WO2023127956A1 - Housing material for power storage device, manufacturing method for housing material, and power storage device - Google Patents

Housing material for power storage device, manufacturing method for housing material, and power storage device Download PDF

Info

Publication number
WO2023127956A1
WO2023127956A1 PCT/JP2022/048622 JP2022048622W WO2023127956A1 WO 2023127956 A1 WO2023127956 A1 WO 2023127956A1 JP 2022048622 W JP2022048622 W JP 2022048622W WO 2023127956 A1 WO2023127956 A1 WO 2023127956A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
layer
exterior material
resin
electricity storage
Prior art date
Application number
PCT/JP2022/048622
Other languages
French (fr)
Japanese (ja)
Inventor
紘基 阿久津
美帆 佐々木
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2023552595A priority Critical patent/JP7444341B2/en
Publication of WO2023127956A1 publication Critical patent/WO2023127956A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/14Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to an exterior material for an electricity storage device, a manufacturing method thereof, and an electricity storage device.
  • the exterior material is an indispensable member for sealing the power storage device elements such as electrodes and electrolytes.
  • metal exterior materials have been frequently used as exterior materials for power storage devices.
  • Laminates have been proposed (see Patent Document 1, for example).
  • a power storage device exterior material In such a power storage device exterior material, generally, recesses are formed by cold molding using a mold, and power storage device elements such as electrodes and electrolytes are arranged in the spaces formed by the recesses. By heat-sealing the heat-fusible resin layer, an electricity storage device in which the electricity storage device element is housed inside the exterior material for an electricity storage device can be obtained. In order to further increase the energy density of the electricity storage device, it is necessary to form deeper recesses in the exterior material. Also, when the size of the electric storage device is increased, it is necessary to form a deeper concave portion.
  • the main purpose of the present disclosure is to provide an exterior material for an electricity storage device that has excellent drop impact resistance.
  • the exterior material for an electric storage device which is composed of a laminate including, in order from the outside, at least an impact-resistant layer, a resin film layer, a barrier layer, and a heat-fusible resin layer, has excellent drop impact resistance. I found out.
  • An exterior material for an electricity storage device comprising a laminate comprising, in order from the outside, at least an impact-resistant layer, a resin film layer, a barrier layer, and a heat-fusible resin layer.
  • an exterior material for an electricity storage device that exhibits excellent drop impact resistance. Further, according to the present disclosure, it is also possible to provide a method for manufacturing the exterior material for an electricity storage device, and an electricity storage device using the exterior material for an electricity storage device.
  • FIG. 1 is a schematic diagram showing an example of a cross-sectional structure of an exterior material for an electricity storage device of the present disclosure
  • FIG. 1 is a schematic diagram showing an example of a cross-sectional structure of an exterior material for an electricity storage device of the present disclosure
  • BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an example of a cross-sectional structure of an exterior material for an electricity storage device of the present disclosure
  • FIG. 1 is a schematic diagram for explaining an example (gable top type) of the shape of an electricity storage device of the present disclosure;
  • FIG. 1 is a schematic diagram showing an example of a cross-sectional structure of an exterior material for an electricity storage device of the present disclosure
  • FIG. 1 is a schematic diagram for explaining an example (gable top type) of the shape of an electricity storage device of the present disclosure
  • FIG. 1 is a schematic diagram for explaining an example (brick pouch type) of the shape of an electricity storage device of the present disclosure
  • FIG. 1 is a schematic diagram for explaining an example of the shape of an electricity storage device of the present disclosure (a rectangular parallelepiped shape in which two lid members and one exterior member for an electricity storage device are combined).
  • FIG. 1 is a schematic diagram for explaining an example of the shape of an electricity storage device of the present disclosure (a rectangular parallelepiped shape in which two lid members and one exterior member for an electricity storage device are combined).
  • the power storage device exterior material of the present disclosure is characterized by being composed of a laminate including, in order from the outside, at least an impact-resistant layer, a resin film layer, a barrier layer, and a heat-fusible resin layer. With such a configuration, the power storage device exterior material of the present disclosure exhibits excellent drop impact resistance.
  • the numerical range indicated by "-" means “more than” and “less than”.
  • the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
  • upper or lower limits described in a certain numerical range may be replaced with upper or lower limits of other numerical ranges described step by step.
  • the upper limit and upper limit, the upper limit and lower limit, or the lower limit and lower limit, which are separately described may be combined to form a numerical range.
  • upper or lower limits described in a certain numerical range may be replaced with values shown in Examples.
  • the exterior material 10 for an electric storage device of the present disclosure includes, for example, as shown in FIGS. It is composed of a laminate having a flexible resin layer 4 in this order.
  • the shock-resistant layer 1 is the outermost layer
  • the heat-fusible resin layer 4 is the innermost layer.
  • the electricity storage device element is placed in a space formed by heat-sealing the heat-sealable resin layer of the electricity storage device exterior material 10 . be accommodated.
  • the barrier layer 3 is the reference
  • the heat-fusible resin layer 4 side is inside the barrier layer 3
  • the resin film layer 2 side is inside the barrier layer 3. outside.
  • the power storage device exterior material 10 of the present disclosure includes the shock-resistant layer 1, it is not suitable for forming recesses by molding using a mold like the conventional power storage device exterior material. do not have. For this reason, the power storage device exterior material 10 of the present disclosure is preferably used without being subjected to molding by a mold. However, a laminate comprising at least the resin film layer 2, the barrier layer 3, and the heat-fusible resin layer 4 in this order is prepared, and after molding this, the impact-resistant layer 1 is laminated on the resin film layer 2. This does not mean that a mold cannot be used to manufacture the electrical storage device exterior material 10 having recesses formed therein. Specifically, the power storage device exterior material 10 of the present disclosure is a gable top type as shown in FIG.
  • the upper and lower sides may be of the gable top type.), the brick pouch type as shown in FIG.
  • the power storage device is used so as to form a rectangular parallelepiped electricity storage device in combination with the outer packaging material 10 .
  • the electricity storage device element is accommodated in a space formed by the cylindrically formed electricity storage device exterior material 10 and two cover members 11 .
  • the power storage device element is sealed by heat-sealing the heat-sealable resin layer 4 of the power storage device exterior material 10 to the periphery.
  • the power storage device exterior material 10 is provided between the impact-resistant layer 1 and the resin film layer 2 for the purpose of improving the adhesion between these layers, if necessary.
  • an adhesive layer 6 is optionally provided between the resin film layer 2 and the barrier layer 3 for the purpose of enhancing adhesion between these layers.
  • an adhesive layer 7 is optionally provided between the barrier layer 3 and the heat-sealable resin layer 4 for the purpose of enhancing the adhesion between these layers.
  • the thickness of the laminate constituting the power storage device exterior material 10 is not particularly limited. is mentioned.
  • the thickness of the laminate constituting the power storage device exterior material 10 is preferably about 60 ⁇ m or more, about 80 ⁇ m or more, about 100 ⁇ m or more, about 150 ⁇ m or more, about 180 ⁇ m or more, and the like.
  • the preferred range of the laminate constituting the power storage device exterior material 10 is, for example, about 60 to 300 ⁇ m, about 60 to 250 ⁇ m, about 60 to 200 ⁇ m, about 60 to 190 ⁇ m, about 80 to 300 ⁇ m, and about 80 to 250 ⁇ m.
  • the impact resistant layer 1, the adhesive layer 5 provided as necessary, the resin film layer 2, and, if necessary, the thickness (total thickness) of the laminate constituting the electrical storage device exterior material 10 The ratio of the total thickness of the adhesive layer 6 provided as required, the barrier layer 3, the adhesive layer 7 provided as required, and the heat-fusible resin layer 4 is preferably 90% or more, more preferably 95%. % or more, more preferably 98% or more.
  • the power storage device exterior material 10 of the present disclosure includes an impact-resistant layer 1, an adhesive layer 5, a resin film layer 2, an adhesive layer 6, a barrier layer 3, an adhesive layer 7, and a heat-fusible resin.
  • the ratio of the total thickness of these layers to the thickness (total thickness) of the laminate constituting the power storage device exterior material 10 is preferably 90% or more, more preferably 95% or more. , more preferably 98% or more.
  • the power storage device exterior material 10 of the present disclosure is a laminate including the shock-resistant layer 1, the adhesive layer 5, the resin film layer 2, the adhesive layer 6, the barrier layer 3, and the heat-fusible resin layer 4.
  • the ratio of the total thickness of each of these layers to the thickness (total thickness) of the laminate constituting the power storage device exterior material 10 is, for example, 80% or more, preferably 90% or more, and more preferably 95% or more. , and more preferably 98% or more.
  • the impact-resistant layer 1 is a layer that functions as a cushion that imparts excellent drop impact resistance to the power storage device exterior material 10 of the present disclosure.
  • the shock-resistant layer 1 preferably constitutes the outermost layer of the power storage device exterior material 10 .
  • the impact-resistant layer 1 may be a layer that imparts impact resistance to the power storage device exterior material 10, and may be a fibrous base material such as paper, a polycarbonate-based resin, a polyimide-based resin, a polyamide-based resin, or a polyamide-imide-based material. It can be composed of resin base materials such as resins, polyester resins, polyolefin resins and polystyrene resins, and rubber base materials such as butadiene rubber and natural rubber.
  • the tensile modulus of the impact resistant layer 1 is preferably 0.1 GPa or more, more preferably 0.1 to 10 GPa.
  • the impact-resistant layer 1 is preferably a layer (fibrous base material layer) in which a base material made of fibrous material is provided in layers.
  • the fibrous base material layer is composed of, for example, paper, nonwoven fabric, woven fabric, wood material, etc., preferably paper or nonwoven fabric, and more preferably paper.
  • paper is a thin piece made by agglutinating fibers such as plants and synthetic resins, and is mainly composed of plant fibers.
  • paper containing fibrous inorganic materials is also included.
  • nonwoven fabric is a fabric made by mechanically, chemically, and thermally treating a fiber sheet without going through the form of yarn, and bonding it with an adhesive or the fusing power of the fiber itself. fiber).
  • a woven fabric is a fabric made of woven fibers.
  • Wood materials include, for example, wood veneer, plywood, laminated wood, medium-density fiberboard, hard fiberboard, and the like.
  • the material constituting the fibrous base material layer is not particularly limited, and natural fibers, synthetic fibers (chemical fibers), etc. can be used.
  • the material constituting the paper is not particularly limited. ), thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP), deinked pulp (DIP), etc.
  • TMP thermomechanical pulp
  • CMP chemithermomechanical pulp
  • DIP deinked pulp
  • pulp materials derived from softwood are particularly preferred.
  • Waste paper pulp such as waste newspaper, waste magazine paper, waste corrugated board, and waste deinked paper can also be used as the pulp material.
  • the paper may contain a mixture of the pulp material and synthetic fibers such as rayon, polyamide, polyimide, polyester, polyolefin, and polyvinyl alcohol.
  • base paper for liquid paper containers is preferably exemplified.
  • the material constituting the nonwoven fabric or woven fabric is not particularly limited. chemical fibers such as vinylon and aramid fibers; and natural fibers such as cotton, wool, hemp, silk and pulp.
  • the material constituting the shock-resistant layer 1 may be of only one type, or may be of two or more types.
  • Additives such as flame retardants, antiblocking agents, antioxidants, light stabilizers, tackifiers, and antistatic agents may be present on at least one of the surface and the interior of the impact-resistant layer 1 . Only one type of additive may be used, or two or more types may be mixed and used.
  • the basis weight (basis weight) of the impact-resistant layer 1 is not particularly limited, it is preferably 100 g/m 2 or more, more preferably 150 g/m 2 or more, and more preferably 150 g/m 2 or more from the viewpoint of more suitably exhibiting the effects of the present disclosure. It is preferably 200 g/m 2 or more, more preferably 1000/m 2 or less, more preferably 600/m 2 or less , still more preferably 500/m 2 or less.
  • the adhesive layer 5 is a layer provided between the impact-resistant layer 1 and the resin film layer 2 as necessary for the purpose of increasing the adhesion between them. .
  • the adhesive layer 5 is made of an adhesive capable of bonding the impact-resistant layer 1 and the resin film layer 2 together.
  • the adhesive used to form the adhesive layer 5 is not limited, but may be any of a chemical reaction type, a solvent volatilization type, a hot melt type, a hot pressure type, and the like. Further, it may be a two-liquid curing adhesive (two-liquid adhesive), a one-liquid curing adhesive (one-liquid adhesive), or a resin that does not involve a curing reaction. Further, the adhesive layer 5 may be a single layer or multiple layers.
  • the adhesive component contained in the adhesive include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester; polyether; polyurethane; epoxy resin; Phenolic resins; polyamides such as nylon 6, nylon 66, nylon 12, and copolymerized polyamides; polyolefin resins such as polyolefins, cyclic polyolefins, acid-modified polyolefins, and acid-modified cyclic polyolefins; polyvinyl acetate; cellulose; (meth)acrylic resins; polyimide; polycarbonate; amino resin such as urea resin and melamine resin; rubber such as chloroprene rubber, nitrile rubber and styrene-butadiene rubber; These adhesive components may be used singly or in combination of two or more.
  • polyurethane adhesives are preferred.
  • an appropriate curing agent can be used in combination with these adhesive component resins to increase the adhesive strength.
  • the curing agent is selected from among polyisocyanates, polyfunctional epoxy resins, oxazoline group-containing polymers, polyamine resins, acid anhydrides, etc., depending on the functional groups of the adhesive component.
  • polyurethane adhesives examples include polyurethane adhesives containing a first agent containing a polyol compound and a second agent containing an isocyanate compound.
  • a two-component curing type polyurethane adhesive is used in which a polyol such as polyester polyol, polyether polyol, or acrylic polyol is used as the first agent and an aromatic or aliphatic polyisocyanate is used as the second agent.
  • polyurethane adhesives include polyurethane adhesives containing an isocyanate compound and a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance.
  • polyurethane adhesives examples include polyurethane adhesives containing a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance and a polyol compound.
  • polyurethane adhesives examples include polyurethane adhesives obtained by reacting a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance with moisture in the air and curing the compound.
  • the polyol compound it is preferable to use a polyester polyol having a hydroxyl group in a side chain in addition to the terminal hydroxyl group of the repeating unit.
  • the second agent examples include aliphatic, alicyclic, aromatic, and araliphatic isocyanate compounds.
  • isocyanate compounds include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate. (MDI), naphthalene diisocyanate (NDI), and the like.
  • polyfunctional isocyanate-modified products of one or more of these diisocyanates are also included.
  • a polymer for example, a trimer
  • Such multimers include adducts, biurets, nurates and the like. Since the adhesive layer 5 is formed of a polyurethane adhesive, the exterior material for an electric storage device is endowed with excellent electrolytic solution resistance, and peeling of the resin film layer 2 is suppressed even if the electrolytic solution adheres to the side surface. .
  • the adhesive layer 5 may contain other components as long as they do not interfere with adhesion, and may contain colorants, thermoplastic elastomers, tackifiers, fillers, and the like. Since the adhesive layer 5 contains a coloring agent, the power storage device exterior material can be colored. Known substances such as pigments and dyes can be used as the colorant. In addition, only one type of colorant may be used, or two or more types may be mixed and used.
  • the type of pigment is not particularly limited as long as it does not impair the adhesiveness of the adhesive layer 5.
  • organic pigments include azo-based, phthalocyanine-based, quinacridone-based, anthraquinone-based, dioxazine-based, indigothioindigo-based, perinone-perylene-based, isoindolenine-based, and benzimidazolone-based pigments.
  • pigments include carbon black, titanium oxide, cadmium, lead, chromium oxide, and iron pigments, as well as fine powder of mica and fish scale foil.
  • carbon black is preferable, for example, in order to make the external appearance of the exterior material for a power storage device black.
  • the average particle size of the pigment is not particularly limited, and is, for example, about 0.05 to 5 ⁇ m, preferably about 0.08 to 2 ⁇ m.
  • the average particle size of the pigment is the median size measured with a laser diffraction/scattering particle size distribution analyzer.
  • the content of the pigment in the adhesive layer 5 is not particularly limited as long as the power storage device exterior material is colored, and is, for example, about 5 to 60% by mass, preferably 10 to 40% by mass.
  • the thickness of the adhesive layer 5 is not particularly limited as long as the impact-resistant layer 1 and the resin film layer 2 can be adhered, but is, for example, about 1 ⁇ m or more, or about 2 ⁇ m or more. Moreover, the thickness of the adhesive layer 5 is, for example, about 10 ⁇ m or less, or about 5 ⁇ m or less. Moreover, the preferable range of the thickness of the adhesive layer 5 is about 1 to 10 ⁇ m, about 1 to 5 ⁇ m, about 2 to 10 ⁇ m, and about 2 to 5 ⁇ m.
  • the adhesive layer 5 is usually impregnated in the gaps of the fibrous base material layer.
  • the adhesive layer 5 is preferably not exposed in the outermost layer of the electrical storage device exterior material, and the fibrous base material layer preferably constitutes the outermost layer of the electrical storage device exterior material.
  • the resin film layer 2 is a layer provided for the purpose of exhibiting a function as a base material of an exterior material for an electric storage device.
  • the resin film layer 2 is located outside the intermediate barrier layer 3 in the exterior material for an electric storage device.
  • the material forming the resin film layer 2 is not particularly limited as long as it functions as a base material, that is, at least has insulating properties.
  • the resin film layer 2 can be formed using, for example, a resin, and the resin may contain additives described later.
  • the resin film layer 2 may be, for example, a resin film formed of resin, or may be formed by applying resin.
  • the resin film may be an unstretched film or a stretched film.
  • stretched films include uniaxially stretched films and biaxially stretched films, with biaxially stretched films being preferred.
  • stretching methods for forming a biaxially stretched film include successive biaxial stretching, inflation, and simultaneous biaxial stretching.
  • Methods for applying the resin include a roll coating method, a gravure coating method, an extrusion coating method, and the like.
  • the resin forming the resin film layer 2 examples include resins such as polyester, polyamide, polyolefin, epoxy resin, acrylic resin, fluororesin, polyurethane, silicon resin, phenolic resin, and modified products of these resins. Further, the resin forming the resin film layer 2 may be a copolymer of these resins or a modified product of the copolymer. Furthermore, it may be a mixture of these resins.
  • the resin forming the resin film layer 2 preferably includes polyester and polyamide.
  • polyester examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester.
  • copolyester examples include copolyester having ethylene terephthalate as a main repeating unit.
  • copolymer polyester polymerized with ethylene isophthalate with ethylene terephthalate as the main repeating unit hereinafter abbreviated after polyethylene (terephthalate / isophthalate)
  • polyethylene (terephthalate / adipate) polyethylene (terephthalate / sodium sulfoisophthalate)
  • polyethylene (terephthalate/sodium isophthalate) polyethylene (terephthalate/phenyl-dicarboxylate), polyethylene (terephthalate/decanedicarboxylate), and the like.
  • These polyesters may be used singly or in combination of two or more.
  • polyamide specifically, aliphatic polyamide such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, copolymer of nylon 6 and nylon 66; terephthalic acid and / or isophthalic acid Hexamethylenediamine-isophthalic acid-terephthalic acid copolymer polyamide such as nylon 6I, nylon 6T, nylon 6IT, nylon 6I6T (I represents isophthalic acid, T represents terephthalic acid) containing structural units derived from, polyamide MXD6 (polymetallic Polyamides containing aromatics such as silylene adipamide); alicyclic polyamides such as polyamide PACM6 (polybis(4-aminocyclohexyl)methane adipamide); Copolymerized polyamides, polyesteramide copolymers and polyetheresteramide copolymers which are copolymers of copolymerized polyamides with polyesters or polyalkylene ether glycols; and polyamides such
  • the resin film layer 2 preferably includes at least one of a polyester film, a polyamide film, and a polyolefin film, and preferably includes at least one of a stretched polyester film, a stretched polyamide film, and a stretched polyolefin film. It is more preferable to include at least one of an oriented polyethylene terephthalate film, an oriented polybutylene terephthalate film, an oriented nylon film, and an oriented polypropylene film, and a biaxially oriented polyethylene terephthalate film, a biaxially oriented polybutylene terephthalate film, and a biaxially oriented nylon film. , biaxially oriented polypropylene film.
  • the resin film layer 2 may be a single layer, or may be composed of two or more layers.
  • the resin film layer 2 may be a laminate obtained by laminating resin films with an adhesive or the like, or may be formed by co-extrusion of resin to form two or more layers. It may also be a laminate of resin films. A laminate of two or more resin films formed by coextrusion of resin may be used as the resin film layer 2 without being stretched, or may be formed as the resin film layer 2 by being uniaxially or biaxially stretched.
  • a laminate of two or more layers of resin films include a laminate of a polyester film and a nylon film, a laminate of nylon films of two or more layers, and a laminate of polyester films of two or more layers. etc., preferably a laminate of a stretched nylon film and a stretched polyester film, a laminate of two or more layers of stretched nylon films, and a laminate of two or more layers of stretched polyester films.
  • the resin film layer 2 is a laminate of two resin films, a laminate of polyester resin films and polyester resin films, a laminate of polyamide resin films and polyamide resin films, or a laminate of polyester resin films and polyamide resin films.
  • a laminate is preferred, and a laminate of polyethylene terephthalate film and polyethylene terephthalate film, a laminate of nylon film and nylon film, or a laminate of polyethylene terephthalate film and nylon film is more preferred.
  • the polyester resin is resistant to discoloration when, for example, an electrolytic solution adheres to its surface. It is preferably located in the outermost layer.
  • the two or more layers of resin films may be laminated via an adhesive.
  • Preferred adhesives are the same as those exemplified for the adhesive layer 5 described above.
  • the method for laminating two or more layers of resin films is not particularly limited, and known methods can be employed. Examples thereof include dry lamination, sandwich lamination, extrusion lamination, thermal lamination, and the like. A lamination method is mentioned.
  • the thickness of the adhesive is, for example, about 2 to 5 ⁇ m.
  • an anchor coat layer may be formed on the resin film and laminated.
  • the anchor coat layer includes the same adhesives as those exemplified for the adhesive layer 6 described later. At this time, the thickness of the anchor coat layer is, for example, about 0.01 to 1.0 ⁇ m.
  • Additives such as flame retardants, antiblocking agents, antioxidants, light stabilizers, tackifiers, and antistatic agents may be present on at least one of the surface and the interior of the resin film layer 2 . Only one type of additive may be used, or two or more types may be mixed and used.
  • the thickness of the resin film layer 2 is not particularly limited as long as it functions as a base material, but it is, for example, about 3 to 50 ⁇ m, preferably about 10 to 35 ⁇ m.
  • the thickness of each resin film constituting each layer is preferably about 2 to 25 ⁇ m.
  • the thickness of the resin film layer 2 is 25 to 35 ⁇ m. about 35 to 45 ⁇ m.
  • the adhesive layer 6 is a layer provided between the resin film layer 2 and the barrier layer 3 as necessary for the purpose of enhancing the adhesiveness between them.
  • the adhesive layer 6 is made of an adhesive capable of bonding the resin film layer 2 and the barrier layer 3 together.
  • the adhesive used to form the adhesive layer 6 is not limited, but may be any of a chemical reaction type, a solvent volatilization type, a hot melt type, a hot pressure type, and the like. Further, it may be a two-liquid curing adhesive (two-liquid adhesive), a one-liquid curing adhesive (one-liquid adhesive), or a resin that does not involve a curing reaction. Further, the adhesive layer 6 may be a single layer or multiple layers.
  • Examples of the adhesive component contained in the adhesive used to form the adhesive layer 6 are the same as those exemplified for the adhesive layer 5 .
  • the adhesive layer 6 may contain other components as long as they do not interfere with adhesion, and may contain colorants, thermoplastic elastomers, tackifiers, fillers, and the like. Since the adhesive layer 6 contains a coloring agent, the power storage device exterior material can be colored. Known substances such as pigments and dyes can be used as the colorant. In addition, only one type of colorant may be used, or two or more types may be mixed and used.
  • the type of pigment is not particularly limited as long as it does not impair the adhesiveness of the adhesive layer 6.
  • Examples of the organic pigment are the same as those exemplified for the adhesive layer.
  • carbon black is preferable, for example, in order to make the external appearance of the exterior material for an electric storage device black.
  • the average particle size of the pigment is not particularly limited, and is, for example, approximately 0.05 to 5 ⁇ m, preferably approximately 0.08 to 2 ⁇ m.
  • the average particle size of the pigment is the median size measured with a laser diffraction/scattering particle size distribution analyzer.
  • the content of the pigment in the adhesive layer 6 is not particularly limited as long as the power storage device exterior material is colored, and is, for example, about 5 to 60% by mass, preferably 10 to 40% by mass.
  • the thickness of the adhesive layer 6 is not particularly limited as long as the resin film layer 2 and the barrier layer 3 can be adhered, but is, for example, about 1 ⁇ m or more, or about 2 ⁇ m or more. Also, the thickness of the adhesive layer 6 is, for example, about 10 ⁇ m or less, or about 5 ⁇ m or less. Moreover, the preferable range of the thickness of the adhesive layer 6 is about 1 to 10 ⁇ m, about 1 to 5 ⁇ m, about 2 to 10 ⁇ m, and about 2 to 5 ⁇ m.
  • the barrier layer 3 is a layer that at least prevents permeation of moisture.
  • the barrier layer 3 examples include a metal foil, vapor deposition film, and resin layer having barrier properties.
  • vapor-deposited films include metal vapor-deposited films, inorganic oxide vapor-deposited films, and carbon-containing inorganic oxide vapor-deposited films.
  • the barrier layer 3 may also include a resin film provided with at least one of these deposited films and resin layers.
  • a plurality of barrier layers 3 may be provided.
  • the barrier layer 3 preferably includes a layer made of a metal material. Specific examples of the metal material constituting the barrier layer 3 include aluminum alloys, stainless steels, titanium steels, and steel plates. When used as metal foils, at least one of aluminum alloy foils and stainless steel foils is included. is preferred.
  • the aluminum alloy foil is more preferably a soft aluminum alloy foil made of, for example, an annealed aluminum alloy or the like, from the viewpoint of improving the drop impact resistance of the exterior material for an electricity storage device, and an aluminum alloy foil containing iron. is preferred.
  • the iron content is preferably 0.1 to 9.0% by mass, more preferably 0.5 to 2.0% by mass. When the iron content is 9.0% by mass or less, it is possible to obtain an exterior material for an electricity storage device that is more excellent in flexibility.
  • the soft aluminum alloy foil for example, an aluminum alloy having a composition specified by JIS H4160: 1994 A8021H-O, JIS H4160: 1994 A8079H-O, JIS H4000: 2014 A8021P-O, or JIS H4000: 2014 A8079P-O foil.
  • silicon, magnesium, copper, manganese, etc. may be added as needed.
  • softening can be performed by annealing treatment or the like.
  • stainless steel foils include austenitic, ferritic, austenitic/ferritic, martensitic, and precipitation hardened stainless steel foils. Furthermore, from the viewpoint of providing an exterior material for an electricity storage device having excellent drop impact resistance, the stainless steel foil is preferably made of austenitic stainless steel.
  • austenitic stainless steel that constitutes the stainless steel foil
  • SUS304 is particularly preferable.
  • the thickness of the barrier layer 3 is not particularly limited as long as it exhibits at least a function as a barrier layer that suppresses penetration of moisture, and is 40 ⁇ m or more.
  • the thickness of the barrier layer is preferably about 45 ⁇ m or more, more preferably about 50 ⁇ m or more, still more preferably about 55 ⁇ m or more, and is preferably about 200 ⁇ m or less, more preferably about 150 ⁇ m or less, and still more preferably about 100 ⁇ m or less.
  • preferable ranges are about 40 to 200 ⁇ m, about 40 to 150 ⁇ m, about 40 to 100 ⁇ m, about 40 to 65 ⁇ m, about 45 to 200 ⁇ m, about 45 to 150 ⁇ m, about 45 to 100 ⁇ m, about 45 to 65 ⁇ m, about 50 to 200 ⁇ m, about 50 to 150 ⁇ m, about 50 to 100 ⁇ m, about 50 to 65 ⁇ m, about 55 to 200 ⁇ m, about 55 to 150 ⁇ m, about 55 to 100 ⁇ m, and about 55 to 65 ⁇ m.
  • the barrier layer 3 is a metal foil
  • the barrier layer 3 may be provided with a corrosion resistant coating on both sides.
  • the corrosion-resistant film includes, for example, hydrothermal transformation treatment such as boehmite treatment, chemical conversion treatment, anodizing treatment, plating treatment such as nickel and chromium, and corrosion prevention treatment such as applying a coating agent to the surface of the barrier layer. It is a thin film that provides corrosion resistance (for example, acid resistance, alkali resistance, etc.) to the barrier layer.
  • the corrosion-resistant film specifically means a film that improves the acid resistance of the barrier layer (acid-resistant film), a film that improves the alkali resistance of the barrier layer (alkali-resistant film), and the like.
  • the treatment for forming the corrosion-resistant film one type may be performed, or two or more types may be used in combination. Also, not only one layer but also multiple layers can be used.
  • the hydrothermal transformation treatment and the anodizing treatment are treatments in which the surface of the metal foil is dissolved with a treating agent to form a metal compound having excellent corrosion resistance. These treatments are sometimes included in the definition of chemical conversion treatment.
  • the barrier layer 3 includes the corrosion-resistant film.
  • the corrosion-resistant coating prevents delamination between the barrier layer (e.g., aluminum alloy foil) and the resin film layer, and prevents dissolution and corrosion of the barrier layer surface by the hydrogen fluoride generated by the reaction between the electrolyte and moisture.
  • the barrier layer is an aluminum alloy foil, it prevents the aluminum oxide present on the barrier layer surface from dissolving and corroding, and improves the adhesiveness (wettability) of the barrier layer surface to form a resin film at the time of heat sealing.
  • the effect of preventing delamination between a layer and a barrier layer and preventing delamination between a resin film layer and a barrier layer is shown.
  • Corrosion-resistant coatings formed by chemical conversion treatment are known, and are mainly composed of at least one of phosphates, chromates, fluorides, triazinethiol compounds, and rare earth oxides.
  • Corrosion-resistant coatings containing Examples of chemical conversion treatments using phosphate and chromate include chromic acid chromate treatment, phosphoric acid chromate treatment, phosphoric acid-chromate treatment, and chromate treatment.
  • Examples of compounds include chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromium acetyl acetate, chromium chloride, potassium chromium sulfate, and the like.
  • Phosphorus compounds used for these treatments include sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid, and the like.
  • Examples of the chromate treatment include etching chromate treatment, electrolytic chromate treatment, coating-type chromate treatment, etc., and coating-type chromate treatment is preferred.
  • the inner layer side surface of the barrier layer (for example, aluminum alloy foil) is first subjected to a well-known method such as an alkali immersion method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, an acid activation method, or the like.
  • metal phosphate such as Cr (chromium) phosphate, Ti (titanium) phosphate, Zr (zirconium) phosphate, Zn (zinc) phosphate is applied to the degreased surface.
