WO2019035609A1 - 차량용 에어백 하우징 및 이의 제조방법 - Google Patents

차량용 에어백 하우징 및 이의 제조방법 Download PDF

Info

Publication number
WO2019035609A1
WO2019035609A1 PCT/KR2018/009217 KR2018009217W WO2019035609A1 WO 2019035609 A1 WO2019035609 A1 WO 2019035609A1 KR 2018009217 W KR2018009217 W KR 2018009217W WO 2019035609 A1 WO2019035609 A1 WO 2019035609A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
reinforced composite
fiber reinforced
cft
vehicle
Prior art date
Application number
PCT/KR2018/009217
Other languages
English (en)
French (fr)
Inventor
최재훈
강용한
김권택
조상규
최현진
한동주
김상희
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Publication of WO2019035609A1 publication Critical patent/WO2019035609A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14631Coating reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/34Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core and shaping or impregnating by compression, i.e. combined with compressing after the lay-up operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2022/00Hollow articles
    • B29L2022/02Inflatable articles
    • B29L2022/027Air bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • B60R2021/23504Inflatable members characterised by their material characterised by material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • B60R2021/23533Inflatable members characterised by their material characterised by the manufacturing process

Definitions

  • a vehicle air bag housing including a laminated continuous fiber reinforced composite material (L-CFT) and a method of manufacturing an air bag housing for a vehicle.
  • L-CFT laminated continuous fiber reinforced composite material
  • the airbag housing is required to have impact resistance against high pressure when the airbag is deployed.
  • the existing airbag housing is mainly made of steel material, which is heavy compared with other materials and may cause a bell mouth malfunction that causes the housing to open when the airbag is deployed.
  • the airbag housing by forming the airbag housing with a steel material, mold design cost and material cost are increased, and when the collision energy is not absorbed by the airbag cushion in a high-speed collision, there is a problem that the occupant's injury may be increased.
  • a fiber reinforced composite material has been applied to an airbag housing.
  • a method of injection-molding a fiber-reinforced composite material by using a steel material or a weaving-type fiber-reinforced composite material as an insert material is being studied.
  • these materials are used as the insert material, the effect of weight reduction is insufficient and injection molding is difficult in a complicated shape, so that an increase in the process cost is inevitable and the degree of freedom in molding is remarkably lowered.
  • An object of the present invention is to provide a method of manufacturing an air bag housing for a vehicle, which can secure excellent strength and rigidity, and at the same time, can achieve molding freedom, dimensional stability, and cost reduction.
  • a method of producing a laminated continuous fiber reinforced composite material comprising: (a) laminating a continuous fiber reinforced composite material (CFT) comprising a thermoplastic resin and continuous fibers; (b) preheating the laminated continuous fiber reinforced composite material (L-CFT); And (c) inserting the preheated laminated continuous fiber reinforced composite material (L-CFT) into an injection mold and injection-molding a fiber reinforced composite material (FT) comprising a thermoplastic resin and fibers.
  • a method of manufacturing a housing can be provided.
  • a vehicle airbag housing manufactured by the above-described method for manufacturing an airbag for a vehicle and satisfying the following formula 1 can be provided.
  • G 1 / G 2 in the above formula 1 represents the ratio of the fiber reinforcement contained in the fiber reinforced composite material (FT) to the fiber reinforcement contained in the laminated continuous fiber reinforced composite material (L-CFT)
  • the content of the fiber reinforcement contained in the composite material (L-CFT) is divided by the content of the fiber reinforcement contained in the fiber reinforced composite material (FT).)
  • the method for manufacturing an air bag housing for a vehicle according to the present invention is characterized in that injection molding is performed using a laminated continuous fiber reinforced composite material (L-CFT) as an insert material to improve moldability, dimensional stability, and cost reduction
  • L-CFT laminated continuous fiber reinforced composite material
  • FIG. 1 is a flowchart showing a method of manufacturing an air bag housing for a vehicle according to an embodiment of the present invention.
  • a method of manufacturing an airbag housing for a vehicle according to the present invention comprises:
  • S10 a laminated continuous fiber reinforced composite material (L-CFT) by laminating a continuous fiber reinforced composite material (CFT) comprising a thermoplastic resin and continuous fibers;
  • the vehicle airbag housing can be manufactured by injecting a laminated continuous fiber reinforced composite material (L-CFT) into an insert material through a fiber reinforced composite material (FT) through the method for manufacturing the airbag housing for a vehicle.
  • L-CFT laminated continuous fiber reinforced composite material
  • FT fiber reinforced composite material
  • L-CFT laminated continuous fiber reinforced composite material
  • CFT continuous fiber reinforced composite materials
  • FT fiber reinforced composite material
  • the step (a) includes a step (S10) of producing a laminated continuous fiber reinforced composite material (L-CFT) by laminating a continuous fiber reinforced composite material (CFT) comprising a thermoplastic resin and continuous fibers, to be.
  • L-CFT laminated continuous fiber reinforced composite material
  • CFT continuous fiber reinforced composite material
  • the continuous fiber reinforced composite material may include a thermoplastic resin and a fiber reinforcement in the form of a continuous fiber.
  • the thermoplastic resin may be selected from at least one of polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyamide (PA), acrylonitrile butadiene styrene copolymer . More preferably, at least one of PP (polypropylene), PA (polyamide), and combinations thereof is selected, and it is easy to impregnate the fiber reinforcing material, and strength and rigidity can be improved.
  • PP polypropylene
  • PE polyethylene
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PA polyamide
  • acrylonitrile butadiene styrene copolymer More preferably, at least one of PP (polypropylene), PA (polyamide), and combinations thereof is selected, and it is easy to impregnate the fiber reinforcing material, and strength and rigidity can be improved.
  • the continuous fibers include at least one fiber reinforcement selected from the group consisting of glass fibers, carbon fibers, and combinations thereof.
  • the continuous fibers include at least one fiber reinforcing material selected from the group consisting of glass fibers, carbon fibers, and combinations thereof, to improve the strength and rigidity of the air bag housing for a vehicle, .
  • the continuous fiber means that the continuous fiber is present in a continuous form within the interior of the air bag housing, depending on the final size of the manufactured air bag housing.
  • the continuous fibers can be produced in a continuous process, such as continuous fibers in a UD sheet, and by continuously supplying the continuous fibers to the continuous process, a continuous fiber reinforced composite material (CFT). ≪ / RTI >
  • the continuous fiber reinforced composite material may be made of a product having a specific shape such as a sheet.
  • the continuous fiber has a certain range of length depending on the shape of the product.
  • the length of such a specific range should be regarded as having 'continuity' in that it can be arbitrarily adjusted in the manufacturing process in which continuous fibers are continuously fed, and most of the continuous fibers such as UD sheets or continuous fibers in the fabric , It has continuity without breaking inside the product.
  • the continuous fiber reinforced composite material may include 40 to 50% by weight of the thermoplastic resin and 50 to 60% by weight of continuous fibers.
  • the continuous fibers are contained in the range below the above range, it is difficult to secure the strength and rigidity required in the airbag housing for a vehicle. If the continuous fibers are beyond the above range, the thermoplastic resin is not sufficiently impregnated, The manufacture of the air bag housing for a vehicle may cause a problem that is impossible in itself.
  • the cross-section of the continuous fibers may have an average diameter of from about 15 ⁇ ⁇ to about 20 ⁇ ⁇ , for example, from about 16 ⁇ ⁇ to about 19 ⁇ ⁇ .
  • the number of laminated continuous fiber reinforced composite materials (L-CFT) in the step (a) is not limited, it is preferable to laminate at least three continuous fiber reinforced composite materials (CFT) Composite material (L-CFT) can be manufactured. Preferably from 3 to 15 sheets, more preferably from 5 to 10 sheets, because it is possible to realize excellent strength and rigidity as an insert material. When stacking less than three sheets, sufficient strength and rigidity can not be realized, and if more than 15 sheets are stacked, a problem of increased process cost due to cost increase may occur.
  • the laminated continuous fiber reinforced composite material may form a pattern in which a single continuous fiber reinforced composite material (CFT) is laminated at at least one angle selected from the range of 0 to 90 degrees.
  • the stacked patterns may be laminated by the same or different stacked sheets of continuous fiber reinforced composite materials (CFT). For example, when 10 continuous fiber reinforced composite materials (CFT) are laminated, five sheets may be stacked at 0 degree (degrees), and the remaining five sheets may be stacked at 90 degrees (orthogonal). In addition, they may be laminated so as to cross each other at 0 degree (degrees), +45 degrees (degrees), 90 degrees (degrees), -45 degrees (degrees), and 0 degrees (degrees).
  • the step (b) is a step (S20) of preheating the laminated continuous fiber reinforced composite material (L-CFT).
  • the preheating temperature is preferably 200 to 230 ⁇ ⁇ , more preferably 220 to 230 ⁇ ⁇ , which is effective in improving workability.
