WO2022210750A1 - Exterior material for power storage device, power storage device, and method for manufacturing same - Google Patents

Exterior material for power storage device, power storage device, and method for manufacturing same Download PDF

Info

Publication number
WO2022210750A1
WO2022210750A1 PCT/JP2022/015613 JP2022015613W WO2022210750A1 WO 2022210750 A1 WO2022210750 A1 WO 2022210750A1 JP 2022015613 W JP2022015613 W JP 2022015613W WO 2022210750 A1 WO2022210750 A1 WO 2022210750A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
layer
exterior material
adhesive layer
heat
Prior art date
Application number
PCT/JP2022/015613
Other languages
French (fr)
Japanese (ja)
Inventor
真 天野
ゆう 木村
雅博 立沢
孝典 山下
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2023511403A priority Critical patent/JPWO2022210750A1/ja
Priority to CN202280025509.4A priority patent/CN117083751A/en
Publication of WO2022210750A1 publication Critical patent/WO2022210750A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/141Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against humidity

Definitions

  • the present disclosure relates to an exterior material for an electricity storage device, an electricity storage device, and manufacturing methods thereof.
  • the exterior material is an indispensable member for sealing the power storage device elements such as electrodes and electrolytes.
  • metal exterior materials have been frequently used as exterior materials for power storage devices.
  • Laminates have been proposed (see Patent Document 1, for example).
  • a power storage device exterior material generally, recesses are formed by cold molding using a mold, and power storage device elements such as electrodes and electrolytes are arranged in the spaces formed by the recesses.
  • power storage device elements such as electrodes and electrolytes are arranged in the spaces formed by the recesses.
  • the inventors of the present disclosure conducted various analyzes and evaluations focusing on exterior materials for power storage devices in which concave portions were formed by molding. Then, when a cross section in the thickness direction of the adhesive layer positioned between the base material layer and the barrier layer was observed with a microscope, a new finding was obtained that voids were present in the cross section. Such knowledge has not been known in the past, and the inventors of the present disclosure conducted further studies. As a result, by setting the porosity of the cross section of the adhesive layer to a predetermined value or less, even when the molded exterior material for an electricity storage device is placed in a hot and humid environment for a long period of time, the exterior material for an electricity storage device does not have a concave portion. It was found that delamination between the substrate layer and the barrier layer (that is, the portion where the adhesive layer is present) is suppressed at the position where it is bent for forming.
  • the present disclosure is a power storage device in which a film-like laminate is formed that includes at least a base layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order.
  • a main object of the present invention is to provide an exterior material for an electricity storage device, which is an exterior material and has excellent moisture and heat resistance.
  • an exterior material for an electricity storage device in which a film-like laminate including at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order is formed
  • the thickness direction of the adhesive layer By adjusting the porosity observed at a magnification of 150 times of the objective lens to 25% or less for the cross section of the It was discovered that it exhibited moist heat resistance.
  • An exterior material for an electricity storage device in which a film-like laminate is formed comprising at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order,
  • the power storage device exterior material is molded so as to protrude from the heat-fusible resin layer side to the base layer side, and has a recessed portion in which the power storage device element is accommodated on the heat-fusible resin layer side.
  • An exterior material for an electric storage device wherein the adhesive layer has a porosity of 25% or less in a cross-section in the thickness direction, as observed at a magnification of 150 times with an objective lens.
  • an exterior material for an electricity storage device is formed by forming a film-like laminate that includes at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order.
  • a film-like laminate that includes at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order.
  • FIG. 2 is a schematic cross-sectional view showing an example of the laminated structure of the exterior material for an electricity storage device of the present disclosure
  • FIG. 2 is a schematic cross-sectional view showing an example of the laminated structure of the exterior material for an electricity storage device of the present disclosure
  • FIG. 2 is a schematic cross-sectional view showing an example of the laminated structure of the exterior material for an electricity storage device of the present disclosure
  • 1 is a schematic diagram of a plain view of an exterior material for an electricity storage device of the present disclosure
  • FIG. FIG. 5 is a schematic cross-sectional view obtained by cutting the power storage device exterior material in a direction parallel to the MD (Machine Direction) direction (x-axis direction) and the thickness direction of FIG. 4 (the lamination structure is omitted).
  • FIG. 6 is a schematic diagram showing a state in which the exterior material for an electricity storage device shown in FIG. 5 is folded back and the heat-fusible resin layers are heat-sealed to each other at the position of the edge for sealing.
  • FIG. 4 is a schematic diagram for explaining how a female mold and a male mold are used to mold an exterior material for an electricity storage device to form a recess.
  • FIG. 4 is a schematic diagram for explaining how a female mold and a male mold are used to mold an exterior material for an electricity storage device to form a recess. It is a schematic diagram for demonstrating the measuring method of the porosity of an adhesive bond layer. It is a schematic diagram for demonstrating the measuring method of the porosity of an adhesive bond layer.
  • the exterior material for an electricity storage device of the present disclosure is for an electricity storage device, in which a film-like laminate including at least a base layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order is formed.
  • the exterior material for an electricity storage device is formed so as to protrude from the heat-fusible resin layer side to the base layer side, and the heat-fusible resin layer side has a concave portion in which the electricity storage device element is accommodated. and a porosity of 25% or less observed at a magnification of 150 with an objective lens in a cross section of the adhesive layer in the thickness direction.
  • the exterior material for an electricity storage device of the present disclosure will be described in detail below.
  • the numerical range indicated by “-” means “more than” and “less than”.
  • the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
  • the present disclosure is an exterior material for an electricity storage device, in which a film-like laminate including at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order is formed.
  • a film-like laminate including at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order is formed.
  • the barrier layer 3 described later can usually be distinguished between MD (Machine Direction) and TD (Transverse Direction) in the manufacturing process.
  • MD Machine Direction
  • TD Transverse Direction
  • the barrier layer 3 is made of a metal foil such as an aluminum alloy foil or a stainless steel foil
  • the MD of the laminate usually matches the RD of the metal foil, so the surface of the metal foil of the laminate is observed to identify the rolling direction (RD) of the metal foil.
  • the MD of the laminate can be specified.
  • the TD of the laminate is perpendicular to the MD of the laminate, the TD of the laminate can also be specified.
  • the MD of the exterior material for an electricity storage device cannot be specified due to the rolling marks of metal foil such as aluminum alloy foil or stainless steel foil, it can be specified by the following method.
  • a method for confirming the MD of the exterior material for an electricity storage device there is a method for confirming the sea-island structure by observing the cross section of the heat-fusible resin layer of the exterior material for the electricity storage device with an electron microscope.
  • the MD can be determined as the direction parallel to the cross section in which the average diameter of the island shape in the direction perpendicular to the thickness direction of the heat-fusible resin layer is maximum.
  • the cross section in the length direction of the heat-fusible resin layer is changed by 10 degrees from a direction parallel to the cross section in the length direction, and the direction is perpendicular to the cross section in the length direction. (10 cross sections in total) are observed with electron micrographs to confirm the sea-island structure.
  • the shape of each individual island is observed.
  • the linear distance connecting the leftmost end in the direction perpendicular to the thickness direction of the heat-sealable resin layer and the rightmost end in the perpendicular direction is defined as the diameter y.
  • the average of the top 20 diameters y of the island shape is calculated in descending order of diameter y.
  • the direction parallel to the cross section in which the average diameter y of the island shape is the largest is determined as the MD.
  • the electricity storage device exterior material 10 of the present disclosure for example, as shown in the schematic diagrams of FIGS.
  • the recess 100 is formed so as to protrude outward (so as to accommodate the electricity storage device element), and has a concave portion 100 in which the electricity storage device element is accommodated on the heat-fusible resin layer 4 side.
  • the recess 100 is formed by molding.
  • the power storage device exterior material 10 of the present disclosure is a film-like laminate that includes at least a base layer 1, an adhesive layer 2, a barrier layer 3, and a heat-fusible resin layer 4 in this order, It is formed so as to protrude from the heat-fusible resin layer 4 side toward the substrate layer 1 side, and a concave portion 100 is formed on the heat-fusible resin layer 4 side to accommodate the electricity storage device element.
  • the power storage device exterior material 10 shown in FIGS. 4 and 5 has a substantially rectangular shape in plan view. Moreover, the concave portion 100 of the power storage device exterior material 10 shown in FIGS. 4 and 5 has a substantially rectangular shape in plan view.
  • the shape of the power storage device exterior material 10 and the shape of the recess are not particularly limited, and may be determined in consideration of the shape of the power storage device. There are various shapes of recesses formed by molding the exterior material for an electric storage device. For example, planar view substantially rectangular shape, planar view substantially L shape, planar view substantially U shape, etc. are mentioned. These shapes are examples of common recess shapes.
  • substantially rectangular shape means a rectangular shape in which the corners of the four corners of the rectangle are right angles, and a rectangular shape in which the four corners of the rectangle are rounded (R). It means to include. The same applies to substantially L-shaped, substantially U-shaped, and the like.
  • a female mold having a substantially rectangular opening in a plan view
  • a male mold having a convex shape corresponding to the female mold
  • the laminate is formed so as to protrude from the side of the heat-fusible resin layer 4 to the side of the base material layer 1.
  • a substantially rectangular recess in plan view is formed on the side of the heat-fusible resin layer 4 to accommodate the electricity storage device element (see also FIGS. 7 and 8).
  • a power storage device element is accommodated in the space formed by the recess.
  • the shape of the space is various, and includes, for example, a substantially rectangular parallelepiped shape, a substantially cylindrical shape, a substantially elliptical cylindrical shape, and a substantially multi-stage shape.
  • substantially rectangular parallelepiped shape means a rectangular parallelepiped shape in which each corner portion of the rectangular parallelepiped is a right angle, and for example, a rectangular parallelepiped shape in which each corner portion is rounded (R). is.
  • R rectangular parallelepiped shape in which each corner portion is rounded
  • the shape of the recessed portion (space) formed by molding the exterior material for an electric storage device varies, the laminate is stretched during molding, which causes a local burden (that is, a large local stress is applied). Delamination in a hot and humid environment is particularly likely to occur at some points. Therefore, it is effective to measure the porosity of the adhesive layer at the location where the load is applied.
  • the shape of the recess (space) formed by molding the exterior material for an electric storage device is, for example, a shape having a corner portion and a ridge line portion on the sealing edge side, a curved line forming the corner portion and a straight line forming the ridge line are formed.
  • the boundary portion is a portion where a burden is applied during molding.
  • the sealing edge of the bent portion 10A on the bottom surface 100A side of the recess 100 and the bent portion 10B on the sealing edge 10C side of the recess 100 It is effective to use the cross section of the bent portion 10B on the 10C side (see region P in FIG. 5) as an object for porosity measurement.
  • FIGS. 7 and 8 schematically show how the power storage device exterior material 10 is molded using a female die 21, a male die 22, and a pressing plate 23 to form a recess.
  • the power storage device exterior material 10 is molded to form recesses using the female mold 21, the male mold 22, and the pressing plate 23 as shown in FIGS.
  • a bent portion 10A (see FIGS. 5 to 8) is a bent portion formed by the male mold 22, and a bent portion 10B described later is a bent portion formed by the female mold 21.
  • the depth of the concave portion 100 of the power storage device exterior material 10 of the present disclosure is appropriately adjusted according to the size of the power storage device, and is, for example, about 4 to 10 mm.
  • the period until peeling occurs which is evaluated by the following ⁇ Evaluation of moist heat resistance>, is preferably 5 days or more, more preferably 10 days or more, and more preferably is 20 days or more, more preferably 30 days or more.
  • an unmolded exterior material for an electricity storage device is cut into strips of 150 mm (MD: Machine Direction) x 90 mm (TD: Transverse Direction).
  • MD Machine Direction
  • TD Transverse Direction
  • the MD of the power storage device exterior material corresponds to the rolling direction (RD) of the aluminum alloy foil
  • the TD of the power storage device exterior material corresponds to the TD of the aluminum alloy foil.
  • a strip is placed between a molding die (female mold) having a diameter of 55 mm (MD) x 32 mm (TD) and a corresponding molding die (male mold) (the female mold side is the base layer side), and cold forming is performed with a pressing pressure of 0.9 MPa and a forming depth of 5.5 mm to obtain a formed exterior material for an electricity storage device (see FIGS. 4 and 5).
  • 16 pieces of each of the obtained exterior materials for electric storage devices after molding are prepared and used as samples.
  • 16 samples are placed in a constant temperature bath at a temperature of 80 ° C. and a relative humidity of 90%, and the occurrence of peeling between the aluminum alloy foil and the biaxially oriented nylon film of the base layer is checked every day.
  • the exterior material 10 for an electricity storage device of the present disclosure includes, for example, as shown in FIGS. It consists of a laminate comprising layers 4 in that order.
  • the base material layer 1 is the outermost layer
  • the heat-fusible resin layer 4 is the innermost layer.
  • the heat-sealable resin layers 4 of the electricity storage device exterior material 10 face each other, and the peripheral edges are heat-sealed.
  • the electricity storage device element is accommodated in the space formed by .
  • the barrier layer 3 is the reference
  • the heat-fusible resin layer 4 side is inner than the barrier layer 3
  • the base layer 1 side is more than the barrier layer 3. outside.
  • the electrical storage device exterior material 10 is provided between the barrier layer 3 and the heat-fusible resin layer 4 for the purpose of improving the adhesion between these layers. It may have an adhesive layer 5 depending on the requirements. Further, as shown in FIG. 3, a surface coating layer 6 or the like may be provided on the outside of the base material layer 1 (the side opposite to the heat-fusible resin layer 4 side), if necessary.
  • the barrier layer 3 is preferably one layer.
  • the thickness of the laminate that constitutes the power storage device exterior material 10 is not particularly limited, but from the viewpoint of cost reduction, energy density improvement, etc., it is, for example, 190 ⁇ m or less, preferably about 180 ⁇ m or less, about 155 ⁇ m or less, or about 120 ⁇ m or less. is mentioned.
  • the thickness of the laminate constituting the power storage device exterior material 10 is preferably about 35 ⁇ m or more, about 45 ⁇ m or more, about 60 ⁇ m or more can be mentioned.
  • the preferred range of the laminate constituting the power storage device exterior material 10 is, for example, about 35 to 190 ⁇ m, about 35 to 180 ⁇ m, about 35 to 155 ⁇ m, about 35 to 120 ⁇ m, about 45 to 190 ⁇ m, and about 45 to 180 ⁇ m. , about 45 to 155 ⁇ m, about 45 to 120 ⁇ m, about 60 to 190 ⁇ m, about 60 to 180 ⁇ m, about 60 to 155 ⁇ m, and about 60 to 120 ⁇ m, and particularly preferably about 60 to 155 ⁇ m.
  • the base material layer 1, the adhesive layer 2, the barrier layer 3, and the adhesive layer 5 provided as necessary with respect to the thickness (total thickness) of the laminate constituting the power storage device exterior material 10 , the heat-fusible resin layer 4, and the surface coating layer 6, which is provided as necessary, are preferably 90% or more, more preferably 95% or more, and still more preferably 98% or more. is.
  • the electrical storage device exterior material 10 of the present disclosure includes the base material layer 1, the adhesive layer 2, the barrier layer 3, the adhesive layer 5, and the heat-fusible resin layer 4, the electrical storage device exterior
  • the ratio of the total thickness of each layer to the thickness (total thickness) of the laminate constituting the material 10 is preferably 90% or more, more preferably 95% or more, and still more preferably 98% or more.
  • the power storage device exterior material 10 of the present disclosure is a laminate including the base material layer 1, the adhesive layer 2, the barrier layer 3, and the heat-fusible resin layer 4, the power storage device exterior material
  • the ratio of the total thickness of each of these layers to the thickness (total thickness) of the laminate constituting 10 is, for example, 80% or more, preferably 90% or more, more preferably 95% or more, and further preferably 98% or more. can be done.
  • each layer of the exterior material for the electricity storage device [base layer 1]
  • the base material layer 1 is a layer provided for the purpose of exhibiting a function as a base material of an exterior material for an electric storage device.
  • the base material layer 1 is located on the outer layer side of the exterior material for electrical storage devices.
  • the material forming the base material layer 1 is not particularly limited as long as it functions as a base material, that is, at least has insulating properties.
  • the base material layer 1 can be formed using, for example, a resin, and the resin may contain additives described later.
  • the substrate layer 1 may be, for example, a resin film made of resin, or may be formed by applying resin.
  • the resin film may be an unstretched film or a stretched film.
  • stretched films include uniaxially stretched films and biaxially stretched films, with biaxially stretched films being preferred.
  • stretching methods for forming a biaxially stretched film include successive biaxial stretching, inflation, and simultaneous biaxial stretching.
  • Methods for applying the resin include a roll coating method, a gravure coating method, an extrusion coating method, and the like.
  • resins forming the base material layer 1 include resins such as polyester, polyamide, polyolefin, epoxy resin, acrylic resin, fluororesin, polyurethane, silicon resin, phenolic resin, and modified products of these resins. Further, the resin forming the base material layer 1 may be a copolymer of these resins or a modified product of the copolymer. Furthermore, it may be a mixture of these resins.
  • polyesters and polyamides are preferred as resins forming the base material layer 1 .
  • polyester examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester.
  • copolyester examples include copolyester having ethylene terephthalate as a main repeating unit.
  • copolymer polyester polymerized with ethylene isophthalate with ethylene terephthalate as the main repeating unit hereinafter abbreviated after polyethylene (terephthalate / isophthalate)
  • polyethylene (terephthalate / adipate) polyethylene (terephthalate / sodium sulfoisophthalate)
  • polyethylene (terephthalate/sodium isophthalate) polyethylene (terephthalate/phenyl-dicarboxylate), polyethylene (terephthalate/decanedicarboxylate), and the like.
  • These polyesters may be used singly or in combination of two or more.
  • polyamide specifically, aliphatic polyamide such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, copolymer of nylon 6 and nylon 66; terephthalic acid and / or isophthalic acid Hexamethylenediamine-isophthalic acid-terephthalic acid copolymer polyamide such as nylon 6I, nylon 6T, nylon 6IT, nylon 6I6T (I represents isophthalic acid, T represents terephthalic acid) containing structural units derived from, polyamide MXD6 (polymetallic Polyamides containing aromatics such as silylene adipamide); alicyclic polyamides such as polyamide PACM6 (polybis(4-aminocyclohexyl)methane adipamide); Copolymerized polyamides, polyesteramide copolymers and polyetheresteramide copolymers which are copolymers of copolymerized polyamides with polyesters or polyalkylene ether glycols; and polyamides such
  • the substrate layer 1 preferably includes at least one of a polyester film, a polyamide film, and a polyolefin film, preferably includes at least one of a stretched polyester film, a stretched polyamide film, and a stretched polyolefin film, More preferably, at least one of an oriented polyethylene terephthalate film, an oriented polybutylene terephthalate film, an oriented nylon film, and an oriented polypropylene film is included, and the biaxially oriented polyethylene terephthalate film, biaxially oriented polybutylene terephthalate film, and biaxially oriented nylon film , biaxially oriented polypropylene film.
  • the base material layer 1 may be a single layer, or may be composed of two or more layers.
  • the substrate layer 1 may be a laminate obtained by laminating resin films with an adhesive or the like, or may be formed by co-extrusion of resin to form two or more layers. It may also be a laminate of resin films. A laminate of two or more resin films formed by coextrusion of resin may be used as the base material layer 1 without being stretched, or may be used as the base material layer 1 by being uniaxially or biaxially stretched.
  • the laminate of two or more resin films in the substrate layer 1 include a laminate of a polyester film and a nylon film, a laminate of nylon films of two or more layers, and a laminate of polyester films of two or more layers. etc., preferably a laminate of a stretched nylon film and a stretched polyester film, a laminate of two or more layers of stretched nylon films, and a laminate of two or more layers of stretched polyester films.
  • the substrate layer 1 is a laminate of two layers of resin films, a laminate of polyester resin films and polyester resin films, a laminate of polyamide resin films and polyamide resin films, or a laminate of polyester resin films and polyamide resin films.
  • a laminate is preferred, and a laminate of polyethylene terephthalate film and polyethylene terephthalate film, a laminate of nylon film and nylon film, or a laminate of polyethylene terephthalate film and nylon film is more preferred.
  • the polyester resin is resistant to discoloration when, for example, an electrolytic solution adheres to the surface. It is preferably located in the outermost layer.
  • the two or more layers of resin films may be laminated via an adhesive.
  • Preferred adhesives are the same as those exemplified for the adhesive layer 2 described later.
  • the method for laminating two or more layers of resin films is not particularly limited, and known methods can be employed. Examples thereof include dry lamination, sandwich lamination, extrusion lamination, thermal lamination, and the like. A lamination method is mentioned.
  • laminating by dry lamination it is preferable to use an adhesive containing polyurethane as the adhesive. At this time, the thickness of the adhesive is, for example, about 2 to 5 ⁇ m.
  • an anchor coat layer may be formed on the resin film and laminated. Examples of the anchor coat layer include the same adhesives as those exemplified for the adhesive layer 2 described later. At this time, the thickness of the anchor coat layer is, for example, about 0.01 to 1.0 ⁇ m.
  • At least one of the surface and the inside of the substrate layer 1 may contain additives such as lubricants, flame retardants, antiblocking agents, antioxidants, light stabilizers, tackifiers, and antistatic agents. good. Only one type of additive may be used, or two or more types may be mixed and used.
  • a lubricant exists on the surface of the base material layer 1 from the viewpoint of improving the moldability of the exterior material for an electricity storage device.
  • the lubricant is not particularly limited, but preferably includes an amide-based lubricant.
  • Specific examples of amide lubricants include saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylolamides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides.
  • saturated fatty acid amides include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, and hydroxystearic acid amide.
  • unsaturated fatty acid amides include oleic acid amide and erucic acid amide.
  • substituted amides include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide and the like.
  • methylolamide include methylol stearamide.
  • saturated fatty acid bisamides include methylenebisstearic acid amide, ethylenebiscapric acid amide, ethylenebislauric acid amide, ethylenebisstearic acid amide, ethylenebishydroxystearic acid amide, ethylenebisbehenic acid amide, hexamethylenebisstearin. acid amide, hexamethylenebisbehenamide, hexamethylenehydroxystearic acid amide, N,N'-distearyladipic acid amide, N,N'-distearylsebacic acid amide and the like.
  • unsaturated fatty acid bisamides include ethylenebisoleic acid amide, ethylenebiserucic acid amide, hexamethylenebisoleic acid amide, N,N'-dioleyladipic acid amide, and N,N'-dioleylsebacic acid amide. etc.
  • fatty acid ester amides include stearamide ethyl stearate.
  • aromatic bisamide include m-xylylenebisstearic acid amide, m-xylylenebishydroxystearic acid amide, N,N'-distearyl isophthalic acid amide and the like.
  • Lubricants may be used singly or in combination of two or more.
  • a lubricant exists on the surface of the base material layer 1, its amount is not particularly limited, but is preferably about 3 mg/m 2 or more, more preferably about 4 to 15 mg/m 2 , and still more preferably 5 to 14 mg. / m 2 degree.
  • the lubricant present on the surface of the substrate layer 1 may be obtained by exuding the lubricant contained in the resin constituting the substrate layer 1, or by coating the surface of the substrate layer 1 with the lubricant.
  • the thickness of the base material layer 1 is not particularly limited as long as it functions as a base material, but it is, for example, about 3 to 50 ⁇ m, preferably about 10 to 35 ⁇ m.
  • the thickness of each resin film constituting each layer is preferably about 2 to 25 ⁇ m.
  • the adhesive layer 2 is a layer provided between the base layer 1 and the barrier layer 3 for the purpose of enhancing the adhesiveness between them.
  • the porosity of the cross section of the adhesive layer 2 in the thickness direction observed at a magnification of 150 times of the objective lens is 25% or less.
  • the porosity of the adhesive layer 2 located between the base material layer 1 and the barrier layer 3 is set to 25% or less. Peeling (delamination) at the position of the adhesive layer 2 of the power storage device exterior material 10 is suppressed, and excellent moist heat resistance can be exhibited.
  • the porosity of the adhesive layer 2 may be 25% or less, it is preferably 21% or less, more preferably 15% or less, and still more preferably 10% or less from the viewpoint of more preferably exhibiting the effects of the present disclosure. % or less, more preferably 8% or less, more preferably 5% or less, still more preferably 3% or less.
  • the porosity is preferably 0.5% or more, most preferably 0%.
  • preferred ranges for the porosity include 0 to 25%, 0 to 21%, 0 to 15%, 0 to 10%, 0 to 8%, 0 to 5%, 0 to 3%, 0.3%, 5-25%, 0.5-21%, 0.5-15%, 0.5-10%, 0.5-8%, 0.5-5%, 0.5-3%, etc. .
  • the presence of some voids in the adhesive layer 2 reduces the load that the adhesive layer 2 exerts on the base layer 1 and the barrier layer 3 during molding. can be expected to relax.
  • the porosity of the adhesive layer 2 is a value obtained by measuring a cross section of the adhesive layer 2 in the thickness direction with a laser microscope at a magnification of 150 times with an objective lens. It is desirable to measure the cross section of (particularly, the bent portion of the exterior material for an electric storage device). For example, as shown in FIGS. 4 and 5, if the shape of the concave portion 100 is substantially rectangular in plan view, when the power storage device exterior material 10 is observed from the base layer 1 side, in plan view Regarding the concave portion 100 (molding portion) formed in a substantially rectangular shape, the boundary portion between the curved line forming the corner portion of the concave portion 100 and the straight line forming the ridge portion (in FIG.
  • the solid line indicating the concave portion 100 and (1) to ( 8) where the dashed lines intersect) are cut in a direction parallel to the thickness direction (and in a direction perpendicular to the side to be cut) with a commercially available microtome (eg, ROM-380 manufactured by Yamato Koki Kogyo Co., Ltd.), and glued. A cross section of the agent layer 2 is obtained.
  • the corner portions of the concave portion 100 do not form ideal right angles. It becomes curved. This is because the corner portion is generally rounded when molding the exterior material for an electric storage device.
  • the cross section of the observation target is taken at the boundary portion between the curved line forming the corner portion of the recess 100 and the straight line forming the ridge portion (in FIG. 4, the place where the solid line indicating the recess 100 and the broken lines (1) to (8) intersect). It is preferable to obtain As described above, the shape of the recessed portion (space) formed by molding the exterior material for an electric storage device varies, but in places where the laminate is stretched during molding and locally burdened, peeling in a moist and hot environment is particularly likely to occur. Therefore, it is effective to measure the porosity of the adhesive layer at the location where the load is applied.
  • the shape of the recess (space) formed by molding the exterior material for an electric storage device is, for example, a shape having a corner portion and a ridge line portion on the sealing edge side, a curved line forming the corner portion and a straight line forming the ridge line are formed.
  • the boundary portion is a portion where a burden is applied during molding. That is, for example, as shown in FIGS. 4 and 5, when a substantially rectangular concave portion 100 in plan view is formed on the side of the sealing edge 10C (FIG. 5), the concave portion 100 in FIG. Although it has a part, the boundary part between the curve forming the corner part and the straight line forming the ridge part (in FIG.
  • the place where the solid line indicating the recess 100 and the broken lines (1) to (8) intersect) is a burden during molding This is the point where the Therefore, it is effective to measure the porosity of the section in the thickness direction of the portion.
  • the porosity of the cross section of the bent portion 10B on the sealing edge 10C side is measured, and the porosity with the largest measured value is It can be the porosity of the adhesive layer 2 of the device exterior material.
  • the bent portion on the sealing edge 10C side of the bent portion on the bottom surface 100A side and the sealing edge 10C side of the concave portion 100 It is effective to measure the porosity of the cross section of
  • the porosity is measured by observing the cross section of the adhesive layer 2 with a commercially available laser microscope (eg VK-9710 manufactured by KEYENCE) with an objective lens of 150x magnification. Subsequently, from the cross-sectional observation results obtained, the area of the adhesive layer 2 and the area of the voids are quantified using analysis software (for example, VK Analyzer version 2.5.0.1). Specifically, select the volume and area (V) of the evaluation analysis (A) of the VK Analyzer, select the "polygon" mode for the area of the adhesive layer, and all the adhesive layers represented in the acquired image The area is measured by connecting the points by choosing 5 points between the barrier layer and the adhesive layer and 5 points between the adhesive layer and the substrate layer so that they are included.
  • analysis software for example, VK Analyzer version 2.5.0.1
  • the "free line" mode is selected for the gap, and the area is measured by enclosing it with a line so that the entire gap is filled.
  • the ratio of the obtained areas is calculated by the following formula to obtain the cross-sectional porosity (%).
  • the porosity is measured on the cross section at the eight positions (see the places where the solid line indicating the recess 100 and the broken lines (1) to (8) intersect in FIG. 4), the measured values at a total of eight positions Among them, the value with the largest porosity is adopted.
  • Porosity (%) of the cross section of the adhesive layer (cross-sectional area of voids in the adhesive layer/cross-sectional area of the adhesive layer) x 100
  • the adhesive layer 2 As a method for reducing the porosity of the adhesive layer 2 to 25% or less, not only selection of the type of adhesive but also In addition, it is required to design the adhesive layer 2 so as not to generate air bubbles as much as possible. For example, by increasing the lamination pressure when laminating the base material layer 1 and the barrier layer 3 with the adhesive layer 2 interposed therebetween, air trapped in the adhesive layer 2 when the base material layer 1 and the barrier layer 3 are laminated. is crushed to reduce the air remaining in the adhesive layer 2, thereby suppressing the generation of voids. In addition, by increasing the diameter of the nip roll used when laminating the base layer 1 and the barrier layer 3 with the adhesive layer 2 interposed therebetween, the adhesive layer 1 and the barrier layer 3 are laminated together.
  • a method of suppressing the generation of voids by increasing the time and area for crushing the air caught in the adhesive layer 2 and reducing the air remaining in the adhesive layer 2 can be mentioned. Furthermore, when laminating the base material layer 1 and the barrier layer 3 with the adhesive layer 2 interposed therebetween, the base material layer 1 is laminated after the adhesive for forming the adhesive layer 2 is applied to the surface of the barrier layer 3. By doing so, the air caught in the lamination of the base material layer 1 gradually volatilizes from the side of the base material layer 1 after lamination, so that the generation of voids can be suppressed.
  • the barrier layer 3 is laminated after the adhesive for forming the adhesive layer 2 is applied to the surface of the base material layer 1, the air caught in the lamination of the barrier layer 3 is Since it cannot volatilize from the barrier layer 3 side, voids are likely to be formed in the adhesive layer 2 . At least one of these methods is selected to suppress inclusion of air bubbles in the adhesive layer 2 and reduce the porosity.
  • the adhesive layer 2 is made of an adhesive that can bond the base material layer 1 and the barrier layer 3 together.
  • the adhesive used to form the adhesive layer 2 is not limited, but may be any of a chemical reaction type, a solvent volatilization type, a hot melt type, a hot pressure type, and the like. Further, it may be a two-liquid curing adhesive (two-liquid adhesive), a one-liquid curing adhesive (one-liquid adhesive), or a resin that does not involve a curing reaction. Further, the adhesive layer 2 may be a single layer or multiple layers.
  • the adhesive is preferably a resin composition containing a curable resin, and the adhesive layer 2 is preferably formed from a cured product of the resin composition.
  • the curable resin (adhesive component) contained in the adhesive include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, polyester such as copolymer polyester; polyether; Polyurethane; Epoxy resin; Phenol resin; Polyamide such as nylon 6, nylon 66, nylon 12, copolyamide; Polyolefin resin such as polyolefin, cyclic polyolefin, acid-modified polyolefin, acid-modified cyclic polyolefin; meth)acrylic resin; polyimide; polycarbonate; amino resin such as urea resin and melamine resin; rubber such as chloroprene rubber, nitrile rubber and styrene-butadiene rubber; These adhesive components may be used sing
  • the adhesive layer 2 is preferably made of a cured resin composition containing polyurethane.
  • an appropriate curing agent can be used in combination with these adhesive component resins to increase the adhesive strength.
  • the curing agent is selected from among polyisocyanates, polyfunctional epoxy resins, oxazoline group-containing polymers, polyamine resins, acid anhydrides, etc., depending on the functional groups of the adhesive component.
  • polyurethanes examples include polyurethanes containing a first agent containing a polyol compound and a second agent containing an isocyanate compound.
  • Preferred examples include a two-component curing type polyurethane in which a polyol such as polyester polyol, polyether polyol, or acrylic polyol is used as the first agent and an aromatic or aliphatic polyisocyanate is used as the second agent.
  • polyurethane include polyurethane containing a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance and an isocyanate compound.
  • polyurethane examples include polyurethane containing a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance and a polyol compound.
  • polyurethanes examples include polyurethanes obtained by reacting a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance with moisture in the air and curing the polyurethane.
  • the polyol compound it is preferable to use a polyester polyol having a hydroxyl group in a side chain in addition to the terminal hydroxyl group of the repeating unit.
  • the second agent examples include aliphatic, alicyclic, aromatic, and araliphatic isocyanate compounds.
  • isocyanate compounds include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate. (MDI), naphthalene diisocyanate (NDI), and the like.
  • polyfunctional isocyanate-modified products of one or more of these diisocyanates are also included.
  • a polymer for example, a trimer
  • Such multimers include adducts, biurets, nurates and the like. Since the adhesive layer 2 is made of polyurethane, the exterior material for an electric storage device is endowed with excellent electrolyte resistance, and even if the electrolyte adheres to the side surface, the base layer 1 is suppressed from being peeled off.
  • the adhesive layer 2 may contain other components as long as they do not impede adhesion, and may contain colorants, thermoplastic elastomers, tackifiers, fillers, and the like. Since the adhesive layer 2 contains a coloring agent, the exterior material for an electric storage device can be colored. Known substances such as pigments and dyes can be used as the colorant. In addition, only one type of colorant may be used, or two or more types may be mixed and used.
  • the type of pigment is not particularly limited as long as it does not impair the adhesiveness of the adhesive layer 2.
  • organic pigments include azo-based, phthalocyanine-based, quinacridone-based, anthraquinone-based, dioxazine-based, indigothioindigo-based, perinone-perylene-based, isoindolenine-based, and benzimidazolone-based pigments.
  • pigments include carbon black, titanium oxide, cadmium, lead, chromium oxide, and iron pigments, as well as fine powder of mica and fish scale foil.
  • carbon black is preferable, for example, in order to make the external appearance of the exterior material for a power storage device black.
  • the average particle size of the pigment is not particularly limited, and is, for example, about 0.05 to 5 ⁇ m, preferably about 0.08 to 2 ⁇ m.
  • the average particle size of the pigment is the median size measured with a laser diffraction/scattering particle size distribution analyzer.
  • the content of the pigment in the adhesive layer 2 is not particularly limited as long as the power storage device exterior material is colored, and is, for example, about 5 to 60% by mass, preferably 10 to 40% by mass.
  • the thickness of the adhesive layer 2 is not particularly limited as long as the substrate layer 1 and the barrier layer 3 can be adhered, but is, for example, about 1 ⁇ m or more, or about 2 ⁇ m or more. Moreover, the thickness of the adhesive layer 2 is, for example, about 10 ⁇ m or less, or about 5 ⁇ m or less. Moreover, the preferable range of the thickness of the adhesive layer 2 is about 1 to 10 ⁇ m, about 1 to 5 ⁇ m, about 2 to 10 ⁇ m, and about 2 to 5 ⁇ m.
  • the colored layer is a layer provided as necessary between the base layer 1 and the barrier layer 3 (not shown).
  • a colored layer may be provided between the base material layer 1 and the adhesive layer 2 and between the adhesive layer 2 and the barrier layer 3 . Further, a colored layer may be provided outside the base material layer 1 . By providing the colored layer, the exterior material for an electricity storage device can be colored.
  • the colored layer can be formed, for example, by applying ink containing a coloring agent to the surface of the base material layer 1 or the surface of the barrier layer 3 .
  • a coloring agent such as pigments and dyes can be used as the colorant.
  • only one type of colorant may be used, or two or more types may be mixed and used.
  • colorant contained in the colored layer are the same as those exemplified in the [Adhesive layer 2] column.
  • the barrier layer 3 is a layer that at least prevents permeation of moisture. In the exterior material for an electric storage device, it is preferable that the barrier layer 3 is one layer.
  • the barrier layer 3 examples include a metal foil, vapor deposition film, and resin layer having barrier properties.
  • vapor-deposited films include metal vapor-deposited films, inorganic oxide vapor-deposited films, and carbon-containing inorganic oxide vapor-deposited films.
  • the barrier layer 3 may also include a resin film provided with at least one of these deposited films and resin layers.
  • a plurality of barrier layers 3 may be provided.
  • the barrier layer 3 preferably includes a layer made of a metal material. Specific examples of the metal material that constitutes the barrier layer 3 include aluminum alloys, stainless steels, titanium steels, and steel plates. When used as a metal foil, at least one of an aluminum alloy foil and a stainless steel foil is included. is preferred.
  • the aluminum alloy foil is more preferably a soft aluminum alloy foil made of, for example, an annealed aluminum alloy, from the viewpoint of improving the formability of the exterior material for an electricity storage device, and from the viewpoint of further improving the formability. Therefore, it is preferably an aluminum alloy foil containing iron.
  • the iron content is preferably 0.1 to 9.0% by mass, more preferably 0.5 to 2.0% by mass.
  • the iron content is 0.1% by mass or more, it is possible to obtain an exterior material for an electricity storage device having superior moldability.
  • the iron content is 9.0% by mass or less, it is possible to obtain an exterior material for an electricity storage device that is more excellent in flexibility.
  • the soft aluminum alloy foil for example, an aluminum alloy having a composition specified by JIS H4160: 1994 A8021H-O, JIS H4160: 1994 A8079H-O, JIS H4000: 2014 A8021P-O, or JIS H4000: 2014 A8079P-O foil.
  • silicon, magnesium, copper, manganese, etc. may be added as needed.
  • softening can be performed by annealing treatment or the like.
  • stainless steel foils include austenitic, ferritic, austenitic/ferritic, martensitic, and precipitation hardened stainless steel foils. Furthermore, from the viewpoint of providing an exterior material for an electricity storage device with excellent formability, the stainless steel foil is preferably made of austenitic stainless steel.
  • austenitic stainless steel that constitutes the stainless steel foil
  • SUS304 is particularly preferable.
  • the thickness of the barrier layer 3 should be at least as long as it functions as a barrier layer that suppresses the intrusion of moisture.
  • the thickness of the barrier layer 3 is preferably about 85 ⁇ m or less, more preferably about 50 ⁇ m or less, even more preferably about 40 ⁇ m or less, particularly preferably about 35 ⁇ m or less.
  • the thickness of the barrier layer 3 is preferably about 10 ⁇ m or more, more preferably about 20 ⁇ m or more, and more preferably about 25 ⁇ m or more.
  • the preferred range of thickness of the barrier layer 3 is about 10 to 85 ⁇ m, about 10 to 50 ⁇ m, about 10 to 40 ⁇ m, about 10 to 35 ⁇ m, about 20 to 85 ⁇ m, about 20 to 50 ⁇ m, about 20 to 40 ⁇ m, 20 to 40 ⁇ m. About 35 ⁇ m, about 25 to 85 ⁇ m, about 25 to 50 ⁇ m, about 25 to 40 ⁇ m, and about 25 to 35 ⁇ m.
  • the barrier layer 3 is made of an aluminum alloy foil, the above range is particularly preferred.
  • the thickness of the stainless steel foil is preferably about 60 ⁇ m or less, more preferably about 50 ⁇ m or less, even more preferably about 40 ⁇ m or less, and even more preferably about 30 ⁇ m. Below, it is particularly preferably about 25 ⁇ m or less. Also, the thickness of the stainless steel foil is preferably about 10 ⁇ m or more, more preferably about 15 ⁇ m or more. In addition, the preferable range of the thickness of the stainless steel foil is about 10 to 60 ⁇ m, about 10 to 50 ⁇ m, about 10 to 40 ⁇ m, about 10 to 30 ⁇ m, about 10 to 25 ⁇ m, about 15 to 60 ⁇ m, about 15 to 50 ⁇ m, 15 to 50 ⁇ m. About 40 ⁇ m, about 15 to 30 ⁇ m, and about 15 to 25 ⁇ m can be mentioned.
  • the barrier layer 3 is a metal foil, it is preferable that at least the surface opposite to the base layer is provided with a corrosion-resistant film in order to prevent dissolution and corrosion.
  • the barrier layer 3 may be provided with a corrosion resistant coating on both sides.
