WO2014204053A1 - 폴리프로필렌계 수지 및 탄소 장섬유를 포함하는 수송 수단용 복합 재료 - Google Patents

폴리프로필렌계 수지 및 탄소 장섬유를 포함하는 수송 수단용 복합 재료 Download PDF

Info

Publication number
WO2014204053A1
WO2014204053A1 PCT/KR2013/008249 KR2013008249W WO2014204053A1 WO 2014204053 A1 WO2014204053 A1 WO 2014204053A1 KR 2013008249 W KR2013008249 W KR 2013008249W WO 2014204053 A1 WO2014204053 A1 WO 2014204053A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionomer
fiber
composite material
acid
propylene
Prior art date
Application number
PCT/KR2013/008249
Other languages
English (en)
French (fr)
Inventor
김동현
임대영
김기영
박노형
안효진
김정수
이은수
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to US14/897,254 priority Critical patent/US9518177B2/en
Priority to JP2016519425A priority patent/JP6116759B2/ja
Publication of WO2014204053A1 publication Critical patent/WO2014204053A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • the present invention relates to a composite material composition which can be applied to various transportation means as it has improved physical properties including polypropylene-based resin and carbon long fibers.
  • the composite material refers to a material having an effective function by combining two or more kinds of materials having different components or shapes so as to have an interface that is macroscopically separated from each other as a reinforcement and a matrix.
  • the composite material can secure a variety of physical properties by the efficient combination of each material, has been applied to a variety of applications ranging from aviation, space, automobiles, sports, industrial machinery, medical equipment, military supplies, construction and civil engineering materials.
  • the fiber-reinforced composite material is manufactured using fibers such as glass fiber, carbon fiber, aramid fiber, and silicon carbide fiber as reinforcing material, and has been spotlighted among composite materials due to its advantages of high strength, light weight, and excellent formability. Is the material being received.
  • the fiber-reinforced composite material is used in various applications by changing the material of the reinforcing material, the length of the fiber, and the like.
  • Korean Patent Laid-Open Publication No. 2006-7004105 mixes a polypropylene copolymer and glass fiber to car seat, head restraint, knee protector, glove box door, instrument panel. , Bumper Persia, Bumper Beam, etc., and disclosed in the automotive article, Japanese Patent Laid-Open No. 2008-202013 is that it can be applied to exterior panels of automobiles using glass long fibers in polycarbonate / styrene resin It is mentioned.
  • Japanese Patent Laid-Open No. 2011-137077 discloses a fiber reinforced composite material comprising organic long fibers such as polyester or polyamide fibers in a polypropylene resin for use in instrument panels of automobiles.
  • Patent Publication No. 2006-0075902 discloses a fiber-reinforced composite material in which glass fiber, carbon fiber, graphite fiber, metal fiber, and the like are added to a low-brittle propylene resin.
  • Carbon fiber reinforced composite material using carbon fiber as a reinforcing material among the fiber reinforced composite materials has lightness and physical properties such as stiffness, impact resistance, heat resistance, chemical stability, dimensional stability, abrasion resistance, and flexibility than other reinforcing materials. Such physical properties are further improved by using long fibers having a long length of carbon fibers.
  • the fiber reinforced composite material is manufactured by mixing and melting a thermoplastic resin and a fiber reinforcing material used as a matrix, followed by a molding process such as extrusion.
  • a molding process such as extrusion.
  • fibers penetrate between the microstructures of the resin and are uniformly dispersed as a reinforcing material in the matrix.
  • the incompatibility between the microstructures of the resins is not easy due to low compatibility with the resin. There is a problem of deterioration of physical properties.
  • compatibilizer a modified polyolefin (PO) (PP-g-MA) prepared by grafting a polypropylene resin and maleic anhydride (MAH) at 9: 1 is most widely used.
  • PO polyolefin
  • MAH maleic anhydride
  • the type or content of the resin used as a matrix varies depending on the application, and at this time, the selection of glass fiber, carbon fiber, aramid fiber, metal fiber, etc. as a reinforcing material is different.
  • the interfacial properties between these resins and the reinforcing material according to the type of the matrix resin and the reinforcing material it is difficult to secure sufficient physical properties by simply applying PP-g-MA known as a compatibilizer.
  • these interfacial properties are greatly influenced by the parameters of the molding process.
  • the present inventors conducted various studies to select a polypropylene resin as a matrix resin and a carbon long fiber as a reinforcing material, and to select a compatibilizer capable of improving the interfacial properties therebetween.
  • a compatibilizer capable of improving the interfacial properties therebetween.
  • the compatibilizer provides a fiber-reinforced composite material composition for transport means, characterized in that it comprises one selected from the group consisting of ionomers, propylene-polar monomer copolymers, modified water additive polymers, and combinations thereof.
  • the fiber-reinforced composite material proposed by the present invention has improved rigidity, impact resistance, and heat resistance compared to conventional glass fibers or short carbon fibers due to the use of long carbon fibers, and various fields requiring composite materials as well as vehicles, including automobiles. Applicable to
  • Example 1 is a scanning electron microscope image showing the fracture surface of the composite material prepared in Example 1
  • the present invention proposes a suitable compatibilizer to increase the miscibility of polypropylene resin and carbon long fiber, and due to the use of the compatibilizer, the polypropylene resin and carbon long fiber are properly blended in the molding process, and these The interfacial properties of the liver are improved to ensure sufficient physical properties due to reinforcement of carbon long fibers.
  • the fiber-reinforced composite material according to the present invention is 40 to 90% by weight of polypropylene resin, 5 to 60% by weight of carbon long fiber having a fiber diameter of 1 to 50 ⁇ m, and a weight average fiber length of 20 to 150 mm, 0.3 to 15% by weight of compatibilizer.
  • the polypropylene-based resin is not particularly limited in the present invention, and polypropylene homopolymer or copolymer is possible, and includes all isotactic, syndiotactic, and atactic structures.
  • the polypropylene copolymer means a copolymer in which a propylene monomer and an alpha olefin monomer are copolymerized.
  • alpha olefins are hydrocarbons having 3 to 12 carbon atoms, for example, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, One species selected from the group consisting of 1-undecene and 1-dodecene, and combinations thereof is possible.
  • the polypropylene copolymer may be a propylene-ethylene copolymer, a propylene-ethylene-alpha olefin copolymer, or the like.
  • the polypropylene copolymer may be in the form of a random copolymer, a block copolymer or a graft copolymer, and may be appropriately selected and used according to the purpose of use.
  • the polypropylene resin is used at 40 to 90% by weight within 100% by weight of the total composite material composition. If the content of the polypropylene resin is less than the above range can not serve as a matrix of the composite material, on the contrary, if the content exceeds the above range, the content of carbon long fibers or compatibilizer is reduced relatively to obtain the desired physical properties. Use suitably within the range.
  • the carbon long fibers used as reinforcing fibers influence the expected effects as reinforcing fibers depending on the diameter, weight average fiber length, and their use content.
  • carbon long fibers should penetrate into the microstructure of molten polypropylene resin and be uniformly dispersed.
  • the carbon long fibers should have an appropriate range of diameter and weight average fiber length to exhibit excellent mechanical and thermal properties.
  • the carbon long fibers of the present invention are those having a fiber diameter of 1 to 50 ⁇ m and a weight average fiber length of 20 to 150 mm at 5 to 60 weight percent within 100 weight percent of the total composition.
  • the diameter of the carbon long fiber is less than the above range, too thin to be used as a reinforcing fiber may not be sufficient to reinforce the physical properties, and the fiber may be entangled. Since it cannot fully penetrate into the fine structure of the polypropylene resin thus obtained, and sufficient desired physical properties cannot be secured, it is suitably used within the above range.
  • the weight average fiber length of the carbon long fibers is less than the above range, it is not possible to sufficiently secure the physical properties (ie, rigidity, impact resistance, heat resistance) to be obtained by using the long fibers as short fibers rather than long fibers, On the contrary, when the fiber length exceeds the above range, entanglement in the molding process occurs due to excessively long length, or the interfacial properties in the microstructure of the polypropylene resin are deteriorated, so that the desired physical properties cannot be sufficiently secured. do.
  • the carbon long fiber proposed in the present invention is used in the content of the above range to ensure sufficient physical properties as a reinforcing material. If the content is less than the above range, the physical properties due to the use of the carbon long fiber can not be sufficiently secured, on the contrary, if the content exceeds the above range, it is difficult to manufacture and the carbon long fiber is agglomerated and dispersed uniformly in the polypropylene resin matrix in the molding process. This may also cause a decrease in physical properties of the composite material, so it is suitably used within the above range.
  • a specific compatibilizer is used in a predetermined range for the miscibility of the polypropylene resin and carbon long fiber as described above.
  • a compatibilizer one type selected from the group consisting of ionomers, propylene-polar monomer copolymers, modified water additive polymers, and combinations thereof is used in an amount of 0.3 to 15% by weight within 100% by weight of the total composition.
  • the compatibilizer may improve the interfacial properties between the propylene-based resin and the long carbon fiber through a chemical bond or a physical bond.
  • the content of such compatibilizers is important not only in their kind but also in content control in the overall composition. That is, only when the compatibilizer is properly used, the miscibility between the polypropylene resin and the long carbon fiber may be improved in the molding process. If the content is less than the above range, the carbon long fibers may not be uniformly dispersed in the polypropylene resin matrix, and thus the physical properties may not be improved due to the use of the long carbon fibers. Since the burden of manufacturing cost rises and this is also not preferable, it uses suitably within the said range.