  • a processing solution mainly composed of a salt and a mixture of these metal salts a processing solution mainly composed of a non-metal phosphate salt and a mixture of these non-metal salts, or a mixture of these and a synthetic resin.
  • This is a treatment in which a treatment liquid composed of a mixture is applied by a well-known coating method such as a roll coating method, a gravure printing method, or an immersion method, and then dried.
  • Various solvents such as water, alcohol-based solvents, hydrocarbon-based solvents, ketone-based solvents, ester-based solvents, and ether-based solvents can be used as the treatment liquid, and water is preferred.
  • the resin component used at this time includes polymers such as phenolic resins and acrylic resins. and the chromate treatment used.
  • the repeating units represented by the following general formulas (1) to (4) may be contained singly or in any combination of two or more. good too.
  • the acrylic resin is polyacrylic acid, acrylic acid methacrylic acid ester copolymer, acrylic acid maleic acid copolymer, acrylic acid styrene copolymer, or derivatives thereof such as sodium salts, ammonium salts, and amine salts. is preferred.
  • derivatives of polyacrylic acid such as ammonium salt, sodium salt or amine salt of polyacrylic acid are preferred.
  • polyacrylic acid means a polymer of acrylic acid.
  • the acrylic resin is preferably a copolymer of acrylic acid and dicarboxylic acid or dicarboxylic anhydride, and the ammonium salt, sodium salt, Alternatively, it is also preferably an amine salt. Only one type of acrylic resin may be used, or two or more types may be mixed and used.
  • X represents a hydrogen atom, hydroxy group, alkyl group, hydroxyalkyl group, allyl group or benzyl group.
  • R 1 and R 2 are the same or different and represent a hydroxy group, an alkyl group or a hydroxyalkyl group.
  • alkyl groups represented by X, R 1 and R 2 in general formulas (1) to (4) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, A linear or branched alkyl group having 1 to 4 carbon atoms such as a tert-butyl group can be mentioned.
  • hydroxyalkyl groups represented by X, R 1 and R 2 include hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 1-hydroxypropyl group, 2-hydroxypropyl group, 3- A straight or branched chain having 1 to 4 carbon atoms substituted with one hydroxy group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group and 4-hydroxybutyl group An alkyl group is mentioned.
  • the alkyl groups and hydroxyalkyl groups represented by X, R 1 and R 2 may be the same or different.
  • X is preferably a hydrogen atom, a hydroxy group or a hydroxyalkyl group.
  • the number average molecular weight of the aminated phenol polymer having repeating units represented by formulas (1) to (4) is, for example, preferably about 500 to 1,000,000, more preferably about 1,000 to 20,000. more preferred.
  • the aminated phenol polymer is produced, for example, by polycondensing a phenol compound or naphthol compound and formaldehyde to produce a polymer comprising repeating units represented by the general formula (1) or general formula (3), followed by formaldehyde. and an amine (R 1 R 2 NH) to introduce a functional group (--CH 2 NR 1 R 2 ) into the polymer obtained above.
  • An aminated phenol polymer is used individually by 1 type or in mixture of 2 or more types.
  • the corrosion-resistant film is formed by a coating-type corrosion prevention treatment in which a coating agent containing at least one selected from the group consisting of rare earth element oxide sol, anionic polymer, and cationic polymer is applied.
  • a thin film that is The coating agent may further contain phosphoric acid or a phosphate, a cross-linking agent for cross-linking the polymer.
  • rare earth element oxide sol rare earth element oxide fine particles (for example, particles having an average particle size of 100 nm or less) are dispersed in a liquid dispersion medium.
  • rare earth element oxides include cerium oxide, yttrium oxide, neodymium oxide, and lanthanum oxide, and cerium oxide is preferable from the viewpoint of further improving adhesion.
  • the rare earth element oxides contained in the corrosion-resistant coating can be used singly or in combination of two or more.
  • various solvents such as water, alcohol solvents, hydrocarbon solvents, ketone solvents, ester solvents, and ether solvents can be used, with water being preferred.
  • the cationic polymer include polyethyleneimine, an ionic polymer complex composed of a polymer containing polyethyleneimine and carboxylic acid, a primary amine-grafted acrylic resin obtained by graft-polymerizing a primary amine to an acrylic backbone, polyallylamine, or a derivative thereof. , aminated phenols and the like are preferred.
  • the anionic polymer is preferably poly(meth)acrylic acid or a salt thereof, or a copolymer containing (meth)acrylic acid or a salt thereof as a main component.
  • the cross-linking agent is preferably at least one selected from the group consisting of a compound having a functional group such as an isocyanate group, a glycidyl group, a carboxyl group, or an oxazoline group, and a silane coupling agent.
  • the phosphoric acid or phosphate is preferably condensed phosphoric acid or condensed phosphate.
  • fine particles of metal oxides such as aluminum oxide, titanium oxide, cerium oxide, and tin oxide, and barium sulfate are dispersed in phosphoric acid, which is applied to the surface of the barrier layer. C. or more, and those formed by performing baking processing are mentioned.
  • the corrosion-resistant film may, if necessary, have a laminated structure in which at least one of a cationic polymer and an anionic polymer is further laminated.
  • a cationic polymer and anionic polymers include those described above.
  • the analysis of the composition of the corrosion-resistant coating can be performed using, for example, time-of-flight secondary ion mass spectrometry.
  • the amount of the corrosion-resistant film formed on the surface of the barrier layer 3 in the chemical conversion treatment is not particularly limited. is about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of chromium, the phosphorus compound is about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of phosphorus, and aminated phenol polymer is contained in a ratio of, for example, about 1.0 to 200 mg, preferably about 5.0 to 150 mg.
  • the thickness of the corrosion-resistant coating is not particularly limited, but is preferably about 1 nm to 20 ⁇ m, more preferably 1 nm to 100 nm, from the viewpoint of cohesion of the coating and adhesion to the barrier layer and the heat-sealable resin layer. about 1 nm to 50 nm, more preferably about 1 nm to 50 nm.
  • the thickness of the corrosion-resistant film can be measured by observation with a transmission electron microscope, or by a combination of observation with a transmission electron microscope and energy dispersive X-ray spectroscopy or electron beam energy loss spectroscopy.
  • secondary ions composed of Ce, P and O for example, at least one of Ce 2 PO 4 + and CePO 4 ⁇ species
  • secondary ions composed of Cr, P, and O eg, at least one of CrPO 2 + and CrPO 4 ⁇
  • Chemical conversion treatment involves applying a solution containing a compound used to form a corrosion-resistant film to the surface of the barrier layer by a bar coating method, roll coating method, gravure coating method, immersion method, etc. is carried out by heating so that the temperature is about 70 to 200°C.
  • the barrier layer may be previously subjected to a degreasing treatment by an alkali immersion method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or the like. By performing the degreasing treatment in this way, it becomes possible to perform the chemical conversion treatment on the surface of the barrier layer more efficiently.
  • an acid degreasing agent obtained by dissolving a fluorine-containing compound in an inorganic acid for degreasing treatment it is possible to form not only the degreasing effect of the metal foil but also the passive metal fluoride. In such cases, only degreasing treatment may be performed.
  • the heat-fusible resin layer 4 corresponds to the innermost layer, and has the function of sealing the power storage device element by heat-sealing the heat-fusible resin layers to each other when assembling the power storage device. It is a layer (sealant layer) that exhibits
  • the resin constituting the heat-fusible resin layer 4 is not particularly limited as long as it is heat-fusible, but resins containing polyolefin skeletons such as polyolefins and acid-modified polyolefins are preferable.
  • the inclusion of a polyolefin skeleton in the resin constituting the heat-fusible resin layer 4 can be analyzed by, for example, infrared spectroscopy, gas chromatography-mass spectrometry, or the like. Further, when the resin constituting the heat-fusible resin layer 4 is analyzed by infrared spectroscopy, it is preferable that a peak derived from maleic anhydride is detected.
  • peaks derived from maleic anhydride are detected near wavenumbers of 1760 cm ⁇ 1 and 1780 cm ⁇ 1 .
  • the heat-fusible resin layer 4 is a layer composed of maleic anhydride-modified polyolefin
  • a peak derived from maleic anhydride is detected when measured by infrared spectroscopy.
  • the degree of acid denaturation is low, the peak may be too small to be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
  • polyolefins include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; ethylene- ⁇ -olefin copolymers; block copolymers of ethylene), random copolymers of polypropylene (for example, random copolymers of propylene and ethylene); propylene- ⁇ -olefin copolymers; ethylene-butene-propylene terpolymers; Among these, polypropylene is preferred.
  • the polyolefin resin is a copolymer, it may be a block copolymer or a random copolymer. These polyolefin-based resins may be used alone or in combination of two or more.
  • the polyolefin may be a cyclic polyolefin.
  • a cyclic polyolefin is a copolymer of an olefin and a cyclic monomer.
  • the olefin which is a constituent monomer of the cyclic polyolefin, include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. be done.
  • Examples of cyclic monomers constituting cyclic polyolefins include cyclic alkenes such as norbornene; cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene and norbornadiene. Among these, cyclic alkenes are preferred, and norbornene is more preferred.
  • Acid-modified polyolefin is a polymer modified by block polymerization or graft polymerization of polyolefin with an acid component.
  • the acid-modified polyolefin the above polyolefin, a copolymer obtained by copolymerizing the above polyolefin with a polar molecule such as acrylic acid or methacrylic acid, or a polymer such as crosslinked polyolefin can be used.
  • acid components used for acid modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride and itaconic anhydride, and anhydrides thereof.
  • the acid-modified polyolefin may be an acid-modified cyclic polyolefin.
  • Acid-modified cyclic polyolefin is a polymer obtained by copolymerizing a part of the monomers constituting the cyclic polyolefin in place of the acid component, or by block-polymerizing or graft-polymerizing the acid component to the cyclic polyolefin. be.
  • the acid-modified cyclic polyolefin is the same as described above.
  • the acid component used for acid modification is the same as the acid component used for modification of polyolefin.
  • Preferable acid-modified polyolefins include polyolefins modified with carboxylic acid or its anhydride, polypropylene modified with carboxylic acid or its anhydride, maleic anhydride-modified polyolefin, and maleic anhydride-modified polypropylene.
  • the heat-fusible resin layer 4 may be formed of one type of resin alone, or may be formed of a blend polymer in which two or more types of resin are combined. Furthermore, the heat-fusible resin layer 4 may be formed of only one layer, or may be formed of two or more layers of the same or different resins.
  • the thickness of the heat-fusible resin layer 4 is not particularly limited as long as the heat-fusible resin layers are heat-sealed to each other to exhibit the function of sealing the electricity storage device element, but for example, it is about 100 ⁇ m or less, preferably about 100 ⁇ m or less. About 85 ⁇ m or less, more preferably about 15 to 85 ⁇ m.
  • the thickness of the heat-fusible resin layer 4 is preferably about 85 ⁇ m or less, more preferably about 15 to 45 ⁇ m.
  • the thickness of the heat-fusible resin layer 4 is preferably about 20 ⁇ m or more, more preferably 35 to 85 ⁇ m. degree.
  • the adhesive layer 7 is provided between the barrier layer 3 (or the corrosion-resistant film) and the heat-fusible resin layer 4 as necessary in order to firmly bond them. It is a layer that can be
  • the adhesive layer 7 is made of a resin capable of bonding the barrier layer 3 and the heat-fusible resin layer 4 together.
  • the resin used for forming the adhesive layer 7 for example, the same adhesives as those exemplified for the adhesive layer 6 can be used.
  • the resin used for forming the adhesive layer 7 contains a polyolefin skeleton. Polyolefins and acid-modified polyolefins exemplified for the resin layer 4 can be used.
  • the adhesive layer 7 preferably contains an acid-modified polyolefin.
  • Acid-modified components include dicarboxylic acids such as maleic acid, itaconic acid, succinic acid and adipic acid, their anhydrides, acrylic acid and methacrylic acid. Maleic acid is most preferred.
  • the olefin component is preferably a polypropylene-based resin, and the adhesive layer 7 most preferably contains maleic anhydride-modified polypropylene.
  • the resin forming the adhesive layer 7 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography mass spectrometry, or the like, and the analysis method is not particularly limited.
  • the fact that the resin constituting the adhesive layer 7 contains an acid-modified polyolefin means that, for example, when the maleic anhydride-modified polyolefin is measured by infrared spectroscopy , anhydrous A peak derived from maleic acid is detected. However, if the degree of acid denaturation is low, the peak may be too small to be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
  • the adhesive layer 7 is preferably a cured product of a resin composition containing an acid-modified polyolefin and a curing agent. More preferred.
  • Preferred examples of the acid-modified polyolefin include those mentioned above.
  • the adhesive layer 7 is a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and a compound having an epoxy group.
  • a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group and a compound having an epoxy group is particularly preferred.
  • the adhesive layer 7 preferably contains at least one selected from the group consisting of polyurethane, polyester, and epoxy resin, and more preferably contains polyurethane and epoxy resin.
  • an ester resin produced by a reaction between an epoxy group and a maleic anhydride group and an amide ester resin produced by a reaction between an oxazoline group and a maleic anhydride group are preferable.
  • an unreacted product of a curing agent such as a compound having an isocyanate group, a compound having an oxazoline group, or an epoxy resin remains in the adhesive layer 7, the presence of the unreacted product can be detected by, for example, infrared spectroscopy, It can be confirmed by a method selected from Raman spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS), and the like.
  • the adhesive layer 7 contains at least It is preferably a cured product of a resin composition containing one curing agent.
  • the curing agent having a heterocyclic ring includes, for example, a curing agent having an oxazoline group, a curing agent having an epoxy group, and the like.
  • the curing agent having a C ⁇ N bond includes a curing agent having an oxazoline group, a curing agent having an isocyanate group, and the like.
  • the curing agent having a C—O—C bond includes a curing agent having an oxazoline group, a curing agent having an epoxy group, and the like.
  • the adhesive layer 7 is a cured product of a resin composition containing these curing agents, for example, gas chromatography mass spectrometry (GCMS), infrared spectroscopy (IR), time-of-flight secondary ion mass spectrometry (TOF). -SIMS) and X-ray photoelectron spectroscopy (XPS).
  • GCMS gas chromatography mass spectrometry
  • IR infrared spectroscopy
  • TOF time-of-flight secondary ion mass spectrometry
  • -SIMS X-ray photoelectron spectroscopy
  • the compound having an isocyanate group is not particularly limited, but from the viewpoint of effectively increasing the adhesion between the barrier layer 3 and the adhesive layer 7, polyfunctional isocyanate compounds are preferred.
  • the polyfunctional isocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups.
  • Specific examples of polyfunctional isocyanate curing agents include pentane diisocyanate (PDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymerization and nurate compounds, mixtures thereof, copolymers with other polymers, and the like.
  • adducts, biurets, isocyanurates and the like are included.
  • the content of the compound having an isocyanate group in the adhesive layer 7 is preferably in the range of 0.1 to 50% by mass, more preferably 0.5 to 40% by mass, in the resin composition constituting the adhesive layer 7. A range is more preferred. Thereby, the adhesion between the barrier layer 3 and the adhesive layer 7 can be effectively improved.
  • the compound having an oxazoline group is not particularly limited as long as it is a compound having an oxazoline skeleton.
  • Specific examples of compounds having an oxazoline group include those having a polystyrene main chain and those having an acrylic main chain.
  • the Epocross series by Nippon Shokubai Co., Ltd. etc. are mentioned, for example.
  • the ratio of the compound having an oxazoline group in the adhesive layer 7 is preferably in the range of 0.1 to 50% by mass, more preferably 0.5 to 40% by mass, in the resin composition constituting the adhesive layer 7. is more preferable. Thereby, the adhesion between the barrier layer 3 and the adhesive layer 7 can be effectively improved.
  • Examples of compounds having an epoxy group include epoxy resins.
  • the epoxy resin is not particularly limited as long as it is a resin capable of forming a crosslinked structure with epoxy groups present in the molecule, and known epoxy resins can be used.
  • the weight average molecular weight of the epoxy resin is preferably about 50 to 2000, more preferably about 100 to 1000, still more preferably about 200 to 800.
  • the weight average molecular weight of the epoxy resin is a value measured by gel permeation chromatography (GPC) using polystyrene as a standard sample.
  • epoxy resins include glycidyl ether derivatives of trimethylolpropane, bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, bisphenol F-type glycidyl ether, novolac glycidyl ether, glycerin polyglycidyl ether, polyglycerin polyglycidyl ether, and the like. is mentioned.
  • An epoxy resin may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the ratio of the epoxy resin in the adhesive layer 7 is preferably in the range of 0.1 to 50% by mass, more preferably in the range of 0.5 to 40% by mass, in the resin composition constituting the adhesive layer 7. is more preferred. Thereby, the adhesion between the barrier layer 3 and the adhesive layer 7 can be effectively improved.
  • the polyurethane is not particularly limited, and known polyurethanes can be used.
  • the adhesive layer 7 may be, for example, a cured product of two-component curing type polyurethane.
  • the proportion of polyurethane in the adhesive layer 7 is preferably in the range of 0.1 to 50% by mass, more preferably in the range of 0.5 to 40% by mass, in the resin composition constituting the adhesive layer 7. more preferred.
  • the adhesive layer 7 is a cured product of a resin composition containing at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and an epoxy resin, and the acid-modified polyolefin.
  • the acid-modified polyolefin functions as a main agent, and the compound having an isocyanate group, the compound having an oxazoline group, and the compound having an epoxy group each function as a curing agent.
  • the adhesive layer 7 may contain a modifier having a carbodiimide group.
  • the thickness of the adhesive layer 7 is preferably about 50 ⁇ m or less, about 40 ⁇ m or less, about 30 ⁇ m or less, about 20 ⁇ m or less, or about 5 ⁇ m or less. Also, the thickness of the adhesive layer 7 is preferably about 0.1 ⁇ m or more and about 0.5 ⁇ m or more.
  • the thickness range of the adhesive layer 7 is preferably about 0.1 to 50 ⁇ m, about 0.1 to 40 ⁇ m, about 0.1 to 30 ⁇ m, about 0.1 to 20 ⁇ m, and about 0.1 to 5 ⁇ m. , about 0.5 to 50 ⁇ m, about 0.5 to 40 ⁇ m, about 0.5 to 30 ⁇ m, about 0.5 to 20 ⁇ m, and about 0.5 to 5 ⁇ m.
  • the thickness is preferably about 1 to 10 ⁇ m, more preferably about 1 to 5 ⁇ m.
  • the thickness is preferably about 2 to 50 ⁇ m, more preferably about 10 to 40 ⁇ m.
  • the heat-fusible resin layer 4 and the adhesive layer 7 can be formed by extrusion molding, for example.
  • the lower limits of the total thickness of the heat-fusible resin layer 4 and the adhesive layer 7 are 35 ⁇ m, 55 ⁇ m, and 75 ⁇ m.
  • the upper limit is 45 ⁇ m, 65 ⁇ m, 85 ⁇ m, and the numerical range is preferably 35 to 45 ⁇ m, 35 to 65 ⁇ m, 35 to 85 ⁇ m, 55 to 65 ⁇ m, 55 to 85 ⁇ m, 75 to 85 ⁇ m.
  • Method for producing an exterior material for an electricity storage device is not particularly limited as long as a laminate obtained by laminating each layer included in the exterior material for an electricity storage device of the present invention is obtained.
  • a step of obtaining a laminate comprising at least an impact-resistant layer, a resin film layer, a barrier layer, and a heat-fusible resin layer is provided.
  • a laminate (hereinafter sometimes referred to as "laminate A") is formed by laminating the resin film layer 2, the adhesive layer 6, and the barrier layer 3 in this order.
  • the laminate A is formed by coating an adhesive used for forming the adhesive layer 6 on the resin film layer 2 or on the barrier layer 3 whose surface is chemically treated as necessary, by gravure coating, It can be performed by a dry lamination method in which the barrier layer 3 or the resin film layer 2 is laminated and the adhesive layer 6 is cured after coating and drying by a coating method such as a roll coating method.
  • the heat-fusible resin layer 4 is laminated on the barrier layer 3 of the laminate A.
  • the heat-fusible resin layer 4 is directly laminated on the barrier layer 3
  • the heat-fusible resin layer 4 is laminated on the barrier layer 3 of the laminate A by a method such as thermal lamination or extrusion lamination. do it.
  • the adhesive layer 7 is provided between the barrier layer 3 and the heat-fusible resin layer 4, for example, (1) the adhesive layer 7 and the heat-fusible resin layer are placed on the barrier layer 3 of the laminate A.
  • the impact-resistant layer 1 is laminated on the surface of the resin film layer 2 opposite to the barrier layer 3 .
  • the shock-resistant layer 1 is formed by applying a material (for example, paper, non-woven fabric, woven fabric, resin base material, rubber base material, etc.) for forming the impact-resistant layer 1 to the resin film layer 2 via the adhesive layer 5. It can be formed by adhering to the surface. Alternatively, the impact-resistant layer 1 may be heat-sealed directly to the surface of the resin film layer 2 .
  • the order of the step of laminating the barrier layer 3 on the surface of the resin film layer 2 and the step of laminating the impact resistant layer 1 on the surface of the resin film layer 2 is not particularly limited. For example, after the impact-resistant layer 1 is laminated on the surface of the resin film layer 2 , the barrier layer 3 may be formed on the surface of the resin film layer 2 opposite to the impact-resistant layer 1 .
  • a laminate including the provided adhesive layer 7 / heat-fusible resin layer 4 is formed.
  • it may be subjected to heat treatment.
  • a colored layer may be provided between the resin film layer 2 and the barrier layer 3 .
  • the power storage device exterior material of the present disclosure is used in a packaging body for sealingly housing power storage device elements such as a positive electrode, a negative electrode, and an electrolyte. That is, an electricity storage device can be obtained by housing an electricity storage device element including at least a positive electrode, a negative electrode, and an electrolyte in a package formed by the electricity storage device exterior material of the present disclosure.
  • an electricity storage device element having at least a positive electrode, a negative electrode, and an electrolyte is placed in the exterior material for an electricity storage device of the present disclosure in a state in which the metal terminals connected to the positive electrode and the negative electrode protrude outward.
  • An electricity storage device using the exterior material for an electricity storage device is provided by covering an electricity storage device element with the exterior material for an electricity storage device and heat-sealing a heat-sealable resin layer to seal.
  • the heat-fusible resin portion of the electricity storage device exterior material of the present disclosure is on the inside (surface in contact with the electricity storage device element ) to form a package.
  • the power storage device exterior material 10 of the present disclosure includes the shock-resistant layer 1, it is difficult to form the recesses by molding using a mold like the conventional power storage device exterior material. Not suitable. For this reason, the power storage device exterior material 10 of the present disclosure is preferably used without being subjected to molding by a mold.
  • the shape of the power storage device 20 manufactured using the power storage device exterior material 10 of the present disclosure is, for example, a gable top type as shown in FIG. 4, a brick pouch side as shown in FIG. As shown, it preferably has a rectangular parallelepiped shape obtained by combining two lid members 11 and a cylindrical exterior member 10 for an electricity storage device. In the electricity storage device 20 of FIG.
  • the electricity storage device element is accommodated in a space formed by the cylindrically formed electricity storage device exterior material 10 and two cover members 11 .
  • the power storage device element is sealed by heat-sealing the heat-sealable resin layer 4 of the power storage device exterior material 10 to the periphery.
  • two or more exterior materials 10 for an electricity storage device of the present disclosure may be used, but it is sufficient to use only one.
  • only one power storage device exterior material 10 of the present disclosure is used.
  • molding in which the electricity storage device exterior material 10 is stretched by molding using a mold is not necessary.
  • the power storage device exterior material of the present disclosure can be suitably used for power storage devices such as batteries (including capacitors, capacitors, etc.).
  • the exterior material for an electricity storage device of the present disclosure may be used for either a primary battery or a secondary battery, it is preferably used for a secondary battery.
  • the type of secondary battery to which the power storage device exterior material of the present disclosure is applied is not particularly limited. Cadmium storage batteries, nickel/iron storage batteries, nickel/zinc storage batteries, silver oxide/zinc storage batteries, metal-air batteries, polyvalent cation batteries, capacitors, capacitors, and the like.
  • lithium ion batteries and lithium ion polymer batteries can be mentioned as suitable targets for application of the power storage device exterior material of the present disclosure.
  • the exterior material for an electricity storage device of the present disclosure is excellent in drop impact resistance, for example, an electricity storage device with a large weight of an electricity storage device element, specifically, an electricity storage device with a weight of 500 g or more, preferably 1000 g or more ( It is particularly useful when the upper limit is, for example, 30 kg or less. Moreover, it is particularly useful as an exterior material for an electric storage device, which is likely to be subjected to impact when dropped.
  • Example 1 A polyethylene terephthalate (PET) film (thickness: 12 ⁇ m) and an oriented nylon (ONy) film (thickness: 15 ⁇ m) were prepared as resin film layers. The PET film and the ONy film were adhered via the adhesive layer using a two-liquid type urethane adhesive so that the adhesive layer had a thickness of 3 ⁇ m after curing. As a barrier layer, an aluminum foil (JIS H4160: 1994 A8021H-O (thickness: 40 ⁇ m) was prepared.
  • JIS H4160 1994 A8021H-O (thickness: 40 ⁇ m
  • an aging treatment was performed to produce a laminate of the resin film layer/adhesive layer/barrier layer. Both sides are subjected to chemical conversion treatment.
  • the chemical conversion treatment of the aluminum foil is carried out by applying a treatment liquid consisting of phenolic resin, a chromium fluoride compound, and phosphoric acid so that the coating amount of chromium is 10 mg/m 2 (dry mass). Secondly, it was applied to both sides of an aluminum foil by a roll coating method and baked.
  • an adhesive layer and a heat-fusible resin layer were laminated on the barrier layer of each laminate obtained above.
  • maleic anhydride-modified polypropylene (PPa, thickness 40 ⁇ m) as an adhesive layer and random polypropylene (PP, thickness 40 ⁇ m) as a heat-sealable resin layer are melt co-extruded, respectively.
  • An adhesive layer/heat-fusible resin layer was laminated on the barrier layer to obtain a laminate in which resin film layer/adhesive layer/barrier layer/adhesive layer/heat-fusible resin layer were laminated in this order.
  • base paper for liquid paper containers manufactured by Potlatch Co., basis weight: 337 g/m 2
  • an impact-resistant layer fibrous base material layer
  • an impact-resistant layer is formed on the surface of the resin film layer of the laminate so that the adhesive layer has a thickness of 3 ⁇ m after curing.
  • the obtained exterior material for an electricity storage device two polypropylene plates (width 100 mm, length 40 mm, thickness 5 mm) as a lid material, and a metal plate made of aluminum as a simulated electricity storage device element (size is width 100 mm, length 140 mm, thickness 40 mm, weight 1.5 kg) was prepared.
  • the space formed by the two cover members and the electrical storage device exterior material formed in a cylindrical shape with the heat-sealable resin layer of the electrical storage device exterior material facing the metal plate.
  • the heat-sealable resin layer of the exterior material for the electric storage device is heat-sealed to the peripheral edge of the lid so that the metal plate is accommodated (for the four sides with a thickness of 5 mm of each lid) heat-sealing the heat-sealing resin layer of the exterior material for the electricity storage device, respectively), the simulated electricity storage device (that is, the space formed by one exterior material for the electricity storage device and two lids 2, in which a simulated electricity storage device element is accommodated).
  • Example 2 Impact resistant layer (fibrous base material layer)/resin film layer/adhesive layer/barrier layer/adhesive layer/ An exterior material for an electricity storage device was obtained in which the heat-fusible resin layers were sequentially laminated.
  • an aluminum metal plate (size: 100 mm wide, 140 mm long, 40 mm thick, weight 1.5 kg) was prepared as a simulated electricity storage device element.
  • the obtained exterior material for an electricity storage device is of a gable top type on the upper and lower sides (only the upper side is of the gable top type and the lower side is flat in FIG. 4).
  • the simulated electricity storage device element is wrapped, the heat-sealable resin layer is heat-sealed, and the simulated electricity storage device (that is, in the space formed by one electricity storage device exterior material, the simulated A typical electric storage device element is accommodated).
  • Example 3 In the same manner as in Example 2, a power storage device exterior material ( The size was 300 mm x 250 mm). In addition, an aluminum metal plate (size: 100 mm wide, 140 mm long, 40 mm thick, weight 1.5 kg) was prepared as a simulated electricity storage device element.
  • the obtained electrical storage device exterior material is shaped into a brick pouch to wrap the simulated electrical storage device element, and the heat-sealable resin layer is heat-sealed to form a simulated electrical storage device element.
  • a typical electricity storage device that is, a simulated electricity storage device element is accommodated in a space formed by one electricity storage device exterior material
  • Comparative example 1 A simulated power storage device was produced in the same manner as in Example 1, except that the shock-resistant layer (fibrous base material layer) was not provided in the power storage device exterior material.
  • Comparative example 2 A simulated power storage device was produced in the same manner as in Example 2, except that the shock-resistant layer (fibrous base material layer) was not provided on the power storage device exterior material.
  • Comparative example 3 A simulated power storage device was produced in the same manner as in Example 3, except that the shock-resistant layer (fibrous base material layer) was not provided in the power storage device exterior material.
  • Table 1 shows the results.
  • base paper for liquid paper containers was laminated as the outermost layer as a shock-resistant layer (fibrous base material layer), and the drop test evaluation from a height of 30 cm was good. rice field.
  • Section 1 An exterior material for an electricity storage device, comprising a laminate comprising, in order from the outside, at least an impact-resistant layer, a resin film layer, a barrier layer, and a heat-fusible resin layer.
  • Section 2. Item 2. The exterior material for an electricity storage device according to Item 1, wherein the shock-resistant layer is a fibrous base material layer.
  • Item 3. Item 3.
  • the power storage device exterior material according to Item 1 or 2 wherein the shock-resistant layer is formed of at least one of paper and nonwoven fabric.
  • Section 4. Item 4. The exterior material for an electricity storage device according to any one of items 1 to 3, wherein the impact-resistant layer has a basis weight of 100 g/m 2 or more.
  • Item 5 The power storage device exterior material according to any one of Items 1 to 4, wherein the shock-resistant layer constitutes the outermost layer of the laminate.
  • Item 6. The power storage device exterior material according to any one of Items 1 to 5, further comprising an adhesive layer between the impact resistant layer and the resin film layer.
  • Item 7. The exterior material for an electricity storage device according to any one of Items 1 to 6, further comprising an adhesive layer between the resin film layer and the barrier layer.
  • Item 9. Item 9. The power storage device exterior material according to any one of Items 1 to 8, wherein the barrier layer is made of an aluminum alloy foil.
  • a method for producing an exterior material for an electric storage device comprising a step of obtaining a laminate including, in order from the outside, at least an impact-resistant layer, a resin film layer, a barrier layer, and a heat-fusible resin layer.
  • Item 11 An electricity storage device, wherein an electricity storage device element comprising at least a positive electrode, a negative electrode, and an electrolyte is accommodated in a package formed of the electricity storage device exterior material according to any one of Items 1 to 9.
  • the electricity storage device element is accommodated in a space formed by the electricity storage device exterior material according to any one of items 1 to 9 formed in a cylindrical shape and two cover members, Item 12.
  • Item 14. 14 The electricity storage device according to any one of items 11 to 13, wherein only one sheet of the exterior material for an electricity storage device according to any one of items 1 to 9 is used.