  • the preheating temperature is less than 200 ° C, the preheating is not sufficiently performed, and the bonding strength between the laminated continuous fiber reinforced composite material (L-CFT) and the fiber reinforced composite material (FT) may be lowered.
  • the reinforced composite material (L-CFT) is deteriorated, and the strength and rigidity of the reinforced composite material (L-CFT) may be deteriorated when manufacturing the air bag housing for a vehicle.
  • the thickness of the laminated continuous fiber reinforced composite material may be 0.9 to 4.5 mm, and more preferably 1.5 to 3.0 mm. It is preferable to have a thickness range of the above range in order to have sufficient strength and rigidity in utilizing the insert as an insert material for a vehicle airbag housing.
  • the thickness of the laminated continuous fiber reinforced composite material is less than 0.9 mm, the strength and stiffness of the insert material may be lowered and the durability of the final vehicle air bag housing may be deteriorated. There is a fear that the property may deteriorate.
  • the step (c) is a step (S30) of inserting the preheated laminated continuous fiber reinforced composite material (L-CFT) into an injection mold and injection molding a fiber reinforced composite material (FT) comprising a thermoplastic resin and fibers .
  • L-CFT fiber-reinforced composite material
  • the fiber reinforced composite material may include a thermoplastic resin and a fibrous reinforcement in the form of fiber.
  • the thermoplastic resin may be selected from at least one of polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyamide (PA), acrylonitrile butadiene styrene copolymer . More preferably, at least one of PP (polypropylene), PA (polyamide), and combinations thereof is selected, and it is easy to impregnate the fiber reinforcing material, and strength and rigidity can be improved.
  • PP polypropylene
  • PE polyethylene
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PA polyamide
  • acrylonitrile butadiene styrene copolymer More preferably, at least one of PP (polypropylene), PA (polyamide), and combinations thereof is selected, and it is easy to impregnate the fiber reinforcing material, and strength and rigidity can be improved.
  • the fibers included in the fiber reinforced composite material (FT) are included in order to improve the strength and rigidity of the airbag housing for a vehicle, And combinations thereof.
  • the fiber reinforced composite material may include 60 to 80% by weight of the thermoplastic resin and 20 to 40% by weight of the fibers.
  • the fiber is included in the range below the above range, it is difficult to secure the strength and rigidity required in the airbag housing for a vehicle, and in the case of exceeding the above range, the fluidity is lowered and the degree of freedom of molding may decrease.
  • the average length of the fibers is not limited, but is preferably 5 to 50 mm, and more preferably 10 to 40 mm, which is effective in improving the strength and rigidity without decreasing the fluidity during injection molding.
  • the length of the average fiber is less than 5 mm, the viscosity of the fiber-reinforced composite material (FT) composition to be injected is too high to lower the formability.
  • the average fiber length is more than 50 mm, the mechanical properties of strength and stiffness may deteriorate.
  • the injection temperature is preferably 200 to 230 ⁇ ⁇ , more preferably 220 to 230 ⁇ ⁇ , which is advantageous in that it is easy to mold the air bag housing for a vehicle because of excellent processability. If the injection temperature is less than 200 ° C, the bonding strength between the laminated continuous fiber reinforced composite material (L-CFT) and the fiber-reinforced composite material (FT) to be injected is insufficient, and the strength and rigidity of the vehicle air bag housing may be deteriorated. If the temperature is higher than 230 ° C, the fiber reinforced composite material (FT) may be deteriorated and the durability of the vehicle air bag housing may be deteriorated.
  • L-CFT laminated continuous fiber reinforced composite material
  • FT fiber-reinforced composite material
  • Another embodiment of the present invention is to provide a vehicle airbag housing which is manufactured according to the above-described manufacturing method and satisfies the following formula (1).
  • G 1 / G 2 in the above formula 1 represents the ratio of the fiber reinforcing material contained in the fiber reinforced composite material (FT) to the fiber reinforcing material contained in the laminated continuous fiber reinforced composite material (L-CFT)
  • the content of fiber reinforcement contained in reinforced composite material (L-CFT) is divided by the content of fiber reinforcement contained in fiber reinforced composites (FT).)
  • the strength and rigidity of the vehicle airbag housing can be improved more effectively.
  • the value of G 1 / G 2 is less than 1.0, the content of the fiber reinforcing material contained in the fiber reinforced composite material (FT) becomes excessively high, so that it is difficult to reduce the weight of the product and the flowability thereof may be deteriorated. There is a possibility of decrease.
  • the value of G 1 / G 2 is more than 5.0, the content of the fiber reinforcing material contained in the fiber reinforced composite material (FT) is too small, so that sufficient strength and rigidity required for the vehicle air bag housing can not be achieved have.
  • the impact strength of the automotive airbag housing according to the present invention may be from about 10 J / mm to about 100 J / mm. Specifically, the impact strength of the automotive airbag housing may be about 10 J / mm to about 50 J / mm, and more specifically about 10 J / mm to about 30 J / mm.
  • the 'peak impact strength' is a 'surface impact strength' measured by an arbitrary object that is resistant to an instantaneous concentrated external force and is further measured on the surface of the object, and can be measured by the method of measuring an impact resistance according to ASTM D3763 have. If the fall impact strength is less than the above range, it is difficult to ensure sufficient impact performance, so that durability may deteriorate when the airbag is deployed. Therefore, such a structure is difficult to apply to parts requiring excellent impact performance, such as a vehicle airbag housing.
  • the flexural strength of the automotive airbag housing according to the present invention can be from about 200 MPa to about 600 MPa, and in particular, from about 210 MPa to about 500 MPa.
  • the flexural strength is the maximum strength generated from the specimen when the specimen is pressed at a constant speed and can be measured by the ASTM D790 method at room temperature 23 ° C.
  • the flexural modulus of the vehicle airbag housing according to the present invention may be from about 10 GPa to about 50 GPa, and in particular, from about 10 GPa to about 40 GPa. Flexural modulus can be measured by the ASTM D790 method at room temperature 23 ° C as a measure of how much the material can be rolled without permanent deformation and fracture.
  • the airbag housing for a vehicle of the present invention is manufactured by injection-molding a fiber reinforced composite material (FT) using the laminated continuous fiber reinforced composite material (L-CFT) as an insert material and has excellent strength and rigidity, Can also show improvement in dimensional stability.
  • FT fiber reinforced composite material
  • L-CFT laminated continuous fiber reinforced composite material
  • CFT continuous fiber reinforced composite materials containing 40% by weight of a polypropylene homopolymer resin and 60% by weight of continuous fibers were laminated at 0 degree and pressed to form a 1.8 mm laminated continuous fiber reinforced composite material (L- CFT).
  • the laminated continuous fiber reinforced composite material (L-CFT) was preheated at 230 DEG C for 60 seconds and fixed to an injection mold.
  • 70 wt% of polypropylene homopolymer resin and 30 wt% (L-CFT) was manufactured by injecting a fiber-reinforced composite material (FT) containing carbon fibers and carbon fibers in an amount of 0.1 to 5 wt.% And under pressure conditions of 230 DEG C and 350 tons.
  • FT fiber-reinforced composite material
  • the laminated continuous fiber reinforced composite material was preheated at 280 ⁇ for 60 seconds and then fixed in an injection mold.
  • 60 wt% of a polyamide homopolymer resin and 40 wt% (L-CFT) was manufactured by injecting a fiber-reinforced composite material (FT) containing a polyolefin-based continuous fiber reinforced composite material (L-CFT) at a temperature of 280 DEG C and a pressure of 350 tons.
  • FT fiber-reinforced composite material
  • L-CFT polyolefin-based continuous fiber reinforced composite material
  • Example 2 As shown in the following Table 1, in the same manner as in Example 1 except that a weft-type continuous fiber reinforced composite material having a thickness of 1.8 mm was used as the insert material in place of the laminated continuous fiber reinforced composite material (L-CFT) The airbag housing was manufactured and physical properties were measured according to the following evaluation method, and it is shown in Table 2.
  • FT fiber-reinforced composite material
  • the properties of the airbag housing for a vehicle were evaluated according to the following experimental examples.
  • the bending strength and flexural modulus of the airbag housing were measured at a room temperature of 23 DEG C according to the flexural property measurement method (ASTM D790 method). The results are shown in Table 2 below.
  • the impact resistance of the automobile airbag housing was measured at a room temperature of 23 ⁇ according to the method of measuring the impact strength of the impact resistance (ASTM D3763 method). The results are shown in Table 2 below.
  • Examples 2 to 3 were produced by injection molding a laminated continuous fiber reinforced composite material (L-CFT) into an insert material by a fiber reinforced composite material (FT) in a specific pattern to manufacture a vehicle air bag housing
  • L-CFT laminated continuous fiber reinforced composite material
  • FT fiber reinforced composite material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Air Bags (AREA)
  • Reinforced Plastic Materials (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