  • the ionomer is a polymer in which metal ions are bonded to the main chain or the side chain, and the type of the ionomer is not particularly limited.
  • ionomer resins may be used independently, and may mix and use 2 or more types as needed.
  • ionomer resins propylene-methacrylic acid copolymer ionomers and propylene-acrylic acid copolymer ionomers are preferable, and anions of these ionomers include halide ions, particularly anions such as Cl ⁇ , Br ⁇ , I ⁇ , and the like.
  • the metal ions include alkali metal ions such as Li + , Na + , K + , alkaline rare earth metal ions such as Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Zn 2+ , Cu 2+ , and Mn. Transition metal ions such as 2+ , Ni 2+ , Co 2+ , Co 3+ , Fe 3+ and Cr 3+ are possible.
  • the propylene-polar monomer copolymer is a copolymer obtained by copolymerizing a propylene monomer with a monomer containing a polar group such as an acid anhydride group, an epoxy group, a carboxyl group, and a carboxylic acid ester.
  • the copolymerizable monomers include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, and anhydrides thereof; Esters of unsaturated carboxylic acids such as methyl acrylate, methyl methacrylate, dimethyl maleate, monomethyl maleate, diethyl fumarate, dimethyl itaconic acid, diethyl citraconate, and dimethyl tetrahydrophthalic anhydride; Glycidyl esters of unsaturated monocarboxylic acids such as glycidyl acrylate, glycidyl methacrylate, and p-styryl carboxylic acid glycidyl; Monoglycidyl esters or polyglycidyl esters of unsaturated polycarboxylic acids such as maleic acid, itaconic acid, citraconic acid and butene tricarboxylic acid; Unsaturated glycidyl ethers such as
  • the modified water-added polymer component is not particularly limited, but for example, a water-added styrene-butadiene rubber and a styrene-ethylene butylene-polyethylene-block copolymer modified with an acid anhydride, an epoxy group, a carboxyl group, and a carboxylic acid ester.
  • styrene-ethylene-propylene-styrene-block copolymers are preferred.
  • the ionomer and propylene-polar monomer copolymers of the above-mentioned compatibilizers are capable of chemically bonding to polypropylene-based resins due to functional groups as reactive compatibilizers, thereby further improving the interfacial properties between the resin and the long carbon fiber due to the compatibilizer.
  • the modified water-added polymer it is a non-reactive compatibilizer, but it may also improve the interfacial properties between the resin and the carbon long fiber due to physical mixing with the polypropylene resin.
  • the fiber-reinforced composite material according to the present invention may further include an additive used in the molding process of a conventional thermoplastic resin in order to secure desired physical properties or to facilitate molding according to the purpose.
  • an additive used in the molding process of a conventional thermoplastic resin for example, antioxidants, process stabilizers, light stabilizers, elastomers, flame retardants, inorganic fillers, carbon black, nucleating agents, UV absorbers, vibration dampers, antibacterial agents, insect repellents, deodorants, colorants, softeners, lubricants, pigments, dyes, heat stabilizers , A release agent, an antistatic agent, a plasticizer, a lubricant, a blowing agent, a defoamer, a preservative and a coupling agent, and a mixture thereof.
  • the additive may be added before the molding process of the composite material, for example, before kneading or during kneading, or after kneading separately, and may be added by an impregnation process if necessary.
  • the additive is used in 5% by weight or less in the total composition, it is possible to control the selection and content of additives required by those skilled in the art.
  • the preparation of the fiber-reinforced composite material as described above is not particularly limited in the present invention, and can be produced by various methods known in the art. For example, extrusion, injection molding, pultrusion molding, compression molding, Resin Transfer Molding (RTM) molding, Hand Lay-up molding, Various methods are available, such as autoclave molding and filament winding molding.
  • the polypropylene-based resin may be prepared by heating the polypropylene resin to a melting temperature or higher, followed by adding carbon long fibers thereto, kneading for a predetermined time and then drying. At this time, the compatibilizer is added to the polypropylene resin, the carbon long fiber is purchased in the roving (roving) state and put into the extruder.
  • the kneading conditions other than the above are not specifically limited, For example, what is necessary is just to set suitably so that melting and kneading of a polypropylene resin may be performed smoothly. It is preferable to make internal temperature, such as the cylinder of a kneading
  • the fiber-reinforced composite material obtained by kneading is subjected to a further molding process for each purpose.
  • the molding step is not particularly limited in the present invention, and a known method can be used.
  • the molding step may be performed using a thermocompressor.
  • the fiber-reinforced composite material thus produced has physical properties of 50 MPa or more in breaking strength, 6 GPa or more in tensile modulus, 180 MPa or more in flexural strength, 30 KJ / m 2 or more in impact resistance, and 400 ° C or more in pyrolysis temperature. Can be applied to
  • vehicle materials such as automobiles, aerospace materials, defense component materials, electrical and electronic materials, civil building materials, biomedical materials and various sports materials, and preferably used in automobiles. have.
  • the carbon long fiber reinforced composite material according to the present invention can be applied to a vehicle.
  • the vehicle may be a car, a train, an airplane, a helicopter, a truck, a motorcycle, a bicycle, a boat, a yacht, or the like.
  • the carbon long-fiber composite material is light, so that it can be applied to automobiles, especially automobile exterior materials (eg, bonnets), compared to iron or aluminum, which is currently used as a component, to achieve light weight, and thus has high rigidity, impact resistance, and heat resistance. Some or all of the materials used in the process can be replaced, thereby preoccupying the market.
  • Fiber reinforced composite materials were prepared using the compositions of Tables 1 to 3 below. Specifically, after adding a polypropylene resin (manufacturer: PolyMirae, MI: 12g / 10 min, 230 ° C) and a compatibilizer to the extruder, and kneading sufficiently using a one-stage extruder, carbon long fibers or carbon in the two-stage extruder Short fibers were added to prepare a carbon fiber reinforced polypropylene composite material. At this time, the processing temperature was 250 °C, the screw speed was 100 rpm.
  • a polypropylene resin manufactured by adding a polypropylene resin (manufacturer: PolyMirae, MI: 12g / 10 min, 230 ° C) and a compatibilizer
  • carbon long fibers or carbon in the two-stage extruder Short fibers were added to prepare a carbon fiber reinforced polypropylene composite material.
  • the processing temperature was 250 °C
  • the screw speed was 100 rpm.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Thermoplastic resin PP 89 89 89 89 82 75 Carbon fiber Long carbon fiber (length: 20 mm, diameter 50) 10 10 10 - - - Long carbon fiber (length: 30 mm, diameter 50) - - - 10.7 - - Long carbon fiber (length: 50 mm, diameter 50) - - - - 10 - Long carbon fiber (length: 100 mm, diameter 50) - - - - - 10
  • Compatibilizer Ionomer (1) One - - - - - - Propylene unsaturated copolymers (2006.01) - One - 0.3 8.0 15.0 Modified Water Additive Polymer (3) - - One - - - - -
  • SEBS styrene-ethylene-butylene-styrene-block copolymer
  • SEBS styrene-ethylene-butylene-styrene-block copolymer
  • 1 and 2 are scanning electron microscope images showing the fracture surface of the composite material specimen made of polypropylene and carbon long fiber prepared in Example 1 and Comparative Example 2, respectively.
  • the composite material produced by the present invention is mixed without an empty space at the interface between the polypropylene resin, which is a matrix, and the carbon long fibers. It can be seen that due to the propylene methacrylic acid copolymer as a compatibilizer, chemical bonding between the polypropylene resin and the carbon long fiber occurs, resulting in a composite material having a structure in which carbon long fiber penetrates well between the resins. .
  • the evaluation items for applicability as automobile bonnets include break strength and tensile modulus to evaluate stiffness of molded products for evaluating good moldability, yield elongation to evaluate impact absorption rate, flexural strength test and impact strength test, and thermal decomposition temperature evaluation.
  • the specific evaluation method is as follows.
  • Break strength, tensile modulus, yield elongation Break strength and tensile modulus are one of the typical measurement methods for evaluating stiffness, and yield elongation is one of the methods for evaluating impact absorption in elastic and plastic regions.
  • the test method was measured by ASTM D-638 method, the specimen size was ASTM D-638 No. 1 and the crosshead speed was tested at 5mm / min.
  • Flexural Strength This is a representative measurement method for evaluating rigidity. The higher the flexural strength, the better the mechanical strength and the smaller the final molded product's thickness or the higher the load. Flexural strength was measured by ASTM D-790 method, the specimen size is 12.7 ⁇ 127 ⁇ 6.4mm, the crosshead speed is 10mm / min.
  • Impact strength is a representative test method for evaluating the ability to absorb shock, measured by ASTM D-256 method and conducted at room temperature (23 ° C). Specimen size is 63.5 ⁇ 12.7 ⁇ 3mm.
  • the pyrolysis temperature was measured by TGA (thermogravimetric analysis) by the ASTM E-474 method. The temperature when the weight change of 10% was shown while raising the temperature of TGA uniformly at the speed of 120 degree-C / hr.
  • the longer the length of the applied carbon fiber can be confirmed through the Examples and Comparative Examples that the excellent mechanical and thermal properties of the composite material consisting of polypropylene and carbon long fibers.
  • the physical properties of the composite materials of Comparative Examples 1 to 3 were better than those of the composite materials using the short carbon fibers of Comparative Examples 4 to 6, and the carbons of the compatibilizers of Examples 1 to 6 according to the present invention were used. Longer fibers showed better physical properties. However, if a small amount of compatibilizer is used (Comparative Example 8) or if an excessive amount is used (Comparative Example 9), the physical properties are deteriorated, so that the improvement of physical properties can be expected only when the compatibilizer is used in an optimally controlled content.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

