WO2023127558A1 - 酸化物セラミックス成形体の製造方法 - Google Patents
酸化物セラミックス成形体の製造方法 Download PDFInfo
- Publication number
- WO2023127558A1 WO2023127558A1 PCT/JP2022/046461 JP2022046461W WO2023127558A1 WO 2023127558 A1 WO2023127558 A1 WO 2023127558A1 JP 2022046461 W JP2022046461 W JP 2022046461W WO 2023127558 A1 WO2023127558 A1 WO 2023127558A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- zirconia
- oxide ceramic
- particles
- less
- sintered body
- Prior art date
Links
- 229910052574 oxide ceramic Inorganic materials 0.000 title claims abstract description 129
- 239000011224 oxide ceramic Substances 0.000 title claims abstract description 129
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 113
- 239000002245 particle Substances 0.000 claims abstract description 177
- 239000000843 powder Substances 0.000 claims abstract description 99
- 238000000465 moulding Methods 0.000 claims abstract description 51
- 239000011164 primary particle Substances 0.000 claims abstract description 33
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 954
- 238000005245 sintering Methods 0.000 claims description 50
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 41
- 239000003381 stabilizer Substances 0.000 claims description 34
- 238000001354 calcination Methods 0.000 claims description 32
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims description 31
- 230000007704 transition Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 81
- 239000003795 chemical substances by application Substances 0.000 description 71
- 239000002002 slurry Substances 0.000 description 56
- 239000003086 colorant Substances 0.000 description 44
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 31
- 238000001035 drying Methods 0.000 description 30
- 238000011282 treatment Methods 0.000 description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 29
- 239000002612 dispersion medium Substances 0.000 description 23
- 238000002834 transmittance Methods 0.000 description 22
- 238000013001 point bending Methods 0.000 description 20
- 239000013078 crystal Substances 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 17
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 16
- 239000000047 product Substances 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- 239000007788 liquid Substances 0.000 description 15
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 14
- -1 aluminum compound Chemical class 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 239000010410 layer Substances 0.000 description 12
- 239000003960 organic solvent Substances 0.000 description 11
- 230000002950 deficient Effects 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 230000009467 reduction Effects 0.000 description 10
- 238000009694 cold isostatic pressing Methods 0.000 description 9
- 238000005520 cutting process Methods 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 239000001569 carbon dioxide Substances 0.000 description 8
- 229910002092 carbon dioxide Inorganic materials 0.000 description 8
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 8
- 238000005336 cracking Methods 0.000 description 8
- 238000003801 milling Methods 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 7
- 239000002105 nanoparticle Substances 0.000 description 7
- 230000000704 physical effect Effects 0.000 description 7
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 6
- 238000004220 aggregation Methods 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000003826 uniaxial pressing Methods 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 238000000352 supercritical drying Methods 0.000 description 5
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 4
- 229940093475 2-ethoxyethanol Drugs 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 229910052693 Europium Inorganic materials 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- ZRVUJXDFFKFLMG-UHFFFAOYSA-N Meloxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=NC=C(C)S1 ZRVUJXDFFKFLMG-UHFFFAOYSA-N 0.000 description 4
- 241000209094 Oryza Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 239000002518 antifoaming agent Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000005548 dental material Substances 0.000 description 4
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 150000002170 ethers Chemical class 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000007850 fluorescent dye Substances 0.000 description 4
- 150000004679 hydroxides Chemical class 0.000 description 4
- 239000000395 magnesium oxide Substances 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 238000004062 sedimentation Methods 0.000 description 4
- 238000001694 spray drying Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 210000004885 white matter Anatomy 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 229910052688 Gadolinium Inorganic materials 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001242 acetic acid derivatives Chemical class 0.000 description 3
- 150000004703 alkoxides Chemical class 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- 150000002823 nitrates Chemical class 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- 238000009736 wetting Methods 0.000 description 3
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910052775 Thulium Inorganic materials 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- 238000001652 electrophoretic deposition Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000001513 hot isostatic pressing Methods 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 210000004283 incisor Anatomy 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- FTQWRYSLUYAIRQ-UHFFFAOYSA-N n-[(octadecanoylamino)methyl]octadecanamide Chemical compound CCCCCCCCCCCCCCCCCC(=O)NCNC(=O)CCCCCCCCCCCCCCCCC FTQWRYSLUYAIRQ-UHFFFAOYSA-N 0.000 description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 2
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000004671 saturated fatty acids Chemical class 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000004729 solvothermal method Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 2
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical class OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- BNHGVULTSGNVIX-UHFFFAOYSA-N 1-(2-ethoxyethoxy)ethanol Chemical compound CCOCCOC(C)O BNHGVULTSGNVIX-UHFFFAOYSA-N 0.000 description 1
- OBOSXEWFRARQPU-UHFFFAOYSA-N 2-n,2-n-dimethylpyridine-2,5-diamine Chemical compound CN(C)C1=CC=C(N)C=N1 OBOSXEWFRARQPU-UHFFFAOYSA-N 0.000 description 1
- NGDQQLAVJWUYSF-UHFFFAOYSA-N 4-methyl-2-phenyl-1,3-thiazole-5-sulfonyl chloride Chemical compound S1C(S(Cl)(=O)=O)=C(C)N=C1C1=CC=CC=C1 NGDQQLAVJWUYSF-UHFFFAOYSA-N 0.000 description 1
- DUFCMRCMPHIFTR-UHFFFAOYSA-N 5-(dimethylsulfamoyl)-2-methylfuran-3-carboxylic acid Chemical compound CN(C)S(=O)(=O)C1=CC(C(O)=O)=C(C)O1 DUFCMRCMPHIFTR-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910007486 ZnGa2O4 Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229920005822 acrylic binder Polymers 0.000 description 1
- 229920006243 acrylic copolymer Polymers 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229940049676 bismuth hydroxide Drugs 0.000 description 1
- TZSXPYWRDWEXHG-UHFFFAOYSA-K bismuth;trihydroxide Chemical compound [OH-].[OH-].[OH-].[Bi+3] TZSXPYWRDWEXHG-UHFFFAOYSA-K 0.000 description 1
- VOFJQEALMGAGCL-UHFFFAOYSA-N butyl acetate;hexane Chemical compound CCCCCC.CCCCOC(C)=O VOFJQEALMGAGCL-UHFFFAOYSA-N 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 238000009750 centrifugal casting Methods 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 229910019990 cerium-doped yttrium aluminum garnet Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 239000002670 dental porcelain Substances 0.000 description 1
- 229940023487 dental product Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- WVMPCBWWBLZKPD-UHFFFAOYSA-N dilithium oxido-[oxido(oxo)silyl]oxy-oxosilane Chemical compound [Li+].[Li+].[O-][Si](=O)O[Si]([O-])=O WVMPCBWWBLZKPD-UHFFFAOYSA-N 0.000 description 1
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- ZXGIFJXRQHZCGJ-UHFFFAOYSA-N erbium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Er+3].[Er+3] ZXGIFJXRQHZCGJ-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229910001940 europium oxide Inorganic materials 0.000 description 1
- AEBZCFFCDTZXHP-UHFFFAOYSA-N europium(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Eu+3].[Eu+3] AEBZCFFCDTZXHP-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 description 1
- 229910052912 lithium silicate Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- NFSAPTWLWWYADB-UHFFFAOYSA-N n,n-dimethyl-1-phenylethane-1,2-diamine Chemical compound CN(C)C(CN)C1=CC=CC=C1 NFSAPTWLWWYADB-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 230000010494 opalescence Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000002902 organometallic compounds Chemical class 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 description 1
- MMKQUGHLEMYQSG-UHFFFAOYSA-N oxygen(2-);praseodymium(3+) Chemical compound [O-2].[O-2].[O-2].[Pr+3].[Pr+3] MMKQUGHLEMYQSG-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 229910003447 praseodymium oxide Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 description 1
- HYXGAEYDKFCVMU-UHFFFAOYSA-N scandium oxide Chemical compound O=[Sc]O[Sc]=O HYXGAEYDKFCVMU-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003815 supercritical carbon dioxide extraction Methods 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- ZIKATJAYWZUJPY-UHFFFAOYSA-N thulium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Tm+3].[Tm+3] ZIKATJAYWZUJPY-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 description 1
- 239000001393 triammonium citrate Substances 0.000 description 1
- 235000011046 triammonium citrate Nutrition 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 150000003755 zirconium compounds Chemical class 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B3/00—Producing shaped articles from the material by using presses; Presses specially adapted therefor
- B28B3/02—Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B11/00—Apparatus or processes for treating or working the shaped or preshaped articles
- B28B11/24—Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
- B28B11/243—Setting, e.g. drying, dehydrating or firing ceramic articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B3/00—Producing shaped articles from the material by using presses; Presses specially adapted therefor
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
- C04B35/111—Fine ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/48—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
- C04B35/486—Fine ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
- C04B2235/3246—Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/604—Pressing at temperatures other than sintering temperatures
Definitions
- the present invention relates to a method for manufacturing an oxide ceramic compact.
- Oxide ceramics are widely used industrially.
- zirconia sintered bodies have recently been used as dental materials such as dental prostheses.
- These dental prostheses are often produced by pressing zirconia particles or using a composition containing zirconia particles to form a zirconia molded body having a desired shape such as a disk shape or prismatic shape. Then, it is calcined to obtain a calcined body (mill blank), which is cut (milled) into the desired shape of the dental prosthesis, and then sintered.
- Patent Documents 1 and 2 have proposed methods for solving such problems.
- Patent Literature 1 discloses a method for producing a zirconia molded body that can easily produce a zirconia sintered body of excellent quality having both high translucency and high strength at a high yield.
- Patent Document 1 discloses a zirconia molded body comprising a step of moistening a pre-wet molded body containing zirconia particles to obtain a wet molded body, and a step of pressurizing the wet molded body.
- a production method is disclosed, the average primary particle size of the zirconia particles is preferably 30 nm or less, and the pre-wet compact is obtained by press-molding a powder containing zirconia particles. It is disclosed that the powder containing zirconia particles is preferably obtained by drying a slurry containing zirconia particles.
- Patent Document 2 also discloses nanocrystalline zirconia and a method for processing the same. Specifically, it exhibits opalescence, has a particle size in the range of 10 nm to 300 nm, a density of at least 99.5% of the theoretical density, a visible light transmission of 45% or more at 560 nm, and an intensity of at least 800 MPa. It is a dental zirconia ceramic. Such dental zirconia ceramics are prepared by providing a zirconia green blank having zirconia nanoparticles with an average particle size of less than 20 nm; shaping the zirconia green blank by CAD/CAM, low pressure injection molding (LPIM), or hot pressing.
- CAD/CAM high pressure injection molding
- US Pat. No. 6,200,401 discloses that the step of forming said suspension into a blank or dental product includes centrifugal casting, drop casting, gel casting, injection molding, slip casting, squeeze filtration, and/or electrophoretic deposition (EPD). ) is disclosed.
- Patent Document 1 powder is press-molded to obtain a pre-wet molded body, the pre-wet molded body is humidified to obtain a wet molded body, and the wet molded body is subjected to pressure treatment.
- the aim was to reduce the chipping and cracking of the finally produced zirconia sintered body by using the body, and the production yield when manufacturing the pre-wet molded body was not examined.
- the specific surface area is improved. In some cases, it was difficult to form a press-formed body.
- Patent Document 1 Although molding is possible in Patent Document 1, when a uniaxial press is used, there are problems such as chipping or cracking in the press-formed body when it is removed from the mold due to air remaining inside the press-formed body. The inventors of the present invention have found that press-formed articles cannot be obtained with good yield.
- Patent Documents 1 and 2 did not consider the production yield when molding powder of oxide ceramics with an average primary particle size of nanosize (especially 120 nm or less). However, when molding an oxide ceramic powder having an average primary particle diameter of 120 nm or less, the particle diameter is too small, and as described above, the air remaining inside the molded body causes chipping of the molded body. Or, there is a problem such as cracking, and even if the molded body has no problem visually, it is said that cracks occur during calcination due to the influence of a small amount of residual air inside the molded body. A problem was found. In particular, this problem was significant in the production of molded articles having a thickness of 10 mm or more.
- the present invention provides a method for producing an oxide ceramic compact, which uses an oxide ceramic powder having a nano-sized average primary particle size (especially 120 nm or less) and can produce a compact with a high production yield. intended to
- the present inventors have found that when a powder having a small average primary particle size is press-molded with a press molding machine under reduced pressure, a compact can be obtained. As a result of finding that the chipping or cracking that occurs in the steel is greatly reduced, and further research, the present invention has been completed.
- the present invention includes the following inventions.
- a method for producing an oxide ceramic compact comprising press-molding a powder containing oxide ceramic particles having an average primary particle size of 1 to 120 nm under reduced pressure.
- [10] The method for producing a calcined oxide ceramic body according to [8] or [9], wherein the oxide ceramic compact is a zirconia compact or an alumina compact.
- the oxide ceramic compact obtained by the method for producing the oxide ceramic compact according to any one of [1] to [7], or the oxide according to any one of [8] to [10] A method for producing an oxide ceramic sintered body, comprising sintering the oxide ceramic calcined body obtained by the ceramic calcined body production method.
- a method for producing an oxide ceramic compact which can produce a compact with a high production yield using an oxide ceramic powder having an average primary particle size of nanosize (especially 120 nm or less).
- an oxide ceramic powder having an average primary particle size of nanosize especially 120 nm or less
- the average primary particle size is nano-sized (especially 120 nm or less)
- the air remaining in the press molded body is reduced by carrying out under reduced pressure. It is possible to provide a method for producing an oxide ceramic compact that improves the yield of press molding itself.
- a molded body can be obtained at a high production yield by using an oxide ceramic powder having a nano-sized average primary particle size by a simple method without requiring a special apparatus or a complicated process.
- the oxide ceramic molded body obtained by the method has reduced chipping or cracking during calcination and sintering, and has a thickness of 10 mm or more.
- the sintered body can be produced easily, and in addition, the formation of microvoids in the sintered body can be reduced, and the translucency can be improved.
- a zirconia molded body and a zirconia calcined body can be produced with high production yield in order to easily produce a zirconia sintered body having excellent translucency and strength at a high production yield. It can be easily manufactured at a low rate.
- a method for producing an oxide ceramic compact according to the present invention includes a step of press-molding a powder containing oxide ceramic particles having an average primary particle size of 1 to 120 nm under reduced pressure.
- oxide ceramic molded body means a molded body obtained by molding oxide ceramics in a state in which necking (adherence) between oxide ceramic particles does not occur.
- the oxide ceramic particles used in the present invention are not particularly limited, and examples thereof include those containing zirconia, alumina, titania, silica, niobium oxide, tantalum oxide, yttria, and the like. .
- Oxide ceramics may be used individually by 1 type, and may use 2 or more types together. Among them, those containing zirconia and/or alumina are preferable, those containing zirconia are more preferable, and those containing zirconia as a main component are even more preferable, from the viewpoint of applicability to dental applications such as dental prostheses.
- the oxide ceramic particles contain zirconia as a main component will be described while appropriately explaining the case where the oxide ceramic is alumina.
- the zirconia particles used in the present invention preferably contain zirconia as a main component.
- the “main component” may be 50% by mass or more.
- the content of zirconia in the zirconia particles according to the present invention is preferably 60% by mass or more, more preferably 65% by mass or more, still more preferably 70% by mass or more, even more preferably 75% by mass or more, and 80% by mass or more. It is particularly preferred, and 85% by mass or more is most preferred.
- the average primary particle size of the zirconia particles is not particularly limited, but it is 90 nm or less because a zirconia sintered body having excellent translucency and strength can be obtained, and the effects of the present invention are exhibited more remarkably.
- the average primary particle size of the zirconia particles is preferably 1 nm or more because a zirconia sintered body having excellent translucency and strength can be obtained, and the effects of the present invention can be more significantly exhibited. It is more preferably 5 nm or more, and even more preferably 10 nm or more.
- the average primary particle size of the zirconia particles can be obtained, for example, by photographing the zirconia particles (primary particles) with a transmission electron microscope (TEM), and the particle size of each particle for 100 arbitrary particles on the obtained image. (Maximum diameter) can be measured, and the average value (number-based, arithmetic mean diameter) can be obtained. A commercially available transmission electron microscope (TEM) can be used.
- a powder containing oxide ceramic particles having an average primary particle size of 1 to 120 nm is press-molded under reduced pressure, and the powder containing oxide ceramic particles is a powder containing alumina particles.
- a method for producing an oxide ceramic compact In the method for producing an oxide ceramic compact of the present invention, when using powder containing alumina, it is preferable to use powder containing alumina as a main component.
- the “main component” is the same as the explanation for the zirconia particles.
- the content of alumina in the alumina particles according to the present invention may be 50% by mass or more.
