cylinder part 11 and a dome-shaped first dome part 12 and a second dome part 13 for each shape, each using an optimal method. After manufacturing, they are fused to each other to supply the liner 10 .
  • the straight tube-shaped cylinder part 11 does not include a dome structure and has a simple shape, it is advantageous for separate production, so by selecting a functional layer such as the outer shell 11-O or the inner shell 11-I, The performance can be improved by stacking them or by stacking them both.
  • the method for manufacturing a liner of a small-diameter long-axis hydrogen storage tank according to the present invention is to manufacture a liner 10 of a small-diameter long-axis hydrogen storage tank for storing hydrogen for a fuel cell, a first partial molding step (S11) , a second partial forming step (S12), a third partial forming step (S13), a first fusion step (S14) and a second fusion step (S15).
  • the liner 10 of the small-diameter long-axis hydrogen storage tank is used by connecting a plurality of lines through the manifold (MF) according to the supply capacity. It is possible.
  • the present invention is divided into a straight tube or a cylindrical cylinder 11 and a dome-shaped first dome 12 and a second dome 13, respectively. After they are manufactured by the method of Accordingly, it is possible to reduce manufacturing cost and manufacturing time while improving liner properties.
  • the cylinder part 11 of a straight tube shape (or cylindrical shape) with both ends open is molded.
  • the cylinder part 11 is manufactured separately from the first dome part 12 and the second dome part 13, it can be manufactured by a method advantageous for single molding of a straight pipe only.
  • the cylinder part 11 is manufactured through injection molding or extrusion molding.
  • the first dome portion 12 having a dome shape is formed.
  • the first dome portion 12 constitutes one end of the liner 10 of the small-diameter long-axis hydrogen storage tank and has a dome shape.
  • the first dome part 12 is manufactured separately from the above-described cylinder part 11, it is possible to manufacture it by a method suitable for the dome shape.
  • the first dome portion 12 is manufactured by an injection molding method.
  • the second dome portion 13 having a dome shape is formed.
  • the second dome portion 13 constitutes the other end of the liner 10 of the small-diameter long-axis hydrogen storage tank and has a dome shape as well.
  • the second dome part 13 is also manufactured separately from the above-described cylinder part 11, it can be manufactured by a method suitable for the dome shape.
  • the second dome portion 12 is manufactured by an injection molding method.
  • the cylinder part 11 , the first dome part 12 , and the second dome part 13 may be sequentially molded or molded at the same time. Accordingly, the order of the first partial forming step (S11) to the third partial forming step (S13) is not particularly limited.
  • the present invention divides the linear tube or cylindrical cylinder part 11 and the dome-shaped first dome part 12 and the second dome part 13 according to the shape of each part constituting the liner, each with an optimal method.
  • the nozzle boss When the first dome portion 12 and the second dome portion 13 are formed, the nozzle boss may be formed together. To this end, when forming the nozzle boss, the nozzle boss 14 through which hydrogen flows is coupled to at least one of the first dome portion 12 and the second dome portion 13 . That is, it is coupled to the first dome portion 12 or the second dome portion 13, or both, depending on the use or capacity.
  • the nozzle boss 14 provides a pipe through which hydrogen, which is an energy source, flows in and out, and is made of a metal material.
  • the metal nozzle boss 14 is connected to the manifold MF or various valves.
  • the nozzle boss 14 is shaped by forging after cutting an aluminum billet to have a tube portion through which hydrogen flows in and out, and improves physical properties through heat treatment.
  • the nozzle boss 14 is provided at the longitudinal end of the liner, that is, at least one of the first dome portion 12 and the second dome portion 13, and the metal nozzle boss 14 is made of a synthetic resin material. It is necessary to couple to the first dome portion 12 or the second dome portion 13 .
  • Insert injection method in which the nozzle boss 14 is coupled to the dome part by inserting the nozzle boss 14 into the insert cavity of the molding mold corresponding to the dome part (the first dome part and/or the second dome part) for bonding and then injecting molten synthetic resin into the dome part This applies.
  • the boss molding step (S14) for coupling the nozzle boss 14 is an insert injection method application step, and a second partial molding step (S12) or a second part molding step (S12) of molding the first dome part 12 according to the coupling target dome part It may proceed simultaneously with the third partial forming step (S13) of forming the dome portion (12).
  • Each part is prepared as above, and the fusion step of connecting them is performed.
  • the fusion step after the first dome part 12 and the second dome part 13 to which the cylinder part 11 and the nozzle boss 14 are coupled are prepared, they are fused to each other and integrated.
  • the first dome part 12 is fused to one end of the cylinder part 11 .
  • thermal welding is performed in a state in which the inner direction of the first dome part 12 is disposed to one end of the cylinder part 11 in a shape-fitting state.
  • the second dome part 13 is fused to the other end of the cylinder part 11 .
  • thermal fusion is performed in a state in which the inner direction of the second dome part 13 is disposed to the other end of the cylinder part 11 in a shape-fitting state.
  • the first dome portion 12 and the second dome portion 13 are each fused by the same welding machine as an embodiment, and the first dome portion 12 and the second dome portion ( 13) may be sequentially fused or fused to both ends of the cylinder part 11 at the same time.
  • the first dome portion 12 and the second dome portion 13 to which the nozzle boss 14 is coupled are fused to both ends of the cylinder portion 11 to constitute the integral liner 10 .
  • the molded liner 10 is reinforced by winding carbon fibers impregnated with a thermosetting resin or a thermoplastic resin in a subsequent process.
  • the cylinder part 11 is molded by extruding the molten raw material to the die, but the outer shell 11-O covering the outer peripheral surface of the cylinder part 11 by a multi-layer extrusion molding machine is formed. It is preferable that the step of extrusion molding to a multi-layer structure including
  • it includes a cooling step of spraying cooling water to the outer surface of the extrusion-molded multi-layer structure.
  • the shell removal step of removing the outer shell 11-O may be selectively performed depending on whether the outer shell 11-O is included in the hydrogen storage tank and used.
  • the method may further include a shell removing step of removing the outer shell 11 -O before the first dome portion 12 and the second dome portion 13 are fused to the cylinder portion 11 .
  • the outer shell 11-O is a layer that imparts functionality to the tubular cylinder part 11, and in an embodiment, each molten raw material is put into the multi-layer extruder 20 to give the outer shell to the cylinder part 11.
  • a multilayer structure in which the shells 11-O are stacked is formed.
  • the outer shell 11-O provides a waterproof function so that coolant does not flow into the extruded cylinder part 11 as an example of functionality. Therefore, the outer shell 11-O serves as a waterproof layer when cooling water is sprayed for cooling after extruding the molten raw material.
  • the polyamide (PA) when the cylinder part 11 is molded of polyamide (PA), the polyamide (PA) has a low hydrogen permeability and is easy to store hydrogen, but has excellent moisture absorption properties. Therefore, when the polyamide cylinder part 11 is cooled with cooling water after extrusion, the cooling water is absorbed.
  • the cylinder unit 11 disposed inside the cylinder unit 11 can prevent absorption (moisture absorption) of the cooling water. make it possible
  • a synthetic resin material may also be applied to the functional outer shell 11-O having a waterproof function, and the synthetic resin providing a waterproof function includes polyethylene (PE).
  • PE polyethylene
  • thermosetting resin or thermoplastic resin used to wind the carbon fiber on the liner 10 as a subsequent process does not adhere at the interface with polyethylene (PE)
  • dome parts 12 and 13 are formed at both ends of the cylinder part 11. Before heat sealing, the outer shell 11-O must be removed.
  • the first partial forming step ( S11 ) may include an inner shell 11 -I covering the inner circumferential surface of the cylinder part 11 to form a multi-layered structure.
  • the inner shell 11-I is also a layer that imparts functionality to the tubular cylinder part 11 and is closely stacked on the inner circumferential surface of the cylinder part 11 to cover the inner circumferential surface.
  • the inner shell 11-I may be attached after applying an adhesive to the inner peripheral surface of the cylinder part 11, a separately manufactured inner shell 11-I may be attached.
  • the inner shell 11-I may also be extrusion-molded together with the cylinder part 11 according to a material or a method.
  • the inner shell 11-I may include the gas barrier resin layer 11a.
  • the gas barrier resin layer 11a blocks the permeation of hydrogen, and preferably, ethylene vinyl alcohol (EVOH) or a synthetic resin containing the same may be applied.
  • EVOH ethylene vinyl alcohol
  • the inner shell 11-I itself may also have a multi-layer structure.
  • the inner shell 11-I includes a polyamide layer 11b laminated on the exposed surface of the gas barrier resin layer 11a. It is preferable to do
  • a polyamide layer ( 11b) may be further laminated.
  • the present invention provides a liner 10 of a small-diameter long-axis hydrogen storage tank that can be used by connecting a plurality of hydrogen storage tanks for fuel cells.
  • the liner 10 of the small-diameter long-axis hydrogen storage tank is divided into a straight tube-shaped cylinder part 11 and a dome-shaped first dome part 12 and a second dome part 13 for each shape, each using an optimal method. After manufacturing, they are fused to each other to supply the liner 10 .
  • the straight tube-shaped cylinder part 11 does not include a dome structure and has a simple shape, it is advantageous for separate production, so by selecting a functional layer such as the outer shell 11-O or the inner shell 11-I, The performance can be improved by stacking them or by stacking them both.
  • the present invention has industrial applicability because it enables storage and supply of hydrogen as an energy source to hydrogen vehicles, ships, flying cars, and distributed power generation facilities using hydrogen fuel cells in the eco-friendly energy industry.