본 발명은 폴리프로필렌계 수지 및 탄소 장섬유를 포함하는 수송 수단용 복합 재료에 관한 것으로, 더욱 상세하게는 폴리프로필렌계 수지 40∼90 중량%, 섬유 직경이 1∼50 ㎛이고, 중량평균 섬유 길이가 20∼150 mm인 탄소 장섬유 5∼60 중량%, 상용화제 0.3∼15 중량%를 포함하고, 상기 상용화제가 이오노머, 프로필렌-극성단량체 공중합체, 변성수(水)첨가 폴리머 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함하는 것을 특징으로 하는 수송 수단용 섬유 강화 복합 재료 조성물에 관한 것이다. 상기 복합 재료는 특정 상용화제의 사용으로 인해 폴리프로필렌계 수지와 탄소 장섬유 간의 계면 특성이 향상되어, 복합 재료의 강성 및 내충격성이 향상되고, 내열성이 우수하여 자동차를 비롯한 각종 수송 수단뿐만 아니라 상기 섬유 강화 복합 재료가 요구되는 다양한 분야에 적용 가능하다.

Description

폴리프로필렌계 수지 및 탄소 장섬유를 포함하는 수송 수단용 복합 재료
본 발명은 폴리프로필렌계 수지 및 탄소 장섬유를 포함하여 향상된 물성을 가짐에 따라 각종 수송 수단에 적용 가능한 복합 재료 조성물에 관한 것이다.
복합 재료는 성분이나 형태가 다른 두 종류 이상의 소재가 보강재(reinforcement)와 매트릭스(matrix)로서 거시적으로 서로 간에 구분되는 계면을 가지도록 조합되어 유효한 기능을 가지는 재료를 의미한다. 상기 복합 재료는 각 소재의 효율적인 조합에 의하여 다양한 물성을 확보할 수 있어, 항공, 우주, 자동차, 스포츠, 산업기계, 의료기구, 군수용품, 건축 및 토목자재에 이르기까지 다양하게 응용되고 있다.
그중, 섬유 강화 복합 재료는 보강재로서 유리 섬유, 탄소 섬유, 아라미드 섬유, 실리콘 카바이드 섬유와 같은 섬유를 사용하여 제조된 것으로, 강도가 크고 가벼우며, 성형성이 우수하다는 이점 등으로 인해 복합 재료 중에서도 각광받고 있는 소재이다.
특히, 섬유 강화 복합 재료는 보강재의 재질이나 섬유의 길이 등을 변화시켜 다양한 용도에 사용하고 있다.
그중 유리 섬유가 보강재로서 가장 폭넓게 사용하고 있으며, 일례로, 대한민국 특허공개 제2006-7004105호는 폴리프로필렌 공중합체와 유리 섬유를 혼련하여 자동차 좌석, 머리 받침대, 무릎 보호장치, 글로브 박스 도어, 인스트루먼트 패널, 범퍼 퍼시아, 범퍼 빔 등의 자동차 물품에 적용함을 개시하고 있으며, 일본 특허공개 제2008-202013호는 폴리카보네이트/스티렌계 수지에 유리 장섬유를 사용하여 자동차의 외장 패널로 응용할 수 있음을 언급하고 있다.
보강재로서 유리 섬유 외에 일본 특허공개 제2011-137077호는 자동차의 인스트루먼트 패널에 사용하기 위해 폴리프로필렌 수지에 폴리에스테르 또는 폴리아미드 섬유 등의 유기 장섬유를 포함하는 섬유 강화 복합 재료를 개시하고 있으며, 대한민국 특허공개 제2006-0075902호는 저취성의 프로필렌계 수지에 유리섬유, 탄소섬유, 그래파이트 섬유, 금속섬유 등을 첨가한 섬유 강화 복합 재료를 개시하고 있다.
섬유 강화 복합 재료 중 탄소 섬유를 보강재로 사용한 탄소 섬유 강화 복합 재료는 가벼움과 동시에 강성, 내충격성, 내열성, 화학적 안정성, 치수 안정성, 내마모성, 유연성 등의 물성이 타 보강재보다 우수하다. 이러한 물성은 탄소 섬유의 길이가 긴 장섬유를 사용할 경우 더욱 향상된다.
통상 섬유 강화 복합 재료는 매트릭스로 사용하는 열가소성 수지와 섬유 보강재를 혼합 후 용융시켜 압출 등의 성형 공정을 통해 제조한다. 상기 성형 공정에서 수지의 미세 구조 사이에 섬유가 침투하여 매트릭스 내에 보강재로서 균일하게 분산되는데, 이때 보강재로서 장섬유를 사용할 경우 수지와 혼화성이 낮아 상기 수지의 미세 구조 사이에 침투가 용이하지 않아 오히려 물성이 저하되는 문제가 발생한다.
종래 매트릭스 수지와 보강재용 섬유 간의 계면 특성을 안정화하기 위해서 다양한 방법이 있으며, 그중 하나로 성형시 상용화제를 사용하는 방법이 있다. 상기 상용화제로 폴리프로필렌 수지와 무수말레인산(MAH)을 9:1로 그라프트(graft)시켜 제조된 변성 폴리올레핀(PO)(PP-g-MA)이 가장 널리 사용되고 있다. 이러한 상용화제는 보강재나 매트릭스의 재질과 상관없이 사용되고 있는 실정이다.
그러나 섬유 강화 복합 재료의 경우 적용하는 용도에 따라 매트릭스로 사용하는 수지의 종류나 함량이 달라지고 이때 보강재로서 유리 섬유, 탄소 섬유, 아라미드 섬유, 금속 섬유 등의 선택 여부가 달라지게 된다. 즉, 매트릭스 수지 및 보강재의 종류에 따라 이들 수지와 보강재 간 계면 특성에 차이가 있어 단순히 상용화제로서 알려진 PP-g-MA를 적용해서는 충분한 물성 확보가 어렵다. 더욱이 이러한 계면 특성은 성형 공정의 파라미터에도 영향을 크게 받는다.
따라서, 성형 공정과 관계없이 충분한 물성 확보를 위해 매트릭스 수지 및 보강재의 종류에 따라 최적의 상용화제의 선정이 필요하다.
이에 본 발명자들은 매트릭스 수지로 폴리프로필렌계 수지를, 보강재로서 탄소 장섬유를 선정하고, 이들 간의 계면 특성을 향상시킬 수 있는 상용화제를 선정하고자 다각적으로 연구를 수행한 결과, 특정 상용화제를 소정 함량으로 사용할 경우 성형 공정에서 폴리프로필렌 수지와 탄소 장섬유 간의 계면 특성을 개선하여 최종 얻어지는 섬유 강화 복합 재료의 물성이 향상됨을 확인하여 본 발명을 완성하였다.
따라서, 본 발명의 목적은 폴리프로필렌계 수지가 탄소 장섬유로 강화되는 복합 재료에 있어 특정 상용화제의 사용으로 인해 이들 간의 계면 특성을 개선함에 따라 복합 재료의 강성, 내충격성, 및 내열성 등의 물성이 향상된 섬유 강화 복합 재료 조성물을 제공하는 데 그 목적이 있다.
상기 목적을 달성하기 위해, 폴리프로필렌계 수지 40∼90 중량%, 섬유의 직경이 1∼50 ㎛이고 중량평균 섬유 길이가 20∼150 mm인 탄소 장섬유 5∼60 중량%, 상용화제 0.3∼15 중량%를 포함하고,
상기 상용화제가 이오노머, 프로필렌-극성단량체 공중합체, 변성수(水)첨가 폴리머 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함하는 것을 특징으로 하는 수송 수단용 섬유 강화 복합 재료 조성물을 제공한다.
본 발명에서는 제시하는 섬유 강화 복합 재료는 탄소 장섬유의 사용으로 인해 종래 유리 섬유나 탄소 단섬유에 비해 강성, 내충격성 및 내열성이 향상되어 자동차를 비롯한 각종 수송 수단뿐만 아니라 복합 재료가 요구되는 다양한 분야에 적용 가능하다.
도 1은 실시예 1에서 제조된 복합 재료의 파단면을 보여주는 주사전자현미경 이미지
도 2는 비교예 2에서 제조된 복합 재료의 파단면을 보여주는 주사전자현미경 이미지