- the content of alumina in the alumina particles according to the present invention is preferably 60% by mass or more, more preferably 65% by mass or more, still more preferably 70% by mass or more, even more preferably 75% by mass or more, and 80% by mass or more. It is particularly preferred, and 85% by mass or more is most preferred.
- the average primary particle size of the alumina particles is not particularly limited, but it is 115 nm or less, since an alumina sintered body having excellent translucency and strength can be obtained, and the effects of the present invention are exhibited more remarkably. It is preferably 110 nm or less, more preferably 100 nm or less.
- the average primary particle size of the alumina particles is preferably 1 nm or more because an alumina sintered body having excellent translucency and strength can be obtained, and the effects of the present invention are more significantly exhibited. It is more preferably 10 nm or more, and even more preferably 40 nm or more.
- the zirconia particles in the present invention preferably contain a stabilizer capable of suppressing the phase transition of zirconia (hereinafter also simply referred to as “stabilizer”).
- stabilizers include yttrium oxide (Y 2 O 3 ) (hereinafter referred to as “yttria”), calcium oxide (CaO), magnesium oxide (MgO), cerium oxide (CeO 2 ) (hereinafter referred to as “ceria”).
- the powder containing oxide ceramic particles is a powder containing zirconia particles, and the stabilizer is yttria, since a zirconia sintered body having excellent translucency and strength can be obtained. and a method for producing an oxide ceramic compact.
- the content of the stabilizer contained in the zirconia particles used can be the same as the content of the stabilizer in the target zirconia calcined body or zirconia sintered body.
- the content of the stabilizer in the zirconia particles is preferably 2.0 mol% or more, and is 3.0 mol% or more, because a zirconia sintered body having excellent translucency and strength can be obtained. More preferably, it is more preferably 4.0 mol% or more, particularly preferably 4.5 mol% or more, and even if it is 5.0 mol% or more, even 5.5 mol% or more good.
- the content of the stabilizer in the zirconia particles is preferably 9.0 mol% or less, more preferably 8.0 mol% or less, and even more preferably 7.0 mol% or less. .
- the content of the stabilizer in the zirconia particles means the ratio (mol %) of the number of moles of yttria to the total number of moles of zirconia and the stabilizer.
- the content of the stabilizer in the zirconia particles can be measured by, for example, inductively coupled plasma (ICP) emission spectrometry, X-ray fluorescence analysis (XRF), or the like.
- ICP inductively coupled plasma
- XRF X-ray fluorescence analysis
- the stabilizer content in the zirconia compact, zirconia calcined body, and zirconia sintered body can also be measured by the same measuring method as the stabilizer content in the zirconia particles.
- zirconia particles There are no particular restrictions on the method of preparing zirconia particles, and for example, a breakdown process in which coarse particles are pulverized into fine particles, or a building-up process in which atoms or ions are synthesized through nucleation and growth processes can be adopted. Among these, the building-up process is preferred for obtaining fine zirconia particles of high purity.
- the breakdown process can be performed, for example, by pulverizing with a known pulverizer such as a ball mill or bead mill. At this time, it is preferable to use micro-sized grinding media, for example, it is preferable to use grinding media of 100 ⁇ m or less. Moreover, it is preferable to classify after pulverization.
- a building-up process for example, a vapor-phase pyrolysis method in which an oxate of a metal ion with a high vapor pressure or an organometallic compound is vaporized and thermally decomposed to deposit an oxide; Gas phase reaction method in which synthesis is carried out by gas phase chemical reaction between gas and reaction gas; Evaporative concentration method in which raw materials are heated and vaporized, and the vapor is condensed into fine particles by quenching in inert gas at a predetermined pressure; The melt method, in which the liquid is cooled and solidified as small droplets to form a powder; the solvent evaporation method, in which the concentration in the liquid is increased by evaporating the solvent and precipitated in a supersaturated state; and a precipitation method in which refractory compounds such as oxides and hydroxides are precipitated through a nucleation-growth process.
- Precipitation methods are further divided into homogeneous precipitation methods in which a precipitant is generated in a solution through a chemical reaction to eliminate local unevenness in the concentration of the precipitant; Precipitation method; Hydrolysis method for obtaining oxides or hydroxides by hydrolysis from alcoholic solutions such as metal salt solutions and metal alkoxides; Solvothermal synthesis method for obtaining oxides or hydroxides from high-temperature and high-pressure fluids.
- the solvothermal synthesis method is further subdivided into a hydrothermal synthesis method using water as a solvent, a supercritical synthesis method using a supercritical fluid such as water or carbon dioxide as a solvent, and the like.
- any building-up process it is preferable to increase the precipitation rate in order to obtain finer zirconia particles. Moreover, it is preferable to classify the obtained zirconia particles.
- zirconium source in the building-up process for example, nitrates, acetates, chlorides, alkoxides, etc. can be used, and specifically, zirconium oxychloride, zirconium acetate, zirconyl nitrate, etc. can be used.
- the stabilizer in order to make the content of the stabilizer contained in the zirconia particles within the above range, can be blended in the production process of the zirconia particles.
- the stabilizer may be dissolved in the zirconia particles.
- Yttria is preferred as the stabilizer as described above.
- the yttrium source for example, nitrates, acetates, chlorides, alkoxides, etc. can be used, and specifically, yttrium chloride, yttrium acetate, yttrium nitrate, etc. can be used.
- Zirconia particles if necessary, organic compounds having an acidic group; fatty acid amides such as saturated fatty acid amide, unsaturated fatty acid amide, saturated fatty acid bisamide, unsaturated fatty acid bisamide; silane coupling agent (organosilicon compound), organic titanium
- a known surface treatment agent such as a chemical compound, an organic zirconium compound, an organic metal compound such as an organic aluminum compound, or the like.
- Powder containing zirconia particles The method for preparing the powder containing zirconia particles is not particularly limited. , a coloring agent, a translucency adjusting agent, etc.) may be prepared by dry blending, but it is possible to obtain a zirconia molded body that is more uniform and has excellent physical properties, and eventually a zirconia calcined body and a zirconia sintered body. For these reasons, it is preferable to obtain by drying a slurry containing zirconia particles.
- Slurry Containing Zirconia Particles There is no particular limitation on the method for preparing slurry containing zirconia particles, and for example, it can be obtained by mixing zirconia particles and a dispersion medium. Moreover, the slurry containing zirconia particles may be obtained through the above-described breakdown process or building-up process, or may be commercially available.
- the zirconia particles can contain fluorescent agents.
- the type of fluorescent agent used is not particularly limited, and one or more of those capable of emitting fluorescence with light of any wavelength can be used.
- fluorescent agents include those containing metal elements.
- the metal elements include Ga, Bi, Ce, Nd, Sm, Eu, Gd, Tb, Dy, and Tm.
- the fluorescent agent may contain one of these metal elements alone, or may contain two or more of them. Among these metal elements, Ga, Bi, Eu, Gd, and Tm are preferred, and Bi and Eu are more preferred, because the effects of the present invention are exhibited more remarkably.
- Examples of fluorescent agents to be used include oxides, hydroxides, acetates, and nitrates of the above metal elements.
- the fluorescent agents are Y2SiO5 : Ce, Y2SiO5 :Tb, (Y,Gd,Eu ) BO3 , Y2O3 : Eu, YAG:Ce, ZnGa2O4 : Zn, and BaMgAl10O . 17 :Eu or the like may be used.
- the content of the fluorescent agent is not particularly limited, and can be appropriately adjusted according to the type of fluorescent agent, the application of the finally obtained zirconia sintered body, and the like. From the viewpoint that the finally obtained zirconia sintered body can be preferably used as a dental prosthesis, the content of the fluorescent agent is adjusted to the mass of the zirconia used in terms of the oxide conversion of the metal element contained in the fluorescent agent. , preferably 0.001% by mass or more, more preferably 0.005% by mass or more, and even more preferably 0.01% by mass or more.
- the content of the fluorescent agent is preferably 1% by mass or less, more preferably 0.5% by mass or less, and even more preferably 0.1% by mass or less.
- the content is at least the above lower limit, a zirconia sintered body that is not inferior in fluorescence to natural human teeth can be obtained, and when the content is at most the above upper limit, A decrease in translucency and strength in the zirconia sintered body can be suppressed.
- the type of coloring agent that can be contained in the slurry is not particularly limited, and known pigments generally used for coloring ceramics, known dental liquid coloring agents, and the like can be used.
- the coloring agent include those containing metal elements, and specific examples include oxides, composite oxides, and salts containing metal elements such as iron, vanadium, praseodymium, erbium, chromium, nickel, and manganese. be done.
- a commercially available coloring agent can also be used.
- As a commercially available coloring agent for example, Color Liquid Prettau (registered trademark) manufactured by Zirkon leopard (Italy) can also be used.
- the slurry may contain one colorant, or may contain two or more colorants.
- the content of the coloring agent is adjusted to the weight of the zirconia used, in terms of the metal element contained in the coloring agent in terms of oxide. , preferably 0.001% by mass or more, more preferably 0.005% by mass or more, and even more preferably 0.01% by mass or more.
- the content of the colorant is preferably 5% by mass or less, more preferably 1% by mass or less, even more preferably 0.5% by mass or less, and 0.1% by mass or less. Furthermore, it may be 0.05% by mass or less.
- the zirconia particles may contain a translucency adjusting agent.
- Examples of translucent modifiers include aluminum oxide, titanium oxide, silicon dioxide, zircon, lithium silicate, and lithium disilicate.
- the slurry may contain one translucency adjusting agent, or may contain two or more translucency adjusting agents.
- the content of the translucency adjusting agent is not particularly limited, and can be appropriately adjusted according to the type of translucency adjusting agent and the application of the finally obtained zirconia sintered body.
- the content of the translucency adjusting agent is 0.1% by mass or less with respect to the mass of zirconia used, from the viewpoint that the finally obtained zirconia sintered body can be preferably used as a dental prosthesis. is preferred.
- the method for preparing a powder containing zirconia particles is such that it is possible to obtain a zirconia molded body that is more uniform and has excellent physical properties, as well as a zirconia calcined body and a zirconia sintered body. , preferably obtained by drying a slurry containing zirconia particles.
- the slurry to be dried here may contain at least one of a fluorescent agent, a coloring agent, and a translucency adjusting agent, as described above.
- the slurry to be dried contains a fluorescent agent
- a powdered fluorescent agent may be added.
- a slurry containing zirconia particles and a fluorescent agent in a liquid state it is possible to prevent the mixing of coarse particles, and thus, despite containing the fluorescent agent, it is more excellent in translucency and strength. It is preferable because a zirconia sintered body can be obtained.
- the fluorescent agent in a liquid state for example, a solution or a dispersion of the fluorescent agent can be used, and a solution of the fluorescent agent is preferable.
- the type of the solution is not particularly limited, and examples thereof include an aqueous solution.
- the aqueous solution may be a dilute nitric acid solution, a dilute hydrochloric acid solution, or the like, and can be appropriately selected according to the type of fluorescent agent to be used.
- the addition method of the coloring agent and/or the translucency adjusting agent is not particularly limited.
- the translucency modifier may be added to the slurry containing the zirconia particles, but the colorant and/or the translucency modifier may be added to the slurry containing the zirconia particles in a liquid state such as a solution or dispersion, respectively. Mixing is preferred.
- the drying method for drying the slurry containing zirconia particles is not particularly limited, and for example, spray drying, supercritical drying, freeze drying, hot air drying, filter drying, reduced pressure drying, etc. can be adopted. Among these, since it is possible to suppress the aggregation of particles during drying, a more dense zirconia sintered body can be obtained, and the zirconia sintered body has excellent translucency and strength. Either supercritical drying or freeze drying is preferred, either spray drying or supercritical drying is more preferred, and spray drying is even more preferred.
- the slurry containing zirconia particles to be dried may be a slurry in which water is used as a dispersion medium, but it is possible to suppress aggregation of the particles during drying and obtain a denser zirconia sintered body. It is preferably a slurry of a dispersion medium other than water, such as an organic solvent, because it can be used.
- organic solvents examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, tert-butyl alcohol, 2-methoxyethanol, 2-ethoxyethanol, 2-(2-ethoxyethoxy).
- alcohols such as ethanol, diethylene glycol monobutyl ether and glycerin; ketones such as acetone and methyl ethyl ketone; modified ethers (preferably ether-modified ethers and / or ester-modified ethers, more preferably ether-modified alkylene glycols and / or ester-modified alkylene glycols)); esters such as ethyl acetate and butyl acetate; hexane , hydrocarbons such as toluene; and halogenated hydrocarbons such as chloroform and carbon tetrachloride.
- These organic solvents may be used individually by 1 type, and may use 2 or more types together.
- the organic solvent is preferably a water-soluble organic solvent in consideration of both safety to the living body and ease of removal.
- ethanol, 2-propanol, tert-butyl alcohol, 2 -ethoxyethanol, 2-(2-ethoxyethoxy)ethanol, propylene glycol monomethyl ether acetate, acetone, tetrahydrofuran are more preferred.
- the dispersion medium of the slurry containing zirconia particles to be dried contains a liquid having a surface tension of 50 mN / m or less at 25 ° C.
- the particles will not aggregate during drying. It is preferable because it can be suppressed, a more dense zirconia sintered body can be obtained, and a zirconia sintered body having more excellent translucency and strength can be obtained.
- the surface tension of the liquid is preferably 40 mN/m or less, more preferably 30 mN/m or less.
- the surface tension at 25°C for example, the values described in the Handbook of Chemistry and Physics can be used, and for liquids not described therein, the values described in International Publication No. 2014/126034 can be used. can. Liquids that are not described in any of these can be obtained by known measurement methods, such as the suspension ring method and the Wilhelmy method.
- the surface tension at 25° C. is preferably measured using an automatic surface tensiometer “CBVP-Z” manufactured by Kyowa Interface Science Co., Ltd. or “SIGMA702” manufactured by Biolin Scientific (Sweden).
- an organic solvent having the above surface tension can be used as the liquid.
- the organic solvent those having the above-mentioned surface tension can be used, and it is possible to suppress the aggregation of particles during drying and to obtain a denser zirconia sintered body.
- methanol, ethanol, 2-methoxyethanol, 1,4-dioxane, 2-ethoxyethanol and 2-(2-ethoxyethoxy) ethanol is preferably at least one selected from the group consisting of methanol, ethanol, 2-ethoxyethanol and 2-(2-ethoxyethoxy)ethanol is more preferred.
- the content of the liquid in the dispersion medium is preferably 50% by mass or more, and 80% by mass, because aggregation of particles can be suppressed during drying and a more dense zirconia sintered body can be obtained. % or more, more preferably 95 mass % or more, and particularly preferably 99 mass % or more.
- a slurry containing a dispersion medium other than water can be obtained by replacing the dispersion medium with a slurry containing water as the dispersion medium.
- the method of replacing the dispersion medium is not particularly limited, and for example, a method of adding a dispersion medium other than water (such as an organic solvent) to a slurry containing water as the dispersion medium and then distilling off the water can be employed. In distilling off water, part or all of the dispersion medium other than water may be distilled off together. The addition of a dispersion medium other than water and the distillation of water may be repeated multiple times.
- a method of precipitating dispersoids after adding a dispersion medium other than water to a slurry in which the dispersion medium is water can also be employed. Furthermore, for a slurry in which the dispersion medium is water, after replacing the dispersion medium with a specific organic solvent, the dispersion medium may be further replaced with another organic solvent.
- the fluorescent agent may be added after replacing the dispersion medium. is preferably added before replacing the dispersion medium.
- the slurry containing zirconia particles to be dried contains a coloring agent and/or a transparency adjusting agent
- the coloring agent and/or the transparency adjusting agent may be added after replacing the dispersion medium.
- the slurry containing zirconia particles to be dried may be subjected to dispersion treatment by heat or pressure such as reflux treatment or hydrothermal treatment.
- the slurry containing zirconia particles to be dried has been subjected to mechanical dispersion treatment by a roll mill, colloid mill, high-pressure jet disperser, ultrasonic disperser, vibration mill, planetary mill, bead mill, or the like. may Only one of the above treatments may be employed, or two or more may be employed.
- the slurry containing zirconia particles to be dried further contains one or more of other components such as binders, plasticizers, dispersants, emulsifiers, defoaming agents, pH adjusters, and lubricants. You can By including such other components (especially binder, dispersant, antifoaming agent, etc.), aggregation of particles can be suppressed during drying, and a denser zirconia sintered body can be obtained in some cases. be.
- other components especially binder, dispersant, antifoaming agent, etc.
- binders include polyvinyl alcohol, methyl cellulose, carboxymethyl cellulose, acrylic binders, wax binders, polyvinyl butyral, polymethyl methacrylate, and ethyl cellulose.
- plasticizers examples include polyethylene glycol, glycerin, propylene glycol, and dibutyl phthalate.