차량용 에어백 하우징 및 이의 제조방법에 관한 것으로, 보다 상세하게는 적층형 연속섬유 강화복합소재(L-CFT)를 포함하는 차량용 에어백 하우징 및 차량용 에어백 하우징을 제조하는 방법에 관한 것이다.

Description

차량용 에어백 하우징 및 이의 제조방법
차량용 에어백 하우징 및 이의 제조방법에 관한 것으로, 보다 상세하게는 적층형 연속섬유 강화복합소재(L-CFT)를 포함하는 차량용 에어백 하우징 및 차량용 에어백 하우징을 제조하는 방법에 관한 것이다.
최근 자동차 업계는 세계적인 이산화탄소 배출 저감 추세에 맞추어 자동차 연비 개선을 위해 힘쓰고 있다. 이에 따라 자동차 경량화 설계가 한가지 방안으로 제시되면서 자동차 부품 소재를 철강 대신 플라스틱 재질의 부품으로 많이 사용하고 있으며, 특히 낮은 비중과 우수한 성형성, 내열성, 내화학성 등의 특징으로 하는 폴리프로필렌은 이미 범퍼, 인스트루먼트 판넬 등의 소재로서 폭넓게 사용되고 있다.
자동차 부품 소재 중에서 에어백 하우징의 경우, 에어백 전개시 고압에 대한 내충격성 등이 요구된다. 기존의 에어백 하우징은 주로 Steel 재질로 구성되며, 이 경우 타 소재에 비해 무거우며 에어백 전개시 하우징이 벌어지는 벨마우스(Bell mouth) 불량이 발생할 우려가 있다.
또한, 에어백 하우징을 Steel 재질로 형성시킴으로써 금형 설계 비용 및 재료비가 상승하며, 고속 충돌에서 충돌에너지를 에어백 쿠션이 흡수하지 못한 경우 탑승자의 상해가 심해질 수 있는 문제가 있었다.
이와 같은 문제점을 해결하기 위하여, 최근 에어백 하우징에 섬유강화복합재의 적용이 이루어지고 있다. 예를 들어, Steel 소재 또는 직조형 섬유강화복합재를 인서트재로 하여 섬유강화복합재를 사출 성형하는 공법이 연구되고 있다. 그러나 인서트재로 이러한 소재들을 사용할 경우, 경량화 효과가 부족하고, 복잡한 형상에서 사출성형이 어려움에 따라 공정비용 상승이 불가피하고, 성형 자유도가 현저히 저하되는 단점을 가진다.
본 발명의 목적은 우수한 강도 및 강성을 확보할 수 있고, 이와 동시에 성형자유도, 치수안정성 향상 및 원가절감을 달성할 수 있는 차량용 에어백 하우징의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 차량용 에어백 하우징의 제조방법을 통해 제조된 우수한 강도 및 강성뿐 만 아니라 치수안정성 및 성형자유도를 높이고 원가 상승을 최소화할 수 있는 차량용 에어백 하우징을 제공하는 것이다.
본 발명의 일 구현 예에서, (a) 열가소성 수지 및 연속섬유를 포함하는 연속섬유 강화복합소재(CFT)를 적층하여 적층형 연속섬유 강화복합재료(L-CFT)를 제조하는 단계; (b) 상기 적층형 연속섬유 강화복합소재(L-CFT)를 예열하는 단계; 및 (c) 상기 예열된 적층형 연속섬유 강화복합소재(L-CFT)를 사출 금형에 인서트하고, 열가소성 수지 및 섬유를 포함하는 섬유강화복합소재(FT)를 사출 성형하는 단계;를 포함하는 차량용 에어백 하우징의 제조방법을 제공할 수 있다.
본 발명의 다른 구현 예에서, 상술한 차량용 에어백 제조방법으로 제조되며, 하기 식 1를 만족하는 차량용 에어백 하우징을 제공할 수 있다.
1.0 ≤ G1/G2 ≤ 5.0 [식 1]
(상기 식 1에서 G1/G2 는 적층형 연속섬유 강화복합소재(L-CFT)에 포함된 섬유보강재에 대한 섬유강화복합소재(FT)에 포함된 섬유보강재의 비율을 나타낸 것으로 적층형 연속섬유 강화복합소재(L-CFT)에 포함된 섬유보강재의 함량을 섬유강화복합소재(FT)에 포함된 섬유보강재의 함량으로 나눈 값이다.)
본 발명에 따른 차량용 에어백 하우징의 제조방법은 적층형 연속섬유 보강화복합소재(L-CFT)를 인서트재로 사용하여 사출성형함으로써, 우수한 강도 및 강성과 함께, 성형자유도, 치수안정성 향상 및 원가절감에 기여할 수 있는 차량용 에어백 하우징을 제조할 수 있다.
도 1은 본 발명의 일 구현예에 따른 차량용 에어백 하우징의 제조방법을 나타낸 순서도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 후술하는 실시예들을 참조하면 명확해질 것이다 그러나, 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
일 구현예에서, 본 발명에 따른 차량용 에어백 하우징의 제조방법은
(a) 열가소성 수지 및 연속섬유를 포함하는 연속섬유 강화복합소재(CFT)를 적층하여 적층형 연속섬유 강화복합재료(L-CFT)를 제조하는 단계(S10);
(b) 상기 적층형 연속섬유 강화복합소재(L-CFT)를 예열하는 단계(S20); 및
(c) 상기 예열된 적층형 연속섬유 강화복합소재(L-CFT)를 사출 금형에 인서트하고, 열가소성 수지 및 섬유를 포함하는 섬유강화복합소재(FT)를 사출 성형하는 단계(S30);를 포함하는 차량용 에어백 하우징의 제조방법을 제공할 수 있다.
상기 차량용 에어백 하우징의 제조방법을 통하여, 적층형 연속섬유 강화복합소재(L-CFT)를 인서트재로 섬유강화복합소재(FT)를 사출성형함으로써 차량용 에어백 하우징을 제조할 수 있다.
보다 구체적으로, 연속섬유 강화복합소재(CFT) 다수장을 적층하여 적층형 연속섬유 강화복합소재(L-CFT)를 형성하고, 이를 인서트재로 사용하여 섬유강화복합소재(FT)를 사출 성형함으로써, 강도 및 강성이 우수할 뿐만 아니라, 성형자유도, 치수안정성 향상 및 원가절감에 기여할 수 있는 차량용 에어백 하우징을 제조할 수 있다.
도 1은 본 발명의 일 구현예에 따른 차량용 에어백 하우징의 제조방법을 나타낸 순서도이다. 도 1을 참조할 때, 상기 (a)단계는 열가소성 수지 및 연속섬유를 포함하는 연속섬유 강화복합소재(CFT)를 적층하여 적층형 연속섬유 강화복합재료(L-CFT)를 제조하는 단계(S10)이다.