본 발명에서는 폴리프로필렌계 수지와 탄소 장섬유와의 혼화성을 높이기 위해서 적절한 상용화제를 제시하며, 상기 상용화제의 사용으로 인해 성형 공정에서 폴리프로필렌계 수지와 탄소 장섬유가 적절히 블렌딩되고 성형 후 이들 간의 계면특성이 향상되어 탄소 장섬유의 보강으로 인한 물성을 충분히 확보할 수 있다.
구체적으로, 본 발명에서 제시하는 섬유 강화 복합 재료는 폴리프로필렌계 수지 40∼90 중량%, 섬유 직경이 1∼50 ㎛, 중량평균 섬유 길이가 20∼150 mm인 탄소 장섬유 5∼60 중량%, 상용화제 0.3∼15 중량%를 포함한다.
폴리프로필렌계 수지는 본 발명에서 특별히 한정하지 않으며, 폴리프로필렌 단독 중합체 또는 공중합체가 가능하며, 이소태틱(isotactic), 신디오택틱(syndiotactic) 및 어택틱(atactic) 구조를 모두 포함한다.
구체적으로 폴리프로필렌 공중합체는 프로필렌 모노머와 알파 올레핀 모노머가 공중합된 공중합체를 의미한다. 이러한 알파 올레핀은 탄소수 3∼12의 탄화수소로, 일예로 1-부텐, 1-펜텐, 1-헥센, 4-메틸-1-펜텐, 1-헵텐, 1-옥텐, 1-노넨, 1-데센, 1-운데센 및 1-도데센, 및 이들의 조합으로 이루어진 군에서 선택된 1종이 가능하다. 일례로, 폴리프로필렌 공중합체는 프로필렌-에틸렌 공중합체, 프로필렌-에틸렌-알파 올레핀 공중합체 등일 수 있다.
상기 폴리프로필렌 공중합체는 랜덤 공중합체, 블록 공중합체 또는 그래프트 공중합체의 형태일 수 있으며, 사용 목적에 따라 적절하게 선택하여 사용한다.
본 발명에서 폴리프로필렌계 수지는 전체 복합 재료 조성물 100 중량% 내에서 40∼90 중량%로 사용한다. 만약 폴리프로필렌계 수지의 함량이 상기 범위 미만이면 복합 재료의 매트릭스로서 역할을 수행할 수 없고, 반대로 상기 범위를 초과하면 상대적으로 탄소 장섬유나 상용화제의 함량이 줄어들어 원하는 물성을 얻을 수 없으므로, 상기 범위 내에서 적절히 사용한다.
보강 섬유로서 사용하는 탄소 장섬유는 직경과 중량평균 섬유 길이, 및 그 사용 함량에 따라 보강 섬유로서의 기대 효과에 영향을 준다. 이미 언급한 바와 같이 탄소 장섬유는 용융된 폴리프로필렌계 수지의 미세 구조에 침투되어 균일하게 분산되어야 하는데, 이때 적절한 범위의 직경과 중량평균 섬유 길이를 가져야 우수한 기계적 물성과 열적 성질을 나타낼 수 있다.
바람직하기로, 본 발명에서 제시하는 탄소 장섬유는 섬유 직경이 1∼50 ㎛이고, 중량평균 섬유 길이가 20∼150 mm인 것을 전체 조성물 100 중량% 내에서 5∼60 중량%로 사용한다.
상기 탄소 장섬유의 직경이 상기 범위 미만이면 강화 섬유로 사용하기에 너무 가늘어 물성 보강 효과가 충분하지 못할 우려와 더불어 섬유가 엉키는 현상이 발생할 수 있고, 이와 반대로 상기 범위를 초과하면 탄소 장섬유가 용융된 폴리프로필렌계 수지의 미세 구조에 충분히 침투할 수 없어 원하는 물성을 충분히 확보할 수 없으므로, 상기 범위 내에서 적절히 사용한다.
또한, 탄소 장섬유의 중량평균 섬유 길이가 상기 범위 미만이면, 장섬유가 아닌 단섬유로서 장섬유를 사용함에 따라 얻고자 하는 물성(즉, 강성, 내충격성, 내열성)을 충분히 확보할 수 없고, 반대로 섬유 길이가 상기 범위를 초과하면 지나친 긴 길이로 인해 성형 공정에서 엉킴이 발생하거나 폴리프로필렌계 수지의 미세 구조에서의 계면 특성이 저하되어 원하는 물성을 충분히 확보할 수 없으므로, 상기 범위 내에서 적절히 사용한다.
그리고, 본 발명에서 제시하는 탄소 장섬유는 보강 소재로서 충분한 물성 확보를 위해 상기 범위의 함량으로 사용한다. 만약 그 함량이 상기 범위 미만이면, 탄소 장섬유의 사용으로 인한 물성을 충분히 확보할 수 없고, 반대로 상기 범위를 초과하면 제조가 어렵고 성형 공정에서 탄소 장섬유가 뭉쳐 폴리프로필렌계 수지 매트릭스 내에 불균일하게 분산되어 이 또한 복합 재료의 물성 저하를 야기할 수 있으므로, 상기 범위 내에서 적절히 사용한다.
특히, 본 발명에서는 전술한 바의 폴리프로필렌계 수지와 탄소 장섬유의 혼화성을 위해, 특정 상용화제를 소정 범위로 사용한다.
바람직하기로, 상용화제로는 이오노머, 프로필렌-극성단량체 공중합체, 변성수(水)첨가 폴리머 및 이들의 조합으로 이루어진 군에서 선택된 1종을 전체 조성물 100 중량% 내에서 0.3∼15 중량%로 사용한다.
상기 상용화제는 화학적 결합이나 물리적 결합을 통해 프로필렌계 수지와 탄소 장섬유 간의 계면 특성을 향상시킬 수 있다.
이러한 상용화제의 함량은 그 종류뿐만 아니라 전체 조성물 내에서의 함량 제어 또한 중요하다. 즉, 상용화제를 적절히 사용하여야만 성형 공정에서 폴리프로필렌계 수지와 탄소 장섬유 간의 혼화성을 향상시킬 수 있다. 만약 그 함량이 상기 범위 미만이면 폴리프로필렌계 수지 매트릭스에 탄소 장섬유가 균일하게 분산되지 않아 탄소 장섬유의 사용에 따른 물성 향상을 기대할 수 없으며, 반대로 상기 범위를 초과하면 과도한 상용화제의 사용으로 인해 제조원가 상승의 부담이 발생하여 이 또한 바람직하지 못하므로 상기 범위 내에서 적절히 사용한다.
상용화제 중 이오노머는 주쇄 또는 측쇄에 금속 이온이 결합한 폴리머로서, 그 종류를 특별히 한정하지는 않으나 에틸렌-메타크릴산 공중합체 이오노머, 에틸렌-아크릴산 공중합체 이오노머, 프로필렌-메타크릴산 공중합체 이오노머, 프로필렌-아크릴산 공중합체 이오노머, 부틸렌-아크릴산 공중합체 이오노머, 에틸렌-비닐술폰산 공중합체 이오노머, 스티렌-메타크릴산 공중합체 이오노머-술폰화 폴리스티렌 이오노머, 불소계 이오노머, 텔레킬릭 폴리부타디엔아크릴산 이오노머, 술폰화 에틸렌-프로필렌-디엔 공중합체 이오노머, 수소화 폴리펜타머 이오노머, 폴리펜타머 이오노머, 폴리(비닐피리듐염)이오노머-폴리(비닐트리메틸암모늄염) 이오노머, 폴리(비닐벤질포스포늄염)이오노머, 스티렌-부타디엔 아크릴산 공중합체 이오노머, 폴리우레탄 이오노머-술폰화 스티렌-2-아크릴아미드-2-메틸프로판설페이트 이오노머, 산-아민 이오노머, 지방족계 아이오넨, 방향족계 아이오넨 등을 예들 수 있다. 이들 이오노머 수지는 단독으로 이용해도 되고, 필요에 따라 2종 이상을 혼합하여 이용해도 된다. 이들 이오노머 수지 중, 프로필렌-메타크릴산 공중합체 이오노머, 프로필렌-아크릴산 공중합체 이오노머가 바람직하고, 이들 이오노머의 음이온은 할로겐화물 이온, 특히 Cl-, Br-, I- 등의 음이온이 이용된다.
이때 금속 이온으로는 Li+, Na+, K+ 등의 알카리 금속이온, Mg2+, Ca2+, Sr2+, Ba2+ 등의 알카리 희토류 금속이온, Zn2+, Cu2+, Mn2+, Ni2+, Co2+, Co3+, Fe3+, Cr3+ 등의 천이금속 이온이 가능하다.