Abstract

본 발명은 연료전지용 수소를 저장하는 소직경 장축 수소저장탱크의 라이너 및 그 제조방법에 관한 것으로, 특히 직경이 작고 길이가 긴 라이너의 각 부분을 그 형상별로 분리하여 제작한 후 이들을 서로 융착한 소직경 장축 수소저장탱크의 라이너 및 그 제조방법에 관한 것이다.

Description

소직경 장축 수소저장탱크의 라이너 및 그 제조방법
본 발명은 연료전지용 수소를 저장하는 소직경 장축 수소저장탱크의 라이너 및 그 제조방법에 관한 것으로, 더욱 상세하게는 직경이 작고 길이가 긴 라이너의 각 부분을 그 형상별로 분리하여 제작한 후 이들을 서로 융착한 소직경 장축 수소저장탱크의 라이너 및 그 제조방법에 관한 것이다.
수소(Hydrogen)는 우주에서 가장 흔한 원소로 단위 무게당 에너지가 높고, 대량 저장이 가능한 에너지원으로 연료전지와 같은 수소 사이클을 통해 전기를 만들 때 생성되는 부산물이 열과 물 뿐인 무공해 에너지 자원이다.
이에 최근에는 전세계적인 친환경 에너지의 사용 추세에 맞추어 수소연료전지를 이용한 수소차(승용차, 버스, 기차), 분산형 발전설비, 건물용 보조전력, 수소 선박 및 플라잉카 등이 개발되고 있다.
수소연료전지는 수소를 공기와 반응시켜 전기를 발생시키는 것으로 수소저장탱크를 통해 수소를 공급받는다. 이에 수소저장탱크는 라이너에 수소 유출입 보스를 설치하고, 탄소섬유 등을 감아 고압에 견디도록 강도를 보강한다.
수소저장탱크 중 소직경 장축 타입의 탱크는 여러개를 병렬 연결하여 대직경 탱크와 동일하거나 그 이상의 용량을 제공하면서도, 전기자동차 플랫폼의 배터리 탑재 공간에도 적용할 수 있게 한다.
이러한 소직경 장축 타입의 수소저장탱크에 사용되는 라이너의 제작 방법으로는 일반적으로 사출-압출 융착성형 공법, 회전 성형 공법 및 블로우 성형 공법 등이 있다.
그러나 소직경 장축 수소저장탱크의 라이너는 직경이 작으면서도 길이가 길어서 사출성형 공법으로 제작시에는 빼기 구배(draft taper) 등의 필요성으로 인해 두께 및 무게가 증가하는 문제가 있다.
또한, 라이너의 중심측을 구성하며 관 형상으로 이루어진 실린더부를 압출성형 공법으로 제작할 경우 압출성형의 특성상 물로 냉각을 시키는 과정에서 라이너 소재에서 필연적으로 흡습이 이루어져 융착부의 품질 관리가 어렵다.
또한, 회전성형 공법은 성형틀에 용융원재를 투입 후 고속 회전시키는 방식이기 때문에, 라이너의 양단부를 구성하는 돔(dome) 형상 부분의 성형이 어려워 해당 부분이 불완전한 형상을 갖거나 성형이 불가능한 문제가 있다.
또한, 블로우성형 공법은 용융상태의 패리슨(parison)이 압출된 후 라이너 성형을 위한 몰드(mold) 사이에 위치시키는 과정에서 냉각되기 때문에, 길이가 긴 소직경 장축 수소저장탱크의 라이너의 성형에는 적합하지 않다.
이러한 문제점을 해결하기 위해 본 발명을 착안하게 되었으며, 본 발명은 아래와 같은 연구과제로 수행된 결과물이다.
[과제번호] JIAT-20-3155
[과제고유번호] 2031550000
[부처명] 산업통상자원부
본 발명은 전술한 문제점을 해결하기 위한 것으로, 연료전지용 수소를 저장하는 소직경 장축 수소저장탱크의 라이너를 그 형상별로 실린더부, 제1 돔부 및 제2 돔부로 분리하여 각각 최적의 공법으로 제작한 후 이들을 서로 융착한 소직경 장축 수소저장탱크의 라이너 및 그 제조방법을 제공하고자 한다.
이를 위해, 본 발명에 따른 소직경 장축 수소저장탱크의 라이너는 연료 전지용 수소를 저장하는 것으로, 양단이 개방된 직선관 형상의 실린더부와; 상기 실린더부의 일측 단부에 융착되며, 돔(dome) 형상으로 이루어진 제1 돔부와; 상기 실린더부의 타측 단부에 융착되며, 돔(dome) 형상으로 이루어진 제2 돔부; 및 상기 제1 돔부 및 제2 돔부 중 어느 하나 이상에 결합되며, 수소가 유출입되는 노즐 보스;를 포함하는 것을 특징으로 한다.
이때, 상기 실린더부, 제1 돔부 및 제2 돔부는 수소가스 투과성이 낮아 수소가스를 저장할 수 있는 합성수지 재질로 이루어져 있는 것이 바람직하다.
또한, 상기 노즐 보스는 금속 재질로 이루어지며 각각 상기 합성수지 재질의 제1 돔부 및 제2 돔부 중 어느 하나 이상에 인서트 사출 성형된 것이 바람직하다.
또한, 상기 실린더부, 제1 돔부 및 제2 돔부는 폴리아미드(Polyamide) 재질로 이루어져 있는 것이 바람직하다.
또한, 상기 실린더부는 다이스(dies)에 용융 원재를 압출시켜 성형하되, 상기 실린더부의 외주면을 덮는 아웃터 쉘(outer shell)을 더 포함하며, 상기 실린더부와 아웃터 쉘을 포함하여 다중층 구조를 형성하는 것이 바람직하다.
또한, 상기 아웃터 쉘은 상기 압출 성형된 실린더부에 냉각수가 유입되지 않도록 방수 기능을 갖는 것이 바람직하다.
또한, 상기 실린더부의 내주면을 덮는 이너 쉘(inner shell)을 더 포함하며, 상기 실린더부와 이너 쉘을 포함하여 다중층 구조를 형성하는 것이 바람직하다.
또한, 상기 이너 쉘은 가스 배리어(gas barrier) 수지층을 포함하는 것이 바람직하다.
또한, 상기 이너 쉘은 상기 가스 배리어 수지층의 노출 표면에 적층되는 폴리아미드층을 포함하는 것이 바람직하다.
한편, 본 발명에 따른 소직경 장축 수소저장탱크의 라이너 제조방법은 연료 전지용 수소를 저장하는 소직경 장축 수소저장탱크의 라이너를 제조하는 것으로, 양단이 개방된 직선관 형상의 실린더부를 성형하는 제1 부분 성형단계와; 돔 형상으로 이루어진 제1 돔부를 성형하는 제2 부분 성형단계와; 돔 형상으로 이루어진 제2 돔부를 성형하는 제3 부분 성형단계와; 상기 제1 돔부를 상기 실린더부의 일측 단부에 융착시키는 제1 융착단계; 및 상기 제2 돔부를 상기 실린더부의 타측 단부에 융착시키는 제2 융착단계;를 포함하는 것을 특징으로 한다.