- Dispersants include, for example, ammonium polycarboxylate (triammonium citrate, etc.), ammonium polyacrylate, acrylic copolymer resin, acrylic acid ester copolymer, polyacrylic acid, bentonite, carboxymethylcellulose, anionic surfactant agents (for example, polyoxyethylene alkyl ether phosphate such as polyoxyethylene lauryl ether phosphate), nonionic surfactants, olein glycerides, amine surfactants, oligosaccharide alcohols and the like.
- anionic surfactant agents for example, polyoxyethylene alkyl ether phosphate such as polyoxyethylene lauryl ether phosphate
- nonionic surfactants for example, polyoxyethylene alkyl ether phosphate such as polyoxyethylene lauryl ether phosphate
- nonionic surfactants for example, polyoxyethylene alkyl ether phosphate such as polyoxyethylene lauryl ether phosphate
- nonionic surfactants for example, polyoxy
- emulsifiers examples include alkyl ethers, phenyl ethers, sorbitan derivatives, and ammonium salts.
- antifoaming agents examples include alcohol, polyether, polyethylene glycol, silicone, and wax.
- pH adjusters examples include ammonia, ammonium salts (including ammonium hydroxide such as tetramethylammonium hydroxide), alkali metal salts, and alkaline earth metal salts.
- lubricants examples include polyoxyethylene alkylate ethers and waxes.
- the water content in the slurry containing zirconia particles to be dried is 3% by mass or less because it is possible to suppress aggregation of the particles during drying and to obtain a more dense zirconia sintered body. is preferred, 1% by mass or less is more preferred, and 0.1% by mass or less is even more preferred.
- the water content can be measured using a Karl Fischer moisture meter.
- the drying conditions in each of the above drying methods are not particularly limited, and known drying conditions can be appropriately adopted.
- an organic solvent is used as a dispersion medium, it is preferable to dry in the presence of a non-flammable gas in order to reduce the risk of explosion during drying, and it is preferable to dry in the presence of nitrogen. more preferred.
- the supercritical fluid in the case of supercritical drying, and for example, water, carbon dioxide, etc. can be used. It is preferable that the supercritical fluid is carbon dioxide.
- a powder containing zirconia particles is press-molded under reduced pressure.
- the specific method of press molding there is no particular limitation on the specific method of press molding, and there is no particular limitation on the press molding machine as long as it is equipped with a device capable of reducing pressure.
- Specific methods of press molding include, for example, uniaxial pressing.
- zirconia particles preferably zirconia particles containing yttria as a stabilizer
- a powder containing zirconia particles having an average primary particle size of 1 to 120 nm by press molding under reduced pressure
- Air is reduced, airtightness of the press-formed body (zirconia molded body) can be ensured, the effect of improving moldability is obtained, and the production yield in the production of the zirconia molded body is improved.
- the powder containing zirconia particles used for press molding may further contain at least one of a fluorescent agent, a coloring agent and a translucency adjusting agent as described above.
- the powder containing zirconia particles further contains one or more of the above-mentioned binders, plasticizers, dispersants, emulsifiers, antifoaming agents, pH adjusters, lubricants, and other components. You can These ingredients may be blended when preparing the powder.
- the press molding machine there are no particular restrictions on the press molding machine as long as it is equipped with a device that can reduce the pressure.
- powder molding machine (trade name "500 kN vibration wave molding machine", manufactured by NPA System Co., Ltd.), vacuum press molding machine (trade name “250 ton vacuum press molding machine”, manufactured by Iwaki Industry Co., Ltd.), manual hydraulic vacuum A heating press (type “IMC-11FD type”, manufactured by Imoto Seisakusho Co., Ltd.) and the like can be mentioned.
- a powder containing zirconia particles is filled into a press mold (die) of a desired size, and a decompression device is operated so as to apply reduced pressure to the powder containing zirconia particles.
- the degree of pressure reduction may be appropriately set according to the size of the desired compact and the type and particle size of the powder containing zirconia particles, but it is preferably 100 kPa or less, more preferably 95 kPa or less. , 85 kPa or less.
- the degree of pressure reduction is preferably 0.1 kPa or more, more preferably 1 kPa or more, and even more preferably 5 kPa or more. If the degree of pressure reduction is higher than 100 kPa, the effect of improving moldability due to pressure reduction cannot be obtained. On the other hand, when it is lower than 0.1 kPa, it becomes difficult to ensure airtightness, and it becomes difficult to stably obtain a molded product.
- the method for press-molding the powder containing zirconia particles under reduced pressure is not particularly limited, and a known method can be used.
- a method of pressurizing by a uniaxial press using an upper punch and a lower punch The temperature under reduced pressure and during press molding is not particularly limited, and heat treatment may be performed. When heat treatment is performed, the temperature may be about 45 to 90°C.
- the load pressure in press molding may be appropriately set according to the size of the desired molded body, the type and particle size of the powder containing zirconia particles, but is usually 10 MPa or more. is.
- the load pressure in press molding is 10 MPa or more, the zirconia particles are densely packed and the gaps between the zirconia particles can be reduced, so that the mass (content) of the zirconia particles per unit mass in the zirconia molded body is large.
- a zirconia sintered body obtained from a zirconia molded body having a high content of zirconia particles is superior in translucency and strength. Therefore, the higher the load pressure in press molding, the better.
- the load pressure in press molding is, for example, preferably 10 MPa or more, more preferably 20 MPa or more, and even more preferably 25 MPa or more. Further, from the viewpoint of the size of the molded product or productivity, the load pressure in press molding is, for example, 200 MPa or less, preferably 180 MPa or less, more preferably 150 MPa or less, and 100 MPa or less. is more preferable, and 80 MPa or less is particularly preferable. In particular, the load pressure in the press molding is preferably 10 to 200 MPa, more preferably 20 to 100 MPa, even more preferably 25 to 80 MPa.
- the time for the pressing operation may be appropriately set according to the pressing pressure, but it is usually 1 to 120 minutes.
- uniaxial pressing can be simultaneously performed while decompressing from a non-decompressed state (atmospheric pressure).
- oxide ceramic compact of the present invention is not limited to zirconia, since the powder containing oxide ceramic particles having an average primary particle diameter of 1 to 120 nm can solve the specific problems, and the oxide ceramics described above (for example, , alumina, etc.) can provide the same effect as zirconia. Therefore, zirconia can be read as oxide ceramics (for example, alumina or the like) except when it is not particularly applicable.
- the powder containing oxide ceramic particles may be used alone or in combination of two or more.
- One embodiment includes a method for producing an oxide ceramic compact, wherein the powder containing oxide ceramic particles is a powder containing zirconia particles and/or a powder containing alumina particles.
- a cold isostatic pressing (CIP) step may also be included after the uniaxial pressing.
- the press pressure in the CIP step is preferably 30 MPa or higher, more preferably 50 MPa or higher, and even more preferably 100 MPa or higher. Also, the press pressure is preferably 500 MPa or less, more preferably 400 MPa or less, and even more preferably 300 MPa or less.
- the press molding time in the CIP step may be appropriately set according to the press pressure, but is usually 1 to 60 minutes.
- humidification may be performed as in Patent Document 1.
- the zirconia molded body obtained by the uniaxial pressing is used as a pre-wet molded body, and the pre-wet molded body (zirconia molded body) is subjected to humidification treatment to obtain a wet molded body.
- the zirconia molded body may be subjected to pressure treatment.
- the pressure treatment isotropic pressure treatment such as CIP is preferable.
- the conditions for the pressure treatment the same conditions as those for the CIP process can be used.
- the moisture content of the pre-wet molded product is preferably 2% by mass or less, more preferably 1.5% by mass or less, and 1% by mass, since the effects of the present invention are more pronounced. More preferably: The moisture content of the molded article before wetting can be obtained as a percentage by dividing the difference between the weight of the molded article before wetting and the weight after drying it by the weight of the molded article before wetting.
- the method of humidification treatment there are no particular restrictions on the method of humidification treatment, and for example, a method of humidifying using a constant humidity machine; a method of immersing in a water bath; a method of spraying water using a spray nozzle or the like can be adopted.
- the method of humidifying using a constant humidity machine is preferable because the operation is simple and a uniform wet compact can be obtained, and the method of humidifying using a constant temperature and humidity machine is more preferable.
- the humidification temperature when humidifying using a constant humidity machine is preferably 5 ° C. or higher, more preferably 10 ° C. or higher, and 20 ° C. because the effects of the present invention are more significantly exhibited. It is more preferable that it is above. Also, the humidification temperature is preferably 50° C. or lower, more preferably 40° C. or lower, and even more preferably 30° C. or lower.
- the relative humidity at the time of humidification when humidifying using a constant humidity machine depends on the adopted temperature, humidification time, etc., but from the viewpoint of productivity, etc. , the relative humidity at the employed temperature is preferably 60% RH or higher, more preferably 65% RH or higher, even more preferably 75% RH or higher, and 85% RH or higher. Especially preferred.
- the humidification time when humidifying using a constant humidity machine depends on the adopted temperature and relative humidity, but from the viewpoint of productivity and the fact that the effects of the present invention are more pronounced, it is 1 hour or more. , more preferably 5 hours or longer, and even more preferably 10 hours or longer. Also, the humidification time is preferably 7 days or less, more preferably 3 days or less.
- the amount of water content increased by the humidification treatment depends on the particle diameter of the zirconia particles contained, but since the effects of the present invention are exhibited more remarkably, it should be 2% by mass with respect to the mass of the pre-wet molded product. It preferably exceeds 3% by mass, more preferably exceeds 4% by mass, and particularly preferably exceeds 5% by mass. Also, the moisture content increase is preferably 15% by mass or less, more preferably 13% by mass or less, and even more preferably 11% by mass or less. When the water content increase amount due to the humidification treatment exceeds the above lower limit, the density can be more effectively improved in the subsequent pressurization treatment.
- the moisture content increase due to the humidification treatment is equal to or less than the above upper limit, cracks and the like are less likely to occur when drying after the pressure treatment described later or when the obtained zirconia molded body is calcined or sintered. can be effectively suppressed.
- the increase in water content due to the humidification treatment can be obtained as a percentage by dividing the value obtained by subtracting the mass of the pre-wet molded body from the mass of the wet molded body by the mass of the pre-wet molded body.
- Drying may be performed after the pressure treatment.
- the drying treatment temperature is preferably 50° C. or higher, more preferably 80° C. or higher, and even more preferably 100° C. or higher.
- the drying treatment temperature is preferably 200° C. or lower, more preferably 150° C. or lower, and even more preferably 120° C. or lower.
- the drying time is preferably 30 minutes or longer, more preferably 1 hour or longer, and even more preferably 2 hours or longer.
- the drying time is preferably 24 hours or less, more preferably 12 hours or less, and even more preferably 6 hours or less.
- the pressure during drying may be atmospheric pressure, or may be under a reduced pressure of less than 1 atm, or may be dried substantially under vacuum.
- the moisture content of the zirconia molded body obtained after drying is preferably 3% by mass or less, more preferably 2% by mass or less, and even more preferably 1% by mass or less.
- the moisture content of the zirconia molded body can be obtained as a percentage by dividing the difference between the mass of the zirconia molded body and the mass after absolute dry treatment by the mass of the zirconia molded body.
- a zirconia sintered body with excellent translucency and strength can be easily produced at a high production yield by performing humidification treatment and pressure treatment and using a zirconia compact that has undergone humidification treatment.
- the compact can also be obtained by stacking and press-molding powders containing two or more different types of zirconia particles.
- a uniaxial press mold die
- the second zirconia is placed on the powder containing the press-molded first zirconia particles.
- a compact may be obtained by filling powder containing particles and press-molding again.
- the compact obtained by the above method has a structure in which a powder layer containing the first zirconia particles and a powder layer containing the second zirconia particles are laminated.
- the press pressure during press molding may be appropriately set according to the type and amount of powder containing zirconia particles to be used, and the press pressure may differ for each layer. Further, after filling the powder containing the first zirconia particles in the mold, the powder containing the first zirconia particles is filled with the powder containing the second zirconia particles, and the powder containing the first zirconia particles is filled. The powder containing the second zirconia particles may be collectively press-molded.
- the shape of the molded article is not particularly limited, and the mold can be changed according to the application of the zirconia molded article produced in the present invention to obtain a desired shape.
- a disk shape, prismatic shape (rectangular parallelepiped shape, etc.) and the like are preferable in consideration of handleability in obtaining a calcined zirconia body to be used as a mill blank for manufacturing.
- the molded article may have a single-layer structure, or may have a multi-layer structure. By forming a multi-layer structure, the finally obtained zirconia sintered body can have a multi-layer structure, and its physical properties such as translucency can be locally changed.
- the desired zirconia molded body can be obtained by the above method.
- the zirconia molded body may be calcined to obtain a zirconia calcined body, and the zirconia calcined body may be further sintered to obtain a zirconia sintered body, or the zirconia molded body may be sintered to sinter zirconia. It can be a body.
- the zirconia molded body preferably contains the fluorescent agent.
- the content of the fluorescent agent in the zirconia molded body can be appropriately adjusted according to the content of the fluorescent agent in the resulting zirconia sintered body.
- the content of the fluorescent agent contained in the zirconia molded body is preferably 0.001% by mass or more in terms of oxide of the metal element contained in the fluorescent agent with respect to the mass of zirconia contained in the zirconia molded body. , more preferably 0.005% by mass or more, and even more preferably 0.01% by mass or more.
- the content of the fluorescent agent is preferably 1% by mass or less, more preferably 0.5% by mass or less, and even more preferably 0.1% by mass or less.
- the zirconia molded body preferably contains the coloring agent.
- the content of the coloring agent in the zirconia compact can be appropriately adjusted according to the content of the coloring agent in the obtained zirconia sintered body.
- the content of the coloring agent contained in the zirconia molded body is preferably 0.001% by mass or more in terms of oxide of the metal element contained in the coloring agent with respect to the mass of zirconia contained in the zirconia molded body. , more preferably 0.005% by mass or more, and even more preferably 0.01% by mass or more.
- the content of the colorant is preferably 5% by mass or less, more preferably 1% by mass or less, even more preferably 0.5% by mass or less, and 0.1% by mass or less. Furthermore, it may be 0.05% by mass or less.
- the zirconia molded body When the zirconia sintered body contains a translucency adjusting agent, the zirconia molded body preferably contains the translucency adjusting agent.
- the content of the translucency adjusting agent in the zirconia molded body can be appropriately adjusted according to the content of the translucency adjusting agent in the resulting zirconia sintered body.
- a specific content of the translucency adjusting agent contained in the zirconia molded body is preferably 0.1% by mass or less with respect to the mass of zirconia contained in the zirconia molded body.
- the stabilizer content in the zirconia compact may be the same as the stabilizer content in the resulting zirconia sintered body, and the stabilizer content in the zirconia compact is 2.0. 5. It is preferably mol % or more, more preferably 3.0 mol % or more, still more preferably 4.0 mol % or more, particularly preferably 4.5 mol % or more. It may be 0 mol % or more, or even 5.5 mol % or more.
- the stabilizer content is preferably 9.0 mol % or less, more preferably 8.0 mol % or less, and even more preferably 7.0 mol % or less.
- the content of the stabilizer in the zirconia molded body means the ratio (mol%) of the number of moles of the stabilizer to the total number of moles of zirconia and the stabilizer.
- the density of the zirconia molded body is not particularly limited, and varies depending on the manufacturing method of the zirconia molded body, but the density is 3.0 g/cm 3 or more because a dense zirconia sintered body can be obtained. 3.2 g/cm 3 or more is more preferable, and 3.4 g/cm 3 or more is even more preferable.
- the upper limit of the density is not particularly limited, it can be, for example, 6.0 g/cm 3 or less, further 5.8 g/cm 3 or less.
- the shape of the zirconia molded body is not particularly limited, and a desired shape can be used depending on the application. Considering the handling property in the case, a disk shape, a prism shape (rectangular parallelepiped shape, etc.) and the like are preferable. Furthermore, the zirconia molded body may have a single-layer structure, or may have a multi-layer structure. By forming a multi-layer structure, the finally obtained zirconia sintered body can have a multi-layer structure, and its physical properties such as translucency can be locally changed.
- the biaxial bending strength of the zirconia molded body is preferably in the range of 2 to 10 MPa, more preferably in the range of 5 to 8 MPa, from the viewpoint of handleability.
- the biaxial bending strength of the zirconia molded body can be measured according to JIS T 6526:2012.
- the zirconia molded body obtained by the above manufacturing method at 1100 ° C. for 2 hours under atmospheric pressure preferably has a crystal grain size of 180 nm or less.
- the crystal grain size is more preferably 140 nm or less, still more preferably 120 nm or less, particularly preferably 115 nm or less, because a zirconia sintered body having excellent translucency can be obtained. It may be below.