Abstract

Provided is a housing material for a power storage device, the housing material configured from a layered body comprising, in order from the outer side, at least an impact resistance layer, a resin film layer, a barrier layer, and a heat-fusible resin layer.

Description

蓄電デバイス用外装材、その製造方法、及び蓄電デバイスExterior material for power storage device, manufacturing method thereof, and power storage device
 本開示は、蓄電デバイス用外装材、その製造方法、及び蓄電デバイスに関する。 The present disclosure relates to an exterior material for an electricity storage device, a manufacturing method thereof, and an electricity storage device.
 従来、様々なタイプの蓄電デバイスが開発されているが、あらゆる蓄電デバイスにおいて、電極や電解質などの蓄電デバイス素子を封止するために外装材が不可欠な部材になっている。従来、蓄電デバイス用外装材として金属製の外装材が多用されていた。 Various types of power storage devices have been developed in the past, but in all power storage devices, the exterior material is an indispensable member for sealing the power storage device elements such as electrodes and electrolytes. Conventionally, metal exterior materials have been frequently used as exterior materials for power storage devices.
 一方、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話などの高性能化に伴い、蓄電デバイスには、多様な形状が要求されると共に、薄型化や軽量化が求められている。しかしながら、従来多用されていた金属製の蓄電デバイス用外装材では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。 On the other hand, in recent years, with the increasing performance of electric vehicles, hybrid electric vehicles, personal computers, cameras, mobile phones, etc., power storage devices are required to have various shapes, as well as to be thinner and lighter. However, conventionally widely used metallic exterior materials for electric storage devices have the drawback that it is difficult to follow the diversification of shapes and that there is a limit to weight reduction.
 そこで、近年、多様な形状に加工が容易で、薄型化や軽量化を実現し得る蓄電デバイス用外装材として、基材層/バリア層/熱融着性樹脂層が順次積層されたフィルム状の積層体が提案されている(例えば、特許文献1を参照)。 Therefore, in recent years, a film-like exterior material that can be easily processed into various shapes and that can realize thinness and weight reduction has been developed. Laminates have been proposed (see Patent Document 1, for example).
特開2008-287971号公報JP 2008-287971 A
 このような蓄電デバイス用外装材においては、一般的に、金型を用いた冷間成形により凹部が形成され、当該凹部によって形成された空間に電極や電解液などの蓄電デバイス素子を配し、熱融着性樹脂層を熱融着させることにより、蓄電デバイス用外装材の内部に蓄電デバイス素子が収容された蓄電デバイスが得られる。蓄電デバイスのエネルギー密度をより一層高めるためには、外装材に対して、より深い凹部を形成することが必要となる。また、蓄電デバイスのサイズが大型化する場合にも、より深い凹部を形成することが必要となる。 In such a power storage device exterior material, generally, recesses are formed by cold molding using a mold, and power storage device elements such as electrodes and electrolytes are arranged in the spaces formed by the recesses. By heat-sealing the heat-fusible resin layer, an electricity storage device in which the electricity storage device element is housed inside the exterior material for an electricity storage device can be obtained. In order to further increase the energy density of the electricity storage device, it is necessary to form deeper recesses in the exterior material. Also, when the size of the electric storage device is increased, it is necessary to form a deeper concave portion.
 しかしながら、積層フィルムにより形成された蓄電デバイス用外装材に深い凹部を形成することには限界がある。このため、金型などで成形せずに、例えば袋状の包装体として蓄電デバイス素子を封止する蓄電デバイス用外装材が求められる。 However, there is a limit to forming a deep concave portion in an exterior material for an electricity storage device formed of a laminated film. Therefore, there is a demand for an exterior material for an electricity storage device that seals an electricity storage device element in the form of, for example, a bag-like packaging body without molding with a mold or the like.
 ところが、金型で成形されない蓄電デバイス用外装材であっても、例えば蓄電デバイスのサイズが大型化すると、蓄電デバイスが落下した場合などに蓄電デバイス用外装材に加わる衝撃が大きくなり、蓄電デバイス用外装材が損傷しやすくなるという問題がある。 However, even with a power storage device exterior material that is not molded with a mold, for example, if the size of the power storage device increases, the shock applied to the power storage device exterior material when the power storage device falls will increase, and the power storage device exterior material will be exposed to a larger impact. There is a problem that the exterior material is easily damaged.
 このような状況下、本開示は、耐落下衝撃性に優れた蓄電デバイス用外装材を提供することを主な目的とする。 Under such circumstances, the main purpose of the present disclosure is to provide an exterior material for an electricity storage device that has excellent drop impact resistance.
 本開示の発明者らは、上記のような課題を解決すべく鋭意検討を行った。その結果、外側から順に、少なくとも、耐衝撃層、樹脂フィルム層、バリア層、及び熱融着性樹脂層を備える積層体から構成されている、蓄電デバイス用外装材は、耐落下衝撃性が優れることを見出した。 The inventors of the present disclosure conducted extensive studies to solve the above problems. As a result, the exterior material for an electric storage device, which is composed of a laminate including, in order from the outside, at least an impact-resistant layer, a resin film layer, a barrier layer, and a heat-fusible resin layer, has excellent drop impact resistance. I found out.
 本開示は、このような新規な知見に基づいて、更に検討を重ねることにより完成したものである。即ち、本開示は、下記に掲げる態様の発明を提供する。
 外側から順に、少なくとも、耐衝撃層、樹脂フィルム層、バリア層、及び熱融着性樹脂層を備える積層体から構成されている、蓄電デバイス用外装材。
The present disclosure has been completed through further studies based on such new findings. That is, the present disclosure provides inventions in the following aspects.
An exterior material for an electricity storage device, comprising a laminate comprising, in order from the outside, at least an impact-resistant layer, a resin film layer, a barrier layer, and a heat-fusible resin layer.
 本開示によれば、優れた耐落下衝撃性を発揮する、蓄電デバイス用外装材を提供することができる。また、本開示によれば、当該蓄電デバイス用外装材の製造方法、及び当該蓄電デバイス用外装材を利用した蓄電デバイスを提供することもできる。 According to the present disclosure, it is possible to provide an exterior material for an electricity storage device that exhibits excellent drop impact resistance. Further, according to the present disclosure, it is also possible to provide a method for manufacturing the exterior material for an electricity storage device, and an electricity storage device using the exterior material for an electricity storage device.
本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an example of a cross-sectional structure of an exterior material for an electricity storage device of the present disclosure; 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an example of a cross-sectional structure of an exterior material for an electricity storage device of the present disclosure; 本開示の蓄電デバイス用外装材の断面構造の一例を示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an example of a cross-sectional structure of an exterior material for an electricity storage device of the present disclosure; 本開示の蓄電デバイスの形状の一例(ゲーブルトップ型)を説明するための模式図である。1 is a schematic diagram for explaining an example (gable top type) of the shape of an electricity storage device of the present disclosure; FIG. 本開示の蓄電デバイスの形状の一例(ブリックパウチ型)を説明するための模式図である。1 is a schematic diagram for explaining an example (brick pouch type) of the shape of an electricity storage device of the present disclosure; FIG. 本開示の蓄電デバイスの形状の一例(2枚の蓋材と1枚の蓄電デバイス用外装材とが組み合わされた直方体型)を説明するための模式図である。1 is a schematic diagram for explaining an example of the shape of an electricity storage device of the present disclosure (a rectangular parallelepiped shape in which two lid members and one exterior member for an electricity storage device are combined). FIG.
 本開示の蓄電デバイス用外装材は、外側から順に、少なくとも、耐衝撃層、樹脂フィルム層、バリア層、及び熱融着性樹脂層を備える積層体から構成されていることを特徴とする。本開示の蓄電デバイス用外装材は、このような構成を備えることにより、優れた耐落下衝撃性を発揮する。 The power storage device exterior material of the present disclosure is characterized by being composed of a laminate including, in order from the outside, at least an impact-resistant layer, a resin film layer, a barrier layer, and a heat-fusible resin layer. With such a configuration, the power storage device exterior material of the present disclosure exhibits excellent drop impact resistance.
 以下、本開示の蓄電デバイス用外装材について詳述する。なお、本開示において、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、別個に記載された、上限値と上限値、上限値と下限値、又は下限値と下限値を組み合わせて、それぞれ、数値範囲としてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。 The exterior material for an electricity storage device of the present disclosure will be described in detail below. In the present disclosure, the numerical range indicated by "-" means "more than" and "less than". For example, the notation of 2 to 15 mm means 2 mm or more and 15 mm or less. In the numerical ranges described step by step in the present disclosure, upper or lower limits described in a certain numerical range may be replaced with upper or lower limits of other numerical ranges described step by step. Alternatively, the upper limit and upper limit, the upper limit and lower limit, or the lower limit and lower limit, which are separately described, may be combined to form a numerical range. In addition, in the numerical ranges described in the present disclosure, upper or lower limits described in a certain numerical range may be replaced with values shown in Examples.
1.蓄電デバイス用外装材の積層構造
 本開示の蓄電デバイス用外装材10は、例えば図1から図3に示すように、少なくとも、耐衝撃層1、樹脂フィルム層2、バリア層3、及び熱融着性樹脂層4をこの順に備える積層体から構成されている。蓄電デバイス用外装材10において、耐衝撃層1が最外層側になり、熱融着性樹脂層4は最内層になる。蓄電デバイス用外装材10と蓄電デバイス素子を用いて蓄電デバイスを組み立てる際に、蓄電デバイス用外装材10の熱融着性樹脂層を熱融着させることによって形成された空間に、蓄電デバイス素子が収容される。本開示の蓄電デバイス用外装材10を構成する積層体において、バリア層3を基準とし、バリア層3よりも熱融着性樹脂層4側が内側であり、バリア層3よりも樹脂フィルム層2側が外側である。
1. Laminated Structure of Exterior Material for Electric Storage Device The exterior material 10 for an electric storage device of the present disclosure includes, for example, as shown in FIGS. It is composed of a laminate having a flexible resin layer 4 in this order. In the electric storage device exterior material 10, the shock-resistant layer 1 is the outermost layer, and the heat-fusible resin layer 4 is the innermost layer. When an electricity storage device is assembled using the electricity storage device exterior material 10 and an electricity storage device element, the electricity storage device element is placed in a space formed by heat-sealing the heat-sealable resin layer of the electricity storage device exterior material 10 . be accommodated. In the laminate constituting the power storage device exterior material 10 of the present disclosure, the barrier layer 3 is the reference, the heat-fusible resin layer 4 side is inside the barrier layer 3, and the resin film layer 2 side is inside the barrier layer 3. outside.
 なお、本開示の蓄電デバイス用外装材10は、耐衝撃層1を備えていることから、従来の蓄電デバイス用外装材のような金型を用いた成形によって凹部を形成することには適していない。このため、本開示の蓄電デバイス用外装材10は、金型による成形に供されずに使用されるものであることが好ましい。ただし、少なくとも、樹脂フィルム層2、バリア層3、及び熱融着性樹脂層4をこの順に備える積層体を準備し、これを成形した後に、樹脂フィルム層2の上に耐衝撃層1を積層することもできるため、凹部が形成された蓄電デバイス用外装材10の製造に金型を用いることができないというわけではない。具体的には、本開示の蓄電デバイス用外装材10は、図4に示すようなゲーブルトップ型(なお、図4の形状は、上側のみがゲーブルトップ型であり、下側は平坦であるが、上側及び下側をゲーブルトップ型としてもよい。)、図5に示されるようなブリックパウチ型、さらには図6に示すような、2枚の蓋材11と筒状に形成された蓄電デバイス用外装材10とを組み合わせた直方体形状の蓄電デバイスとなるようにして使用されるものであることが好ましい。図6の蓄電デバイス20においては、筒状に形成された蓄電デバイス用外装材10と、2枚の蓋材11とによって形成された空間に、蓄電デバイス素子が収容されており、蓋材11の周縁部に蓄電デバイス用外装材10の熱融着性樹脂層4が熱融着することで、蓄電デバイス素子が封止されている。 Since the power storage device exterior material 10 of the present disclosure includes the shock-resistant layer 1, it is not suitable for forming recesses by molding using a mold like the conventional power storage device exterior material. do not have. For this reason, the power storage device exterior material 10 of the present disclosure is preferably used without being subjected to molding by a mold. However, a laminate comprising at least the resin film layer 2, the barrier layer 3, and the heat-fusible resin layer 4 in this order is prepared, and after molding this, the impact-resistant layer 1 is laminated on the resin film layer 2. This does not mean that a mold cannot be used to manufacture the electrical storage device exterior material 10 having recesses formed therein. Specifically, the power storage device exterior material 10 of the present disclosure is a gable top type as shown in FIG. , the upper and lower sides may be of the gable top type.), the brick pouch type as shown in FIG. It is preferable that the power storage device is used so as to form a rectangular parallelepiped electricity storage device in combination with the outer packaging material 10 . In the electricity storage device 20 of FIG. 6 , the electricity storage device element is accommodated in a space formed by the cylindrically formed electricity storage device exterior material 10 and two cover members 11 . The power storage device element is sealed by heat-sealing the heat-sealable resin layer 4 of the power storage device exterior material 10 to the periphery.
 蓄電デバイス用外装材10は、例えば図1から図3に示すように、耐衝撃層1と樹脂フィルム層2との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着剤層5を有していてもよい。また、例えば図2から図3に示すように、樹脂フィルム層2とバリア層3との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着剤層6を有していてもよい。また、例えば図3に示すように、バリア層3と熱融着性樹脂層4との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着層7を有していてもよい。 For example, as shown in FIGS. 1 to 3, the power storage device exterior material 10 is provided between the impact-resistant layer 1 and the resin film layer 2 for the purpose of improving the adhesion between these layers, if necessary. may have an adhesive layer 5 on each side. For example, as shown in FIGS. 2 and 3, an adhesive layer 6 is optionally provided between the resin film layer 2 and the barrier layer 3 for the purpose of enhancing adhesion between these layers. You may have For example, as shown in FIG. 3, an adhesive layer 7 is optionally provided between the barrier layer 3 and the heat-sealable resin layer 4 for the purpose of enhancing the adhesion between these layers. may be
 蓄電デバイス用外装材10を構成する積層体の厚みとしては、特に制限されないが、コスト削減、エネルギー密度向上等の観点からは、例えば300μm以下、好ましくは約250μm以下、約200μm以下、約190μm以下が挙げられる。また、蓄電デバイス用外装材10を構成する積層体の厚みとしては、蓄電デバイス素子を保護するという蓄電デバイス用外装材の機能を維持する観点からは、好ましくは約60μm以上、約80μm以上、約100μm以上、約150μm以上、約180μm以上などが挙げられる。また、蓄電デバイス用外装材10を構成する積層体の好ましい範囲については、例えば、60~300μm程度、60~250μm程度、60~200μm程度、60~190μm程度、80~300μm程度、80~250μm程度、80~200μm程度、80~190μm程度、100~300μm程度、100~250μm程度、100~200μm程度、100~190μm程度、150~300μm程度、150~250μm程度、150~200μm程度、150~190μm程度、180~300μm程度、180~250μm程度、180~200μm程度、180~190μm程度が好ましい。 The thickness of the laminate constituting the power storage device exterior material 10 is not particularly limited. is mentioned. The thickness of the laminate constituting the power storage device exterior material 10 is preferably about 60 μm or more, about 80 μm or more, about 100 μm or more, about 150 μm or more, about 180 μm or more, and the like. Further, the preferred range of the laminate constituting the power storage device exterior material 10 is, for example, about 60 to 300 μm, about 60 to 250 μm, about 60 to 200 μm, about 60 to 190 μm, about 80 to 300 μm, and about 80 to 250 μm. , about 80 to 200 μm, about 80 to 190 μm, about 100 to 300 μm, about 100 to 250 μm, about 100 to 200 μm, about 100 to 190 μm, about 150 to 300 μm, about 150 to 250 μm, about 150 to 200 μm, about 150 to 190 μm , about 180 to 300 μm, about 180 to 250 μm, about 180 to 200 μm, and about 180 to 190 μm.
 蓄電デバイス用外装材10において、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、耐衝撃層1、必要に応じて設けられる接着剤層5、樹脂フィルム層2、必要に応じて設けられる接着剤層6、バリア層3、必要に応じて設けられる接着層7、及び熱融着性樹脂層4の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。具体例としては、本開示の蓄電デバイス用外装材10が、耐衝撃層1、接着剤層5、樹脂フィルム層2、接着剤層6、バリア層3、接着層7、及び熱融着性樹脂層4を含む場合、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。また、本開示の蓄電デバイス用外装材10が、耐衝撃層1、接着剤層5、樹脂フィルム層2、接着剤層6、バリア層3、及び熱融着性樹脂層4を含む積層体である場合にも、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上とすることができる。 In the electrical storage device exterior material 10, the impact resistant layer 1, the adhesive layer 5 provided as necessary, the resin film layer 2, and, if necessary, the thickness (total thickness) of the laminate constituting the electrical storage device exterior material 10 The ratio of the total thickness of the adhesive layer 6 provided as required, the barrier layer 3, the adhesive layer 7 provided as required, and the heat-fusible resin layer 4 is preferably 90% or more, more preferably 95%. % or more, more preferably 98% or more. As a specific example, the power storage device exterior material 10 of the present disclosure includes an impact-resistant layer 1, an adhesive layer 5, a resin film layer 2, an adhesive layer 6, a barrier layer 3, an adhesive layer 7, and a heat-fusible resin. When the layer 4 is included, the ratio of the total thickness of these layers to the thickness (total thickness) of the laminate constituting the power storage device exterior material 10 is preferably 90% or more, more preferably 95% or more. , more preferably 98% or more. In addition, the power storage device exterior material 10 of the present disclosure is a laminate including the shock-resistant layer 1, the adhesive layer 5, the resin film layer 2, the adhesive layer 6, the barrier layer 3, and the heat-fusible resin layer 4. In some cases, the ratio of the total thickness of each of these layers to the thickness (total thickness) of the laminate constituting the power storage device exterior material 10 is, for example, 80% or more, preferably 90% or more, and more preferably 95% or more. , and more preferably 98% or more.
2.蓄電デバイス用外装材を形成する各層
[耐衝撃層1]
 耐衝撃層1は、本開示の蓄電デバイス用外装材10に優れた耐落下衝撃性を付与するクッションとしての機能を発揮する層である。耐衝撃層1は、蓄電デバイス用外装材10の最外層を構成していることが好ましい。
2. Each layer forming the exterior material for the electricity storage device [shock resistant layer 1]
The impact-resistant layer 1 is a layer that functions as a cushion that imparts excellent drop impact resistance to the power storage device exterior material 10 of the present disclosure. The shock-resistant layer 1 preferably constitutes the outermost layer of the power storage device exterior material 10 .
 耐衝撃層1は、蓄電デバイス用外装材10に対して耐衝撃性を付与する層であればよく、紙などの繊維質基材、ポリカーボネート系樹脂、ポリイミド系樹脂、ポリアミド系樹脂、ポリアミドイミド系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂等の樹脂基材、ブタジエンゴム、天然ゴムなどのゴム質基材などにより構成することができる。 The impact-resistant layer 1 may be a layer that imparts impact resistance to the power storage device exterior material 10, and may be a fibrous base material such as paper, a polycarbonate-based resin, a polyimide-based resin, a polyamide-based resin, or a polyamide-imide-based material. It can be composed of resin base materials such as resins, polyester resins, polyolefin resins and polystyrene resins, and rubber base materials such as butadiene rubber and natural rubber.
 耐衝撃層1が、樹脂基材又はゴム質基材である場合、耐衝撃層1の引張弾性率は、好ましくは0.1GPa以上、より好ましくは0.1~10GPaである。 When the impact resistant layer 1 is a resin substrate or a rubber substrate, the tensile modulus of the impact resistant layer 1 is preferably 0.1 GPa or more, more preferably 0.1 to 10 GPa.
 耐衝撃層1は、繊維質によって形成された基材が層状に設けられている層(繊維質基材層)であることが好ましい。繊維質基材層は、例えば、紙、不織布、織布、木質材などにより構成され、好ましくは紙又は不織布により構成され、より好ましくは紙により構成される。なお、本開示において、紙とは植物や合成樹脂などの繊維を膠着させて製した薄片であり、主として植物繊維により構成されるものであるが、素材として合成高分子物質を用いて製造した合成紙のほか,繊維状無機材料を配合した紙も含む。また、不織布とは、糸の形態を経ずに、繊維シートを機械的・化学的・熱的に処理し、接着剤や繊維自身の融着力で接合された布であり、主として合成繊維(化学繊維)により形成されるものである。織布は、繊維を織った布である。木質材は、例えば、木材単板、合板、集成材、中密度繊維板、硬質繊維板等である。 The impact-resistant layer 1 is preferably a layer (fibrous base material layer) in which a base material made of fibrous material is provided in layers. The fibrous base material layer is composed of, for example, paper, nonwoven fabric, woven fabric, wood material, etc., preferably paper or nonwoven fabric, and more preferably paper. In the present disclosure, paper is a thin piece made by agglutinating fibers such as plants and synthetic resins, and is mainly composed of plant fibers. In addition to paper, paper containing fibrous inorganic materials is also included. In addition, nonwoven fabric is a fabric made by mechanically, chemically, and thermally treating a fiber sheet without going through the form of yarn, and bonding it with an adhesive or the fusing power of the fiber itself. fiber). A woven fabric is a fabric made of woven fibers. Wood materials include, for example, wood veneer, plywood, laminated wood, medium-density fiberboard, hard fiberboard, and the like.
 繊維質基材層を構成する素材としては、特に制限されず、天然繊維、合成繊維(化学繊維)などを使用することができる。 The material constituting the fibrous base material layer is not particularly limited, and natural fibers, synthetic fibers (chemical fibers), etc. can be used.
 繊維質基材層が紙により構成される場合、紙を構成する素材としては、特に制限はなく、例えば、針葉樹の晒しクラフトパルプ(NBKP)、広葉樹の晒しクラフトパルプ(LBKP)、砕木パルプ(GP)、サーモメカニカルパルプ(TMP)、ケミサーモメカニカルパルプ(CTMP)、脱墨パルプ(DIP)等のパルプ原料が挙げられ、これらの中でも特に針葉樹に由来するパルプ原料が好ましい。また、パルプ原料としては、新聞古紙、雑誌古紙、段ボール古紙、脱墨古紙などの古紙パルプを用いることもできる。また、紙には、上記パルプ原料とレーヨン、ポリアミド、ポリイミド、ポリエステル、ポリオレフィン、及びポリビニルアルコール等の合成繊維との混合物を含有してもよい。紙の具体例としては、液体紙容器用原紙が好適に例示される。 When the fibrous base material layer is made of paper, the material constituting the paper is not particularly limited. ), thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP), deinked pulp (DIP), etc. Among them, pulp materials derived from softwood are particularly preferred. Waste paper pulp such as waste newspaper, waste magazine paper, waste corrugated board, and waste deinked paper can also be used as the pulp material. Moreover, the paper may contain a mixture of the pulp material and synthetic fibers such as rayon, polyamide, polyimide, polyester, polyolefin, and polyvinyl alcohol. As a specific example of the paper, base paper for liquid paper containers is preferably exemplified.
 また、繊維質基材層が不織布又は織布により構成される場合、不織布又は織布を構成する素材としては、特に制限はなく、例えばナイロン、ポリエステル、ポリオレフィン(ポリプロピレン、ポリエチレンなど)、アクリル繊維、ビニロン、アラミド繊維などの化学繊維;綿、羊毛、麻、絹、パルプなどの天然繊維が挙げられる。 In addition, when the fibrous base material layer is composed of nonwoven fabric or woven fabric, the material constituting the nonwoven fabric or woven fabric is not particularly limited. chemical fibers such as vinylon and aramid fibers; and natural fibers such as cotton, wool, hemp, silk and pulp.
 耐衝撃層1を構成する素材は、1種類のみであってもよいし、2種類以上であってもよい。 The material constituting the shock-resistant layer 1 may be of only one type, or may be of two or more types.
 耐衝撃層1の表面及び内部の少なくとも一方には、難燃剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤、耐電防止剤等の添加剤が存在していてもよい。添加剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Additives such as flame retardants, antiblocking agents, antioxidants, light stabilizers, tackifiers, and antistatic agents may be present on at least one of the surface and the interior of the impact-resistant layer 1 . Only one type of additive may be used, or two or more types may be mixed and used.
 耐衝撃層1の坪量(目付量)については、特に制限されないが、本開示の効果をより好適に発揮する観点から、好ましくは100g/m2以上、より好ましくは150g/m2以上、さらに好ましくは200g/m2以上であり、また、好ましくは1000/m2以下、より好ましくは600/m2以下、さらに好ましくは500/m2以下であり、好ましい範囲としては、100~1000/m2程度、100~600/m2程度、100~500/m2程度、150~1000/m2程度、150~600/m2程度、150~500/m2程度、200~1000/m2程度、200~600/m2程度、200~500程度が挙げられる。 Although the basis weight (basis weight) of the impact-resistant layer 1 is not particularly limited, it is preferably 100 g/m 2 or more, more preferably 150 g/m 2 or more, and more preferably 150 g/m 2 or more from the viewpoint of more suitably exhibiting the effects of the present disclosure. It is preferably 200 g/m 2 or more, more preferably 1000/m 2 or less, more preferably 600/m 2 or less , still more preferably 500/m 2 or less. about 2 , about 100-600/ m2 , about 100-500/ m2 , about 150-1000/ m2 , about 150-600/ m2 , about 150-500/ m2 , about 200-1000/ m2 , about 200 to 600/m 2 , and about 200 to 500.
[接着剤層5]
 本開示の蓄電デバイス用外装材において、接着剤層5は、耐衝撃層1と樹脂フィルム層2との接着性を高めることを目的として、必要に応じて、これらの間に設けられる層である。
[Adhesive layer 5]
In the power storage device exterior material of the present disclosure, the adhesive layer 5 is a layer provided between the impact-resistant layer 1 and the resin film layer 2 as necessary for the purpose of increasing the adhesion between them. .