프로필렌-극성단량체 공중합체는 프로필렌 모노머와 산무수기, 에폭시기, 카르복실기, 카르복시산 에스테르 등의 극성기를 포함하는 모노머가 공중합된 공중합체이다. 이때 공중합 가능한 모노머로는 아크릴산, 메타크릴산, 말레인산, 푸마르산, 이타콘산 등의 불포화 카르복시산 및 그 무수물; 아크릴산 메틸, 메타크릴산 메틸, 말레인산 디메틸, 말레인산 모노메틸, 푸마르산 디에틸, 이타콘산 디메틸, 시트라콘산 디에틸, 테트라히드로무수프탈산 디메틸 등의 불포화 카르복시산의 에스테르; 글리시딜아크릴레이트, 글리시딜메타크릴레이트, p-스티릴카르복시산 글리시딜 등의 불포화 모노카르복시산의 글리시딜에스테르; 말레인산, 이타콘산, 시트라콘산, 부텐트리카르복시산 등의 불포화 폴리카르복시산의 모노글리시딜에스테르 혹은 폴리글리시딜에스테르; 알릴글리시딜에테르, 2-메틸알릴글리시딜에테르, o-알릴페놀의 글리시딜에테르 등의 불포화 글리시딜에테르 등이 있다.
또한, 변성수(水)첨가 폴리머 성분은 특별히 한정되지 않지만, 예를 들면 산무수기, 에폭시기, 카르복실기, 카르복시산 에스테르 등에서 변성된 수(水)첨가 스티렌부타디엔러버, 스티렌-에틸렌부틸렌-폴리에틸렌-블록 공중합체, 폴리에틸렌-에틸렌부틸렌-폴리에틸렌-블록 공중합체, 스티렌-에틸렌-프로필렌-스티렌-블록 공중합체 등이 있다. 이들 공중합체 중에서 스티렌-에틸렌-프로필렌-스티렌-블록 공중합체가 바람직하다.
특히, 상기 언급한 상용화제 중 이오노머, 프로필렌-극성단량체 공중합체는 반응성 상용화제로서 관능기로 인해 폴리프로필렌계 수지와 화학 결합이 가능하여 상용화제로 인한 상기 수지와 탄소 장섬유 사이의 계면 특성을 더욱 향상시킬 수 있다. 또한, 변성수(水)첨가 폴리머의 경우 비반응성 상용화제이나 이는 폴리프로필렌계 수지와의 물리적 혼합으로 인해 이 또한 수지와 탄소 장섬유 사이의 계면 특성을 향상시킬 수 있다.
이외에도 본 발명에 따른 섬유 강화 복합 재료는 목적에 따라 원하는 물성을 확보하거나 성형을 용이하게 하기 위해, 통상의 열가소성 수지의 성형 공정에서 사용하는 첨가제를 더욱 포함할 수 있다. 예를 들면, 산화 방지제, 가공 안정제, 광 안정제, 엘라스토머, 난연제, 무기충전제, 카본블랙, 결정핵제, 자외선흡수제, 제진제, 항균제, 방충제, 방취제, 착색제, 연화제, 활제, 안료, 염료, 열안정제, 이형제, 대전방지제, 가소제, 윤활제, 발포제, 제포제, 방부제 및 커플링제 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 1종이 가능하다.
첨가제는 복합 재료의 성형 공정, 일례로 혼련 전 또는 혼련 중에 첨가해도 되고, 또는 별도로 혼련 후에 첨가할 수 있으며, 필요한 경우 함침 공정에 의해 첨가할 수도 있다. 상기 첨가제로는 전체 조성물 내에서 5 중량% 이하로 사용하며, 당업자에 의해 필요한 첨가제의 선택과 함량을 제어할 수 있다.
상기한 바의 섬유 강화 복합 재료의 제조는 본 발명에서 특별히 한정하지 않으며, 이 분야에서 공지된 바의 다양한 방법에 의해 제조가 가능하다. 예를 들면, 압출(extrusion), 사출(injection) 성형, 인발 (pultrusion) 성형, 압축 (compression) 성형, 레진 트랜스퍼 몰딩(Resin Transfer Molding, RTM) 성형, 핸드 레이업(Hand Lay-up) 성형, 오토 클레이브(Autoclave) 성형, 필라멘트 와인딩(Filament Winding) 성형 등 다양한 방법이 가능하다.
예를 들면, 폴리프로필렌계 수지를 용융 온도 이상으로 가열한 후 여기에 탄소 장섬유를 첨가하여 일정 시간 동안 혼련 후 건조하여 제조할 수 있다. 이때 상용화제는 폴리프로필렌 수지에 첨가하고, 탄소 장섬유는 로빙(roving) 상태인 것을 구입하여 압출기에 투입한다.
상기 이외의 혼련 조건은 특별히 한정되지 않고, 예를 들면 폴리프로필렌 수지의 용융이나 혼련이 원활하게 행해지도록 적절히 설정하면 된다. 온도설정은 혼련 시에 혼련 장치의 실린더 등의 내부온도를 예를 들면, 210℃∼280℃의 범위로 하는 것이 바람직하고, 220℃∼270℃의 범위가 보다 바람직하다.
또한, 혼련장치가 2축 압출기 등의 연속 압출기인 경우의 스크류 회전수는, 각 성분을 충분히 혼련할 수 있는 레벨이면 되지만, 2∼300rpm의 범위가 바람직하고, 5∼200rpm의 범위가 보다 바람직하다.
상기 혼련하여 얻어진 섬유 강화 복합 재료는 각 목적에 맞게 추가 성형하는 공정을 수행한다. 이때 성형 공정은 본 발명에서 특별히 한정되지 않고, 공지의 방법을 이용할 수 있지만, 예를 들면, 혼련 장치가 압출기인 경우는, 열압착기를 이용하여 성형하면 된다.
이렇게 제조된 섬유 강화 복합 재료는 파단 강도가 50 MPa 이상, 인장 모듈러스가 6 GPa 이상, 굴곡 강도가 180 MPa 이상, 내충격 강도 30 KJ/m2 이상, 열분해 온도가 400℃ 이상의 물성을 가져, 다양한 분야에 적용될 수 있다.
예를 들면, 자동차 등의 수송 수단 재료, 우주 항공재료, 방위 부품 재료, 전기 전자재료, 토목 건축재료, 생체 의료 재료 및 각종 스포츠용품 재료 등 다양한 분야에 사용될 수 있으며, 바람직하기로 자동차에 사용될 수 있다.
특히 본 발명에 따른 탄소 장섬유 강화 복합 재료는 수송 수단에 적용할 수 있다. 이때 수송 수단은 자동차, 기차, 비행기, 헬리콥터, 트럭, 오토바이, 자전거, 배, 요트 등이 가능하다.
즉, 탄소 장섬유 복합 재료는 가볍기 때문에 현재 부품으로 사용되고 있는 철이나 알루미늄 대비 자동차, 특히 자동차의 외장재(예, 본네트)에 적용하여 경량화를 달성할 수 있어 강성이나 내충격성, 내열성이 높아 기존 수송 수단에 사용하는 재료 일부 또는 전체를 대체할 수 있어, 시장에서의 경쟁력을 선점할 수 있다.
[실시예]
이하 본 발명의 바람직한 실시예와 실험예를 제시한다. 그러나 하기한 예는 본 발명의 바람직한 예일 뿐 이러한 예에 의해 본 발명이 한정되는 것은 아니다.
(실시예 및 비교예) 섬유 강화 복합 재료의 제조
하기 표 1 내지 3의 조성을 이용하여 섬유 강화 복합 재료를 제조하였다. 구체적으로, 압출기에 폴리프로필렌 수지 (제조원: 폴리미래, MI: 12g/10 min, 230 ℃)와 상용화제를 첨가한 후, 1단계 압출기를 이용하여 충분히 혼련 후 2단계 압출기에 탄소 장섬유 또는 탄소 단섬유를 첨가하여 탄소 섬유 강화 폴리프로필렌 복합 재료를 제조하였다. 이때 가공 온도는 250℃, 스크류 속도는 100 rpm 이었다.
표 1
조성(중량%) 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6
열가소성 수지 PP 89 89 89 89 82 75
탄소섬유 탄소 장섬유(길이: 20 mm, 직경 50 ) 10 10 10 - - -
탄소 장섬유(길이: 30 mm, 직경 50 ) - - - 10.7 - -
탄소 장섬유(길이: 50 mm, 직경 50 ) - - - - 10 -