상기 연속섬유 강화복합소재(CFT)는 열가소성 수지와 연속섬유 형태의 섬유보강재를 포함할 수 있다.
상기 열가소성 수지는 PP(polypropylene), PE(polyethylene), PET(polyethylene terephthalate), PBT(polybutylene terephthalate), PA(polyamide), ABS(acrylonitrile butadiene styrene copolymer) 및 PC(polycarbonate)-ABS 중 적어도 하나 선택될 수 있다. 보다 바람직하게 PP(polypropylene), PA(polyamide) 및 이들의 조합에서 적어도 하나 선택되는 것이 섬유보강재의 함침이 용이하고, 강도 및 강성을 향상시킬 수 있는 장점이 있다.
상기 연속섬유는 차량용 에어백 하우징의 강도 및 강성을 향상시키고, 경량화 특성을 구현하기 위하여 포함되는 것으로, 상기 연속섬유는 유리섬유, 탄소섬유 및 이들의 조합으로 이루어진 군으로부터 선택된 하나 이상의 섬유보강재를 포함할 수 있다.
이때, 상기 연속섬유는 제조되는 차량용 에어백 하우징의 최종적인 크기에 의존하여 그 내부에서 끊어지지 않고 연속적인 형태로 존재하는 것을 의미한다. 예를 들어, UD 시트 (unidirection sheet) 내의 연속섬유와 같이, 상기 연속 섬유는 연속 공정으로 제조될 수 있고, 이러한 연속 공정에 상기 연속 섬유를 연속적으로 공급함으로써, 연속 섬유를 포함한 연속섬유 강화복합소재(CFT)를 제조할 수 있다.
따라서, 상기 연속섬유 강화복합소재(CFT)는 시트와 같은 특정 형상의 제품으로 제조될 수 있는데, 이러한 시트와 같은 제품 내에서 상기 연속 섬유는 그 제품의 형상에 따라 특정 범위의 길이를 가지게 된다. 그러나, 이러한 특정 범위의 길이는 연속적으로 연속섬유가 공급되는 제조 공정상 임의 조절이 가능하다는 점에서 상기 연속 섬유는 '연속성'을 가지는 것으로 보아야 할 것이고, UD 시트 또는 직물 내의 연속 섬유와 같이 대부분의 경우, 제품 내부에서 끊어지지 않고 연속성을 갖는다.
상기 연속섬유 강화복합소재(CFT)는 상기 열가소성 수지 40 내지 50중량% 및 연속섬유 50 내지 60중량% 포함할 수 있다. 상기 연속섬유가 상기 범위 미만으로 포함되는 경우에는 차량용 에어백 하우징에서 요구되는 강도 및 강성을 확보하기 어렵고, 상기 범위를 초과하는 경우에는 열가소성 수지가 충분히 함침되지 않아 연속섬유 강화복합소재(CFT) 뿐만 아니라 차량용 에어백 하우징의 제조 자체가 불가능한 문제를 야기할 수 있다.
상기 연속섬유의 단면은 평균 직경이 약 15㎛ 내지 약 20㎛일 수 있고, 예를 들어 약 16㎛ 내지 약 19㎛ 일 수 있다. 상기 연속섬유가 상기 범위의 평균 직경을 유지함으로써, 상기 범위의 함량에서도 우수한 강도 및 강성을 구현할 수 있고, 이로부터 제조된 연속섬유 강화복합소재(CFT)가 적절한 두께 및 물성을 나타낼 수 있다.
상기 (a) 단계에서 적층형 연속섬유 강화복합소재(L-CFT)의 적층 수는 제한되지 않으나, 시트 또는 패널 형태의 연속섬유 강화복합소재(CFT)를 3매 이상 적층 후 가압하여 적층형 연속섬유 강화복합소재(L-CFT)를 제조할 수 있다. 바람직하게 3매 내지 15매인 것이 바람직하며, 보다 바람직하게 5매 내지 10매인 것이 인서트재로 우수한 강도 및 강성을 구현할 수 있어 바람직하다. 3매 미만으로 적층될 경우, 충분한 강도 및 강성을 구현할 수 없는 문제가 발생할 수 있으며, 15매 초과하여 적층될 경우, 원가 상승으로 인한 공정비용 증가의 문제가 발생할 수 있다.
상기 적층형 연속섬유 강화복합소재(L-CFT)는 낱장의 연속섬유 강화복합소재(CFT)가 0 내지 90도(°) 범위에서 선택되는 적어도 1개 이상의 각도로 적층되는 패턴을 형성할 수 있다. 적층되는 낱장의 연속섬유 강화복합소재(CFT) 별로 적층 패턴은 동일하거나 상이하게 적층될 수 있다. 예를 들어, 10매의 연속섬유 강화복합소재(CFT)가 적층될 경우, 5매는 0 도(°) 적층하고, 나머지 5매는 90 도(°)로 직교하도록 적층될 수 있다. 또한, 2매씩 0 도(°), +45 도(°), 90 도(°), -45 도(°), 0 도(°)로 서로 교차되도록 적층될 수 있으나, 이로 제한되는 것은 아니다.
상기 (b) 단계는 상기 적층형 연속섬유 강화복합소재(L-CFT)를 예열하는 단계(S20)이다.
상기 예열온도는 200 내지 230℃가 바람직하며, 보다 바람직하게 220 내지 230℃인 것이 가공성이 향상되어 효과적이다. 예열온도가 200℃ 미만일 경우에는 충분히 예열되지 않아, 적층형 연속섬유 강화복합소재(L-CFT)와 섬유강화복합소재(FT)와의 결합력이 저하될 우려가 있으며, 230℃ 초과일 경우에는 적층형 연속섬유 강화복합소재(L-CFT)가 열화 되어, 차량용 에어백 하우징 제조시 강도 및 강성이 저하되는 문제가 발생할 수 있다.
상기 적층형 연속섬유 강화복합소재(L-CFT)의 두께는 0.9 내지 4.5mm 일 수 있으며, 보다 바람직하게 1.5 내지 3.0mm일 수 있다. 차량용 에어백 하우징의 인서트재로 활용함에 있어, 충분한 강도 및 강성을 보유하기 위하여 상기 범위의 두께 범위를 가지는 것이 바람직하다.
상기 적층형 연속섬유 강화복합소재(L-CFT)의 두께가 0.9mm 미만일 경우에는 인서트재로써 강도 및 강성이 저하되어, 최종 차량용 에어백 하우징의 내구성이 저하될 우려가 있으며, 4.5mm 초과일 경우에는 작업성이 저하될 우려가 있다.
상기 (c) 단계는 상기 예열된 적층형 연속섬유 강화복합소재(L-CFT)를 사출 금형에 인서트하고, 열가소성 수지 및 섬유를 포함하는 섬유강화복합소재(FT)를 사출 성형하는 단계(S30)이다.