- the crystal grain size of the zirconia sintered body is obtained by taking a field emission scanning electron microscope (FE-SEM) photograph of the cross section of the zirconia sintered body, selecting 10 arbitrary particles in the photographed image, and measuring each It can be obtained as an average value of equivalent circle diameters (diameters of perfect circles having the same area).
- FE-SEM field emission scanning electron microscope
- the three-point bending strength is preferably 700 MPa or more.
- the three-point bending strength is more preferably 750 MPa or more, further preferably 800 MPa or more, particularly preferably 850 MPa or more, particularly preferably 900 MPa, because a zirconia sintered body having excellent strength can be obtained. or more.
- the 3-point bending strength can be, for example, 1500 MPa or less, further 1000 MPa or less.
- the three-point bending strength of the zirconia sintered body can be measured according to JIS R 1601:2008.
- the transmittance of light having a wavelength of 700 nm at a thickness of 0.5 mm is 35% or more.
- the transmittance is more preferably 40% or more, further preferably 45% or more, 50% or more, and further 52%. or more.
- the transmittance can be, for example, 60% or less.
- the transmittance of light with a wavelength of 700 nm at a thickness of 0.5 mm of the zirconia sintered body may be measured using a spectrophotometer. Model U-3900H" is used, the light generated from the light source is transmitted through the sample and scattered, and the measurement can be performed using an integrating sphere. In the measurement, the transmittance may be measured once in the wavelength range of 300 to 750 nm, and then the transmittance for light with a wavelength of 700 nm may be obtained.
- a disk-shaped zirconia sintered body having a diameter of 15 mm and a thickness of 0.5 mm, both surfaces of which are mirror-polished, can be used as a sample for measurement.
- Method for producing calcined zirconia body there is a method for producing a calcined oxide ceramics body by calcining the oxide ceramics molded body obtained by the above method.
- a method for producing a zirconia calcined body will be described below, taking as an example the case where the oxide ceramic molded body is a zirconia molded body.
- a zirconia calcined body can be obtained by calcining the zirconia molded body described above.
- the oxide ceramic calcined body means a block of oxide ceramic particles that are not completely sintered.
- a zirconia calcined body means a block in which zirconia particles are not completely sintered together.
- the calcination temperature (maximum temperature) when calcining the oxide ceramic compact is preferably 300°C or more and less than 1100°C.
- the calcining temperature is appropriately determined according to the type of oxide ceramics, the average primary particle size of the oxide ceramic particles, etc., and the sintering temperature (maximum firing temperature can be selected within a range that does not overlap with the bonding temperature).
- the calcining temperature (maximum temperature) of the zirconia molded body is preferably 300° C. or higher from the viewpoint of easily obtaining the desired zirconia calcined body. It is more preferably 400° C. or higher, and even more preferably 500° C. or higher.
- the calcination temperature is preferably less than 900°C, more preferably 850°C or less, and even more preferably 800°C or less.
- the calcining temperature is equal to or higher than the above lower limit, it is possible to effectively suppress the generation of organic residue.
- the calcining temperature is equal to or lower than the upper limit, it is possible to prevent excessive progress of sintering and difficulty in cutting (milling) with a cutting machine.
- Another embodiment includes a method for producing an alumina calcined body, in which an alumina molded body is calcined.
- the calcining temperature (maximum temperature) of the alumina molded body is preferably 700° C. or higher, more preferably 750° C. or higher, from the viewpoint of easily obtaining the desired alumina calcined body. ° C. or more is more preferable.
- the calcination temperature is preferably less than 1100°C, more preferably 1050°C or less, and even more preferably 1000°C or less.
- the calcining temperature is equal to or higher than the above lower limit, it is possible to effectively suppress the generation of organic residue.
- the calcining temperature is equal to or lower than the upper limit, it is possible to prevent excessive progress of sintering and difficulty in cutting (milling) with a cutting machine.
- the rate of temperature increase during calcination is preferably 0.1° C./min or more, more preferably 0.2° C./min or more, and 0.5° C./min or more. It is even more preferable to have Also, the rate of temperature increase during calcination is preferably 50° C./min or less, more preferably 30° C./min or less, and even more preferably 20° C./min or less. Productivity improves when the heating rate is equal to or higher than the above lower limit.
- the heating rate is equal to or less than the above upper limit, the volume difference between the inside and outside of the zirconia molded body and the zirconia calcined body can be suppressed, and when the zirconia molded body contains organic matter, the organic matter rapidly decomposes. can be suppressed, and the occurrence or destruction of cracks can be suppressed.
- the calcining time for calcining the zirconia molded body is not particularly limited, but the calcining time is set to 0.00, because the desired zirconia calcined body can be efficiently and stably obtained with good productivity. It is preferably 5 hours or longer, more preferably 1 hour or longer, and even more preferably 2 hours or longer. Also, the calcination time is preferably 10 hours or less, more preferably 8 hours or less, and even more preferably 6 hours or less.
- the calcining can be performed using a calcining furnace.
- the type of calcining furnace is not particularly limited, and for example, electric furnaces and degreasing furnaces used in general industry can be used.
- the zirconia calcined body can be made into a desired shape according to the application by cutting (milling) before making it into a zirconia sintered body.
- cutting milling
- the calcined zirconia body can be cut (milled) so as to have a shape corresponding thereto.
- the method of cutting (milling) is not particularly limited, and for example, a known milling device can be used.
- the calcined zirconia body When the zirconia sintered body contains a fluorescent agent, the calcined zirconia body preferably contains the fluorescent agent.
- the content of the fluorescent agent in the calcined zirconia body can be appropriately adjusted depending on the content of the fluorescent agent in the obtained zirconia sintered body.
- the content of the fluorescent agent contained in the zirconia calcined body is 0.001% by mass or more in terms of the oxide of the metal element contained in the fluorescent agent with respect to the mass of zirconia contained in the zirconia calcined body. is preferred, 0.005% by mass or more is more preferred, and 0.01% by mass or more is even more preferred.
- the content of the fluorescent agent is preferably 1% by mass or less, more preferably 0.5% by mass or less, and even more preferably 0.1% by mass or less.
- the zirconia calcined body preferably contains the coloring agent.
- the content of the coloring agent in the zirconia calcined body can be appropriately adjusted according to the content of the coloring agent in the resulting zirconia sintered body.
- the content of the coloring agent contained in the zirconia calcined body is 0.001% by mass or more in terms of the oxide of the metal element contained in the coloring agent with respect to the mass of zirconia contained in the zirconia calcined body. is preferred, 0.005% by mass or more is more preferred, and 0.01% by mass or more is even more preferred.
- the content of the colorant is preferably 5% by mass or less, more preferably 1% by mass or less, even more preferably 0.5% by mass or less, and 0.1% by mass or less. Furthermore, it may be 0.05% by mass or less.
- the zirconia sintered body contains a translucency adjusting agent
- the zirconia calcined body contains the translucency adjusting agent.
- the content of the translucency adjusting agent in the calcined zirconia body can be appropriately adjusted according to the content of the translucency adjusting agent in the obtained zirconia sintered body.
- a specific content of the translucency adjusting agent contained in the zirconia calcined body is preferably 0.1% by mass or less with respect to the mass of zirconia contained in the zirconia calcined body.
- the yttria content in the zirconia calcined body may be the same as the yttria content in the zirconia sintered body to be obtained, and the yttria content in the zirconia calcined body is 2.0 mol% or more. preferably 3.0 mol% or more, more preferably 4.0 mol% or more, particularly preferably 4.5 mol% or more, and 5.0 mol% or more , and may be 5.5 mol % or more.
- the yttria content is preferably 9.0 mol % or less, more preferably 8.0 mol % or less, and even more preferably 7.0 mol % or less.
- the content of yttria in the calcined zirconia body means the ratio (mol %) of the number of moles of yttria to the total number of moles of zirconia and yttria.
- the density of the zirconia calcined body is not particularly limited, and it is preferably in the range of 3.0 to 6.0 g/m It is more preferably in the range of 0.2 to 5.8 g/m 3 .
- the density of the zirconia calcined body can be calculated, for example, as (mass of calcined body)/(volume of calcined body).
- the shape of the calcined zirconia body there are no particular restrictions on the shape of the calcined zirconia body, and it can be any desired shape depending on the application. In consideration of this, a disk shape, a prism shape (rectangular parallelepiped shape, etc.) and the like are preferable.
- a disk shape, a prism shape (rectangular parallelepiped shape, etc.) and the like are preferable.
- the zirconia calcined body before the zirconia calcined body is turned into a zirconia sintered body, it can be formed into a desired shape according to the application by cutting (milling). A zirconia calcined body having a later desired shape is also included.
- the zirconia calcined body may have a single-layer structure, or may have a multi-layer structure. By forming a multi-layer structure, the finally obtained zirconia sintered body can have a multi-layer structure, and its physical properties such as trans
- the three-point bending strength of the zirconia calcined body is 10 to 70 MPa from the viewpoint that the shape of the workpiece can be maintained during processing using a cutting machine and the cutting itself can be easily performed. It is preferably within the range, more preferably within the range of 20 to 60 MPa.
- the three-point bending strength of the zirconia calcined body can be measured on a test piece of 5 mm ⁇ 40 mm ⁇ 10 mm in accordance with ISO 6872:2015 except for the size of the test piece.
- the face and C face of the specimen (the face where the corner of the specimen is chamfered at a 45° angle) are longitudinally finished with 600 grit sandpaper.
- the test piece is arranged so that the widest surface faces the vertical direction (load direction).
- the test piece can be measured using a universal testing machine under the conditions of a span length (distance between fulcrums) of 30 mm and a crosshead speed of 0.5 mm/min.
- the zirconia calcined body obtained by the above production method preferably has a crystal grain size of 180 nm or less after being sintered at 1100°C under atmospheric pressure for 2 hours (after being made into a zirconia sintered body). Thereby, a zirconia sintered body having high translucency can be easily produced.
- the crystal grain size is more preferably 140 nm or less, still more preferably 120 nm or less, particularly preferably 115 nm or less, because a zirconia sintered body having excellent translucency can be obtained. It may be below.
- the lower limit of the crystal grain size is not particularly limited, the crystal grain size can be, for example, 50 nm or more, further 100 nm or more.
- the method for measuring the grain size is as described above for the zirconia compact.
- the zirconia calcined body obtained by the above manufacturing method preferably has a three-point bending strength of 700 MPa or more after being sintered at 1100°C under atmospheric pressure for 2 hours (after being made into a zirconia sintered body). Thereby, a zirconia sintered body having high strength can be easily produced.
- the three-point bending strength is more preferably 750 MPa or more, further preferably 800 MPa or more, particularly preferably 850 MPa or more, particularly preferably 900 MPa, because a zirconia sintered body having excellent strength can be obtained. or more.
- the upper limit of the 3-point bending strength is not particularly limited, the 3-point bending strength can be, for example, 1500 MPa or less, further 1000 MPa or less.
- the method for measuring the three-point bending strength is as described above for the zirconia compact.
- the zirconia calcined body obtained by the above production method has a transmittance of light with a wavelength of 700 nm at a thickness of 0.5 mm after sintering at 1100 ° C. for 2 hours under atmospheric pressure (after making a zirconia sintered body). It is preferably 35% or more. Thereby, a zirconia sintered body having high translucency can be easily produced. Since a zirconia sintered body having excellent translucency can be obtained, the transmittance is more preferably 40% or more, further preferably 45% or more, 46% or more, 48% or more, It may be 50% or more, or even 52% or more. Although the upper limit of the transmittance is not particularly limited, the transmittance can be, for example, 60% or less. The method for measuring the transmittance is as described above for the zirconia molded body.
- the calcined body and the method for producing the same of the present invention are not limited to the zirconia calcined body as long as it is the calcined body of the oxide ceramics described above, and the same applies to alumina and the like. Therefore, the zirconia calcined body can be read as an oxide ceramic calcined body (for example, an alumina calcined body, etc.) except when it is not particularly applicable.
- oxide ceramic sintered compacts can also be produced easily with high production yield.
- oxide ceramics used for the oxide ceramics compact may be of one kind alone or two or more kinds thereof may be used in combination.
- One embodiment includes a method for producing a calcined oxide ceramic body, wherein the oxide ceramic compact is a zirconia compact or an alumina compact.
- the stabilizer may be sodium oxide, potassium oxide, magnesium oxide, calcium oxide, or ceria.
- a known stabilizer can be used as the stabilizer depending on the type of oxide ceramics.
- the mixing ratio (mass ratio) of the two can be selected depending on the purpose and is not particularly limited.
- a method for producing an oxide ceramic sintered body in which the oxide ceramic molded body obtained by the above method or the oxide ceramic calcined body obtained by the above method is sintered.
- a method for producing a zirconia sintered body will be described below, taking as an example the case where the oxide ceramic is zirconia.
- a zirconia sintered body can be obtained by sintering the zirconia compact or the calcined zirconia body, preferably under atmospheric pressure.
- the oxide ceramic sintered body means a state in which oxide ceramic particles are completely sintered together.
- a zirconia sintered body means a state in which zirconia particles are completely sintered together.
- the sintering temperature (maximum sintering temperature) when sintering the oxide ceramic molded body or the oxide ceramic calcined body is preferably 900° C. or higher and 1500° C. or lower.
- the sintering temperature is appropriately determined according to the type of oxide ceramics, the average primary particle size of the oxide ceramic particles, etc., so that the oxide ceramic particles are completely sintered together, and does not overlap with the calcining temperature. A range can be selected.
- the sintering temperature (maximum sintering temperature) is From the viewpoint of easily obtaining the desired zirconia sintered body, the temperature is preferably 900° C. or higher, more preferably 1000° C. or higher, and even more preferably 1050° C. or higher. Also, the sintering temperature is preferably 1200° C. or lower, more preferably 1150° C. or lower, and even more preferably 1120° C. or lower.
- the sintering temperature is equal to or higher than the above lower limit, sintering can be sufficiently advanced, and a dense sintered body can be easily obtained.
- the sintering temperature is equal to or lower than the above upper limit, it is possible to easily obtain a zirconia sintered body having a crystal grain size within the above range. can.
- Another embodiment includes a method for producing an alumina sintered body, in which the alumina molded body obtained by the above method or the alumina calcined body obtained by the above method is sintered.
- the sintering temperature (maximum sintering temperature) is determined from the viewpoint of easily obtaining the desired alumina sintered body. , preferably 1200° C. or higher, more preferably 1250° C. or higher, even more preferably 1300° C. or higher.
- the sintering temperature is preferably 1500° C. or lower, more preferably 1450° C. or lower, and even more preferably 1400° C. or lower.
- the sintering temperature is equal to or higher than the above lower limit, sintering can be sufficiently advanced, and a dense sintered body can be easily obtained.
- the sintering temperature is equal to or lower than the above upper limit, it is possible to easily obtain an alumina sintered body having a crystal grain size within the above range. can.
- the sintering time is not particularly limited, but the desired zirconia sintered body can be efficiently and stably produced with good productivity.
- the sintering time is preferably 5 minutes or longer, more preferably 15 minutes or longer, and even more preferably 30 minutes or longer.
- the sintering time is preferably 6 hours or less, more preferably 4 hours or less, and even more preferably 2 hours or less.
- Sintering can be performed using a sintering furnace in both cases of sintering a zirconia molded body and sintering a zirconia calcined body.
- the type of sintering furnace is not particularly limited, and for example, electric furnaces and degreasing furnaces used in general industry can be used.
- a dental porcelain furnace with a relatively low sintering temperature can be used in addition to the conventional dental zirconia sintering furnace.
- a zirconia sintered body can be easily produced without hot isostatic pressing (HIP) treatment, but hot isostatic pressing (HIP) treatment is performed after sintering under the atmospheric pressure. This makes it possible to further improve translucency and strength.
- HIP hot isostatic pressing
- the zirconia sintered body may contain a fluorescent agent. Since the zirconia sintered body contains a fluorescent agent, it has fluorescence.
- the content of the fluorescent agent in the zirconia sintered body is not particularly limited, and can be appropriately adjusted according to the type of fluorescent agent, the application of the zirconia sintered body, and the like. From the viewpoint of being preferably used as a dental prosthesis, the content of the fluorescent agent is 0.001 in terms of the metal element oxide contained in the fluorescent agent with respect to the mass of zirconia contained in the zirconia sintered body. It is preferably at least 0.005% by mass, even more preferably at least 0.01% by mass.
- the content of the fluorescent agent is preferably 1% by mass or less, more preferably 0.5% by mass or less, and even more preferably 0.1% by mass or less.
- the fluorescent property is not inferior to that of human natural teeth, and when the content is equal to or lower than the upper limit, translucency and strength are lowered. can be suppressed.