탄소 장섬유(길이: 100 mm, 직경 50 ) - - - - - 10
상용화제 이오노머(1) 1 - - - - -
프로필렌계 불포화 공중합체(2) - 1 - 0.3 8.0 15.0
변성수(水)첨가 폴리머(3) - - 1 - - -
주)
(1) 이오노머: 프로필렌-메타크릴산 공중합체 이오노머 칼륨염
(2) 프로필렌계 불포화 공중합체: 프로필렌-글리시딜메타크릴레이트 공중합체
(3) 변성수(水)첨가 폴리머: 스티렌-에틸렌-부틸렌-스티렌-블록 공중합체(SEBS)
표 2
조성(중량%) 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5
열가소성 수지 PP 90 90 90 90 90
탄소섬유 탄소 장섬유(길이: 20 mm, 직경 50 ) 10 - - - -
탄소 장섬유(길이: 50 mm, 직경 50 ) - 10 - - -
탄소 장섬유(길이: 100 mm, 직경 50 ) - - 10 - -
탄소 단섬유(길이: 1mm, 직경 50 ) - - - 10 -
탄소 단섬유(길이: 2mm, 직경 50 ) - - - - 10
표 3
조성(중량%) 비교예 6 비교예 7 비교예 8 비교예 9
열가소성 수지 PP 90 90 89 70
탄소섬유 탄소 장섬유(길이: 20 mm, 직경 50 ) - - 10.9 -
탄소 장섬유(길이: 100 mm, 직경 50 ) - - - 10
탄소 단섬유(길이: 5mm, 직경 50 ) 10 - - -
탄소 단섬유(길이: 5mm, 직경 70 ) - 10 - -
상용화제 이오노머(1) - - - -
프로필렌계 불포화 공중합체(2) - - 0.1 20
변성수(水)첨가 폴리머(3) - - - -
주)
(1) 이오노머: 프로필렌-메타크릴산 공중합체 이오노머 칼륨염
(2) 프로필렌계 불포화 공중합체: 프로필렌-글리시딜메타크릴레이트 공중합체
(3) 변성수(水)첨가 폴리머: 스티렌-에틸렌-부틸렌-스티렌-블록 공중합체(SEBS)
실험예 1: 미세 구조 분석
도 1과 도 2는 각각 실시예 1과 비교예 2에서 제조된 폴리프로필렌과 탄소 장섬유로 이루어진 복합 재료 시편의 파단면을 보여주는 주사전자현미경 이미지이다.
도 1을 보면, 본 발명에 의해 제조된 복합 재료는 매트릭스인 폴리프로필렌 수지와 탄소 장섬유 사이의 계면에 빈 공간이 없이 혼합되어 있음을 알 수 있다. 이는 상용화제인 프로필렌 메타크릴산 공중합체로 인해 폴리프로필렌 수지와 탄소 장섬유 간 화학적 결합이 일어나고, 이로 인해 결과적으로 상기 수지 사이 사이를 탄소 장섬유가 잘 침투한 구조의 복합 재료가 제조됨을 알 수 있다.
이와 비교하여, 상용화제를 사용하지 않은 복합 재료에 대한 도 2의 이미지를 보면, 폴리프로필렌계 수지와 탄소 장섬유가 단순 혼합되어 이들 간 계면(화살표 표시)에 빈 공간이 있음을 알 수 있다. 이러한 공간은 추후 외부 충격 등에 의해 크랙점 역할을 하여 기계적 및 열적 물성 저하를 야기한다.
실험예 2: 물성 측정
상기 실시예 및 비교예에서 제조한 섬유 강화 복합 재료의 물성을 측정하여 그 결과를 나타내었다,
먼저 하기의 실시예 및 비교예에 사용된 각종 조성물의 특성 평가 방법에 대해 설명한다. 자동차 본네트로서의 적용 가능성을 보는 평가 항목으로서는 양호한 성형성을 평가하기 위한 성형제품의 강성을 평가하는 파단 강도와 인장 모듈러스, 충격흡수율을 평가하는 항복신장율, 굴곡 강도 시험 및 내충격 강도 시험, 열분해 온도 평가 등이 있으며 그 구체적인 평가 방법은 다음과 같다.
(1) 파단 강도, 인장 모듈러스, 항복 신장율: 파단 강도와 인장 모듈러스는 강성을 평가하는 대표적인 측정방법의 일종이며 항복 신장율은 탄성 영역과 소성 영역에서의 충격 흡수율을 평가하는 방법의 하나이다. 시험방법은 ASTM D-638법으로 측정하고 시편 규격은 ASTM D-638 1호형이며 크로스헤드(Crosshead) 속도는 5mm/분으로 시험하였다.
(2) 굴곡 강도: 강성을 평가하는 대표적인 측정 방법의 일종으로 굴곡 강도가 높을수록 기계적 강도가 우수한 제품으로 최종 성형품의 두께를 줄이거나 더 높은 하중을 지지할 수 있다. 굴곡 강도는 ASTM D-790법으로 측정하였으며, 그 시편규격은 12.7×127×6.4㎜이고, 이때의 크로스헤드(Crosshead) 속도는 10㎜/분이다.
(3) 내충격 강도: 충격 강도는 충격을 흡수하는 능력을 평가하는 대표적인 시험 방법의 일종으로 ASTM D-256법으로 측정하고 상온(23℃)에서 시행하였으며 시편 규격은 63.5×12.7×3㎜ 이다.
(4) 열분해 온도: ASTM E-474법에 의해, TGA(thermogravimetric analysis)를 이용하여 열분해 온도를 측정하였다. TGA의 온도를 120℃/hr의 속도로 균일하게 승온시키면서, 10%의 중량 변화가 나타났을 때의 온도를 나타내었다.
표 4
파단 강도 (MPa) 인장모듈러스 (GPa) 항복신장율(%) 굴곡 강도 (MPa) 내충격 강도(KJ/m2) 열분해 온도(℃)
실시예 1 74 7.2 3.5 210 40 426
실시예 2 63 6.7 2.4 196 35 422
실시예 3 55 6.0 2.9 185 32 420
실시예 4 81 8.0 3.0 230 45 432
실시예 5 89 9.1 2.5 241 51 439
실시예 6 94 9.8 3.1 259 59 445
비교예 1 45 5.0 2.0 174 27 403
비교예 2 54 5.7 2.3 181 28 396
비교예 3 52 5.8 2.1 171 29 378
비교예 4 28 3.3 2.3 169 20 402
비교예 5 38 3.9 2.3 178 23 404
비교예 6 40 4.1 2.2 182 26 404
비교예 7 45 5.4 2.0 167 28 382
비교예 8 48 5.7 2.1 175 28 389
비교예 9 47 5.1 1.8 184 38 398
상기 표 4를 참조하면, 프로필렌-메타크릴산 공중합체를 상용화제로 사용한 폴리프로필렌과 탄소 장섬유로 이루어진 복합재료의 기계적 및 열적 물성이 가장 우수하게 나타남을 알 수 있다. 특히, 실시예 1 내지 3을 보면, 상용화제로서 비반응성 상용화제(실시예 3) 보다는 반응성 상용화제를 사용할 경우(실시예 2) 물성 향상에 더욱 유리함을 알 수 있다.
또한, 적용된 탄소 섬유의 길이가 길수록 폴리프로필렌과 탄소 장섬유로 이루어진 복합재료의 기계적 및 열적 물성이 우수함을 실시예 및 비교예를 통해 확인할 수 있다. 부연하면, 비교예 4∼6의 탄소 단섬유를 사용한 복합 재료보다는 비교예 1∼3의 복합 재료의 물성이 좀더 우수하였으며, 이보다 본 발명에서 제시하는 실시예 1∼6의 상용화제를 사용한 경우 탄소 장섬유에서 더욱 우수한 물성 향상을 보였다. 그러나 상용화제를 소량 사용한 경우(비교예 8)나 과량 사용하게 되면(비교예 9), 오히려 물성이 저하되어 최적으로 제어된 함량으로 상용화제를 사용하여야만 물성 향상을 기대할 수 있다.