조성물 상태의 섬유강화복합소재(FT)를 압출기 등을 통하여 예열된 적층형 연속섬유 강화복합소재(L-CFT)가 인서트된 사출금형으로 사출 성형함으로써, 적층형 연속섬유 강화복합소재(L-CFT)와의 결합력이 우수하여 우수한 강도 및 강성 구현이 가능하고, 치수안정성이 우수하며, 다양한 외관 표현이 가능하여 성형자유도를 향상시킬 수 있는 장점이 있다.
상기 섬유강화복합소재(FT)는 열가소성 수지 및 섬유 형태의 섬유보강재를 포함할 수 있다.
상기 열가소성 수지는 PP(polypropylene), PE(polyethylene), PET(polyethylene terephthalate), PBT(polybutylene terephthalate), PA(polyamide), ABS(acrylonitrile butadiene styrene copolymer) 및 PC(polycarbonate)-ABS 중 적어도 하나 선택될 수 있다. 보다 바람직하게 PP(polypropylene), PA(polyamide) 및 이들의 조합에서 적어도 하나 선택되는 것이 섬유보강재의 함침이 용이하고, 강도 및 강성을 향상시킬 수 있는 장점이 있다.
상기 섬유강화복합소재(FT)에 포함되는 섬유는 차량용 에어백 하우징의 강도 및 강성을 향상시키고, 사출 성형시 유동성에 제약을 주지 않아, 성형자유도를 향상시키기 위하여 포함되는 것으로 유리섬유, 탄소섬유 및 이들의 조합으로 이루어진 군으로부터 선택된 하나 이상의 섬유보강재를 포함할 수 있으며, 이로 제한되는 것은 아니다.
상기 섬유강화복합소재(FT)는 상기 열가소성 수지 60 내지 80중량% 및 섬유 20 내지 40중량% 포함할 수 있다. 상기 섬유가 상기 범위 미만으로 포함되는 경우에는 차량용 에어백 하우징에서 요구되는 강도 및 강성을 확보하기 어렵고, 상기 범위 초과일 경우에는 유동성이 저하되어 성형자유도가 감소하는 문제가 발생할 수 있다.
상기 섬유의 평균 길이는 제한되지 않으나, 5 내지 50mm인 것이 바람직하고, 보다 바람직하게 10 내지 40mm인 것이 사출 성형시 유동성에 저하를 주지 않고, 강도 및 강성을 향상시킬 수 있어 효과적이다. 평균 섬유의 길이가 5mm 미만일 경우에는 사출되는 섬유강화복합소재(FT) 조성물의 점도가 너무 높아 성형성이 저하될 우려가 있으며, 50mm 초과인 것은 강도 및 강성의 기계적 물성이 저하될 우려가 있다.
상기 사출온도는 200 내지 230℃가 바람직하며, 보다 바람직하게 220 내지 230℃인 것이 가공성이 우수하여 차량용 에어백 하우징 성형이 용이한 장점이 있다. 사출온도가 200℃ 미만일 경우에는 적층형 연속섬유 강화복합소재(L-CFT)와 사출되는 섬유강화복합소재(FT) 간에 결합력이 충분하지 않아, 차량용 에어백 하우징의 강도 및 강성이 저하될 우려가 있으며, 230℃ 초과일 경우에는 섬유강화복합소재(FT)가 열화되어, 차량용 에어백 하우징 제조시 내구성이 저하되는 문제가 발생할 수 있다.
본 발명의 또 다른 구현예는 상술한 제조방법에 따라 제조되며, 하기 식 1을 만족하는 차량용 에어백 하우징을 제공할 수 있다.
1.0 ≤ G1/G2 ≤ 5.0 [식 1]
(상기 식 1에서 G1/G2 는 적층형 연속섬유 강화복합소재(L-CFT)에 포함된 섬유보강재에 대한 섬유강화복합소재(FT)에 포함된 섬유보강재의 비율을 나타낸 것으로, 적층형 연속섬유 강화복합소재(L-CFT)에 포함된 섬유보강재의 함량을 섬유강화복합소재(FT)에 포함된 섬유보강재의 함량으로 나눈 값이다.)
상기 식 1을 상술한 범위로 제어함에 따라, 보다 효과적으로 차량용 에어백 하우징의 강도 및 강성을 향상시킬 수 있다. 특히, G1/G2 값이 1.0 미만일 경우에는 섬유강화복합소재(FT)에 포함된 섬유보강재의 함량이 과하게 높게 되어 제품을 경량화하기 어려우며, 유동성이 저하될 수 있고, 이 경우 성형 자유도가 현저히 감소할 우려가 있다. 또한, G1/G2 값이 5.0 초과일 경우에는 섬유강화복합소재(FT)에 포함된 섬유보강재의 함량이 너무 적어 차량용 에어백 하우징에 요구되는 충분한 강도 및 강성을 달성할 수 없는 문제가 발생할 수 있다.
일 구현예에서, 본 발명에 따른 상기 차량용 에어백 하우징의 낙구충격강도는 약 10 J/mm 내지 약 100 J/mm일 수 있다. 구체적으로, 상기 차량용 에어백 하우징의 낙구충격강도는 약 10 J/mm 내지 약 50 J/mm일 수 있으며, 보다 구체적으로는 약 10 J/mm 내지 약 30 J/mm일 수 있다. 상기 '낙구충격강도'는 임의의 물체가 순간적인 집중 외력에 견디는 저향력을 나타낸 것으로, 물체의 면에 추가 떨어져 측정되는 '면충격'강도로서, ASTM D3763에 따른 낙구충격 측정방법으로 측정할 수 있다. 상기 낙구충격강도가 상기 범위 미만인 경우에는 충분한 충격성능이 확보가 어려워 에어백 전개시 내구성이 저하될 우려가 있으므로 차량용 에어백 하우징 등 우수한 충격 성능이 요구되는 부품에 적용되기 어려운 문제가 있다.
일 구현예에서, 본 발명에 따른 상기 차량용 에어백 하우징의 굴곡강도는 약 200 MPa 내지 약 600 MPa일 수 있으며, 구체적으로, 약 210 MPa 내지 약 500 MPa일 수 있다. 굴곡강도는 일정한 속도로 시편을 누르는 경우, 시편으로부터 발생되는 최대의 강도로서, 상온 23℃ 에서 ASTM D790 방법으로 측정할 수 있다.
일 구현예에서, 본 발명에 따른 상기 차량용 에어백 하우징의 굴곡탄성율는 약 10 GPa 내지 약 50 GPa일 수 있으며, 구체적으로, 약 10 GPa 내지 약 40 GPa일 수 있다. 굴곡탄성율은 물질이 영구적 변형 및 파괴되지 않고 얼마나 휠 수 있는가 나타내는 척도로 상온 23℃ 에서 ASTM D790 방법으로 측정할 수 있다.