- the zirconia sintered body may contain a coloring agent.
- the content of the coloring agent in the zirconia sintered body is not particularly limited, and can be appropriately adjusted depending on the type of coloring agent and the application of the zirconia sintered body. From the viewpoint that it can be preferably used as a dental prosthesis, the content of the coloring agent is 0.001 in terms of oxide of the metal element contained in the coloring agent with respect to the mass of zirconia contained in the zirconia sintered body. It is preferably at least 0.005% by mass, even more preferably at least 0.01% by mass.
- the content of the colorant is preferably 5% by mass or less, more preferably 1% by mass or less, even more preferably 0.5% by mass or less, and 0.1% by mass or less. Furthermore, it may be 0.05% by mass or less.
- the zirconia sintered body may contain a translucency adjusting agent.
- the content of the translucency adjusting agent in the zirconia sintered body is not particularly limited, and can be appropriately adjusted according to the type of translucency adjusting agent, the application of the zirconia sintered body, and the like.
- the content of the translucency adjusting agent is preferably 0.1% by mass or less with respect to the mass of zirconia contained in the zirconia sintered body, from the viewpoint of being preferably used as a dental prosthesis.
- the content of yttria contained in the zirconia sintered body is preferably 2.0 mol% or more, and 3.0 mol% or more, because the zirconia sintered body has excellent translucency and strength. more preferably 4.0 mol% or more, particularly preferably 4.5 mol% or more, 5.0 mol% or more, further 5.5 mol% or more good too.
- the yttria content is preferably 9.0 mol % or less, more preferably 8.0 mol % or less, and even more preferably 7.0 mol % or less.
- the content of yttria in the zirconia sintered body means the ratio (mol %) of the number of moles of yttria to the total number of moles of zirconia and yttria.
- the crystal grain size of the zirconia sintered body obtained by the above production method is preferably 180 nm or less, more preferably 140 nm or less, and 120 nm or less from the viewpoint of better translucency. It is more preferably 115 nm or less, particularly preferably 110 nm or less. Although the lower limit of the crystal grain size is not particularly limited, the crystal grain size can be, for example, 50 nm or more, further 100 nm or more. The method for measuring the grain size is as described above for the zirconia compact.
- the three-point bending strength of the zirconia sintered body obtained by the above manufacturing method is preferably 700 MPa or more, more preferably 750 MPa or more, and more preferably 800 MPa or more from the viewpoint of being superior in strength. It is more preferably 850 MPa or more, particularly preferably 850 MPa or more, and may be 900 MPa or more. Although the upper limit of the 3-point bending strength is not particularly limited, the 3-point bending strength can be, for example, 1500 MPa or less, further 1000 MPa or less.
- the method for measuring the three-point bending strength is as described above for the zirconia compact.
- the transmittance of light with a wavelength of 700 nm at a thickness of 0.5 mm of the zirconia sintered body obtained by the above production method is preferably 35% or more, and 40% or more, from the viewpoint of better translucency. It is more preferably 45% or more, and may be 46% or more, 50% or more, or even 52% or more. Although the upper limit of the transmittance is not particularly limited, the transmittance can be, for example, 60% or less, further 57% or less.
- the method for measuring the transmittance is as described above for the zirconia molded body.
- the main crystal phase of the zirconia sintered body obtained by the above production method may be either tetragonal or cubic, but the main crystal phase is preferably cubic.
- 10% or more is preferably cubic, more preferably 50% or more is cubic, and more preferably 70% or more is cubic.
- the cubic system ratio in the zirconia sintered body can be obtained by analyzing the crystal phase. Specifically, X-ray diffraction (XRD; X-Ray Diffraction) measurement is performed on a mirror-finished portion of the surface of the zirconia sintered body, and it can be determined by the following formula.
- f c I c /(I m +I t +I c ) ⁇ 100
- f c represents the ratio (%) of the cubic system in the zirconia sintered body
- the zirconia sintered body obtained by the above production method preferably has a monoclinic system ratio of 5% or less to the tetragonal system and the cubic system after being immersed in hot water at 180 ° C. for 5 hours. It is more preferably 3% or less, and even more preferably 1% or less.
- the ratio is obtained by mirror-finishing the surface of the zirconia sintered body, immersing it in hot water at 180 ° C. for 5 hours, and then performing X-ray diffraction (XRD; X-Ray Diffraction) measurement on the above part. It can be obtained by the following formula.
- fm [ I28 /( I28 + I30 )] x 100
- zirconia sintered bodies Although there is no particular limitation on the application of the zirconia sintered body, according to the present invention, a zirconia sintered body having excellent quality having both high translucency and high strength can be easily produced at a high production yield.
- the sintered body is particularly suitable as a dental material such as a dental prosthesis. It is also extremely useful as a product.
- the zirconia sintered body of the present invention is preferably used as a dental prosthesis particularly used for an anterior incisal edge.
- the sintered body and its manufacturing method of the present invention are not limited to the zirconia sintered body as long as it is a sintered body of the above oxide ceramics, and the same applies to alumina and the like. Therefore, zirconia sintered bodies can be read as oxide ceramics sintered bodies (for example, alumina sintered bodies, etc.), except when it is not particularly applicable. By suppressing the occurrence of defects such as cracks or chips in the production of oxide ceramic compacts and improving the production yield, oxide ceramic sintered compacts can also be produced easily with a high production yield.
- the present invention will be described in detail below with examples and comparative examples, but the present invention is not limited to these examples.
- the measuring method of each physical property is as follows.
- Example 1 An aqueous zirconia slurry "MELox Nanosize 3Y" (manufactured by MEL Chemicals, average primary particle diameter of zirconia particles: 14 nm, zirconia concentration: 24% by mass) containing 3 mol% of yttria was added with isopropanol in an amount 9 times the volume of the zirconia slurry. After addition, this was placed in a centrifuge tube, mixed well, and centrifuged at 4000 rpm for 15 minutes. After confirming the sedimentation of the white matter, the supernatant was removed, isopropanol was added again, and the mixture was thoroughly mixed, followed by centrifugation at 4000 rpm for 10 minutes.
- MELox Nanosize 3Y manufactured by MEL Chemicals, average primary particle diameter of zirconia particles: 14 nm, zirconia concentration: 24% by mass
- This methanol-substituted slurry is dried using a spray dryer (B-290, manufactured by Nippon Buchi Co., Ltd.) under the conditions of a feed rate of 5 mL / min, an inlet temperature of 150 ° C. and an outlet temperature of 100 ° C. to obtain a powder containing zirconia particles. rice field.
- a spray dryer B-290, manufactured by Nippon Buchi Co., Ltd.
- the obtained powder is uniaxially pressed at a pressure of 100 MPa at room temperature under a reduced pressure of 80 kPa to form a 40 mm ⁇ 20 mm ⁇ 20 mm size. It was press-molded into a block (one piece). A total of 100 pressed bodies were produced. The percentage of defective products (%) was obtained using the number of cracks or chips in appearance out of 100 pieces. Table 1 shows the results.
- the defective product rate during manufacturing of the molded body is preferably 12% or less, more preferably 8% or less, and even more preferably 5% or less.
- the zirconia formed bodies that did not crack or chip in appearance were calcined at 600° C. for 3 hours under atmospheric pressure to obtain zirconia calcined bodies (for example, In Example 1, 98 compacts were calcined). With respect to this zirconia calcined body, the defective product rate (%) was determined using the number of cracks or chips in appearance. Table 1 shows the results.
- the defective product rate during the production of the calcined body is preferably 10% or less, more preferably 8% or less, and even more preferably 5% or less.
- calcined bodies that did not crack or chip were sintered to obtain sintered bodies (for example, in Example 1, 96 calcined bodies were sintered bottom). Specifically, a sintered body was obtained by sintering at 1100° C. for 2 hours under atmospheric pressure. The obtained sintered body was white. The presence or absence of chipping and cracking in the sintered body was visually checked, but no chipping or cracking was observed.
- the light transmittance was measured by the method described above.
- the three-point bending strength was measured by the method described above (specimen size: 40 mm x 4 mm x 3 mm, span length: 30 mm). Each measurement result is shown in Table 1.
- Example 1 A zirconia molded body, a zirconia calcined body, and a zirconia sintered body were obtained in the same manner as in Example 1, except that the test was performed under atmospheric pressure instead of under reduced pressure. Using the obtained zirconia sintered body, the light transmittance was measured by the method described above. Using the obtained plate-like zirconia sintered body, the 3-point bending strength was measured by the method described above (specimen size: 40 mm x 4 mm x 3 mm, span length: 30 mm). Each measurement result is shown in Table 1.
- Example 2 Since it was not carried out under reduced pressure, compared with Example 1, many chips or cracks occurred in the molded body during the production of the molded body and the calcined body, resulting in a poor yield. Furthermore, the translucency was also low, probably due to internal bubbles and defects.
- Example 2 As the zirconia slurry, an aqueous zirconia slurry "MELox Nanosize 5Y" containing 5 mol% yttria (MEL Chemicals, average primary particle size of zirconia particles: 25 nm, zirconia concentration: 25 mass%) was used, and the degree of pressure reduction was 20 kPa.
- a 2-(2-ethoxyethoxy)ethanol-substituted slurry was obtained in the same manner as in Example 1 except that the uniaxial pressing pressure was 160 MPa and 2-(2-ethoxyethoxy)ethanol was used instead of methanol.
- a zirconia molded body containing zirconia particles, a calcined zirconia body, and a zirconia sintered body were produced in the same manner as in Example 1, except that the 2-(2-ethoxyethoxy)ethanol-substituted slurry obtained above was used. Got each. The obtained zirconia sintered body was white. Table 1 shows the results.
- Example 3 As the zirconia slurry, an aqueous zirconia slurry "MELox Nanosize 4.5Y” (manufactured by MEL Chemicals, average primary particle size of zirconia particles: 14 nm, zirconia concentration: 23% by mass) containing 4.5 mol% yttria was used, and was manually Using a hydraulic vacuum heating press (model "IMC-11FD type", manufactured by Imoto Seisakusho Co., Ltd.), the degree of pressure reduction was gradually lowered to 1 kPa, and press molding was performed at a uniaxial press pressure of 40 MPa, and 2- in place of methanol. A 2-(2-ethoxyethoxy)ethanol-substituted slurry was obtained in the same manner as in Example 1, except that (2-ethoxyethoxy)ethanol was used.
- a hydraulic vacuum heating press model "IMC-11FD type", manufactured by Imoto Seisakusho Co., Ltd.
- a zirconia molded body containing zirconia particles, a calcined zirconia body, and a zirconia sintered body were produced in the same manner as in Example 1, except that the 2-(2-ethoxyethoxy)ethanol-substituted slurry obtained above was used. Got each. The obtained zirconia sintered body was white. Table 1 shows the results.
- Example 4 For the 2-(2-ethoxyethoxy) ethanol-substituted slurry obtained in the same manner as in Example 3, nickel (II) nitrate aqueous solution was added to the mass of zirconia in terms of oxide (NiO) of nickel (II). A slurry containing zirconia particles and a colorant was obtained by adding so that the amount was 0.02% by mass. This was dried using a spray dryer (B-290, manufactured by Nippon Buchi Co., Ltd.) under conditions of a feed rate of 5 mL/min, an inlet temperature of 150° C. and an outlet temperature of 100° C. to obtain a powder containing zirconia particles and a colorant. rice field.
- a spray dryer B-290, manufactured by Nippon Buchi Co., Ltd.
- a zirconia molded body, a zirconia calcined body, and a zirconia sintered body were obtained in the same manner as in Example 1, except that the powder obtained above was used, the degree of pressure reduction was 1 kPa, and the uniaxial press pressure was 40 MPa. Obtained.
- the obtained zirconia sintered body was colored red (no fluorescence).
- Table 1 shows the results.
- a milling device (“Noritake Katana (registered trademark) H-18” manufactured by Kuraray Noritake Dental Co., Ltd.) was used for the calcined zirconia sintered body to produce a single crown shape for the upper central incisor and a single lower first molar. Each crown-shaped zirconia calcined body was cut and sintered at 1100° C. for 2 hours under atmospheric pressure to obtain a red-colored crown-shaped dental prosthesis.
- Example 5 The 2-(2-ethoxyethoxy)ethanol-substituted slurry obtained in Example 2 was supercritically dried by the following procedure using a supercritical drying apparatus. That is, the 2-(2-ethoxyethoxy)ethanol-substituted slurry was placed in a pressure vessel, and the pressure vessel was connected to a supercritical carbon dioxide extraction apparatus to confirm that there was no pressure leakage. After that, the pressure vessel and the preheating tube were immersed in a water bath heated to 60° C., heated to 80° C., pressurized to 25 MPa, and left for 10 minutes for stabilization.
- carbon dioxide and methanol as an entrainer are introduced under predetermined conditions (temperature: 80° C., pressure: 25 MPa, flow rate of carbon dioxide: 10 mL/min, flow rate of entrainer (methanol): 1.5 mL/min).
- methanol flow rate of carbon dioxide
- methanol flow rate of entrainer
- a zirconia molded body, a calcined zirconia body, and a zirconia sintered body were obtained in the same manner as in Example 1 except that the powder obtained above was used, and the degree of pressure reduction was 20 kPa and the uniaxial press pressure was 20 MPa. Obtained. The obtained zirconia sintered body was white. Table 1 shows the results.
- Example 6 An aqueous solution of bismuth hydroxide was added to the 2-(2-ethoxyethoxy)ethanol-substituted slurry obtained in the same manner as in Example 3 .
- a slurry containing zirconia particles and a fluorescent agent was obtained by adding 0.02% by mass. This is dried using a spray dryer (B-290, manufactured by Nippon Buchi Co., Ltd.) under conditions of a feed rate of 5 mL/min, an inlet temperature of 150 ° C. and an outlet temperature of 100 ° C. to obtain a powder containing zirconia particles and a fluorescent agent. rice field.
- a zirconia calcined body prepared in the same manner as above was milled using a milling device ("Noritake Katana H-18", manufactured by Kuraray Noritake Dental Co., Ltd.) to form a single crown of the upper central incisor and a lower first tooth.
- the single crown-shaped zirconia calcined bodies of molar teeth were cut and sintered under atmospheric pressure at 1100° C. for 2 hours to obtain fluorescent crown-shaped dental prostheses.
- Example 7 An aqueous zirconia slurry containing 4.5 mol% of yttria "MELox Nanosize 4.5Y" (manufactured by MEL Chemicals, average primary particle size of zirconia particles: 14 nm, zirconia concentration: 23% by mass), 9 volumes of the zirconia slurry 100% of isopropanol was added, mixed well in a centrifuge tube, and centrifuged at 4000 rpm for 15 minutes. After confirming the sedimentation of the white matter, the supernatant was removed, isopropanol was added again, and the mixture was thoroughly mixed, followed by centrifugation at 4000 rpm for 10 minutes.
- MELox Nanosize 4.5Y manufactured by MEL Chemicals, average primary particle size of zirconia particles: 14 nm, zirconia concentration: 23% by mass
- This methanol-substituted slurry is dried using a spray dryer (B-290, manufactured by Nippon Buchi Co., Ltd.) under the conditions of a feed rate of 5 mL / min, an inlet temperature of 150 ° C. and an outlet temperature of 100 ° C. to obtain a powder containing zirconia particles. rice field.
- a vacuum press molding machine (trade name "250 ton vacuum press molding machine", manufactured by Iwaki Kogyo Co., Ltd.), the obtained powder is uniaxially pressed at a pressure of 15 MPa under a reduced pressure of 20 kPa to form a block of 40 mm ⁇ 20 mm ⁇ 20 mm ( 1 piece).
- Example 8 The zirconia white particles obtained in Example 3 are designated as (A), and the zirconia red colored particles obtained in Example 4 are designated as (B).
- the obtained powder was designated as (D).
- a vacuum press molding machine (trade name "250ton vacuum press molding machine", manufactured by Iwaki Kogyo Co., Ltd.)
- powder (A), powder (C), powder (D), and powder (B) are each weighed in the same order.
- the defective product rate (%) was determined using the number of cracks or chips in appearance. Table 1 shows the results. Further, the zirconia molded body, which was free from cracks and chips in appearance, was calcined at 600° C. for 3 hours under atmospheric pressure to obtain a zirconia calcined body. For this calcined body, the defective product rate (%) was obtained using the number of cracks or chips in appearance. Table 1 shows the results.
- Example 9 The zirconia white particles obtained in Example 1 are designated as (E), the zirconia white particles obtained in Example 3 are designated as (F), and the zirconia white particles obtained in Example 2 are designated as (G).
- a manual hydraulic vacuum heating press model "IMC-11FD type", manufactured by Imoto Seisakusho Co., Ltd.
- powder (E), powder (F), and powder (G) are filled in the same mass in this order, and the degree of pressure reduction is adjusted.