Claims (7)

  1. 폴리프로필렌계 수지 40∼90 중량%, 섬유 직경이 1∼50 ㎛이고 중량평균 섬유 길이가 20∼150 mm인 탄소 장섬유 5∼60 중량%, 상용화제 0.3∼10 중량%를 포함하고,
    상기 상용화제가 이오노머, 프로필렌-극성단량체 공중합체, 변성수(水)첨가 폴리머 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함하는 것을 특징으로 하는 수송 수단용 섬유 강화 복합 재료 조성물.
  2. 제1항에 있어서, 상기 폴리프로필렌계 수지는 폴리프로필렌 단독 중합체 또는 폴리프로필렌과 알파 올레핀과의 공중합체인 것을 특징으로 하는 수송 수단용 섬유 강화 복합 재료 조성물.
  3. 제2항에 있어서, 상기 알파 올레핀은 1-부텐, 1-펜텐, 1-헥센, 4-메틸-1-펜텐, 1-헵텐, 1-옥텐, 1-노넨, 1-데센, 1-운데센 및 1-도데센, 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함하는 것을 특징으로 하는 수송 수단용 섬유 강화 복합 재료 조성물.
  4. 제1항에 있어서, 상기 이오노머는
    에틸렌-메타크릴산 공중합체 이오노머, 에틸렌-아크릴산 공중합체 이오노머, 프로필렌-메타크릴산 공중합체 이오노머, 프로필렌-아크릴산 공중합체 이오노머, 부틸렌-아크릴산 공중합체 이오노머, 에틸렌-비닐술폰산 공중합체 이오노머, 스티렌-메타크릴산 공중합체 이오노머-술폰화 폴리스티렌 이오노머, 불소계 이오노머, 텔레킬릭 폴리부타디엔아크릴산 이오노머, 술폰화 에틸렌-프로필렌-디엔 공중합체 이오노머, 수소화 폴리펜타머 이오노머, 폴리펜타머 이오노머, 폴리(비닐피리듐염)이오노머-폴리(비닐트리메틸암모늄염) 이오노머, 폴리(비닐벤질포스포늄염)이오노머, 스티렌-부타디엔 아크릴산 공중합체 이오노머, 폴리우레탄 이오노머-술폰화 스티렌-2-아크릴아미드-2-메틸프로판설페이트 이오노머, 산-아민 이오노머, 지방족계 아이오넨, 방향족계 아이오넨 및 이들의 조합으로 이루어진 군에서 선택된 1종의 이오노머가
    알카리 금속이온, 알카리 희토류 금속이온, 또는 천이금속 이온이 결합된 것을 특징으로 하는 수송 수단용 섬유 강화 복합 재료 조성물.
  5. 제1항에 있어서, 상기 프로필렌-극성단량체 공중합체는 프로필렌 모노머와,
    아크릴산, 메타크릴산, 말레인산, 푸마르산, 이타콘산의 불포화 카르복시산 및 그 무수물; 아크릴산 메틸, 메타크릴산 메틸, 말레인산 디메틸, 말레인산 모노메틸, 푸마르산 디에틸, 이타콘산 디메틸, 시트라콘산 디에틸, 테트라히드로무수프탈산 디메틸의 불포화 카르복시산의 에스테르; 글리시딜아크릴레이트, 글리시딜메타크릴레이트, p-스티릴카르복시산 글리시딜의 불포화 모노카르복시산의 글리시딜에스테르; 말레인산, 이타콘산, 시트라콘산, 부텐트리카르복시산의 불포화 폴리카르복시산의 모노글리시딜에스테르 또는 폴리글리시딜에스테르; 알릴글리시딜에테르, 2-메틸알릴글리시딜에테르, o-알릴페놀의 글리시딜에테르의 불포화 글리시딜에테르 중에서 선택된 1종의 모노머가 공중합된 것을 특징으로 하는 수송 수단용 섬유 강화 복합 재료 조성물.
  6. 제1항에 있어서, 상기 변성수(水)첨가 폴리머는 산무수기, 에폭시기, 카르복실기, 카르복시산 에스테르에서 변성된 수(水)첨가 스티렌부타디엔러버, 스티렌-에틸렌부틸렌-폴리에틸렌-블록 공중합체, 폴리에틸렌-에틸렌부틸렌-폴리에틸렌-블록 공중합체, 스티렌-에틸렌-프로필렌-스티렌-블록 공중합체, 스티렌-에틸렌-프로필렌-블록 공중합체 및 이들의 조합으로 이루어진 군에서 선택된 1종을 포함하는 수송 수단용 섬유 강화 복합 재료 조성물.
  7. 제1항에 있어서, 상기 수송 수단용 섬유 강화 복합 재료 조성물은 파단 강도가 50 MPa 이상, 인장 모듈러스가 6 GPa 이상, 굴곡 강도가 180 MPa 이상, 내충격 강도가 30 KJ/m2 이상, 열분해 온도가 400℃의 물성을 만족하는 것을 특징으로 하는 수송 수단용 섬유 강화 복합 재료 조성물.
PCT/KR2013/008249 2013-06-21 2013-09-12 폴리프로필렌계 수지 및 탄소 장섬유를 포함하는 수송 수단용 복합 재료 WO2014204053A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/897,254 US9518177B2 (en) 2013-06-21 2013-09-12 Composite material for means of transport including polypropylene resin and long carbon fiber
JP2016519425A JP6116759B2 (ja) 2013-06-21 2013-09-12 ポリプロピレン系樹脂及び炭素長繊維を含む輸送手段用複合材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0071489 2013-06-21
KR1020130071489A KR101415014B1 (ko) 2013-06-21 2013-06-21 폴리프로필렌계 수지 및 탄소 장섬유를 포함하는 수송 수단용 복합 재료

Publications (1)

Publication Number Publication Date
WO2014204053A1 true WO2014204053A1 (ko) 2014-12-24

Family

ID=51741083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/008249 WO2014204053A1 (ko) 2013-06-21 2013-09-12 폴리프로필렌계 수지 및 탄소 장섬유를 포함하는 수송 수단용 복합 재료

Country Status (4)