이때, 상기 제1 부분 성형단계는 다이스에 용융 원재를 압출시켜 상기 실린더부를 성형하되, 다중층 압출 성형기에 의해 상기 실린더부의 외주면을 덮은 아웃터 쉘을 포함하여 다중층 구조로 압출 성형하는 단계인 것이 바람직하다.
또한, 상기 압출 성형된 다중층 구조의 외표면에 냉각수를 분사하는 냉각단계; 및 상기 냉각단계 이후 상기 아웃터 쉘을 제거하는 쉘 제거단계;를 더 포함하는 것이 바람직하다.
또한, 상기 제1 부분 성형단계는 상기 실린더부의 내주면을 덮는 이너 쉘(inner shell)을 포함하여 다중층 구조를 형성하는 단계인 것이 바람직하다.
이상과 같은 본 발명은 다수의 수소저장탱크를 병렬로 연결하여 사용 가능하게 하는 소직경 장축 수소저장탱크의 라이너를 제공한다. 또한 소직경 장축 수소저장탱크의 라이너를 그 형상별로 직선관 형상의 실린더부와 돔 형상의 제1 돔부 및 제2 돔부로 분리하여 각각 최적의 공법으로 제작한 후 이들을 서로 융착하여 라이너 특성을 향상시키면서도 제조비용 및 시간을 절감할 수 있게 한다.
도 1은 본 발명에 따른 소직경 장축 수소저장탱크의 라이너를 나타낸 분해 사시도이다.
도 2는 본 발명에 따른 소직경 장축 수소저장탱크의 배치 상태도이다.
도 3은 본 발명에 따른 소직경 장축 수소저장탱크를 수소차에 적용한 도이다.
도 4는 본 발명의 아웃터 쉘을 나타낸 도이다.
도 5는 본 발명에 적용 가능한 멀티레이어 압출기를 나타낸 도이다.
도 6은 본 발명의 이너 쉘을 나타낸 도이다.
도 7은 본 발명에 따른 소직경 장축 수소저장탱크의 라이너 제조방법을 나타낸 흐름도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 소직경 장축 수소저장탱크의 라이너 및 그 제조방법에 대해 상세히 설명한다.
도 1과 같이, 본 발명에 따른 소직경 장축 수소저장탱크의 라이너(10)는 연료 전지용 수소를 저장하였다가 연료 전지 시스템(스택)에 공급하기 위한 것으로, 실린더부(11), 제1 돔부(12), 제2 돔부(13) 및 노즐 보스(14)를 포함한다.
도 2와 같이, 소직경 장축 수소저장탱크(HT)는 공급 용량에 따라 매니폴드(MF)를 통해 다수개를 연결하여 사용하며, 제조사에 따라 다르지만 통상적으로 직경과 길이의 비율이 1 : 10~20로 직경이 작고 길이가 길다. 따라서 수소저장탱크(HT)의 직경이 작아서 동일한 설치 공간에 더 많은 용량으로 설치가 가능하다.
도 3과 같이, 실시예로 소직경 장축 수소저장탱크(HT)는 전기차 플랫폼에 설치시 배터리 팩을 위한 설계 공간의 변형없이 수소저장탱크(HT)를 대체하여 설치할 수 있게 한다. 따라서, 공간 활용, 공간 전용 및 모듈화에 유리하다.
특히, 본 발명은 라이너(10)를 구성하는 각 부분의 형상별로 직선관이나 원통 형상의 실린더부(11)와 돔 형상의 제1 돔부(12) 및 제2 돔부(13)로 분리하여 각각 최적의 공법으로 제작한 후 이들을 서로 융착한다. 따라서, 라이너 특성을 향상시키면서도 제조비용 및 제조시간을 절감할 수 있게 한다.
이를 위해, 실린더부(11)는 양단이 개방된 직선관 형상으로 이루어진다. 실린더부(11)는 제1 돔부(12) 및 제2 돔부(13)와 별개로 단독 제작되므로, 직선관의 성형에 유리한 공법으로 제작할 수 있다. 예컨대, 사출성형아니 압출성형을 통해 실린더부(11)를 제작한다.
제1 돔부(12)는 소직경 장축 수소저장탱크의 라이너(10)의 일단부를 구성하는 것으로 돔(dome) 형상으로 이루어진다. 이러한 제1 돔부(12)는 그 내측 방향이 실린더부(11)의 일측 단부에 형상 맞춤으로 융착된다.
제2 돔부(13)는 소직경 장축 수소저장탱크의 라이너(10)의 타단부를 구성하는 것으로 마찬가지로 돔 형상으로 이루어진다. 또한 제2 돔부(13)는 그 내측 방향이 실린더부(11)의 타측 단부에 형상 맞춤으로 융착된다.
제1 돔부(12)와 제2 돔부(13) 역시 각각 실린더부(11)와는 별개로 제작되므로, 돔 형상에 적합한 공법으로 제작이 가능하다. 예컨대, 제1 돔부(12)와 제2 돔부(13)는 각각 사출성형 공법으로 제작된다.
다만, 본 발명에서 제1 돔부(12) 및 제2 돔부(13)는 소직경 장축 수소저장탱크의 라이너(10)의 길이 방향 말단을 의미하는 것므로, 제1 돔부(12) 및 제2 돔부(13)를 정의하는 돔 형상은 온전한 반구 형상으로부터 변형된 형상도 포함한다.
노즐 보스(14)는 제1 돔부(12) 및 제2 돔부(13) 중 어느 하나 이상에 결합된다. 즉, 용도나 용량 등에 따라 제1 돔부(12) 또는 제2 돔부(13)에 결합되거나 혹은 이들 모두에 결합된다.
노즐 보스(14)는 에너지원인 수소가 유출입되는 관로를 제공하는 것으로 금속 재질로 이루어진다. 금속 재질의 노즐 보스(14)는 매니폴드(MF)나 각종 밸브 등에 연결된다.
따라서, 노즐 보스(14)가 결합된 제1 돔부(12) 및 제2 돔부(13)는 각각 실린더부(11)의 양측 말단에 융착되어 일체의 라이너(10)를 구성하게 된다. 나아가 라이너(10)에는 열경화성수지나 열가소성수지를 함침시킨 탄소섬유 등을 감아 강도를 보강한다.
이때, 실린더부(11), 제1 돔부(12) 및 제2 돔부(13)는 무게를 줄이면서도 성형이 용이하도록 합성수지 재질로 제작하는 것이 바람직하다. 특히 합성수지 중 수소가스 투과성이 낮아 수소가스를 저장할 수 있는 합성수지를 채택한다.