따라서, 본 발명의 차량용 에어백 하우징은 전술한 적층형 연속섬유 강화복합소재(L-CFT)를 인서트재로 하여 섬유강화복합소재(FT)를 사출성형하여 제조된 것으로, 우수한 강도 및 강성과 함께 성형자유도, 치수안정성 향상을 나타낼 수 있다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.
<실시예 및 비교예>
실시예 1
폴리프로필렌 단독 중합 수지 40중량%와 연속섬유 60중량%를 포함하는 연속섬유 강화복합소재(CFT) 6매를 0도(°)로 적층하고 가압하여 1.8mm의 적층형 연속섬유 강화복합소재(L-CFT)를 제조하였다.
상기 적층형 연속섬유 강화복합소재(L-CFT)를 230℃로 60sec 동안 예열한 다음 사출 금형에 고정시키고, 상기 사출금형 내로 폴리프로필렌 단독 중합수지 70중량% 및 섬유(glass fiber, 평균길이 30mm) 30중량%를 포함하는 섬유강화복합소재(FT)를 주입하고, 230℃ 및 350ton 압력 조건하에서 인서트 사출 성형하여 적층형 연속섬유 강화복합소재(L-CFT)가 내장된 차량용 에어백 하우징을 제조하였으며, 하기의 평가 방법에 따라 물성을 측정하여 표 2에 나타내었다.
실시예 2
하기 표 1에 나타난 바와 같이, 연속섬유 강화복합소재(CFT) 6매를 0도(°)와 90도(°)를 회전하여 교차 적층(0/90/0/0/90/0 또는 90/0/90/90/0/90) 하여 적층형 연속섬유 강화복합소재(L-CFT)를 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 차량용 에어백 하우징을 제조하였으며, 하기의 평가 방법에 따라 물성을 측정하여 표 2에 나타내었다.
실시예 3
하기 표 1에 나타난 바와 같이, 폴리아미드 단독 중합 수지 40중량%와 연속섬유 60중량%를 포함하는 연속섬유 강화복합소재(CFT) 4매를 0도(°)와 90도(°)로 교차하여 적층(0/90/90/0 또는 90/0/0/90)하여 1.2mm의 적층형 연속섬유 강화복합소재(L-CFT)를 제조하였다.
상기 적층형 연속섬유 강화복합소재(L-CFT)를 280℃로 60sec 동안 예열 한 다음 사출 금형 내 고정시키고, 상기 사출금형 내로 폴리아미드 단독 중합수지 60중량% 및 섬유(glass fiber, 평균길이 30mm) 40중량%를 포함하는 섬유강화복합소재(FT)를 주입하고, 280℃ 및 350ton 압력 조건하에서 인서트 사출 성형하여 적층형 연속섬유 강화복합소재(L-CFT)가 내장된 차량용 에어백 하우징을 제조하였으며, 하기의 평가 방법에 따라 물성을 측정하여 표 2에 나타내었다.
비교예 1
하기 표 1에 나타난 바와 같이, 적층형 연속섬유 강화복합소재(L-CFT) 대신 두께가 1.8mm인 직조형 연속섬유 강화복합소재를 인서트재로 채용한 것을 제외하고, 실시예 1과 동일한 방법으로 차량용 에어백 하우징을 제조하였으며, 하기의 평가 방법에 따라 물성을 측정하여 표 2에 나타내었다.
비교예 2
하기 표 1에 나타난 바와 같이, 별도의 인서트재의 채용없이 사출 수지로 폴리프로필렌 단독 중합수지 60중량% 및 섬유(glass fiber, 평균길이 30mm) 40중량%를 포함하는 섬유강화복합소재(FT)를 주입한 것을 제외하고, 실시예 1과 동일한 방법으로 차량용 에어백 하우징을 제조하였으며, 하기의 평가 방법에 따라 물성을 측정하여 표 2에 나타내었다.
<평가>
후술하는 실험예에 따라 차량용 에어백 하우징의 물성을 평가하였다.
실험예 1: 굴곡강도 및 굴곡탄성률의 측정
상기 차량용 에어백 하우징에 대하여 굴곡 특성 측정 방법(ASTM D790 방법)에 따라, 상온 23℃에서 굴곡강도 및 굴곡탄성률을 측정하였고, 그 결과는 하기 표 2에 기재하였다.
실험예 2: 낙구 충격 강도의 측정
상기 차량용 에어백 하우징에 대하여 낙구 충격 강도 측정 방법(ASTM D3763 방법)에 따라, 상온 23℃에서 낙구 충격 강도를 측정하였고, 그 결과는 하기 표 2에 기재하였다.
실시예 1 실시예 2 실시예 3 비교예 1 비교예 2
적층형 연속 섬유 강화 복합 소재 (L- CFT ) 열가소성 수지 ( wt% ) PP 40 PP 40 PA 40 직조형 연속섬유 강화복합 소재 -
섬유보강재 ( wt% ) 60 60 60
두께(mm) 1.8 1.8 1.2
패턴(°) 0 0/90/0/0/90/0 또는 90/0/90/90/0/90 0/90/90/0 또는 90/0/0/90
예열온도(℃) 230 230 280
섬유 강화 복합 소재 (FT) 열가소성 수지 ( wt% ) 60 60 60 60 60
섬유보강재 ( wt% ) 40 40 40 40 40
섬유 길이(mm) 30 30 30 30 30
사출온도(℃) 230 230 280 230 230
G1/G2 1.5 1.5 1.5 - -
굴곡 특성 낙구충격강도 [J/㎜]
굴곡강도 [ MPa ] 굴곡탄성률 [ GPa ]
실시예 1 249 12.5 12.2
실시예 2 436 17.3 22.1
실시예 3 381 27.2 12.5
비교예 1 392 15.5 19.9
비교예 2 145 7.6 5.1
상기 표 2에 나타난 바와 같이, 특히, 실시예 2 내지 3은 특정 패턴으로 적층형 연속섬유 강화복합소재(L-CFT)를 인서트재로 섬유 강화복합소재(FT)를 사출 성형하여 차량용 에어백 하우징을 제조함으로써, 굴곡강도, 굴곡탄성률 및 낙구충격강도 등의 기계적 강도 및 강성이 향상되고, 이와 동시에 성형자유도가 향상되어 복잡한 형상 구현에 효과적인 것을 알 수 있었다.
또한, 직조형 연속섬유 강화복합소재를 인서트재로 사용한 비교예 1과 비교했을 때, 보다 굴곡특성 및 충격강도가 유사하거나 우수한 것을 알 수 있으며, 차량용 에어백 하우징 제조시 치수안정성이 유사하게 나타나는 것을 알 수 있었다.
비교예 2와 같이 별도의 인서트재 없이 섬유강화복합소재(FT) 만으로 차량용 에어백 하우징을 제조했을 때, 성형자유도는 우수하나 기계적 특성 및 치수안정성이 현저히 저하되는 것을 알 수 있었다.