- the pressure was gradually lowered to 10 kPa, and a 40 mm ⁇ 20 mm ⁇ 20 mm block (one piece) was press-molded at a uniaxial press pressure of 100 MPa. A total of 100 pressed bodies were produced.
- the defective product rate (%) was determined using the number of cracks or chips in appearance.
- Table 1 shows the results.
- the zirconia molded body, which was free from cracks and chips in appearance was calcined at 600° C. for 3 hours under atmospheric pressure to obtain a zirconia calcined body.
- the defective product rate (%) was obtained using the number of cracks or chips in appearance. Table 1 shows the results.
- Example 10 A zirconia molded body, a calcined zirconia body, and a zirconia sintered body were obtained in the same manner as in Example 1, except that the pressure was reduced to 100 kPa (no fluorescence). Table 1 shows the results.
- Example 11 A zirconia molded body, a calcined zirconia body, and a zirconia sintered body were obtained in the same manner as in Example 1, except that the pressure was reduced to 96 kPa (no fluorescence). Table 1 shows the results.
- Example 12 1000 ppm of magnesium oxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was added to high-purity ⁇ -alumina powder "TM-DA (manufactured by Taimei Chemical Industry Co., Ltd.)", and a bead mill (trade name "RMB II", Imex) was added in ethanol. Co., Ltd.) and dried to obtain raw material powder.
- the average primary particle size of the alumina particles was 100 nm. After that, press molding, calcination, and sintering were carried out in the same manner as in Example 1. Table 1 shows the results.
- Example 2 A zirconia molded body, a calcined zirconia body, and a zirconia sintered body were obtained in the same manner as in Example 1, except that in Example 2, the test was performed under atmospheric pressure instead of under reduced pressure. Since the test was not carried out under reduced pressure, compared with Example 2, many chips or cracks occurred in the compact during the production of the compact and during the production of the calcined compact, resulting in a poor yield. Furthermore, the translucency was also low, probably due to internal bubbles and defects.
- Example 3 A zirconia molded body, a zirconia calcined body, and a zirconia sintered body were produced in the same manner as in Example 3, except that in Example 3, the production conditions were changed to those shown in Table 1 under atmospheric pressure instead of under reduced pressure. each got a body. Since the test was not carried out under reduced pressure, many chips or cracks occurred in the molded body during the production of the molded body and the calcined body compared with Example 3, resulting in a poor yield. Furthermore, the translucency was also low, probably due to internal bubbles and defects.
- Example 7 a zirconia molded body, a zirconia calcined body, and a zirconia sintered body were produced in the same manner as in Example 7, except that the production conditions were changed to those shown in Table 1 under atmospheric pressure instead of under reduced pressure. each got a body. Since it was not carried out under a reduced pressure, compared with Example 7, many chips or cracks occurred in the molded body during the production of the molded body and the calcined body, resulting in a poor yield. Furthermore, the translucency was also low, probably due to internal bubbles and defects.
- the method for producing an oxide ceramic molded body of the present invention can be widely used industrially, and can be particularly suitably used for dental materials such as dental prostheses.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
特許文献1には、高い透光性及び高い強度を兼ね備えた品質に優れるジルコニア焼結体を収率よく簡便に製造することのできる、ジルコニア成形体の製造方法が開示されている。
具体的には、乳白光を示し、10nm~300nmの範囲の粒径、理論密度の少なくとも99.5%の密度、560nmで45%又はそれを超える可視光透過率、及び少なくとも800MPaの強度を有する歯科用ジルコニアセラミックである。このような歯科用ジルコニアセラミックは、平均粒径が20nm未満のジルコニアナノ粒子を有するジルコニアグリーンブランクを提供する工程;ジルコニアグリーンブランクを、CAD/CAM、低圧射出成形(LPIM)、もしくは熱プレスによって成形する工程、又は、褐色ブランクを形成するためにジルコニアグリーンブランクを加熱し、褐色ブランクをCAD/CAM機械加工によって成形する工程;乳白光の焼結ジルコニア体を提供するために、成形されたジルコニアグリーンブランク又は褐色ブランクを1200℃又はそれ未満で焼結する工程;を含む方法によって作製されている。
また、特許文献2には、前記懸濁液をブランク又は歯科用製品に形成する工程が、遠心鋳造、ドロップキャスティング、ゲルキャスティング、射出成形、スリップキャスティング、圧搾濾過、及び/又は電気泳動析出(EPD)を含む、乳白光のジルコニア歯科用製品を製造する方法が開示されている。
特許文献1に記載のような粉体をプレス成形する方法では、平均一次粒子径の小さいナノサイズ(120nm以下)の粒子径をもつ粉体を成形する際には、比表面積が向上するために、プレス成形体の成形が困難である場合があった。特許文献1においても成形は可能であるものの、一軸プレスを用いた場合、プレス成形体の内部に残存する空気によって、金型から外す際にプレス成形体に欠け又は亀裂が生じる等の問題があり、歩留まり良くプレス成形体を得られないことが本発明者らによって見出された。
また、ゲルキャスティング法を用いた場合には、粒子径が小さい場合には、粒子のフィルターへの目詰まりが起こりやすく、液体との分離に長時間を要する上、目詰まりを解消するために、頻繁にフィルター交換が必要となるなど、工業的には極めて効率の悪いものとなる。
さらに、特許文献2では、成形体(グリーン体)を製造する際の生産収率は検討されていなかった。
[1]平均一次粒子径が1~120nmである酸化物セラミックス粒子を含む粉末を、減圧下でプレス成形する、酸化物セラミックス成形体の製造方法。
[2]前記プレス成形が、0.1kPa以上100kPa以下の減圧下で行われる、[1]に記載の酸化物セラミックス成形体の製造方法。
[3]前記プレス成形における荷重圧力が、10MPa以上200MPa以下である、[1]又は[2]に記載の酸化物セラミックス成形体の製造方法。
[4]前記酸化物セラミックス粒子を含む粉末が、ジルコニア粒子を含む粉末及び/又はアルミナ粒子を含む粉末である、[1]~[3]のいずれかに記載の酸化物セラミックス成形体の製造方法。
[5]前記酸化物セラミックス粒子を含む粉末が、ジルコニアの相転移を抑制可能な安定化剤をさらに含む、[4]に記載の酸化物セラミックス成形体の製造方法。
[6]前記酸化物セラミックス粒子を含む粉末が、ジルコニア粒子を含む粉末であり、
前記安定化剤が、イットリアである、[5]に記載の酸化物セラミックス成形体の製造方法。
[7]前記イットリアの含有率が、ジルコニアとイットリアの合計モル数に対して、2.0モル%以上9.0モル%以下である、[6]に記載の酸化物セラミックス成形体の製造方法。
[8][1]~[7]のいずれかに記載の酸化物セラミックス成形体の製造方法で得られた成形体を、仮焼する、酸化物セラミックス仮焼体の製造方法。
[9]前記仮焼の温度が、300℃以上1100℃未満である、[8]に記載の酸化物セラミックス仮焼体の製造方法。
[10]前記酸化物セラミックス成形体が、ジルコニア成形体又はアルミナ成形体である、[8]又は[9]に記載の酸化物セラミックス仮焼体の製造方法。
[11][1]~[7]のいずれかに記載の酸化物セラミックス成形体の製造方法で得られた酸化物セラミックス成形体、又は[8]~[10]のいずれかに記載の酸化物セラミックス仮焼体の製造方法で得られた酸化物セラミックス仮焼体を焼結する、酸化物セラミックス焼結体の製造方法。
[12]前記焼結の温度が、900℃以上1500℃以下である、[11]に記載の酸化物セラミックス焼結体の製造方法。
本発明によれば、平均一次粒子径がナノサイズ(特に120nm以下)をプレス成形機にてプレスする成形する際に、減圧下で実施することで、プレス成形体への残存空気が減少し、プレス成形自体の歩留まりが向上する酸化物セラミックス成形体の製造方法を提供できる。
また、本発明によれば、特殊な装置、複雑な工程を要せず、簡便な方法で、平均一次粒子径がナノサイズである酸化物セラミックスの粉末を用いて、高い生産収率で成形体を製造できる、酸化物セラミックス成形体の製造方法を提供できる。
さらに、該方法で得られる酸化物セラミックスの成形体は、仮焼時及び焼結時においても、欠け又は亀裂が減少し、厚さ10mm以上の仮焼体(半焼結体)又は焼結体を簡便に製造することが可能となり、加えて、焼結体においては、微小ボイドの形成が少なくなり、透光性を向上させることができる。
特に、ジルコニア粒子を用いる場合、本発明によれば、透光性及び強度に優れるジルコニア焼結体を高い生産収率で簡便に製造するための、ジルコニア成形体及びジルコニア仮焼体を高い生産収率で簡便に製造できる。
本発明の酸化物セラミックス成形体の製造方法は、平均一次粒子径が1~120nmである酸化物セラミックス粒子を含む粉末を減圧下でプレス成形する工程を含む。
本発明において、「酸化物セラミックス成形体」とは、酸化物セラミックスを成形した成形体であり、酸化物セラミックスの粒子同士のネッキング(固着)が起きていない状態のものを意味する。
本発明において使用される酸化物セラミックス粒子は、特に限定されるものではなく、例えば、ジルコニア、アルミナ、チタニア、シリカ、酸化ニオブ、酸化タンタル、イットリアなどを含有するものが挙げられる。酸化物セラミックスは1種を単独で使用してもよく、2種以上を併用してもよい。なかでも、歯科用補綴物等の歯科用途への適用性から、ジルコニア及び/又はアルミナを含有するものが好ましく、ジルコニアを含有するものがより好ましく、ジルコニアを主成分として含有するものがさらに好ましい。
以下、酸化物セラミックスがアルミナである場合についても適宜説明しつつ、酸化物セラミックス粒子がジルコニアを主成分として含有する実施形態について説明する。
本発明において使用されるジルコニア粒子は、ジルコニアを主成分として含有するものが好ましい。「主成分」とは、50質量%以上であればよい。本発明に係るジルコニア粒子におけるジルコニアの含有率は、60質量%以上が好ましく、65質量%以上がより好ましく、70質量%以上がさらに好ましく、75質量%以上がよりさらに好ましく、80質量%以上が特に好ましく、85質量%以上が最も好ましい。ジルコニア粒子の平均一次粒子径は、特に制限はないが、透光性及び強度により優れたジルコニア焼結体が得られるとともに、本発明の効果がより顕著に奏されることなどから、90nm以下であることが好ましく、70nm以下であることがより好ましく、30nm以下であることがさらに好ましい。またジルコニア粒子の平均一次粒子径は、透光性及び強度により優れたジルコニア焼結体が得られるとともに、本発明の効果がより顕著に奏されることなどから、1nm以上であることが好ましく、5nm以上であることがより好ましく、10nm以上であることがさらに好ましい。
なお、ジルコニア粒子の平均一次粒子径は、例えば、ジルコニア粒子(一次粒子)を透過型電子顕微鏡(TEM)にて写真撮影し、得られた画像上の任意の粒子100個について各粒子の粒子径(最大径)を測定し、それらの平均値(個数基準、算術平均径)として求めることができる。透過型電子顕微鏡(TEM)は、市販品を使用できる。
本発明の酸化物セラミックス成形体の製造方法において、アルミナを含む粉末を用いる場合、アルミナを主成分として含有するものが好ましい。「主成分」とは、ジルコニア粒子における説明と同様である。本発明に係るアルミナ粒子におけるアルミナの含有率は、50質量%以上であればよい。本発明に係るアルミナ粒子におけるアルミナの含有率は、60質量%以上が好ましく、65質量%以上がより好ましく、70質量%以上がさらに好ましく、75質量%以上がよりさらに好ましく、80質量%以上が特に好ましく、85質量%以上が最も好ましい。
アルミナ粒子の平均一次粒子径は、特に制限はないが、透光性及び強度により優れたアルミナ焼結体が得られるとともに、本発明の効果がより顕著に奏されることなどから、115nm以下であることが好ましく、110nm以下であることがより好ましく、100nm以下であることがさらに好ましい。またアルミナ粒子の平均一次粒子径は、透光性及び強度により優れたアルミナ焼結体が得られるとともに、本発明の効果がより顕著に奏されることなどから、1nm以上であることが好ましく、10nm以上であることがより好ましく、40nm以上であることがさらに好ましい。
ある実施形態としては、透光性及び強度により優れたジルコニア焼結体が得られることなどから、酸化物セラミックス粒子を含む粉末が、ジルコニア粒子を含む粉末であり、安定化剤が、イットリアである、酸化物セラミックス成形体の製造方法が挙げられる。
ジルコニア粒子における安定化剤の含有率は、例えば、誘導結合プラズマ(ICP;Inductively Coupled Plasma)発光分光分析、蛍光X線分析(XRF)等によって測定することができる。
ジルコニア成形体、ジルコニア仮焼体及びジルコニア焼結体における安定化剤の含有率についても、ジルコニア粒子における安定化剤の含有率の測定方法と同様の測定方法で測定できる。
ジルコニア粒子を含む粉末の調製方法に特に制限はなく、例えば、粉末状のジルコニア粒子をそのまま用いてもよいし、粉末状のジルコニアと粉末状の任意成分(例えば、蛍光剤、着色剤、透光性調整剤等)とをドライブレンドして調製してもよいが、より均一で物性に優れたジルコニア成形体、ひいてはジルコニア仮焼体やジルコニア焼結体を得ることができることなどから、ジルコニア粒子を含むスラリーを乾燥させることによって得ることが好ましい。
ジルコニア粒子を含むスラリーの調製方法に特に制限はなく、例えば、ジルコニア粒子と分散媒とを混合することにより得ることができる。また、ジルコニア粒子を含むスラリーは、上記したブレークダウンプロセスやビルディングアッププロセスを経て得られるものであってもよいし、市販のものであってもよい。
蛍光剤としては、金属元素を含むものが挙げられる。
当該金属元素としては、例えば、Ga、Bi、Ce、Nd、Sm、Eu、Gd、Tb、Dy、Tmなどが挙げられる。蛍光剤はこれらの金属元素のうちの1種を単独で含んでいてもよく、2種以上を含んでいてもよい。これらの金属元素の中でも、本発明の効果がより顕著に奏されることなどから、Ga、Bi、Eu、Gd、Tmが好ましく、Bi、Euがより好ましい。