수소는 작은 분자크기로 인해 높은 투과도를 갖기 때문에, 이러한 수소를 저장할 수 있도록 가스 투과성이 낮은 합성수지를 성형하여 실린더부(11), 제1 돔부(12) 및 제2 돔부(13)를 제작한다.
합성수지는 폴리케톤(PK), 폴리옥시메틸렌(POM, 폴리아세탈), 폴리에틸렌(PE), 고밀도 폴리에틸렌(HDPE), 폴리아미드(PA, 나일론) 및 강화 폴리아미드를 비롯하여 수소의 투과를 차단하거나 최소화하는 고분자 소재가 적용될 수 있다.
그 중 폴리아미드는 아마이드 결합을 가지는 고분자 화합물로 고강도, 내마모성, 내열성 및 내한성이 뛰어남은 물론, 매우 작은 분자 크기의 수소 가스에 대해서도 투과도가 매우 낮아 수소 저장에 유리하다.
따라서, 실린더부(11), 제1 돔부(12) 및 제2 돔부(13)는 폴리아미드를 이용하여 각각의 형상에 최적화된 공법으로 성형하고, 이들을 단부가 서로 맞닿도록 형상 맞춤으로 융착하여 라이너(10)를 제공한다.
노즐 보스(14)는 금속 재질로 이루어진다. 노즐 보스(14)는 실시예로 수소가 유출입되는 관 부를 갖도록 알루미늄 빌릿(billet)을 절단 후 단조 성형하여 모양을 갖추고, 열처리를 통해 물성을 향상시킨다.
또한, 노즐 보스(14)는 라이너의 길이 방향 단부 즉, 제1 돔부(12)나 제2 돔부(13) 중 어느 하나 이상에 구비되는 것으로, 금속 재질의 노즐 보스(14)는 합성수지 재질의 제1 돔부(12)나 제2 돔부(13)에 결합된다.
결합을 위해 돔부(제1 돔부 및/또는 제2 돔부)에 대응하는 성형 몰드의 인서트 캐비티(insert cavity) 내에 노즐 보스(14)를 삽입 후 용융 합성수지를 주입함으로써 돔부에 노즐 보스(14)가 결합되는 인서트 사출 공법이 적용된다.
한편, 도 4를 참조하면, 실린더부(11)는 아웃터 쉘(outer shell, 11-O)을 더 포함할 수 있다. 아웃터 쉘(11-O)은 관 형상의 실린더부(11)에 기능성을 부여하는 층으로 실린더부(11)의 외주면에 밀착 적층되어 외주면을 덮는다.
도 5와 같이, 멀티레이어 압출 성형기(20)를 적용하면 다이스(dies, 21)에 각각의 용융 원재를 압출할 수 있으며, 실린더부(11)에 아웃터 쉘(11-O)이 적층된 다층 구조를 형성한다.
아웃터 쉘(11-O)은 기능성의 일 예로 압출 성형된 실린더부(11)에 냉각수가 유입되지 않도록 방수 기능을 제공한다. 따라서, 용융 원재를 압출 성형 후 냉각을 위해 냉각수를 분사시 아웃터 쉘(11-O)이 방수층 역할을 한다.
특히, 실린더부(11)를 폴리아미드(PA)로 성형하는 경우, 폴리아미드(PA)는 수소 투과도가 낮아 수소 저장에 용이한 반면, 흡습 특성이 뛰어나다. 따라서, 폴리아미드 실린더부(11)를 압출 후 냉각수로 냉각하면 냉각수를 흡수하게 된다.
냉각수를 흡수한 폴리아미드 실린더부(11)는 그 양단부에 결합되는 제1 돔부(12) 및 제2 돔부(13)와의 열융착이 이루어지 않기 때문에 제작이 어렵거나 불량이 발생한다.
그러므로, 냉각수를 분사하는 실린더부(11)의 외주면에 방수 기능의 아웃터 쉘(11-O)을 더 포함하여, 그 내측에 배치된 실린더부(11)에서 냉각수를 흡수(흡습)하는 것을 방지할 수 있도록 한다.
방수 기능을 갖는 기능성 아웃터 쉘(11-O) 역시 합성수지 재질이 적용될 수 있으며, 방수 기능을 제공하는 합성수지에는 폴리에틸렌(PE)도 포함된다.
다만, 후속 공정으로 라이너(10)에 탄소 섬유를 감는데 이용되는 에폭시 접착제는 폴리에틸렌(PE)과의 부착되지 않기 때문에 냉각수 분사 이후에는 실린더부(11)가 외부로 노출되도록 제거되어야 한다.
따라서, 방수 기능과 함께 에폭시 접착제 부착 성능이 뛰어난 합성수지를 아웃터 쉘(11-O)에 적용하면, 냉각수 분사 이후에도 아웃터 쉘(11-O)을 제거할 필요없이 기능성을 유지할 수 있게 된다.
방수 기능과 함께 압출 성형이 가능한 합성수지로는 에폭시 수지가 있다. 아웃터 쉘(11-O)을 구성하는 에폭시 수지는 라이너(10)에 감는 탄소 섬유 접착용 에폭시와 혼합되어 결합력을 더욱 높인다. 그 외 유리섬유 강화 폴리아미드 등도 방수 기능을 가지면서 강도를 보강하는 아웃터 쉘(11-O)로 사용할 수 있다.
도 6을 참조하며, 실린더부(11)는 이너 쉘(inner shell, 11-I)을 포함할 수 있다. 이너 쉘(11-I) 역시 관 형상의 실린더부(11)에 기능성을 부여하는 층으로 실린더부(11)의 내주면에 밀착 적층되어 내주면을 덮는다.
이를 위해 이너 쉘(11-I)은 실린더부(11)보다 직경이 작은 관 형상으로 이루어진다. 실린더부(11)에 이너 쉘(11-I)이 적층된 다층 구조를 위해, 실시예로서 실린더부(11)의 내주면에 접착제를 도포 후 별도로 제작된 이너 쉘(11-I)을 부착할 수 있다. 다만, 이너 쉘(11-I) 역시 재질이나 공법에 따라 실린더부(11)와 함께 압출 성형될 수 있다.
이때, 이너 쉘(11-I)은 가스 배리어 수지층(11a)을 포함할 수 있다. 가스 배리어 수지층(11a)은 수소의 투과를 차단하는 것으로, 바람직하게는 에틸렌비닐알코올(EVOH)나 이를 포함하는 합성수지가 적용될 수 있다.
또한, 이너 쉘(11-I) 자체도 다층 구조로 구성될 수 있으며, 이 경우 이너 쉘(11-I)은 가스 배리어 수지층(11a)의 노출 표면에 적층되는 폴리아미드층(11b)을 포함하는 것이 바람직하다.
예컨대, 라이너는 외부 극한 환경이나 수소의 온도 변화에 대응하여 -45℃~85℃의 범위의 온도에서도 견딜 수 있어야 하므로, 습도와 온도에 민감한 에틸렌비닐알코올 층(11a)의 표면에 폴리아미드층(11b)을 추가로 적층한다.