Claims (11)

  1. (a) 열가소성 수지 및 연속섬유를 포함하는 연속섬유 강화복합소재(CFT)를 적층하여 적층형 연속섬유 강화복합재료(L-CFT)를 제조하는 단계;
    (b) 상기 적층형 연속섬유 강화복합소재(L-CFT)를 예열하는 단계; 및
    (c) 상기 예열된 적층형 연속섬유 강화복합소재(L-CFT)를 사출 금형에 인서트하고, 열가소성 수지 및 섬유를 포함하는 섬유강화복합소재(FT)를 사출 성형하는 단계; 를 포함하는
    차량용 에어백 하우징의 제조방법.
  2. 제1항에 있어서,
    상기 열가소성 수지는 PP(polypropylene), PE(polyethylene), PET(polyethylene terephthalate), PBT(polybutylene terephthalate), PA(polyamide), ABS(acrylonitrile butadiene styrene copolymer) 및 PC(polycarbonate)-ABS 중 적어도 하나 선택되는
    차량용 에어백 하우징의 제조방법.
  3. 제1항에 있어서,
    상기 연속섬유 및 섬유는 유리 섬유, 탄소 섬유 및 이들의 조합으로 이루어진 군으로부터 선택된 하나 이상을 포함하는
    차량용 에어백 하우징의 제조방법.
  4. 제1항에 있어서,
    상기 연속섬유 강화복합소재(CFT)는 상기 열가소성 수지 40 내지 50중량% 및 연속섬유 50 내지 60중량% 포함하는
    차량용 에어백 하우징의 제조방법.
  5. 제1항에 있어서,
    상기 섬유 강화복합소재(FT)는 상기 열가소성 수지 60 내지 80중량% 및 섬유 20 내지 40중량% 포함하는
    차량용 에어백 하우징의 제조방법.
  6. 제1항에 있어서,
    상기 (b) 단계의 예열온도 및 상기 (c) 단계의 사출온도는 200 내지 230℃인
    차량용 에어백 하우징의 제조방법.
  7. 제1항에 있어서,
    상기 (a) 단계의 적층은 0 내지 90도(°) 범위에서 선택되는 적어도 1개 이상의 각도가 적층되는 패턴을 형성하는
    차량용 에어백 하우징의 제조방법.
  8. 제1항에 있어서,
    상기 (b) 단계의 적층형 연속섬유 강화복합소재(L-CFT)의 두께는 0.9 내지 4.5mm이며,
    상기 (c) 단계에서 섬유의 길이는 5 내지 50mm 인
    차량용 에어백 하우징의 제조방법.
  9. 제 1항 내지 제 8항에서 선택되는 어느 한 항의 제조방법으로 제조되며, 하기 식 1를 만족하는
    차량용 에어백 하우징.
    1.0 ≤ G1/G2 ≤ 5.0 [식 1]
    (상기 식 1에서 G1/G2 는 적층형 연속섬유 강화복합소재(L-CFT)에 포함된 섬유보강재에 대한 섬유강화복합소재(FT)에 포함된 섬유보강재의 비율을 나타낸 것으로 적층형 연속섬유 강화복합소재(L-CFT)에 포함된 섬유보강재의 함량을 섬유강화복합소재(FT)에 포함된 섬유보강재의 함량으로 나눈 값이다.)
  10. 제 9항에 있어서,
    상기 차량용 에어백 하우징은 ASTM D3763 규격에 의하여 측정된 낙구충격강도가 10 J/mm 내지 100 J/mm 인 차량용 에어백 하우징.
  11. 제 9항에 있어서,
    상기 차량용 에어백 하우징은 상온 23℃에서 ASTM D790 규격에 의하여 측정된 굴곡탄성률이 10 GPa 내지 50 GPa인 차량용 에어백 하우징.
PCT/KR2018/009217 2017-08-14 2018-08-10 차량용 에어백 하우징 및 이의 제조방법 WO2019035609A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0103123 2017-08-14
KR1020170103123A KR102168424B1 (ko) 2017-08-14 2017-08-14 차량용 에어백 하우징 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2019035609A1 true WO2019035609A1 (ko) 2019-02-21