  • the corrosion-resistant film includes, for example, hydrothermal transformation treatment such as boehmite treatment, chemical conversion treatment, anodizing treatment, plating treatment such as nickel and chromium, and corrosion prevention treatment such as applying a coating agent to the surface of the barrier layer. It is a thin film that provides corrosion resistance (for example, acid resistance, alkali resistance, etc.) to the barrier layer.
  • the corrosion-resistant film specifically means a film that improves the acid resistance of the barrier layer (acid-resistant film), a film that improves the alkali resistance of the barrier layer (alkali-resistant film), and the like.
  • the treatment for forming the corrosion-resistant film one type may be performed, or two or more types may be used in combination. Also, not only one layer but also multiple layers can be used.
  • the hydrothermal transformation treatment and the anodizing treatment are treatments in which the surface of the metal foil is dissolved with a treating agent to form a metal compound having excellent corrosion resistance. These treatments are sometimes included in the definition of chemical conversion treatment.
  • the barrier layer 3 includes the corrosion-resistant film.
  • the corrosion-resistant coating prevents delamination between the barrier layer (e.g., aluminum alloy foil) and the substrate layer during the molding of the exterior material for power storage devices, and the hydrogen fluoride generated by the reaction between the electrolyte and moisture. , the dissolution and corrosion of the barrier layer surface, especially when the barrier layer is an aluminum alloy foil, the aluminum oxide present on the barrier layer surface is prevented from dissolving and corroding, and the adhesion (wettability) of the barrier layer surface is improved. , and exhibits the effect of preventing delamination between the base material layer and the barrier layer during heat sealing and preventing delamination between the base material layer and the barrier layer during molding.
  • the barrier layer e.g., aluminum alloy foil
  • corrosion-resistant coatings formed by chemical conversion treatment are known, and are mainly composed of at least one of phosphates, chromates, fluorides, triazinethiol compounds, and rare earth oxides. and corrosion-resistant coatings containing.
  • Examples of chemical conversion treatments using phosphate and chromate include chromic acid chromate treatment, phosphoric acid chromate treatment, phosphoric acid-chromate treatment, and chromate treatment.
  • Examples of compounds include chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromium acetyl acetate, chromium chloride, potassium chromium sulfate, and the like.
  • Phosphorus compounds used for these treatments include sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid, and the like.
  • Examples of the chromate treatment include etching chromate treatment, electrolytic chromate treatment, coating-type chromate treatment, etc., and coating-type chromate treatment is preferred.
  • the inner layer side surface of the barrier layer (for example, aluminum alloy foil) is first subjected to a well-known method such as an alkali immersion method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, an acid activation method, or the like.
  • metal phosphate such as Cr (chromium) phosphate, Ti (titanium) phosphate, Zr (zirconium) phosphate, Zn (zinc) phosphate is applied to the degreased surface.
  • a processing solution mainly composed of a salt and a mixture of these metal salts a processing solution mainly composed of a non-metal phosphate salt and a mixture of these non-metal salts, or a mixture of these and a synthetic resin.
  • This is a treatment in which a treatment liquid composed of a mixture is applied by a well-known coating method such as a roll coating method, a gravure printing method, or an immersion method, and then dried.
  • Various solvents such as water, alcohol-based solvents, hydrocarbon-based solvents, ketone-based solvents, ester-based solvents, and ether-based solvents can be used as the treatment liquid, and water is preferred.
  • the resin component used at this time includes polymers such as phenolic resins and acrylic resins. and the chromate treatment used.
  • the repeating units represented by the following general formulas (1) to (4) may be contained singly or in any combination of two or more. good too.
  • the acrylic resin is polyacrylic acid, acrylic acid methacrylic acid ester copolymer, acrylic acid maleic acid copolymer, acrylic acid styrene copolymer, or derivatives thereof such as sodium salts, ammonium salts, and amine salts. is preferred.
  • derivatives of polyacrylic acid such as ammonium salt, sodium salt or amine salt of polyacrylic acid are preferred.
  • polyacrylic acid means a polymer of acrylic acid.
  • the acrylic resin is preferably a copolymer of acrylic acid and dicarboxylic acid or dicarboxylic anhydride, and the ammonium salt, sodium salt, Alternatively, it is also preferably an amine salt. Only one type of acrylic resin may be used, or two or more types may be mixed and used.
  • X represents a hydrogen atom, hydroxy group, alkyl group, hydroxyalkyl group, allyl group or benzyl group.
  • R 1 and R 2 are the same or different and represent a hydroxy group, an alkyl group or a hydroxyalkyl group.
  • alkyl groups represented by X, R 1 and R 2 in general formulas (1) to (4) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, A linear or branched alkyl group having 1 to 4 carbon atoms such as a tert-butyl group can be mentioned.
  • hydroxyalkyl groups represented by X, R 1 and R 2 include hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 1-hydroxypropyl group, 2-hydroxypropyl group, 3- A straight or branched chain having 1 to 4 carbon atoms substituted with one hydroxy group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group and 4-hydroxybutyl group An alkyl group is mentioned.
  • the alkyl groups and hydroxyalkyl groups represented by X, R 1 and R 2 may be the same or different.
  • X is preferably a hydrogen atom, a hydroxy group or a hydroxyalkyl group.
  • the number average molecular weight of the aminated phenol polymer having repeating units represented by formulas (1) to (4) is, for example, preferably about 500 to 1,000,000, more preferably about 1,000 to 20,000. more preferred.
  • the aminated phenol polymer is produced, for example, by polycondensing a phenol compound or naphthol compound and formaldehyde to produce a polymer comprising repeating units represented by the general formula (1) or general formula (3), followed by formaldehyde. and an amine (R 1 R 2 NH) to introduce a functional group (--CH 2 NR 1 R 2 ) into the polymer obtained above.
  • An aminated phenol polymer is used individually by 1 type or in mixture of 2 or more types.
  • the corrosion-resistant film is formed by a coating-type corrosion prevention treatment in which a coating agent containing at least one selected from the group consisting of rare earth element oxide sol, anionic polymer, and cationic polymer is applied.
  • a thin film that is The coating agent may further contain phosphoric acid or a phosphate, a cross-linking agent for cross-linking the polymer.
  • rare earth element oxide sol rare earth element oxide fine particles (for example, particles having an average particle size of 100 nm or less) are dispersed in a liquid dispersion medium.
  • rare earth element oxides include cerium oxide, yttrium oxide, neodymium oxide, and lanthanum oxide, and cerium oxide is preferable from the viewpoint of further improving adhesion.
  • the rare earth element oxides contained in the corrosion-resistant coating can be used singly or in combination of two or more.
  • various solvents such as water, alcohol solvents, hydrocarbon solvents, ketone solvents, ester solvents, and ether solvents can be used, with water being preferred.
  • the cationic polymer include polyethyleneimine, an ionic polymer complex composed of a polymer containing polyethyleneimine and carboxylic acid, a primary amine-grafted acrylic resin obtained by graft-polymerizing a primary amine to an acrylic backbone, polyallylamine, or a derivative thereof. , aminated phenols and the like are preferred.
  • the anionic polymer is preferably poly(meth)acrylic acid or a salt thereof, or a copolymer containing (meth)acrylic acid or a salt thereof as a main component.
  • the cross-linking agent is preferably at least one selected from the group consisting of a compound having a functional group such as an isocyanate group, a glycidyl group, a carboxyl group, or an oxazoline group, and a silane coupling agent.
  • the phosphoric acid or phosphate is preferably condensed phosphoric acid or condensed phosphate.
  • fine particles of metal oxides such as aluminum oxide, titanium oxide, cerium oxide, and tin oxide, and barium sulfate are dispersed in phosphoric acid, which is applied to the surface of the barrier layer. C. or more, and those formed by performing baking processing are mentioned.
  • the corrosion-resistant film may, if necessary, have a laminated structure in which at least one of a cationic polymer and an anionic polymer is further laminated.
  • a cationic polymer and anionic polymers include those described above.
  • the analysis of the composition of the corrosion-resistant coating can be performed using, for example, time-of-flight secondary ion mass spectrometry.
  • the amount of the corrosion - resistant film formed on the surface of the barrier layer 3 in the chemical conversion treatment is not particularly limited. is about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of chromium, the phosphorus compound is about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of phosphorus, and aminated phenol polymer is contained in a ratio of, for example, about 1.0 to 200 mg, preferably about 5.0 to 150 mg.
  • the thickness of the corrosion-resistant coating is not particularly limited, but is preferably about 1 nm to 20 ⁇ m, more preferably 1 nm to 100 nm, from the viewpoint of cohesion of the coating and adhesion to the barrier layer and the heat-sealable resin layer. about 1 nm to 50 nm, more preferably about 1 nm to 50 nm.
  • the thickness of the corrosion-resistant film can be measured by observation with a transmission electron microscope, or by a combination of observation with a transmission electron microscope and energy dispersive X-ray spectroscopy or electron beam energy loss spectroscopy.
  • secondary ions composed of Ce, P and O for example, at least one of Ce 2 PO 4 + and CePO 4 ⁇ species
  • secondary ions composed of Cr, P, and O eg, at least one of CrPO 2 + and CrPO 4 ⁇
  • Chemical conversion treatment involves applying a solution containing a compound used to form a corrosion-resistant film to the surface of the barrier layer by a bar coating method, roll coating method, gravure coating method, immersion method, etc., and then changing the temperature of the barrier layer. is carried out by heating so that the temperature is about 70 to 200°C.
  • the barrier layer may be previously subjected to a degreasing treatment by an alkali immersion method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or the like. By performing the degreasing treatment in this way, it becomes possible to perform the chemical conversion treatment on the surface of the barrier layer more efficiently.
  • an acid degreasing agent obtained by dissolving a fluorine-containing compound in an inorganic acid for degreasing treatment it is possible to form not only the degreasing effect of the metal foil but also the passive metal fluoride. In such cases, only degreasing treatment may be performed.
  • the heat-fusible resin layer 4 corresponds to the innermost layer, and has the function of sealing the power storage device element by heat-sealing the heat-fusible resin layers to each other when assembling the power storage device. It is a layer (sealant layer) that exhibits
  • the resin constituting the heat-fusible resin layer 4 is not particularly limited as long as it is heat-fusible, but resins containing polyolefin skeletons such as polyolefins and acid-modified polyolefins are preferable.
  • the inclusion of a polyolefin skeleton in the resin constituting the heat-fusible resin layer 4 can be analyzed by, for example, infrared spectroscopy, gas chromatography-mass spectrometry, or the like. Further, when the resin constituting the heat-fusible resin layer 4 is analyzed by infrared spectroscopy, it is preferable that a peak derived from maleic anhydride is detected.
  • peaks derived from maleic anhydride are detected near wavenumbers of 1760 cm ⁇ 1 and 1780 cm ⁇ 1 .
  • the heat-fusible resin layer 4 is a layer composed of maleic anhydride-modified polyolefin
  • a peak derived from maleic anhydride is detected when measured by infrared spectroscopy.
  • the degree of acid denaturation is low, the peak may be too small to be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
  • polyolefins include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; ethylene- ⁇ -olefin copolymers; block copolymers of ethylene), random copolymers of polypropylene (for example, random copolymers of propylene and ethylene); propylene- ⁇ -olefin copolymers; ethylene-butene-propylene terpolymers; Among these, polypropylene is preferred.
  • the polyolefin resin is a copolymer, it may be a block copolymer or a random copolymer. These polyolefin-based resins may be used alone or in combination of two or more.
  • the polyolefin may be a cyclic polyolefin.
  • a cyclic polyolefin is a copolymer of an olefin and a cyclic monomer.
  • the olefin which is a constituent monomer of the cyclic polyolefin, include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. be done.
  • Examples of cyclic monomers constituting cyclic polyolefins include cyclic alkenes such as norbornene; cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene and norbornadiene. Among these, cyclic alkenes are preferred, and norbornene is more preferred.
  • Acid-modified polyolefin is a polymer modified by block polymerization or graft polymerization of polyolefin with an acid component.
  • the acid-modified polyolefin the above polyolefin, a copolymer obtained by copolymerizing the above polyolefin with a polar molecule such as acrylic acid or methacrylic acid, or a polymer such as crosslinked polyolefin can be used.
  • acid components used for acid modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride and itaconic anhydride, and anhydrides thereof.
  • the acid-modified polyolefin may be an acid-modified cyclic polyolefin.
  • Acid-modified cyclic polyolefin is a polymer obtained by copolymerizing a part of the monomers constituting the cyclic polyolefin in place of the acid component, or by block-polymerizing or graft-polymerizing the acid component to the cyclic polyolefin. be.
  • the acid-modified cyclic polyolefin is the same as described above.
  • the acid component used for acid modification is the same as the acid component used for modification of polyolefin.
  • Preferable acid-modified polyolefins include polyolefins modified with carboxylic acid or its anhydride, polypropylene modified with carboxylic acid or its anhydride, maleic anhydride-modified polyolefin, and maleic anhydride-modified polypropylene.
  • the heat-fusible resin layer 4 may be formed of one type of resin alone, or may be formed of a blend polymer in which two or more types of resin are combined. Furthermore, the heat-fusible resin layer 4 may be formed of only one layer, or may be formed of two or more layers of the same or different resins.
  • the heat-fusible resin layer 4 may contain a lubricant or the like as necessary.
  • a lubricant it is possible to improve the moldability of the power storage device exterior material.
  • the lubricant is not particularly limited, and known lubricants can be used. Lubricants may be used singly or in combination of two or more.
  • the lubricant is not particularly limited, but preferably includes an amide-based lubricant. Specific examples of the lubricant include those exemplified for the base material layer 1 . Lubricants may be used singly or in combination of two or more.
  • the amount of the lubricant is not particularly limited, but from the viewpoint of improving the moldability of the exterior material for an electricity storage device, the amount is preferably about 10 to 50 mg/m 2 . , and more preferably about 15 to 40 mg/m 2 .
  • the lubricant present on the surface of the heat-fusible resin layer 4 may be obtained by exuding the lubricant contained in the resin constituting the heat-fusible resin layer 4 .
  • the surface may be coated with a lubricant.
  • the thickness of the heat-fusible resin layer 4 is not particularly limited as long as the heat-fusible resin layers are heat-sealed to each other to exhibit the function of sealing the electricity storage device element. About 85 ⁇ m or less, more preferably about 15 to 85 ⁇ m. For example, when the thickness of the adhesive layer 5 described later is 10 ⁇ m or more, the thickness of the heat-fusible resin layer 4 is preferably about 85 ⁇ m or less, more preferably about 15 to 45 ⁇ m. When the thickness of the adhesive layer 5 described later is less than 10 ⁇ m or when the adhesive layer 5 is not provided, the thickness of the heat-fusible resin layer 4 is preferably about 20 ⁇ m or more, more preferably 35 to 85 ⁇ m. degree.
  • the adhesive layer 5 is provided between the barrier layer 3 (or the corrosion-resistant film) and the heat-fusible resin layer 4 as necessary in order to firmly bond them. It is a layer that can be
  • the adhesive layer 5 is made of a resin that can bond the barrier layer 3 and the heat-fusible resin layer 4 together.
  • the resin used for forming the adhesive layer 5 for example, the same adhesives as those exemplified for the adhesive layer 2 can be used.
  • the resin used for forming the adhesive layer 5 contains a polyolefin skeleton. Polyolefins and acid-modified polyolefins exemplified for the resin layer 4 can be used.
  • the adhesive layer 5 preferably contains an acid-modified polyolefin.
  • Acid-modified components include dicarboxylic acids such as maleic acid, itaconic acid, succinic acid and adipic acid, their anhydrides, acrylic acid and methacrylic acid. Maleic acid is most preferred.
  • the olefin component is preferably a polypropylene-based resin, and the adhesive layer 5 most preferably contains maleic anhydride-modified polypropylene.
  • the resin constituting the adhesive layer 5 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography mass spectrometry, or the like, and the analysis method is not particularly limited.
  • the fact that the resin constituting the adhesive layer 5 contains an acid - modified polyolefin means that, for example, when the maleic anhydride - modified polyolefin is measured by infrared spectroscopy, anhydrous A peak derived from maleic acid is detected. However, if the degree of acid denaturation is low, the peak may be too small to be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
  • the adhesive layer 5 is made of a resin composition containing an acid-modified polyolefin and a curing agent.
  • a cured product is more preferred.
  • Preferred examples of the acid-modified polyolefin include those mentioned above.
  • the adhesive layer 5 is a cured product of a resin composition containing acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and a compound having an epoxy group.
  • a cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group and a compound having an epoxy group is particularly preferred.
  • the adhesive layer 5 preferably contains at least one selected from the group consisting of polyurethane, polyester, and epoxy resin, and more preferably contains polyurethane and epoxy resin.
  • an ester resin produced by a reaction between an epoxy group and a maleic anhydride group, and an amide ester resin produced by a reaction between an oxazoline group and a maleic anhydride group are preferable.
  • the adhesive layer 5 contains an isocyanate group-containing compound, an oxazoline group-containing compound, or an unreacted product of a curing agent such as an epoxy resin
  • the presence of the unreacted product can be detected by, for example, infrared spectroscopy, It can be confirmed by a method selected from Raman spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS), and the like.
  • the adhesive layer 5 contains at least It is preferably a cured product of a resin composition containing one curing agent.
  • the curing agent having a heterocyclic ring includes, for example, a curing agent having an oxazoline group, a curing agent having an epoxy group, and the like.
  • the curing agent having a C ⁇ N bond includes a curing agent having an oxazoline group, a curing agent having an isocyanate group, and the like.
  • the curing agent having a C—O—C bond includes a curing agent having an oxazoline group, a curing agent having an epoxy group, and the like.
  • the adhesive layer 5 is a cured product of a resin composition containing these curing agents, for example, gas chromatography mass spectrometry (GCMS), infrared spectroscopy (IR), time-of-flight secondary ion mass spectrometry (TOF -SIMS) and X-ray photoelectron spectroscopy (XPS).
  • GCMS gas chromatography mass spectrometry
  • IR infrared spectroscopy
  • TOF -SIMS time-of-flight secondary ion mass spectrometry
  • XPS X-ray photoelectron spectroscopy
  • the compound having an isocyanate group is not particularly limited, but from the viewpoint of effectively increasing the adhesion between the barrier layer 3 and the adhesive layer 5, polyfunctional isocyanate compounds are preferred.
  • the polyfunctional isocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups.
  • Specific examples of polyfunctional isocyanate curing agents include pentane diisocyanate (PDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymerization and nurate compounds, mixtures thereof, copolymers with other polymers, and the like.
  • adducts, biurets, isocyanurates and the like are included.
  • the content of the compound having an isocyanate group in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, more preferably 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. A range is more preferred. Thereby, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively improved.
  • the compound having an oxazoline group is not particularly limited as long as it is a compound having an oxazoline skeleton.
  • Specific examples of compounds having an oxazoline group include those having a polystyrene main chain and those having an acrylic main chain.
  • the Epocross series by Nippon Shokubai Co., Ltd. etc. are mentioned, for example.
  • the ratio of the compound having an oxazoline group in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, more preferably 0.5 to 40% by mass, in the resin composition constituting the adhesive layer 5. is more preferable. Thereby, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively improved.
  • Examples of compounds having an epoxy group include epoxy resins.
  • the epoxy resin is not particularly limited as long as it is a resin capable of forming a crosslinked structure with epoxy groups present in the molecule, and known epoxy resins can be used.
  • the weight average molecular weight of the epoxy resin is preferably about 50 to 2000, more preferably about 100 to 1000, still more preferably about 200 to 800.
  • the weight average molecular weight of the epoxy resin is a value measured by gel permeation chromatography (GPC) under conditions using polystyrene as a standard sample.
  • epoxy resins include glycidyl ether derivatives of trimethylolpropane, bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, bisphenol F-type glycidyl ether, novolac glycidyl ether, glycerin polyglycidyl ether, polyglycerin polyglycidyl ether, and the like. are mentioned.
  • An epoxy resin may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the proportion of the epoxy resin in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, more preferably in the range of 0.5 to 40% by mass, in the resin composition constituting the adhesive layer 5. is more preferred. Thereby, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively improved.
  • the polyurethane is not particularly limited, and known polyurethanes can be used.
  • the adhesive layer 5 may be, for example, a cured product of two-component curing type polyurethane.
  • the proportion of polyurethane in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, more preferably in the range of 0.5 to 40% by mass, in the resin composition constituting the adhesive layer 5. more preferred.
  • the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced in an atmosphere containing a component that induces corrosion of the barrier layer, such as an electrolytic solution.
  • the adhesive layer 5 is a cured product of a resin composition containing at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and an epoxy resin, and the acid-modified polyolefin.
  • the acid-modified polyolefin functions as a main agent, and the compound having an isocyanate group, the compound having an oxazoline group, and the compound having an epoxy group each function as a curing agent.
  • the adhesive layer 5 may contain a modifier having a carbodiimide group.
  • the thickness of the adhesive layer 5 is preferably about 50 ⁇ m or less, about 40 ⁇ m or less, about 30 ⁇ m or less, about 20 ⁇ m or less, or about 5 ⁇ m or less. Also, the thickness of the adhesive layer 5 is preferably about 0.1 ⁇ m or more and about 0.5 ⁇ m or more.
  • the thickness range of the adhesive layer 5 is preferably about 0.1 to 50 ⁇ m, about 0.1 to 40 ⁇ m, about 0.1 to 30 ⁇ m, about 0.1 to 20 ⁇ m, and about 0.1 to 5 ⁇ m. , about 0.5 to 50 ⁇ m, about 0.5 to 40 ⁇ m, about 0.5 to 30 ⁇ m, about 0.5 to 20 ⁇ m, and about 0.5 to 5 ⁇ m.
  • the thickness is preferably about 1 to 10 ⁇ m, more preferably about 1 to 5 ⁇ m.
  • the thickness is preferably about 2 to 50 ⁇ m, more preferably about 10 to 40 ⁇ m.
  • the exterior material for an electricity storage device of the present disclosure is provided on the base layer 1 (base layer 1 (the side opposite to the barrier layer 3) may be provided with a surface coating layer 6.
  • the surface coating layer 6 is a layer positioned on the outermost layer side of the exterior material for an electricity storage device when an electricity storage device is assembled using the exterior material for an electricity storage device.
  • the surface coating layer 6 examples include resins such as polyvinylidene chloride, polyester, polyamide, epoxy resin, acrylic resin, fluororesin, polyurethane, silicon resin, phenolic resin, and modified products of these resins. Copolymers of these resins or modified copolymers may also be used. Furthermore, it may be a mixture of these resins.
  • the resin is preferably a curable resin. That is, the surface coating layer 6 is preferably made of a cured product of a resin composition containing a curable resin.
  • the resin forming the surface coating layer 6 is a curable resin
  • the resin may be either a one-liquid curable type or a two-liquid curable type, preferably the two-liquid curable type.
  • the two-liquid curing resin include two-liquid curing polyurethane, two-liquid curing polyester, and two-liquid curing epoxy resin. Among these, two-liquid curable polyurethane is preferred.
  • two-liquid curable polyurethanes include polyurethanes containing a first agent containing a polyol compound and a second agent containing an isocyanate compound.
  • Preferred examples include a two-component curing type polyurethane in which a polyol such as polyester polyol, polyether polyol, or acrylic polyol is used as the first agent and an aromatic or aliphatic polyisocyanate is used as the second agent.
  • polyurethane include polyurethane containing a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance and an isocyanate compound.
  • polyurethane examples include polyurethane containing a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance and a polyol compound.
  • polyurethanes examples include polyurethanes obtained by reacting a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance with moisture in the air and the like to cure the compound.
  • the polyol compound it is preferable to use a polyester polyol having a hydroxyl group in a side chain in addition to the terminal hydroxyl group of the repeating unit.
  • the second agent examples include aliphatic, alicyclic, aromatic, and araliphatic isocyanate compounds.
  • isocyanate compounds include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate. (MDI), naphthalene diisocyanate (NDI), and the like.
  • polyfunctional isocyanate-modified products of one or more of these diisocyanates are also included.
  • a polymer for example, a trimer
  • Such multimers include adducts, biurets, nurates and the like.
  • the aliphatic isocyanate compound refers to an isocyanate having an aliphatic group and no aromatic ring
  • the alicyclic isocyanate compound refers to an isocyanate having an alicyclic hydrocarbon group
  • the aromatic isocyanate compound refers to an isocyanate having an aromatic ring. Since the surface coating layer 6 is made of polyurethane, the exterior material for an electric storage device is imparted with excellent electrolyte resistance.
  • At least one of the surface and the inside of the surface coating layer 6 may be coated with the above-described lubricant or anti-rust agent as necessary depending on the functionality to be provided on the surface coating layer 6 and its surface.
  • Additives such as blocking agents, matting agents, flame retardants, antioxidants, tackifiers and antistatic agents may be included.
  • the additive include fine particles having an average particle size of about 0.5 nm to 5 ⁇ m. The average particle size of the additive is the median size measured with a laser diffraction/scattering particle size distribution analyzer.
  • Additives may be either inorganic or organic.
  • shape of the additive is not particularly limited, and examples thereof include spherical, fibrous, plate-like, amorphous, scale-like, and the like.
  • additives include talc, silica, graphite, kaolin, montmorillonite, mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, neodymium oxide, and antimony oxide.
  • Additives may be used singly or in combination of two or more.
  • silica, barium sulfate, and titanium oxide are preferred from the viewpoint of dispersion stability and cost.
  • the additive may be subjected to various surface treatments such as insulation treatment and high-dispersion treatment.
  • the method of forming the surface coating layer 6 is not particularly limited, and for example, a method of applying a resin for forming the surface coating layer 6 can be used. When adding additives to the surface coating layer 6, a resin mixed with the additives may be applied.
  • the thickness of the surface coating layer 6 is not particularly limited as long as the above functions of the surface coating layer 6 are exhibited.
  • the method for producing the exterior material for an electricity storage device of the present disclosure is not particularly limited as long as a laminate obtained by laminating each layer included in the exterior material for an electricity storage device of the present invention is obtained.
  • the adhesive layer 2 is formed so as to satisfy the porosity of .
  • the method for manufacturing the exterior material 10 for an electricity storage device of the present disclosure is as follows. The details of each layer of the laminate constituting the exterior material for an electricity storage device, the details of the porosity, etc. are as described above.
  • preparing a film-like laminate comprising at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order; A step of molding the laminate so as to protrude from the heat-fusible resin layer side to the base layer side, and forming a recess in which an electricity storage device element is housed on the heat-fusible resin layer side. and A method for producing an exterior material for an electric storage device, wherein the cross section of the adhesive layer in the thickness direction has a porosity of 25% or less observed at a magnification of 150 times with an objective lens.
  • the adhesive layer 2 in order to form the adhesive layer 2 so as to have the above-described porosity, it is necessary to select not only the type of adhesive but also the base layer 1 and the barrier layer.
  • the adhesive layer 1 and the barrier layer 3 are laminated together.
  • a method of suppressing the generation of voids by increasing the time and area for crushing the air caught in the adhesive layer 2 and reducing the air remaining in the adhesive layer 2 can be mentioned.
  • the base material layer 1 is laminated after the adhesive for forming the adhesive layer 2 is applied to the surface of the barrier layer 3.
  • the air caught in the lamination of the base material layer 1 gradually volatilizes from the side of the base material layer 1 after lamination, so that the generation of voids can be suppressed.
  • the barrier layer 3 is laminated after the adhesive for forming the adhesive layer 2 is applied to the surface of the base material layer 1, the air taken in when laminating the barrier layer 3 is Since the adhesive cannot volatilize from the side, voids are more likely to be formed in the adhesive layer 2 than in the case where the adhesive is applied to the surface of the barrier layer 3 .
  • the barrier layer 3 is laminated after the adhesive for forming the adhesive layer 2 is applied to the surface of the base material layer 1, the air caught in the lamination of the barrier layer 3 volatilizes from the barrier layer 3 side. As shown in the schematic diagrams of FIGS. 9 and 10, voids 2a are likely to be formed on the barrier layer side.
  • the adhesive for forming the adhesive layer 2 is applied to the surface of the barrier layer 3 and then the substrate layer 1 is laminated, voids are likely to be formed on the substrate layer side, and volatilization is likely to occur as described above. The generation of voids is suppressed, or if they are formed, they are of small size.
  • the barrier layer 3 is preferably one layer.
  • a layered body (hereinafter also referred to as "layered body A”) is formed by laminating a substrate layer 1, an adhesive layer 2, and a barrier layer 3 in this order.
  • the laminate A is formed by applying an adhesive used for forming the adhesive layer 2 on the substrate layer 1 or on the barrier layer 3 whose surface is chemically treated as necessary, by a gravure coating method, It can be performed by a dry lamination method in which the barrier layer 3 or the substrate layer 1 is laminated and the adhesive layer 2 is cured after coating and drying by a coating method such as a roll coating method.
  • the technique for reducing the porosity of the adhesive layer 2 is as described above.
  • the heat-fusible resin layer 4 is laminated on the barrier layer 3 of the laminate A.
  • the heat-fusible resin layer 4 is directly laminated on the barrier layer 3
  • the heat-fusible resin layer 4 is laminated on the barrier layer 3 of the laminate A by a method such as thermal lamination or extrusion lamination. do it.
  • the adhesive layer 5 is provided between the barrier layer 3 and the heat-fusible resin layer 4, for example, (1) the adhesive layer 5 and the heat-fusible resin layer are placed on the barrier layer 3 of the laminate A.
  • the surface coating layer 6 When the surface coating layer 6 is provided, the surface coating layer 6 is laminated on the surface of the substrate layer 1 opposite to the barrier layer 3 .
  • the surface coating layer 6 can be formed, for example, by coating the surface of the substrate layer 1 with the above-described resin for forming the surface coating layer 6 .
  • the order of the step of laminating the barrier layer 3 on the surface of the base material layer 1 and the step of laminating the surface coating layer 6 on the surface of the base material layer 1 is not particularly limited.
  • the barrier layer 3 may be formed on the surface of the substrate layer 1 opposite to the surface coating layer 6 .
  • the optionally provided surface coating layer 6/base layer 1/adhesive layer 2/barrier layer 3/optionally provided adhesive layer 5/heat-fusible resin layer 4 are combined into this layer.
  • a laminated body is formed in order, and in order to strengthen the adhesiveness of the adhesive layer 2 and the adhesive layer 5 provided as necessary, it may be further subjected to a heat treatment.
  • each layer constituting the laminate may be subjected to surface activation treatment such as corona treatment, blasting treatment, oxidation treatment, and ozone treatment to improve processability as necessary.
  • surface activation treatment such as corona treatment, blasting treatment, oxidation treatment, and ozone treatment.
  • the printability of the ink onto the surface of the substrate layer 1 can be improved.
  • the exterior material for an electricity storage device of the present disclosure is used in a package for sealingly housing electricity storage device elements such as a positive electrode, a negative electrode, and an electrolyte. That is, an electricity storage device can be obtained by housing an electricity storage device element including at least a positive electrode, a negative electrode, and an electrolyte in a package formed by the electricity storage device exterior material of the present disclosure.
  • an electricity storage device element having at least a positive electrode, a negative electrode, and an electrolyte is placed in the exterior material for an electricity storage device of the present disclosure in a state in which metal terminals connected to the positive electrode and the negative electrode protrude outward.
  • covering the periphery of the electricity storage device element so as to form a flange portion (area where the heat-fusible resin layers contact each other), and heat-sealing the heat-fusible resin layers of the flange portion to seal. provides an electricity storage device using an exterior material for an electricity storage device.
  • the heat-fusible resin portion of the electricity storage device exterior material of the present disclosure is on the inside (surface in contact with the electricity storage device element ) to form a package.
  • the power storage device exterior material of the present disclosure can be suitably used for power storage devices such as batteries (including capacitors, capacitors, etc.).
  • the exterior material for an electricity storage device of the present disclosure may be used for either a primary battery or a secondary battery, it is preferably a secondary battery.
  • the type of secondary battery to which the power storage device exterior material of the present disclosure is applied is not particularly limited. Cadmium storage batteries, nickel/iron storage batteries, nickel/zinc storage batteries, silver oxide/zinc storage batteries, metal-air batteries, polyvalent cation batteries, capacitors, capacitors, and the like.
  • lithium ion batteries and lithium ion polymer batteries can be mentioned as suitable targets for application of the power storage device exterior material of the present disclosure.
  • a substrate layer a polyethylene terephthalate film (thickness 12 ⁇ m) and a biaxially oriented nylon film (thickness 15 ⁇ m) are bonded by a two-liquid curable polyurethane adhesive (using adhesives A to D described later).
  • a laminated film was prepared by laminating agent layers (having a thickness of 3 ⁇ m after curing).
  • a barrier layer composed of an aluminum alloy foil (thickness: 40 ⁇ m) with corrosion-resistant coatings formed on both sides was laminated by a dry lamination method.
  • a laminate of base material layer/adhesive layer/barrier layer was produced by performing an aging treatment.
  • conditions other than the type of adhesive laminating pressure ratio, nip roll diameter ratio, and the surface to which the adhesive is applied (aluminum alloy foil or the surface of a biaxially oriented nylon film) is as described in Table 1.
  • Adhesive A A two-component polyurethane adhesive using an aromatic isocyanate compound as a curing agent
  • Adhesive B A two-component polyurethane adhesive using an aromatic isocyanate compound as a curing agent (manufacturer different from adhesive A) made)
  • Adhesive C Two-component polyurethane adhesive using an aromatic isocyanate compound as a curing agent (manufactured by a different manufacturer from Adhesives A and B)
  • Adhesive D Two-component polyurethane adhesive using an aliphatic cyclic isocyanate compound as a curing agent (manufactured by the same manufacturer as Adhesive C)
  • a maleic anhydride-modified polypropylene (40 ⁇ m thick) as an adhesive layer and a polypropylene (40 ⁇ m thick) as a heat-fusible resin layer were co-extruded onto the barrier layer side of the obtained laminate.
  • An adhesive layer/heat-fusible resin layer was laminated on the barrier layer.
  • each laminate obtained was cut into strips of 150 mm (MD: Machine Direction) x 90 mm (TD: Transverse Direction).
  • the MD of the laminate corresponds to the rolling direction (RD) of the aluminum alloy foil
  • the TD of the laminate corresponds to the TD of the aluminum alloy foil.
  • a strip is placed between a molding die (female mold) having a diameter of 55 mm (MD) x 32 mm (TD) and a corresponding molding die (male mold) (the female mold side is the base layer side), and cold forming was performed with a pressing pressure of 0.9 MPa and a forming depth of 5.5 mm to obtain a formed exterior material for an electricity storage device (see FIGS. 4 and 5).
  • the recess 100 (molding portion) formed in a substantially rectangular shape in plan view has a corner portion of the recess 100 . and the straight line forming the ridge (in FIG. 4, where the solid line indicating the recess 100 and the broken lines (1) to (8) intersect), the direction parallel to the thickness direction (further, cutting A cross section of the adhesive layer was obtained by cutting with a microtome (ROM-380 manufactured by Yamato Koki Kogyo Co., Ltd.). Note that when the power storage device exterior material is observed from the base layer side, the corners of the concave portions 100 do not form ideal right angles, but become curved.
  • the boundary portion between the curved line forming the corner portion of the recess 100 and the straight line forming the ridge portion was obtained. Then, since peeling is particularly likely to occur in a moist and hot environment, in the cross section, the bent portion 10A on the bottom surface 100A side (as shown in FIGS. 5 to 8, the bent portion formed by the male mold) and the sealing Of the bent portion 10B on the sealing edge 10C side (the bent portion formed by the female mold as shown in FIGS. 5 to 8), the cross section of the bent portion 10B on the sealing edge 10C side (region P in FIG. 5 ) was used as the measurement target for the porosity.
  • the cross section at the bent portion P was observed using a laser microscope (VK-9710 manufactured by KEYENCE) with an objective lens of 150x magnification. rice field. Subsequently, from the cross-sectional observation results obtained, the area of the adhesive layer and the area of the voids were quantified using analysis software VK Analyzer version 2.5.0.1.
  • V volume and area
  • A evaluation analysis
  • polygon the area of the adhesive layer
  • all the adhesive layers represented in the acquired image By selecting 5 points between the barrier layer 3 (aluminum alloy foil) and the adhesive layer 2 and 5 points between the adhesive layer 2 and the base layer 1 (biaxially oriented nylon film) so as to include , the area was measured (see the schematic diagram of FIG. 9.
  • the area of the adhesive layer 2 including the voids 2a is the measurement target.).
  • the "free line” mode was selected for the voids, and the areas were measured by enclosing them with lines so that the entire voids were filled (see the schematic diagram of FIG. 10.
  • the area of the voids 2a is the measurement target.) .
  • the ratio of the obtained areas was calculated by the following formula to obtain the cross-sectional porosity (%).
  • the exterior material for an electricity storage device of Examples 1 to 5 was formed into a film-like laminate comprising at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order.
  • An exterior material for an electricity storage device which is molded so as to protrude from the heat-fusible resin layer side to the base layer side, and has a concave portion for accommodating the electricity storage device element on the heat-fusible resin layer side.
  • the porosity of the cross section of the adhesive layer in the thickness direction observed at a magnification of 150 times of the objective lens is 25% or less.
  • Example 5 The power storage device exterior materials of Examples 1 to 5 were inhibited from peeling at the position of the adhesive layer of the power storage device exterior materials in a moist and heat environment, and exhibited excellent moist heat resistance.
  • Example 5 and Comparative Example 2 in which the adhesive was applied to the surface of the biaxially oriented nylon film voids were formed on the barrier layer side of the adhesive layer as shown in the schematic diagrams of FIGS.
  • Section 1 An exterior material for an electricity storage device, in which a film-like laminate is formed comprising at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order,
  • the power storage device exterior material is molded so as to protrude from the heat-fusible resin layer side to the base layer side, and has a recessed portion in which the power storage device element is accommodated on the heat-fusible resin layer side.
  • An exterior material for an electric storage device wherein the adhesive layer has a porosity of 25% or less in a cross-section in the thickness direction, as observed at a magnification of 150 times with an objective lens.
  • the exterior material for an electricity storage device according to Item 1 wherein the adhesive layer is formed of a cured product of a resin composition containing a curable resin.
  • Item 3. Item 3.
  • Item 4. The exterior material for an electricity storage device according to Item 2 or 3, wherein the resin composition contains polyurethane.
  • the exterior material for an electricity storage device according to any one of items 1 to 4 wherein the exterior material for an electricity storage device has a substantially rectangular shape in plan view.
  • Item 6. Item 6.
  • Item 7 preparing a film-like laminate comprising at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order; A step of molding the laminate so as to protrude from the heat-fusible resin layer side to the base layer side, and forming a recess in which an electricity storage device element is housed on the heat-fusible resin layer side. and A method for producing an exterior material for an electric storage device, wherein the adhesive layer has a porosity of 25% or less in a cross-section in the thickness direction, as observed at a magnification of 150 times with an objective lens.
  • Item 8 preparing a film-like laminate comprising at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order; A step of molding the laminate so as to protrude from the heat-fusible resin layer side to the base layer side, and forming a recess in which an electricity storage device element is housed on the heat-fusible
  • An electricity storage device in which an electricity storage device element including at least a positive electrode, a negative electrode, and an electrolyte is housed in a package formed using an electricity storage device exterior material
  • the exterior material for an electricity storage device is formed of a film-like laminate that includes at least a base layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order,
  • the power storage device exterior material is molded so as to protrude from the heat-fusible resin layer side to the base layer side, and has a recessed portion in which the power storage device element is accommodated on the heat-fusible resin layer side.
  • An electricity storage device comprising a step of housing an electricity storage device element comprising at least a positive electrode, a negative electrode, and an electrolyte in a package formed using the electricity storage device exterior material according to any one of Items 1 to 6. manufacturing method.
  • Base material layer 2 Adhesive layer 2a Space 3 Barrier layer 4 Heat-fusible resin layer 5 Adhesive layer 6 Surface coating layer 10 Exterior material for electric storage device 10A Bending portion 10B on the bottom side of the recess Bending portion on the edge side for sealing 10C Sealing rim 21 Female die 22 Male die 23 Pressing plate 100 Recess 100A Bottom of recess