이상과 같은 본 발명은 다수의 연료전지탱크를 연결하여 사용할 수 있는 소직경 장축 수소저장탱크의 라이너(10)를 제공한다.
또한 소직경 장축 수소저장탱크의 라이너(10)를 그 형상별로 직선관 형상의 실린더부(11)와 돔 형상의 제1 돔부(12) 및 제2 돔부(13)로 분리하여 각각 최적의 공법으로 제작한 후 이들을 서로 융착하여 라이너(10)를 공급한다.
또한, 직선관 형상의 실린더부(11)는 돔 구조를 포함하지 않고 형상이 단순하여 별도 제작에 유리하므로, 아웃터 쉘(11-O)이나 이너 쉘(11-I)과 같은 기능성 층을 선택하여 적층하거나 이들 모두를 적층하여 성능을 향상시킬 수 있다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 소직경 장축 수소저장탱크의 라이너 제조방법에 대해 상세히 설명한다.
도 7과 같이, 본 발명에 따른 소직경 장축 수소저장탱크의 라이너 제조방법은 연료 전지용 수소를 저장하는 소직경 장축 수소저장탱크의 라이너(10)를 제조하는 것으로, 제1 부분 성형단계(S11), 제2 부분 성형단계(S12), 제3 부분 성형단계(S13), 제1 융착단계(S14) 및 제2 융착단계(S15)를 포함한다.
소직경 장축 수소저장탱크의 라이너(10)는 공급 용량에 따라 매니폴드(MF)를 통해 다수개를 연결하여 사용하는 것으로, 라이너(10)의 직경이 작아서 동일한 설치 공간에 더 많은 용량으로 설치가 가능하다.
특히, 본 발명은 라이너(10)를 구성하는 각 부분의 형상별로 직선관이나 원통 형상의 실린더부(11)와 돔 형상의 제1 돔부(12) 및 제2 돔부(13)로 분리하여 각각 최적의 공법으로 제작한 후 이들을 서로 융착한다. 따라서, 라이너 특성을 향상시키면서도 제조비용 및 제조시간을 절감할 수 있게 한다.
이를 위해, 상기 제1 부분 성형단계(S11)에서는 양단이 개방된 직선관 형상(혹은 원통 형상)의 실린더부(11)를 성형한다.
실린더부(11)는 제1 돔부(12) 및 제2 돔부(13)와 별개로 단독 제작되므로, 직선관만의 단독 성형에 유리한 공법으로 제작할 수 있다. 예컨대, 사출성형아니 압출성형을 통해 실린더부(11)를 제작한다.
제2 부분 성형단계(S12)에서는 돔 형상으로 이루어진 제1 돔부(12)를 성형한다. 제1 돔부(12)는 소직경 장축 수소저장탱크의 라이너(10)의 일단부를 구성하는 것으로 돔(dome) 형상으로 이루어진다.
제1 돔부(12)는 상기한 실린더부(11)와는 별개로 제작되므로, 돔 형상에 적합한 공법으로 제작이 가능하다. 예컨대, 제1 돔부(12)는 사출성형 공법으로 제작된다.
제3 부분 성형단계(S13)에서는 돔 형상으로 이루어진 제2 돔부(13)를 성형한다. 제2 돔부(13)는 소직경 장축 수소저장탱크의 라이너(10)의 타단부를 구성하는 것으로 마찬가지로 돔 형상으로 이루어진다.
제2 돔부(13) 역시 상기한 실린더부(11)와는 별개로 제작되므로, 돔 형상에 적합한 공법으로 제작이 가능하다. 예컨대, 제2 돔부(12)는 사출성형 공법으로 제작된다.
다만, 실린더부(11), 제1 돔부(12) 및 제2 돔부(13)는 순차로 성형 제작되거나 혹은 동시에 성형이 진행될 수 있다. 따라서, 제1 부분 성형단계(S11) 내지 제3 부분 성형단계(S13)는 그 순서에 특별한 제한은 없다.
이를 통해 본 발명은 라이너를 구성하는 각 부분의 형상별로 직선관이나 원통 형상의 실린더부(11)와 돔 형상의 제1 돔부(12) 및 제2 돔부(13)로 분리하여 각각 최적의 공법으로 제작한다.
제1 돔부(12) 및 제2 돔부(13) 성형시 노즐 보스를 함께 성형할 수 있다. 이를 위해 노즐 보스 성형시 수소가 유출입되는 노즐 보스(14)를 제1 돔부(12) 및 제2 돔부(13) 중 어느 하나 이상에 결합시킨다. 즉, 용도나 용량 등에 따라 제1 돔부(12) 또는 제2 돔부(13)에 결합되거나 혹은 이들 모두에 결합된다.
노즐 보스(14)는 에너지원인 수소가 유출입되는 관로를 제공하는 것으로 금속 재질로 이루어진다. 금속 재질의 노즐 보스(14)는 매니폴드(MF)나 각종 밸브 등에 연결되는 것이다.
노즐 보스(14)는 실시예로 수소가 유출입되는 관 부를 갖도록 알루미늄 빌릿(billet)을 절단 후 단조 성형하여 모양을 갖추고, 열처리를 통해 물성을 향상시킨다.
또한, 노즐 보스(14)는 라이너의 길이 방향 단부 즉, 제1 돔부(12)나 제2 돔부(13) 중 어느 하나 이상에 구비되는 것으로, 금속 재질의 노즐 보스(14)는 합성수지 재질의 제1 돔부(12)나 제2 돔부(13)에 결합이 필요하다.
결합을 위해 돔부(제1 돔부 및/또는 제2 돔부)에 대응하는 성형 몰드의 인서트 캐비티 내에 노즐 보스(14)를 삽입 후 용융 합성수지를 주입함으로써 돔부에 노즐 보스(14)가 결합되는 인서트 사출 공법이 적용된다.
따라서, 노즐 보스(14)를 결합하기 위한 보스 성형단계(S14)는 인서트 사출 공법 적용단계로서, 결합 대상 돔부에 따라 제1 돔부(12)를 성형하는 제2 부분 성형단계(S12)나 제2 돔부(12)를 성형하는 제3 부분 성형단계(S13)와 동시에 진행될 수 있다.
위와 같이 각 부가 준비되며 이들을 서로 연결하는 융착 단계를 진행한다. 융착단계에서는 실린더부(11)와 노즐 보스(14)가 결합된 제1 돔부(12) 및 제2 돔부(13)가 준비된 이후에는 이들을 서로 융착시켜 일체화시킨다.
이에, 제1 융착단계(S14)에서는 제1 돔부(12)를 실린더부(11)의 일측 단부에 융착시킨다. 융착시 제1 돔부(12)의 내측 방향이 실린더부(11)의 일측 단부에 형상 맞춤으로 배치된 상태에서 열융착이 이루어진다.