 接着剤層5は、耐衝撃層1と樹脂フィルム層2とを接着可能である接着剤によって形成される。接着剤層5の形成に使用される接着剤は限定されないが、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。また、2液硬化型接着剤(2液性接着剤)であってもよく、1液硬化型接着剤(1液性接着剤)であってもよく、硬化反応を伴わない樹脂でもよい。また、接着剤層5は単層であってもよいし、多層であってもよい。 The adhesive layer 5 is made of an adhesive capable of bonding the impact-resistant layer 1 and the resin film layer 2 together. The adhesive used to form the adhesive layer 5 is not limited, but may be any of a chemical reaction type, a solvent volatilization type, a hot melt type, a hot pressure type, and the like. Further, it may be a two-liquid curing adhesive (two-liquid adhesive), a one-liquid curing adhesive (one-liquid adhesive), or a resin that does not involve a curing reaction. Further, the adhesive layer 5 may be a single layer or multiple layers.
 接着剤に含まれる接着成分としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等のポリエステル;ポリエーテル;ポリウレタン;エポキシ樹脂;フェノール樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド;ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン、酸変性環状ポリオレフィンなどのポリオレフィン系樹脂;ポリ酢酸ビニル;セルロース;(メタ)アクリル樹脂;ポリイミド;ポリカーボネート;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等のゴム;シリコーン樹脂等が挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの接着成分の中でも、好ましくはポリウレタン接着剤が挙げられる。また、これらの接着成分となる樹脂は適切な硬化剤を併用して接着強度を高めることができる。前記硬化剤は、接着成分の持つ官能基に応じて、ポリイソシアネート、多官能エポキシ樹脂、オキサゾリン基含有ポリマー、ポリアミン樹脂、酸無水物などから適切なものを選択する。 Specific examples of the adhesive component contained in the adhesive include polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester; polyether; polyurethane; epoxy resin; Phenolic resins; polyamides such as nylon 6, nylon 66, nylon 12, and copolymerized polyamides; polyolefin resins such as polyolefins, cyclic polyolefins, acid-modified polyolefins, and acid-modified cyclic polyolefins; polyvinyl acetate; cellulose; (meth)acrylic resins; polyimide; polycarbonate; amino resin such as urea resin and melamine resin; rubber such as chloroprene rubber, nitrile rubber and styrene-butadiene rubber; These adhesive components may be used singly or in combination of two or more. Among these adhesive components, polyurethane adhesives are preferred. In addition, an appropriate curing agent can be used in combination with these adhesive component resins to increase the adhesive strength. The curing agent is selected from among polyisocyanates, polyfunctional epoxy resins, oxazoline group-containing polymers, polyamine resins, acid anhydrides, etc., depending on the functional groups of the adhesive component.
 ポリウレタン接着剤としては、例えば、ポリオール化合物を含有する第1剤と、イソシアネート化合物を含有する第2剤とを含むポリウレタン接着剤が挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを第1剤として、芳香族系又は脂肪族系のポリイソシアネートを第2剤とした二液硬化型のポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、イソシアネート化合物とを含むポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、ポリオール化合物とを含むポリウレタン接着剤が挙げられる。また、ポリウレタン接着剤としては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物を、空気中などの水分と反応させることによって硬化させたポリウレタン接着剤が挙げられる。ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。第2剤としては、脂肪族、脂環式、芳香族、芳香脂肪族のイソシアネート系化合物が挙げられる。イソシアネート系化合物としては、例えばヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、水素化XDI(H6XDI)、水素化MDI(H12MDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)等が挙げられる。また、これらのジイソシアネートの1種類又は2種類以上からの多官能イソシアネート変性体等が挙げられる。また、ポリイソシアネート化合物として多量体(例えば三量体)を使用することもできる。このような多量体には、アダクト体、ビウレット体、ヌレート体等が挙げられる。接着剤層5がポリウレタン接着剤により形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与され、側面に電解液が付着しても樹脂フィルム層2が剥がれることが抑制される。 Examples of polyurethane adhesives include polyurethane adhesives containing a first agent containing a polyol compound and a second agent containing an isocyanate compound. Preferably, a two-component curing type polyurethane adhesive is used in which a polyol such as polyester polyol, polyether polyol, or acrylic polyol is used as the first agent and an aromatic or aliphatic polyisocyanate is used as the second agent. Examples of polyurethane adhesives include polyurethane adhesives containing an isocyanate compound and a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance. Examples of polyurethane adhesives include polyurethane adhesives containing a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance and a polyol compound. Examples of polyurethane adhesives include polyurethane adhesives obtained by reacting a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance with moisture in the air and curing the compound. As the polyol compound, it is preferable to use a polyester polyol having a hydroxyl group in a side chain in addition to the terminal hydroxyl group of the repeating unit. Examples of the second agent include aliphatic, alicyclic, aromatic, and araliphatic isocyanate compounds. Examples of isocyanate compounds include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate. (MDI), naphthalene diisocyanate (NDI), and the like. In addition, polyfunctional isocyanate-modified products of one or more of these diisocyanates are also included. Moreover, a polymer (for example, a trimer) can also be used as a polyisocyanate compound. Such multimers include adducts, biurets, nurates and the like. Since the adhesive layer 5 is formed of a polyurethane adhesive, the exterior material for an electric storage device is endowed with excellent electrolytic solution resistance, and peeling of the resin film layer 2 is suppressed even if the electrolytic solution adheres to the side surface. .
 また、接着剤層5は、接着性を阻害しない限り他成分の添加が許容され、着色剤や熱可塑性エラストマー、粘着付与剤、フィラーなどを含有してもよい。接着剤層5が着色剤を含んでいることにより、蓄電デバイス用外装材を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 In addition, the adhesive layer 5 may contain other components as long as they do not interfere with adhesion, and may contain colorants, thermoplastic elastomers, tackifiers, fillers, and the like. Since the adhesive layer 5 contains a coloring agent, the power storage device exterior material can be colored. Known substances such as pigments and dyes can be used as the colorant. In addition, only one type of colorant may be used, or two or more types may be mixed and used.
 顔料の種類は、接着剤層5の接着性を損なわない範囲であれば、特に限定されない。有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、ジオキサジン系、インジゴチオインジゴ系、ペリノン-ペリレン系、イソインドレニン系、ベンズイミダゾロン系等の顔料が挙げられ、無機顔料としては、カーボンブラック系、酸化チタン系、カドミウム系、鉛系、酸化クロム系、鉄系等の顔料が挙げられ、その他に、マイカ(雲母)の微粉末、魚鱗箔等が挙げられる。 The type of pigment is not particularly limited as long as it does not impair the adhesiveness of the adhesive layer 5. Examples of organic pigments include azo-based, phthalocyanine-based, quinacridone-based, anthraquinone-based, dioxazine-based, indigothioindigo-based, perinone-perylene-based, isoindolenine-based, and benzimidazolone-based pigments. Examples of pigments include carbon black, titanium oxide, cadmium, lead, chromium oxide, and iron pigments, as well as fine powder of mica and fish scale foil.
 着色剤の中でも、例えば蓄電デバイス用外装材の外観を黒色とするためには、カーボンブラックが好ましい。 Among the coloring agents, carbon black is preferable, for example, in order to make the external appearance of the exterior material for a power storage device black.
 顔料の平均粒子径としては、特に制限されず、例えば、0.05~5μm程度、好ましくは0.08~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。 The average particle size of the pigment is not particularly limited, and is, for example, about 0.05 to 5 μm, preferably about 0.08 to 2 μm. The average particle size of the pigment is the median size measured with a laser diffraction/scattering particle size distribution analyzer.
 接着剤層5における顔料の含有量としては、蓄電デバイス用外装材が着色されれば特に制限されず、例えば5~60質量%程度、好ましくは10~40質量%が挙げられる。 The content of the pigment in the adhesive layer 5 is not particularly limited as long as the power storage device exterior material is colored, and is, for example, about 5 to 60% by mass, preferably 10 to 40% by mass.
 接着剤層5の厚みは、耐衝撃層1と樹脂フィルム層2とを接着できれば、特に制限されないが、例えば、約1μm以上、約2μm以上である。また、接着剤層5の厚みは、例えば、約10μm以下、約5μm以下である。また、接着剤層5の厚みの好ましい範囲については、1~10μm程度、1~5μm程度、2~10μm程度、2~5μm程度が挙げられる。 The thickness of the adhesive layer 5 is not particularly limited as long as the impact-resistant layer 1 and the resin film layer 2 can be adhered, but is, for example, about 1 μm or more, or about 2 μm or more. Moreover, the thickness of the adhesive layer 5 is, for example, about 10 μm or less, or about 5 μm or less. Moreover, the preferable range of the thickness of the adhesive layer 5 is about 1 to 10 μm, about 1 to 5 μm, about 2 to 10 μm, and about 2 to 5 μm.
 なお、耐衝撃層が繊維質基材層である場合、接着剤層5は、通常、繊維質基材層の隙間に含浸されるが、繊維質基材層による耐落下衝撃性を好適に発揮させる観点から、接着剤層5は、蓄電デバイス用外装材の最外層に露出せず、繊維質基材層が蓄電デバイス用外装材の最外層を構成することが好ましい。 When the impact-resistant layer is a fibrous base material layer, the adhesive layer 5 is usually impregnated in the gaps of the fibrous base material layer. From the viewpoint of making the electric storage device exterior material, the adhesive layer 5 is preferably not exposed in the outermost layer of the electrical storage device exterior material, and the fibrous base material layer preferably constitutes the outermost layer of the electrical storage device exterior material.
[樹脂フィルム層2]
 本開示において、樹脂フィルム層2は、蓄電デバイス用外装材の基材としての機能を発揮させることなどを目的として設けられる層である。樹脂フィルム層2は、蓄電デバイス用外装材において、中間にあるバリア層3よりも外側に位置する。
[Resin film layer 2]
In the present disclosure, the resin film layer 2 is a layer provided for the purpose of exhibiting a function as a base material of an exterior material for an electric storage device. The resin film layer 2 is located outside the intermediate barrier layer 3 in the exterior material for an electric storage device.
 樹脂フィルム層2を形成する素材については、基材としての機能、すなわち少なくとも絶縁性を備えるものであることを限度として特に制限されない。樹脂フィルム層2は、例えば樹脂を用いて形成することができ、樹脂には後述の添加剤が含まれていてもよい。 The material forming the resin film layer 2 is not particularly limited as long as it functions as a base material, that is, at least has insulating properties. The resin film layer 2 can be formed using, for example, a resin, and the resin may contain additives described later.
 樹脂フィルム層2が樹脂により形成されている場合、樹脂フィルム層2は、例えば、樹脂により形成された樹脂フィルムであってもよいし、樹脂を塗布して形成したものであってもよい。樹脂フィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルムが挙げられ、二軸延伸フィルムが好ましい。二軸延伸フィルムを形成する延伸方法としては、例えば、逐次二軸延伸法、インフレーション法、同時二軸延伸法等が挙げられる。樹脂を塗布する方法としては、ロールコーティング法、グラビアコーティング法、押出コーティング法などが挙げられる。 When the resin film layer 2 is formed of resin, the resin film layer 2 may be, for example, a resin film formed of resin, or may be formed by applying resin. The resin film may be an unstretched film or a stretched film. Examples of stretched films include uniaxially stretched films and biaxially stretched films, with biaxially stretched films being preferred. Examples of stretching methods for forming a biaxially stretched film include successive biaxial stretching, inflation, and simultaneous biaxial stretching. Methods for applying the resin include a roll coating method, a gravure coating method, an extrusion coating method, and the like.
 樹脂フィルム層2を形成する樹脂としては、例えば、ポリエステル、ポリアミド、ポリオレフィン、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、樹脂フィルム層2を形成する樹脂は、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。 Examples of the resin forming the resin film layer 2 include resins such as polyester, polyamide, polyolefin, epoxy resin, acrylic resin, fluororesin, polyurethane, silicon resin, phenolic resin, and modified products of these resins. Further, the resin forming the resin film layer 2 may be a copolymer of these resins or a modified product of the copolymer. Furthermore, it may be a mixture of these resins.
 樹脂フィルム層2を形成する樹脂としては、これらの中でも、好ましくはポリエステル、ポリアミドが挙げられる。 Among these, the resin forming the resin film layer 2 preferably includes polyester and polyamide.
 ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等が挙げられる。また、共重合ポリエステルとしては、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Specific examples of polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester. Examples of copolyester include copolyester having ethylene terephthalate as a main repeating unit. Specifically, copolymer polyester polymerized with ethylene isophthalate with ethylene terephthalate as the main repeating unit (hereinafter abbreviated after polyethylene (terephthalate / isophthalate)), polyethylene (terephthalate / adipate), polyethylene (terephthalate / sodium sulfoisophthalate), polyethylene (terephthalate/sodium isophthalate), polyethylene (terephthalate/phenyl-dicarboxylate), polyethylene (terephthalate/decanedicarboxylate), and the like. These polyesters may be used singly or in combination of two or more.
 また、ポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン-イソフタル酸-テレフタル酸共重合ポリアミド、ポリアミドMXD6(ポリメタキシリレンアジパミド)等の芳香族を含むポリアミド;ポリアミドPACM6(ポリビス(4-アミノシクロヘキシル)メタンアジパミド)等の脂環式ポリアミド;さらにラクタム成分や、4,4’-ジフェニルメタン-ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等のポリアミドが挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Further, as the polyamide, specifically, aliphatic polyamide such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, copolymer of nylon 6 and nylon 66; terephthalic acid and / or isophthalic acid Hexamethylenediamine-isophthalic acid-terephthalic acid copolymer polyamide such as nylon 6I, nylon 6T, nylon 6IT, nylon 6I6T (I represents isophthalic acid, T represents terephthalic acid) containing structural units derived from, polyamide MXD6 (polymetallic Polyamides containing aromatics such as silylene adipamide); alicyclic polyamides such as polyamide PACM6 (polybis(4-aminocyclohexyl)methane adipamide); Copolymerized polyamides, polyesteramide copolymers and polyetheresteramide copolymers which are copolymers of copolymerized polyamides with polyesters or polyalkylene ether glycols; and polyamides such as these copolymers. These polyamides may be used singly or in combination of two or more.
 樹脂フィルム層2は、ポリエステルフィルム、ポリアミドフィルム、及びポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエステルフィルム、及び延伸ポリアミドフィルム、及び延伸ポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエチレンテレフタレートフィルム、延伸ポリブチレンテレフタレートフィルム、延伸ナイロンフィルム、延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリブチレンテレフタレートフィルム、二軸延伸ナイロンフィルム、二軸延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましい。 The resin film layer 2 preferably includes at least one of a polyester film, a polyamide film, and a polyolefin film, and preferably includes at least one of a stretched polyester film, a stretched polyamide film, and a stretched polyolefin film. It is more preferable to include at least one of an oriented polyethylene terephthalate film, an oriented polybutylene terephthalate film, an oriented nylon film, and an oriented polypropylene film, and a biaxially oriented polyethylene terephthalate film, a biaxially oriented polybutylene terephthalate film, and a biaxially oriented nylon film. , biaxially oriented polypropylene film.
 樹脂フィルム層2は、単層であってもよいし、2層以上により構成されていてもよい。樹脂フィルム層2が2層以上により構成されている場合、樹脂フィルム層2は、樹脂フィルムを接着剤などで積層させた積層体であってもよいし、樹脂を共押出しして2層以上とした樹脂フィルムの積層体であってもよい。また、樹脂を共押出しして2層以上とした樹脂フィルムの積層体を、未延伸のまま樹脂フィルム層2としてもよいし、一軸延伸または二軸延伸して樹脂フィルム層2としてもよい。 The resin film layer 2 may be a single layer, or may be composed of two or more layers. When the resin film layer 2 is composed of two or more layers, the resin film layer 2 may be a laminate obtained by laminating resin films with an adhesive or the like, or may be formed by co-extrusion of resin to form two or more layers. It may also be a laminate of resin films. A laminate of two or more resin films formed by coextrusion of resin may be used as the resin film layer 2 without being stretched, or may be formed as the resin film layer 2 by being uniaxially or biaxially stretched.
 樹脂フィルム層2において、2層以上の樹脂フィルムの積層体の具体例としては、ポリエステルフィルムとナイロンフィルムとの積層体、2層以上のナイロンフィルムの積層体、2層以上のポリエステルフィルムの積層体などが挙げられ、好ましくは、延伸ナイロンフィルムと延伸ポリエステルフィルムとの積層体、2層以上の延伸ナイロンフィルムの積層体、2層以上の延伸ポリエステルフィルムの積層体が好ましい。例えば、樹脂フィルム層2が2層の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムとポリエステル樹脂フィルムの積層体、ポリアミド樹脂フィルムとポリアミド樹脂フィルムの積層体、またはポリエステル樹脂フィルムとポリアミド樹脂フィルムの積層体が好ましく、ポリエチレンテレフタレートフィルムとポリエチレンテレフタレートフィルムの積層体、ナイロンフィルムとナイロンフィルムの積層体、またはポリエチレンテレフタレートフィルムとナイロンフィルムの積層体がより好ましい。また、ポリエステル樹脂は、例えば電解液が表面に付着した際に変色し難いことなどから、樹脂フィルム層2が2層以上の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムが樹脂フィルム層2の最外層に位置することが好ましい。 In the resin film layer 2, specific examples of a laminate of two or more layers of resin films include a laminate of a polyester film and a nylon film, a laminate of nylon films of two or more layers, and a laminate of polyester films of two or more layers. etc., preferably a laminate of a stretched nylon film and a stretched polyester film, a laminate of two or more layers of stretched nylon films, and a laminate of two or more layers of stretched polyester films. For example, when the resin film layer 2 is a laminate of two resin films, a laminate of polyester resin films and polyester resin films, a laminate of polyamide resin films and polyamide resin films, or a laminate of polyester resin films and polyamide resin films. A laminate is preferred, and a laminate of polyethylene terephthalate film and polyethylene terephthalate film, a laminate of nylon film and nylon film, or a laminate of polyethylene terephthalate film and nylon film is more preferred. In addition, the polyester resin is resistant to discoloration when, for example, an electrolytic solution adheres to its surface. It is preferably located in the outermost layer.
 樹脂フィルム層2が、2層以上の樹脂フィルムの積層体である場合、2層以上の樹脂フィルムは、接着剤を介して積層させてもよい。好ましい接着剤については、前述の接着剤層5で例示した接着剤と同様のものが挙げられる。なお、2層以上の樹脂フィルムを積層させる方法としては、特に制限されず、公知方法が採用でき、例えばドライラミネート法、サンドイッチラミネート法、押出ラミネート法、サーマルラミネート法などが挙げられ、好ましくはドライラミネート法が挙げられる。ドライラミネート法により積層させる場合には、接着剤としてポリウレタン接着剤を用いることが好ましい。このとき、接着剤の厚みとしては、例えば2~5μm程度が挙げられる。また、樹脂フィルムにアンカーコート層を形成し積層させても良い。アンカーコート層は、後述の接着剤層6で例示する接着剤と同様のものが挙げられる。このとき、アンカーコート層の厚みとしては、例えば0.01~1.0μm程度が挙げられる。 When the resin film layer 2 is a laminate of two or more layers of resin films, the two or more layers of resin films may be laminated via an adhesive. Preferred adhesives are the same as those exemplified for the adhesive layer 5 described above. The method for laminating two or more layers of resin films is not particularly limited, and known methods can be employed. Examples thereof include dry lamination, sandwich lamination, extrusion lamination, thermal lamination, and the like. A lamination method is mentioned. When laminating by dry lamination, it is preferable to use a polyurethane adhesive as the adhesive. At this time, the thickness of the adhesive is, for example, about 2 to 5 μm. Alternatively, an anchor coat layer may be formed on the resin film and laminated. The anchor coat layer includes the same adhesives as those exemplified for the adhesive layer 6 described later. At this time, the thickness of the anchor coat layer is, for example, about 0.01 to 1.0 μm.
 また、樹脂フィルム層2の表面及び内部の少なくとも一方には、難燃剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤、耐電防止剤等の添加剤が存在していてもよい。添加剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Additives such as flame retardants, antiblocking agents, antioxidants, light stabilizers, tackifiers, and antistatic agents may be present on at least one of the surface and the interior of the resin film layer 2 . Only one type of additive may be used, or two or more types may be mixed and used.
 樹脂フィルム層2の厚みについては、基材としての機能を発揮すれば特に制限されないが、例えば、3~50μm程度、好ましくは10~35μm程度が挙げられる。樹脂フィルム層2が、2層以上の樹脂フィルムの積層体である場合、各層を構成している樹脂フィルムの厚みとしては、それぞれ、好ましくは2~25μm程度が挙げられる。また、樹脂フィルム層2が、外側から順に、二軸延伸ポリエステル樹脂層、接着層、二軸延伸ポリアミド樹脂層からなる多層構造である場合には、樹脂フィルム層2の厚みとしては、25~35μm程度、35~45μm程度が挙げられる。 The thickness of the resin film layer 2 is not particularly limited as long as it functions as a base material, but it is, for example, about 3 to 50 μm, preferably about 10 to 35 μm. When the resin film layer 2 is a laminate of two or more resin films, the thickness of each resin film constituting each layer is preferably about 2 to 25 μm. Further, when the resin film layer 2 has a multilayer structure consisting of a biaxially stretched polyester resin layer, an adhesive layer, and a biaxially stretched polyamide resin layer in order from the outside, the thickness of the resin film layer 2 is 25 to 35 μm. about 35 to 45 μm.
[接着剤層6]
 本開示の蓄電デバイス用外装材において、接着剤層6は、樹脂フィルム層2とバリア層3との接着性を高めることを目的として、必要に応じて、これらの間に設けられる層である。
[Adhesive layer 6]
In the power storage device exterior material of the present disclosure, the adhesive layer 6 is a layer provided between the resin film layer 2 and the barrier layer 3 as necessary for the purpose of enhancing the adhesiveness between them.
 接着剤層6は、樹脂フィルム層2とバリア層3とを接着可能である接着剤によって形成される。接着剤層6の形成に使用される接着剤は限定されないが、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。また、2液硬化型接着剤(2液性接着剤)であってもよく、1液硬化型接着剤(1液性接着剤)であってもよく、硬化反応を伴わない樹脂でもよい。また、接着剤層6は単層であってもよいし、多層であってもよい。 The adhesive layer 6 is made of an adhesive capable of bonding the resin film layer 2 and the barrier layer 3 together. The adhesive used to form the adhesive layer 6 is not limited, but may be any of a chemical reaction type, a solvent volatilization type, a hot melt type, a hot pressure type, and the like. Further, it may be a two-liquid curing adhesive (two-liquid adhesive), a one-liquid curing adhesive (one-liquid adhesive), or a resin that does not involve a curing reaction. Further, the adhesive layer 6 may be a single layer or multiple layers.
 接着剤層6の形成に使用される接着剤に含まれる接着成分としては、接着剤層5で例示した接着成分と同じものが例示される。 Examples of the adhesive component contained in the adhesive used to form the adhesive layer 6 are the same as those exemplified for the adhesive layer 5 .
 また、接着剤層6は、接着性を阻害しない限り他成分の添加が許容され、着色剤や熱可塑性エラストマー、粘着付与剤、フィラーなどを含有してもよい。接着剤層6が着色剤を含んでいることにより、蓄電デバイス用外装材を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 In addition, the adhesive layer 6 may contain other components as long as they do not interfere with adhesion, and may contain colorants, thermoplastic elastomers, tackifiers, fillers, and the like. Since the adhesive layer 6 contains a coloring agent, the power storage device exterior material can be colored. Known substances such as pigments and dyes can be used as the colorant. In addition, only one type of colorant may be used, or two or more types may be mixed and used.
 顔料の種類は、接着剤層6の接着性を損なわない範囲であれば、特に限定されない。有機顔料としては、接着剤層で例示したものと同じものが例示される。着色剤の中でも、例えば蓄電デバイス用外装材の外観を黒色とするためには、カーボンブラックが好ましい。顔料の平均粒子径としては、特に制限されず、例えば、0.05~5μm程度、好ましくは0.08~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。 The type of pigment is not particularly limited as long as it does not impair the adhesiveness of the adhesive layer 6. Examples of the organic pigment are the same as those exemplified for the adhesive layer. Among the coloring agents, carbon black is preferable, for example, in order to make the external appearance of the exterior material for an electric storage device black. The average particle size of the pigment is not particularly limited, and is, for example, approximately 0.05 to 5 μm, preferably approximately 0.08 to 2 μm. The average particle size of the pigment is the median size measured with a laser diffraction/scattering particle size distribution analyzer.
 接着剤層6における顔料の含有量としては、蓄電デバイス用外装材が着色されれば特に制限されず、例えば5~60質量%程度、好ましくは10~40質量%が挙げられる。 The content of the pigment in the adhesive layer 6 is not particularly limited as long as the power storage device exterior material is colored, and is, for example, about 5 to 60% by mass, preferably 10 to 40% by mass.
 接着剤層6の厚みは、樹脂フィルム層2とバリア層3とを接着できれば、特に制限されないが、例えば、約1μm以上、約2μm以上である。また、接着剤層6の厚みは、例えば、約10μm以下、約5μm以下である。また、接着剤層6の厚みの好ましい範囲については、1~10μm程度、1~5μm程度、2~10μm程度、2~5μm程度が挙げられる。 The thickness of the adhesive layer 6 is not particularly limited as long as the resin film layer 2 and the barrier layer 3 can be adhered, but is, for example, about 1 μm or more, or about 2 μm or more. Also, the thickness of the adhesive layer 6 is, for example, about 10 μm or less, or about 5 μm or less. Moreover, the preferable range of the thickness of the adhesive layer 6 is about 1 to 10 μm, about 1 to 5 μm, about 2 to 10 μm, and about 2 to 5 μm.
[バリア層3]
 蓄電デバイス用外装材において、バリア層3は、少なくとも水分の浸入を抑止する層である。
[Barrier layer 3]
In the power storage device exterior material, the barrier layer 3 is a layer that at least prevents permeation of moisture.