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Laminated Bodies (AREA)

Abstract

This exterior material for a power storage device includes a film laminate in which at least a substrate layer, an adhesive layer, a barrier layer, and a heat-sealing resin layer are provided in this order. The exterior material for the power storage device has a recessed portion that is formed so as to protrude from the heat-sealing resin layer side to the substrate layer side and accommodate a power storage device element on the heat-sealing resin layer side. In a cross section of the adhesive layer in the thickness direction, a porosity of 25% or less is observed with a 150-fold magnification of an objective lens.

Description

蓄電デバイス用外装材、蓄電デバイス、及びこれらの製造方法Exterior material for power storage device, power storage device, and manufacturing method thereof
 本開示は、蓄電デバイス用外装材、蓄電デバイス、及びこれらの製造方法に関する。 The present disclosure relates to an exterior material for an electricity storage device, an electricity storage device, and manufacturing methods thereof.
 従来、様々なタイプの蓄電デバイスが開発されているが、あらゆる蓄電デバイスにおいて、電極や電解質などの蓄電デバイス素子を封止するために外装材が不可欠な部材になっている。従来、蓄電デバイス用外装材として金属製の外装材が多用されていた。 Various types of power storage devices have been developed in the past, but in all power storage devices, the exterior material is an indispensable member for sealing the power storage device elements such as electrodes and electrolytes. Conventionally, metal exterior materials have been frequently used as exterior materials for power storage devices.
 一方、近年、電気自動車、ハイブリッド電気自動車、パソコン、カメラ、携帯電話などの高性能化に伴い、蓄電デバイスには、多様な形状が要求されると共に、薄型化や軽量化が求められている。しかしながら、従来多用されていた金属製の蓄電デバイス用外装材では、形状の多様化に追従することが困難であり、しかも軽量化にも限界があるという欠点がある。 On the other hand, in recent years, with the increasing performance of electric vehicles, hybrid electric vehicles, personal computers, cameras, mobile phones, etc., power storage devices are required to have various shapes, as well as to be thinner and lighter. However, conventionally widely used metallic exterior materials for electric storage devices have the drawback that it is difficult to follow the diversification of shapes and that there is a limit to weight reduction.
 そこで、近年、多様な形状に加工が容易で、薄型化や軽量化を実現し得る蓄電デバイス用外装材として、基材層/バリア層/熱融着性樹脂層が順次積層されたフィルム状の積層体が提案されている(例えば、特許文献1を参照)。 Therefore, in recent years, a film-like exterior material that can be easily processed into various shapes and that can realize thinness and weight reduction has been developed. Laminates have been proposed (see Patent Document 1, for example).
 このような蓄電デバイス用外装材においては、一般的に、金型を用いた冷間成形により凹部が形成され、当該凹部によって形成された空間に電極や電解液などの蓄電デバイス素子を配し、熱融着性樹脂層を熱融着させることにより、蓄電デバイス用外装材の内部に蓄電デバイス素子が収容された蓄電デバイスが得られる。 In such a power storage device exterior material, generally, recesses are formed by cold molding using a mold, and power storage device elements such as electrodes and electrolytes are arranged in the spaces formed by the recesses. By heat-sealing the heat-fusible resin layer, an electricity storage device in which the electricity storage device element is housed inside the exterior material for an electricity storage device can be obtained.
特開2008-287971号公報JP 2008-287971 A
 蓄電デバイスの長寿命化、苛酷な環境での使用等の観点から、蓄電デバイスの耐湿熱性を高めることが求められる。蓄電デバイスの耐湿熱性を高めるためには、蓄電デバイス用外装材の耐湿熱性を高める必要がある。 From the perspective of extending the life of power storage devices and using them in harsh environments, it is necessary to improve the resistance to heat and humidity of power storage devices. In order to improve the heat and humidity resistance of an electricity storage device, it is necessary to improve the heat and humidity resistance of the exterior material for the electricity storage device.
 本開示の発明者らは、成形によって凹部が形成された蓄電デバイス用外装材に着目して様々な分析・評価を行った。そして、基材層とバリア層との間に位置する接着剤層の厚み方向の断面を顕微鏡で観察したところ、断面に空隙が存在しているという新たな知見を得た。このような知見は、従来知られておらず、本開示の発明者らは、さらに検討を重ねた。その結果、接着剤層の断面の空隙率を所定値以下にすることにより、成形後の蓄電デバイス用外装材が長期的に湿熱環境に置かれた場合にも、蓄電デバイス用外装材に凹部を形成するために屈曲された位置において、基材層とバリア層との間(すなわち、接着剤層が存在している部分)の剥離(デラミネーション)が抑制されることを見出した。 The inventors of the present disclosure conducted various analyzes and evaluations focusing on exterior materials for power storage devices in which concave portions were formed by molding. Then, when a cross section in the thickness direction of the adhesive layer positioned between the base material layer and the barrier layer was observed with a microscope, a new finding was obtained that voids were present in the cross section. Such knowledge has not been known in the past, and the inventors of the present disclosure conducted further studies. As a result, by setting the porosity of the cross section of the adhesive layer to a predetermined value or less, even when the molded exterior material for an electricity storage device is placed in a hot and humid environment for a long period of time, the exterior material for an electricity storage device does not have a concave portion. It was found that delamination between the substrate layer and the barrier layer (that is, the portion where the adhesive layer is present) is suppressed at the position where it is bent for forming.
 このような状況下、本開示は、少なくとも、基材層と、接着剤層と、バリア層と、熱融着性樹脂層とをこの順に備えるフィルム状の積層体が成形された、蓄電デバイス用外装材であって、耐湿熱性に優れた蓄電デバイス用外装材を提供することを主な目的とする。 Under such circumstances, the present disclosure is a power storage device in which a film-like laminate is formed that includes at least a base layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order. A main object of the present invention is to provide an exterior material for an electricity storage device, which is an exterior material and has excellent moisture and heat resistance.
 本開示の発明者らは、上記のような課題を解決すべく鋭意検討を行った。その結果、少なくとも、基材層と、接着剤層と、バリア層と、熱融着性樹脂層とをこの順に備えるフィルム状の積層体が成形された蓄電デバイス用外装材であって、熱融着性樹脂層側から基材層側に突出するようにして成形され、熱融着性樹脂層側に蓄電デバイス素子が収容される凹部を備える蓄電デバイス用外装材において、接着剤層の厚み方向の断面について、対物レンズの倍率150倍で観察される空隙率を25%以下に調整することで、湿熱環境において、蓄電デバイス用外装材の接着剤層の位置での剥離が抑制され、優れた耐湿熱性を発揮することを見出した。 The inventors of the present disclosure have diligently studied to solve the above problems. As a result, an exterior material for an electricity storage device in which a film-like laminate including at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order is formed, In an exterior material for an electricity storage device that is molded so as to protrude from the adhesive resin layer side to the base layer side and has a concave portion for housing the electricity storage device element on the heat-fusible resin layer side, the thickness direction of the adhesive layer By adjusting the porosity observed at a magnification of 150 times of the objective lens to 25% or less for the cross section of the It was discovered that it exhibited moist heat resistance.
 従来、接着剤層の空隙率を低減するために特別な手段は採用されておらず、後述の通り、本開示の発明者らは、接着剤層の空隙率を25%以下にまで低減するために、様々な手段を採用した。 Conventionally, no special means has been adopted to reduce the porosity of the adhesive layer. adopted various means.
 本開示は、これらの知見に基づいて、更に検討を重ねることにより完成したものである。即ち、本開示は、下記に掲げる態様の発明を提供する。
 少なくとも、基材層と、接着剤層と、バリア層と、熱融着性樹脂層とをこの順に備えるフィルム状の積層体が成形された、蓄電デバイス用外装材であって、
 前記蓄電デバイス用外装材は、前記熱融着性樹脂層側から前記基材層側に突出するようにして成形され、前記熱融着性樹脂層側に蓄電デバイス素子が収容される凹部を備えており、
 前記接着剤層の厚み方向の断面について、対物レンズの倍率150倍で観察される空隙率が、25%以下である、蓄電デバイス用外装材。
The present disclosure has been completed through further studies based on these findings. That is, the present disclosure provides inventions in the following aspects.
An exterior material for an electricity storage device, in which a film-like laminate is formed comprising at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order,
The power storage device exterior material is molded so as to protrude from the heat-fusible resin layer side to the base layer side, and has a recessed portion in which the power storage device element is accommodated on the heat-fusible resin layer side. and
An exterior material for an electric storage device, wherein the adhesive layer has a porosity of 25% or less in a cross-section in the thickness direction, as observed at a magnification of 150 times with an objective lens.
 本開示によれば、少なくとも、基材層と、接着剤層と、バリア層と、熱融着性樹脂層とをこの順に備えるフィルム状の積層体が成形された、蓄電デバイス用外装材であって、耐湿熱性に優れた蓄電デバイス用外装材を提供することができる。また、本開示によれば、蓄電デバイス用外装材の製造方法、蓄電デバイス及びその製造方法を提供することもできる。 According to the present disclosure, an exterior material for an electricity storage device is formed by forming a film-like laminate that includes at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order. As a result, it is possible to provide an exterior material for an electricity storage device that has excellent moisture and heat resistance. Further, according to the present disclosure, it is also possible to provide a method for manufacturing an exterior material for an electricity storage device, an electricity storage device, and a method for manufacturing the same.
本開示の蓄電デバイス用外装材の積層構成の一例を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing an example of the laminated structure of the exterior material for an electricity storage device of the present disclosure; 本開示の蓄電デバイス用外装材の積層構成の一例を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing an example of the laminated structure of the exterior material for an electricity storage device of the present disclosure; 本開示の蓄電デバイス用外装材の積層構成の一例を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing an example of the laminated structure of the exterior material for an electricity storage device of the present disclosure; 本開示の蓄電デバイス用外装材を平明視した模式図である。1 is a schematic diagram of a plain view of an exterior material for an electricity storage device of the present disclosure; FIG. 図4のMD(Machine Direction)の方向(x軸方向)及び厚み方向と平行な方向に蓄電デバイス用外装材を切断して得られる模式的断面図(積層構成は省略)である。FIG. 5 is a schematic cross-sectional view obtained by cutting the power storage device exterior material in a direction parallel to the MD (Machine Direction) direction (x-axis direction) and the thickness direction of FIG. 4 (the lamination structure is omitted). 図5に示された蓄電デバイス用外装材を折り返して、封止用縁の位置で熱融着性樹脂層同士を熱融着させた状態を示す模式図である。FIG. 6 is a schematic diagram showing a state in which the exterior material for an electricity storage device shown in FIG. 5 is folded back and the heat-fusible resin layers are heat-sealed to each other at the position of the edge for sealing. 雌型及び雄型を用いて蓄電デバイス用外装材を成形して凹部を形成する様子を説明するための模式図である。FIG. 4 is a schematic diagram for explaining how a female mold and a male mold are used to mold an exterior material for an electricity storage device to form a recess. 雌型及び雄型を用いて蓄電デバイス用外装材を成形して凹部を形成する様子を説明するための模式図である。FIG. 4 is a schematic diagram for explaining how a female mold and a male mold are used to mold an exterior material for an electricity storage device to form a recess. 接着剤層の空隙率の測定方法を説明するための模式図である。It is a schematic diagram for demonstrating the measuring method of the porosity of an adhesive bond layer. 接着剤層の空隙率の測定方法を説明するための模式図である。It is a schematic diagram for demonstrating the measuring method of the porosity of an adhesive bond layer.
 本開示の蓄電デバイス用外装材は、少なくとも、基材層と、接着剤層と、バリア層と、熱融着性樹脂層とをこの順に備えるフィルム状の積層体が成形された、蓄電デバイス用外装材であって、蓄電デバイス用外装材は、熱融着性樹脂層側から基材層側に突出するようにして成形され、熱融着性樹脂層側に蓄電デバイス素子が収容される凹部を備えており、接着剤層の厚み方向の断面について、対物レンズの倍率150倍で観察される空隙率が、25%以下であることを特徴とする。本開示の蓄電デバイス用外装材は、当該構成を備えていることにより、湿熱環境において、蓄電デバイス用外装材の接着剤層の位置での剥離が抑制され、優れた耐湿熱性を発揮する。 The exterior material for an electricity storage device of the present disclosure is for an electricity storage device, in which a film-like laminate including at least a base layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order is formed. The exterior material for an electricity storage device is formed so as to protrude from the heat-fusible resin layer side to the base layer side, and the heat-fusible resin layer side has a concave portion in which the electricity storage device element is accommodated. and a porosity of 25% or less observed at a magnification of 150 with an objective lens in a cross section of the adhesive layer in the thickness direction. By having the configuration, the power storage device exterior material of the present disclosure suppresses peeling at the position of the adhesive layer of the power storage device exterior material in a moist and heat environment, and exhibits excellent heat and humidity resistance.
 以下、本開示の蓄電デバイス用外装材について詳述する。なお、本明細書において、「~」で示される数値範囲は「以上」、「以下」を意味する。例えば、2~15mmとの表記は、2mm以上15mm以下を意味する。 The exterior material for an electricity storage device of the present disclosure will be described in detail below. In this specification, the numerical range indicated by "-" means "more than" and "less than". For example, the notation of 2 to 15 mm means 2 mm or more and 15 mm or less.
 本開示は、少なくとも、基材層と、接着剤層と、バリア層と、熱融着性樹脂層とをこの順に備えるフィルム状の積層体が成形された、蓄電デバイス用外装材である。以下、初めに本開示の蓄電デバイス用外装材の形状及び積層構造について説明し、その次に、本開示の蓄電デバイス用外装材を構成する積層体を構成する各層の詳細、蓄電デバイス用外装材の製造方法などについて、順次説明する。 The present disclosure is an exterior material for an electricity storage device, in which a film-like laminate including at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order is formed. Hereinafter, the shape and laminated structure of the power storage device exterior material of the present disclosure will be described first, and then the details of each layer constituting the laminate constituting the power storage device exterior material of the present disclosure, and the power storage device exterior material. The manufacturing method of and the like will be sequentially described.
 なお、蓄電デバイス用外装材において、後述のバリア層3については、通常、その製造過程におけるMD(Machine Direction)とTD(Transverse Direction)を判別することができる。例えば、バリア層3がアルミニウム合金箔やステンレス鋼箔等の金属箔により構成されている場合、金属箔の圧延方向(RD:Rolling Direction)には、金属箔の表面に、いわゆる圧延痕と呼ばれる線状の筋が形成されている。圧延痕は、圧延方向に沿って伸びているため、金属箔の表面を観察することによって、金属箔の圧延方向を把握することができる。また、積層体の製造過程においては、通常、積層体のMDと、金属箔のRDとが一致するため、積層体の金属箔の表面を観察し、金属箔の圧延方向(RD)を特定することにより、積層体のMDを特定することができる。また、積層体のTDは、積層体のMDとは垂直方向であるため、積層体のTDについても特定することができる。 In addition, in the exterior material for an electricity storage device, the barrier layer 3 described later can usually be distinguished between MD (Machine Direction) and TD (Transverse Direction) in the manufacturing process. For example, when the barrier layer 3 is made of a metal foil such as an aluminum alloy foil or a stainless steel foil, there are lines called rolling marks on the surface of the metal foil in the rolling direction (RD) of the metal foil. shaped streaks are formed. Since the rolling marks extend along the rolling direction, the rolling direction of the metal foil can be grasped by observing the surface of the metal foil. In addition, in the manufacturing process of the laminate, the MD of the laminate usually matches the RD of the metal foil, so the surface of the metal foil of the laminate is observed to identify the rolling direction (RD) of the metal foil. Thus, the MD of the laminate can be specified. Moreover, since the TD of the laminate is perpendicular to the MD of the laminate, the TD of the laminate can also be specified.
 また、アルミニウム合金箔やステンレス鋼箔等の金属箔の圧延痕により蓄電デバイス用外装材のMDが特定できない場合は、次の方法により特定することができる。蓄電デバイス用外装材のMDの確認方法として、蓄電デバイス用外装材の熱融着性樹脂層の断面を電子顕微鏡で観察し海島構造を確認する方法がある。当該方法においては、熱融着性樹脂層の厚み方向に対して垂直な方向の島の形状の径の平均が最大であった断面と平行な方向を、MDと判断することができる。具体的には、熱融着性樹脂層の長さ方向の断面と、当該長さ方向の断面と平行な方向から10度ずつ角度を変更し、長さ方向の断面に対して垂直な方向までの各断面(合計10の断面)について、それぞれ、電子顕微鏡写真で観察して海島構造を確認する。次に、各断面において、それぞれ、個々の島の形状を観察する。個々の島の形状について、熱融着性樹脂層の厚み方向に対して垂直方向の最左端と、当該垂直方向の最右端とを結ぶ直線距離を径yとする。各断面において、島の形状の当該径yが大きい順に上位20個の径yの平均を算出する。島の形状の当該径yの平均が最も大きかった断面と平行な方向をMDと判断する。 In addition, when the MD of the exterior material for an electricity storage device cannot be specified due to the rolling marks of metal foil such as aluminum alloy foil or stainless steel foil, it can be specified by the following method. As a method for confirming the MD of the exterior material for an electricity storage device, there is a method for confirming the sea-island structure by observing the cross section of the heat-fusible resin layer of the exterior material for the electricity storage device with an electron microscope. In this method, the MD can be determined as the direction parallel to the cross section in which the average diameter of the island shape in the direction perpendicular to the thickness direction of the heat-fusible resin layer is maximum. Specifically, the cross section in the length direction of the heat-fusible resin layer is changed by 10 degrees from a direction parallel to the cross section in the length direction, and the direction is perpendicular to the cross section in the length direction. (10 cross sections in total) are observed with electron micrographs to confirm the sea-island structure. Next, in each cross section, the shape of each individual island is observed. Regarding the shape of each island, the linear distance connecting the leftmost end in the direction perpendicular to the thickness direction of the heat-sealable resin layer and the rightmost end in the perpendicular direction is defined as the diameter y. In each cross section, the average of the top 20 diameters y of the island shape is calculated in descending order of diameter y. The direction parallel to the cross section in which the average diameter y of the island shape is the largest is determined as the MD.
1.蓄電デバイス用外装材の形状と積層構造
 本開示の蓄電デバイス用外装材10は、例えば図4及び図5の模式図に示されるように、熱融着性樹脂層4側から基材層1側に突出するようにして(蓄電デバイス素子が収容されるようにして)成形されており、熱融着性樹脂層4側に蓄電デバイス素子が収容される凹部100を備えている。当該凹部100は、成形によって形成されたものである。すなわち、本開示の蓄電デバイス用外装材10は、少なくとも基材層1と、接着剤層2と、バリア層3と、熱融着性樹脂層4とをこの順に備えるフィルム状の積層体について、熱融着性樹脂層4側から基材層1側に突出するようにして成形し、熱融着性樹脂層4側に蓄電デバイス素子が収容される凹部100が形成されたものである。
1. Shape and Laminate Structure of Electricity Storage Device Exterior Material The electricity storage device exterior material 10 of the present disclosure, for example, as shown in the schematic diagrams of FIGS. The recess 100 is formed so as to protrude outward (so as to accommodate the electricity storage device element), and has a concave portion 100 in which the electricity storage device element is accommodated on the heat-fusible resin layer 4 side. The recess 100 is formed by molding. That is, the power storage device exterior material 10 of the present disclosure is a film-like laminate that includes at least a base layer 1, an adhesive layer 2, a barrier layer 3, and a heat-fusible resin layer 4 in this order, It is formed so as to protrude from the heat-fusible resin layer 4 side toward the substrate layer 1 side, and a concave portion 100 is formed on the heat-fusible resin layer 4 side to accommodate the electricity storage device element.
 図4及び図5に示される蓄電デバイス用外装材10は、平面視略矩形状である。また、図4及び図5に示される蓄電デバイス用外装材10の凹部100は、平面視略矩形状である。蓄電デバイス用外装材10の形状及び凹部の形状は、それぞれ、特に制限されず、蓄電デバイスの形状を考慮して決定すればよい。蓄電デバイス用外装材の成形によって形成される凹部の形状は様々である。例えば、平面視略矩形形状、平面視略L字形状、平面視略U字形状などが挙げられる。これらの形状は一般的な凹部の形状の一例である。なお、本明細書において、例えば「略矩形状」とは、矩形の四隅のコーナー部が直角である矩形状の他、例えば、矩形の四隅に丸み(R)が形成されたような矩形状も含む意味である。略L字形状、略U字形状などについても同様である。 The power storage device exterior material 10 shown in FIGS. 4 and 5 has a substantially rectangular shape in plan view. Moreover, the concave portion 100 of the power storage device exterior material 10 shown in FIGS. 4 and 5 has a substantially rectangular shape in plan view. The shape of the power storage device exterior material 10 and the shape of the recess are not particularly limited, and may be determined in consideration of the shape of the power storage device. There are various shapes of recesses formed by molding the exterior material for an electric storage device. For example, planar view substantially rectangular shape, planar view substantially L shape, planar view substantially U shape, etc. are mentioned. These shapes are examples of common recess shapes. In this specification, for example, "substantially rectangular shape" means a rectangular shape in which the corners of the four corners of the rectangle are right angles, and a rectangular shape in which the four corners of the rectangle are rounded (R). It means to include. The same applies to substantially L-shaped, substantially U-shaped, and the like.
 例えば、図4及び図5に示すように、蓄電デバイス用外装材を構成する積層体の基材層1側に配置された雌型(平面視略矩形状の開口を有する)と、熱融着性樹脂層4側に配置された雄型(雌型に対応する凸形状を有する)とを用い、熱融着性樹脂層4側から基材層1側に突出するようにして、積層体を成形することで、熱融着性樹脂層4側に蓄電デバイス素子が収容される、平面視略矩形状の凹部を形成する(図7及び図8も参照)。当該凹部によって形成される空間に、蓄電デバイス素子が収容される。当該空間の形状は様々であり、例えば、略直方体形状、略円柱、略楕円柱、略多段形状などがある。なお、本明細書において、「略直方体形状」とは、直方体の各コーナー部が直角である直方体形状の他、例えば、各コーナー部に丸み(R)が形成されたような直方体形状も含む意味である。略円柱、略楕円柱、略多段形状などについても同様である。 For example, as shown in FIGS. 4 and 5, a female mold (having a substantially rectangular opening in a plan view) disposed on the base layer 1 side of a laminate constituting an exterior material for an electric storage device, and heat-sealing Using a male mold (having a convex shape corresponding to the female mold) arranged on the side of the adhesive resin layer 4, the laminate is formed so as to protrude from the side of the heat-fusible resin layer 4 to the side of the base material layer 1. By molding, a substantially rectangular recess in plan view is formed on the side of the heat-fusible resin layer 4 to accommodate the electricity storage device element (see also FIGS. 7 and 8). A power storage device element is accommodated in the space formed by the recess. The shape of the space is various, and includes, for example, a substantially rectangular parallelepiped shape, a substantially cylindrical shape, a substantially elliptical cylindrical shape, and a substantially multi-stage shape. In the present specification, the term “substantially rectangular parallelepiped shape” means a rectangular parallelepiped shape in which each corner portion of the rectangular parallelepiped is a right angle, and for example, a rectangular parallelepiped shape in which each corner portion is rounded (R). is. The same applies to substantially circular cylinders, substantially elliptical cylinders, substantially multi-stage shapes, and the like.
 蓄電デバイス用外装材の成形によって形成される凹部(空間)の形状は様々であるが、成形時に積層体が引き延ばされることにより局所的に負担がかかる(すなわち、局所的に大きな応力が加わる)箇所において、湿熱環境における剥離が特に生じやすい。したがって、当該負担がかかる箇所の接着剤層の空隙率を測定することが有効である。蓄電デバイス用外装材の成形によって形成される凹部(空間)の形状が、例えば封止用縁側にコーナー部と稜線部を有する形状の場合は、コーナー部を形成する曲線と稜線を形成する直線の境界部分が、成形時に負担がかかる箇所である。すなわち、例えば図4,図5に示されるように、封止用縁10C側(図5)に平面視略矩形状の凹部100が形成されている場合、図4の凹部100はコーナー部と稜線部を有するが、コーナー部を形成する曲線と稜線部を形成する直線の境界部分(図4において、凹部100を示す実線と(1)~(8)の破線が交わる箇所)が、成形時に負担がかかる箇所である。したがって、当該部分の厚み方向の断面を空隙率の測定対象とすることが有効である。このとき、湿熱環境における剥離が特に生じやすいことから、当該断面の中でも、凹部100の底面100A側の屈曲部10A及び凹部100の封止用縁10C側の屈曲部10Bのうち、封止用縁10C側の屈曲部10Bの断面(図5の領域Pを参照)を空隙率の測定対象とすることが有効である。なお、参考のため、図5に示された蓄電デバイス用外装材10を折り返して、封止用縁10Cの位置で熱融着性樹脂層4同士を熱融着させた状態を示す模式図を図6に示す。なお、図4から図6では蓄電デバイス用外装材10を折り返して熱融着性樹脂層4同士を熱融着させているが、成形した蓄電デバイス用外装材10と成形していない蓄電デバイス用外装材10の熱融着性樹脂層4同士を対向させて熱融着させる場合や、2枚の成形した蓄電デバイス用外装材10の熱融着性樹脂層4同士を対向させて熱融着させる場合などもある。これらの場合も同様である。また、折り返して熱融着する場合、図6では図の左側の10Cに縁があるように折り返しているが、縁がないように折り返す場合もある。 Although the shape of the recessed portion (space) formed by molding the exterior material for an electric storage device varies, the laminate is stretched during molding, which causes a local burden (that is, a large local stress is applied). Delamination in a hot and humid environment is particularly likely to occur at some points. Therefore, it is effective to measure the porosity of the adhesive layer at the location where the load is applied. When the shape of the recess (space) formed by molding the exterior material for an electric storage device is, for example, a shape having a corner portion and a ridge line portion on the sealing edge side, a curved line forming the corner portion and a straight line forming the ridge line are formed. The boundary portion is a portion where a burden is applied during molding. That is, for example, as shown in FIGS. 4 and 5, when a substantially rectangular concave portion 100 in plan view is formed on the side of the sealing edge 10C (FIG. 5), the concave portion 100 in FIG. Although it has a part, the boundary part between the curve forming the corner part and the straight line forming the ridge part (in FIG. 4, the place where the solid line indicating the recess 100 and the broken lines (1) to (8) intersect) is a burden during molding This is the point where the Therefore, it is effective to measure the porosity of the section in the thickness direction of the portion. At this time, since peeling in a moist and hot environment is particularly likely to occur, among the cross sections, the sealing edge of the bent portion 10A on the bottom surface 100A side of the recess 100 and the bent portion 10B on the sealing edge 10C side of the recess 100 It is effective to use the cross section of the bent portion 10B on the 10C side (see region P in FIG. 5) as an object for porosity measurement. For reference, a schematic diagram showing a state in which the electrical storage device exterior material 10 shown in FIG. It is shown in FIG. 4 to 6, the power storage device exterior material 10 is folded back and the heat-sealable resin layers 4 are heat-sealed. When the heat-fusible resin layers 4 of the exterior material 10 are opposed to each other and heat-sealed, or when the heat-fusible resin layers 4 of two molded exterior materials 10 for an electricity storage device are opposed to each other and heat-sealed. There are also cases where The same applies to these cases. In addition, in the case of folding back and heat-sealing, in FIG. 6, it is folded so that there is an edge at 10C on the left side of the figure, but it may be folded so that there is no edge.
 図7及び図8に、蓄電デバイス用外装材10を雌型21、雄型22、及び押さえ板23を用いて成形し、凹部を形成する様子を模式的に示す。図7及び図8に示されるような雌型21、雄型22、及び押さえ板23を用いて蓄電デバイス用外装材10を成形して凹部を形成した場合に、蓄電デバイス用外装材10の後述の屈曲部10A(図5~図8を参照)は、雄型22によって形成される屈曲部であり、後述の屈曲部10Bは、雌型21によって形成される屈曲部である。 7 and 8 schematically show how the power storage device exterior material 10 is molded using a female die 21, a male die 22, and a pressing plate 23 to form a recess. When the power storage device exterior material 10 is molded to form recesses using the female mold 21, the male mold 22, and the pressing plate 23 as shown in FIGS. A bent portion 10A (see FIGS. 5 to 8) is a bent portion formed by the male mold 22, and a bent portion 10B described later is a bent portion formed by the female mold 21. FIG.
 本開示の蓄電デバイス用外装材10の凹部100の深さとしては、蓄電デバイスの大きさなどに応じて適宜調整され、例えば、4~10mm程度が挙げられる。 The depth of the concave portion 100 of the power storage device exterior material 10 of the present disclosure is appropriately adjusted according to the size of the power storage device, and is, for example, about 4 to 10 mm.
 本開示の成形後の蓄電デバイス用外装材は、以下の<耐湿熱性の評価>によって評価される、剥離が発生するまでの期間が、好ましくは5日以上、より好ましくは10日以上、さらに好ましくは20日以上、さらに好ましくは30日以上である。 In the exterior material for an electricity storage device after molding of the present disclosure, the period until peeling occurs, which is evaluated by the following <Evaluation of moist heat resistance>, is preferably 5 days or more, more preferably 10 days or more, and more preferably is 20 days or more, more preferably 30 days or more.
<耐湿熱性の評価>
 まず、未成形の蓄電デバイス用外装材を、150mm(MD:Machine Direction)×90mm(TD;Transverse Direction)の短冊片に裁断する。なお、蓄電デバイス用外装材のMDが、アルミニウム合金箔の圧延方向(RD)に対応し、蓄電デバイス用外装材のTDが、アルミニウム合金箔のTDに対応する。次に、55mm(MD)×32mm(TD)の口径を有する成形金型(雌型)と、これに対応する成形金型(雄型)の間に短冊片を配置(雌型側が基材層側)し、押さえ圧0.9MPa、5.5mmの成形深さで冷間成形を行い、成形された蓄電デバイス用外装材を得る(図4及び図5を参照)。次に、得られた成形後の蓄電デバイス用外装材を、それぞれ、16個ずつ用意してサンプルとする。次に、16個のサンプルを、温度80℃、相対湿度90%の恒温槽内に入れ、アルミニウム合金箔と基材層の二軸延伸ナイロンフィルムとの間の剥離の発生状況を、1日ごとに目視で観察する。アルミニウム合金箔からの二軸延伸ナイロンフィルムの剥離が、1mm以上観察された場合に剥離が発生したと判断し、16個のサンプル全てについて剥離が発生するまでの日数をカウントする。成形後の蓄電デバイス用外装材について、温度80℃、相対湿度90%の条件で耐湿熱性の評価を行うことは、非常に厳しい評価といえる。
<Evaluation of moist heat resistance>
First, an unmolded exterior material for an electricity storage device is cut into strips of 150 mm (MD: Machine Direction) x 90 mm (TD: Transverse Direction). The MD of the power storage device exterior material corresponds to the rolling direction (RD) of the aluminum alloy foil, and the TD of the power storage device exterior material corresponds to the TD of the aluminum alloy foil. Next, a strip is placed between a molding die (female mold) having a diameter of 55 mm (MD) x 32 mm (TD) and a corresponding molding die (male mold) (the female mold side is the base layer side), and cold forming is performed with a pressing pressure of 0.9 MPa and a forming depth of 5.5 mm to obtain a formed exterior material for an electricity storage device (see FIGS. 4 and 5). Next, 16 pieces of each of the obtained exterior materials for electric storage devices after molding are prepared and used as samples. Next, 16 samples are placed in a constant temperature bath at a temperature of 80 ° C. and a relative humidity of 90%, and the occurrence of peeling between the aluminum alloy foil and the biaxially oriented nylon film of the base layer is checked every day. visually observe. When the biaxially oriented nylon film is observed to be peeled off from the aluminum alloy foil by 1 mm or more, it is determined that peeling has occurred, and the number of days until peeling occurs is counted for all 16 samples. It can be said that it is a very severe evaluation to evaluate the heat and humidity resistance of the molded exterior material for an electricity storage device under conditions of a temperature of 80° C. and a relative humidity of 90%.
2.蓄電デバイス用外装材の積層構造
 本開示の蓄電デバイス用外装材10は、例えば図1から図3に示すように、基材層1、接着剤層2、バリア層3、及び熱融着性樹脂層4をこの順に備える積層体から構成されている。蓄電デバイス用外装材10において、基材層1が最外層側になり、熱融着性樹脂層4は最内層になる。蓄電デバイス用外装材10と蓄電デバイス素子を用いて蓄電デバイスを組み立てる際に、蓄電デバイス用外装材10の熱融着性樹脂層4同士を対向させた状態で、周縁部を熱融着させることによって形成された空間に、蓄電デバイス素子が収容される。本開示の蓄電デバイス用外装材10を構成する積層体において、バリア層3を基準とし、バリア層3よりも熱融着性樹脂層4側が内側であり、バリア層3よりも基材層1側が外側である。
2. Laminated Structure of Exterior Material for Electricity Storage Device The exterior material 10 for an electricity storage device of the present disclosure includes, for example, as shown in FIGS. It consists of a laminate comprising layers 4 in that order. In the power storage device exterior material 10, the base material layer 1 is the outermost layer, and the heat-fusible resin layer 4 is the innermost layer. When an electricity storage device is assembled using the electricity storage device exterior material 10 and an electricity storage device element, the heat-sealable resin layers 4 of the electricity storage device exterior material 10 face each other, and the peripheral edges are heat-sealed. The electricity storage device element is accommodated in the space formed by . In the laminate constituting the exterior material 10 for an electricity storage device of the present disclosure, the barrier layer 3 is the reference, the heat-fusible resin layer 4 side is inner than the barrier layer 3, and the base layer 1 side is more than the barrier layer 3. outside.
 蓄電デバイス用外装材10は、例えば図2及び図3に示すように、バリア層3と熱融着性樹脂層4との間に、これらの層間の接着性を高めることなどを目的として、必要に応じて接着層5を有していてもよい。また、図3に示すように、基材層1の外側(熱融着性樹脂層4側とは反対側)には、必要に応じて表面被覆層6などが設けられていてもよい。蓄電デバイス用外装材10において、バリア層3は、1層であることが好ましい。 For example, as shown in FIGS. 2 and 3, the electrical storage device exterior material 10 is provided between the barrier layer 3 and the heat-fusible resin layer 4 for the purpose of improving the adhesion between these layers. It may have an adhesive layer 5 depending on the requirements. Further, as shown in FIG. 3, a surface coating layer 6 or the like may be provided on the outside of the base material layer 1 (the side opposite to the heat-fusible resin layer 4 side), if necessary. In the electrical storage device exterior material 10, the barrier layer 3 is preferably one layer.
 蓄電デバイス用外装材10を構成する積層体の厚みとしては、特に制限されないが、コスト削減、エネルギー密度向上等の観点からは、例えば190μm以下、好ましくは約180μm以下、約155μm以下、約120μm以下が挙げられる。また、蓄電デバイス用外装材10を構成する積層体の厚みとしては、蓄電デバイス素子を保護するという蓄電デバイス用外装材の機能を維持する観点からは、好ましくは約35μm以上、約45μm以上、約60μm以上が挙げられる。また、蓄電デバイス用外装材10を構成する積層体の好ましい範囲については、例えば、35~190μm程度、35~180μm程度、35~155μm程度、35~120μm程度、45~190μm程度、45~180μm程度、45~155μm程度、45~120μm程度、60~190μm程度、60~180μm程度、60~155μm程度、60~120μm程度が挙げられ、特に60~155μm程度が好ましい。 The thickness of the laminate that constitutes the power storage device exterior material 10 is not particularly limited, but from the viewpoint of cost reduction, energy density improvement, etc., it is, for example, 190 μm or less, preferably about 180 μm or less, about 155 μm or less, or about 120 μm or less. is mentioned. The thickness of the laminate constituting the power storage device exterior material 10 is preferably about 35 μm or more, about 45 μm or more, about 60 μm or more can be mentioned. Further, the preferred range of the laminate constituting the power storage device exterior material 10 is, for example, about 35 to 190 μm, about 35 to 180 μm, about 35 to 155 μm, about 35 to 120 μm, about 45 to 190 μm, and about 45 to 180 μm. , about 45 to 155 μm, about 45 to 120 μm, about 60 to 190 μm, about 60 to 180 μm, about 60 to 155 μm, and about 60 to 120 μm, and particularly preferably about 60 to 155 μm.