또한, 제2 융착단계(S15)에서는 제2 돔부(13)를 실린더부(11)의 타측 단부에 융착시킨다. 융착시 제2 돔부(13)의 내측 방향이 실린더부(11)의 타측 단부에 형상 맞춤으로 배치된 상태에서 열융착이 이루어진다.
제1 돔부(12)와 제2 돔부(13)는 실시예로 동일한 융착기에 의해 각각 융착ㄷ되며, 융착기 타입에 따라 실린더부(11)의 각 단에 제1 돔부(12)와 제2 돔부(13)가 순차로 융착하거나 혹은 실린더부(11)의 양단부에 동시에 융착될 수 있다.
따라서, 노즐 보스(14)가 결합되어 있는 제1 돔부(12) 및 제2 돔부(13)가 실린더부(11)의 양측 말단에 융착되어 일체의 라이너(10)를 구성하게 된다. 공지된 바와 같이 성형을 마친 라이너(10)는 후속 공정에서 열경화성수지나 열가소성수지를 함침시킨 탄소섬유 등을 감아 강도를 보강한다.
한편, 제1 부분 성형단계(S11)는 다이스에 용융 원재를 압출시켜 실린더부(11)를 성형하되, 다중층 압출 성형기에 의해 실린더부(11)의 외주면을 덮은 아웃터 쉘(11-O)을 포함하여 다중층 구조로 압출 성형하는 단계인 것이 바람직하다.
또한, 상기 압출 성형된 다중층 구조의 외표면에 냉각수를 분사하는 냉각단계를 포함한다.
냉각단계 이후에는 아웃터 쉘(11-O)을 수소저장탱크에 포함시켜 사용하는지의 유무에 따라 아웃터 쉘(11-O)을 제거하는 쉘 제거단계를 선택적으로 진행할 수 있다. 예컨대, 제1 돔부(12)와 제2 돔부(13)를 실린더부(11)에 융착하기 전에 아웃터 쉘(11-O)을 제거하는 쉘 제거단계를 더 포함할 수 있다.
상기 아웃터 쉘(11-O)은 관 형상의 실린더부(11)에 기능성을 부여하는 층으로, 실시예로 멀티레이어 압출 성형기(20)에 각각의 용융 원재를 투입하여 실린더부(11)에 아웃터 쉘(11-O)이 적층된 다층 구조를 형성된다.
이때, 아웃터 쉘(11-O)은 기능성의 일 예로 압출 성형된 실린더부(11)에 냉각수가 유입되지 않도록 방수 기능을 제공한다. 따라서, 용융 원재를 압출 성형 후 냉각을 위해 냉각수를 분사시 아웃터 쉘(11-O)이 방수층 역할을 한다.
특히, 실린더부(11)를 폴리아미드(PA)로 성형하는 경우, 폴리아미드(PA)는 수소 투과도가 낮아 수소 저장에 용이한 반면, 흡습 특성이 뛰어나다. 따라서, 폴리아미드 실린더부(11)를 압출 후 냉각수로 냉각하면 냉각수를 흡수하게 된다.
냉각수를 흡수한 폴리아미드 실린더부(11)는 그 양단부에 결합되는 제1 돔부(12) 및 제2 돔부(13)와의 열융착이 이루어지 않기 때문에 제작이 어렵거나 불량이 발생한다.
그러므로, 냉각수를 분사하는 실린더부(11)의 외주면에 방수 기능의 아웃터 쉘(11-O)을 더 포함하여, 그 내측에 배치된 실린더부(11)에서 냉각수를 흡수(흡습)하는 것을 방지할 수 있도록 한다.
방수 기능을 갖는 기능성 아웃터 쉘(11-O) 역시 합성수지 재질이 적용될 수 있으며, 방수 기능을 제공하는 합성수지에는 폴리에틸렌(PE)도 포함된다.
다만, 후속 공정으로 라이너(10)에 탄소 섬유를 감는데 이용되는 열경화성수지나 열가소성수지는 폴리에틸렌(PE)과의 계면에서 부착되지 않기 때문에 실린더부(11)의 양단에 돔부(12, 13)를 열융착하기 전에 아웃터 쉘(11-O)은 제거되어야 한다.
또한, 상기 제1 부분 성형단계(S11)는 상기 실린더부(11)의 내주면을 덮는 이너 쉘(11-I)을 포함하여 다중층 구조를 형성할 수 있다.
이너 쉘(11-I) 역시 관 형상의 실린더부(11)에 기능성을 부여하는 층으로 실린더부(11)의 내주면에 밀착 적층되어 내주면을 덮는다.
실린더부(11)에 이너 쉘(11-I)이 적층된 다층 구조를 위해, 실시예로서 실린더부(11)의 내주면에 접착제를 도포 후 별도로 제작된 이너 쉘(11-I)을 부착할 수 있다. 다만, 이너 쉘(11-I) 역시 재질이나 공법에 따라 실린더부(11)와 함께 압출 성형될 수 있다.
이때, 이너 쉘(11-I)은 가스 배리어 수지층(11a)을 포함할 수 있다. 가스 배리어 수지층(11a)은 수소의 투과를 차단하는 것으로, 바람직하게는 에틸렌비닐알코올(EVOH)이나 이를 포함하는 합성수지가 적용될 수 있다.
또한, 이너 쉘(11-I) 자체도 다층 구조로 구성될 수 있으며, 이 경우 이너 쉘(11-I)은 가스 배리어 수지층(11a)의 노출 표면에 적층되는 폴리아미드층(11b)을 포함하는 것이 바람직하다.
예컨대, 라이너는 외부 극한 환경이나 수소의 온도 변화에 대응하여 -45℃~85℃의 범위의 온도에서도 견딜 수 있어야 하므로, 습도와 온도에 민감한 에틸렌비닐알코올 층(11a)의 표면에 폴리아미드층(11b)을 추가로 적층할 수 있다.
이상과 같이 본 발명은 연료전지용 수소저장탱크를 다수로 연결하여 사용할 수 있는 소직경 장축 수소저장탱크의 라이너(10)를 제공한다.
또한 소직경 장축 수소저장탱크의 라이너(10)를 그 형상별로 직선관 형상의 실린더부(11)와 돔 형상의 제1 돔부(12) 및 제2 돔부(13)로 분리하여 각각 최적의 공법으로 제작한 후 이들을 서로 융착하여 라이너(10)를 공급한다.
또한, 직선관 형상의 실린더부(11)는 돔 구조를 포함하지 않고 형상이 단순하여 별도 제작에 유리하므로, 아웃터 쉘(11-O)이나 이너 쉘(11-I)과 같은 기능성 층을 선택하여 적층하거나 이들 모두를 적층하여 성능을 향상시킬 수 있다.
본 발명은 친환경 에너지 산업분야에 있어서, 수소연료전지를 이용하는 수소 차량, 선박, 플라잉카 및 분산형 발전설비 등에 에너지원인 수소를 저장 및 공급할 수 있도록 하므로 산업상 이용가능성이 있다.