 バリア層3としては、例えば、バリア性を有する金属箔、蒸着膜、樹脂層などが挙げられる。蒸着膜としては金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜などが挙げられ、樹脂層としてはポリ塩化ビニリデン、クロロトリフルオロエチレン(CTFE)を主成分としたポリマー類やテトラフルオロエチレン(TFE)を主成分としたポリマー類やフルオロアルキル基を有するポリマー、およびフルオロアルキル単位を主成分としたポリマー類などのフッ素含有樹脂、エチレンビニルアルコール共重合体などが挙げられる。また、バリア層3としては、これらの蒸着膜及び樹脂層の少なくとも1層を設けた樹脂フィルムなども挙げられる。バリア層3は、複数層設けてもよい。バリア層3は、金属材料により構成された層を含むことが好ましい。バリア層3を構成する金属材料としては、具体的には、アルミニウム合金、ステンレス鋼、チタン鋼、鋼板などが挙げられ、金属箔として用いる場合は、アルミニウム合金箔及びステンレス鋼箔の少なくとも一方を含むことが好ましい。 Examples of the barrier layer 3 include a metal foil, vapor deposition film, and resin layer having barrier properties. Examples of vapor-deposited films include metal vapor-deposited films, inorganic oxide vapor-deposited films, and carbon-containing inorganic oxide vapor-deposited films. Polymers containing fluoroethylene (TFE) as a main component, polymers having a fluoroalkyl group, fluorine-containing resins such as polymers containing fluoroalkyl units as a main component, and ethylene vinyl alcohol copolymers. The barrier layer 3 may also include a resin film provided with at least one of these deposited films and resin layers. A plurality of barrier layers 3 may be provided. The barrier layer 3 preferably includes a layer made of a metal material. Specific examples of the metal material constituting the barrier layer 3 include aluminum alloys, stainless steels, titanium steels, and steel plates. When used as metal foils, at least one of aluminum alloy foils and stainless steel foils is included. is preferred.
 アルミニウム合金箔は、蓄電デバイス用外装材の落下衝撃性を向上させる観点から、例えば、焼きなまし処理済みのアルミニウム合金などにより構成された軟質アルミニウム合金箔であることがより好ましく、鉄を含むアルミニウム合金箔であることが好ましい。鉄を含むアルミニウム合金箔(100質量%)において、鉄の含有量は、0.1~9.0質量%であることが好ましく、0.5~2.0質量%であることがより好ましい。鉄の含有量が9.0質量%以下であることにより、より柔軟性に優れた蓄電デバイス用外装材を得ることができる。軟質アルミニウム合金箔としては、例えば、JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、又はJIS H4000:2014 A8079P-Oで規定される組成を備えるアルミニウム合金箔が挙げられる。また必要に応じて、ケイ素、マグネシウム、銅、マンガンなどが添加されていてもよい。また軟質化は焼鈍処理などで行うことができる。 The aluminum alloy foil is more preferably a soft aluminum alloy foil made of, for example, an annealed aluminum alloy or the like, from the viewpoint of improving the drop impact resistance of the exterior material for an electricity storage device, and an aluminum alloy foil containing iron. is preferred. In the aluminum alloy foil containing iron (100% by mass), the iron content is preferably 0.1 to 9.0% by mass, more preferably 0.5 to 2.0% by mass. When the iron content is 9.0% by mass or less, it is possible to obtain an exterior material for an electricity storage device that is more excellent in flexibility. As the soft aluminum alloy foil, for example, an aluminum alloy having a composition specified by JIS H4160: 1994 A8021H-O, JIS H4160: 1994 A8079H-O, JIS H4000: 2014 A8021P-O, or JIS H4000: 2014 A8079P-O foil. Moreover, silicon, magnesium, copper, manganese, etc. may be added as needed. Moreover, softening can be performed by annealing treatment or the like.
 また、ステンレス鋼箔としては、オーステナイト系、フェライト系、オーステナイト・フェライト系、マルテンサイト系、析出硬化系のステンレス鋼箔などが挙げられる。さらに落下衝撃性に優れた蓄電デバイス用外装材を提供する観点から、ステンレス鋼箔は、オーステナイト系のステンレス鋼により構成されていることが好ましい。 In addition, examples of stainless steel foils include austenitic, ferritic, austenitic/ferritic, martensitic, and precipitation hardened stainless steel foils. Furthermore, from the viewpoint of providing an exterior material for an electricity storage device having excellent drop impact resistance, the stainless steel foil is preferably made of austenitic stainless steel.
 ステンレス鋼箔を構成するオーステナイト系のステンレス鋼の具体例としては、SUS304、SUS301、SUS316Lなどが挙げられ、これら中でも、SUS304が特に好ましい。 Specific examples of the austenitic stainless steel that constitutes the stainless steel foil include SUS304, SUS301, SUS316L, etc. Among these, SUS304 is particularly preferable.
 バリア層3の厚みは、少なくとも水分の浸入を抑止するバリア層としての機能を発揮すればよく、40μm以上であれば特に制限されない。バリア層の厚みは、好ましくは約45μm以上、より好ましくは約50μm以上、さらに好ましくは約55μm以上、であり、また、好ましくは約200μm以下、より好ましくは約150μm以下、さらに好ましくは約100μm以下、さらに好ましくは約65μm以下であり、好ましい範囲としては、40~200μm程度、40~150μm程度、40~100μm程度、40~65μm程度、45~200μm程度、45~150μm程度、45~100μm程度、45~65μm程度、50~200μm程度、50~150μm程度、50~100μm程度、50~65μm程度、55~200μm程度、55~150μm程度、55~100μm程度、55~65μm程度が挙げられる。 The thickness of the barrier layer 3 is not particularly limited as long as it exhibits at least a function as a barrier layer that suppresses penetration of moisture, and is 40 μm or more. The thickness of the barrier layer is preferably about 45 μm or more, more preferably about 50 μm or more, still more preferably about 55 μm or more, and is preferably about 200 μm or less, more preferably about 150 μm or less, and still more preferably about 100 μm or less. , more preferably about 65 μm or less, and preferable ranges are about 40 to 200 μm, about 40 to 150 μm, about 40 to 100 μm, about 40 to 65 μm, about 45 to 200 μm, about 45 to 150 μm, about 45 to 100 μm, About 45 to 65 μm, about 50 to 200 μm, about 50 to 150 μm, about 50 to 100 μm, about 50 to 65 μm, about 55 to 200 μm, about 55 to 150 μm, about 55 to 100 μm, and about 55 to 65 μm.
 また、バリア層3が金属箔の場合は、溶解や腐食の防止などのために、少なくとも樹脂フィルム層と反対側の面に耐腐食性皮膜を備えていることが好ましい。バリア層3は、耐腐食性皮膜を両面に備えていてもよい。ここで、耐腐食性皮膜とは、例えば、ベーマイト処理などの熱水変成処理、化成処理、陽極酸化処理、ニッケルやクロムなどのメッキ処理、コーティング剤を塗工する腐食防止処理をバリア層の表面に行い、バリア層に耐腐食性(例えば耐酸性、耐アルカリ性など)を備えさせる薄膜をいう。耐腐食性皮膜は、具体的には、バリア層の耐酸性を向上させる皮膜(耐酸性皮膜)、バリア層の耐アルカリ性を向上させる皮膜(耐アルカリ性皮膜)などを意味している。耐腐食性皮膜を形成する処理としては、1種類を行ってもよいし、2種類以上を組み合わせて行ってもよい。また、1層だけではなく多層化することもできる。さらに、これらの処理のうち、熱水変成処理及び陽極酸化処理は、処理剤によって金属箔表面を溶解させ、耐腐食性に優れる金属化合物を形成させる処理である。なお、これらの処理は、化成処理の定義に包含される場合もある。また、バリア層3が耐腐食性皮膜を備えている場合、耐腐食性皮膜を含めてバリア層3とする。 Also, when the barrier layer 3 is a metal foil, it is preferable that at least the surface opposite to the resin film layer is provided with a corrosion-resistant film in order to prevent dissolution and corrosion. The barrier layer 3 may be provided with a corrosion resistant coating on both sides. Here, the corrosion-resistant film includes, for example, hydrothermal transformation treatment such as boehmite treatment, chemical conversion treatment, anodizing treatment, plating treatment such as nickel and chromium, and corrosion prevention treatment such as applying a coating agent to the surface of the barrier layer. It is a thin film that provides corrosion resistance (for example, acid resistance, alkali resistance, etc.) to the barrier layer. The corrosion-resistant film specifically means a film that improves the acid resistance of the barrier layer (acid-resistant film), a film that improves the alkali resistance of the barrier layer (alkali-resistant film), and the like. As the treatment for forming the corrosion-resistant film, one type may be performed, or two or more types may be used in combination. Also, not only one layer but also multiple layers can be used. Furthermore, among these treatments, the hydrothermal transformation treatment and the anodizing treatment are treatments in which the surface of the metal foil is dissolved with a treating agent to form a metal compound having excellent corrosion resistance. These treatments are sometimes included in the definition of chemical conversion treatment. When the barrier layer 3 has a corrosion-resistant film, the barrier layer 3 includes the corrosion-resistant film.
 耐腐食性皮膜は、バリア層(例えば、アルミニウム合金箔)と樹脂フィルム層との間のデラミネーション防止、電解質と水分とによる反応で生成するフッ化水素により、バリア層表面の溶解、腐食、特にバリア層がアルミニウム合金箔である場合にバリア層表面に存在する酸化アルミニウムが溶解、腐食することを防止し、かつ、バリア層表面の接着性(濡れ性)を向上させ、ヒートシール時の樹脂フィルム層とバリア層とのデラミネーション防止、樹脂フィルム層とバリア層とのデラミネーション防止の効果を示す。 The corrosion-resistant coating prevents delamination between the barrier layer (e.g., aluminum alloy foil) and the resin film layer, and prevents dissolution and corrosion of the barrier layer surface by the hydrogen fluoride generated by the reaction between the electrolyte and moisture. When the barrier layer is an aluminum alloy foil, it prevents the aluminum oxide present on the barrier layer surface from dissolving and corroding, and improves the adhesiveness (wettability) of the barrier layer surface to form a resin film at the time of heat sealing. The effect of preventing delamination between a layer and a barrier layer and preventing delamination between a resin film layer and a barrier layer is shown.
 化成処理によって形成される耐腐食性皮膜としては、種々のものが知られており、主には、リン酸塩、クロム酸塩、フッ化物、トリアジンチオール化合物、及び希土類酸化物のうち少なくとも1種を含む耐腐食性皮膜などが挙げられる。リン酸塩、クロム酸塩を用いた化成処理としては、例えば、クロム酸クロメート処理、リン酸クロメート処理、リン酸-クロム酸塩処理、クロム酸塩処理などが挙げられ、これらの処理に用いるクロム化合物としては、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロムなどが挙げられる。また、これらの処理に用いるリン化合物としては、リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸などが挙げられる。また、クロメート処理としてはエッチングクロメート処理、電解クロメート処理、塗布型クロメート処理などが挙げられ、塗布型クロメート処理が好ましい。この塗布型クロメート処理は、バリア層(例えばアルミニウム合金箔)の少なくとも内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法等の周知の処理方法で脱脂処理を行い、その後、脱脂処理面にリン酸Cr(クロム)塩、リン酸Ti(チタン)塩、リン酸Zr(ジルコニウム)塩、リン酸Zn(亜鉛)塩などのリン酸金属塩及びこれらの金属塩の混合体を主成分とする処理液、または、リン酸非金属塩及びこれらの非金属塩の混合体を主成分とする処理液、あるいは、これらと合成樹脂などとの混合物からなる処理液をロールコート法、グラビア印刷法、浸漬法等の周知の塗工法で塗工し、乾燥する処理である。処理液は例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。また、このとき用いる樹脂成分としては、フェノール系樹脂やアクリル系樹脂などの高分子などが挙げられ、下記一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体を用いたクロメート処理などが挙げられる。なお、当該アミノ化フェノール重合体において、下記一般式(1)~(4)で表される繰り返し単位は、1種類単独で含まれていてもよいし、2種類以上の任意の組み合わせであってもよい。アクリル系樹脂は、ポリアクリル酸、アクリル酸メタクリル酸エステル共重合体、アクリル酸マレイン酸共重合体、アクリル酸スチレン共重合体、またはこれらのナトリウム塩、アンモニウム塩、アミン塩等の誘導体であることが好ましい。特にポリアクリル酸のアンモニウム塩、ナトリウム塩、又はアミン塩等のポリアクリル酸の誘導体が好ましい。本開示において、ポリアクリル酸とは、アクリル酸の重合体を意味している。また、アクリル系樹脂は、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体であることも好ましく、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体のアンモニウム塩、ナトリウム塩、又はアミン塩であることも好ましい。アクリル系樹脂は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Various types of corrosion-resistant coatings formed by chemical conversion treatment are known, and are mainly composed of at least one of phosphates, chromates, fluorides, triazinethiol compounds, and rare earth oxides. Corrosion-resistant coatings containing Examples of chemical conversion treatments using phosphate and chromate include chromic acid chromate treatment, phosphoric acid chromate treatment, phosphoric acid-chromate treatment, and chromate treatment. Examples of compounds include chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromium acetyl acetate, chromium chloride, potassium chromium sulfate, and the like. Phosphorus compounds used for these treatments include sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid, and the like. Examples of the chromate treatment include etching chromate treatment, electrolytic chromate treatment, coating-type chromate treatment, etc., and coating-type chromate treatment is preferred. In this coating-type chromate treatment, at least the inner layer side surface of the barrier layer (for example, aluminum alloy foil) is first subjected to a well-known method such as an alkali immersion method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, an acid activation method, or the like. After degreasing by a treatment method, metal phosphate such as Cr (chromium) phosphate, Ti (titanium) phosphate, Zr (zirconium) phosphate, Zn (zinc) phosphate is applied to the degreased surface. A processing solution mainly composed of a salt and a mixture of these metal salts, a processing solution mainly composed of a non-metal phosphate salt and a mixture of these non-metal salts, or a mixture of these and a synthetic resin. This is a treatment in which a treatment liquid composed of a mixture is applied by a well-known coating method such as a roll coating method, a gravure printing method, or an immersion method, and then dried. Various solvents such as water, alcohol-based solvents, hydrocarbon-based solvents, ketone-based solvents, ester-based solvents, and ether-based solvents can be used as the treatment liquid, and water is preferred. In addition, the resin component used at this time includes polymers such as phenolic resins and acrylic resins. and the chromate treatment used. In the aminated phenol polymer, the repeating units represented by the following general formulas (1) to (4) may be contained singly or in any combination of two or more. good too. The acrylic resin is polyacrylic acid, acrylic acid methacrylic acid ester copolymer, acrylic acid maleic acid copolymer, acrylic acid styrene copolymer, or derivatives thereof such as sodium salts, ammonium salts, and amine salts. is preferred. In particular, derivatives of polyacrylic acid such as ammonium salt, sodium salt or amine salt of polyacrylic acid are preferred. In the present disclosure, polyacrylic acid means a polymer of acrylic acid. Further, the acrylic resin is preferably a copolymer of acrylic acid and dicarboxylic acid or dicarboxylic anhydride, and the ammonium salt, sodium salt, Alternatively, it is also preferably an amine salt. Only one type of acrylic resin may be used, or two or more types may be mixed and used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(1)~(4)中、Xは、水素原子、ヒドロキシ基、アルキル基、ヒドロキシアルキル基、アリル基またはベンジル基を示す。また、R1及びR2は、それぞれ同一または異なって、ヒドロキシ基、アルキル基、またはヒドロキシアルキル基を示す。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などの炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。また、X、R1及びR2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基などのヒドロキシ基が1個置換された炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基及びヒドロキシアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。一般式(1)~(4)において、Xは、水素原子、ヒドロキシ基またはヒドロキシアルキル基であることが好ましい。一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体の数平均分子量は、例えば、500~100万程度であることが好ましく、1000~2万程度であることがより好ましい。アミノ化フェノール重合体は、例えば、フェノール化合物又はナフトール化合物とホルムアルデヒドとを重縮合して上記一般式(1)又は一般式(3)で表される繰返し単位からなる重合体を製造し、次いでホルムアルデヒド及びアミン(R12NH)を用いて官能基(-CH2NR12)を上記で得られた重合体に導入することにより、製造される。アミノ化フェノール重合体は、1種単独で又は2種以上混合して使用される。 In general formulas (1) to (4), X represents a hydrogen atom, hydroxy group, alkyl group, hydroxyalkyl group, allyl group or benzyl group. R 1 and R 2 are the same or different and represent a hydroxy group, an alkyl group or a hydroxyalkyl group. Examples of alkyl groups represented by X, R 1 and R 2 in general formulas (1) to (4) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, A linear or branched alkyl group having 1 to 4 carbon atoms such as a tert-butyl group can be mentioned. Examples of hydroxyalkyl groups represented by X, R 1 and R 2 include hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 1-hydroxypropyl group, 2-hydroxypropyl group, 3- A straight or branched chain having 1 to 4 carbon atoms substituted with one hydroxy group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group and 4-hydroxybutyl group An alkyl group is mentioned. In general formulas (1) to (4), the alkyl groups and hydroxyalkyl groups represented by X, R 1 and R 2 may be the same or different. In general formulas (1) to (4), X is preferably a hydrogen atom, a hydroxy group or a hydroxyalkyl group. The number average molecular weight of the aminated phenol polymer having repeating units represented by formulas (1) to (4) is, for example, preferably about 500 to 1,000,000, more preferably about 1,000 to 20,000. more preferred. The aminated phenol polymer is produced, for example, by polycondensing a phenol compound or naphthol compound and formaldehyde to produce a polymer comprising repeating units represented by the general formula (1) or general formula (3), followed by formaldehyde. and an amine (R 1 R 2 NH) to introduce a functional group (--CH 2 NR 1 R 2 ) into the polymer obtained above. An aminated phenol polymer is used individually by 1 type or in mixture of 2 or more types.
 耐腐食性皮膜の他の例としては、希土類元素酸化物ゾル、アニオン性ポリマー、カチオン性ポリマーからなる群から選ばれる少なくとも1種を含有するコーティング剤を塗工するコーティングタイプの腐食防止処理によって形成される薄膜が挙げられる。コーティング剤には、さらにリン酸またはリン酸塩、ポリマーを架橋させる架橋剤を含んでもよい。希土類元素酸化物ゾルには、液体分散媒中に希土類元素酸化物の微粒子(例えば、平均粒径100nm以下の粒子)が分散されている。希土類元素酸化物としては、酸化セリウム、酸化イットリウム、酸化ネオジウム、酸化ランタン等が挙げられ、密着性をより向上させる観点から酸化セリウムが好ましい。耐腐食性皮膜に含まれる希土類元素酸化物は1種を単独で又は2種以上を組み合わせて用いることができる。希土類元素酸化物ゾルの液体分散媒としては、例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフト重合させた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノ化フェノールなどが好ましい。また、アニオン性ポリマーとしては、ポリ(メタ)アクリル酸またはその塩、あるいは(メタ)アクリル酸またはその塩を主成分とする共重合体であることが好ましい。また、架橋剤が、イソシアネート基、グリシジル基、カルボキシル基、オキサゾリン基のいずれかの官能基を有する化合物とシランカップリング剤よりなる群から選ばれる少なくとも1種であることが好ましい。また、前記リン酸またはリン酸塩が、縮合リン酸または縮合リン酸塩であることが好ましい。 Another example of the corrosion-resistant film is formed by a coating-type corrosion prevention treatment in which a coating agent containing at least one selected from the group consisting of rare earth element oxide sol, anionic polymer, and cationic polymer is applied. A thin film that is The coating agent may further contain phosphoric acid or a phosphate, a cross-linking agent for cross-linking the polymer. In the rare earth element oxide sol, rare earth element oxide fine particles (for example, particles having an average particle size of 100 nm or less) are dispersed in a liquid dispersion medium. Examples of rare earth element oxides include cerium oxide, yttrium oxide, neodymium oxide, and lanthanum oxide, and cerium oxide is preferable from the viewpoint of further improving adhesion. The rare earth element oxides contained in the corrosion-resistant coating can be used singly or in combination of two or more. As the liquid dispersion medium for the rare earth element oxide sol, various solvents such as water, alcohol solvents, hydrocarbon solvents, ketone solvents, ester solvents, and ether solvents can be used, with water being preferred. Examples of the cationic polymer include polyethyleneimine, an ionic polymer complex composed of a polymer containing polyethyleneimine and carboxylic acid, a primary amine-grafted acrylic resin obtained by graft-polymerizing a primary amine to an acrylic backbone, polyallylamine, or a derivative thereof. , aminated phenols and the like are preferred. The anionic polymer is preferably poly(meth)acrylic acid or a salt thereof, or a copolymer containing (meth)acrylic acid or a salt thereof as a main component. Moreover, the cross-linking agent is preferably at least one selected from the group consisting of a compound having a functional group such as an isocyanate group, a glycidyl group, a carboxyl group, or an oxazoline group, and a silane coupling agent. Further, the phosphoric acid or phosphate is preferably condensed phosphoric acid or condensed phosphate.
 耐腐食性皮膜の一例としては、リン酸中に、酸化アルミニウム、酸化チタン、酸化セリウム、酸化スズなどの金属酸化物や硫酸バリウムの微粒子を分散させたものをバリア層の表面に塗布し、150℃以上で焼付け処理を行うことにより形成したものが挙げられる。 As an example of the corrosion-resistant film, fine particles of metal oxides such as aluminum oxide, titanium oxide, cerium oxide, and tin oxide, and barium sulfate are dispersed in phosphoric acid, which is applied to the surface of the barrier layer. C. or more, and those formed by performing baking processing are mentioned.
 耐腐食性皮膜は、必要に応じて、さらにカチオン性ポリマー及びアニオン性ポリマーの少なくとも一方を積層した積層構造としてもよい。カチオン性ポリマー、アニオン性ポリマーとしては、上述したものが挙げられる。 The corrosion-resistant film may, if necessary, have a laminated structure in which at least one of a cationic polymer and an anionic polymer is further laminated. Examples of cationic polymers and anionic polymers include those described above.
 なお、耐腐食性皮膜の組成の分析は、例えば、飛行時間型2次イオン質量分析法を用いて行うことができる。 The analysis of the composition of the corrosion-resistant coating can be performed using, for example, time-of-flight secondary ion mass spectrometry.
 化成処理においてバリア層3の表面に形成させる耐腐食性皮膜の量については、特に制限されないが、例えば、塗布型クロメート処理を行う場合であれば、バリア層3の表面1m2当たり、クロム酸化合物がクロム換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、リン化合物がリン換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、及びアミノ化フェノール重合体が例えば1.0~200mg程度、好ましくは5.0~150mg程度の割合で含有されていることが望ましい。 The amount of the corrosion-resistant film formed on the surface of the barrier layer 3 in the chemical conversion treatment is not particularly limited. is about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of chromium, the phosphorus compound is about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of phosphorus, and aminated phenol polymer is contained in a ratio of, for example, about 1.0 to 200 mg, preferably about 5.0 to 150 mg.
 耐腐食性皮膜の厚みとしては、特に制限されないが、皮膜の凝集力や、バリア層や熱融着性樹脂層との密着力の観点から、好ましくは1nm~20μm程度、より好ましくは1nm~100nm程度、さらに好ましくは1nm~50nm程度が挙げられる。なお、耐腐食性皮膜の厚みは、透過電子顕微鏡による観察、または、透過電子顕微鏡による観察と、エネルギー分散型X線分光法もしくは電子線エネルギー損失分光法との組み合わせによって測定することができる。飛行時間型2次イオン質量分析法を用いた耐腐食性皮膜の組成の分析により、例えば、CeとPとOからなる2次イオン(例えば、Ce2PO4 +、CePO4 -などの少なくとも1種)や、例えば、CrとPとOからなる2次イオン(例えば、CrPO2 +、CrPO4 -などの少なくとも1種)に由来するピークが検出される。 The thickness of the corrosion-resistant coating is not particularly limited, but is preferably about 1 nm to 20 μm, more preferably 1 nm to 100 nm, from the viewpoint of cohesion of the coating and adhesion to the barrier layer and the heat-sealable resin layer. about 1 nm to 50 nm, more preferably about 1 nm to 50 nm. The thickness of the corrosion-resistant film can be measured by observation with a transmission electron microscope, or by a combination of observation with a transmission electron microscope and energy dispersive X-ray spectroscopy or electron beam energy loss spectroscopy. By analysis of the composition of the corrosion-resistant coating using time-of-flight secondary ion mass spectrometry, for example, secondary ions composed of Ce, P and O (for example, at least one of Ce 2 PO 4 + and CePO 4 species) and, for example, secondary ions composed of Cr, P, and O (eg, at least one of CrPO 2 + and CrPO 4 ) are detected.
 化成処理は、耐腐食性皮膜の形成に使用される化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法などによって、バリア層の表面に塗布した後に、バリア層の温度が70~200℃程度になるように加熱することにより行われる。また、バリア層に化成処理を施す前に、予めバリア層を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法などによる脱脂処理に供してもよい。このように脱脂処理を行うことにより、バリア層の表面の化成処理をより効率的に行うことが可能となる。また、脱脂処理にフッ素含有化合物を無機酸で溶解させた酸脱脂剤を用いることで、金属箔の脱脂効果だけでなく不動態である金属のフッ化物を形成させることが可能であり、このような場合には脱脂処理だけを行ってもよい。 Chemical conversion treatment involves applying a solution containing a compound used to form a corrosion-resistant film to the surface of the barrier layer by a bar coating method, roll coating method, gravure coating method, immersion method, etc. is carried out by heating so that the temperature is about 70 to 200°C. In addition, before the barrier layer is subjected to the chemical conversion treatment, the barrier layer may be previously subjected to a degreasing treatment by an alkali immersion method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or the like. By performing the degreasing treatment in this way, it becomes possible to perform the chemical conversion treatment on the surface of the barrier layer more efficiently. In addition, by using an acid degreasing agent obtained by dissolving a fluorine-containing compound in an inorganic acid for degreasing treatment, it is possible to form not only the degreasing effect of the metal foil but also the passive metal fluoride. In such cases, only degreasing treatment may be performed.
[熱融着性樹脂層4]
 本開示の蓄電デバイス用外装材において、熱融着性樹脂層4は、最内層に該当し、蓄電デバイスの組み立て時に熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮する層(シーラント層)である。
[Heat-fusible resin layer 4]
In the power storage device exterior material of the present disclosure, the heat-fusible resin layer 4 corresponds to the innermost layer, and has the function of sealing the power storage device element by heat-sealing the heat-fusible resin layers to each other when assembling the power storage device. It is a layer (sealant layer) that exhibits
 熱融着性樹脂層4を構成している樹脂については、熱融着可能であることを限度として特に制限されないが、ポリオレフィン、酸変性ポリオレフィンなどのポリオレフィン骨格を含む樹脂が好ましい。熱融着性樹脂層4を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能である。また、熱融着性樹脂層4を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。熱融着性樹脂層4が無水マレイン酸変性ポリオレフィンより構成された層である場合、赤外分光法にて測定すると、無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 The resin constituting the heat-fusible resin layer 4 is not particularly limited as long as it is heat-fusible, but resins containing polyolefin skeletons such as polyolefins and acid-modified polyolefins are preferable. The inclusion of a polyolefin skeleton in the resin constituting the heat-fusible resin layer 4 can be analyzed by, for example, infrared spectroscopy, gas chromatography-mass spectrometry, or the like. Further, when the resin constituting the heat-fusible resin layer 4 is analyzed by infrared spectroscopy, it is preferable that a peak derived from maleic anhydride is detected. For example, when maleic anhydride-modified polyolefin is measured by infrared spectroscopy, peaks derived from maleic anhydride are detected near wavenumbers of 1760 cm −1 and 1780 cm −1 . When the heat-fusible resin layer 4 is a layer composed of maleic anhydride-modified polyolefin, a peak derived from maleic anhydride is detected when measured by infrared spectroscopy. However, if the degree of acid denaturation is low, the peak may be too small to be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
 ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;エチレン-αオレフィン共重合体;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等のポリプロピレン;プロピレン-αオレフィン共重合体;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらの中でも、ポリプロピレンが好ましい。共重合体である場合のポリオレフィン樹脂は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。これらポリオレフィン系樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。 Specific examples of polyolefins include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; ethylene-α-olefin copolymers; block copolymers of ethylene), random copolymers of polypropylene (for example, random copolymers of propylene and ethylene); propylene-α-olefin copolymers; ethylene-butene-propylene terpolymers; Among these, polypropylene is preferred. When the polyolefin resin is a copolymer, it may be a block copolymer or a random copolymer. These polyolefin-based resins may be used alone or in combination of two or more.
 また、ポリオレフィンは、環状ポリオレフィンであってもよい。環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン等が挙げられる。また、環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。 Also, the polyolefin may be a cyclic polyolefin. A cyclic polyolefin is a copolymer of an olefin and a cyclic monomer. Examples of the olefin, which is a constituent monomer of the cyclic polyolefin, include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. be done. Examples of cyclic monomers constituting cyclic polyolefins include cyclic alkenes such as norbornene; cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene and norbornadiene. Among these, cyclic alkenes are preferred, and norbornene is more preferred.
 酸変性ポリオレフィンとは、ポリオレフィンを酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。酸変性されるポリオレフィンとしては、前記のポリオレフィンや、前記のポリオレフィンにアクリル酸若しくはメタクリル酸等の極性分子を共重合させた共重合体、又は、架橋ポリオレフィン等の重合体等も使用できる。また、酸変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその無水物が挙げられる。 Acid-modified polyolefin is a polymer modified by block polymerization or graft polymerization of polyolefin with an acid component. As the acid-modified polyolefin, the above polyolefin, a copolymer obtained by copolymerizing the above polyolefin with a polar molecule such as acrylic acid or methacrylic acid, or a polymer such as crosslinked polyolefin can be used. Examples of acid components used for acid modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride and itaconic anhydride, and anhydrides thereof.
 酸変性ポリオレフィンは、酸変性環状ポリオレフィンであってもよい。酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、酸成分に代えて共重合することにより、または環状ポリオレフィンに対して酸成分をブロック重合又はグラフト重合することにより得られるポリマーである。酸変性される環状ポリオレフィンについては、前記と同様である。また、酸変性に使用される酸成分としては、前記のポリオレフィンの変性に使用される酸成分と同様である。 The acid-modified polyolefin may be an acid-modified cyclic polyolefin. Acid-modified cyclic polyolefin is a polymer obtained by copolymerizing a part of the monomers constituting the cyclic polyolefin in place of the acid component, or by block-polymerizing or graft-polymerizing the acid component to the cyclic polyolefin. be. The acid-modified cyclic polyolefin is the same as described above. The acid component used for acid modification is the same as the acid component used for modification of polyolefin.
 好ましい酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが挙げられる。 Preferable acid-modified polyolefins include polyolefins modified with carboxylic acid or its anhydride, polypropylene modified with carboxylic acid or its anhydride, maleic anhydride-modified polyolefin, and maleic anhydride-modified polypropylene.
 熱融着性樹脂層4は、1種の樹脂単独で形成してもよく、また2種以上の樹脂を組み合わせたブレンドポリマーにより形成してもよい。さらに、熱融着性樹脂層4は、1層のみで形成されていてもよいが、同一又は異なる樹脂によって2層以上で形成されていてもよい。 The heat-fusible resin layer 4 may be formed of one type of resin alone, or may be formed of a blend polymer in which two or more types of resin are combined. Furthermore, the heat-fusible resin layer 4 may be formed of only one layer, or may be formed of two or more layers of the same or different resins.
 また、熱融着性樹脂層4の厚みとしては、熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮すれば特に制限されないが、例えば約100μm以下、好ましくは約85μm以下、より好ましくは15~85μm程度が挙げられる。なお、例えば、後述の接着層7の厚みが10μm以上である場合には、熱融着性樹脂層4の厚みとしては、好ましくは約85μm以下、より好ましくは15~45μm程度が挙げられ、例えば後述の接着層7の厚みが10μm未満である場合や接着層7が設けられていない場合には、熱融着性樹脂層4の厚みとしては、好ましくは約20μm以上、より好ましくは35~85μm程度が挙げられる。 The thickness of the heat-fusible resin layer 4 is not particularly limited as long as the heat-fusible resin layers are heat-sealed to each other to exhibit the function of sealing the electricity storage device element, but for example, it is about 100 μm or less, preferably about 100 μm or less. About 85 μm or less, more preferably about 15 to 85 μm. For example, when the thickness of the adhesive layer 7 described later is 10 μm or more, the thickness of the heat-fusible resin layer 4 is preferably about 85 μm or less, more preferably about 15 to 45 μm. When the thickness of the adhesive layer 7 described later is less than 10 μm or when the adhesive layer 7 is not provided, the thickness of the heat-fusible resin layer 4 is preferably about 20 μm or more, more preferably 35 to 85 μm. degree.
[接着層7]
 本開示の蓄電デバイス用外装材において、接着層7は、バリア層3(又は耐腐食性皮膜)と熱融着性樹脂層4を強固に接着させるために、これらの間に必要に応じて設けられる層である。
[Adhesion layer 7]
In the power storage device exterior material of the present disclosure, the adhesive layer 7 is provided between the barrier layer 3 (or the corrosion-resistant film) and the heat-fusible resin layer 4 as necessary in order to firmly bond them. It is a layer that can be
 接着層7は、バリア層3と熱融着性樹脂層4とを接着可能である樹脂によって形成される。接着層7の形成に使用される樹脂としては、例えば接着剤層6で例示した接着剤と同様のものが使用できる。また、接着層7と熱融着性樹脂層4とを強固に接着する観点から、接着層7の形成に使用される樹脂としてはポリオレフィン骨格を含んでいることが好ましく、前述の熱融着性樹脂層4で例示したポリオレフィン、酸変性ポリオレフィンが挙げられる。一方、バリア層3と接着層7とを強固に接着する観点から、接着層7は酸変性ポリオレフィンを含むことが好ましい。酸変性成分としては、マレイン酸、イタコン酸、コハク酸、アジピン酸などのジカルボン酸やこれらの無水物、アクリル酸、メタクリル酸などが挙げられるが、変性のし易さや汎用性などの点から無水マレイン酸が最も好ましい。また、蓄電デバイス用外装材の耐熱性の観点からは、オレフィン成分はポリプロピレン系樹脂であることが好ましく、接着層7は無水マレイン酸変性ポリプロピレンを含むことが最も好ましい。 The adhesive layer 7 is made of a resin capable of bonding the barrier layer 3 and the heat-fusible resin layer 4 together. As the resin used for forming the adhesive layer 7, for example, the same adhesives as those exemplified for the adhesive layer 6 can be used. Further, from the viewpoint of firmly bonding the adhesive layer 7 and the heat-fusible resin layer 4, it is preferable that the resin used for forming the adhesive layer 7 contains a polyolefin skeleton. Polyolefins and acid-modified polyolefins exemplified for the resin layer 4 can be used. On the other hand, from the viewpoint of firmly bonding the barrier layer 3 and the adhesive layer 7, the adhesive layer 7 preferably contains an acid-modified polyolefin. Acid-modified components include dicarboxylic acids such as maleic acid, itaconic acid, succinic acid and adipic acid, their anhydrides, acrylic acid and methacrylic acid. Maleic acid is most preferred. Moreover, from the viewpoint of heat resistance of the exterior material for an electric storage device, the olefin component is preferably a polypropylene-based resin, and the adhesive layer 7 most preferably contains maleic anhydride-modified polypropylene.
 接着層7を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。また、接着層7を構成している樹脂が酸変性ポリオレフィンを含むことは、例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 Whether or not the resin forming the adhesive layer 7 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography mass spectrometry, or the like, and the analysis method is not particularly limited. Further, the fact that the resin constituting the adhesive layer 7 contains an acid-modified polyolefin means that, for example, when the maleic anhydride-modified polyolefin is measured by infrared spectroscopy , anhydrous A peak derived from maleic acid is detected. However, if the degree of acid denaturation is low, the peak may be too small to be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
 さらに、蓄電デバイス用外装材の耐熱性や耐内容物性などの耐久性や、厚みを薄くする観点からは、接着層7は酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物であることがより好ましい。酸変性ポリオレフィンとしては、好ましくは、前記のものが例示できる。 Furthermore, from the viewpoint of durability such as heat resistance and content resistance of the exterior material for an electric storage device and reduction in thickness, the adhesive layer 7 is preferably a cured product of a resin composition containing an acid-modified polyolefin and a curing agent. more preferred. Preferred examples of the acid-modified polyolefin include those mentioned above.
 また、接着層7は、酸変性ポリオレフィンと、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが好ましく、酸変性ポリオレフィンと、イソシアネート基を有する化合物及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが特に好ましい。また、接着層7は、ポリウレタン、ポリエステル、及びエポキシ樹脂からなる群より選択される少なくとも1種を含むことが好ましく、ポリウレタン及びエポキシ樹脂を含むことがより好ましい。ポリエステルとしては、例えばエポキシ基と無水マレイン酸基の反応により生成するエステル樹脂、オキサゾリン基と無水マレイン酸基の反応で生成するアミドエステル樹脂が好ましい。なお、接着層7に、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、エポキシ樹脂などの硬化剤の未反応物が残存している場合、未反応物の存在は、例えば、赤外分光法、ラマン分光法、飛行時間型二次イオン質量分析法(TOF-SIMS)などから選択される方法で確認することが可能である。 Further, the adhesive layer 7 is a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and a compound having an epoxy group. A cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group and a compound having an epoxy group is particularly preferred. Moreover, the adhesive layer 7 preferably contains at least one selected from the group consisting of polyurethane, polyester, and epoxy resin, and more preferably contains polyurethane and epoxy resin. As the polyester, for example, an ester resin produced by a reaction between an epoxy group and a maleic anhydride group, and an amide ester resin produced by a reaction between an oxazoline group and a maleic anhydride group are preferable. In addition, when an unreacted product of a curing agent such as a compound having an isocyanate group, a compound having an oxazoline group, or an epoxy resin remains in the adhesive layer 7, the presence of the unreacted product can be detected by, for example, infrared spectroscopy, It can be confirmed by a method selected from Raman spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS), and the like.
 また、バリア層3と接着層7との密着性をより高める観点から、接着層7は、酸素原子、複素環、C=N結合、及びC-O-C結合からなる群より選択される少なくとも1種を有する硬化剤を含む樹脂組成物の硬化物であることが好ましい。複素環を有する硬化剤としては、例えば、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。また、C=N結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、イソシアネート基を有する硬化剤などが挙げられる。また、C-O-C結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。接着層7がこれらの硬化剤を含む樹脂組成物の硬化物であることは、例えば、ガスクロマトグラフ質量分析(GCMS)、赤外分光法(IR)、飛行時間型二次イオン質量分析法(TOF-SIMS)、X線光電子分光法(XPS)などの方法で確認することができる。 In addition, from the viewpoint of further increasing the adhesion between the barrier layer 3 and the adhesive layer 7, the adhesive layer 7 contains at least It is preferably a cured product of a resin composition containing one curing agent. The curing agent having a heterocyclic ring includes, for example, a curing agent having an oxazoline group, a curing agent having an epoxy group, and the like. Moreover, the curing agent having a C═N bond includes a curing agent having an oxazoline group, a curing agent having an isocyanate group, and the like. Further, the curing agent having a C—O—C bond includes a curing agent having an oxazoline group, a curing agent having an epoxy group, and the like. The adhesive layer 7 is a cured product of a resin composition containing these curing agents, for example, gas chromatography mass spectrometry (GCMS), infrared spectroscopy (IR), time-of-flight secondary ion mass spectrometry (TOF). -SIMS) and X-ray photoelectron spectroscopy (XPS).
 イソシアネート基を有する化合物としては、特に制限されないが、バリア層3と接着層7との密着性を効果的に高める観点からは、好ましくは多官能イソシアネート化合物が挙げられる。多官能イソシアネート化合物は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート系硬化剤の具体例としては、ペンタンジイソシアネート(PDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。また、アダクト体、ビウレット体、イソシアヌレート体などが挙げられる。 The compound having an isocyanate group is not particularly limited, but from the viewpoint of effectively increasing the adhesion between the barrier layer 3 and the adhesive layer 7, polyfunctional isocyanate compounds are preferred. The polyfunctional isocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups. Specific examples of polyfunctional isocyanate curing agents include pentane diisocyanate (PDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymerization and nurate compounds, mixtures thereof, copolymers with other polymers, and the like. In addition, adducts, biurets, isocyanurates and the like are included.
 接着層7における、イソシアネート基を有する化合物の含有量としては、接着層7を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層7との密着性を効果的に高めることができる。 The content of the compound having an isocyanate group in the adhesive layer 7 is preferably in the range of 0.1 to 50% by mass, more preferably 0.5 to 40% by mass, in the resin composition constituting the adhesive layer 7. A range is more preferred. Thereby, the adhesion between the barrier layer 3 and the adhesive layer 7 can be effectively improved.
 オキサゾリン基を有する化合物は、オキサゾリン骨格を備える化合物であれば、特に限定されない。オキサゾリン基を有する化合物の具体例としては、ポリスチレン主鎖を有するもの、アクリル主鎖を有するものなどが挙げられる。また、市販品としては、例えば、日本触媒社製のエポクロスシリーズなどが挙げられる。 The compound having an oxazoline group is not particularly limited as long as it is a compound having an oxazoline skeleton. Specific examples of compounds having an oxazoline group include those having a polystyrene main chain and those having an acrylic main chain. Moreover, as a commercial item, the Epocross series by Nippon Shokubai Co., Ltd. etc. are mentioned, for example.
 接着層7における、オキサゾリン基を有する化合物の割合としては、接着層7を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層7との密着性を効果的に高めることができる。 The ratio of the compound having an oxazoline group in the adhesive layer 7 is preferably in the range of 0.1 to 50% by mass, more preferably 0.5 to 40% by mass, in the resin composition constituting the adhesive layer 7. is more preferable. Thereby, the adhesion between the barrier layer 3 and the adhesive layer 7 can be effectively improved.
 エポキシ基を有する化合物としては、例えば、エポキシ樹脂が挙げられる。エポキシ樹脂としては、分子内に存在するエポキシ基によって架橋構造を形成することが可能な樹脂であれば、特に制限されず、公知のエポキシ樹脂を用いることができる。エポキシ樹脂の重量平均分子量としては、好ましくは50~2000程度、より好ましくは100~1000程度、さらに好ましくは200~800程度が挙げられる。なお、本開示において、エポキシ樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。 Examples of compounds having an epoxy group include epoxy resins. The epoxy resin is not particularly limited as long as it is a resin capable of forming a crosslinked structure with epoxy groups present in the molecule, and known epoxy resins can be used. The weight average molecular weight of the epoxy resin is preferably about 50 to 2000, more preferably about 100 to 1000, still more preferably about 200 to 800. In the present disclosure, the weight average molecular weight of the epoxy resin is a value measured by gel permeation chromatography (GPC) using polystyrene as a standard sample.
 エポキシ樹脂の具体例としては、トリメチロールプロパンのグリシジルエーテル誘導体、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ビスフェノールF型グリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどが挙げられる。エポキシ樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 Specific examples of epoxy resins include glycidyl ether derivatives of trimethylolpropane, bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, bisphenol F-type glycidyl ether, novolac glycidyl ether, glycerin polyglycidyl ether, polyglycerin polyglycidyl ether, and the like. is mentioned. An epoxy resin may be used individually by 1 type, and may be used in combination of 2 or more types.
 接着層7における、エポキシ樹脂の割合としては、接着層7を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層7との密着性を効果的に高めることができる。 The ratio of the epoxy resin in the adhesive layer 7 is preferably in the range of 0.1 to 50% by mass, more preferably in the range of 0.5 to 40% by mass, in the resin composition constituting the adhesive layer 7. is more preferred. Thereby, the adhesion between the barrier layer 3 and the adhesive layer 7 can be effectively improved.
 ポリウレタンとしては、特に制限されず、公知のポリウレタンを使用することができる。接着層7は、例えば、2液硬化型ポリウレタンの硬化物であってもよい。 The polyurethane is not particularly limited, and known polyurethanes can be used. The adhesive layer 7 may be, for example, a cured product of two-component curing type polyurethane.
 接着層7における、ポリウレタンの割合としては、接着層7を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、電解液などのバリア層の腐食を誘発する成分が存在する雰囲気における、バリア層3と接着層7との密着性を効果的に高めることができる。 The proportion of polyurethane in the adhesive layer 7 is preferably in the range of 0.1 to 50% by mass, more preferably in the range of 0.5 to 40% by mass, in the resin composition constituting the adhesive layer 7. more preferred. As a result, the adhesion between the barrier layer 3 and the adhesive layer 7 can be effectively enhanced in an atmosphere containing a component that induces corrosion of the barrier layer, such as an electrolytic solution.
 なお、接着層7が、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ樹脂からなる群より選択される少なくとも1種と、前記酸変性ポリオレフィンとを含む樹脂組成物の硬化物である場合、酸変性ポリオレフィンが主剤として機能し、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物は、それぞれ、硬化剤として機能する。 In addition, when the adhesive layer 7 is a cured product of a resin composition containing at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and an epoxy resin, and the acid-modified polyolefin. , the acid-modified polyolefin functions as a main agent, and the compound having an isocyanate group, the compound having an oxazoline group, and the compound having an epoxy group each function as a curing agent.
 接着層7には、カルボジイミド基を有する改質剤が含まれていてもよい。 The adhesive layer 7 may contain a modifier having a carbodiimide group.
 接着層7の厚さは、好ましくは、約50μm以下、約40μm以下、約30μm以下、約20μm以下、約5μm以下である。また、接着層7の厚さは、好ましくは、約0.1μm以上、約0.5μm以上である。また、接着層7の厚さの範囲としては、好ましくは、0.1~50μm程度、0.1~40μm程度、0.1~30μm程度、0.1~20μm程度、0.1~5μm程度、0.5~50μm程度、0.5~40μm程度、0.5~30μm程度、0.5~20μm程度、0.5~5μm程度が挙げられる。より具体的には、接着剤層6で例示した接着剤や、酸変性ポリオレフィンと硬化剤との硬化物である場合は、好ましくは1~10μm程度、より好ましくは1~5μm程度が挙げられる。また、熱融着性樹脂層4で例示した樹脂を用いる場合であれば、好ましくは2~50μm程度、より好ましくは10~40μm程度が挙げられる。なお、接着層7が接着剤層6で例示した接着剤や、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物である場合、例えば、当該樹脂組成物を塗布し、加熱等により硬化させることにより、接着層7を形成することができる。また、熱融着性樹脂層4で例示した樹脂を用いる場合、例えば、熱融着性樹脂層4と接着層7との押出成形により形成することができる。また、熱融着性樹脂層4と接着層7とを共押出成形により形成する場合の、熱融着性樹脂層4と接着層7の合計厚みとしては、下限としては35μm、55μm、75μmが挙げられ、上限としては、45μm、65μm、85μmが挙げられ、数値範囲としては、35~45μm、35~65μm、35~85μm、55~65μm、55~85μm、75~85μmが好ましい。 The thickness of the adhesive layer 7 is preferably about 50 μm or less, about 40 μm or less, about 30 μm or less, about 20 μm or less, or about 5 μm or less. Also, the thickness of the adhesive layer 7 is preferably about 0.1 μm or more and about 0.5 μm or more. The thickness range of the adhesive layer 7 is preferably about 0.1 to 50 μm, about 0.1 to 40 μm, about 0.1 to 30 μm, about 0.1 to 20 μm, and about 0.1 to 5 μm. , about 0.5 to 50 μm, about 0.5 to 40 μm, about 0.5 to 30 μm, about 0.5 to 20 μm, and about 0.5 to 5 μm. More specifically, in the case of the adhesive exemplified for the adhesive layer 6 or the cured product of acid-modified polyolefin and a curing agent, the thickness is preferably about 1 to 10 μm, more preferably about 1 to 5 μm. In the case of using the resin exemplified for the heat-fusible resin layer 4, the thickness is preferably about 2 to 50 μm, more preferably about 10 to 40 μm. When the adhesive layer 7 is the adhesive exemplified for the adhesive layer 6 or a cured product of a resin composition containing an acid-modified polyolefin and a curing agent, for example, the resin composition is applied and cured by heating or the like. Thus, the adhesive layer 7 can be formed. Further, when using the resin exemplified for the heat-fusible resin layer 4, the heat-fusible resin layer 4 and the adhesive layer 7 can be formed by extrusion molding, for example. When the heat-fusible resin layer 4 and the adhesive layer 7 are formed by co-extrusion molding, the lower limits of the total thickness of the heat-fusible resin layer 4 and the adhesive layer 7 are 35 μm, 55 μm, and 75 μm. The upper limit is 45 μm, 65 μm, 85 μm, and the numerical range is preferably 35 to 45 μm, 35 to 65 μm, 35 to 85 μm, 55 to 65 μm, 55 to 85 μm, 75 to 85 μm.
3.蓄電デバイス用外装材の製造方法
 蓄電デバイス用外装材の製造方法については、本発明の蓄電デバイス用外装材が備える各層を積層させた積層体が得られる限り、特に制限されず、外側から順に、少なくとも、耐衝撃層、樹脂フィルム層、バリア層、及び熱融着性樹脂層を備える積層体を得る工程を備える。
3. Method for producing an exterior material for an electricity storage device The method for producing an exterior material for an electricity storage device is not particularly limited as long as a laminate obtained by laminating each layer included in the exterior material for an electricity storage device of the present invention is obtained. A step of obtaining a laminate comprising at least an impact-resistant layer, a resin film layer, a barrier layer, and a heat-fusible resin layer is provided.
 本発明の蓄電デバイス用外装材の製造方法の一例としては、以下の通りである。まず、樹脂フィルム層2、接着剤層6、バリア層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、樹脂フィルム層2上又は必要に応じて表面が化成処理されたバリア層3に接着剤層6の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布、乾燥した後に、当該バリア層3又は樹脂フィルム層2を積層させて接着剤層6を硬化させるドライラミネート法によって行うことができる。 An example of the method for manufacturing the exterior material for an electricity storage device of the present invention is as follows. First, a laminate (hereinafter sometimes referred to as "laminate A") is formed by laminating the resin film layer 2, the adhesive layer 6, and the barrier layer 3 in this order. Specifically, the laminate A is formed by coating an adhesive used for forming the adhesive layer 6 on the resin film layer 2 or on the barrier layer 3 whose surface is chemically treated as necessary, by gravure coating, It can be performed by a dry lamination method in which the barrier layer 3 or the resin film layer 2 is laminated and the adhesive layer 6 is cured after coating and drying by a coating method such as a roll coating method.
 次いで、積層体Aのバリア層3上に、熱融着性樹脂層4を積層させる。バリア層3上に熱融着性樹脂層4を直接積層させる場合には、積層体Aのバリア層3上に、熱融着性樹脂層4をサーマルラミネート法、押出ラミネート法などの方法により積層すればよい。また、バリア層3と熱融着性樹脂層4の間に接着層7を設ける場合には、例えば、(1)積層体Aのバリア層3上に、接着層7及び熱融着性樹脂層4を押出しすることにより積層する方法(共押出しラミネート法、タンデムラミネート法)、(2)別途、接着層7と熱融着性樹脂層4が積層した積層体を形成し、これを積層体Aのバリア層3上にサーマルラミネート法により積層する方法や、積層体Aのバリア層3上に接着層7が積層した積層体を形成し、これを熱融着性樹脂層4とサーマルラミネート法により積層する方法、(3)積層体Aのバリア層3と、予めシート状に製膜した熱融着性樹脂層4との間に、溶融させた接着層7を流し込みながら、接着層7を介して積層体Aと熱融着性樹脂層4を貼り合せる方法(サンドイッチラミネート法)、(4)積層体Aのバリア層3上に、接着層7を形成させるための接着剤を溶液コーティングし、乾燥させる方法や、さらには焼き付ける方法などにより積層させ、この接着層7上に予めシート状に製膜した熱融着性樹脂層4を積層する方法などが挙げられる。 Next, the heat-fusible resin layer 4 is laminated on the barrier layer 3 of the laminate A. When the heat-fusible resin layer 4 is directly laminated on the barrier layer 3, the heat-fusible resin layer 4 is laminated on the barrier layer 3 of the laminate A by a method such as thermal lamination or extrusion lamination. do it. When the adhesive layer 7 is provided between the barrier layer 3 and the heat-fusible resin layer 4, for example, (1) the adhesive layer 7 and the heat-fusible resin layer are placed on the barrier layer 3 of the laminate A. 4 (co-extrusion lamination method, tandem lamination method); A method of laminating on the barrier layer 3 of the laminate A by a thermal lamination method, or forming a laminate in which an adhesive layer 7 is laminated on the barrier layer 3 of the laminate A, and laminating this with the heat-fusible resin layer 4 by a thermal lamination method Lamination method (3) While pouring the melted adhesive layer 7 between the barrier layer 3 of the laminate A and the heat-fusible resin layer 4 formed into a sheet in advance, the adhesive layer 7 is interposed. (4) coating the barrier layer 3 of the laminate A with an adhesive for forming the adhesive layer 7 in solution, A drying method, a baking method, or the like is used to laminate the adhesive layer 7 , and a heat-fusible resin layer 4 that has been formed into a sheet in advance is laminated on the adhesive layer 7 .
 次に、樹脂フィルム層2のバリア層3とは反対側の表面に、耐衝撃層1を積層する。耐衝撃層1は、例えば耐衝撃層1を形成する材料(例えば、前述した紙、不織布、織布、樹脂基材、ゴム基材)などを、接着剤層5を介して樹脂フィルム層2の表面に接着することにより形成することができる。また、耐衝撃層1を直接樹脂フィルム層2の表面に熱融着させてもよい。なお、樹脂フィルム層2の表面にバリア層3を積層する工程と、樹脂フィルム層2の表面に耐衝撃層1を積層する工程の順番は、特に制限されない。例えば、樹脂フィルム層2の表面に耐衝撃層1を積層した後、樹脂フィルム層2の耐衝撃層1とは反対側の表面にバリア層3を形成してもよい。 Next, the impact-resistant layer 1 is laminated on the surface of the resin film layer 2 opposite to the barrier layer 3 . The shock-resistant layer 1 is formed by applying a material (for example, paper, non-woven fabric, woven fabric, resin base material, rubber base material, etc.) for forming the impact-resistant layer 1 to the resin film layer 2 via the adhesive layer 5. It can be formed by adhering to the surface. Alternatively, the impact-resistant layer 1 may be heat-sealed directly to the surface of the resin film layer 2 . The order of the step of laminating the barrier layer 3 on the surface of the resin film layer 2 and the step of laminating the impact resistant layer 1 on the surface of the resin film layer 2 is not particularly limited. For example, after the impact-resistant layer 1 is laminated on the surface of the resin film layer 2 , the barrier layer 3 may be formed on the surface of the resin film layer 2 opposite to the impact-resistant layer 1 .
 上記のようにして、外側から順に、耐衝撃層1/必要に応じて設けられる接着剤層5/樹脂フィルム層2/必要に応じて設けられる接着剤層6/バリア層3/必要に応じて設けられる接着層7/熱融着性樹脂層4を備える積層体が形成されるが、必要に応じて設けられる接着剤層5、接着剤層6及び接着層7の接着性を強固にするために、さらに、加熱処理に供してもよい。また、前記のとおり、樹脂フィルム層2とバリア層3との間に着色層を設けてもよい。 As described above, in order from the outside, impact resistant layer 1/optionally provided adhesive layer 5/resin film layer 2/optionally provided adhesive layer 6/barrier layer 3/optionally A laminate including the provided adhesive layer 7 / heat-fusible resin layer 4 is formed. In addition, it may be subjected to heat treatment. Moreover, as described above, a colored layer may be provided between the resin film layer 2 and the barrier layer 3 .
4.蓄電デバイス用外装材の用途
 本開示の蓄電デバイス用外装材は、正極、負極、電解質等の蓄電デバイス素子を密封して収容するための包装体に使用される。すなわち、本開示の蓄電デバイス用外装材によって形成された包装体中に、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を収容して、蓄電デバイスとすることができる。
4. Use of Power Storage Device Exterior Material The power storage device exterior material of the present disclosure is used in a packaging body for sealingly housing power storage device elements such as a positive electrode, a negative electrode, and an electrolyte. That is, an electricity storage device can be obtained by housing an electricity storage device element including at least a positive electrode, a negative electrode, and an electrolyte in a package formed by the electricity storage device exterior material of the present disclosure.
 具体的には、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を、本開示の蓄電デバイス用外装材で、前記正極及び負極の各々に接続された金属端子を外側に突出させた状態で、蓄電デバイス素子を蓄電デバイス用外装材で被覆し、熱融着性樹脂層をヒートシールして密封させることによって、蓄電デバイス用外装材を使用した蓄電デバイスが提供される。なお、本開示の蓄電デバイス用外装材により形成された包装体中に蓄電デバイス素子を収容する場合、本開示の蓄電デバイス用外装材の熱融着性樹脂部分が内側(蓄電デバイス素子と接する面)になるようにして、包装体を形成する。 Specifically, an electricity storage device element having at least a positive electrode, a negative electrode, and an electrolyte is placed in the exterior material for an electricity storage device of the present disclosure in a state in which the metal terminals connected to the positive electrode and the negative electrode protrude outward. An electricity storage device using the exterior material for an electricity storage device is provided by covering an electricity storage device element with the exterior material for an electricity storage device and heat-sealing a heat-sealable resin layer to seal. In addition, when housing an electricity storage device element in a package formed by the electricity storage device exterior material of the present disclosure, the heat-fusible resin portion of the electricity storage device exterior material of the present disclosure is on the inside (surface in contact with the electricity storage device element ) to form a package.
 前記の通り、本開示の蓄電デバイス用外装材10は、耐衝撃層1を備えていることから、従来の蓄電デバイス用外装材のような金型を用いた成形によって凹部を形成することには適していない。このため、本開示の蓄電デバイス用外装材10は、金型による成形に供されずに使用されるものであることが好ましい。本開示の蓄電デバイス用外装材10を用いて製造される蓄電デバイス20の形状は、例えば、図4に示すようなゲーブルトップ型、図5に示されるようなブリックパウチ側、さらには図6に示すような、2枚の蓋材11と筒状に形成された蓄電デバイス用外装材10とを組み合わせた直方体形状であることが好ましい。図6の蓄電デバイス20においては、筒状に形成された蓄電デバイス用外装材10と、2枚の蓋材11とによって形成された空間に、蓄電デバイス素子が収容されており、蓋材11の周縁部に蓄電デバイス用外装材10の熱融着性樹脂層4が熱融着することで、蓄電デバイス素子が封止されている。 As described above, since the power storage device exterior material 10 of the present disclosure includes the shock-resistant layer 1, it is difficult to form the recesses by molding using a mold like the conventional power storage device exterior material. Not suitable. For this reason, the power storage device exterior material 10 of the present disclosure is preferably used without being subjected to molding by a mold. The shape of the power storage device 20 manufactured using the power storage device exterior material 10 of the present disclosure is, for example, a gable top type as shown in FIG. 4, a brick pouch side as shown in FIG. As shown, it preferably has a rectangular parallelepiped shape obtained by combining two lid members 11 and a cylindrical exterior member 10 for an electricity storage device. In the electricity storage device 20 of FIG. 6 , the electricity storage device element is accommodated in a space formed by the cylindrically formed electricity storage device exterior material 10 and two cover members 11 . The power storage device element is sealed by heat-sealing the heat-sealable resin layer 4 of the power storage device exterior material 10 to the periphery.
 本開示の蓄電デバイス20の製造において、本開示の蓄電デバイス用外装材10は、2枚以上用いてもよいが1枚のみ用いれば十分である。例えば、図4~6に示される蓄電デバイス20においては、いずれも、本開示の蓄電デバイス用外装材10が1枚のみ使用されている。また、本開示の蓄電デバイス20の製造において、金型を用いた成形によって蓄電デバイス用外装材10が引き伸ばされる成形も不要である。 In manufacturing the electricity storage device 20 of the present disclosure, two or more exterior materials 10 for an electricity storage device of the present disclosure may be used, but it is sufficient to use only one. For example, in each of the power storage devices 20 shown in FIGS. 4 to 6, only one power storage device exterior material 10 of the present disclosure is used. Further, in the manufacture of the electricity storage device 20 of the present disclosure, molding in which the electricity storage device exterior material 10 is stretched by molding using a mold is not necessary.
 本開示の蓄電デバイス用外装材は、電池(コンデンサー、キャパシター等を含む)などの蓄電デバイスに好適に使用することができる。また、本開示の蓄電デバイス用外装材は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池に使用される。本開示の蓄電デバイス用外装材が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、全固体電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本開示の蓄電デバイス用外装材の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。本開示の蓄電デバイス用外装材は、耐落下衝撃性に優れているため、例えば、蓄電デバイス素子の重量が大きな蓄電デバイス、具体的には、蓄電デバイスの重量が500g以上、好ましくは1000g以上(上限は、例えば30kg以下である場合)である場合に特に有用である。また、落下による衝撃が加わりやすい蓄電デバイスの外装材として、特に有用である。 The power storage device exterior material of the present disclosure can be suitably used for power storage devices such as batteries (including capacitors, capacitors, etc.). Moreover, although the exterior material for an electricity storage device of the present disclosure may be used for either a primary battery or a secondary battery, it is preferably used for a secondary battery. The type of secondary battery to which the power storage device exterior material of the present disclosure is applied is not particularly limited. Cadmium storage batteries, nickel/iron storage batteries, nickel/zinc storage batteries, silver oxide/zinc storage batteries, metal-air batteries, polyvalent cation batteries, capacitors, capacitors, and the like. Among these secondary batteries, lithium ion batteries and lithium ion polymer batteries can be mentioned as suitable targets for application of the power storage device exterior material of the present disclosure. Since the exterior material for an electricity storage device of the present disclosure is excellent in drop impact resistance, for example, an electricity storage device with a large weight of an electricity storage device element, specifically, an electricity storage device with a weight of 500 g or more, preferably 1000 g or more ( It is particularly useful when the upper limit is, for example, 30 kg or less. Moreover, it is particularly useful as an exterior material for an electric storage device, which is likely to be subjected to impact when dropped.
 以下に実施例及び比較例を示して本開示を詳細に説明する。但し本開示は実施例に限定されるものではない。 The present disclosure will be described in detail below with examples and comparative examples. However, the present disclosure is not limited to the examples.
<蓄電デバイス用外装材の製造>
実施例1
 樹脂フィルム層として、ポリエチレンテレフタレート(PET)フィルム(厚さ12μm)及び延伸ナイロン(ONy)フィルム(厚さ15μm)を準備した。2液型ウレタン接着剤を用い、接着剤層の硬化後の厚みが3μmとなるようにして、PETフィルムとONyフィルムとを接着剤層を介して接着させた。また、バリア層として、アルミニウム箔(JIS H4160:1994 A8021H-O(厚さ40μm)を用意した。次に、2液型ウレタン接着剤を用い、接着剤層の硬化後の厚みが3μmとなるようにして、アルミニウム箔と樹脂フィルム層(ONy側)をドライラミネート法で積層した後、エージング処理を実施することにより、樹脂フィルム層/接着剤層/バリア層の積層体を作製した。アルミニウム箔の両面には、化成処理が施してある。アルミニウム箔の化成処理は、フェノール樹脂、フッ化クロム化合物、及びリン酸からなる処理液をクロムの塗布量が10mg/m2(乾燥質量)となるように、ロールコート法によりアルミニウム箔の両面に塗布し、焼付けすることにより行った。
<Manufacturing exterior materials for power storage devices>
Example 1
A polyethylene terephthalate (PET) film (thickness: 12 μm) and an oriented nylon (ONy) film (thickness: 15 μm) were prepared as resin film layers. The PET film and the ONy film were adhered via the adhesive layer using a two-liquid type urethane adhesive so that the adhesive layer had a thickness of 3 μm after curing. As a barrier layer, an aluminum foil (JIS H4160: 1994 A8021H-O (thickness: 40 μm) was prepared. Then, after laminating the aluminum foil and the resin film layer (on the ONy side) by a dry lamination method, an aging treatment was performed to produce a laminate of the resin film layer/adhesive layer/barrier layer. Both sides are subjected to chemical conversion treatment.The chemical conversion treatment of the aluminum foil is carried out by applying a treatment liquid consisting of phenolic resin, a chromium fluoride compound, and phosphoric acid so that the coating amount of chromium is 10 mg/m 2 (dry mass). Secondly, it was applied to both sides of an aluminum foil by a roll coating method and baked.
 次に、上記で得られた各積層体のバリア層の上に、接着層及び熱融着性樹脂層を積層した。具体的には、接着層としての無水マレイン酸変性ポリプロピレン(PPa 厚さ40μm)と、熱融着性樹脂層としてのランダムポリプロピレン(PP 厚さ40μm)とを、それぞれ、溶融共押出しすることにより、バリア層の上に接着層/熱融着性樹脂層を積層させて、樹脂フィルム層/接着剤層/バリア層/接着層/熱融着性樹脂層が順に積層された積層体を得た。 Next, an adhesive layer and a heat-fusible resin layer were laminated on the barrier layer of each laminate obtained above. Specifically, maleic anhydride-modified polypropylene (PPa, thickness 40 μm) as an adhesive layer and random polypropylene (PP, thickness 40 μm) as a heat-sealable resin layer are melt co-extruded, respectively. An adhesive layer/heat-fusible resin layer was laminated on the barrier layer to obtain a laminate in which resin film layer/adhesive layer/barrier layer/adhesive layer/heat-fusible resin layer were laminated in this order.
 次に、耐衝撃層(繊維質基材層)として、液体紙容器用原紙(ポトラッチ社製 坪量337g/m2)を準備した。次に、2液型ウレタン接着剤を用い、接着剤層の硬化後の厚みが3μmとなるようにして、前記積層体の樹脂フィルム層の表面に、耐衝撃層(繊維質基材層)を貼り付けて、耐衝撃層(繊維質基材層)/樹脂フィルム層/接着剤層/バリア層/接着層/熱融着性樹脂層が順に積層された蓄電デバイス用外装材(サイズは300mm×150mm)を得た。 Next, base paper for liquid paper containers (manufactured by Potlatch Co., basis weight: 337 g/m 2 ) was prepared as an impact-resistant layer (fibrous base material layer). Next, using a two-liquid urethane adhesive, an impact-resistant layer (fibrous base material layer) is formed on the surface of the resin film layer of the laminate so that the adhesive layer has a thickness of 3 μm after curing. An exterior material for an electric storage device in which an impact-resistant layer (fibrous base material layer)/resin film layer/adhesive layer/barrier layer/adhesive layer/heat-fusible resin layer is laminated in order by pasting (size is 300 mm × 150 mm) was obtained.
 次に、得られた蓄電デバイス用外装材と、蓋材として2枚のポリプロピレン板(幅100mm、長さ40mm、厚み5mm)と、模擬的な蓄電デバイス素子としてアルミニウム製の金属板(サイズは幅100mm、長さ140mm、厚み40mm、重さ1.5kg)を準備した。図6に示されるように、2枚の蓋材と、蓄電デバイス用外装材の熱融着性樹脂層を金属板側にして筒状に形成された蓄電デバイス用外装材によって形成される空間に、前記の金属板が収容されるようにして、蓋材の周縁部に、それぞれ、蓄電デバイス用外装材熱融着性樹脂層を熱融着させ(各蓋材の厚み5mmの4辺に対して、それぞれ、蓄電デバイス用外装材熱融着性樹脂層を熱融着させ)、模擬的な蓄電デバイス(すなわち、1枚の蓄電デバイス用外装材と2枚の蓋材で形成された空間内に、模擬的な蓄電デバイス素子が収容されている)を作製した。 Next, the obtained exterior material for an electricity storage device, two polypropylene plates (width 100 mm, length 40 mm, thickness 5 mm) as a lid material, and a metal plate made of aluminum as a simulated electricity storage device element (size is width 100 mm, length 140 mm, thickness 40 mm, weight 1.5 kg) was prepared. As shown in FIG. 6, the space formed by the two cover members and the electrical storage device exterior material formed in a cylindrical shape with the heat-sealable resin layer of the electrical storage device exterior material facing the metal plate. , the heat-sealable resin layer of the exterior material for the electric storage device is heat-sealed to the peripheral edge of the lid so that the metal plate is accommodated (for the four sides with a thickness of 5 mm of each lid) heat-sealing the heat-sealing resin layer of the exterior material for the electricity storage device, respectively), the simulated electricity storage device (that is, the space formed by one exterior material for the electricity storage device and two lids 2, in which a simulated electricity storage device element is accommodated).
実施例2
 蓄電デバイス用外装材のサイズを300mm×250mmとしたこと以外は、実施例1と同様にして、耐衝撃層(繊維質基材層)/樹脂フィルム層/接着剤層/バリア層/接着層/熱融着性樹脂層が順に積層された蓄電デバイス用外装材を得た。また、模擬的な蓄電デバイス素子としてアルミニウム製の金属板(サイズは幅100mm、長さ140mm、厚み40mm、重さ1.5kg)を準備した。
Example 2
Impact resistant layer (fibrous base material layer)/resin film layer/adhesive layer/barrier layer/adhesive layer/ An exterior material for an electricity storage device was obtained in which the heat-fusible resin layers were sequentially laminated. In addition, an aluminum metal plate (size: 100 mm wide, 140 mm long, 40 mm thick, weight 1.5 kg) was prepared as a simulated electricity storage device element.
 次に、得られた蓄電デバイス用外装材を、上側及び下側がゲーブルトップ型(図4に示されているのは、上側のみがゲーブルトップ型であり、下側は平坦である。)となるようにして模擬的な蓄電デバイス素子を包み込み、熱融着性樹脂層を熱融着させて、模擬的な蓄電デバイス(すなわち、1枚の蓄電デバイス用外装材で形成された空間内に、模擬的な蓄電デバイス素子が収容されている)を作製した。 Next, the obtained exterior material for an electricity storage device is of a gable top type on the upper and lower sides (only the upper side is of the gable top type and the lower side is flat in FIG. 4). In this way, the simulated electricity storage device element is wrapped, the heat-sealable resin layer is heat-sealed, and the simulated electricity storage device (that is, in the space formed by one electricity storage device exterior material, the simulated A typical electric storage device element is accommodated).
実施例3
 実施例2と同様にして、耐衝撃層(繊維質基材層)/樹脂フィルム層/接着剤層/バリア層/接着層/熱融着性樹脂層が順に積層された蓄電デバイス用外装材(サイズは300mm×250mm)を得た。また、模擬的な蓄電デバイス素子としてアルミニウム製の金属板(サイズは幅100mm、長さ140mm、厚み40mm、重さ1.5kg)を準備した。
Example 3
In the same manner as in Example 2, a power storage device exterior material ( The size was 300 mm x 250 mm). In addition, an aluminum metal plate (size: 100 mm wide, 140 mm long, 40 mm thick, weight 1.5 kg) was prepared as a simulated electricity storage device element.
 次に、得られた蓄電デバイス用外装材を図5に示されるようにブリックパウチ型となるようにして模擬的な蓄電デバイス素子を包み込み、熱融着性樹脂層を熱融着させて、模擬的な蓄電デバイス(すなわち、1枚の蓄電デバイス用外装材で形成された空間内に、模擬的な蓄電デバイス素子が収容されている)を作製した。 Next, as shown in FIG. 5, the obtained electrical storage device exterior material is shaped into a brick pouch to wrap the simulated electrical storage device element, and the heat-sealable resin layer is heat-sealed to form a simulated electrical storage device element. A typical electricity storage device (that is, a simulated electricity storage device element is accommodated in a space formed by one electricity storage device exterior material) was produced.
比較例1
 蓄電デバイス用外装材に耐衝撃層(繊維質基材層)を設けなかったこと以外は、実施例1と同様にして、模擬的な蓄電デバイスを作製した。
Comparative example 1
A simulated power storage device was produced in the same manner as in Example 1, except that the shock-resistant layer (fibrous base material layer) was not provided in the power storage device exterior material.
比較例2
 蓄電デバイス用外装材に耐衝撃層(繊維質基材層)を設けなかったこと以外は、実施例2と同様にして、模擬的な蓄電デバイスを作製した。
Comparative example 2
A simulated power storage device was produced in the same manner as in Example 2, except that the shock-resistant layer (fibrous base material layer) was not provided on the power storage device exterior material.
比較例3
 蓄電デバイス用外装材に耐衝撃層(繊維質基材層)を設けなかったこと以外は、実施例3と同様にして、模擬的な蓄電デバイスを作製した。
Comparative example 3
A simulated power storage device was produced in the same manner as in Example 3, except that the shock-resistant layer (fibrous base material layer) was not provided in the power storage device exterior material.
<高さ30cmからの落下試験>
 実施例及び比較例で得られた模擬的な蓄電デバイスを、それぞれ、高さ30cmの位置から落下させて、外観とアルミニウム合金箔の様子を目視で観察し、以下の基準で評価した。なお、模擬的な蓄電デバイスの背貼り部が上になる状態で自由落下させた。また、アルミニウム合金箔の様子は、蓄電デバイスの落下による外側の損傷部分について、蓄電デバイス用外装材の断面を取得して評価した。具体的には、落下後の外装材に損傷がないか、外内両側から目視で検査し、そのうち損傷が目視で確認された部分について、断面観察でアルミ合金箔の様子を顕微鏡で確認した。結果を表1に示す。
(蓄電デバイス用外装材の外観)
A:蓄電デバイス用外装材に損傷がない。
B:蓄電デバイス用外装材に穴は空いてないが、損傷している。
C:蓄電デバイス用外装材に穴が空いている。
(アルミニウム合金箔の様子)
A:アルミニウム合金箔に損傷がない。
B:アルミニウム合金箔に損傷しているが、破断はしてない。
C:アルミニウム合金箔が破断している。
<Drop test from a height of 30 cm>
The simulated electricity storage devices obtained in Examples and Comparative Examples were each dropped from a height of 30 cm, and the appearance and state of the aluminum alloy foil were visually observed and evaluated according to the following criteria. It should be noted that the simulated electric storage device was allowed to fall freely with the back-pasted portion facing up. In addition, the state of the aluminum alloy foil was evaluated by obtaining a cross section of the exterior material for the electricity storage device for the outer damaged portion due to the dropping of the electricity storage device. Specifically, we visually inspected from both the outside and inside to see if there was any damage to the exterior material after it was dropped, and in the areas where damage was visually confirmed, we checked the state of the aluminum alloy foil by cross-sectional observation with a microscope. Table 1 shows the results.
(Appearance of exterior material for power storage device)
A: There is no damage to the exterior material for electrical storage device.
B: The exterior material for the electric storage device has no holes, but is damaged.
C: A hole is vacant in the exterior material for electrical storage devices.
(Appearance of aluminum alloy foil)
A: There is no damage to the aluminum alloy foil.
B: The aluminum alloy foil is damaged, but not broken.
C: The aluminum alloy foil is broken.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1-3の模擬的な蓄電デバイスは、最外層に耐衝撃層(繊維質基材層)として液体紙容器用原紙が積層されており、高さ30cmからの落下試験評価は良好であった。 In the simulated electricity storage device of Example 1-3, base paper for liquid paper containers was laminated as the outermost layer as a shock-resistant layer (fibrous base material layer), and the drop test evaluation from a height of 30 cm was good. rice field.
 以上の通り、本開示は、以下に示す態様の発明を提供する。
項1. 外側から順に、少なくとも、耐衝撃層、樹脂フィルム層、バリア層、及び熱融着性樹脂層を備える積層体から構成されている、蓄電デバイス用外装材。
項2. 前記耐衝撃層は、繊維質基材層である、項1に記載の蓄電デバイス用外装材。
項3. 前記耐衝撃層は、紙及び不織布の少なくとも一方により形成されている、項1または2に記載の蓄電デバイス用外装材。
項4. 前記耐衝撃層の坪量が、100g/m2以上である、項1~3のいずれか1項に記載の蓄電デバイス用外装材。
項5. 前記耐衝撃層は、前記積層体の最外層を構成している、項1~4のいずれか1項に記載の蓄電デバイス用外装材。
項6. 前記耐衝撃層と前記樹脂フィルム層との間に接着剤層をさらに備える、項1~5のいずれか1項に記載の蓄電デバイス用外装材。
項7. 前記樹脂フィルム層と前記バリア層との間に接着剤層をさらに備える、項1~6のいずれか1項に記載の蓄電デバイス用外装材。
項8. 前記バリア層と前記熱融着性樹脂層との間に接着層をさらに備える、項1~7のいずれか1項に記載の蓄電デバイス用外装材。
項9. 前記バリア層は、アルミニウム合金箔により構成されている、項1~8のいずれか1項に記載の蓄電デバイス用外装材。
項10. 外側から順に、少なくとも、耐衝撃層、樹脂フィルム層、バリア層、及び熱融着性樹脂層を備える積層体を得る工程を備える、蓄電デバイス用外装材の製造方法。
項11. 少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、項1~9のいずれか1項に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。
項12. 前記包装体は、ゲーブルトップ型またはブリック型の形状である、項11に記載の蓄電デバイス。
項13. 筒状に形成された項1~9のいずれか1項に記載の蓄電デバイス用外装材と、2枚の蓋材とによって形成された空間に、前記蓄電デバイス素子が収容されており、
 前記蓋材の周縁部に前記蓄電デバイス用外装材の熱融着性樹脂層が熱融着することで、前記蓄電デバイス素子が封止されている、項11に記載の蓄電デバイス。
項14. 項1~9のいずれか1項に記載の蓄電デバイス用外装材が1枚のみ使用されている、項11~13のいずれか1項に記載の蓄電デバイス。
As described above, the present disclosure provides inventions in the following aspects.
Section 1. An exterior material for an electricity storage device, comprising a laminate comprising, in order from the outside, at least an impact-resistant layer, a resin film layer, a barrier layer, and a heat-fusible resin layer.
Section 2. Item 2. The exterior material for an electricity storage device according to Item 1, wherein the shock-resistant layer is a fibrous base material layer.
Item 3. Item 3. The power storage device exterior material according to Item 1 or 2, wherein the shock-resistant layer is formed of at least one of paper and nonwoven fabric.
Section 4. Item 4. The exterior material for an electricity storage device according to any one of items 1 to 3, wherein the impact-resistant layer has a basis weight of 100 g/m 2 or more.
Item 5. Item 5. The power storage device exterior material according to any one of Items 1 to 4, wherein the shock-resistant layer constitutes the outermost layer of the laminate.
Item 6. Item 6. The power storage device exterior material according to any one of Items 1 to 5, further comprising an adhesive layer between the impact resistant layer and the resin film layer.
Item 7. Item 7. The exterior material for an electricity storage device according to any one of Items 1 to 6, further comprising an adhesive layer between the resin film layer and the barrier layer.
Item 8. Item 8. The exterior material for an electricity storage device according to any one of Items 1 to 7, further comprising an adhesive layer between the barrier layer and the heat-fusible resin layer.
Item 9. Item 9. The power storage device exterior material according to any one of Items 1 to 8, wherein the barrier layer is made of an aluminum alloy foil.
Item 10. A method for producing an exterior material for an electric storage device, comprising a step of obtaining a laminate including, in order from the outside, at least an impact-resistant layer, a resin film layer, a barrier layer, and a heat-fusible resin layer.
Item 11. An electricity storage device, wherein an electricity storage device element comprising at least a positive electrode, a negative electrode, and an electrolyte is accommodated in a package formed of the electricity storage device exterior material according to any one of Items 1 to 9.
Item 12. Item 12. The electricity storage device according to Item 11, wherein the package has a gable top shape or a brick shape.
Item 13. The electricity storage device element is accommodated in a space formed by the electricity storage device exterior material according to any one of items 1 to 9 formed in a cylindrical shape and two cover members,
Item 12. The electricity storage device according to Item 11, wherein the electricity storage device element is sealed by heat-sealing the heat-fusible resin layer of the exterior material for an electricity storage device to the periphery of the lid member.
Item 14. 14. The electricity storage device according to any one of items 11 to 13, wherein only one sheet of the exterior material for an electricity storage device according to any one of items 1 to 9 is used.
1 耐衝撃層
2 樹脂フィルム層
3 バリア層
4 熱融着性樹脂層
5 接着剤層
6 接着剤層
7 接着層
10 蓄電デバイス用外装材
11 蓋材
20 蓄電デバイス
Reference Signs List 1 impact-resistant layer 2 resin film layer 3 barrier layer 4 heat-fusible resin layer 5 adhesive layer 6 adhesive layer 7 adhesive layer 10 exterior material for power storage device 11 lid material 20 power storage device