 蓄電デバイス用外装材10において、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、基材層1、接着剤層2、バリア層3、必要に応じて設けられる接着層5、熱融着性樹脂層4、及び必要に応じて設けられる表面被覆層6の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。具体例としては、本開示の蓄電デバイス用外装材10が、基材層1、接着剤層2、バリア層3、接着層5、及び熱融着性樹脂層4を含む場合、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、好ましくは90%以上であり、より好ましくは95%以上であり、さらに好ましくは98%以上である。また、本開示の蓄電デバイス用外装材10が、基材層1、接着剤層2、バリア層3、及び熱融着性樹脂層4を含む積層体である場合にも、蓄電デバイス用外装材10を構成する積層体の厚み(総厚み)に対する、これら各層の合計厚みの割合は、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上とすることができる。 In the power storage device exterior material 10, the base material layer 1, the adhesive layer 2, the barrier layer 3, and the adhesive layer 5 provided as necessary with respect to the thickness (total thickness) of the laminate constituting the power storage device exterior material 10 , the heat-fusible resin layer 4, and the surface coating layer 6, which is provided as necessary, are preferably 90% or more, more preferably 95% or more, and still more preferably 98% or more. is. As a specific example, when the electrical storage device exterior material 10 of the present disclosure includes the base material layer 1, the adhesive layer 2, the barrier layer 3, the adhesive layer 5, and the heat-fusible resin layer 4, the electrical storage device exterior The ratio of the total thickness of each layer to the thickness (total thickness) of the laminate constituting the material 10 is preferably 90% or more, more preferably 95% or more, and still more preferably 98% or more. Further, when the power storage device exterior material 10 of the present disclosure is a laminate including the base material layer 1, the adhesive layer 2, the barrier layer 3, and the heat-fusible resin layer 4, the power storage device exterior material The ratio of the total thickness of each of these layers to the thickness (total thickness) of the laminate constituting 10 is, for example, 80% or more, preferably 90% or more, more preferably 95% or more, and further preferably 98% or more. can be done.
3.蓄電デバイス用外装材の各層
[基材層1]
 本開示において、基材層1は、蓄電デバイス用外装材の基材としての機能を発揮させることなどを目的として設けられる層である。基材層1は、蓄電デバイス用外装材の外層側に位置する。
3. Each layer of the exterior material for the electricity storage device [base layer 1]
In the present disclosure, the base material layer 1 is a layer provided for the purpose of exhibiting a function as a base material of an exterior material for an electric storage device. The base material layer 1 is located on the outer layer side of the exterior material for electrical storage devices.
 基材層1を形成する素材については、基材としての機能、すなわち少なくとも絶縁性を備えるものであることを限度として特に制限されない。基材層1は、例えば樹脂を用いて形成することができ、樹脂には後述の添加剤が含まれていてもよい。 The material forming the base material layer 1 is not particularly limited as long as it functions as a base material, that is, at least has insulating properties. The base material layer 1 can be formed using, for example, a resin, and the resin may contain additives described later.
 基材層1が樹脂により形成されている場合、基材層1は、例えば、樹脂により形成された樹脂フィルムであってもよいし、樹脂を塗布して形成したものであってもよい。樹脂フィルムは、未延伸フィルムであってもよいし、延伸フィルムであってもよい。延伸フィルムとしては、一軸延伸フィルム、二軸延伸フィルムが挙げられ、二軸延伸フィルムが好ましい。二軸延伸フィルムを形成する延伸方法としては、例えば、逐次二軸延伸法、インフレーション法、同時二軸延伸法等が挙げられる。樹脂を塗布する方法としては、ロールコーティング法、グラビアコーティング法、押出コーティング法などが挙げられる。 When the substrate layer 1 is made of resin, the substrate layer 1 may be, for example, a resin film made of resin, or may be formed by applying resin. The resin film may be an unstretched film or a stretched film. Examples of stretched films include uniaxially stretched films and biaxially stretched films, with biaxially stretched films being preferred. Examples of stretching methods for forming a biaxially stretched film include successive biaxial stretching, inflation, and simultaneous biaxial stretching. Methods for applying the resin include a roll coating method, a gravure coating method, an extrusion coating method, and the like.
 基材層1を形成する樹脂としては、例えば、ポリエステル、ポリアミド、ポリオレフィン、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、基材層1を形成する樹脂は、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。 Examples of resins forming the base material layer 1 include resins such as polyester, polyamide, polyolefin, epoxy resin, acrylic resin, fluororesin, polyurethane, silicon resin, phenolic resin, and modified products of these resins. Further, the resin forming the base material layer 1 may be a copolymer of these resins or a modified product of the copolymer. Furthermore, it may be a mixture of these resins.
 基材層1を形成する樹脂としては、これらの中でも、好ましくはポリエステル、ポリアミドが挙げられる。 Among these, polyesters and polyamides are preferred as resins forming the base material layer 1 .
 ポリエステルとしては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等が挙げられる。また、共重合ポリエステルとしては、エチレンテレフタレートを繰り返し単位の主体とした共重合ポリエステル等が挙げられる。具体的には、エチレンテレフタレートを繰り返し単位の主体としてエチレンイソフタレートと重合する共重合体ポリエステル(以下、ポリエチレン(テレフタレート/イソフタレート)にならって略す)、ポリエチレン(テレフタレート/アジペート)、ポリエチレン(テレフタレート/ナトリウムスルホイソフタレート)、ポリエチレン(テレフタレート/ナトリウムイソフタレート)、ポリエチレン(テレフタレート/フェニル-ジカルボキシレート)、ポリエチレン(テレフタレート/デカンジカルボキシレート)等が挙げられる。これらのポリエステルは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Specific examples of polyester include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, and copolymerized polyester. Examples of copolyester include copolyester having ethylene terephthalate as a main repeating unit. Specifically, copolymer polyester polymerized with ethylene isophthalate with ethylene terephthalate as the main repeating unit (hereinafter abbreviated after polyethylene (terephthalate / isophthalate)), polyethylene (terephthalate / adipate), polyethylene (terephthalate / sodium sulfoisophthalate), polyethylene (terephthalate/sodium isophthalate), polyethylene (terephthalate/phenyl-dicarboxylate), polyethylene (terephthalate/decanedicarboxylate), and the like. These polyesters may be used singly or in combination of two or more.
 また、ポリアミドとしては、具体的には、ナイロン6、ナイロン66、ナイロン610、ナイロン12、ナイロン46、ナイロン6とナイロン66との共重合体等の脂肪族ポリアミド;テレフタル酸及び/又はイソフタル酸に由来する構成単位を含むナイロン6I、ナイロン6T、ナイロン6IT、ナイロン6I6T(Iはイソフタル酸、Tはテレフタル酸を表す)等のヘキサメチレンジアミン-イソフタル酸-テレフタル酸共重合ポリアミド、ポリアミドMXD6(ポリメタキシリレンアジパミド)等の芳香族を含むポリアミド;ポリアミドPACM6(ポリビス(4-アミノシクロヘキシル)メタンアジパミド)等の脂環式ポリアミド;さらにラクタム成分や、4,4’-ジフェニルメタン-ジイソシアネート等のイソシアネート成分を共重合させたポリアミド、共重合ポリアミドとポリエステルやポリアルキレンエーテルグリコールとの共重合体であるポリエステルアミド共重合体やポリエーテルエステルアミド共重合体;これらの共重合体等のポリアミドが挙げられる。これらのポリアミドは、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 Further, as the polyamide, specifically, aliphatic polyamide such as nylon 6, nylon 66, nylon 610, nylon 12, nylon 46, copolymer of nylon 6 and nylon 66; terephthalic acid and / or isophthalic acid Hexamethylenediamine-isophthalic acid-terephthalic acid copolymer polyamide such as nylon 6I, nylon 6T, nylon 6IT, nylon 6I6T (I represents isophthalic acid, T represents terephthalic acid) containing structural units derived from, polyamide MXD6 (polymetallic Polyamides containing aromatics such as silylene adipamide); alicyclic polyamides such as polyamide PACM6 (polybis(4-aminocyclohexyl)methane adipamide); Copolymerized polyamides, polyesteramide copolymers and polyetheresteramide copolymers which are copolymers of copolymerized polyamides with polyesters or polyalkylene ether glycols; and polyamides such as these copolymers. These polyamides may be used singly or in combination of two or more.
 基材層1は、ポリエステルフィルム、ポリアミドフィルム、及びポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエステルフィルム、及び延伸ポリアミドフィルム、及び延伸ポリオレフィンフィルムのうち少なくとも1つを含むことが好ましく、延伸ポリエチレンテレフタレートフィルム、延伸ポリブチレンテレフタレートフィルム、延伸ナイロンフィルム、延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリブチレンテレフタレートフィルム、二軸延伸ナイロンフィルム、二軸延伸ポリプロピレンフィルムのうち少なくとも1つを含むことがさらに好ましい。 The substrate layer 1 preferably includes at least one of a polyester film, a polyamide film, and a polyolefin film, preferably includes at least one of a stretched polyester film, a stretched polyamide film, and a stretched polyolefin film, More preferably, at least one of an oriented polyethylene terephthalate film, an oriented polybutylene terephthalate film, an oriented nylon film, and an oriented polypropylene film is included, and the biaxially oriented polyethylene terephthalate film, biaxially oriented polybutylene terephthalate film, and biaxially oriented nylon film , biaxially oriented polypropylene film.
 基材層1は、単層であってもよいし、2層以上により構成されていてもよい。基材層1が2層以上により構成されている場合、基材層1は、樹脂フィルムを接着剤などで積層させた積層体であってもよいし、樹脂を共押出しして2層以上とした樹脂フィルムの積層体であってもよい。また、樹脂を共押出しして2層以上とした樹脂フィルムの積層体を、未延伸のまま基材層1としてもよいし、一軸延伸または二軸延伸して基材層1としてもよい。 The base material layer 1 may be a single layer, or may be composed of two or more layers. When the substrate layer 1 is composed of two or more layers, the substrate layer 1 may be a laminate obtained by laminating resin films with an adhesive or the like, or may be formed by co-extrusion of resin to form two or more layers. It may also be a laminate of resin films. A laminate of two or more resin films formed by coextrusion of resin may be used as the base material layer 1 without being stretched, or may be used as the base material layer 1 by being uniaxially or biaxially stretched.
 基材層1において、2層以上の樹脂フィルムの積層体の具体例としては、ポリエステルフィルムとナイロンフィルムとの積層体、2層以上のナイロンフィルムの積層体、2層以上のポリエステルフィルムの積層体などが挙げられ、好ましくは、延伸ナイロンフィルムと延伸ポリエステルフィルムとの積層体、2層以上の延伸ナイロンフィルムの積層体、2層以上の延伸ポリエステルフィルムの積層体が好ましい。例えば、基材層1が2層の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムとポリエステル樹脂フィルムの積層体、ポリアミド樹脂フィルムとポリアミド樹脂フィルムの積層体、またはポリエステル樹脂フィルムとポリアミド樹脂フィルムの積層体が好ましく、ポリエチレンテレフタレートフィルムとポリエチレンテレフタレートフィルムの積層体、ナイロンフィルムとナイロンフィルムの積層体、またはポリエチレンテレフタレートフィルムとナイロンフィルムの積層体がより好ましい。また、ポリエステル樹脂は、例えば電解液が表面に付着した際に変色し難いことなどから、基材層1が2層以上の樹脂フィルムの積層体である場合、ポリエステル樹脂フィルムが基材層1の最外層に位置することが好ましい。 Specific examples of the laminate of two or more resin films in the substrate layer 1 include a laminate of a polyester film and a nylon film, a laminate of nylon films of two or more layers, and a laminate of polyester films of two or more layers. etc., preferably a laminate of a stretched nylon film and a stretched polyester film, a laminate of two or more layers of stretched nylon films, and a laminate of two or more layers of stretched polyester films. For example, when the substrate layer 1 is a laminate of two layers of resin films, a laminate of polyester resin films and polyester resin films, a laminate of polyamide resin films and polyamide resin films, or a laminate of polyester resin films and polyamide resin films. A laminate is preferred, and a laminate of polyethylene terephthalate film and polyethylene terephthalate film, a laminate of nylon film and nylon film, or a laminate of polyethylene terephthalate film and nylon film is more preferred. In addition, the polyester resin is resistant to discoloration when, for example, an electrolytic solution adheres to the surface. It is preferably located in the outermost layer.
 基材層1が、2層以上の樹脂フィルムの積層体である場合、2層以上の樹脂フィルムは、接着剤を介して積層させてもよい。好ましい接着剤については、後述の接着剤層2で例示する接着剤と同様のものが挙げられる。なお、2層以上の樹脂フィルムを積層させる方法としては、特に制限されず、公知方法が採用でき、例えばドライラミネート法、サンドイッチラミネート法、押出ラミネート法、サーマルラミネート法などが挙げられ、好ましくはドライラミネート法が挙げられる。ドライラミネート法により積層させる場合には、接着剤としてポリウレタンを含む接着剤を用いることが好ましい。このとき、接着剤の厚みとしては、例えば2~5μm程度が挙げられる。また、樹脂フィルムにアンカーコート層を形成し積層させても良い。アンカーコート層は、後述の接着剤層2で例示する接着剤と同様のものが挙げられる。このとき、アンカーコート層の厚みとしては、例えば0.01~1.0μm程度が挙げられる。 When the substrate layer 1 is a laminate of two or more layers of resin films, the two or more layers of resin films may be laminated via an adhesive. Preferred adhesives are the same as those exemplified for the adhesive layer 2 described later. The method for laminating two or more layers of resin films is not particularly limited, and known methods can be employed. Examples thereof include dry lamination, sandwich lamination, extrusion lamination, thermal lamination, and the like. A lamination method is mentioned. When laminating by dry lamination, it is preferable to use an adhesive containing polyurethane as the adhesive. At this time, the thickness of the adhesive is, for example, about 2 to 5 μm. Alternatively, an anchor coat layer may be formed on the resin film and laminated. Examples of the anchor coat layer include the same adhesives as those exemplified for the adhesive layer 2 described later. At this time, the thickness of the anchor coat layer is, for example, about 0.01 to 1.0 μm.
 また、基材層1の表面及び内部の少なくとも一方には、滑剤、難燃剤、アンチブロッキング剤、酸化防止剤、光安定剤、粘着付与剤、耐電防止剤等の添加剤が存在していてもよい。添加剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 At least one of the surface and the inside of the substrate layer 1 may contain additives such as lubricants, flame retardants, antiblocking agents, antioxidants, light stabilizers, tackifiers, and antistatic agents. good. Only one type of additive may be used, or two or more types may be mixed and used.
 本開示において、蓄電デバイス用外装材の成形性を高める観点からは、基材層1の表面には、滑剤が存在していることが好ましい。滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。アミド系滑剤の具体例としては、例えば、飽和脂肪酸アミド、不飽和脂肪酸アミド、置換アミド、メチロールアミド、飽和脂肪酸ビスアミド、不飽和脂肪酸ビスアミド、脂肪酸エステルアミド、芳香族ビスアミドなどが挙げられる。飽和脂肪酸アミドの具体例としては、ラウリン酸アミド、パルミチン酸アミド、ステアリン酸アミド、ベヘン酸アミド、ヒドロキシステアリン酸アミドなどが挙げられる。不飽和脂肪酸アミドの具体例としては、オレイン酸アミド、エルカ酸アミドなどが挙げられる。置換アミドの具体例としては、N-オレイルパルミチン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルステアリン酸アミド、N-ステアリルエルカ酸アミドなどが挙げられる。また、メチロールアミドの具体例としては、メチロールステアリン酸アミドなどが挙げられる。飽和脂肪酸ビスアミドの具体例としては、メチレンビスステアリン酸アミド、エチレンビスカプリン酸アミド、エチレンビスラウリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、エチレンビスベヘン酸アミド、ヘキサメチレンビスステアリン酸アミド、ヘキサメチレンビスベヘン酸アミド、ヘキサメチレンヒドロキシステアリン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジステアリルセバシン酸アミドなどが挙げられる。不飽和脂肪酸ビスアミドの具体例としては、エチレンビスオレイン酸アミド、エチレンビスエルカ酸アミド、ヘキサメチレンビスオレイン酸アミド、N,N’-ジオレイルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミドなどが挙げられる。脂肪酸エステルアミドの具体例としては、ステアロアミドエチルステアレートなどが挙げられる。また、芳香族ビスアミドの具体例としては、m-キシリレンビスステアリン酸アミド、m-キシリレンビスヒドロキシステアリン酸アミド、N,N’-ジステアリルイソフタル酸アミドなどが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 In the present disclosure, it is preferable that a lubricant exists on the surface of the base material layer 1 from the viewpoint of improving the moldability of the exterior material for an electricity storage device. The lubricant is not particularly limited, but preferably includes an amide-based lubricant. Specific examples of amide lubricants include saturated fatty acid amides, unsaturated fatty acid amides, substituted amides, methylolamides, saturated fatty acid bisamides, unsaturated fatty acid bisamides, fatty acid ester amides, and aromatic bisamides. Specific examples of saturated fatty acid amides include lauric acid amide, palmitic acid amide, stearic acid amide, behenic acid amide, and hydroxystearic acid amide. Specific examples of unsaturated fatty acid amides include oleic acid amide and erucic acid amide. Specific examples of substituted amides include N-oleyl palmitic acid amide, N-stearyl stearic acid amide, N-stearyl oleic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide and the like. Further, specific examples of methylolamide include methylol stearamide. Specific examples of saturated fatty acid bisamides include methylenebisstearic acid amide, ethylenebiscapric acid amide, ethylenebislauric acid amide, ethylenebisstearic acid amide, ethylenebishydroxystearic acid amide, ethylenebisbehenic acid amide, hexamethylenebisstearin. acid amide, hexamethylenebisbehenamide, hexamethylenehydroxystearic acid amide, N,N'-distearyladipic acid amide, N,N'-distearylsebacic acid amide and the like. Specific examples of unsaturated fatty acid bisamides include ethylenebisoleic acid amide, ethylenebiserucic acid amide, hexamethylenebisoleic acid amide, N,N'-dioleyladipic acid amide, and N,N'-dioleylsebacic acid amide. etc. Specific examples of fatty acid ester amides include stearamide ethyl stearate. Further, specific examples of the aromatic bisamide include m-xylylenebisstearic acid amide, m-xylylenebishydroxystearic acid amide, N,N'-distearyl isophthalic acid amide and the like. Lubricants may be used singly or in combination of two or more.
 基材層1の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、好ましくは約3mg/m2以上、より好ましくは4~15mg/m2程度、さらに好ましくは5~14mg/m2程度が挙げられる。 When a lubricant exists on the surface of the base material layer 1, its amount is not particularly limited, but is preferably about 3 mg/m 2 or more, more preferably about 4 to 15 mg/m 2 , and still more preferably 5 to 14 mg. / m 2 degree.
 基材層1の表面に存在する滑剤は、基材層1を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、基材層1の表面に滑剤を塗布したものであってもよい。 The lubricant present on the surface of the substrate layer 1 may be obtained by exuding the lubricant contained in the resin constituting the substrate layer 1, or by coating the surface of the substrate layer 1 with the lubricant. may
 基材層1の厚みについては、基材としての機能を発揮すれば特に制限されないが、例えば、3~50μm程度、好ましくは10~35μm程度が挙げられる。基材層1が、2層以上の樹脂フィルムの積層体である場合、各層を構成している樹脂フィルムの厚みとしては、それぞれ、好ましくは2~25μm程度が挙げられる。 The thickness of the base material layer 1 is not particularly limited as long as it functions as a base material, but it is, for example, about 3 to 50 μm, preferably about 10 to 35 μm. When the substrate layer 1 is a laminate of two or more resin films, the thickness of each resin film constituting each layer is preferably about 2 to 25 μm.
[接着剤層2]
 本開示の蓄電デバイス用外装材において、接着剤層2は、基材層1とバリア層3との接着性を高めることを目的として、これらの間に設けられる層である。
[Adhesive layer 2]
In the power storage device exterior material of the present disclosure, the adhesive layer 2 is a layer provided between the base layer 1 and the barrier layer 3 for the purpose of enhancing the adhesiveness between them.
 本開示において、接着剤層2の厚み方向の断面について、対物レンズの倍率150倍で観察される空隙率は、25%以下である。本開示の蓄電デバイス用外装材10においては、基材層1とバリア層3との間に位置する接着剤層2の前記空隙率が25%以下に設定されていることから、湿熱環境において、蓄電デバイス用外装材10の接着剤層2の位置での剥離(デラミネーション)が抑制され、優れた耐湿熱性を発揮することができる。 In the present disclosure, the porosity of the cross section of the adhesive layer 2 in the thickness direction observed at a magnification of 150 times of the objective lens is 25% or less. In the power storage device exterior material 10 of the present disclosure, the porosity of the adhesive layer 2 located between the base material layer 1 and the barrier layer 3 is set to 25% or less. Peeling (delamination) at the position of the adhesive layer 2 of the power storage device exterior material 10 is suppressed, and excellent moist heat resistance can be exhibited.
 接着剤層2の前記空隙率は、25%以下であればよいが、本開示の効果をより一層好適に発揮する観点から、好ましくは21%以下、より好ましくは15%以下、さらに好ましくは10%以下、さらに好ましくは8%以下、さらに好ましくは5%以下、さらに好ましくは3%以下である。なお、当該空隙率は、好ましくは0.5%以上、最も好ましくは0%である。本開示において、当該空隙率の好ましい範囲としては、0~25%、0~21%、0~15%、0~10%、0~8%、0~5%、0~3%、0.5~25%、0.5~21%、0.5~15%、0.5~10%、0.5~8%、0.5~5%、0.5~3%などが挙げられる。ただし、蓄電デバイス用外装材の成形性を高める観点からは、接着剤層2中に多少の空隙が存在することにより、成形時に接着剤層2が基材層1及びバリア層3に加わる負荷を緩和することが期待できる。 Although the porosity of the adhesive layer 2 may be 25% or less, it is preferably 21% or less, more preferably 15% or less, and still more preferably 10% or less from the viewpoint of more preferably exhibiting the effects of the present disclosure. % or less, more preferably 8% or less, more preferably 5% or less, still more preferably 3% or less. The porosity is preferably 0.5% or more, most preferably 0%. In the present disclosure, preferred ranges for the porosity include 0 to 25%, 0 to 21%, 0 to 15%, 0 to 10%, 0 to 8%, 0 to 5%, 0 to 3%, 0.3%, 5-25%, 0.5-21%, 0.5-15%, 0.5-10%, 0.5-8%, 0.5-5%, 0.5-3%, etc. . However, from the viewpoint of improving the moldability of the exterior material for an electric storage device, the presence of some voids in the adhesive layer 2 reduces the load that the adhesive layer 2 exerts on the base layer 1 and the barrier layer 3 during molding. can be expected to relax.
 接着剤層2の前記空隙率は、接着剤層2の厚み方向の断面を、レーザー顕微鏡を用いて対物レンズの倍率150倍で測定される値であり、特に、湿熱環境で剥離が生じやすい凹部(特に、蓄電デバイス用外装材の屈曲部)の断面について測定することが望ましい。例えば、図4及び図5に示されるように、凹部100の形状が平面視略矩形状である場合であれば、基材層1側から蓄電デバイス用外装材10を観察した場合に、平面視略矩形状に形成された凹部100(成形部)について、凹部100のコーナー部を形成する曲線と稜線部を形成する直線の境界部分(図4において、凹部100を示す実線と(1)~(8)の破線が交わる箇所)について、厚み方向と平行な方向(さらに、切断する辺とは垂直方向)に、市販のミクロトーム(例えばヤマト光機工業製のROM-380)で切断して、接着剤層2の断面を取得する。なお、金型によって形成した平面視略矩形状の凹部100において、基材層1側から蓄電デバイス用外装材を観察した場合に、凹部100のコーナー部は、それぞれ、理想的な直角にはならず、曲線状になる。これは、蓄電デバイス用外装材の成形時にコーナー部がRを有するように成形されることが一般的なためである。凹部100のコーナー部を形成する曲線と稜線部を形成する直線の境界部分(図4において、凹部100を示す実線と(1)~(8)の破線が交わる箇所)について、観察対象の断面を取得することが好適である。前記の通り、蓄電デバイス用外装材の成形によって形成される凹部(空間)の形状は様々であるが、成形時に積層体が引き延ばされることにより局所的に負担がかかる箇所において、湿熱環境における剥離が特に生じやすい。したがって、当該負担がかかる箇所の接着剤層の空隙率を測定することが有効である。蓄電デバイス用外装材の成形によって形成される凹部(空間)の形状が、例えば封止用縁側にコーナー部と稜線部を有する形状の場合は、コーナー部を形成する曲線と稜線を形成する直線の境界部分が、成形時に負担がかかる箇所である。すなわち、例えば図4,図5に示されるように、封止用縁10C側(図5)に平面略視矩形状の凹部100が形成されている場合、図4の凹部100はコーナー部と稜線部を有するが、コーナー部を形成する曲線と稜線部を形成する直線の境界部分(図4において、凹部100を示す実線と(1)~(8)の破線が交わる箇所)が、成形時に負担がかかる箇所である。したがって、当該部分の厚み方向の断面を空隙率の測定対象とすることが有効である。前記の8箇所について取得した断面について、それぞれ、封止用縁10C側の屈曲部10Bの断面(図5の領域Pを参照)の空隙率を測定し、測定値の最も大きい空隙率を、蓄電デバイス用外装材の接着剤層2の空隙率とすることができる。なお、凹部が平面視略矩形状でない場合にも、同様の理由から、凹部100の底面100A側の屈曲部及び封止用縁10C側の屈曲部のうち、封止用縁10C側の屈曲部の断面を空隙率の測定対象とすることが有効である。 The porosity of the adhesive layer 2 is a value obtained by measuring a cross section of the adhesive layer 2 in the thickness direction with a laser microscope at a magnification of 150 times with an objective lens. It is desirable to measure the cross section of (particularly, the bent portion of the exterior material for an electric storage device). For example, as shown in FIGS. 4 and 5, if the shape of the concave portion 100 is substantially rectangular in plan view, when the power storage device exterior material 10 is observed from the base layer 1 side, in plan view Regarding the concave portion 100 (molding portion) formed in a substantially rectangular shape, the boundary portion between the curved line forming the corner portion of the concave portion 100 and the straight line forming the ridge portion (in FIG. 4, the solid line indicating the concave portion 100 and (1) to ( 8) where the dashed lines intersect) are cut in a direction parallel to the thickness direction (and in a direction perpendicular to the side to be cut) with a commercially available microtome (eg, ROM-380 manufactured by Yamato Koki Kogyo Co., Ltd.), and glued. A cross section of the agent layer 2 is obtained. In addition, when the power storage device exterior material is observed from the substrate layer 1 side in the concave portion 100 having a substantially rectangular shape in plan view formed by the mold, the corner portions of the concave portion 100 do not form ideal right angles. It becomes curved. This is because the corner portion is generally rounded when molding the exterior material for an electric storage device. The cross section of the observation target is taken at the boundary portion between the curved line forming the corner portion of the recess 100 and the straight line forming the ridge portion (in FIG. 4, the place where the solid line indicating the recess 100 and the broken lines (1) to (8) intersect). It is preferable to obtain As described above, the shape of the recessed portion (space) formed by molding the exterior material for an electric storage device varies, but in places where the laminate is stretched during molding and locally burdened, peeling in a moist and hot environment is particularly likely to occur. Therefore, it is effective to measure the porosity of the adhesive layer at the location where the load is applied. When the shape of the recess (space) formed by molding the exterior material for an electric storage device is, for example, a shape having a corner portion and a ridge line portion on the sealing edge side, a curved line forming the corner portion and a straight line forming the ridge line are formed. The boundary portion is a portion where a burden is applied during molding. That is, for example, as shown in FIGS. 4 and 5, when a substantially rectangular concave portion 100 in plan view is formed on the side of the sealing edge 10C (FIG. 5), the concave portion 100 in FIG. Although it has a part, the boundary part between the curve forming the corner part and the straight line forming the ridge part (in FIG. 4, the place where the solid line indicating the recess 100 and the broken lines (1) to (8) intersect) is a burden during molding This is the point where the Therefore, it is effective to measure the porosity of the section in the thickness direction of the portion. For the cross sections obtained at the eight locations, the porosity of the cross section of the bent portion 10B on the sealing edge 10C side (see region P in FIG. 5) is measured, and the porosity with the largest measured value is It can be the porosity of the adhesive layer 2 of the device exterior material. For the same reason, even when the concave portion is not substantially rectangular in plan view, the bent portion on the sealing edge 10C side of the bent portion on the bottom surface 100A side and the sealing edge 10C side of the concave portion 100 It is effective to measure the porosity of the cross section of
 空隙率の測定は、接着剤層2について得られた断面について、市販のレーザー顕微鏡(例えば、KEYENCE製のVK-9710)を用い、倍率150倍の対物レンズにて断面観察を行う。続いて、得られた断面観察結果より、接着剤層2の面積、および空隙の面積を、解析ソフト(例えば、VK Analyzer バージョン2.5.0.1)を用いて数値化する。具体的には、VK Analyzerの評価解析(A)の体積・面積(V)を選び、接着剤層の面積は、“多角形”モードを選び、取得した画像に表された接着剤層が全て含まれるように、バリア層と接着剤層間を5点、接着剤層と基材層間を5点選んで点を結ぶことによって、面積を測定する。また、空隙は、“フリーライン”モードを選び、空隙が全て埋まるように線で囲んで指定し、面積を測定する。得られたそれぞれの面積の比を次の式により算出し、断面の空隙率(%)を得る。前記の8箇所の位置(図4において、凹部100を示す実線と(1)~(8)の破線が交わる箇所を参照)の断面について空隙率を測定した場合には、合計8箇所の測定値のうち、空隙率が最も大きい値を採用する。
 接着剤層の断面の空隙率(%)=(接着剤層の空隙断面積/接着剤層の断面積)×100
The porosity is measured by observing the cross section of the adhesive layer 2 with a commercially available laser microscope (eg VK-9710 manufactured by KEYENCE) with an objective lens of 150x magnification. Subsequently, from the cross-sectional observation results obtained, the area of the adhesive layer 2 and the area of the voids are quantified using analysis software (for example, VK Analyzer version 2.5.0.1). Specifically, select the volume and area (V) of the evaluation analysis (A) of the VK Analyzer, select the "polygon" mode for the area of the adhesive layer, and all the adhesive layers represented in the acquired image The area is measured by connecting the points by choosing 5 points between the barrier layer and the adhesive layer and 5 points between the adhesive layer and the substrate layer so that they are included. In addition, the "free line" mode is selected for the gap, and the area is measured by enclosing it with a line so that the entire gap is filled. The ratio of the obtained areas is calculated by the following formula to obtain the cross-sectional porosity (%). When the porosity is measured on the cross section at the eight positions (see the places where the solid line indicating the recess 100 and the broken lines (1) to (8) intersect in FIG. 4), the measured values at a total of eight positions Among them, the value with the largest porosity is adopted.
Porosity (%) of the cross section of the adhesive layer = (cross-sectional area of voids in the adhesive layer/cross-sectional area of the adhesive layer) x 100
 接着剤層2の前記空隙率を25%以下にまで低減させる方法としては、接着剤の種類の選択だけでなく、基材層1とバリア層3とを接着剤層2を介して積層する際に、接着剤層2に気泡が極力生じないように設計することが求められる。例えば、基材層1とバリア層3とを接着剤層2を介して積層する際の積層圧力を高めることにより、基材層1とバリア層3との積層時に接着剤層2に巻き込まれる空気を潰して接着剤層2に残存する空気を減らし、空隙の発生を抑制する方法が挙げられる。また、基材層1とバリア層3とを接着剤層2を介して積層する際に使用されるニップロールの径を大きくすることで、基材層1とバリア層3との積層時に接着剤層2に巻き込まれる空気を潰す時間と面積を増やし、接着剤層2に残存する空気を減らして、空隙の発生を抑制する方法が挙げられる。さらに、基材層1とバリア層3とを接着剤層2を介して積層する際に、バリア層3の表面に接着剤層2を形成する接着剤を塗布した後、基材層1を積層することにより、基材層1を積層する際に巻き込まれた空気は、積層後に基材層1側から徐々に揮発するため、空隙の発生を抑制することができる。これに対して、基材層1の表面に接着剤層2を形成する接着剤を塗布した後、バリア層3を積層した場合、バリア層3を積層する際に巻き込まれた空気は、積層後にバリア層3側から揮発できないため、接着剤層2中に空隙が形成されやすい。これらの方法のうち、少なくとも1つの方法を選択して、接着剤層2に気泡が含まれることを抑制して、空隙率を小さくするようにする。 As a method for reducing the porosity of the adhesive layer 2 to 25% or less, not only selection of the type of adhesive but also In addition, it is required to design the adhesive layer 2 so as not to generate air bubbles as much as possible. For example, by increasing the lamination pressure when laminating the base material layer 1 and the barrier layer 3 with the adhesive layer 2 interposed therebetween, air trapped in the adhesive layer 2 when the base material layer 1 and the barrier layer 3 are laminated. is crushed to reduce the air remaining in the adhesive layer 2, thereby suppressing the generation of voids. In addition, by increasing the diameter of the nip roll used when laminating the base layer 1 and the barrier layer 3 with the adhesive layer 2 interposed therebetween, the adhesive layer 1 and the barrier layer 3 are laminated together. A method of suppressing the generation of voids by increasing the time and area for crushing the air caught in the adhesive layer 2 and reducing the air remaining in the adhesive layer 2 can be mentioned. Furthermore, when laminating the base material layer 1 and the barrier layer 3 with the adhesive layer 2 interposed therebetween, the base material layer 1 is laminated after the adhesive for forming the adhesive layer 2 is applied to the surface of the barrier layer 3. By doing so, the air caught in the lamination of the base material layer 1 gradually volatilizes from the side of the base material layer 1 after lamination, so that the generation of voids can be suppressed. On the other hand, when the barrier layer 3 is laminated after the adhesive for forming the adhesive layer 2 is applied to the surface of the base material layer 1, the air caught in the lamination of the barrier layer 3 is Since it cannot volatilize from the barrier layer 3 side, voids are likely to be formed in the adhesive layer 2 . At least one of these methods is selected to suppress inclusion of air bubbles in the adhesive layer 2 and reduce the porosity.
 接着剤層2は、基材層1とバリア層3とを接着可能である接着剤によって形成される。接着剤層2の形成に使用される接着剤は限定されないが、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれであってもよい。また、2液硬化型接着剤(2液性接着剤)であってもよく、1液硬化型接着剤(1液性接着剤)であってもよく、硬化反応を伴わない樹脂でもよい。また、接着剤層2は単層であってもよいし、多層であってもよい。 The adhesive layer 2 is made of an adhesive that can bond the base material layer 1 and the barrier layer 3 together. The adhesive used to form the adhesive layer 2 is not limited, but may be any of a chemical reaction type, a solvent volatilization type, a hot melt type, a hot pressure type, and the like. Further, it may be a two-liquid curing adhesive (two-liquid adhesive), a one-liquid curing adhesive (one-liquid adhesive), or a resin that does not involve a curing reaction. Further, the adhesive layer 2 may be a single layer or multiple layers.
 接着剤は、硬化性樹脂を含む樹脂組成物であることが好ましく、接着剤層2は、当該樹脂組成物の硬化物により形成されていることが好ましい。接着剤に含まれる硬化性樹脂(接着成分)としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリエチレンイソフタレート、共重合ポリエステル等のポリエステル;ポリエーテル;ポリウレタン;エポキシ樹脂;フェノール樹脂;ナイロン6、ナイロン66、ナイロン12、共重合ポリアミド等のポリアミド;ポリオレフィン、環状ポリオレフィン、酸変性ポリオレフィン、酸変性環状ポリオレフィンなどのポリオレフィン系樹脂;ポリ酢酸ビニル;セルロース;(メタ)アクリル樹脂;ポリイミド;ポリカーボネート;尿素樹脂、メラミン樹脂等のアミノ樹脂;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等のゴム;シリコーン樹脂等が挙げられる。これらの接着成分は1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの硬化性樹脂の中でも、好ましくはポリウレタンが挙げられる。すなわち、接着剤層2は、ポリウレタンを含む樹脂組成物の硬化物により形成されていることが好ましい。また、これらの接着成分となる樹脂は適切な硬化剤を併用して接着強度を高めることができる。前記硬化剤は、接着成分の持つ官能基に応じて、ポリイソシアネート、多官能エポキシ樹脂、オキサゾリン基含有ポリマー、ポリアミン樹脂、酸無水物などから適切なものを選択する。 The adhesive is preferably a resin composition containing a curable resin, and the adhesive layer 2 is preferably formed from a cured product of the resin composition. Specific examples of the curable resin (adhesive component) contained in the adhesive include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polyethylene isophthalate, polyester such as copolymer polyester; polyether; Polyurethane; Epoxy resin; Phenol resin; Polyamide such as nylon 6, nylon 66, nylon 12, copolyamide; Polyolefin resin such as polyolefin, cyclic polyolefin, acid-modified polyolefin, acid-modified cyclic polyolefin; meth)acrylic resin; polyimide; polycarbonate; amino resin such as urea resin and melamine resin; rubber such as chloroprene rubber, nitrile rubber and styrene-butadiene rubber; These adhesive components may be used singly or in combination of two or more. Among these curable resins, polyurethane is preferred. That is, the adhesive layer 2 is preferably made of a cured resin composition containing polyurethane. In addition, an appropriate curing agent can be used in combination with these adhesive component resins to increase the adhesive strength. The curing agent is selected from among polyisocyanates, polyfunctional epoxy resins, oxazoline group-containing polymers, polyamine resins, acid anhydrides, etc., depending on the functional groups of the adhesive component.