Claims (13)

  1. 연료 전지용 수소를 저장하는 소직경 장축 수소저장탱크의 라이너에 있어서,
    양단이 개방된 직선관 형상의 실린더부(11)와;
    상기 실린더부(11)의 일측 단부에 융착되며, 돔(dome) 형상으로 이루어진 제1 돔부(12)와;
    상기 실린더부(11)의 타측 단부에 융착되며, 돔(dome) 형상으로 이루어진 제2 돔부(13); 및
    상기 제1 돔부(12) 및 제2 돔부(13) 중 어느 하나 이상에 결합되며, 수소가 유출입되는 노즐 보스(14);를 포함하는 것을 특징으로 소직경 장축 수소저장탱크의 라이너.
  2. 제1항에 있어서,
    상기 실린더부(11), 제1 돔부(12) 및 제2 돔부(13)는 수소가스 투과성이 낮아 수소가스를 저장할 수 있는 합성수지 재질로 이루어져 있는 것을 특징으로 하는 소직경 장축 수소저장탱크의 라이너.
  3. 제2항에 있어서,
    상기 노즐 보스(14)는 금속 재질로 이루어지며 각각 상기 합성수지 재질의 제1 돔부(12) 및 제2 돔부(13) 중 어느 하나 이상에 인서트 사출 성형된 것을 특징으로 하는 소직경 장축 수소저장탱크의 라이너.
  4. 제2항에 있어서,
    상기 실린더부(11), 제1 돔부(12) 및 제2 돔부(13)는 폴리아미드(Polyamide) 재질로 이루어져 있는 것을 특징으로 하는 소직경 장축 수소저장탱크의 라이너.
  5. 제4항에 있어서,
    상기 실린더부(11)는 다이스(dies)에 용융 원재를 압출시켜 성형하되,
    상기 실린더부(11)의 외주면을 덮는 아웃터 쉘(outer shell, 11-O)을 더 포함하며,
    상기 실린더부(11)와 아웃터 쉘(11-O)을 포함하여 다중층 구조를 형성하는 것을 특징으로 하는 소직경 장축 수소저장탱크의 라이너.
  6. 제5항에 있어서,
    상기 아웃터 쉘(11-O)은,
    상기 압출 성형된 실린더부(11)에 냉각수가 유입되지 않도록 방수 기능을 갖는 것을 특징으로 하는 소직경 장축 수소저장탱크의 라이너.
  7. 제2항에 있어서,
    상기 실린더부(11)의 내주면을 덮는 이너 쉘(inner shell, 11-I)을 더 포함하며,
    상기 실린더부(11)와 이너 쉘(11-I)을 포함하여 다중층 구조를 형성하는 것을 특징으로 하는 소직경 장축 수소저장탱크의 라이너.
  8. 제7항에 있어서,
    상기 이너 쉘(11-I)은,
    가스 배리어 수지층(11a)을 포함하는 것을 특징으로 하는 소직경 장축 수소저장탱크의 라이너.
  9. 제8항에 있어서,
    상기 이너 쉘(11-I)은,
    상기 가스 배리어 수지층(11a)의 노출 표면에 적층되는 폴리아미드층(11b)을 포함하는 것을 특징으로 하는 소직경 장축 수소저장탱크의 라이너.
  10. 연료 전지용 수소를 저장하는 소직경 장축 수소저장탱크의 라이너 제조방법에 있어서,
    양단이 개방된 직선관 형상의 실린더부(11)를 성형하는 제1 부분 성형단계(S11)와;
    돔 형상으로 이루어진 제1 돔부(12)를 성형하는 제2 부분 성형단계(S12)와;
    돔 형상으로 이루어진 제2 돔부(13)를 성형하는 제3 부분 성형단계(S13)와;
    상기 제1 돔부(12)를 상기 실린더부(11)의 일측 단부에 융착시키는 제1 융착단계(S14); 및
    상기 제2 돔부(13)를 상기 실린더부(11)의 타측 단부에 융착시키는 제2 융착단계(S15);를 포함하는 것을 특징으로 하는 소직경 장축 수소저장탱크의 라이너 제조방법.
  11. 제10항에 있어서,
    상기 제1 부분 성형단계(S11)는,
    다이스에 용융 원재를 압출시켜 상기 실린더부(11)를 성형하되,
    다중층 압출 성형기에 의해 상기 실린더부(11)의 외주면을 덮은 아웃터 쉘(11-O)을 포함하여 다중층 구조로 압출 성형하는 단계인 것을 특징으로 하는 소직경 장축 수소저장탱크의 라이너 제조방법.
  12. 제11항에 있어서,
    상기 압출 성형된 다중층 구조의 외표면에 냉각수를 분사하는 냉각단계; 및
    상기 냉각단계 이후 상기 아웃터 쉘(11-O)을 제거하는 쉘 제거단계;를 더 포함하는 것을 특징으로 하는 소직경 장축 수소저장탱크의 라이너 제조방법.
  13. 제10항에 있어서,
    상기 제1 부분 성형단계(S11)는,
    상기 실린더부(11)의 내주면을 덮는 이너 쉘(11-I)을 포함하여 다중층 구조를 형성하는 단계인 것을 특징으로 하는 소직경 장축 수소저장탱크의 라이너 제조방법.
PCT/KR2021/016024 2020-11-10 2021-11-05 소직경 장축 수소저장탱크의 라이너 및 그 제조방법 WO2022103086A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021005956.4T DE112021005956T5 (de) 2020-11-10 2021-11-05 Innenbehälter für einen wasserstoffspeichertank mit kleinem durchmesser und langer achse und verfahren zu dessen herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200149002A KR102450257B1 (ko) 2020-11-10 2020-11-10 소직경 장축 수소저장탱크의 라이너
KR10-2020-0149002 2020-11-10