Claims (14)

  1.  外側から順に、少なくとも、耐衝撃層、樹脂フィルム層、バリア層、及び熱融着性樹脂層を備える積層体から構成されている、蓄電デバイス用外装材。 An exterior material for a power storage device, which is composed of a laminate including, in order from the outside, at least an impact-resistant layer, a resin film layer, a barrier layer, and a heat-fusible resin layer.
  2.  前記耐衝撃層は、繊維質基材層である、請求項1に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 1, wherein the shock-resistant layer is a fibrous base material layer.
  3.  前記耐衝撃層は、紙及び不織布の少なくとも一方により形成されている、請求項1または2に記載の蓄電デバイス用外装材。 The power storage device exterior material according to claim 1 or 2, wherein the shock-resistant layer is made of at least one of paper and non-woven fabric.
  4.  前記耐衝撃層の坪量が、100g/m2以上である、請求項1または2に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 1 or 2 , wherein the impact-resistant layer has a basis weight of 100 g/m2 or more.
  5.  前記耐衝撃層は、前記積層体の最外層を構成している、請求項1または2に記載の蓄電デバイス用外装材。 The power storage device exterior material according to claim 1 or 2, wherein the shock-resistant layer constitutes the outermost layer of the laminate.
  6.  前記耐衝撃層と前記樹脂フィルム層との間に接着剤層をさらに備える、請求項1または2に記載の蓄電デバイス用外装材。 The power storage device exterior material according to claim 1 or 2, further comprising an adhesive layer between the shock-resistant layer and the resin film layer.
  7.  前記樹脂フィルム層と前記バリア層との間に接着剤層をさらに備える、請求項1または2に記載の蓄電デバイス用外装材。 The power storage device exterior material according to claim 1 or 2, further comprising an adhesive layer between the resin film layer and the barrier layer.
  8.  前記バリア層と前記熱融着性樹脂層との間に接着層をさらに備える、請求項1または2に記載の蓄電デバイス用外装材。 The power storage device exterior material according to claim 1 or 2, further comprising an adhesive layer between the barrier layer and the heat-fusible resin layer.
  9.  前記バリア層は、アルミニウム合金箔により構成されている、請求項1または2に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 1 or 2, wherein the barrier layer is made of an aluminum alloy foil.
  10.  外側から順に、少なくとも、耐衝撃層、樹脂フィルム層、バリア層、及び熱融着性樹脂層を備える積層体を得る工程を備える、蓄電デバイス用外装材の製造方法。 A method for manufacturing an exterior material for an electric storage device, comprising a step of obtaining a laminate including, in order from the outside, at least an impact-resistant layer, a resin film layer, a barrier layer, and a heat-fusible resin layer.
  11.  少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、請求項1または2に記載の蓄電デバイス用外装材により形成された包装体中に収容されている、蓄電デバイス。 An electricity storage device, wherein an electricity storage device element comprising at least a positive electrode, a negative electrode, and an electrolyte is housed in a package formed by the exterior material for an electricity storage device according to claim 1 or 2.
  12.  前記包装体は、ゲーブルトップ型またはブリック型の形状である、請求項11に記載の蓄電デバイス。 The power storage device according to claim 11, wherein the package has a gable top or brick shape.
  13.  筒状に形成された請求項1または2に記載の蓄電デバイス用外装材と、2枚の蓋材とによって形成された空間に、前記蓄電デバイス素子が収容されており、
     前記蓋材の周縁部に前記蓄電デバイス用外装材の熱融着性樹脂層が熱融着することで、前記蓄電デバイス素子が封止されている、請求項11に記載の蓄電デバイス。
    The electricity storage device element is accommodated in a space formed by the electricity storage device exterior material according to claim 1 or 2 formed in a cylindrical shape and two cover members,
    12. The electricity storage device according to claim 11, wherein the electricity storage device element is sealed by heat-sealing the heat-fusible resin layer of the exterior material for an electricity storage device to the periphery of the lid member.
  14.  請求項1または2に記載の蓄電デバイス用外装材が1枚のみ使用されている、請求項11に記載の蓄電デバイス。 The electricity storage device according to claim 11, wherein only one sheet of the exterior material for an electricity storage device according to claim 1 or 2 is used.
PCT/JP2022/048622 2021-12-28 2022-12-28 Housing material for power storage device, manufacturing method for housing material, and power storage device WO2023127956A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023552595A JP7444341B2 (en) 2021-12-28 2022-12-28 Exterior material for power storage device, manufacturing method thereof, and power storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021215092 2021-12-28
JP2021-215092 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127956A1 true WO2023127956A1 (en) 2023-07-06

Family

ID=86999239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048622 WO2023127956A1 (en) 2021-12-28 2022-12-28 Housing material for power storage device, manufacturing method for housing material, and power storage device

Country Status (2)

Country Link
JP (1) JP7444341B2 (en)
WO (1) WO2023127956A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05314956A (en) * 1992-05-11 1993-11-26 Asahi Chem Ind Co Ltd Sealed battery
JP2006093101A (en) * 2004-09-24 2006-04-06 Samsung Sdi Co Ltd Lithium polymer battery with strength reinforcement layer and its manufacturing method
JP2021177488A (en) * 2017-03-17 2021-11-11 昭和電工パッケージング株式会社 Sealant film for exterior material of power storage device, exterior material for power storage device, and method for manufacturing the same
JP6986184B1 (en) * 2020-02-07 2021-12-22 大日本印刷株式会社 Power storage device and manufacturing method of power storage device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324546A (en) * 1986-07-17 1988-02-01 Yuasa Battery Co Ltd Storage battery
JP3070808B2 (en) * 1993-06-30 2000-07-31 凸版印刷株式会社 Lead frame backsheet
JP3851055B2 (en) 2000-04-06 2006-11-29 守正 小泉 Paper container manufacturing method
JP2017010828A (en) 2015-06-24 2017-01-12 古河電池株式会社 Metal air battery
JP7028700B2 (en) 2018-04-17 2022-03-02 藤倉コンポジット株式会社 Metal-air battery
US20210163792A1 (en) 2018-08-13 2021-06-03 3M Innovative Properties Company Cohesive compositions and articles
CN113226728A (en) 2018-11-19 2021-08-06 3M创新有限公司 Compression resistant packaging material and construction
CN210970241U (en) 2019-11-25 2020-07-10 安庆市三环康泰纸塑有限公司 Enhancement mode multilayer drenches membrane paper structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05314956A (en) * 1992-05-11 1993-11-26 Asahi Chem Ind Co Ltd Sealed battery
JP2006093101A (en) * 2004-09-24 2006-04-06 Samsung Sdi Co Ltd Lithium polymer battery with strength reinforcement layer and its manufacturing method
JP2021177488A (en) * 2017-03-17 2021-11-11 昭和電工パッケージング株式会社 Sealant film for exterior material of power storage device, exterior material for power storage device, and method for manufacturing the same
JP6986184B1 (en) * 2020-02-07 2021-12-22 大日本印刷株式会社 Power storage device and manufacturing method of power storage device

Also Published As

Publication number Publication date
JPWO2023127956A1 (en) 2023-07-06
JP7444341B2 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
JP7192943B2 (en) BATTERY PACKAGING MATERIAL, MANUFACTURING METHOD THEREOF, AND BATTERY
JP2017069203A (en) Battery-packaging material and battery
WO2020153460A1 (en) Exterior material for power storage device, method for manufacturing exterior material for power storage device, and power storage device
CN109417133A (en) Battery exterior material and battery
JP2023075950A (en) Battery packaging material, manufacturing method thereof, winding body of battery packaging material, and battery
WO2020153457A1 (en) All-solid-state battery and method for manufacturing same
WO2020085462A1 (en) Casing material for power storage device, production method therefor, and power storage device
WO2020085463A1 (en) Casing material for power storage device, production method therefor, and power storage device
JP7380544B2 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
JP7234794B2 (en) Exterior material for power storage device, method for producing the same, power storage device, and polyamide film
WO2023127956A1 (en) Housing material for power storage device, manufacturing method for housing material, and power storage device
WO2020184693A1 (en) Outer package material for all-solid-state batteries, method for producing same and all-solid-state battery
JP7192795B2 (en) Battery packaging materials and batteries
WO2020075731A1 (en) Battery valve element, manufacturing method for said battery valve element, and battery
WO2022210750A1 (en) Exterior material for power storage device, power storage device, and method for manufacturing same
WO2023058452A1 (en) Covering material for power storage device, method for manufacturing same, and power storage device
JP7118038B2 (en) Exterior material for power storage device, power storage device, and manufacturing method thereof
WO2023136360A1 (en) Exterior material for electricity storage device, method for manufacturing same, resin composition, and electricity storage device
JP6699130B2 (en) Battery packaging material
WO2023058453A1 (en) Outer package material for power storage devices, method for producing same, and power storage device
WO2023058701A1 (en) Outer package material for power storage devices, method for producing same, and power storage device
JP7447797B2 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
WO2023243696A1 (en) Exterior material for power storage device, production method for same, and power storage device
WO2023022086A1 (en) Outer package material for power storage devices, method for producing same, and power storage device
JP7447826B2 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916178

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552595

Country of ref document: JP