 ポリウレタンとしては、例えば、ポリオール化合物を含有する第1剤と、イソシアネート化合物を含有する第2剤とを含むポリウレタンが挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを第1剤として、芳香族系又は脂肪族系のポリイソシアネートを第2剤とした二液硬化型のポリウレタンが挙げられる。また、ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、イソシアネート化合物とを含むポリウレタンが挙げられる。また、ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、ポリオール化合物とを含むポリウレタンが挙げられる。また、ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物を、空気中などの水分と反応させることによって硬化させたポリウレタンが挙げられる。ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。第2剤としては、脂肪族、脂環式、芳香族、芳香脂肪族のイソシアネート系化合物が挙げられる。イソシアネート系化合物としては、例えばヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、水素化XDI(H6XDI)、水素化MDI(H12MDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)等が挙げられる。また、これらのジイソシアネートの1種類又は2種類以上からの多官能イソシアネート変性体等が挙げられる。また、ポリイソシアネート化合物として多量体(例えば三量体)を使用することもできる。このような多量体には、アダクト体、ビウレット体、ヌレート体等が挙げられる。接着剤層2がポリウレタンにより形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与され、側面に電解液が付着しても基材層1が剥がれることが抑制される。 Examples of polyurethanes include polyurethanes containing a first agent containing a polyol compound and a second agent containing an isocyanate compound. Preferred examples include a two-component curing type polyurethane in which a polyol such as polyester polyol, polyether polyol, or acrylic polyol is used as the first agent and an aromatic or aliphatic polyisocyanate is used as the second agent. Examples of polyurethane include polyurethane containing a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance and an isocyanate compound. Examples of polyurethane include polyurethane containing a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance and a polyol compound. Examples of polyurethanes include polyurethanes obtained by reacting a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance with moisture in the air and curing the polyurethane. As the polyol compound, it is preferable to use a polyester polyol having a hydroxyl group in a side chain in addition to the terminal hydroxyl group of the repeating unit. Examples of the second agent include aliphatic, alicyclic, aromatic, and araliphatic isocyanate compounds. Examples of isocyanate compounds include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate. (MDI), naphthalene diisocyanate (NDI), and the like. In addition, polyfunctional isocyanate-modified products of one or more of these diisocyanates are also included. Moreover, a polymer (for example, a trimer) can also be used as a polyisocyanate compound. Such multimers include adducts, biurets, nurates and the like. Since the adhesive layer 2 is made of polyurethane, the exterior material for an electric storage device is endowed with excellent electrolyte resistance, and even if the electrolyte adheres to the side surface, the base layer 1 is suppressed from being peeled off.
 また、接着剤層2は、接着性を阻害しない限り他成分の添加が許容され、着色剤や熱可塑性エラストマー、粘着付与剤、フィラーなどを含有してもよい。接着剤層2が着色剤を含んでいることにより、蓄電デバイス用外装材を着色することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 In addition, the adhesive layer 2 may contain other components as long as they do not impede adhesion, and may contain colorants, thermoplastic elastomers, tackifiers, fillers, and the like. Since the adhesive layer 2 contains a coloring agent, the exterior material for an electric storage device can be colored. Known substances such as pigments and dyes can be used as the colorant. In addition, only one type of colorant may be used, or two or more types may be mixed and used.
 顔料の種類は、接着剤層2の接着性を損なわない範囲であれば、特に限定されない。有機顔料としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、アンスラキノン系、ジオキサジン系、インジゴチオインジゴ系、ペリノン-ペリレン系、イソインドレニン系、ベンズイミダゾロン系等の顔料が挙げられ、無機顔料としては、カーボンブラック系、酸化チタン系、カドミウム系、鉛系、酸化クロム系、鉄系等の顔料が挙げられ、その他に、マイカ(雲母)の微粉末、魚鱗箔等が挙げられる。 The type of pigment is not particularly limited as long as it does not impair the adhesiveness of the adhesive layer 2. Examples of organic pigments include azo-based, phthalocyanine-based, quinacridone-based, anthraquinone-based, dioxazine-based, indigothioindigo-based, perinone-perylene-based, isoindolenine-based, and benzimidazolone-based pigments. Examples of pigments include carbon black, titanium oxide, cadmium, lead, chromium oxide, and iron pigments, as well as fine powder of mica and fish scale foil.
 着色剤の中でも、例えば蓄電デバイス用外装材の外観を黒色とするためには、カーボンブラックが好ましい。 Among the coloring agents, carbon black is preferable, for example, in order to make the external appearance of the exterior material for a power storage device black.
 顔料の平均粒子径としては、特に制限されず、例えば、0.05~5μm程度、好ましくは0.08~2μm程度が挙げられる。なお、顔料の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。 The average particle size of the pigment is not particularly limited, and is, for example, about 0.05 to 5 μm, preferably about 0.08 to 2 μm. The average particle size of the pigment is the median size measured with a laser diffraction/scattering particle size distribution analyzer.
 接着剤層2における顔料の含有量としては、蓄電デバイス用外装材が着色されれば特に制限されず、例えば5~60質量%程度、好ましくは10~40質量%が挙げられる。 The content of the pigment in the adhesive layer 2 is not particularly limited as long as the power storage device exterior material is colored, and is, for example, about 5 to 60% by mass, preferably 10 to 40% by mass.
 接着剤層2の厚みは、基材層1とバリア層3とを接着できれば、特に制限されないが、例えば、約1μm以上、約2μm以上である。また、接着剤層2の厚みは、例えば、約10μm以下、約5μm以下である。また、接着剤層2の厚みの好ましい範囲については、1~10μm程度、1~5μm程度、2~10μm程度、2~5μm程度が挙げられる。 The thickness of the adhesive layer 2 is not particularly limited as long as the substrate layer 1 and the barrier layer 3 can be adhered, but is, for example, about 1 μm or more, or about 2 μm or more. Moreover, the thickness of the adhesive layer 2 is, for example, about 10 μm or less, or about 5 μm or less. Moreover, the preferable range of the thickness of the adhesive layer 2 is about 1 to 10 μm, about 1 to 5 μm, about 2 to 10 μm, and about 2 to 5 μm.
[着色層]
 着色層は、基材層1とバリア層3との間に必要に応じて設けられる層である(図示を省略する)。接着剤層2を有する場合には、基材層1と接着剤層2との間、接着剤層2とバリア層3との間に着色層を設けてもよい。また、基材層1の外側に着色層を設けてもよい。着色層を設けることにより、蓄電デバイス用外装材を着色することができる。
[Colored layer]
The colored layer is a layer provided as necessary between the base layer 1 and the barrier layer 3 (not shown). When the adhesive layer 2 is provided, a colored layer may be provided between the base material layer 1 and the adhesive layer 2 and between the adhesive layer 2 and the barrier layer 3 . Further, a colored layer may be provided outside the base material layer 1 . By providing the colored layer, the exterior material for an electricity storage device can be colored.
 着色層は、例えば、着色剤を含むインキを基材層1の表面、またはバリア層3の表面に塗布することにより形成することができる。着色剤としては、顔料、染料などの公知のものが使用できる。また、着色剤は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 The colored layer can be formed, for example, by applying ink containing a coloring agent to the surface of the base material layer 1 or the surface of the barrier layer 3 . Known substances such as pigments and dyes can be used as the colorant. In addition, only one type of colorant may be used, or two or more types may be mixed and used.
 着色層に含まれる着色剤の具体例としては、[接着剤層2]の欄で例示したものと同じものが例示される。 Specific examples of the colorant contained in the colored layer are the same as those exemplified in the [Adhesive layer 2] column.
[バリア層3]
 蓄電デバイス用外装材において、バリア層3は、少なくとも水分の浸入を抑止する層である。蓄電デバイス用外装材において、バリア層3は、1層であることが好ましい。
[Barrier layer 3]
In the power storage device exterior material, the barrier layer 3 is a layer that at least prevents permeation of moisture. In the exterior material for an electric storage device, it is preferable that the barrier layer 3 is one layer.
 バリア層3としては、例えば、バリア性を有する金属箔、蒸着膜、樹脂層などが挙げられる。蒸着膜としては金属蒸着膜、無機酸化物蒸着膜、炭素含有無機酸化物蒸着膜などが挙げられ、樹脂層としてはポリ塩化ビニリデン、クロロトリフルオロエチレン(CTFE)を主成分としたポリマー類やテトラフルオロエチレン(TFE)を主成分としたポリマー類やフルオロアルキル基を有するポリマー、およびフルオロアルキル単位を主成分としたポリマー類などのフッ素含有樹脂、エチレンビニルアルコール共重合体などが挙げられる。また、バリア層3としては、これらの蒸着膜及び樹脂層の少なくとも1層を設けた樹脂フィルムなども挙げられる。バリア層3は、複数層設けてもよい。バリア層3は、金属材料により構成された層を含むことが好ましい。バリア層3を構成する金属材料としては、具体的には、アルミニウム合金、ステンレス鋼、チタン鋼、鋼板などが挙げられ、金属箔として用いる場合は、アルミニウム合金箔及びステンレス鋼箔の少なくとも一方を含むことが好ましい。 Examples of the barrier layer 3 include a metal foil, vapor deposition film, and resin layer having barrier properties. Examples of vapor-deposited films include metal vapor-deposited films, inorganic oxide vapor-deposited films, and carbon-containing inorganic oxide vapor-deposited films. Polymers containing fluoroethylene (TFE) as a main component, polymers having a fluoroalkyl group, fluorine-containing resins such as polymers containing fluoroalkyl units as a main component, and ethylene vinyl alcohol copolymers. The barrier layer 3 may also include a resin film provided with at least one of these deposited films and resin layers. A plurality of barrier layers 3 may be provided. The barrier layer 3 preferably includes a layer made of a metal material. Specific examples of the metal material that constitutes the barrier layer 3 include aluminum alloys, stainless steels, titanium steels, and steel plates. When used as a metal foil, at least one of an aluminum alloy foil and a stainless steel foil is included. is preferred.
 アルミニウム合金箔は、蓄電デバイス用外装材の成形性を向上させる観点から、例えば、焼きなまし処理済みのアルミニウム合金などにより構成された軟質アルミニウム合金箔であることがより好ましく、より成形性を向上させる観点から、鉄を含むアルミニウム合金箔であることが好ましい。鉄を含むアルミニウム合金箔(100質量%)において、鉄の含有量は、0.1~9.0質量%であることが好ましく、0.5~2.0質量%であることがより好ましい。鉄の含有量が0.1質量%以上であることにより、より優れた成形性を有する蓄電デバイス用外装材を得ることができる。鉄の含有量が9.0質量%以下であることにより、より柔軟性に優れた蓄電デバイス用外装材を得ることができる。軟質アルミニウム合金箔としては、例えば、JIS H4160:1994 A8021H-O、JIS H4160:1994 A8079H-O、JIS H4000:2014 A8021P-O、又はJIS H4000:2014 A8079P-Oで規定される組成を備えるアルミニウム合金箔が挙げられる。また必要に応じて、ケイ素、マグネシウム、銅、マンガンなどが添加されていてもよい。また軟質化は焼鈍処理などで行うことができる。 The aluminum alloy foil is more preferably a soft aluminum alloy foil made of, for example, an annealed aluminum alloy, from the viewpoint of improving the formability of the exterior material for an electricity storage device, and from the viewpoint of further improving the formability. Therefore, it is preferably an aluminum alloy foil containing iron. In the aluminum alloy foil containing iron (100% by mass), the iron content is preferably 0.1 to 9.0% by mass, more preferably 0.5 to 2.0% by mass. When the iron content is 0.1% by mass or more, it is possible to obtain an exterior material for an electricity storage device having superior moldability. When the iron content is 9.0% by mass or less, it is possible to obtain an exterior material for an electricity storage device that is more excellent in flexibility. As the soft aluminum alloy foil, for example, an aluminum alloy having a composition specified by JIS H4160: 1994 A8021H-O, JIS H4160: 1994 A8079H-O, JIS H4000: 2014 A8021P-O, or JIS H4000: 2014 A8079P-O foil. Moreover, silicon, magnesium, copper, manganese, etc. may be added as needed. Moreover, softening can be performed by annealing treatment or the like.
 また、ステンレス鋼箔としては、オーステナイト系、フェライト系、オーステナイト・フェライト系、マルテンサイト系、析出硬化系のステンレス鋼箔などが挙げられる。さらに成形性に優れた蓄電デバイス用外装材を提供する観点から、ステンレス鋼箔は、オーステナイト系のステンレス鋼により構成されていることが好ましい。 In addition, examples of stainless steel foils include austenitic, ferritic, austenitic/ferritic, martensitic, and precipitation hardened stainless steel foils. Furthermore, from the viewpoint of providing an exterior material for an electricity storage device with excellent formability, the stainless steel foil is preferably made of austenitic stainless steel.
 ステンレス鋼箔を構成するオーステナイト系のステンレス鋼の具体例としては、SUS304、SUS301、SUS316Lなどが挙げられ、これら中でも、SUS304が特に好ましい。 Specific examples of the austenitic stainless steel that constitutes the stainless steel foil include SUS304, SUS301, SUS316L, etc. Among these, SUS304 is particularly preferable.
 バリア層3の厚みは、金属箔の場合、少なくとも水分の浸入を抑止するバリア層としての機能を発揮すればよく、例えば9~200μm程度が挙げられる。バリア層3の厚みは、好ましくは約85μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、特に好ましくは約35μm以下である。また、バリア層3の厚みは、好ましくは約10μm以上、さらに好ましくは約20μm以上、より好ましくは約25μm以上である。また、バリア層3の厚みの好ましい範囲としては、10~85μm程度、10~50μm程度、10~40μm程度、10~35μm程度、20~85μm程度、20~50μm程度、20~40μm程度、20~35μm程度、25~85μm程度、25~50μm程度、25~40μm程度、25~35μm程度が挙げられる。バリア層3がアルミニウム合金箔により構成されている場合、上述した範囲が特に好ましい。また、特に、バリア層3がステンレス鋼箔により構成されている場合、ステンレス鋼箔の厚みは、好ましくは約60μm以下、より好ましくは約50μm以下、さらに好ましくは約40μm以下、さらに好ましくは約30μm以下、特に好ましくは約25μm以下である。また、ステンレス鋼箔の厚みは、好ましくは約10μm以上、より好ましくは約15μm以上である。また、ステンレス鋼箔の厚みの好ましい範囲としては、10~60μm程度、10~50μm程度、10~40μm程度、10~30μm程度、10~25μm程度、15~60μm程度、15~50μm程度、15~40μm程度、15~30μm程度、15~25μm程度が挙げられる。 In the case of a metal foil, the thickness of the barrier layer 3 should be at least as long as it functions as a barrier layer that suppresses the intrusion of moisture. The thickness of the barrier layer 3 is preferably about 85 μm or less, more preferably about 50 μm or less, even more preferably about 40 μm or less, particularly preferably about 35 μm or less. Also, the thickness of the barrier layer 3 is preferably about 10 μm or more, more preferably about 20 μm or more, and more preferably about 25 μm or more. The preferred range of thickness of the barrier layer 3 is about 10 to 85 μm, about 10 to 50 μm, about 10 to 40 μm, about 10 to 35 μm, about 20 to 85 μm, about 20 to 50 μm, about 20 to 40 μm, 20 to 40 μm. About 35 μm, about 25 to 85 μm, about 25 to 50 μm, about 25 to 40 μm, and about 25 to 35 μm. When the barrier layer 3 is made of an aluminum alloy foil, the above range is particularly preferred. In particular, when the barrier layer 3 is made of stainless steel foil, the thickness of the stainless steel foil is preferably about 60 μm or less, more preferably about 50 μm or less, even more preferably about 40 μm or less, and even more preferably about 30 μm. Below, it is particularly preferably about 25 μm or less. Also, the thickness of the stainless steel foil is preferably about 10 μm or more, more preferably about 15 μm or more. In addition, the preferable range of the thickness of the stainless steel foil is about 10 to 60 μm, about 10 to 50 μm, about 10 to 40 μm, about 10 to 30 μm, about 10 to 25 μm, about 15 to 60 μm, about 15 to 50 μm, 15 to 50 μm. About 40 μm, about 15 to 30 μm, and about 15 to 25 μm can be mentioned.
 また、バリア層3が金属箔の場合は、溶解や腐食の防止などのために、少なくとも基材層と反対側の面に耐腐食性皮膜を備えていることが好ましい。バリア層3は、耐腐食性皮膜を両面に備えていてもよい。ここで、耐腐食性皮膜とは、例えば、ベーマイト処理などの熱水変成処理、化成処理、陽極酸化処理、ニッケルやクロムなどのメッキ処理、コーティング剤を塗工する腐食防止処理をバリア層の表面に行い、バリア層に耐腐食性(例えば耐酸性、耐アルカリ性など)を備えさせる薄膜をいう。耐腐食性皮膜は、具体的には、バリア層の耐酸性を向上させる皮膜(耐酸性皮膜)、バリア層の耐アルカリ性を向上させる皮膜(耐アルカリ性皮膜)などを意味している。耐腐食性皮膜を形成する処理としては、1種類を行ってもよいし、2種類以上を組み合わせて行ってもよい。また、1層だけではなく多層化することもできる。さらに、これらの処理のうち、熱水変成処理及び陽極酸化処理は、処理剤によって金属箔表面を溶解させ、耐腐食性に優れる金属化合物を形成させる処理である。なお、これらの処理は、化成処理の定義に包含される場合もある。また、バリア層3が耐腐食性皮膜を備えている場合、耐腐食性皮膜を含めてバリア層3とする。 In addition, when the barrier layer 3 is a metal foil, it is preferable that at least the surface opposite to the base layer is provided with a corrosion-resistant film in order to prevent dissolution and corrosion. The barrier layer 3 may be provided with a corrosion resistant coating on both sides. Here, the corrosion-resistant film includes, for example, hydrothermal transformation treatment such as boehmite treatment, chemical conversion treatment, anodizing treatment, plating treatment such as nickel and chromium, and corrosion prevention treatment such as applying a coating agent to the surface of the barrier layer. It is a thin film that provides corrosion resistance (for example, acid resistance, alkali resistance, etc.) to the barrier layer. The corrosion-resistant film specifically means a film that improves the acid resistance of the barrier layer (acid-resistant film), a film that improves the alkali resistance of the barrier layer (alkali-resistant film), and the like. As the treatment for forming the corrosion-resistant film, one type may be performed, or two or more types may be used in combination. Also, not only one layer but also multiple layers can be used. Furthermore, among these treatments, the hydrothermal transformation treatment and the anodizing treatment are treatments in which the surface of the metal foil is dissolved with a treating agent to form a metal compound having excellent corrosion resistance. These treatments are sometimes included in the definition of chemical conversion treatment. When the barrier layer 3 has a corrosion-resistant film, the barrier layer 3 includes the corrosion-resistant film.
 耐腐食性皮膜は、蓄電デバイス用外装材の成形時において、バリア層(例えば、アルミニウム合金箔)と基材層との間のデラミネーション防止、電解質と水分とによる反応で生成するフッ化水素により、バリア層表面の溶解、腐食、特にバリア層がアルミニウム合金箔である場合にバリア層表面に存在する酸化アルミニウムが溶解、腐食することを防止し、かつ、バリア層表面の接着性(濡れ性)を向上させ、ヒートシール時の基材層とバリア層とのデラミネーション防止、成形時の基材層とバリア層とのデラミネーション防止の効果を示す。 The corrosion-resistant coating prevents delamination between the barrier layer (e.g., aluminum alloy foil) and the substrate layer during the molding of the exterior material for power storage devices, and the hydrogen fluoride generated by the reaction between the electrolyte and moisture. , the dissolution and corrosion of the barrier layer surface, especially when the barrier layer is an aluminum alloy foil, the aluminum oxide present on the barrier layer surface is prevented from dissolving and corroding, and the adhesion (wettability) of the barrier layer surface is improved. , and exhibits the effect of preventing delamination between the base material layer and the barrier layer during heat sealing and preventing delamination between the base material layer and the barrier layer during molding.
 化成処理によって形成される耐腐食性皮膜としては、種々のものが知られており、主には、リン酸塩、クロム酸塩、フッ化物、トリアジンチオール化合物、及び希土類酸化物のうち少なくとも1種を含む耐腐食性皮膜などが挙げられる。リン酸塩、クロム酸塩を用いた化成処理としては、例えば、クロム酸クロメート処理、リン酸クロメート処理、リン酸-クロム酸塩処理、クロム酸塩処理などが挙げられ、これらの処理に用いるクロム化合物としては、例えば、硝酸クロム、フッ化クロム、硫酸クロム、酢酸クロム、蓚酸クロム、重リン酸クロム、クロム酸アセチルアセテート、塩化クロム、硫酸カリウムクロムなどが挙げられる。また、これらの処理に用いるリン化合物としては、リン酸ナトリウム、リン酸カリウム、リン酸アンモニウム、ポリリン酸などが挙げられる。また、クロメート処理としてはエッチングクロメート処理、電解クロメート処理、塗布型クロメート処理などが挙げられ、塗布型クロメート処理が好ましい。この塗布型クロメート処理は、バリア層(例えばアルミニウム合金箔)の少なくとも内層側の面を、まず、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法、酸活性化法等の周知の処理方法で脱脂処理を行い、その後、脱脂処理面にリン酸Cr(クロム)塩、リン酸Ti(チタン)塩、リン酸Zr(ジルコニウム)塩、リン酸Zn(亜鉛)塩などのリン酸金属塩及びこれらの金属塩の混合体を主成分とする処理液、または、リン酸非金属塩及びこれらの非金属塩の混合体を主成分とする処理液、あるいは、これらと合成樹脂などとの混合物からなる処理液をロールコート法、グラビア印刷法、浸漬法等の周知の塗工法で塗工し、乾燥する処理である。処理液は例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。また、このとき用いる樹脂成分としては、フェノール系樹脂やアクリル系樹脂などの高分子などが挙げられ、下記一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体を用いたクロメート処理などが挙げられる。なお、当該アミノ化フェノール重合体において、下記一般式(1)~(4)で表される繰り返し単位は、1種類単独で含まれていてもよいし、2種類以上の任意の組み合わせであってもよい。アクリル系樹脂は、ポリアクリル酸、アクリル酸メタクリル酸エステル共重合体、アクリル酸マレイン酸共重合体、アクリル酸スチレン共重合体、またはこれらのナトリウム塩、アンモニウム塩、アミン塩等の誘導体であることが好ましい。特にポリアクリル酸のアンモニウム塩、ナトリウム塩、又はアミン塩等のポリアクリル酸の誘導体が好ましい。本開示において、ポリアクリル酸とは、アクリル酸の重合体を意味している。また、アクリル系樹脂は、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体であることも好ましく、アクリル酸とジカルボン酸又はジカルボン酸無水物との共重合体のアンモニウム塩、ナトリウム塩、又はアミン塩であることも好ましい。アクリル系樹脂は、1種類のみを用いてもよいし、2種類以上を混合して用いてもよい。 Various types of corrosion-resistant coatings formed by chemical conversion treatment are known, and are mainly composed of at least one of phosphates, chromates, fluorides, triazinethiol compounds, and rare earth oxides. and corrosion-resistant coatings containing. Examples of chemical conversion treatments using phosphate and chromate include chromic acid chromate treatment, phosphoric acid chromate treatment, phosphoric acid-chromate treatment, and chromate treatment. Examples of compounds include chromium nitrate, chromium fluoride, chromium sulfate, chromium acetate, chromium oxalate, chromium biphosphate, chromium acetyl acetate, chromium chloride, potassium chromium sulfate, and the like. Phosphorus compounds used for these treatments include sodium phosphate, potassium phosphate, ammonium phosphate, polyphosphoric acid, and the like. Examples of the chromate treatment include etching chromate treatment, electrolytic chromate treatment, coating-type chromate treatment, etc., and coating-type chromate treatment is preferred. In this coating-type chromate treatment, at least the inner layer side surface of the barrier layer (for example, aluminum alloy foil) is first subjected to a well-known method such as an alkali immersion method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, an acid activation method, or the like. After degreasing by a treatment method, metal phosphate such as Cr (chromium) phosphate, Ti (titanium) phosphate, Zr (zirconium) phosphate, Zn (zinc) phosphate is applied to the degreased surface. A processing solution mainly composed of a salt and a mixture of these metal salts, a processing solution mainly composed of a non-metal phosphate salt and a mixture of these non-metal salts, or a mixture of these and a synthetic resin. This is a treatment in which a treatment liquid composed of a mixture is applied by a well-known coating method such as a roll coating method, a gravure printing method, or an immersion method, and then dried. Various solvents such as water, alcohol-based solvents, hydrocarbon-based solvents, ketone-based solvents, ester-based solvents, and ether-based solvents can be used as the treatment liquid, and water is preferred. In addition, the resin component used at this time includes polymers such as phenolic resins and acrylic resins. and the chromate treatment used. In the aminated phenol polymer, the repeating units represented by the following general formulas (1) to (4) may be contained singly or in any combination of two or more. good too. The acrylic resin is polyacrylic acid, acrylic acid methacrylic acid ester copolymer, acrylic acid maleic acid copolymer, acrylic acid styrene copolymer, or derivatives thereof such as sodium salts, ammonium salts, and amine salts. is preferred. In particular, derivatives of polyacrylic acid such as ammonium salt, sodium salt or amine salt of polyacrylic acid are preferred. In the present disclosure, polyacrylic acid means a polymer of acrylic acid. Further, the acrylic resin is preferably a copolymer of acrylic acid and dicarboxylic acid or dicarboxylic anhydride, and the ammonium salt, sodium salt, Alternatively, it is also preferably an amine salt. Only one type of acrylic resin may be used, or two or more types may be mixed and used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 一般式(1)~(4)中、Xは、水素原子、ヒドロキシ基、アルキル基、ヒドロキシアルキル基、アリル基またはベンジル基を示す。また、R1及びR2は、それぞれ同一または異なって、ヒドロキシ基、アルキル基、またはヒドロキシアルキル基を示す。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基などの炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。また、X、R1及びR2で示されるヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロピル基、2-ヒドロキシプロピル基、3-ヒドロキシプロピル基、1-ヒドロキシブチル基、2-ヒドロキシブチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基などのヒドロキシ基が1個置換された炭素数1~4の直鎖または分枝鎖状アルキル基が挙げられる。一般式(1)~(4)において、X、R1及びR2で示されるアルキル基及びヒドロキシアルキル基は、それぞれ同一であってもよいし、異なっていてもよい。一般式(1)~(4)において、Xは、水素原子、ヒドロキシ基またはヒドロキシアルキル基であることが好ましい。一般式(1)~(4)で表される繰り返し単位を有するアミノ化フェノール重合体の数平均分子量は、例えば、500~100万程度であることが好ましく、1000~2万程度であることがより好ましい。アミノ化フェノール重合体は、例えば、フェノール化合物又はナフトール化合物とホルムアルデヒドとを重縮合して上記一般式(1)又は一般式(3)で表される繰返し単位からなる重合体を製造し、次いでホルムアルデヒド及びアミン(R12NH)を用いて官能基(-CH2NR12)を上記で得られた重合体に導入することにより、製造される。アミノ化フェノール重合体は、1種単独で又は2種以上混合して使用される。 In general formulas (1) to (4), X represents a hydrogen atom, hydroxy group, alkyl group, hydroxyalkyl group, allyl group or benzyl group. R 1 and R 2 are the same or different and represent a hydroxy group, an alkyl group or a hydroxyalkyl group. Examples of alkyl groups represented by X, R 1 and R 2 in general formulas (1) to (4) include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, A linear or branched alkyl group having 1 to 4 carbon atoms such as a tert-butyl group can be mentioned. Examples of hydroxyalkyl groups represented by X, R 1 and R 2 include hydroxymethyl group, 1-hydroxyethyl group, 2-hydroxyethyl group, 1-hydroxypropyl group, 2-hydroxypropyl group, 3- A straight or branched chain having 1 to 4 carbon atoms substituted with one hydroxy group such as hydroxypropyl group, 1-hydroxybutyl group, 2-hydroxybutyl group, 3-hydroxybutyl group and 4-hydroxybutyl group An alkyl group is mentioned. In general formulas (1) to (4), the alkyl groups and hydroxyalkyl groups represented by X, R 1 and R 2 may be the same or different. In general formulas (1) to (4), X is preferably a hydrogen atom, a hydroxy group or a hydroxyalkyl group. The number average molecular weight of the aminated phenol polymer having repeating units represented by formulas (1) to (4) is, for example, preferably about 500 to 1,000,000, more preferably about 1,000 to 20,000. more preferred. The aminated phenol polymer is produced, for example, by polycondensing a phenol compound or naphthol compound and formaldehyde to produce a polymer comprising repeating units represented by the general formula (1) or general formula (3), followed by formaldehyde. and an amine (R 1 R 2 NH) to introduce a functional group (--CH 2 NR 1 R 2 ) into the polymer obtained above. An aminated phenol polymer is used individually by 1 type or in mixture of 2 or more types.
 耐腐食性皮膜の他の例としては、希土類元素酸化物ゾル、アニオン性ポリマー、カチオン性ポリマーからなる群から選ばれる少なくとも1種を含有するコーティング剤を塗工するコーティングタイプの腐食防止処理によって形成される薄膜が挙げられる。コーティング剤には、さらにリン酸またはリン酸塩、ポリマーを架橋させる架橋剤を含んでもよい。希土類元素酸化物ゾルには、液体分散媒中に希土類元素酸化物の微粒子(例えば、平均粒径100nm以下の粒子)が分散されている。希土類元素酸化物としては、酸化セリウム、酸化イットリウム、酸化ネオジウム、酸化ランタン等が挙げられ、密着性をより向上させる観点から酸化セリウムが好ましい。耐腐食性皮膜に含まれる希土類元素酸化物は1種を単独で又は2種以上を組み合わせて用いることができる。希土類元素酸化物ゾルの液体分散媒としては、例えば、水、アルコール系溶剤、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤など各種溶媒を用いることができ、水が好ましい。カチオン性ポリマーとしては、例えば、ポリエチレンイミン、ポリエチレンイミンとカルボン酸を有するポリマーからなるイオン高分子錯体、アクリル主骨格に1級アミンをグラフト重合させた1級アミングラフトアクリル樹脂、ポリアリルアミンまたはその誘導体、アミノ化フェノールなどが好ましい。また、アニオン性ポリマーとしては、ポリ(メタ)アクリル酸またはその塩、あるいは(メタ)アクリル酸またはその塩を主成分とする共重合体であることが好ましい。また、架橋剤が、イソシアネート基、グリシジル基、カルボキシル基、オキサゾリン基のいずれかの官能基を有する化合物とシランカップリング剤よりなる群から選ばれる少なくとも1種であることが好ましい。また、前記リン酸またはリン酸塩が、縮合リン酸または縮合リン酸塩であることが好ましい。 Another example of the corrosion-resistant film is formed by a coating-type corrosion prevention treatment in which a coating agent containing at least one selected from the group consisting of rare earth element oxide sol, anionic polymer, and cationic polymer is applied. A thin film that is The coating agent may further contain phosphoric acid or a phosphate, a cross-linking agent for cross-linking the polymer. In the rare earth element oxide sol, rare earth element oxide fine particles (for example, particles having an average particle size of 100 nm or less) are dispersed in a liquid dispersion medium. Examples of rare earth element oxides include cerium oxide, yttrium oxide, neodymium oxide, and lanthanum oxide, and cerium oxide is preferable from the viewpoint of further improving adhesion. The rare earth element oxides contained in the corrosion-resistant coating can be used singly or in combination of two or more. As the liquid dispersion medium for the rare earth element oxide sol, various solvents such as water, alcohol solvents, hydrocarbon solvents, ketone solvents, ester solvents, and ether solvents can be used, with water being preferred. Examples of the cationic polymer include polyethyleneimine, an ionic polymer complex composed of a polymer containing polyethyleneimine and carboxylic acid, a primary amine-grafted acrylic resin obtained by graft-polymerizing a primary amine to an acrylic backbone, polyallylamine, or a derivative thereof. , aminated phenols and the like are preferred. The anionic polymer is preferably poly(meth)acrylic acid or a salt thereof, or a copolymer containing (meth)acrylic acid or a salt thereof as a main component. Moreover, the cross-linking agent is preferably at least one selected from the group consisting of a compound having a functional group such as an isocyanate group, a glycidyl group, a carboxyl group, or an oxazoline group, and a silane coupling agent. Further, the phosphoric acid or phosphate is preferably condensed phosphoric acid or condensed phosphate.
 耐腐食性皮膜の一例としては、リン酸中に、酸化アルミニウム、酸化チタン、酸化セリウム、酸化スズなどの金属酸化物や硫酸バリウムの微粒子を分散させたものをバリア層の表面に塗布し、150℃以上で焼付け処理を行うことにより形成したものが挙げられる。 As an example of the corrosion-resistant film, fine particles of metal oxides such as aluminum oxide, titanium oxide, cerium oxide, and tin oxide, and barium sulfate are dispersed in phosphoric acid, which is applied to the surface of the barrier layer. C. or more, and those formed by performing baking processing are mentioned.
 耐腐食性皮膜は、必要に応じて、さらにカチオン性ポリマー及びアニオン性ポリマーの少なくとも一方を積層した積層構造としてもよい。カチオン性ポリマー、アニオン性ポリマーとしては、上述したものが挙げられる。 The corrosion-resistant film may, if necessary, have a laminated structure in which at least one of a cationic polymer and an anionic polymer is further laminated. Examples of cationic polymers and anionic polymers include those described above.
 なお、耐腐食性皮膜の組成の分析は、例えば、飛行時間型2次イオン質量分析法を用いて行うことができる。 The analysis of the composition of the corrosion-resistant coating can be performed using, for example, time-of-flight secondary ion mass spectrometry.
 化成処理においてバリア層3の表面に形成させる耐腐食性皮膜の量については、特に制限されないが、例えば、塗布型クロメート処理を行う場合であれば、バリア層3の表面1m2当たり、クロム酸化合物がクロム換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、リン化合物がリン換算で例えば0.5~50mg程度、好ましくは1.0~40mg程度、及びアミノ化フェノール重合体が例えば1.0~200mg程度、好ましくは5.0~150mg程度の割合で含有されていることが望ましい。 The amount of the corrosion - resistant film formed on the surface of the barrier layer 3 in the chemical conversion treatment is not particularly limited. is about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of chromium, the phosphorus compound is about 0.5 to 50 mg, preferably about 1.0 to 40 mg in terms of phosphorus, and aminated phenol polymer is contained in a ratio of, for example, about 1.0 to 200 mg, preferably about 5.0 to 150 mg.
 耐腐食性皮膜の厚みとしては、特に制限されないが、皮膜の凝集力や、バリア層や熱融着性樹脂層との密着力の観点から、好ましくは1nm~20μm程度、より好ましくは1nm~100nm程度、さらに好ましくは1nm~50nm程度が挙げられる。なお、耐腐食性皮膜の厚みは、透過電子顕微鏡による観察、または、透過電子顕微鏡による観察と、エネルギー分散型X線分光法もしくは電子線エネルギー損失分光法との組み合わせによって測定することができる。飛行時間型2次イオン質量分析法を用いた耐腐食性皮膜の組成の分析により、例えば、CeとPとOからなる2次イオン(例えば、Ce2PO4 +、CePO4 -などの少なくとも1種)や、例えば、CrとPとOからなる2次イオン(例えば、CrPO2 +、CrPO4 -などの少なくとも1種)に由来するピークが検出される。 The thickness of the corrosion-resistant coating is not particularly limited, but is preferably about 1 nm to 20 μm, more preferably 1 nm to 100 nm, from the viewpoint of cohesion of the coating and adhesion to the barrier layer and the heat-sealable resin layer. about 1 nm to 50 nm, more preferably about 1 nm to 50 nm. The thickness of the corrosion-resistant film can be measured by observation with a transmission electron microscope, or by a combination of observation with a transmission electron microscope and energy dispersive X-ray spectroscopy or electron beam energy loss spectroscopy. By analysis of the composition of the corrosion-resistant coating using time-of-flight secondary ion mass spectrometry, for example, secondary ions composed of Ce, P and O (for example, at least one of Ce 2 PO 4 + and CePO 4 species) and, for example, secondary ions composed of Cr, P, and O (eg, at least one of CrPO 2 + and CrPO 4 ) are detected.
 化成処理は、耐腐食性皮膜の形成に使用される化合物を含む溶液を、バーコート法、ロールコート法、グラビアコート法、浸漬法などによって、バリア層の表面に塗布した後に、バリア層の温度が70~200℃程度になるように加熱することにより行われる。また、バリア層に化成処理を施す前に、予めバリア層を、アルカリ浸漬法、電解洗浄法、酸洗浄法、電解酸洗浄法などによる脱脂処理に供してもよい。このように脱脂処理を行うことにより、バリア層の表面の化成処理をより効率的に行うことが可能となる。また、脱脂処理にフッ素含有化合物を無機酸で溶解させた酸脱脂剤を用いることで、金属箔の脱脂効果だけでなく不動態である金属のフッ化物を形成させることが可能であり、このような場合には脱脂処理だけを行ってもよい。 Chemical conversion treatment involves applying a solution containing a compound used to form a corrosion-resistant film to the surface of the barrier layer by a bar coating method, roll coating method, gravure coating method, immersion method, etc., and then changing the temperature of the barrier layer. is carried out by heating so that the temperature is about 70 to 200°C. In addition, before the barrier layer is subjected to the chemical conversion treatment, the barrier layer may be previously subjected to a degreasing treatment by an alkali immersion method, an electrolytic cleaning method, an acid cleaning method, an electrolytic acid cleaning method, or the like. By performing the degreasing treatment in this way, it becomes possible to perform the chemical conversion treatment on the surface of the barrier layer more efficiently. In addition, by using an acid degreasing agent obtained by dissolving a fluorine-containing compound in an inorganic acid for degreasing treatment, it is possible to form not only the degreasing effect of the metal foil but also the passive metal fluoride. In such cases, only degreasing treatment may be performed.
[熱融着性樹脂層4]
 本開示の蓄電デバイス用外装材において、熱融着性樹脂層4は、最内層に該当し、蓄電デバイスの組み立て時に熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮する層(シーラント層)である。
[Heat-fusible resin layer 4]
In the power storage device exterior material of the present disclosure, the heat-fusible resin layer 4 corresponds to the innermost layer, and has the function of sealing the power storage device element by heat-sealing the heat-fusible resin layers to each other when assembling the power storage device. It is a layer (sealant layer) that exhibits
 熱融着性樹脂層4を構成している樹脂については、熱融着可能であることを限度として特に制限されないが、ポリオレフィン、酸変性ポリオレフィンなどのポリオレフィン骨格を含む樹脂が好ましい。熱融着性樹脂層4を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能である。また、熱融着性樹脂層4を構成している樹脂を赤外分光法で分析すると、無水マレイン酸に由来するピークが検出されることが好ましい。例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。熱融着性樹脂層4が無水マレイン酸変性ポリオレフィンより構成された層である場合、赤外分光法にて測定すると、無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 The resin constituting the heat-fusible resin layer 4 is not particularly limited as long as it is heat-fusible, but resins containing polyolefin skeletons such as polyolefins and acid-modified polyolefins are preferable. The inclusion of a polyolefin skeleton in the resin constituting the heat-fusible resin layer 4 can be analyzed by, for example, infrared spectroscopy, gas chromatography-mass spectrometry, or the like. Further, when the resin constituting the heat-fusible resin layer 4 is analyzed by infrared spectroscopy, it is preferable that a peak derived from maleic anhydride is detected. For example, when maleic anhydride-modified polyolefin is measured by infrared spectroscopy, peaks derived from maleic anhydride are detected near wavenumbers of 1760 cm −1 and 1780 cm −1 . In the case where the heat-fusible resin layer 4 is a layer composed of maleic anhydride-modified polyolefin, a peak derived from maleic anhydride is detected when measured by infrared spectroscopy. However, if the degree of acid denaturation is low, the peak may be too small to be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
 ポリオレフィンとしては、具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のポリエチレン;エチレン-αオレフィン共重合体;ホモポリプロピレン、ポリプロピレンのブロックコポリマー(例えば、プロピレンとエチレンのブロックコポリマー)、ポリプロピレンのランダムコポリマー(例えば、プロピレンとエチレンのランダムコポリマー)等のポリプロピレン;プロピレン-αオレフィン共重合体;エチレン-ブテン-プロピレンのターポリマー等が挙げられる。これらの中でも、ポリプロピレンが好ましい。共重合体である場合のポリオレフィン樹脂は、ブロック共重合体であってもよく、ランダム共重合体であってもよい。これらポリオレフィン系樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。 Specific examples of polyolefins include polyethylenes such as low-density polyethylene, medium-density polyethylene, high-density polyethylene, and linear low-density polyethylene; ethylene-α-olefin copolymers; block copolymers of ethylene), random copolymers of polypropylene (for example, random copolymers of propylene and ethylene); propylene-α-olefin copolymers; ethylene-butene-propylene terpolymers; Among these, polypropylene is preferred. When the polyolefin resin is a copolymer, it may be a block copolymer or a random copolymer. These polyolefin-based resins may be used alone or in combination of two or more.
 また、ポリオレフィンは、環状ポリオレフィンであってもよい。環状ポリオレフィンは、オレフィンと環状モノマーとの共重合体であり、前記環状ポリオレフィンの構成モノマーであるオレフィンとしては、例えば、エチレン、プロピレン、4-メチル-1-ペンテン、スチレン、ブタジエン、イソプレン等が挙げられる。また、環状ポリオレフィンの構成モノマーである環状モノマーとしては、例えば、ノルボルネン等の環状アルケン;シクロペンタジエン、ジシクロペンタジエン、シクロヘキサジエン、ノルボルナジエン等の環状ジエン等が挙げられる。これらの中でも、好ましくは環状アルケン、さらに好ましくはノルボルネンが挙げられる。 Also, the polyolefin may be a cyclic polyolefin. A cyclic polyolefin is a copolymer of an olefin and a cyclic monomer. Examples of the olefin, which is a constituent monomer of the cyclic polyolefin, include ethylene, propylene, 4-methyl-1-pentene, styrene, butadiene, and isoprene. be done. Examples of cyclic monomers constituting cyclic polyolefins include cyclic alkenes such as norbornene; cyclic dienes such as cyclopentadiene, dicyclopentadiene, cyclohexadiene and norbornadiene. Among these, cyclic alkenes are preferred, and norbornene is more preferred.
 酸変性ポリオレフィンとは、ポリオレフィンを酸成分でブロック重合又はグラフト重合することにより変性したポリマーである。酸変性されるポリオレフィンとしては、前記のポリオレフィンや、前記のポリオレフィンにアクリル酸若しくはメタクリル酸等の極性分子を共重合させた共重合体、又は、架橋ポリオレフィン等の重合体等も使用できる。また、酸変性に使用される酸成分としては、例えば、マレイン酸、アクリル酸、イタコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその無水物が挙げられる。 Acid-modified polyolefin is a polymer modified by block polymerization or graft polymerization of polyolefin with an acid component. As the acid-modified polyolefin, the above polyolefin, a copolymer obtained by copolymerizing the above polyolefin with a polar molecule such as acrylic acid or methacrylic acid, or a polymer such as crosslinked polyolefin can be used. Examples of acid components used for acid modification include carboxylic acids such as maleic acid, acrylic acid, itaconic acid, crotonic acid, maleic anhydride and itaconic anhydride, and anhydrides thereof.
 酸変性ポリオレフィンは、酸変性環状ポリオレフィンであってもよい。酸変性環状ポリオレフィンとは、環状ポリオレフィンを構成するモノマーの一部を、酸成分に代えて共重合することにより、または環状ポリオレフィンに対して酸成分をブロック重合又はグラフト重合することにより得られるポリマーである。酸変性される環状ポリオレフィンについては、前記と同様である。また、酸変性に使用される酸成分としては、前記のポリオレフィンの変性に使用される酸成分と同様である。 The acid-modified polyolefin may be an acid-modified cyclic polyolefin. Acid-modified cyclic polyolefin is a polymer obtained by copolymerizing a part of the monomers constituting the cyclic polyolefin in place of the acid component, or by block-polymerizing or graft-polymerizing the acid component to the cyclic polyolefin. be. The acid-modified cyclic polyolefin is the same as described above. The acid component used for acid modification is the same as the acid component used for modification of polyolefin.
 好ましい酸変性ポリオレフィンとしては、カルボン酸またはその無水物で変性されたポリオレフィン、カルボン酸またはその無水物で変性されたポリプロピレン、無水マレイン酸変性ポリオレフィン、無水マレイン酸変性ポリプロピレンが挙げられる。 Preferable acid-modified polyolefins include polyolefins modified with carboxylic acid or its anhydride, polypropylene modified with carboxylic acid or its anhydride, maleic anhydride-modified polyolefin, and maleic anhydride-modified polypropylene.
 熱融着性樹脂層4は、1種の樹脂単独で形成してもよく、また2種以上の樹脂を組み合わせたブレンドポリマーにより形成してもよい。さらに、熱融着性樹脂層4は、1層のみで形成されていてもよいが、同一又は異なる樹脂によって2層以上で形成されていてもよい。 The heat-fusible resin layer 4 may be formed of one type of resin alone, or may be formed of a blend polymer in which two or more types of resin are combined. Furthermore, the heat-fusible resin layer 4 may be formed of only one layer, or may be formed of two or more layers of the same or different resins.
 また、熱融着性樹脂層4は、必要に応じて滑剤などを含んでいてもよい。熱融着性樹脂層4が滑剤を含む場合、蓄電デバイス用外装材の成形性を高め得る。滑剤としては、特に制限されず、公知の滑剤を用いることができる。滑剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。 In addition, the heat-fusible resin layer 4 may contain a lubricant or the like as necessary. When the heat-fusible resin layer 4 contains a lubricant, it is possible to improve the moldability of the power storage device exterior material. The lubricant is not particularly limited, and known lubricants can be used. Lubricants may be used singly or in combination of two or more.
 滑剤としては、特に制限されないが、好ましくはアミド系滑剤が挙げられる。滑剤の具体例としては、基材層1で例示したものが挙げられる。滑剤は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 The lubricant is not particularly limited, but preferably includes an amide-based lubricant. Specific examples of the lubricant include those exemplified for the base material layer 1 . Lubricants may be used singly or in combination of two or more.
 熱融着性樹脂層4の表面に滑剤が存在する場合、その存在量としては、特に制限されないが、蓄電デバイス用外装材の成形性を高める観点からは、好ましくは10~50mg/m2程度、さらに好ましくは15~40mg/m2程度が挙げられる。 When a lubricant exists on the surface of the heat-sealable resin layer 4, the amount of the lubricant is not particularly limited, but from the viewpoint of improving the moldability of the exterior material for an electricity storage device, the amount is preferably about 10 to 50 mg/m 2 . , and more preferably about 15 to 40 mg/m 2 .
 熱融着性樹脂層4の表面に存在する滑剤は、熱融着性樹脂層4を構成する樹脂に含まれる滑剤を滲出させたものであってもよいし、熱融着性樹脂層4の表面に滑剤を塗布したものであってもよい。 The lubricant present on the surface of the heat-fusible resin layer 4 may be obtained by exuding the lubricant contained in the resin constituting the heat-fusible resin layer 4 . The surface may be coated with a lubricant.
 また、熱融着性樹脂層4の厚みとしては、熱融着性樹脂層同士が熱融着して蓄電デバイス素子を密封する機能を発揮すれば特に制限されないが、例えば約100μm以下、好ましくは約85μm以下、より好ましくは15~85μm程度が挙げられる。なお、例えば、後述の接着層5の厚みが10μm以上である場合には、熱融着性樹脂層4の厚みとしては、好ましくは約85μm以下、より好ましくは15~45μm程度が挙げられ、例えば後述の接着層5の厚みが10μm未満である場合や接着層5が設けられていない場合には、熱融着性樹脂層4の厚みとしては、好ましくは約20μm以上、より好ましくは35~85μm程度が挙げられる。 The thickness of the heat-fusible resin layer 4 is not particularly limited as long as the heat-fusible resin layers are heat-sealed to each other to exhibit the function of sealing the electricity storage device element. About 85 μm or less, more preferably about 15 to 85 μm. For example, when the thickness of the adhesive layer 5 described later is 10 μm or more, the thickness of the heat-fusible resin layer 4 is preferably about 85 μm or less, more preferably about 15 to 45 μm. When the thickness of the adhesive layer 5 described later is less than 10 μm or when the adhesive layer 5 is not provided, the thickness of the heat-fusible resin layer 4 is preferably about 20 μm or more, more preferably 35 to 85 μm. degree.
[接着層5]
 本開示の蓄電デバイス用外装材において、接着層5は、バリア層3(又は耐腐食性皮膜)と熱融着性樹脂層4を強固に接着させるために、これらの間に必要に応じて設けられる層である。
[Adhesion layer 5]
In the power storage device exterior material of the present disclosure, the adhesive layer 5 is provided between the barrier layer 3 (or the corrosion-resistant film) and the heat-fusible resin layer 4 as necessary in order to firmly bond them. It is a layer that can be
 接着層5は、バリア層3と熱融着性樹脂層4とを接着可能である樹脂によって形成される。接着層5の形成に使用される樹脂としては、例えば接着剤層2で例示した接着剤と同様のものが使用できる。また、接着層5と熱融着性樹脂層4とを強固に接着する観点から、接着層5の形成に使用される樹脂としてはポリオレフィン骨格を含んでいることが好ましく、前述の熱融着性樹脂層4で例示したポリオレフィン、酸変性ポリオレフィンが挙げられる。一方、バリア層3と接着層5とを強固に接着する観点から、接着層5は酸変性ポリオレフィンを含むことが好ましい。酸変性成分としては、マレイン酸、イタコン酸、コハク酸、アジピン酸などのジカルボン酸やこれらの無水物、アクリル酸、メタクリル酸などが挙げられるが、変性のし易さや汎用性などの点から無水マレイン酸が最も好ましい。また、蓄電デバイス用外装材の耐熱性の観点からは、オレフィン成分はポリプロピレン系樹脂であることが好ましく、接着層5は無水マレイン酸変性ポリプロピレンを含むことが最も好ましい。 The adhesive layer 5 is made of a resin that can bond the barrier layer 3 and the heat-fusible resin layer 4 together. As the resin used for forming the adhesive layer 5, for example, the same adhesives as those exemplified for the adhesive layer 2 can be used. Further, from the viewpoint of firmly bonding the adhesive layer 5 and the heat-fusible resin layer 4, it is preferable that the resin used for forming the adhesive layer 5 contains a polyolefin skeleton. Polyolefins and acid-modified polyolefins exemplified for the resin layer 4 can be used. On the other hand, from the viewpoint of firmly bonding the barrier layer 3 and the adhesive layer 5, the adhesive layer 5 preferably contains an acid-modified polyolefin. Acid-modified components include dicarboxylic acids such as maleic acid, itaconic acid, succinic acid and adipic acid, their anhydrides, acrylic acid and methacrylic acid. Maleic acid is most preferred. Moreover, from the viewpoint of heat resistance of the exterior material for an electric storage device, the olefin component is preferably a polypropylene-based resin, and the adhesive layer 5 most preferably contains maleic anhydride-modified polypropylene.
 接着層5を構成している樹脂がポリオレフィン骨格を含むことは、例えば、赤外分光法、ガスクロマトグラフィー質量分析法などにより分析可能であり、分析方法は特に問わない。また、接着層5を構成している樹脂が酸変性ポリオレフィンを含むことは、例えば、赤外分光法にて無水マレイン酸変性ポリオレフィンを測定すると、波数1760cm-1付近と波数1780cm-1付近に無水マレイン酸由来のピークが検出される。ただし、酸変性度が低いとピークが小さくなり検出されない場合がある。その場合は核磁気共鳴分光法にて分析可能である。 Whether the resin constituting the adhesive layer 5 contains a polyolefin skeleton can be analyzed by, for example, infrared spectroscopy, gas chromatography mass spectrometry, or the like, and the analysis method is not particularly limited. Further, the fact that the resin constituting the adhesive layer 5 contains an acid - modified polyolefin means that, for example, when the maleic anhydride - modified polyolefin is measured by infrared spectroscopy, anhydrous A peak derived from maleic acid is detected. However, if the degree of acid denaturation is low, the peak may be too small to be detected. In that case, it can be analyzed by nuclear magnetic resonance spectroscopy.
 さらに、蓄電デバイス用外装材の耐熱性や耐内容物性などの耐久性や、厚みを薄くしつつ成形性を担保する観点からは、接着層5は酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物であることがより好ましい。酸変性ポリオレフィンとしては、好ましくは、前記のものが例示できる。 Furthermore, from the viewpoint of ensuring durability such as heat resistance and content resistance of the exterior material for an electric storage device and moldability while reducing the thickness, the adhesive layer 5 is made of a resin composition containing an acid-modified polyolefin and a curing agent. A cured product is more preferred. Preferred examples of the acid-modified polyolefin include those mentioned above.
 また、接着層5は、酸変性ポリオレフィンと、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが好ましく、酸変性ポリオレフィンと、イソシアネート基を有する化合物及びエポキシ基を有する化合物からなる群より選択される少なくとも1種とを含む樹脂組成物の硬化物であることが特に好ましい。また、接着層5は、ポリウレタン、ポリエステル、及びエポキシ樹脂からなる群より選択される少なくとも1種を含むことが好ましく、ポリウレタン及びエポキシ樹脂を含むことがより好ましい。ポリエステルとしては、例えばエポキシ基と無水マレイン酸基の反応により生成するエステル樹脂、オキサゾリン基と無水マレイン酸基の反応で生成するアミドエステル樹脂が好ましい。なお、接着層5に、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、エポキシ樹脂などの硬化剤の未反応物が残存している場合、未反応物の存在は、例えば、赤外分光法、ラマン分光法、飛行時間型二次イオン質量分析法(TOF-SIMS)などから選択される方法で確認することが可能である。 Further, the adhesive layer 5 is a cured product of a resin composition containing acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and a compound having an epoxy group. A cured product of a resin composition containing an acid-modified polyolefin and at least one selected from the group consisting of a compound having an isocyanate group and a compound having an epoxy group is particularly preferred. Moreover, the adhesive layer 5 preferably contains at least one selected from the group consisting of polyurethane, polyester, and epoxy resin, and more preferably contains polyurethane and epoxy resin. As the polyester, for example, an ester resin produced by a reaction between an epoxy group and a maleic anhydride group, and an amide ester resin produced by a reaction between an oxazoline group and a maleic anhydride group are preferable. In the case where the adhesive layer 5 contains an isocyanate group-containing compound, an oxazoline group-containing compound, or an unreacted product of a curing agent such as an epoxy resin, the presence of the unreacted product can be detected by, for example, infrared spectroscopy, It can be confirmed by a method selected from Raman spectroscopy, time-of-flight secondary ion mass spectrometry (TOF-SIMS), and the like.
 また、バリア層3と接着層5との密着性をより高める観点から、接着層5は、酸素原子、複素環、C=N結合、及びC-O-C結合からなる群より選択される少なくとも1種を有する硬化剤を含む樹脂組成物の硬化物であることが好ましい。複素環を有する硬化剤としては、例えば、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。また、C=N結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、イソシアネート基を有する硬化剤などが挙げられる。また、C-O-C結合を有する硬化剤としては、オキサゾリン基を有する硬化剤、エポキシ基を有する硬化剤などが挙げられる。接着層5がこれらの硬化剤を含む樹脂組成物の硬化物であることは、例えば、ガスクロマトグラフ質量分析(GCMS)、赤外分光法(IR)、飛行時間型二次イオン質量分析法(TOF-SIMS)、X線光電子分光法(XPS)などの方法で確認することができる。 In addition, from the viewpoint of further increasing the adhesion between the barrier layer 3 and the adhesive layer 5, the adhesive layer 5 contains at least It is preferably a cured product of a resin composition containing one curing agent. The curing agent having a heterocyclic ring includes, for example, a curing agent having an oxazoline group, a curing agent having an epoxy group, and the like. Moreover, the curing agent having a C═N bond includes a curing agent having an oxazoline group, a curing agent having an isocyanate group, and the like. Further, the curing agent having a C—O—C bond includes a curing agent having an oxazoline group, a curing agent having an epoxy group, and the like. The adhesive layer 5 is a cured product of a resin composition containing these curing agents, for example, gas chromatography mass spectrometry (GCMS), infrared spectroscopy (IR), time-of-flight secondary ion mass spectrometry (TOF -SIMS) and X-ray photoelectron spectroscopy (XPS).
 イソシアネート基を有する化合物としては、特に制限されないが、バリア層3と接着層5との密着性を効果的に高める観点からは、好ましくは多官能イソシアネート化合物が挙げられる。多官能イソシアネート化合物は、2つ以上のイソシアネート基を有する化合物であれば、特に限定されない。多官能イソシアネート系硬化剤の具体例としては、ペンタンジイソシアネート(PDI)、イソホロンジイソシアネート(IPDI)、ヘキサメチレンジイソシアネート(HDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、これらをポリマー化やヌレート化したもの、これらの混合物や他ポリマーとの共重合物などが挙げられる。また、アダクト体、ビウレット体、イソシアヌレート体などが挙げられる。 The compound having an isocyanate group is not particularly limited, but from the viewpoint of effectively increasing the adhesion between the barrier layer 3 and the adhesive layer 5, polyfunctional isocyanate compounds are preferred. The polyfunctional isocyanate compound is not particularly limited as long as it is a compound having two or more isocyanate groups. Specific examples of polyfunctional isocyanate curing agents include pentane diisocyanate (PDI), isophorone diisocyanate (IPDI), hexamethylene diisocyanate (HDI), tolylene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymerization and nurate compounds, mixtures thereof, copolymers with other polymers, and the like. In addition, adducts, biurets, isocyanurates and the like are included.
 接着層5における、イソシアネート基を有する化合物の含有量としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。 The content of the compound having an isocyanate group in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, more preferably 0.5 to 40% by mass in the resin composition constituting the adhesive layer 5. A range is more preferred. Thereby, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively improved.
 オキサゾリン基を有する化合物は、オキサゾリン骨格を備える化合物であれば、特に限定されない。オキサゾリン基を有する化合物の具体例としては、ポリスチレン主鎖を有するもの、アクリル主鎖を有するものなどが挙げられる。また、市販品としては、例えば、日本触媒社製のエポクロスシリーズなどが挙げられる。 The compound having an oxazoline group is not particularly limited as long as it is a compound having an oxazoline skeleton. Specific examples of compounds having an oxazoline group include those having a polystyrene main chain and those having an acrylic main chain. Moreover, as a commercial item, the Epocross series by Nippon Shokubai Co., Ltd. etc. are mentioned, for example.
 接着層5における、オキサゾリン基を有する化合物の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。 The ratio of the compound having an oxazoline group in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, more preferably 0.5 to 40% by mass, in the resin composition constituting the adhesive layer 5. is more preferable. Thereby, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively improved.
 エポキシ基を有する化合物としては、例えば、エポキシ樹脂が挙げられる。エポキシ樹脂としては、分子内に存在するエポキシ基によって架橋構造を形成することが可能な樹脂であれば、特に制限されず、公知のエポキシ樹脂を用いることができる。エポキシ樹脂の重量平均分子量としては、好ましくは50~2000程度、より好ましくは100~1000程度、さらに好ましくは200~800程度が挙げられる。なお、第1の開示において、エポキシ樹脂の重量平均分子量は、標準サンプルとしてポリスチレンを用いた条件で測定された、ゲル浸透クロマトグラフィ(GPC)により測定された値である。 Examples of compounds having an epoxy group include epoxy resins. The epoxy resin is not particularly limited as long as it is a resin capable of forming a crosslinked structure with epoxy groups present in the molecule, and known epoxy resins can be used. The weight average molecular weight of the epoxy resin is preferably about 50 to 2000, more preferably about 100 to 1000, still more preferably about 200 to 800. In the first disclosure, the weight average molecular weight of the epoxy resin is a value measured by gel permeation chromatography (GPC) under conditions using polystyrene as a standard sample.
 エポキシ樹脂の具体例としては、トリメチロールプロパンのグリシジルエーテル誘導体、ビスフェノールAジグリシジルエーテル、変性ビスフェノールAジグリシジルエーテル、ビスフェノールF型グリシジルエーテル、ノボラックグリシジルエーテル、グリセリンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテルなどが挙げられる。エポキシ樹脂は、1種類単独で使用してもよいし、2種類以上を組み合わせて使用してもよい。 Specific examples of epoxy resins include glycidyl ether derivatives of trimethylolpropane, bisphenol A diglycidyl ether, modified bisphenol A diglycidyl ether, bisphenol F-type glycidyl ether, novolac glycidyl ether, glycerin polyglycidyl ether, polyglycerin polyglycidyl ether, and the like. are mentioned. An epoxy resin may be used individually by 1 type, and may be used in combination of 2 or more types.
 接着層5における、エポキシ樹脂の割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、バリア層3と接着層5との密着性を効果的に高めることができる。 The proportion of the epoxy resin in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, more preferably in the range of 0.5 to 40% by mass, in the resin composition constituting the adhesive layer 5. is more preferred. Thereby, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively improved.
 ポリウレタンとしては、特に制限されず、公知のポリウレタンを使用することができる。接着層5は、例えば、2液硬化型ポリウレタンの硬化物であってもよい。 The polyurethane is not particularly limited, and known polyurethanes can be used. The adhesive layer 5 may be, for example, a cured product of two-component curing type polyurethane.
 接着層5における、ポリウレタンの割合としては、接着層5を構成する樹脂組成物中、0.1~50質量%の範囲にあることが好ましく、0.5~40質量%の範囲にあることがより好ましい。これにより、電解液などのバリア層の腐食を誘発する成分が存在する雰囲気における、バリア層3と接着層5との密着性を効果的に高めることができる。 The proportion of polyurethane in the adhesive layer 5 is preferably in the range of 0.1 to 50% by mass, more preferably in the range of 0.5 to 40% by mass, in the resin composition constituting the adhesive layer 5. more preferred. As a result, the adhesion between the barrier layer 3 and the adhesive layer 5 can be effectively enhanced in an atmosphere containing a component that induces corrosion of the barrier layer, such as an electrolytic solution.
 なお、接着層5が、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ樹脂からなる群より選択される少なくとも1種と、前記酸変性ポリオレフィンとを含む樹脂組成物の硬化物である場合、酸変性ポリオレフィンが主剤として機能し、イソシアネート基を有する化合物、オキサゾリン基を有する化合物、及びエポキシ基を有する化合物は、それぞれ、硬化剤として機能する。 In addition, when the adhesive layer 5 is a cured product of a resin composition containing at least one selected from the group consisting of a compound having an isocyanate group, a compound having an oxazoline group, and an epoxy resin, and the acid-modified polyolefin. , the acid-modified polyolefin functions as a main agent, and the compound having an isocyanate group, the compound having an oxazoline group, and the compound having an epoxy group each function as a curing agent.
 接着層5には、カルボジイミド基を有する改質剤が含まれていてもよい。 The adhesive layer 5 may contain a modifier having a carbodiimide group.
 接着層5の厚さは、好ましくは、約50μm以下、約40μm以下、約30μm以下、約20μm以下、約5μm以下である。また、接着層5の厚さは、好ましくは、約0.1μm以上、約0.5μm以上である。また、接着層5の厚さの範囲としては、好ましくは、0.1~50μm程度、0.1~40μm程度、0.1~30μm程度、0.1~20μm程度、0.1~5μm程度、0.5~50μm程度、0.5~40μm程度、0.5~30μm程度、0.5~20μm程度、0.5~5μm程度が挙げられる。より具体的には、接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤との硬化物である場合は、好ましくは1~10μm程度、より好ましくは1~5μm程度が挙げられる。また、熱融着性樹脂層4で例示した樹脂を用いる場合であれば、好ましくは2~50μm程度、より好ましくは10~40μm程度が挙げられる。なお、接着層5が接着剤層2で例示した接着剤や、酸変性ポリオレフィンと硬化剤を含む樹脂組成物の硬化物である場合、例えば、当該樹脂組成物を塗布し、加熱等により硬化させることにより、接着層5を形成することができる。また、熱融着性樹脂層4で例示した樹脂を用いる場合、例えば、熱融着性樹脂層4と接着層5との押出成形により形成することができる。 The thickness of the adhesive layer 5 is preferably about 50 μm or less, about 40 μm or less, about 30 μm or less, about 20 μm or less, or about 5 μm or less. Also, the thickness of the adhesive layer 5 is preferably about 0.1 μm or more and about 0.5 μm or more. The thickness range of the adhesive layer 5 is preferably about 0.1 to 50 μm, about 0.1 to 40 μm, about 0.1 to 30 μm, about 0.1 to 20 μm, and about 0.1 to 5 μm. , about 0.5 to 50 μm, about 0.5 to 40 μm, about 0.5 to 30 μm, about 0.5 to 20 μm, and about 0.5 to 5 μm. More specifically, in the case of the adhesive exemplified for the adhesive layer 2 or the cured product of acid-modified polyolefin and curing agent, the thickness is preferably about 1 to 10 μm, more preferably about 1 to 5 μm. In the case of using the resin exemplified for the heat-fusible resin layer 4, the thickness is preferably about 2 to 50 μm, more preferably about 10 to 40 μm. When the adhesive layer 5 is the adhesive exemplified for the adhesive layer 2 or a cured product of a resin composition containing an acid-modified polyolefin and a curing agent, for example, the resin composition is applied and cured by heating or the like. Thus, the adhesive layer 5 can be formed. Further, when using the resin exemplified for the heat-fusible resin layer 4, the heat-fusible resin layer 4 and the adhesive layer 5 can be formed by extrusion molding, for example.
[表面被覆層6]
 本開示の蓄電デバイス用外装材は、意匠性、耐電解液性、耐傷性、成形性などの向上の少なくとも1つを目的として、必要に応じて、基材層1の上(基材層1のバリア層3とは反対側)に、表面被覆層6を備えていてもよい。表面被覆層6は、蓄電デバイス用外装材を用いて蓄電デバイスを組み立てた時に、蓄電デバイス用外装材の最外層側に位置する層である。
[Surface coating layer 6]
For the purpose of at least one improvement in design, electrolyte resistance, scratch resistance, moldability, etc., the exterior material for an electricity storage device of the present disclosure is provided on the base layer 1 (base layer 1 (the side opposite to the barrier layer 3) may be provided with a surface coating layer 6. The surface coating layer 6 is a layer positioned on the outermost layer side of the exterior material for an electricity storage device when an electricity storage device is assembled using the exterior material for an electricity storage device.
 表面被覆層6は、例えば、ポリ塩化ビニリデン、ポリエステル、ポリアミド、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン、珪素樹脂、フェノール樹脂などの樹脂や、これらの樹脂の変性物が挙げられる。また、これらの樹脂の共重合物であってもよいし、共重合物の変性物であってもよい。さらに、これらの樹脂の混合物であってもよい。樹脂は、好ましくは硬化性樹脂である。すなわち、表面被覆層6は、硬化性樹脂を含む樹脂組成物の硬化物から構成されていることが好ましい。 Examples of the surface coating layer 6 include resins such as polyvinylidene chloride, polyester, polyamide, epoxy resin, acrylic resin, fluororesin, polyurethane, silicon resin, phenolic resin, and modified products of these resins. Copolymers of these resins or modified copolymers may also be used. Furthermore, it may be a mixture of these resins. The resin is preferably a curable resin. That is, the surface coating layer 6 is preferably made of a cured product of a resin composition containing a curable resin.
 表面被覆層6を形成する樹脂が硬化型の樹脂である場合、当該樹脂は、1液硬化型及び2液硬化型のいずれであってもよいが、好ましくは2液硬化型である。2液硬化型樹脂としては、例えば、2液硬化型ポリウレタン、2液硬化型ポリエステル、2液硬化型エポキシ樹脂などが挙げられる。これらの中でも2液硬化型ポリウレタンが好ましい。 When the resin forming the surface coating layer 6 is a curable resin, the resin may be either a one-liquid curable type or a two-liquid curable type, preferably the two-liquid curable type. Examples of the two-liquid curing resin include two-liquid curing polyurethane, two-liquid curing polyester, and two-liquid curing epoxy resin. Among these, two-liquid curable polyurethane is preferred.
 2液硬化型ポリウレタンとしては、例えば、ポリオール化合物を含有する第1剤と、イソシアネート化合物を含有する第2剤とを含むポリウレタンが挙げられる。好ましくはポリエステルポリオール、ポリエーテルポリオール、およびアクリルポリオール等のポリオールを第1剤として、芳香族系又は脂肪族系のポリイソシアネートを第2剤とした二液硬化型のポリウレタンが挙げられる。また、ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、イソシアネート化合物とを含むポリウレタンが挙げられる。ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物と、ポリオール化合物とを含むポリウレタンが挙げられる。ポリウレタンとしては、例えば、予めポリオール化合物とイソシアネート化合物とを反応させたポリウレタン化合物を、空気中などの水分と反応させることによって硬化させたポリウレタンが挙げられる。ポリオール化合物としては、繰り返し単位の末端の水酸基に加えて、側鎖にも水酸基を有するポリエステルポリオールを用いることが好ましい。第2剤としては、脂肪族、脂環式、芳香族、芳香脂肪族のイソシアネート系化合物が挙げられる。イソシアネート系化合物としては、例えばヘキサメチレンジイソシアネート(HDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)、水素化XDI(H6XDI)、水素化MDI(H12MDI)、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート(NDI)等が挙げられる。また、これらのジイソシアネートの1種類又は2種類以上からの多官能イソシアネート変性体等が挙げられる。また、ポリイソシアネート化合物として多量体(例えば三量体)を使用することもできる。このような多量体には、アダクト体、ビウレット体、ヌレート体等が挙げられる。なお、脂肪族イソシアネート系化合物とは脂肪族基を有し芳香環を有さないイソシアネートを指し、脂環式イソシアネート系化合物とは脂環式炭化水素基を有するイソシアネートを指し、芳香族イソシアネート系化合物とは芳香環を有するイソシアネートを指す。表面被覆層6がポリウレタンにより形成されていることで蓄電デバイス用外装材に優れた電解液耐性が付与される。 Examples of two-liquid curable polyurethanes include polyurethanes containing a first agent containing a polyol compound and a second agent containing an isocyanate compound. Preferred examples include a two-component curing type polyurethane in which a polyol such as polyester polyol, polyether polyol, or acrylic polyol is used as the first agent and an aromatic or aliphatic polyisocyanate is used as the second agent. Examples of polyurethane include polyurethane containing a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance and an isocyanate compound. Examples of polyurethane include polyurethane containing a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance and a polyol compound. Examples of polyurethanes include polyurethanes obtained by reacting a polyurethane compound obtained by reacting a polyol compound and an isocyanate compound in advance with moisture in the air and the like to cure the compound. As the polyol compound, it is preferable to use a polyester polyol having a hydroxyl group in a side chain in addition to the terminal hydroxyl group of the repeating unit. Examples of the second agent include aliphatic, alicyclic, aromatic, and araliphatic isocyanate compounds. Examples of isocyanate compounds include hexamethylene diisocyanate (HDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI), hydrogenated XDI (H6XDI), hydrogenated MDI (H12MDI), tolylene diisocyanate (TDI), and diphenylmethane diisocyanate. (MDI), naphthalene diisocyanate (NDI), and the like. In addition, polyfunctional isocyanate-modified products of one or more of these diisocyanates are also included. Moreover, a polymer (for example, a trimer) can also be used as a polyisocyanate compound. Such multimers include adducts, biurets, nurates and the like. In addition, the aliphatic isocyanate compound refers to an isocyanate having an aliphatic group and no aromatic ring, and the alicyclic isocyanate compound refers to an isocyanate having an alicyclic hydrocarbon group, and the aromatic isocyanate compound refers to an isocyanate having an aromatic ring. Since the surface coating layer 6 is made of polyurethane, the exterior material for an electric storage device is imparted with excellent electrolyte resistance.
 表面被覆層6は、表面被覆層6の表面及び内部の少なくとも一方には、該表面被覆層6やその表面に備えさせるべき機能性等に応じて、必要に応じて、前述した滑剤や、アンチブロッキング剤、艶消し剤、難燃剤、酸化防止剤、粘着付与剤、耐電防止剤等の添加剤を含んでいてもよい。添加剤としては、例えば、平均粒子径が0.5nm~5μm程度の微粒子が挙げられる。添加剤の平均粒子径は、レーザ回折/散乱式粒子径分布測定装置で測定されたメジアン径とする。 At least one of the surface and the inside of the surface coating layer 6 may be coated with the above-described lubricant or anti-rust agent as necessary depending on the functionality to be provided on the surface coating layer 6 and its surface. Additives such as blocking agents, matting agents, flame retardants, antioxidants, tackifiers and antistatic agents may be included. Examples of the additive include fine particles having an average particle size of about 0.5 nm to 5 μm. The average particle size of the additive is the median size measured with a laser diffraction/scattering particle size distribution analyzer.
 添加剤は、無機物及び有機物のいずれであってもよい。また、添加剤の形状についても、特に制限されず、例えば、球状、繊維状、板状、不定形、鱗片状などが挙げられる。 Additives may be either inorganic or organic. Also, the shape of the additive is not particularly limited, and examples thereof include spherical, fibrous, plate-like, amorphous, scale-like, and the like.
 添加剤の具体例としては、タルク、シリカ、グラファイト、カオリン、モンモリロナイト、マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ネオジウム、酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム、硫酸バリウム、炭酸カルシウム、ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム、シュウ酸カルシウム、ステアリン酸マグネシウム、アルミナ、カーボンブラック、カーボンナノチューブ、高融点ナイロン、アクリレート樹脂、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケルなどが挙げられる。添加剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの添加剤の中でも、分散安定性やコストなどの観点から、好ましくはシリカ、硫酸バリウム、酸化チタンが挙げられる。また、添加剤には、表面に絶縁処理、高分散性処理などの各種表面処理を施してもよい。 Specific examples of additives include talc, silica, graphite, kaolin, montmorillonite, mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, aluminum oxide, neodymium oxide, and antimony oxide. , titanium oxide, cerium oxide, calcium sulfate, barium sulfate, calcium carbonate, calcium silicate, lithium carbonate, calcium benzoate, calcium oxalate, magnesium stearate, alumina, carbon black, carbon nanotube, high melting point nylon, acrylate resin, Crosslinked acrylic, crosslinked styrene, crosslinked polyethylene, benzoguanamine, gold, aluminum, copper, nickel, and the like. Additives may be used singly or in combination of two or more. Among these additives, silica, barium sulfate, and titanium oxide are preferred from the viewpoint of dispersion stability and cost. In addition, the additive may be subjected to various surface treatments such as insulation treatment and high-dispersion treatment.
 表面被覆層6を形成する方法としては、特に制限されず、例えば、表面被覆層6を形成する樹脂を塗布する方法が挙げられる。表面被覆層6に添加剤を配合する場合には、添加剤を混合した樹脂を塗布すればよい。 The method of forming the surface coating layer 6 is not particularly limited, and for example, a method of applying a resin for forming the surface coating layer 6 can be used. When adding additives to the surface coating layer 6, a resin mixed with the additives may be applied.
 表面被覆層6の厚みとしては、表面被覆層6としての上記の機能を発揮すれば特に制限されず、例えば0.5~10μm程度、好ましくは1~5μm程度が挙げられる。 The thickness of the surface coating layer 6 is not particularly limited as long as the above functions of the surface coating layer 6 are exhibited.
4.蓄電デバイス用外装材の製造方法
 本開示の蓄電デバイス用外装材の製造方法については、本発明の蓄電デバイス用外装材が備える各層を積層させた積層体が得られる限り、特に制限されず、前述の空隙率を満たすように接着剤層2を形成する。すなわち、本開示の蓄電デバイス用外装材10の製造方法は、具体的には、次の通りである。蓄電デバイス用外装材を構成する積層体の各層の詳細や、前記空隙率などの詳細は、前述の通りである。
4. Method for Producing Exterior Material for Electricity Storage Device The method for producing the exterior material for an electricity storage device of the present disclosure is not particularly limited as long as a laminate obtained by laminating each layer included in the exterior material for an electricity storage device of the present invention is obtained. The adhesive layer 2 is formed so as to satisfy the porosity of . Specifically, the method for manufacturing the exterior material 10 for an electricity storage device of the present disclosure is as follows. The details of each layer of the laminate constituting the exterior material for an electricity storage device, the details of the porosity, etc. are as described above.
 少なくとも、基材層と、接着剤層と、バリア層と、熱融着性樹脂層とをこの順に備えるフィルム状の積層体を用意する工程と、
 前記熱融着性樹脂層側から前記基材層側に突出するようにして、前記積層体を成形して、前記熱融着性樹脂層側に蓄電デバイス素子が収容される凹部を形成する工程と、を備え、
 前記接着剤層の厚み方向の断面について、対物レンズの倍率150倍で観察される空隙率が、25%以下である、蓄電デバイス用外装材の製造方法。
preparing a film-like laminate comprising at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order;
A step of molding the laminate so as to protrude from the heat-fusible resin layer side to the base layer side, and forming a recess in which an electricity storage device element is housed on the heat-fusible resin layer side. and
A method for producing an exterior material for an electric storage device, wherein the cross section of the adhesive layer in the thickness direction has a porosity of 25% or less observed at a magnification of 150 times with an objective lens.
 前述の通り、本開示の蓄電デバイス用外装材10において、前述する空隙率となるように接着剤層2を形成するためには、接着剤の種類の選択だけでなく、基材層1とバリア層3とを接着剤層2を介して積層する際に、接着剤層2に気泡が極力生じないように設計することが求められる。例えば、基材層1とバリア層3とを接着剤層2を介して積層する際の積層圧力を高めることにより、基材層1とバリア層3との積層時に接着剤層2に巻き込まれる空気を潰して接着剤層2に残存する空気を減らし、空隙の発生を抑制する方法が挙げられる。また、基材層1とバリア層3とを接着剤層2を介して積層する際に使用されるニップロールの径を大きくすることで、基材層1とバリア層3との積層時に接着剤層2に巻き込まれる空気を潰す時間と面積を増やし、接着剤層2に残存する空気を減らして、空隙の発生を抑制する方法が挙げられる。さらに、基材層1とバリア層3とを接着剤層2を介して積層する際に、バリア層3の表面に接着剤層2を形成する接着剤を塗布した後、基材層1を積層することにより、基材層1を積層する際に巻き込まれた空気は、積層後に基材層1側から徐々に揮発するため、空隙の発生を抑制することができる。なお、基材層1の表面に接着剤層2を形成する接着剤を塗布した後、バリア層3を積層した場合、バリア層3を積層する際に巻き込まれた空気は、積層後にバリア層3側から揮発できないため、バリア層3の表面に接着剤を塗布する場合と比較して、接着剤層2中に空隙が形成されやすい。すなわち、基材層1の表面に接着剤層2を形成する接着剤を塗布した後、バリア層3を積層した場合、バリア層3を積層する際に巻き込まれた空気はバリア層3側から揮発できず残ってしまうため、図9,10の模式図のようにバリア層側に空隙2aが形成されやすい。一方、バリア層3の表面に接着剤層2を形成する接着剤を塗布した後、基材層1を積層した場合は基材層側に空隙が形成されやすく、上述した通り揮発しやすいため、空隙の発生は抑制されるか、形成されても小さいサイズとなる。また、本開示の蓄電デバイス用外装材10において、前述する空隙率となるように接着剤層2を形成するためには、バリア層3は1層とすることが好適である。 As described above, in the power storage device exterior material 10 of the present disclosure, in order to form the adhesive layer 2 so as to have the above-described porosity, it is necessary to select not only the type of adhesive but also the base layer 1 and the barrier layer. When laminating the layer 3 with the adhesive layer 2 interposed therebetween, it is required to design the adhesive layer 2 so as not to generate air bubbles as much as possible. For example, by increasing the lamination pressure when laminating the base material layer 1 and the barrier layer 3 with the adhesive layer 2 interposed therebetween, air trapped in the adhesive layer 2 when the base material layer 1 and the barrier layer 3 are laminated. is crushed to reduce the air remaining in the adhesive layer 2, thereby suppressing the generation of voids. In addition, by increasing the diameter of the nip roll used when laminating the base layer 1 and the barrier layer 3 with the adhesive layer 2 interposed therebetween, the adhesive layer 1 and the barrier layer 3 are laminated together. A method of suppressing the generation of voids by increasing the time and area for crushing the air caught in the adhesive layer 2 and reducing the air remaining in the adhesive layer 2 can be mentioned. Furthermore, when laminating the base material layer 1 and the barrier layer 3 with the adhesive layer 2 interposed therebetween, the base material layer 1 is laminated after the adhesive for forming the adhesive layer 2 is applied to the surface of the barrier layer 3. By doing so, the air caught in the lamination of the base material layer 1 gradually volatilizes from the side of the base material layer 1 after lamination, so that the generation of voids can be suppressed. In addition, when the barrier layer 3 is laminated after the adhesive for forming the adhesive layer 2 is applied to the surface of the base material layer 1, the air taken in when laminating the barrier layer 3 is Since the adhesive cannot volatilize from the side, voids are more likely to be formed in the adhesive layer 2 than in the case where the adhesive is applied to the surface of the barrier layer 3 . That is, when the barrier layer 3 is laminated after the adhesive for forming the adhesive layer 2 is applied to the surface of the base material layer 1, the air caught in the lamination of the barrier layer 3 volatilizes from the barrier layer 3 side. As shown in the schematic diagrams of FIGS. 9 and 10, voids 2a are likely to be formed on the barrier layer side. On the other hand, when the adhesive for forming the adhesive layer 2 is applied to the surface of the barrier layer 3 and then the substrate layer 1 is laminated, voids are likely to be formed on the substrate layer side, and volatilization is likely to occur as described above. The generation of voids is suppressed, or if they are formed, they are of small size. Moreover, in the power storage device exterior material 10 of the present disclosure, in order to form the adhesive layer 2 so as to have the above-described porosity, the barrier layer 3 is preferably one layer.
 また、本開示の蓄電デバイス用外装材を構成する、フィルム状の積層体の製造方法の一例としては、以下の通りである。まず、基材層1、接着剤層2、バリア層3が順に積層された積層体(以下、「積層体A」と表記することもある)を形成する。積層体Aの形成は、具体的には、基材層1上又は必要に応じて表面が化成処理されたバリア層3に接着剤層2の形成に使用される接着剤を、グラビアコート法、ロールコート法などの塗布方法で塗布、乾燥した後に、当該バリア層3又は基材層1を積層させて接着剤層2を硬化させるドライラミネート法によって行うことができる。接着剤層2の空隙率を低減する手法については、前記の通りである。 An example of a method for manufacturing a film-like laminate that constitutes the exterior material for an electricity storage device of the present disclosure is as follows. First, a layered body (hereinafter also referred to as "layered body A") is formed by laminating a substrate layer 1, an adhesive layer 2, and a barrier layer 3 in this order. Specifically, the laminate A is formed by applying an adhesive used for forming the adhesive layer 2 on the substrate layer 1 or on the barrier layer 3 whose surface is chemically treated as necessary, by a gravure coating method, It can be performed by a dry lamination method in which the barrier layer 3 or the substrate layer 1 is laminated and the adhesive layer 2 is cured after coating and drying by a coating method such as a roll coating method. The technique for reducing the porosity of the adhesive layer 2 is as described above.
 次いで、積層体Aのバリア層3上に、熱融着性樹脂層4を積層させる。バリア層3上に熱融着性樹脂層4を直接積層させる場合には、積層体Aのバリア層3上に、熱融着性樹脂層4をサーマルラミネート法、押出ラミネート法などの方法により積層すればよい。また、バリア層3と熱融着性樹脂層4の間に接着層5を設ける場合には、例えば、(1)積層体Aのバリア層3上に、接着層5及び熱融着性樹脂層4を押出しすることにより積層する方法(共押出しラミネート法、タンデムラミネート法)、(2)別途、接着層5と熱融着性樹脂層4が積層した積層体を形成し、これを積層体Aのバリア層3上にサーマルラミネート法により積層する方法や、積層体Aのバリア層3上に接着層5が積層した積層体を形成し、これを熱融着性樹脂層4とサーマルラミネート法により積層する方法、(3)積層体Aのバリア層3と、予めシート状に製膜した熱融着性樹脂層4との間に、溶融させた接着層5を流し込みながら、接着層5を介して積層体Aと熱融着性樹脂層4を貼り合せる方法(サンドイッチラミネート法)、(4)積層体Aのバリア層3上に、接着層5を形成させるための接着剤を溶液コーティングし、乾燥させる方法や、さらには焼き付ける方法などにより積層させ、この接着層5上に予めシート状に製膜した熱融着性樹脂層4を積層する方法などが挙げられる。 Next, the heat-fusible resin layer 4 is laminated on the barrier layer 3 of the laminate A. When the heat-fusible resin layer 4 is directly laminated on the barrier layer 3, the heat-fusible resin layer 4 is laminated on the barrier layer 3 of the laminate A by a method such as thermal lamination or extrusion lamination. do it. When the adhesive layer 5 is provided between the barrier layer 3 and the heat-fusible resin layer 4, for example, (1) the adhesive layer 5 and the heat-fusible resin layer are placed on the barrier layer 3 of the laminate A. 4 (co-extrusion lamination method, tandem lamination method); A method of laminating on the barrier layer 3 of the laminate A by a thermal lamination method, or forming a laminate in which an adhesive layer 5 is laminated on the barrier layer 3 of the laminate A, and laminating this with a heat-fusible resin layer 4 by a thermal lamination method Lamination method (3) While pouring the melted adhesive layer 5 between the barrier layer 3 of the laminate A and the heat-fusible resin layer 4 formed into a sheet in advance, the adhesive layer 5 is interposed. (4) coating the barrier layer 3 of the laminate A with an adhesive for forming the adhesive layer 5 in solution, A drying method, a baking method, or the like is used to laminate the adhesive layer 5 , and a heat-fusible resin layer 4 that has been formed into a sheet in advance is laminated on the adhesive layer 5 .
 表面被覆層6を設ける場合には、基材層1のバリア層3とは反対側の表面に、表面被覆層6を積層する。表面被覆層6は、例えば表面被覆層6を形成する上記の樹脂を基材層1の表面に塗布することにより形成することができる。なお、基材層1の表面にバリア層3を積層する工程と、基材層1の表面に表面被覆層6を積層する工程の順番は、特に制限されない。例えば、基材層1の表面に表面被覆層6を形成した後、基材層1の表面被覆層6とは反対側の表面にバリア層3を形成してもよい。 When the surface coating layer 6 is provided, the surface coating layer 6 is laminated on the surface of the substrate layer 1 opposite to the barrier layer 3 . The surface coating layer 6 can be formed, for example, by coating the surface of the substrate layer 1 with the above-described resin for forming the surface coating layer 6 . The order of the step of laminating the barrier layer 3 on the surface of the base material layer 1 and the step of laminating the surface coating layer 6 on the surface of the base material layer 1 is not particularly limited. For example, after forming the surface coating layer 6 on the surface of the substrate layer 1 , the barrier layer 3 may be formed on the surface of the substrate layer 1 opposite to the surface coating layer 6 .
 上記のようにして、必要に応じて設けられる表面被覆層6/基材層1/接着剤層2/バリア層3/必要に応じて設けられる接着層5/熱融着性樹脂層4をこの順に備える積層体が形成されるが、接着剤層2及び必要に応じて設けられる接着層5の接着性を強固にするために、さらに、加熱処理に供してもよい。 As described above, the optionally provided surface coating layer 6/base layer 1/adhesive layer 2/barrier layer 3/optionally provided adhesive layer 5/heat-fusible resin layer 4 are combined into this layer. A laminated body is formed in order, and in order to strengthen the adhesiveness of the adhesive layer 2 and the adhesive layer 5 provided as necessary, it may be further subjected to a heat treatment.
 蓄電デバイス用外装材において、積層体を構成する各層には、必要に応じて、コロナ処理、ブラスト処理、酸化処理、オゾン処理などの表面活性化処理を施すことにより加工適性を向上させてもよい。例えば、基材層1のバリア層3とは反対側の表面にコロナ処理を施すことにより、基材層1表面へのインクの印刷適性を向上させることができる。 In the exterior material for an electricity storage device, each layer constituting the laminate may be subjected to surface activation treatment such as corona treatment, blasting treatment, oxidation treatment, and ozone treatment to improve processability as necessary. . For example, by subjecting the surface of the substrate layer 1 opposite to the barrier layer 3 to corona treatment, the printability of the ink onto the surface of the substrate layer 1 can be improved.
5.蓄電デバイス
 本開示の蓄電デバイス用外装材は、正極、負極、電解質等の蓄電デバイス素子を密封して収容するための包装体に使用される。すなわち、本開示の蓄電デバイス用外装材によって形成された包装体中に、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を収容して、蓄電デバイスとすることができる。
5. Electricity Storage Device The exterior material for an electricity storage device of the present disclosure is used in a package for sealingly housing electricity storage device elements such as a positive electrode, a negative electrode, and an electrolyte. That is, an electricity storage device can be obtained by housing an electricity storage device element including at least a positive electrode, a negative electrode, and an electrolyte in a package formed by the electricity storage device exterior material of the present disclosure.
 具体的には、少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を、本開示の蓄電デバイス用外装材で、前記正極及び負極の各々に接続された金属端子が外側に突出させた状態で、蓄電デバイス素子の周縁にフランジ部(熱融着性樹脂層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部の熱融着性樹脂層同士をヒートシールして密封させることによって、蓄電デバイス用外装材を使用した蓄電デバイスが提供される。なお、本開示の蓄電デバイス用外装材により形成された包装体中に蓄電デバイス素子を収容する場合、本開示の蓄電デバイス用外装材の熱融着性樹脂部分が内側(蓄電デバイス素子と接する面)になるようにして、包装体を形成する。 Specifically, an electricity storage device element having at least a positive electrode, a negative electrode, and an electrolyte is placed in the exterior material for an electricity storage device of the present disclosure in a state in which metal terminals connected to the positive electrode and the negative electrode protrude outward. , covering the periphery of the electricity storage device element so as to form a flange portion (area where the heat-fusible resin layers contact each other), and heat-sealing the heat-fusible resin layers of the flange portion to seal. provides an electricity storage device using an exterior material for an electricity storage device. In addition, when housing an electricity storage device element in a package formed by the electricity storage device exterior material of the present disclosure, the heat-fusible resin portion of the electricity storage device exterior material of the present disclosure is on the inside (surface in contact with the electricity storage device element ) to form a package.
 本開示の蓄電デバイス用外装材は、電池(コンデンサー、キャパシター等を含む)などの蓄電デバイスに好適に使用することができる。また、本開示の蓄電デバイス用外装材は、一次電池、二次電池のいずれに使用してもよいが、好ましくは二次電池である。本開示の蓄電デバイス用外装材が適用される二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、全固体電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本開示の蓄電デバイス用外装材の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。 The power storage device exterior material of the present disclosure can be suitably used for power storage devices such as batteries (including capacitors, capacitors, etc.). Moreover, although the exterior material for an electricity storage device of the present disclosure may be used for either a primary battery or a secondary battery, it is preferably a secondary battery. The type of secondary battery to which the power storage device exterior material of the present disclosure is applied is not particularly limited. Cadmium storage batteries, nickel/iron storage batteries, nickel/zinc storage batteries, silver oxide/zinc storage batteries, metal-air batteries, polyvalent cation batteries, capacitors, capacitors, and the like. Among these secondary batteries, lithium ion batteries and lithium ion polymer batteries can be mentioned as suitable targets for application of the power storage device exterior material of the present disclosure.
 以下に実施例及び比較例を示して本開示を詳細に説明する。但し本開示は実施例に限定されるものではない。 The present disclosure will be described in detail below with examples and comparative examples. However, the present disclosure is not limited to the examples.
<蓄電デバイス用外装材の製造>
実施例1~5及び比較例1~2
 基材層として、ポリエチレンテレフタレートフィルム(厚み12μm)と二軸延伸ナイロンフィルム(厚み15μm)とが、2液硬化型ポリウレタン接着剤(それぞれ、後述の接着剤A~Dを使用)により形成された接着剤層(硬化後の厚み3μm)により積層された積層フィルムを用意した。次に、基材層の二軸延伸ナイロンフィルムの上に、両面に耐腐食性皮膜を形成したアルミニウム合金箔(厚み40μm)から構成されるバリア層をドライラミネート法により積層させた。具体的には、基材層の二軸延伸ナイロンフィルム側と、アルミニウム合金箔とを、2液硬化型ポリウレタン接着剤(それぞれ、後述の接着剤A~Dを使用)を用いて積層した後、エージング処理を実施することにより、基材層/接着剤層/バリア層の積層体を作製した。基材層とバリア層とを接着剤層を介して積層する際の条件のうち、接着剤の種類以外の条件(積層圧力比、ニップロール径の比、及び接着剤を塗布する面(アルミニウム合金箔の表面であるか、二軸延伸ナイロンフィルムの表面であるか)については、表1に記載のとおりである。
<Manufacturing exterior materials for power storage devices>
Examples 1-5 and Comparative Examples 1-2
As a substrate layer, a polyethylene terephthalate film (thickness 12 μm) and a biaxially oriented nylon film (thickness 15 μm) are bonded by a two-liquid curable polyurethane adhesive (using adhesives A to D described later). A laminated film was prepared by laminating agent layers (having a thickness of 3 μm after curing). Next, on the biaxially oriented nylon film of the substrate layer, a barrier layer composed of an aluminum alloy foil (thickness: 40 μm) with corrosion-resistant coatings formed on both sides was laminated by a dry lamination method. Specifically, after laminating the biaxially oriented nylon film side of the base layer and the aluminum alloy foil using a two-component curable polyurethane adhesive (each using adhesives A to D described later), A laminate of base material layer/adhesive layer/barrier layer was produced by performing an aging treatment. Of the conditions for laminating the base material layer and the barrier layer via an adhesive layer, conditions other than the type of adhesive (laminating pressure ratio, nip roll diameter ratio, and the surface to which the adhesive is applied (aluminum alloy foil or the surface of a biaxially oriented nylon film) is as described in Table 1.
<基材層とバリア層とを接着剤層を介して積層する際の条件>
(接着剤の種類)
接着剤A:硬化剤として芳香族イソシアネート化合物が使用された2液型ポリウレタン接着剤
接着剤B:硬化剤として芳香族イソシアネート化合物が使用された2液型ポリウレタン接着剤(接着剤Aとは別メーカー製)
接着剤C:硬化剤として芳香族イソシアネート化合物が使用された2液型ポリウレタン接着剤(接着剤A,Bとは別メーカー製)
接着剤D:硬化剤として脂肪族環状イソシアネート化合物が使用された2液型ポリウレタン接着剤(接着剤Cと同一メーカー製)
<Conditions for Laminating the Base Material Layer and the Barrier Layer via the Adhesive Layer>
(type of adhesive)
Adhesive A: A two-component polyurethane adhesive using an aromatic isocyanate compound as a curing agent Adhesive B: A two-component polyurethane adhesive using an aromatic isocyanate compound as a curing agent (manufacturer different from adhesive A) made)
Adhesive C: Two-component polyurethane adhesive using an aromatic isocyanate compound as a curing agent (manufactured by a different manufacturer from Adhesives A and B)
Adhesive D: Two-component polyurethane adhesive using an aliphatic cyclic isocyanate compound as a curing agent (manufactured by the same manufacturer as Adhesive C)
 次に、得られた積層体のバリア層側に、接着層としての無水マレイン酸変性ポリプロピレン(厚み40μm)と、熱融着性樹脂層としてのポリプロピレン(厚み40μm)とを共押出しすることにより、バリア層上に接着層/熱融着性樹脂層を積層させた。次に、得られた積層体をエージングし、加熱することにより、ポリエチレンテレフタレートフィルム(12μm)/接着剤層(3μm)/二軸延伸ナイロンフィルム(15μm)/接着剤層(3μm)/バリア層(40μm)/接着層(40μm)/熱融着性樹脂層(40μm)がこの順に積層されたフィルム状の積層体(総厚み153μm)を得た。 Next, a maleic anhydride-modified polypropylene (40 μm thick) as an adhesive layer and a polypropylene (40 μm thick) as a heat-fusible resin layer were co-extruded onto the barrier layer side of the obtained laminate. An adhesive layer/heat-fusible resin layer was laminated on the barrier layer. Next, by aging and heating the obtained laminate, polyethylene terephthalate film (12 μm)/adhesive layer (3 μm)/biaxially oriented nylon film (15 μm)/adhesive layer (3 μm)/barrier layer ( 40 μm)/adhesive layer (40 μm)/heat-fusible resin layer (40 μm) laminated in this order to obtain a film-like laminate (total thickness: 153 μm).
 次に、得られた各積層体を裁断して、150mm(MD:Machine Direction)×90mm(TD;Transverse Direction)の短冊片とした。なお、積層体のMDが、アルミニウム合金箔の圧延方向(RD)に対応し、積層体のTDが、アルミニウム合金箔のTDに対応する。次に、55mm(MD)×32mm(TD)の口径を有する成形金型(雌型)と、これに対応する成形金型(雄型)の間に短冊片を配置(雌型側が基材層側)し、押さえ圧0.9MPa、5.5mmの成形深さで冷間成形を行い、成形された蓄電デバイス用外装材を得た(図4及び図5を参照)。 Next, each laminate obtained was cut into strips of 150 mm (MD: Machine Direction) x 90 mm (TD: Transverse Direction). The MD of the laminate corresponds to the rolling direction (RD) of the aluminum alloy foil, and the TD of the laminate corresponds to the TD of the aluminum alloy foil. Next, a strip is placed between a molding die (female mold) having a diameter of 55 mm (MD) x 32 mm (TD) and a corresponding molding die (male mold) (the female mold side is the base layer side), and cold forming was performed with a pressing pressure of 0.9 MPa and a forming depth of 5.5 mm to obtain a formed exterior material for an electricity storage device (see FIGS. 4 and 5).
<接着剤層の空隙率の測定>
 前記で得られた成形後の蓄電デバイス用外装材について、以下の手順により、基材層とバリア層との間に位置している接着剤層(具体的には、基材層の二軸延伸ナイロンフィルムとアルミニウム合金箔とを接着している接着剤層)の厚み方向の断面について、空隙率を測定した。
<Measurement of Porosity of Adhesive Layer>
The adhesive layer positioned between the substrate layer and the barrier layer (specifically, the biaxially stretched The porosity was measured for a cross section in the thickness direction of the adhesive layer that adheres the nylon film and the aluminum alloy foil).
 図4,5の模式図に示すように、基材層側から蓄電デバイス用外装材を観察した場合に、平面視略矩形状に形成された凹部100(成形部)について、凹部100のコーナー部を形成する曲線と稜線部を形成する直線の境界部分(図4において、凹部100を示す実線と(1)~(8)の破線が交わる箇所)について、厚み方向と平行な方向(さらに、切断する片とは垂直方向)に、ミクロトーム(ヤマト光機工業製のROM-380)で切断して、接着剤層の断面を取得した。なお、基材層側から蓄電デバイス用外装材を観察した場合に、凹部100のコーナー部は、それぞれ、理想的な直角にはならず、曲線状になる。本実施例及び比較例において、凹部100のコーナー部を形成する曲線と稜線部を形成する直線の境界部分(図4において、凹部100を示す実線と(1)~(8)の破線が交わる箇所)について、断面を取得した。そして、湿熱環境における剥離が特に生じやすいことから、当該断面において、それぞれ、底面100A側の屈曲部10A(図5~図8に示されるように、雄型によって形成される屈曲部)及び封止用縁10C側の屈曲部10B(図5~図8に示されるように、雌型によって形成される屈曲部)のうち、封止用縁10C側の屈曲部10Bの断面(図5の領域Pを参照)を空隙率の測定対象とした。次に、接着剤層について得られた断面のうち、屈曲部P(図5参照)における断面について、レーザー顕微鏡(VK-9710 KEYENCE製)を用い、倍率150倍の対物レンズにて断面観察を行った。続いて、得られた断面観察結果より、接着剤層の面積、および空隙の面積を、解析ソフトVK Analyzer バージョン2.5.0.1を用いて数値化した。具体的には、VK Analyzerの評価解析(A)の体積・面積(V)を選び、接着剤層の面積は、“多角形”モードを選び、取得した画像に表された接着剤層が全て含まれるように、バリア層3(アルミニウム合金箔)と接着剤層2間を5点、接着剤層2と基材層1(二軸延伸ナイロンフィルム)間を5点選んで点を結ぶことによって、面積を測定した(図9の模式図を参照。空隙2aを含めて、接着剤層2の領域を測定対象とする。)。また、空隙は、“フリーライン”モードを選び、空隙が全て埋まるように線で囲んで指定し、面積を測定した(図10の模式図を参照。空隙2aの領域を測定対象とする。)。得られたそれぞれの面積の比を次の式により算出し、断面空隙率(%)を得た。表1には、前述の合計8箇所の測定位置のうち、空隙率が最も大きかった値を示した。
 接着剤層の断面の空隙率(%)=(接着剤層の空隙断面積/接着剤層の断面積)×100
As shown in the schematic diagrams of FIGS. 4 and 5 , when the power storage device exterior material is observed from the base layer side, the recess 100 (molding portion) formed in a substantially rectangular shape in plan view has a corner portion of the recess 100 . and the straight line forming the ridge (in FIG. 4, where the solid line indicating the recess 100 and the broken lines (1) to (8) intersect), the direction parallel to the thickness direction (further, cutting A cross section of the adhesive layer was obtained by cutting with a microtome (ROM-380 manufactured by Yamato Koki Kogyo Co., Ltd.). Note that when the power storage device exterior material is observed from the base layer side, the corners of the concave portions 100 do not form ideal right angles, but become curved. In this example and comparative example, the boundary portion between the curved line forming the corner portion of the recess 100 and the straight line forming the ridge portion (in FIG. ) was obtained. Then, since peeling is particularly likely to occur in a moist and hot environment, in the cross section, the bent portion 10A on the bottom surface 100A side (as shown in FIGS. 5 to 8, the bent portion formed by the male mold) and the sealing Of the bent portion 10B on the sealing edge 10C side (the bent portion formed by the female mold as shown in FIGS. 5 to 8), the cross section of the bent portion 10B on the sealing edge 10C side (region P in FIG. 5 ) was used as the measurement target for the porosity. Next, of the cross sections obtained for the adhesive layer, the cross section at the bent portion P (see FIG. 5) was observed using a laser microscope (VK-9710 manufactured by KEYENCE) with an objective lens of 150x magnification. rice field. Subsequently, from the cross-sectional observation results obtained, the area of the adhesive layer and the area of the voids were quantified using analysis software VK Analyzer version 2.5.0.1. Specifically, select the volume and area (V) of the evaluation analysis (A) of the VK Analyzer, select the "polygon" mode for the area of the adhesive layer, and all the adhesive layers represented in the acquired image By selecting 5 points between the barrier layer 3 (aluminum alloy foil) and the adhesive layer 2 and 5 points between the adhesive layer 2 and the base layer 1 (biaxially oriented nylon film) so as to include , the area was measured (see the schematic diagram of FIG. 9. The area of the adhesive layer 2 including the voids 2a is the measurement target.). In addition, the "free line" mode was selected for the voids, and the areas were measured by enclosing them with lines so that the entire voids were filled (see the schematic diagram of FIG. 10. The area of the voids 2a is the measurement target.) . The ratio of the obtained areas was calculated by the following formula to obtain the cross-sectional porosity (%). Table 1 shows the value with the largest porosity among the eight measurement positions described above.
Porosity (%) of the cross section of the adhesive layer = (cross-sectional area of voids in the adhesive layer/cross-sectional area of the adhesive layer) x 100
<耐湿熱性の評価>
 前記で得られた成形後の蓄電デバイス用外装材を、それぞれ、16個ずつ用意してサンプルとした。次に、16個のサンプルを、温度80℃、相対湿度90%の恒温槽内に入れ、アルミニウム合金箔と基材層の二軸延伸ナイロンフィルムとの間の剥離の発生状況を、1日ごとに目視で観察した。アルミニウム合金箔からの二軸延伸ナイロンフィルムの剥離が、1mm以上観察された場合に剥離が発生したと判断し、16個のサンプル全てについて剥離が発生するまでの日数に基づき、以下の基準で耐湿熱性を評価した。成形後の蓄電デバイス用外装材について、温度80℃、相対湿度90%の条件で耐湿熱性の評価を行うことは、非常に厳しい評価といえる。結果を表1に示す。
A+:剥離が発生するまで30日以上であり、耐湿熱性に最も優れている
A:剥離が発生するまで20日以上30日未満であり、耐湿熱性に特に優れている
B:剥離が発生するまで10日以上20日未満であり、耐湿熱性にかなり優れている
C:剥離が発生するまで5日以上10日未満であり、耐湿熱性は優れている
D:剥離が発生するまで5日未満であり、耐湿熱性は一般水準と同等または同等を下回る
<Evaluation of moist heat resistance>
16 pieces of each of the molded electrical storage device exterior materials obtained above were prepared as samples. Next, 16 samples are placed in a constant temperature bath at a temperature of 80 ° C. and a relative humidity of 90%, and the occurrence of peeling between the aluminum alloy foil and the biaxially oriented nylon film of the base layer is checked every day. was visually observed. Detachment of the biaxially oriented nylon film from the aluminum alloy foil was judged to have occurred when 1 mm or more was observed, and based on the number of days until detachment occurred for all 16 samples, moisture resistance was measured according to the following criteria. Thermal properties were evaluated. It can be said that it is a very severe evaluation to evaluate the heat and humidity resistance of the molded exterior material for an electricity storage device under conditions of a temperature of 80° C. and a relative humidity of 90%. Table 1 shows the results.
A+: 30 days or more until peeling occurs, most excellent in moist heat resistance A: 20 days or more and less than 30 days until peeling occurs, particularly excellent in moist heat resistance B: Until peeling occurs 10 days or more and less than 20 days, and fairly excellent moist heat resistance C: 5 days or more and less than 10 days until peeling occurs, and excellent moist heat resistance D: Less than 5 days until peeling occurs , Humidity and heat resistance equal to or lower than general standards
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1~5の蓄電デバイス用外装材は、少なくとも、基材層と、接着剤層と、バリア層と、熱融着性樹脂層とをこの順に備えるフィルム状の積層体が成形された、蓄電デバイス用外装材であって、熱融着性樹脂層側から基材層側に突出するようにして成形され、熱融着性樹脂層側に蓄電デバイス素子が収容される凹部を備えており、接着剤層の厚み方向の断面について、対物レンズの倍率150倍で観察される空隙率が、25%以下である。実施例1~5の蓄電デバイス用外装材は、湿熱環境において、蓄電デバイス用外装材の接着剤層の位置での剥離が抑制され、優れた耐湿熱性を発揮していた。なお、二軸延伸ナイロンフィルムの表面に接着剤を塗布した実施例5と比較例2では、図9,10の模式図のように接着剤層のバリア層側に空隙が形成されていた。 The exterior material for an electricity storage device of Examples 1 to 5 was formed into a film-like laminate comprising at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order. An exterior material for an electricity storage device, which is molded so as to protrude from the heat-fusible resin layer side to the base layer side, and has a concave portion for accommodating the electricity storage device element on the heat-fusible resin layer side. , the porosity of the cross section of the adhesive layer in the thickness direction observed at a magnification of 150 times of the objective lens is 25% or less. The power storage device exterior materials of Examples 1 to 5 were inhibited from peeling at the position of the adhesive layer of the power storage device exterior materials in a moist and heat environment, and exhibited excellent moist heat resistance. In Example 5 and Comparative Example 2 in which the adhesive was applied to the surface of the biaxially oriented nylon film, voids were formed on the barrier layer side of the adhesive layer as shown in the schematic diagrams of FIGS.
 以上の通り、本開示は、以下に示す態様の発明を提供する。
項1. 少なくとも、基材層と、接着剤層と、バリア層と、熱融着性樹脂層とをこの順に備えるフィルム状の積層体が成形された、蓄電デバイス用外装材であって、
 前記蓄電デバイス用外装材は、前記熱融着性樹脂層側から前記基材層側に突出するようにして成形され、前記熱融着性樹脂層側に蓄電デバイス素子が収容される凹部を備えており、
 前記接着剤層の厚み方向の断面について、対物レンズの倍率150倍で観察される空隙率が、25%以下である、蓄電デバイス用外装材。
項2. 前記接着剤層は、硬化性樹脂を含む樹脂組成物の硬化物により形成されている、項1に記載の蓄電デバイス用外装材。
項3. 前記樹脂組成物は、2液型接着剤である、項2に記載の蓄電デバイス用外装材。
項4. 前記樹脂組成物は、ポリウレタンを含む、項2または3に記載の蓄電デバイス用外装材。
項5. 前記蓄電デバイス用外装材は、平面視略矩形状である、項1~4のいずれか1項に記載の蓄電デバイス用外装材。
項6. 前記蓄電デバイス用外装材の前記凹部は、平面視略矩形状である、項1~5のいずれか1項に記載の蓄電デバイス用外装材。
項7. 少なくとも、基材層と、接着剤層と、バリア層と、熱融着性樹脂層とをこの順に備えるフィルム状の積層体を用意する工程と、
 前記熱融着性樹脂層側から前記基材層側に突出するようにして、前記積層体を成形して、前記熱融着性樹脂層側に蓄電デバイス素子が収容される凹部を形成する工程と、を備え、
 前記接着剤層の厚み方向の断面について、対物レンズの倍率150倍で観察される空隙率が、25%以下である、蓄電デバイス用外装材の製造方法。
項8. 少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、蓄電デバイス用外装材を用いて形成された包装体中に収容されている、蓄電デバイスであって、
 前記蓄電デバイス用外装材は、少なくとも、基材層と、接着剤層と、バリア層と、熱融着性樹脂層とをこの順に備えるフィルム状の積層体が成形されており、
 前記蓄電デバイス用外装材は、前記熱融着性樹脂層側から前記基材層側に突出するようにして成形され、前記熱融着性樹脂層側に蓄電デバイス素子が収容される凹部を備えており、
 前記接着剤層の厚み方向の断面について、対物レンズの倍率150倍で観察される空隙率が、25%以下である、蓄電デバイス。
項9. 少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を、項1~6のいずれか1項に記載の蓄電デバイス用外装材を用いて形成された包装体中に収容する工程を備える、蓄電デバイスの製造方法。
As described above, the present disclosure provides inventions in the following aspects.
Section 1. An exterior material for an electricity storage device, in which a film-like laminate is formed comprising at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order,
The power storage device exterior material is molded so as to protrude from the heat-fusible resin layer side to the base layer side, and has a recessed portion in which the power storage device element is accommodated on the heat-fusible resin layer side. and
An exterior material for an electric storage device, wherein the adhesive layer has a porosity of 25% or less in a cross-section in the thickness direction, as observed at a magnification of 150 times with an objective lens.
Section 2. Item 2. The exterior material for an electricity storage device according to Item 1, wherein the adhesive layer is formed of a cured product of a resin composition containing a curable resin.
Item 3. Item 3. The exterior material for an electricity storage device according to Item 2, wherein the resin composition is a two-component adhesive.
Section 4. Item 4. The exterior material for an electricity storage device according to Item 2 or 3, wherein the resin composition contains polyurethane.
Item 5. Item 5. The exterior material for an electricity storage device according to any one of items 1 to 4, wherein the exterior material for an electricity storage device has a substantially rectangular shape in plan view.
Item 6. Item 6. The power storage device exterior material according to any one of Items 1 to 5, wherein the concave portion of the power storage device exterior material has a substantially rectangular shape in plan view.
Item 7. preparing a film-like laminate comprising at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order;
A step of molding the laminate so as to protrude from the heat-fusible resin layer side to the base layer side, and forming a recess in which an electricity storage device element is housed on the heat-fusible resin layer side. and
A method for producing an exterior material for an electric storage device, wherein the adhesive layer has a porosity of 25% or less in a cross-section in the thickness direction, as observed at a magnification of 150 times with an objective lens.
Item 8. An electricity storage device in which an electricity storage device element including at least a positive electrode, a negative electrode, and an electrolyte is housed in a package formed using an electricity storage device exterior material,
The exterior material for an electricity storage device is formed of a film-like laminate that includes at least a base layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order,
The power storage device exterior material is molded so as to protrude from the heat-fusible resin layer side to the base layer side, and has a recessed portion in which the power storage device element is accommodated on the heat-fusible resin layer side. and
The power storage device, wherein the adhesive layer has a porosity of 25% or less in a cross section in the thickness direction, as observed at a magnification of 150 times with an objective lens.
Item 9. An electricity storage device comprising a step of housing an electricity storage device element comprising at least a positive electrode, a negative electrode, and an electrolyte in a package formed using the electricity storage device exterior material according to any one of Items 1 to 6. manufacturing method.
1 基材層
2 接着剤層
2a 空隙
3 バリア層
4 熱融着性樹脂層
5 接着層
6 表面被覆層
10 蓄電デバイス用外装材
10A 凹部の底面部側の屈曲部
10B 封止用縁側の屈曲部
10C 封止用縁
21 雌型
22 雄型
23 押さえ板
100 凹部
100A 凹部の底面
1 Base material layer 2 Adhesive layer 2a Space 3 Barrier layer 4 Heat-fusible resin layer 5 Adhesive layer 6 Surface coating layer 10 Exterior material for electric storage device 10A Bending portion 10B on the bottom side of the recess Bending portion on the edge side for sealing 10C Sealing rim 21 Female die 22 Male die 23 Pressing plate 100 Recess 100A Bottom of recess