Publications (1)

Publication Number Publication Date
WO2022103086A1 true WO2022103086A1 (ko) 2022-05-19

Family

ID=81601546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/016024 WO2022103086A1 (ko) 2020-11-10 2021-11-05 소직경 장축 수소저장탱크의 라이너 및 그 제조방법

Country Status (3)

Country Link
KR (2) KR102450257B1 (ko)
DE (1) DE112021005956T5 (ko)
WO (1) WO2022103086A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964607B1 (ko) * 2008-05-23 2010-06-21 주식회사 케이시알 노즐보스가 구비된 복합재료 고압용기
KR101487757B1 (ko) * 2013-04-26 2015-01-29 주식회사 대연 고압용기 및 그 제조방법
JP5703164B2 (ja) * 2011-07-29 2015-04-15 Jx日鉱日石エネルギー株式会社 水素貯蔵用複合容器及び水素充填方法
KR101922103B1 (ko) * 2016-06-13 2019-02-13 회명산업 주식회사 수소저장압력용기 및 그 제작방법
JP2019032034A (ja) * 2017-08-08 2019-02-28 トヨタ自動車株式会社 高圧容器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10338038A (ja) * 1997-06-10 1998-12-22 Mitsubishi Chem Corp 異形軽量圧力容器
WO2011006146A2 (en) * 2009-07-09 2011-01-13 Advanced Technology Materials, Inc. Substantially rigid collapsible liner and flexible gusseted or non-gusseted liners and methods of manufacturing the same and methods for limiting choke-off in liners
EP2581638B1 (en) * 2010-06-08 2015-11-11 Toyota Jidosha Kabushiki Kaisha High-pressure tank and manufacturing method of high pressure tank.
US9192977B2 (en) * 2013-03-15 2015-11-24 Silgan Containers Llc Method and apparatus for providing metal container with lining
WO2019170777A1 (fr) * 2018-03-06 2019-09-12 Plastic Omnium Advanced Innovation And Research Réservoir composite et son procédé de fabrication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100964607B1 (ko) * 2008-05-23 2010-06-21 주식회사 케이시알 노즐보스가 구비된 복합재료 고압용기
JP5703164B2 (ja) * 2011-07-29 2015-04-15 Jx日鉱日石エネルギー株式会社 水素貯蔵用複合容器及び水素充填方法
KR101487757B1 (ko) * 2013-04-26 2015-01-29 주식회사 대연 고압용기 및 그 제조방법
KR101922103B1 (ko) * 2016-06-13 2019-02-13 회명산업 주식회사 수소저장압력용기 및 그 제작방법
JP2019032034A (ja) * 2017-08-08 2019-02-28 トヨタ自動車株式会社 高圧容器

Also Published As

Publication number Publication date
DE112021005956T5 (de) 2023-09-14
KR102515103B1 (ko) 2023-03-30
KR102450257B1 (ko) 2022-10-05
KR20220124140A (ko) 2022-09-13
KR20220063821A (ko) 2022-05-18

Similar Documents

Publication Publication Date Title
CA2797992C (en) Fuel tank of plastic and method for the production thereof
CN101080311B (zh) 用于制造包括至少一次焊接的多层空心体的方法
US6661339B2 (en) High performance fuel tank
CN102328439B (zh) 用于成形压力容器的容器内衬的方法和装置
US6712234B2 (en) Fuel tank and method for its production
US5318742A (en) Method of making bicycle tubular frame of plastic composite material
WO2005118255A1 (ja) ブロー成形用金型装置、およびこのブロー成形用金型装置を使用した樹脂製中空体の製造方法、およびその製造方法で製造された樹脂製中空成形体
US8052915B2 (en) Apparatus for forming an extrusion blow molded vessel with insert and method
US10995909B2 (en) Hydrogen tank body and method of producing the same, and hydrogen tank and method of producing the same
WO2022103086A1 (ko) 소직경 장축 수소저장탱크의 라이너 및 그 제조방법
US10655782B2 (en) Pressure vessel and also apparatus and process for producing a pressure vessel blank comprising at least one connection element
US7264764B2 (en) Method of manufacturing branching pipe
JP5184546B2 (ja) プラスチック材料製中空体の製造法
WO2010027146A9 (ko) 적층용기 제조방법 및 이를 이용한 적층용기
WO2022014869A1 (ko) 3차원 구조체와 이의 제조 방법
JPH10141594A (ja) 高圧容器用ライナー成形品
EP0585855B1 (en) Process for producting laminated hose
JP2631525B2 (ja) インサートブロー成形法
CN220551786U (zh) 异形储氢瓶、储氢系统及汽车
WO2023128096A1 (ko) 고압 수소 이송 파이프용 부재, 이의 제조방법 및 이를 이용한 고압 수소 이송 파이프 제조방법
WO2023043082A1 (ko) 압력용기용 인서트 보강 라이너 및 이의 제조방법
WO2024035070A1 (ko) 고압 저장 용기 및 그 제조 방법
JPH1148800A (ja) 自動車用樹脂製燃料給油管
JPH0885154A (ja) 電気融着継手とその製造方法及びその射出成形用金型
CN117087197A (zh) 一种多腔室复合材料油箱及其一体化成型方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21892254

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112021005956

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21892254

Country of ref document: EP

Kind code of ref document: A1