使用される蛍光剤としては、例えば、上記金属元素の酸化物、水酸化物、酢酸塩、硝酸塩などが挙げられる。
また蛍光剤は、Y2SiO5:Ce、Y2SiO5:Tb、(Y,Gd,Eu)BO3、Y2O3:Eu、YAG:Ce、ZnGa2O4:Zn、BaMgAl10O17:Euなどであってもよい。
また、蛍光剤の含有量は、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。当該含有量が上記下限以上であることにより、ヒトの天然歯と比較しても蛍光性に劣ることのないジルコニア焼結体が得られ、また、当該含有量が上記上限以下であることにより、ジルコニア焼結体における透光性や強度の低下を抑制することができる。
着色剤としては、金属元素を含むものなどが挙げられ、具体的には、鉄、バナジウム、プラセオジム、エルビウム、クロム、ニッケル、マンガン等の金属元素を含む酸化物、複合酸化物、塩などが挙げられる。また市販されている着色剤を用いることもできる。
市販の着色剤としては、例えば、Zirkonzahn社(Italy)製のColour Liquid Prettau(登録商標)などを用いることもできる。上記スラリーは1種の着色剤を含んでいてもよいし、2種以上の着色剤を含んでいてもよい。
ジルコニア粒子を含む粉末の調製方法は、上記の通り、より均一で物性に優れたジルコニア成形体、ひいてはジルコニア仮焼体やジルコニア焼結体を得ることができることなどから、ジルコニア粒子を含むスラリーを乾燥させることによって得ることが好ましい。ここで乾燥に供される当該スラリーは、上記のとおり、蛍光剤、着色剤及び透光性調整剤のうちの少なくとも1つを含んでいてもよい。
当該有機溶剤としては、上記したもののうち上記表面張力を有するものを用いることができるが、乾燥時に粒子同士の凝集を抑制することができてより緻密なジルコニア焼結体を得ることができることなどから、メタノール、エタノール、2-メトキシエタノール、1,4-ジオキサン、2-エトキシエタノール及び2-(2-エトキシエトキシ)エタノールからなる群より選ばれる少なくとも1種が好ましく、メタノール、エタノール、2-エトキシエタノール及び2-(2-エトキシエトキシ)エタノールからなる群より選ばれる少なくとも1種がより好ましい。
本発明のジルコニア成形体の製造方法は、ジルコニア粒子を含む粉末を、減圧下でプレス成形する。プレス成形の具体的な方法に特に制限はなく、減圧にできる装置を具備していれば、特にプレス成形機に制限はない。プレス成形の具体的な方法としては、例えば、一軸プレスなどが挙げられる。減圧下でプレス成形することによって、平均一次粒子径が1~120nmであるジルコニア粒子(好適には安定化剤としてイットリアを含むジルコニア粒子)を含む粉末を用いた場合において、プレス成形体への残存空気が減少し、プレス成形体(ジルコニア成形体)における気密性の確保を確保でき、成形性の向上効果が得られ、ジルコニア成形体の製造における生産収率が改善する。
減圧下及びプレス成形時の温度は特に限定されず、加熱処理を行ってもよい。加熱処理を行う場合は45~90℃程度であってもよい。
ある実施形態では、加熱せず、室温において、ジルコニア粒子を含む粉末を、減圧下でプレス成形する方法が挙げられる。
また、成形体の大きさ、又は生産性の観点から、プレス成形における荷重圧力は、例えば、200MPa以下であり、180MPa以下であることが好ましく、150MPa以下であることがより好ましく、100MPa以下であることがさらに好ましく、80MPa以下であることが特に好ましい。特に、前記プレス成形における荷重圧力は、10~200MPaであることが好ましく、20~100MPaであることがより好ましく、25~80MPaであることがさらに好ましい。
プレス操作の時間は、プレス圧に応じて適宜設定すればよいが、通常、1~120分間である。
CIP工程でのプレス圧は、30MPa以上であることが好ましく、50MPa以上であることがより好ましく、100MPa以上であることがさらに好ましい。
また、プレス圧は、500MPa以下であることが好ましく、400MPa以下であることがより好ましく、300MPa以下であることがさらに好ましい。CIP工程におけるプレス成形の時間は、プレス圧に応じて適宜設定すればよいが、通常、1~60分間である。
加湿処理による水分増加量が上記下限を超えることにより、後に続く加圧処理の際に密度をより効果的に向上させることができる。また、加湿処理による水分増加量が上記上限以下であることにより、後述する加圧処理の後に乾燥を施す際や得られたジルコニア成形体を仮焼又は焼結する際にひび等の発生をより効果的に抑制することができる。
なお、加湿処理による水分増加量は、湿潤成形体の質量から湿潤前成形体の質量を差し引いた値を、湿潤前成形体の質量で除すことにより百分率として求めることができる。
乾燥処理を施す場合における乾燥条件に特に制限はないが、乾燥処理温度は、50℃以上であることが好ましく、80℃以上であることがより好ましく、100℃以上であることがさらに好ましい。また、乾燥処理温度は、200℃以下であることが好ましく、150℃以下であることがより好ましく、120℃以下であることがさらに好ましい。
また、乾燥時間は、30分以上であることが好ましく、1時間以上であることがより好ましく、2時間以上であることがさらに好ましい。また、乾燥時間は、24時間以下であることが好ましく、12時間以下であることがより好ましく、6時間以下であることがさらに好ましい。
乾燥の際の圧力は大気圧としてもよいが、1気圧未満の減圧状態としてもよく、実質的に真空下で乾燥してもよい。乾燥を施す場合、乾燥後に得られるジルコニア成形体の水分率は、3質量%以下であることが好ましく、2質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。ジルコニア成形体の水分率は、ジルコニア成形体の質量と、これを絶乾処理した後の質量との差を、ジルコニア成形体の質量で除すことにより百分率として求めることができる。
また、第一のジルコニア粒子を含む粉末を金型に充填した後に、第一のジルコニア粒子を含む粉末の上に第二のジルコニア粒子を含む粉末を充填し、第一のジルコニア粒子を含む粉末と第二のジルコニア粒子を含む粉末とをまとめてプレス成形してもよい。
成形体は単層構造であってもよいが、多層構造であってもよい。多層構造とすることで最終的に得られるジルコニア焼結体を多層構造とすることができ、その透光性などの物性を局所的に変化させることができる。
上記の方法により、目的とするジルコニア成形体を得ることができる。当該ジルコニア成形体は、仮焼してジルコニア仮焼体とし、さらにこのジルコニア仮焼体を焼結してジルコニア焼結体としてもよいし、あるいは、当該ジルコニア成形体を焼結してジルコニア焼結体としてもよい。
ジルコニア成形体に含まれる蛍光剤の含有量は、ジルコニア成形体に含まれるジルコニアの質量に対して、蛍光剤に含まれる金属元素の酸化物換算で、0.001質量%以上であることが好ましく、0.005質量%以上であることがより好ましく、0.01質量%以上であることがさらに好ましい。また、蛍光剤の含有量は、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。
ジルコニア成形体における着色剤の含有量は、得られるジルコニア焼結体における着色剤の含有量などに応じて適宜調整することができる。ジルコニア成形体に含まれる着色剤の含有量は、ジルコニア成形体に含まれるジルコニアの質量に対して、着色剤に含まれる金属元素の酸化物換算で、0.001質量%以上であることが好ましく、0.005質量%以上であることがより好ましく、0.01質量%以上であることがさらに好ましい。また、着色剤の含有量は、5質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましく、0.1質量%以下、さらには0.05質量%以下であってもよい。
ジルコニア成形体に含まれる透光性調整剤の具体的な含有量は、ジルコニア成形体に含まれるジルコニアの質量に対して0.1質量%以下であることが好ましい。
なお、ジルコニア成形体における安定化剤の含有率は、ジルコニアと安定化剤の合計モル数に対する安定化剤のモル数の割合(モル%)を意味する。
さらに、ジルコニア成形体は単層構造であってもよいが、多層構造であってもよい。多層構造とすることで最終的に得られるジルコニア焼結体を多層構造とすることができ、その透光性などの物性を局所的に変化させることができる。
なお、ジルコニア焼結体における結晶粒径は、ジルコニア焼結体断面の電界放出型走査電子顕微鏡(FE-SEM)写真を撮影し、その撮影画像にある任意の粒子を10個選択し、各々の円相当径(同一面積の真円の直径)の平均値として求めることができる。
なお、ジルコニア焼結体の3点曲げ強さは、JIS R 1601:2008に準拠して測定することができる。
なお、ジルコニア焼結体の厚さ0.5mmにおける波長700nmの光の透過率は、分光光度計を用いて測定すればよく、例えば、分光光度計(株式会社日立ハイテクノロジーズ製、「日立分光光度計 U-3900H形」)を用い、光源より発生した光を試料に透過及び散乱させ、積分球を利用して測定することができる。当該測定においては、一旦、300~750nmの波長領域で透過率を測定した上で、波長700nmの光についての透過率を求めてもよい。測定に使用される試料としては、両面を鏡面研磨加工した直径15mm×厚さ0.5mmの円盤状のジルコニア焼結体を用いることができる。
ある実施形態としては、前記方法で得られた酸化物セラミックス成形体を、仮焼する、酸化物セラミックス仮焼体の製造方法が挙げられる。
酸化物セラミックス成形体がジルコニア成形体である場合を例に挙げて、ジルコニア仮焼体の製造方法について以下に説明する。
上記したジルコニア成形体を仮焼することによりジルコニア仮焼体を得ることができる。酸化物セラミックス仮焼体は、酸化物セラミックスの粒子が完全には焼結していない状態でブロック化したものを意味する。例えば、ジルコニア仮焼体は、ジルコニア粒子同士が完全には焼結していない状態でブロック化したものを意味する。
ジルコニア焼結体に蛍光剤を含ませる場合には、ジルコニア仮焼体において該蛍光剤を含むことが好ましい。ジルコニア仮焼体における蛍光剤の含有量は、得られるジルコニア焼結体における蛍光剤の含有量などに応じて適宜調整することができる。
ジルコニア仮焼体に含まれる蛍光剤の含有量は、ジルコニア仮焼体に含まれるジルコニアの質量に対して、蛍光剤に含まれる金属元素の酸化物換算で、0.001質量%以上であることが好ましく、0.005質量%以上であることがより好ましく、0.01質量%以上であることがさらに好ましい。また、蛍光剤の含有量は、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。
ジルコニア仮焼体に含まれる着色剤の含有量は、ジルコニア仮焼体に含まれるジルコニアの質量に対して、着色剤に含まれる金属元素の酸化物換算で、0.001質量%以上であることが好ましく、0.005質量%以上であることがより好ましく、0.01質量%以上であることがさらに好ましい。また、着色剤の含有量は、5質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましく、0.1質量%以下、さらには0.05質量%以下であってもよい。
なお、ジルコニア仮焼体におけるイットリアの含有率は、ジルコニアとイットリアの合計モル数に対するイットリアのモル数の割合(モル%)を意味する。
ジルコニア仮焼体の密度は、例えば、(仮焼体の質量)/(仮焼体の体積)として算出することができる。
また、ジルコニア仮焼体は単層構造であってもよいが、多層構造であってもよい。多層構造とすることで最終的に得られるジルコニア焼結体を多層構造とすることができ、その透光性などの物性を局所的に変化させることができる。
なお、ジルコニア仮焼体の3点曲げ強さは、5mm×40mm×10mmの試験片について、試験片のサイズ以外はISO 6872:2015に準拠して測定することができる。前記試験片の面及びC面(試験片の角を45°の角度で面取りした面)は、600番のサンドペーパーで長手方向に面仕上げする。前記試験片は、最も広い面が鉛直方向(荷重方向)を向くように配置する。前記試験片について、万能試験機を用いてスパン長(支点間距離)30mm、クロスヘッドスピード0.5mm/分の条件で測定することができる。
ある実施形態としては、前記方法で得られた酸化物セラミックス成形体、又は前記方法で得られた酸化物セラミックス仮焼体を焼結する、酸化物セラミックス焼結体の製造方法が挙げられる。酸化物セラミックスがジルコニアである場合を例に挙げて、ジルコニア焼結体の製造方法について以下に説明する。上記したジルコニア成形体又はジルコニア仮焼体を好ましくは大気圧下で焼結することによりジルコニア焼結体を得ることができる。酸化物セラミックス焼結体とは、酸化物セラミックスの粒子同士が完全に焼結している状態のものを意味する。例えば、ジルコニア焼結体とは、ジルコニア粒子同士が完全に焼結している状態のものを意味する。
焼結温度は、酸化物セラミックスの種類、酸化物セラミックス粒子の平均一次粒子径等に応じて、適宜、酸化物セラミックスの粒子同士が完全に焼結している状態となり、仮焼温度と重複しない範囲で選択することができる。例えば、ジルコニア成形体又はジルコニア仮焼体を焼結する場合、ジルコニア成形体を焼結する場合及びジルコニア仮焼体を焼結する場合のいずれにおいても、焼結温度(最高焼結温度)は、目的とするジルコニア焼結体が容易に得られるなどの観点から、900℃以上であることが好ましく、1000℃以上であることがより好ましく、1050℃以上であることがさらに好ましい。また、焼結温度は、1200℃以下であることが好ましく、1150℃以下であることがより好ましく、1120℃以下であることがさらに好ましい。焼結温度が上記下限以上であることにより、焼結を十分に進行させることができ、緻密な焼結体を容易に得ることができる。また、焼結温度が上記上限以下であることにより、結晶粒径が上記範囲内にあるジルコニア焼結体を容易に得ることができ、また蛍光剤を含む場合にその失活を抑制することができる。
ジルコニア焼結体は蛍光剤を含んでいてもよい。ジルコニア焼結体が蛍光剤を含むことにより蛍光性を有する。ジルコニア焼結体における蛍光剤の含有量に特に制限はなく、蛍光剤の種類やジルコニア焼結体の用途などに応じて適宜調整することができる。
歯科用補綴物として好ましく使用できるなどの観点から、蛍光剤の含有量は、ジルコニア焼結体に含まれるジルコニアの質量に対して、蛍光剤に含まれる金属元素の酸化物換算で、0.001質量%以上であることが好ましく、0.005質量%以上であることがより好ましく、0.01質量%以上であることがさらに好ましい。また、蛍光剤の含有量は、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.1質量%以下であることがさらに好ましい。当該含有量が上記下限以上であることにより、ヒトの天然歯と比較しても蛍光性に劣ることがなく、また、当該含有量が上記上限以下であることにより、透光性や強度の低下を抑制することができる。
歯科用補綴物として好ましく使用できるなどの観点から、着色剤の含有量は、ジルコニア焼結体に含まれるジルコニアの質量に対して、着色剤に含まれる金属元素の酸化物換算で、0.001質量%以上であることが好ましく、0.005質量%以上であることがより好ましく、0.01質量%以上であることがさらに好ましい。また、着色剤の含有量は、5質量%以下であることが好ましく、1質量%以下であることがより好ましく、0.5質量%以下であることがさらに好ましく、0.1質量%以下、さらには0.05質量%以下であってもよい。
なお、ジルコニア焼結体におけるイットリアの含有率は、ジルコニアとイットリアの合計モル数に対するイットリアのモル数の割合(モル%)を意味する。
fc = Ic/(Im+It+Ic)×100
ここで、fcはジルコニア焼結体における立方晶系の割合(%)を表し、Imは2θ=28°付近のピーク(単斜晶系に基づくピーク)の高さを表し、Itは2θ=30°付近のピーク(正方晶系に基づくピーク)の高さを表し、Icは2θ=30°付近のピーク(立方晶系に基づくピーク)の高さを表す。なお、2θ=30°付近のピークが、正方晶系及び立方晶系の混相に基づくピークとして現れ、正方晶系に基づくピークと立方晶系に基づくピークとの分離が困難な場合には、リートベルト法を採用するなどして正方晶系と立方晶系の比を求めた上で、これを当該混相に基づくピークの高さ(It+c)に乗じることにより、It及びIcを求めることができる。
fm=〔I28/(I28+I30)〕×100
(式中、fmはジルコニア焼結体における、180℃熱水中に5時間浸漬させた後の正方晶系及び立方晶系に対する単斜晶系の割合(%)を表し、XRD測定において、I28は単斜晶系のメインピークが現れる2θ=28°付近のピーク面積を表し、I30は正方晶系又は立方晶系のメインピークが現れる2θ=30°付近のピーク面積を表す。)
ジルコニア焼結体の用途に特に制限はないが、本発明によれば、高い透光性及び高い強度を兼ね備えた品質に優れるジルコニア焼結体を高い生産収率で簡便に製造できることから、当該ジルコニア焼結体は歯科用補綴物等の歯科材料などとして特に好適であり、中でも、歯頸部に使用される歯科用補綴物のみならず、臼歯咬合面又は前歯切端部に使用される歯科用補綴物としても極めて有用である。本発明のジルコニア焼結体は、特に前歯切端部に使用される歯科用補綴物として使用することが好ましい。
酸化物セラミックス粒子を透過型電子顕微鏡(TEM)にて写真撮影し、得られた画像上で任意の粒子100個について各粒子の粒子径(最大径)を測定し、それらの平均値を酸化物セラミックス粒子の平均一次粒子径とした。
酸化物セラミックス焼結体の3点曲げ強さは、JIS R 1601:2008に準拠して測定した。
酸化物セラミックス焼結体の厚さ0.5mmにおける波長700nmの光の透過率は、分光光度計(株式会社日立ハイテクノロジーズ製、「日立分光光度計 U-3900H形」)を用い、光源より発生した光を試料に透過及び散乱させ、積分球を利用して測定した。当該測定においては、一旦、300~750nmの波長領域で透過率を測定した上で、波長700nmの光についての透過率を求めた。測定には、両面を鏡面研磨加工した直径15mm×厚さ0.5mmの円盤状の酸化物セラミックス焼結体を試料として用いた。
酸化物セラミックス成形体及び酸化物セラミックス仮焼体の外観(割れ又は欠け)は目視にて評価した。
イットリアを3モル%含む水系のジルコニアスラリー「MELox Nanosize 3Y」(MEL Chemicals社製、ジルコニア粒子の平均一次粒子径:14nm、ジルコニア濃度:24質量%)に、当該ジルコニアスラリーの9体積倍のイソプロパノールを加え、これを遠沈管に入れて十分に混合し、4000rpmで15分間遠心した。白色物の沈降を確認した上で上清を取り除き、これに再度イソプロパノールを加えて十分に混合し、4000rpmで10分間遠心した。白色物の沈降を確認した上で上清を取り除き、これにメタノールを加えることによって使用したジルコニアスラリーと同体積となるようにし、さらに十分に混合してメタノール置換スラリーを得た。