Claims (9)

  1.  少なくとも、基材層と、接着剤層と、バリア層と、熱融着性樹脂層とをこの順に備えるフィルム状の積層体が成形された、蓄電デバイス用外装材であって、
     前記蓄電デバイス用外装材は、前記熱融着性樹脂層側から前記基材層側に突出するようにして成形され、前記熱融着性樹脂層側に蓄電デバイス素子が収容される凹部を備えており、
     前記接着剤層の厚み方向の断面について、対物レンズの倍率150倍で観察される空隙率が、25%以下である、蓄電デバイス用外装材。
    An exterior material for an electricity storage device, in which a film-like laminate is formed comprising at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order,
    The power storage device exterior material is molded so as to protrude from the heat-fusible resin layer side to the base layer side, and has a recessed portion in which the power storage device element is accommodated on the heat-fusible resin layer side. and
    An exterior material for an electric storage device, wherein the adhesive layer has a porosity of 25% or less in a cross-section in the thickness direction, as observed at a magnification of 150 times with an objective lens.
  2.  前記接着剤層は、硬化性樹脂を含む樹脂組成物の硬化物により形成されている、請求項1に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 1, wherein the adhesive layer is formed of a cured resin composition containing a curable resin.
  3.  前記樹脂組成物は、2液型接着剤である、請求項2に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 2, wherein the resin composition is a two-component adhesive.
  4.  前記樹脂組成物は、ポリウレタンを含む、請求項2または3に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to claim 2 or 3, wherein the resin composition contains polyurethane.
  5.  前記蓄電デバイス用外装材は、平面視略矩形状である、請求項1~4のいずれか1項に記載の蓄電デバイス用外装材。 The exterior material for an electricity storage device according to any one of claims 1 to 4, wherein the exterior material for an electricity storage device has a substantially rectangular shape in plan view.
  6.  前記蓄電デバイス用外装材の前記凹部は、平面視略矩形状である、請求項1~5のいずれか1項に記載の蓄電デバイス用外装材。 The power storage device exterior material according to any one of claims 1 to 5, wherein the concave portion of the power storage device exterior material has a substantially rectangular shape in plan view.
  7.  少なくとも、基材層と、接着剤層と、バリア層と、熱融着性樹脂層とをこの順に備えるフィルム状の積層体を用意する工程と、
     前記熱融着性樹脂層側から前記基材層側に突出するようにして、前記積層体を成形して、前記熱融着性樹脂層側に蓄電デバイス素子が収容される凹部を形成する工程と、を備え、
     前記接着剤層の厚み方向の断面について、対物レンズの倍率150倍で観察される空隙率が、25%以下である、蓄電デバイス用外装材の製造方法。
    preparing a film-like laminate comprising at least a substrate layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order;
    A step of molding the laminate so as to protrude from the heat-fusible resin layer side to the base layer side, and forming a recess in which an electricity storage device element is housed on the heat-fusible resin layer side. and
    A method for producing an exterior material for an electric storage device, wherein the adhesive layer has a porosity of 25% or less in a cross-section in the thickness direction, as observed at a magnification of 150 times with an objective lens.
  8.  少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子が、蓄電デバイス用外装材を用いて形成された包装体中に収容されている、蓄電デバイスであって、
     前記蓄電デバイス用外装材は、少なくとも、基材層と、接着剤層と、バリア層と、熱融着性樹脂層とをこの順に備えるフィルム状の積層体が成形されており、
     前記蓄電デバイス用外装材は、前記熱融着性樹脂層側から前記基材層側に突出するようにして成形され、前記熱融着性樹脂層側に蓄電デバイス素子が収容される凹部を備えており、
     前記接着剤層の厚み方向の断面について、対物レンズの倍率150倍で観察される空隙率が、25%以下である、蓄電デバイス。
    An electricity storage device in which an electricity storage device element including at least a positive electrode, a negative electrode, and an electrolyte is housed in a package formed using an electricity storage device exterior material,
    The exterior material for an electricity storage device is formed of a film-like laminate that includes at least a base layer, an adhesive layer, a barrier layer, and a heat-fusible resin layer in this order,
    The power storage device exterior material is molded so as to protrude from the heat-fusible resin layer side to the base layer side, and has a recessed portion in which the power storage device element is accommodated on the heat-fusible resin layer side. and
    The power storage device, wherein the adhesive layer has a porosity of 25% or less in a cross section in the thickness direction, as observed at a magnification of 150 times with an objective lens.
  9.  少なくとも正極、負極、及び電解質を備えた蓄電デバイス素子を、請求項1~6のいずれか1項に記載の蓄電デバイス用外装材を用いて形成された包装体中に収容する工程を備える、蓄電デバイスの製造方法。 An electricity storage comprising a step of housing an electricity storage device element comprising at least a positive electrode, a negative electrode, and an electrolyte in a package formed using the electricity storage device exterior material according to any one of claims 1 to 6. How the device is manufactured.
PCT/JP2022/015613 2021-04-01 2022-03-29 Exterior material for power storage device, power storage device, and method for manufacturing same WO2022210750A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023511403A JPWO2022210750A1 (en) 2021-04-01 2022-03-29
CN202280025509.4A CN117083751A (en) 2021-04-01 2022-03-29 Outer packaging material for power storage device, and method for manufacturing power storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021063088 2021-04-01
JP2021-063088 2021-04-01

Publications (1)

Publication Number Publication Date
WO2022210750A1 true WO2022210750A1 (en) 2022-10-06

Family

ID=83456361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/015613 WO2022210750A1 (en) 2021-04-01 2022-03-29 Exterior material for power storage device, power storage device, and method for manufacturing same

Country Status (3)

Country Link
JP (1) JPWO2022210750A1 (en)
CN (1) CN117083751A (en)
WO (1) WO2022210750A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046107A (en) * 2009-08-27 2011-03-10 Fujifilm Corp Method for manufacturing electric element and composite film
WO2015041239A1 (en) * 2013-09-18 2015-03-26 三菱レイヨン株式会社 Laminate film and manufacturing method thereof, touch panel device, image display device, and mobile device
JP2019061938A (en) * 2017-09-28 2019-04-18 昭和電工パッケージング株式会社 Exterior material for power storage device, outer casing for power storage device and power storage device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011046107A (en) * 2009-08-27 2011-03-10 Fujifilm Corp Method for manufacturing electric element and composite film
WO2015041239A1 (en) * 2013-09-18 2015-03-26 三菱レイヨン株式会社 Laminate film and manufacturing method thereof, touch panel device, image display device, and mobile device
JP2019061938A (en) * 2017-09-28 2019-04-18 昭和電工パッケージング株式会社 Exterior material for power storage device, outer casing for power storage device and power storage device

Also Published As

Publication number Publication date
CN117083751A (en) 2023-11-17
JPWO2022210750A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
JP7414004B2 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
WO2020235534A1 (en) Exterior material for power storage device, method for manufacturing same, power storage device, and polyamide film
WO2020085462A1 (en) Casing material for power storage device, production method therefor, and power storage device
JP2020129543A (en) Power storage device exterior material, manufacturing method of the same, and power storage device
WO2020085463A1 (en) Casing material for power storage device, production method therefor, and power storage device
JP2024056802A (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
WO2020204186A1 (en) Exterior material for electrical storage device, method for manufacturing same, and electrical storage device
JP2019212433A (en) Battery packaging material, manufacturing method thereof, winding body of battery packaging material, and battery
JP7234794B2 (en) Exterior material for power storage device, method for producing the same, power storage device, and polyamide film
JP7160224B1 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
JP2023011625A (en) Outer package material for power storage device, manufacturing method thereof, and power storage device
JP6989071B1 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices
JP2023012724A (en) Sheath material for power storage device, method for manufacturing the same, and power storage device
WO2022210750A1 (en) Exterior material for power storage device, power storage device, and method for manufacturing same
JP7118038B2 (en) Exterior material for power storage device, power storage device, and manufacturing method thereof
WO2023022086A1 (en) Outer package material for power storage devices, method for producing same, and power storage device
JP7332072B1 (en) Exterior material for power storage device, manufacturing method thereof, and power storage device
WO2023058453A1 (en) Outer package material for power storage devices, method for producing same, and power storage device
WO2023136360A1 (en) Exterior material for electricity storage device, method for manufacturing same, resin composition, and electricity storage device
WO2023042883A1 (en) Exterior material for power storage device, production method therefor, film, and power storage device
WO2023058701A1 (en) Outer package material for power storage devices, method for producing same, and power storage device
WO2023042884A1 (en) Exterior material for power storage device, production method therefor, film, and power storage device
JP7311073B1 (en) Exterior material for power storage device, manufacturing method thereof, film, and power storage device
WO2021162059A1 (en) Exterior material for electrical storage device, method for manufacturing said exterior material, and electrical storage device
JP7055904B2 (en) Exterior materials for power storage devices, their manufacturing methods, and power storage devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780961

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280025509.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023511403

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780961

Country of ref document: EP

Kind code of ref document: A1