Family

ID=65362644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009217 WO2019035609A1 (ko) 2017-08-14 2018-08-10 차량용 에어백 하우징 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR102168424B1 (ko)
WO (1) WO2019035609A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560111B2 (en) 2019-03-29 2023-01-24 Mcpp Innovation Llc All TPO airbag assemblies

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814861B1 (ko) * 2004-04-30 2008-03-20 (주)삼박 열가소성 복합 판재를 이용하여 제조된 물품
KR20130045908A (ko) * 2006-11-22 2013-05-06 후쿠이 켄 열가소성 수지 보강 시트재, 열가소성 수지 다층 보강 시트재 및 그 제조 방법, 및 열가소성 수지 다층 보강 성형품
JP2014148111A (ja) * 2013-02-01 2014-08-21 Toray Ind Inc 繊維強化プラスチック成形品の製造方法および一体成形品の製造方法
KR20150103438A (ko) * 2014-03-03 2015-09-11 (주)엘지하우시스 연속섬유강화 열가소성 플라스틱을 이용한 프론트 엔드 모듈 캐리어 및 그 제조방법
KR101721727B1 (ko) * 2014-05-09 2017-04-11 (주)엘지하우시스 연속섬유강화 열가소성 플라스틱을 이용한 헤드레스트 일체형 3열 시트 백 프레임 및 그 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080023791A (ko) * 2006-09-12 2008-03-17 (주)삼박 강화 연속섬유 함침시트가 포함된 자동차 부품 및 그제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100814861B1 (ko) * 2004-04-30 2008-03-20 (주)삼박 열가소성 복합 판재를 이용하여 제조된 물품
KR20130045908A (ko) * 2006-11-22 2013-05-06 후쿠이 켄 열가소성 수지 보강 시트재, 열가소성 수지 다층 보강 시트재 및 그 제조 방법, 및 열가소성 수지 다층 보강 성형품
JP2014148111A (ja) * 2013-02-01 2014-08-21 Toray Ind Inc 繊維強化プラスチック成形品の製造方法および一体成形品の製造方法
KR20150103438A (ko) * 2014-03-03 2015-09-11 (주)엘지하우시스 연속섬유강화 열가소성 플라스틱을 이용한 프론트 엔드 모듈 캐리어 및 그 제조방법
KR101721727B1 (ko) * 2014-05-09 2017-04-11 (주)엘지하우시스 연속섬유강화 열가소성 플라스틱을 이용한 헤드레스트 일체형 3열 시트 백 프레임 및 그 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560111B2 (en) 2019-03-29 2023-01-24 Mcpp Innovation Llc All TPO airbag assemblies

Also Published As

Publication number Publication date
KR102168424B1 (ko) 2020-10-21
KR20190018307A (ko) 2019-02-22

Similar Documents

Publication Publication Date Title
CN103387709B (zh) 一种热塑性复合材料、制备方法及其应用
WO2014204053A1 (ko) 폴리프로필렌계 수지 및 탄소 장섬유를 포함하는 수송 수단용 복합 재료
KR101874918B1 (ko) 저비중 폴리프로필렌 수지 조성물 및 이를 이용한 자동차 내장재용 성형품
KR101816434B1 (ko) 발포사출용 탄소 장섬유 강화 열가소성 수지 조성물 및 이를 사용하여 제조된 성형품
WO2012008740A2 (en) Thermoplastic organic fiber, method for preparing the same, fiber composite board using the same and method for preparing the board
JPH02173047A (ja) 繊維強化熱可塑性樹脂組成物
KR20150072558A (ko) 폴리프로필렌 수지 조성물
WO2015174758A1 (ko) 장섬유 보강 플라스틱 복합재 및 장섬유 보강 플라스틱 복합재의 제조 방법
WO2017204558A1 (ko) 보강 복합재 및 이를 포함하는 물품
KR101521147B1 (ko) 내충격성이 향상된 장섬유강화 열가소성 수지 조성물 및 이에 의해 제조된 성형품
WO2010067955A2 (ko) 고무/나노클레이 마스터배치 제조 및 이를 이용한 고강성 고충격강도 폴리프로필렌/나노클레이/고무 복합재 제조
WO2012096506A2 (ko) 함침성이 우수한 고강도 복합시트 제조 장치 및 이를 이용한 고강도 복합시트 제조 방법
KR20160094724A (ko) 탄소 장섬유 강화 열가소성 수지 조성물 및 이에 의해 제조된 성형품
WO2013154256A1 (ko) 친환경 고강도 수지 복합재
WO2011065678A2 (ko) 친환경 폴리아미드 수지 조성물 및 이를 이용한 성형품
WO2019035609A1 (ko) 차량용 에어백 하우징 및 이의 제조방법
WO2021235650A1 (ko) 점착성 및 전기 전도성이 우수한 다층 성형품 및 이에 의해 운송되는 전자제품
WO2018044007A1 (ko) 섬유 강화 복합재 및 이를 이용한 자동차용 내·외장재
WO2022127069A1 (zh) 一种低收缩率tpu薄膜及其制备方法
WO2022045736A1 (ko) 열가소성 수지 조성물 및 이를 이용한 성형품
KR20160140067A (ko) 고분자 수지 조성물, 고분자 복합재 테이프 및 자동차 프론트 범퍼
KR101783084B1 (ko) 저 비중, 저 선팽창 폴리프로필렌 수지 조성물, 및 성형품
JPH05147096A (ja) 熱可塑性樹脂多層構造体
KR20120021630A (ko) 내충격성이 향상된 재활용 폴리프로필렌 고분자 복합체 및 이를 포함하는 열가소성 성형품
WO2016175538A1 (ko) 섬유 강화 복합재 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18846621

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/012021)

122 Ep: pct application non-entry in european phase

Ref document number: 18846621

Country of ref document: EP

Kind code of ref document: A1