Country Link
US (1) US9518177B2 (ko)
JP (1) JP6116759B2 (ko)
KR (1) KR101415014B1 (ko)
WO (1) WO2014204053A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3095818A1 (en) * 2015-05-22 2016-11-23 Borealis AG Polypropylene - carbon fiber composite
CN113150442A (zh) * 2021-04-16 2021-07-23 重庆理工大学 高模量低密度聚丙烯复合材料及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101702998B1 (ko) * 2014-10-31 2017-02-08 한국생산기술연구원 장섬유 강화 열가소성 복합재료의 성형 장치 및 이를 이용한 제조방법
WO2018095720A1 (en) * 2016-11-23 2018-05-31 Basell Poliolefine Italia S.R.L. Filled polyolefin composition
JP6910041B2 (ja) * 2017-03-02 2021-07-28 株式会社三栄興業 炭素繊維複合材料
BR112019022936B1 (pt) * 2017-05-03 2023-04-04 Equistar Chemicals, Lp Composições de poliolefina reforçada por fibras de carbono, artigo de fabricação compreendendo as mesmas, e método de produção das mesmas
JPWO2019208823A1 (ja) * 2018-04-27 2021-04-30 株式会社ブリヂストン 強化繊維複合樹脂、コンポジットプリプレグおよび積層体
WO2019208826A1 (ja) * 2018-04-27 2019-10-31 株式会社ブリヂストン 強化繊維複合樹脂、コンポジットプリプレグおよび積層体
CN115151600B (zh) * 2020-03-31 2024-05-28 三井化学株式会社 薄膜状的纤维增强树脂、以及树脂成型体及其制造方法
US11628966B2 (en) * 2021-04-12 2023-04-18 Dart Industries Inc. Freezable and reusable bottle and method of making the bottle
KR102631525B1 (ko) * 2021-10-13 2024-01-31 한화토탈에너지스 주식회사 섬유 질감을 갖는 폴리프로필렌 수지 조성물 및 이로부터 제조된 성형품

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6927249B1 (en) * 2004-02-11 2005-08-09 Lg Chem, Ltd. Heat absorb-release plastic resin composition and molded product thereof
KR100666769B1 (ko) * 2005-10-17 2007-01-09 현대자동차주식회사 폴리프로필렌계 장섬유 강화 조성물 및 이를 이용하여제조된 도어 쉴드 모듈 플레이트 성형품
KR20080061077A (ko) * 2006-12-28 2008-07-02 호남석유화학 주식회사 섬유강화 폴리프로필렌 수지조성물
JP2009074043A (ja) * 2007-03-29 2009-04-09 Asahi Kasei Chemicals Corp 長繊維強化樹脂ペレット
KR20100051496A (ko) * 2008-11-07 2010-05-17 현대자동차주식회사 착자가 가능한 폴리프로필렌 복합재
KR20120106472A (ko) * 2011-03-18 2012-09-26 대원케미칼주식회사 폴리올레핀 복합소재 조성물

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4476621B2 (ja) * 2003-12-26 2010-06-09 日本ポリプロ株式会社 ポリプロピレン系樹脂組成物及びその成形体
KR100681341B1 (ko) * 2004-12-01 2007-02-15 최진민 상향연소식 기름보일러
TWI414543B (zh) * 2006-02-24 2013-11-11 Toray Industries 纖維強化熱可塑性樹脂成形體、成形材料及其製法
KR100921332B1 (ko) * 2007-08-31 2009-10-13 지에스칼텍스 주식회사 착색 장섬유 강화 펠렛 및 이를 이용하여 제조된 착색 수지성형품
JP5620694B2 (ja) * 2010-03-03 2014-11-05 三菱レイヨン株式会社 炭素繊維強化ポリプロピレン樹脂組成物を製造する方法および樹脂組成物
JP5021066B2 (ja) * 2010-11-12 2012-09-05 株式会社ダイセル 被熱処理炭素長繊維強化樹脂ペレットの製造方法
JP2012116916A (ja) * 2010-11-30 2012-06-21 Toray Ind Inc 炭素繊維強化ポリプロピレン樹脂成形品
JP5526049B2 (ja) * 2011-01-31 2014-06-18 日本ポリプロ株式会社 電磁波シールド用プロピレン系樹脂組成物、その製造方法及び成形体
CN103443193B (zh) * 2011-03-31 2016-03-23 东丽株式会社 碳纤维增强聚丙烯树脂组合物、成型材料及成型品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6927249B1 (en) * 2004-02-11 2005-08-09 Lg Chem, Ltd. Heat absorb-release plastic resin composition and molded product thereof
KR100666769B1 (ko) * 2005-10-17 2007-01-09 현대자동차주식회사 폴리프로필렌계 장섬유 강화 조성물 및 이를 이용하여제조된 도어 쉴드 모듈 플레이트 성형품
KR20080061077A (ko) * 2006-12-28 2008-07-02 호남석유화학 주식회사 섬유강화 폴리프로필렌 수지조성물
JP2009074043A (ja) * 2007-03-29 2009-04-09 Asahi Kasei Chemicals Corp 長繊維強化樹脂ペレット
KR20100051496A (ko) * 2008-11-07 2010-05-17 현대자동차주식회사 착자가 가능한 폴리프로필렌 복합재
KR20120106472A (ko) * 2011-03-18 2012-09-26 대원케미칼주식회사 폴리올레핀 복합소재 조성물

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3095818A1 (en) * 2015-05-22 2016-11-23 Borealis AG Polypropylene - carbon fiber composite
WO2016188887A1 (en) * 2015-05-22 2016-12-01 Borealis Ag Polypropylene - carbon fiber composite
US10550253B2 (en) 2015-05-22 2020-02-04 Borealis Ag Polypropylene—carbon fiber composite
EA038343B1 (ru) * 2015-05-22 2021-08-11 Бореалис Аг Композит полимера пропилена - углеродное волокно
CN113150442A (zh) * 2021-04-16 2021-07-23 重庆理工大学 高模量低密度聚丙烯复合材料及其制备方法
CN113150442B (zh) * 2021-04-16 2023-01-31 重庆理工大学 高模量低密度聚丙烯复合材料及其制备方法

Also Published As

Publication number Publication date
US20160137823A1 (en) 2016-05-19
JP2016525586A (ja) 2016-08-25
US9518177B2 (en) 2016-12-13
JP6116759B2 (ja) 2017-04-19
KR101415014B1 (ko) 2014-07-04

Similar Documents

Publication Publication Date Title
WO2014204053A1 (ko) 폴리프로필렌계 수지 및 탄소 장섬유를 포함하는 수송 수단용 복합 재료
JP2016525586A5 (ko)
CN107793747B (zh) 用于泡沫注射的长碳纤维增强的热塑性树脂组合物和使用该组合物制备的模制品
WO2013108811A1 (ja) 繊維強化ポリプロピレン樹脂組成物、成形材料ならびにプリプレグ
EP3392290A1 (de) Polyamidformmasse und daraus hergestellter formkörper
US7790795B2 (en) Scratch and mar resistant polymer compositions, methods for making and articles made from the same
EP2096134A1 (en) Organic fiber-reinforced composite resin composition and organic fiber-reinforced composite resin molding
WO2015000738A1 (en) Polypropylene compositions containing glass fiber fillers
WO2009093748A1 (ja) 表面処理繊維、樹脂組成物およびその成形体
KR20160094724A (ko) 탄소 장섬유 강화 열가소성 수지 조성물 및 이에 의해 제조된 성형품
WO2018052265A2 (ko) 충격강도가 향상된 유리섬유복합재료 조성물
KR20160057528A (ko) 폴리올레핀계 탄성체 조성물
KR20010103194A (ko) 유리섬유 강화 폴리아미드 수지조성물
KR20190064875A (ko) 유리섬유 강화 폴리프로필렌 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
US10550255B2 (en) Polyolefine resin composition, polyolefine master batch, method of manufacturing polyolefine master batch, and article formed of the same
KR101425975B1 (ko) 자동차 외장재 제조용 고분자 수지 블렌드 조성물, 자동차 외장재용 수지 성형품 및 이의 제조방법
WO2018044007A1 (ko) 섬유 강화 복합재 및 이를 이용한 자동차용 내·외장재
KR20180103571A (ko) 폴리프로필렌 수지 조성물 및 이의 성형품
WO2023096046A1 (ko) 폴리프로필렌 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
JP2018154795A (ja) 炭素繊維強化樹脂組成物及び成形体
KR101458178B1 (ko) 장섬유 복합재의 제조방법
KR20230007830A (ko) 고강성 저선팽창 열가소성 수지 조성물 및 이를 포함하는 성형체
WO2019035609A1 (ko) 차량용 에어백 하우징 및 이의 제조방법
KR102212683B1 (ko) 폴리프로필렌 수지 조성물 및 이의 성형품
JP2616877B2 (ja) 有機繊維系プロピレン樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13887312

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016519425

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14897254

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13887312

Country of ref document: EP

Kind code of ref document: A1