実施例1において、減圧下にせず、大気圧下において実施したこと以外は実施例1と同様にして、ジルコニア成形体、ジルコニア仮焼体及びジルコニア焼結体をそれぞれ得た。
得られたジルコニア焼結体を用いて、上記した方法により光の透過率をそれぞれ測定した。また、得られた板状のジルコニア焼結体を用いて、上記した方法により3点曲げ強さを測定した(試験片サイズ:40mm×4mm×3mm、スパン長:30mm)。各測定結果を表1に示す。減圧下で実施しなかったため、実施例1と比較して、成形体製造時及び仮焼体製造時に成形体に欠け又は割れが多く発生し、歩留まりが悪くなった。さらに、内部気泡や欠陥によるためか、透光性も低くなった。
ジルコニアスラリーとして、イットリアを5モル%含む水系のジルコニアスラリー「MELox Nanosize 5Y」(MEL Chemicals社製、ジルコニア粒子の平均一次粒子径:25nm、ジルコニア濃度:25質量%)を用い、減圧度を20kPa、一軸プレス圧を160MPaで実施し、メタノールの代わりに2-(2-エトキシエトキシ)エタノールを用いた以外は実施例1と同様にして、2-(2-エトキシエトキシ)エタノール置換スラリーを得た。
ジルコニアスラリーとして、イットリアを4.5モル%含む水系のジルコニアスラリー「MELox Nanosize 4.5Y」(MEL Chemicals社製、ジルコニア粒子の平均一次粒子径:14nm、ジルコニア濃度:23質量%)を用い、手動油圧真空加熱プレス(型式「IMC-11FD型」、株式会社井元製作所製)を用い、減圧度を1kPaまで徐々に下げるとともに、一軸プレス圧を40MPaでプレス成形を実施し、メタノールの代わりに2-(2-エトキシエトキシ)エタノールを用いた以外は実施例1と同様にして、2-(2-エトキシエトキシ)エタノール置換スラリーを得た。
実施例3と同様にして得られた2-(2-エトキシエトキシ)エタノール置換スラリーに対して、硝酸ニッケル(II)水溶液を、ジルコニアの質量に対するニッケル(II)の酸化物(NiO)換算の含有量が0.02質量%となるように添加し、ジルコニア粒子及び着色剤を含むスラリーを得た。これを送り量5mL/分、入口温度150℃、出口温度100℃の条件でスプレードライヤー(日本ビュッヒ株式会社製、B-290)を用いて乾燥して、ジルコニア粒子及び着色剤を含む粉末を得た。
実施例2で得られた2-(2-エトキシエトキシ)エタノール置換スラリーを、超臨界乾燥装置を用いて、以下の手順により超臨界乾燥した。すなわち、2-(2-エトキシエトキシ)エタノール置換スラリーを圧力容器に入れ、圧力容器を超臨界二酸化炭素抽出装置につなぎ、圧漏れのないことを確認した。その後、圧力容器と予熱管を60℃に加温したウォーターバスに漬け、80℃まで昇温するとともに、25MPaまで加圧して、安定化のため10分間静置した。次に、二酸化炭素及びエントレーナーとしてのメタノールを所定条件下(温度:80℃、圧力:25MPa、二酸化炭素の流量:10mL/分、エントレーナー(メタノール)の流量:1.5mL/分)で導入し、2時間経過時点でメタノール導入を停止し、二酸化炭素のみの導入を続けた。二酸化炭素のみの導入が2時間経過した後、二酸化炭素の送液を停止し、温度を80℃に保持したまま圧力を約20分かけて25MPaから徐々に下げて大気圧に戻した。圧力容器をウォーターバスから出して常温まで冷却し、開封して処理済み試料を回収し、ジルコニア粒子を含む粉末を得た。
実施例3と同様にして得られた2-(2-エトキシエトキシ)エタノール置換スラリーに対して、水酸化ビスマス水溶液を、ジルコニアの質量に対するビスマスの酸化物(Bi2O3)換算の含有量が0.02質量%となるように添加し、ジルコニア粒子及び蛍光剤を含むスラリーを得た。これを送り量5mL/分、入口温度150℃、出口温度100℃の条件でスプレードライヤー(日本ビュッヒ株式会社製、B-290)を用いて乾燥して、ジルコニア粒子及び蛍光剤を含む粉末を得た。
イットリアを4.5モル%含む水系のジルコニアスラリー「MELox Nanosize 4.5Y」(MEL Chemicals社製、ジルコニア粒子の平均一次粒子径:14nm、ジルコニア濃度:23質量%)に、当該ジルコニアスラリーの9体積倍のイソプロパノールを加え、これを遠沈管に入れて十分に混合し、4000rpmで15分間遠心した。白色物の沈降を確認した上で上清を取り除き、これに再度イソプロパノールを加えて十分に混合し、4000rpmで10分間遠心した。白色物の沈降を確認した上で上清を取り除き、これにメタノールを加えることによって使用したジルコニアスラリーと同体積となるようにし、さらに十分に混合してメタノール置換スラリーを得た。
あわせて100回プレス成形し、100個のプレス成形体を製造した。100個のプレス成形体のうち、外観上の割れ又は欠けの発生した個数を用いて、不良品率(%)を求めた。結果を表1に示す。
その後、割れ及び欠けの発生しなかった成形体に対して、株式会社神戸製鋼所製のCIP装置(型番ADW800)を用いてCIP圧200MPaをかけた。さらに、CIP後のジルコニア成形体を大気圧下、600℃で3時間仮焼してジルコニア仮焼体を得た。この仮焼体について、外観上の割れ又は欠けの発生した個数を用いて、不良品率(%)を求めた。結果を表1に示す。
実施例3で得られたジルコニア白色粒子を(A)とし、実施例4で得られたジルコニア赤色着色粒子を(B)とする。(A)と(B)を質量比1:2で袋の中で混ぜて得られた粉体を(C)とし、(A)と(B)を質量比2:1で袋の中で混ぜて得られた粉体を(D)とした。真空プレス成形機(商品名「250ton真空プレス成形機」、株式会社岩城工業製)を用いて、粉末(A)、粉末(C)、粉末(D)、粉末(B)の順に、それぞれ同じ質量を充填し、10kPaの減圧下において一軸プレス圧70MPaにて40mm×20mm×20mmのブロック状(1個)にプレス成形した。
合計100個のプレス成形体を製造した。100個のプレス成形体のうち、外観上の割れ又は欠けの発生した個数を用いて、不良品率(%)を求めた。結果を表1に示す。さらに、外観上、割れ及び欠けの発生しなかったジルコニア成形体を大気圧下、600℃で3時間仮焼してジルコニア仮焼体を得た。この仮焼体について、外観上の割れ又は欠けの発生した個数を用いて、不良品率(%)を求めた。結果を表1に示す。
実施例1で得られたジルコニア白色粒子を(E)とし、実施例3で得られたジルコニア白色粒子を(F)とし、実施例2で得られたジルコニア白色粒子を(G)とする。手動油圧真空加熱プレス(型式「IMC-11FD型」、株式会社井元製作所製)を用い、粉末(E)、粉末(F)、粉末(G)の順に、それぞれ同じ質量を充填し、減圧度を10kPaまで徐々に下げるとともに、一軸プレス圧100MPaにて40mm×20mm×20mmのブロック状(1個)にプレス成形した。
合計100個のプレス成形体を製造した。100個のプレス成形体のうち、外観上の割れ又は欠けの発生した個数を用いて、不良品率(%)を求めた。結果を表1に示す。さらに、外観上、割れ及び欠けの発生しなかったジルコニア成形体を大気圧下、600℃で3時間仮焼してジルコニア仮焼体を得た。この仮焼体について、外観上の割れ又は欠けの発生した個数を用いて、不良品率(%)を求めた。結果を表1に示す。
減圧度を100kPaで実施した以外は、実施例1と同様にして、ジルコニア成形体、ジルコニア仮焼体及びジルコニア焼結体をそれぞれ得た(蛍光性はなし)。結果を表1に示す。
減圧度を96kPaで実施した以外は、実施例1と同様にして、ジルコニア成形体、ジルコニア仮焼体及びジルコニア焼結体をそれぞれ得た(蛍光性はなし)。結果を表1に示す。
高純度α-アルミナ粉末「TM-DA(大明化学工業株式会社製)」に酸化マグネシウム(富士フィルム和光純薬株式会社製)1000ppmを添加し、エタノール中でビーズミル(商品名「RMB II」、アイメックス株式会社製)にて混合粉砕し、乾燥させたものを原料粉末とした。アルミナ粒子の平均一次粒子径は、100nmであった。その後は、実施例1と同様に、プレス成形、仮焼、焼結を実施した。結果を表1に示す。
実施例2において、減圧下にせず、大気圧下において実施したこと以外は実施例1と同様にして、ジルコニア成形体、ジルコニア仮焼体及びジルコニア焼結体をそれぞれ得た。減圧下で実施しなかったため、実施例2と比較して、成形体製造時及び仮焼体製造時に成形体に欠け又は割れが多く発生し、歩留まりが悪くなった。さらに、内部気泡や欠陥によるためか、透光性も低くなった。
実施例3において、減圧下にせず、大気圧下、表1に記載の製造条件に変更して実施したこと以外は実施例3と同様にして、ジルコニア成形体、ジルコニア仮焼体及びジルコニア焼結体をそれぞれ得た。減圧下で実施しなかったため、実施例3と比較して、成形体製造時及び仮焼体製造時に成形体に欠け又は割れが多く発生し、歩留まりが悪くなった。さらに、内部気泡や欠陥によるためか、透光性も低くなった。
実施例7において、減圧下にせず、大気圧下、表1に記載の製造条件に変更して実施したこと以外は実施例7と同様にして、ジルコニア成形体、ジルコニア仮焼体及びジルコニア焼結体をそれぞれ得た。減圧下で実施しなかったため、実施例7と比較して、成形体製造時及び仮焼体製造時に成形体に欠け又は割れが多く発生し、歩留まりが悪くなった。さらに、内部気泡や欠陥によるためか、透光性も低くなった。
Claims (12)
- 平均一次粒子径が1~120nmである酸化物セラミックス粒子を含む粉末を、減圧下でプレス成形する、酸化物セラミックス成形体の製造方法。
- 前記プレス成形が、0.1kPa以上100kPa以下の減圧下で行われる、請求項1に記載の酸化物セラミックス成形体の製造方法。
- 前記プレス成形における荷重圧力が、10MPa以上200MPa以下である、請求項1又は2に記載の酸化物セラミックス成形体の製造方法。
- 前記酸化物セラミックス粒子を含む粉末が、ジルコニア粒子を含む粉末及び/又はアルミナ粒子を含む粉末である、請求項1~3のいずれか1項に記載の酸化物セラミックス成形体の製造方法。
- 前記酸化物セラミックス粒子を含む粉末が、ジルコニアの相転移を抑制可能な安定化剤をさらに含む、請求項4に記載の酸化物セラミックス成形体の製造方法。
- 前記酸化物セラミックス粒子を含む粉末が、ジルコニア粒子を含む粉末であり、
前記安定化剤が、イットリアである、請求項5に記載の酸化物セラミックス成形体の製造方法。 - 前記イットリアの含有率が、ジルコニアとイットリアの合計モル数に対して、2.0モル%以上9.0モル%以下である、請求項6に記載の酸化物セラミックス成形体の製造方法。
- 請求項1~7のいずれか1項に記載の酸化物セラミックス成形体の製造方法で得られた成形体を、仮焼する、酸化物セラミックス仮焼体の製造方法。
- 前記仮焼の温度が、300℃以上1100℃未満である、請求項8に記載の酸化物セラミックス仮焼体の製造方法。
- 前記酸化物セラミックス成形体が、ジルコニア成形体又はアルミナ成形体である、請求項8又は9に記載の酸化物セラミックス仮焼体の製造方法。
- 請求項1~7のいずれか1項に記載の酸化物セラミックス成形体の製造方法で得られた酸化物セラミックス成形体、又は請求項8~10のいずれか1項に記載の酸化物セラミックス仮焼体の製造方法で得られた酸化物セラミックス仮焼体を焼結する、酸化物セラミックス焼結体の製造方法。
- 前記焼結の温度が、900℃以上1500℃以下である、請求項11に記載の酸化物セラミックス焼結体の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247020755A KR20240110054A (ko) | 2021-12-27 | 2022-12-16 | 산화물 세라믹스 성형체의 제조 방법 |
JP2023570863A JPWO2023127558A1 (ja) | 2021-12-27 | 2022-12-16 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021213563 | 2021-12-27 | ||
JP2021-213563 | 2021-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023127558A1 true WO2023127558A1 (ja) | 2023-07-06 |
Family
ID=86998870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/046461 WO2023127558A1 (ja) | 2021-12-27 | 2022-12-16 | 酸化物セラミックス成形体の製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2023127558A1 (ja) |
KR (1) | KR20240110054A (ja) |
WO (1) | WO2023127558A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016060687A (ja) * | 2014-09-22 | 2016-04-25 | クラレノリタケデンタル株式会社 | 透光性ジルコニア焼結体の製造方法及びその製造方法によって得られる透光性ジルコニア焼結体、並びに、透光性ジルコニア焼結体作製用の焼結前仮焼体 |
WO2018056331A1 (ja) * | 2016-09-20 | 2018-03-29 | クラレノリタケデンタル株式会社 | ジルコニア組成物、仮焼体及び焼結体並びにこれらの製造方法、並びに積層体 |
JP2020001973A (ja) * | 2018-06-28 | 2020-01-09 | クラレノリタケデンタル株式会社 | ジルコニア成形体の製造方法 |
WO2020218541A1 (ja) * | 2019-04-25 | 2020-10-29 | クラレノリタケデンタル株式会社 | 歯科用に好適なジルコニア仮焼体及びその製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2913112C (en) | 2013-06-27 | 2020-06-16 | Ivoclar Vivadent, Inc. | Nanocrystalline zirconia and methods of processing thereof |
-
2022
- 2022-12-16 KR KR1020247020755A patent/KR20240110054A/ko unknown
- 2022-12-16 JP JP2023570863A patent/JPWO2023127558A1/ja active Pending
- 2022-12-16 WO PCT/JP2022/046461 patent/WO2023127558A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016060687A (ja) * | 2014-09-22 | 2016-04-25 | クラレノリタケデンタル株式会社 | 透光性ジルコニア焼結体の製造方法及びその製造方法によって得られる透光性ジルコニア焼結体、並びに、透光性ジルコニア焼結体作製用の焼結前仮焼体 |
WO2018056331A1 (ja) * | 2016-09-20 | 2018-03-29 | クラレノリタケデンタル株式会社 | ジルコニア組成物、仮焼体及び焼結体並びにこれらの製造方法、並びに積層体 |
JP2020001973A (ja) * | 2018-06-28 | 2020-01-09 | クラレノリタケデンタル株式会社 | ジルコニア成形体の製造方法 |
WO2020218541A1 (ja) * | 2019-04-25 | 2020-10-29 | クラレノリタケデンタル株式会社 | 歯科用に好適なジルコニア仮焼体及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20240110054A (ko) | 2024-07-12 |
JPWO2023127558A1 (ja) | 2023-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7138107B2 (ja) | 蛍光剤を含むジルコニア焼結体 | |
JP7175273B2 (ja) | ジルコニア粒子を含む粉末の製造方法 | |
EP2263988B1 (en) | Light-transmitting sintered zirconia compact, process for producing the same, and use thereof | |
CN113490468B (zh) | 能够在短时间内进行烧成的氧化锆成形体和预烧体 | |
JP7061827B2 (ja) | ジルコニア成形体の製造方法 | |
CN113490653A (zh) | 具有高直线光透射率的氧化锆烧结体 | |
JP7125402B2 (ja) | ジルコニア粒子および蛍光剤を含む粉末の製造方法 | |
WO2023120674A1 (ja) | ジルコニア組成物、ジルコニア仮焼体及びジルコニア焼結体並びにこれらの製造方法 | |
WO2006003726A1 (ja) | 透光性酸化ルテチウム焼結体及びその製造方法 | |
WO2023127558A1 (ja) | 酸化物セラミックス成形体の製造方法 | |
WO2022138592A1 (ja) | 針状金属酸化物を含むジルコニア焼結体 | |
WO2024127646A1 (ja) | 酸化物セラミックス成形体の製造方法 | |
JP7472956B2 (ja) | 粉末及びその製造方法 | |
CN117157263A (zh) | 氧化锆成形体、氧化锆预烧体和氧化锆烧结体、以及它们的制造方法 | |
JP2022041275A (ja) | ジルコニア仮焼体の製造方法 | |
WO2024127652A1 (ja) | 優れた機械加工性を有する歯科用酸化物セラミックス仮焼体及びその製造方法 | |
KR20240114752A (ko) | 우수한 기계 가공성을 갖는 치과용 산화물 세라믹스 가소체 및 그 제조 방법 | |
WO2024096102A1 (ja) | ジルコニア仮焼体及び組成物並びにこれらの製造方法 | |
CN112624761A (zh) | 氧化锆烧结体及其制造方法 | |
Ulahannan | Synthesis and sintering of translucent yttrium aluminium garnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22915782 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023570863 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20247020755 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020247020755 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |