WO2023127289A1 - 垂直離着陸機の自動発着システム、垂直離着陸機および垂直離着陸機の発着制御方法 - Google Patents

垂直離着陸機の自動発着システム、垂直離着陸機および垂直離着陸機の発着制御方法 Download PDF

Info

Publication number
WO2023127289A1
WO2023127289A1 PCT/JP2022/040661 JP2022040661W WO2023127289A1 WO 2023127289 A1 WO2023127289 A1 WO 2023127289A1 JP 2022040661 W JP2022040661 W JP 2022040661W WO 2023127289 A1 WO2023127289 A1 WO 2023127289A1
Authority
WO
WIPO (PCT)
Prior art keywords
landing
heading
landing aircraft
vertical take
aircraft
Prior art date
Application number
PCT/JP2022/040661
Other languages
English (en)
French (fr)
Inventor
徹 小島
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2023127289A1 publication Critical patent/WO2023127289A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/606Compensating for or utilising external environmental conditions, e.g. wind or water currents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/244Arrangements for determining position or orientation using passive navigation aids external to the vehicle, e.g. markers, reflectors or magnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/652Take-off
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/654Landing
    • G05D1/6542Landing on a moving platform, e.g. aircraft carrier
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/02Automatic approach or landing aids, i.e. systems in which flight data of incoming planes are processed to provide landing data
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2105/00Specific applications of the controlled vehicles
    • G05D2105/20Specific applications of the controlled vehicles for transportation
    • G05D2105/22Specific applications of the controlled vehicles for transportation of humans
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2107/00Specific environments of the controlled vehicles
    • G05D2107/25Aquatic environments
    • G05D2107/27Oceans
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2109/00Types of controlled vehicles
    • G05D2109/20Aircraft, e.g. drones
    • G05D2109/25Rotorcrafts
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2111/00Details of signals used for control of position, course, altitude or attitude of land, water, air or space vehicles
    • G05D2111/10Optical signals

Definitions

  • the present disclosure relates to an automatic takeoff and landing system for a vertical takeoff and landing aircraft, a vertical takeoff and landing aircraft, and a takeoff and landing control method for a vertical takeoff and landing aircraft.
  • the present disclosure provides an automatic takeoff and landing system for a vertical takeoff and landing aircraft, a vertical takeoff and landing aircraft, and a takeoff and landing control method for a vertical takeoff and landing aircraft, which are capable of easing the takeoff and landing restrictions due to relative winds and suitably performing takeoff and landing at a landing target point.
  • the task is to
  • the automatic take-off and landing system for a vertical take-off and landing aircraft of the present disclosure includes a relative wind information acquisition unit that acquires the direction of the relative wind on a moving body, and take-off and landing control that causes the vertical take-off and landing aircraft to take off and land at a landing target point provided on the moving body. and a control unit configured to determine the heading of the vertical take-off and landing aircraft based on the direction of the relative wind acquired by the relative wind information acquisition unit at the time of departure and arrival of the vertical take-off and landing aircraft.
  • the departure/arrival control is executed in a state of facing the azimuth of the relative wind.
  • the vertical take-off and landing aircraft of the present disclosure includes the automatic take-off and landing system of the vertical take-off and landing aircraft described above.
  • a takeoff/landing control method for a vertical takeoff/landing aircraft of the present disclosure provides an automatic takeoff/landing system for a vertical takeoff/landing aircraft that performs takeoff/landing control for taking off and landing a vertical takeoff/landing aircraft from a landing target point provided on a moving body. obtaining a direction; setting the heading of the vertical take-off and landing aircraft to the direction of the relative wind based on the obtained direction of the relative wind; and taking off and landing the vertical take-off and landing aircraft at the landing target point Execute the step and
  • FIG. 1 is a schematic configuration diagram showing an example of an automatic take-off and landing system for a vertical take-off and landing aircraft according to this embodiment.
  • FIG. 2 is an explanatory diagram showing how the vertical take-off and landing aircraft according to the present embodiment moves toward the landing target point.
  • FIG. 3 is a flow chart showing an example of the procedure of the departure/arrival control method during landing of the vertical take-off and landing aircraft according to the present embodiment.
  • FIG. 4 is an explanatory diagram showing the landing operation of the vertical take-off and landing aircraft according to this embodiment.
  • FIG. 5 is a flow chart showing an example of the procedure of the departure/arrival control method during landing of the vertical take-off and landing aircraft according to the present embodiment.
  • FIG. 1 is a schematic configuration diagram showing an example of an automatic take-off and landing system for a vertical take-off and landing aircraft according to this embodiment.
  • FIG. 2 is an explanatory diagram showing how the vertical take-off and landing aircraft according to the present embodiment moves toward the landing target point.
  • FIG. 6 is an explanatory diagram illustrating patterns of takeoff/arrival control during landing of the vertical take-off and landing aircraft according to the present embodiment.
  • FIG. 7 is an explanatory diagram showing the takeoff operation of the vertical take-off and landing aircraft according to this embodiment.
  • FIG. 8 is a flow chart showing an example of the procedure of the departure/arrival control method at the time of takeoff of the vertical take-off and landing aircraft according to the present embodiment.
  • FIG. 9 is an explanatory diagram illustrating patterns of takeoff/arrival control during takeoff of the vertical takeoff and landing aircraft according to the present embodiment.
  • FIG. 1 is a schematic configuration diagram showing an example of an automatic takeoff and landing system for a vertical takeoff and landing aircraft according to the present embodiment, and FIG. be.
  • a vertical take-off and landing aircraft 1 according to the present embodiment is a flying object (for example, a helicopter, a drone, etc.) as a rotorcraft.
  • the vertical take-off and landing aircraft 1 is an unmanned aircraft, and has an orientation including a nose and a tail.
  • the vertical takeoff and landing aircraft 1 is an unmanned helicopter.
  • the vertical take-off and landing aircraft 1 may be a flying object capable of moving forward, backward, sideways, turning, and hovering, and may be a manned aircraft.
  • the vertical take-off and landing aircraft 1 is an unmanned aircraft
  • priority is given to flight control based on remote manual control when remote manual control is executed during flight control of the unmanned aircraft by autopilot.
  • priority is given to flight control based on manual maneuvering when manual maneuvering is executed during flight control of the manned airplane by autopilot.
  • This vertical take-off and landing aircraft 1 is equipped with an automatic take-off and landing system 100. Flight is controlled by the automatic take-off and landing system 100, and lands at a landing target point 2 shown in FIG.
  • the landing target point 2 is provided on the bow side of the ship 5, as shown in FIG.
  • the vertical take-off and landing aircraft 1 lands (landing) on a ship 5 as a moving body that moves on water.
  • the landing target point 2 may be provided not only on the bow side of the ship 5 but also on the stern side of the ship 5 .
  • the landing target point 2 may be provided on a vehicle or the like as a moving object that moves on the ground.
  • the ship 5 is a manned ship in this embodiment, it may be an unmanned ship.
  • the landing target point 2 is provided with a marker 7 for the vertical take-off and landing aircraft 1 to track the position of the landing target point 2 .
  • the marker 7 is a marker that can capture the position of the landing target point 2 by image processing.
  • the ship 5 includes a navigation device 70, a data transmission device 80, an operation display section 90, and an anemometer (relative wind information acquisition section) 95, as shown in FIG.
  • the navigation device 70 is, for example, an inertial navigation system (INS), and acquires the attitude angles of the ship 5 in the pitch and roll directions, the heading, speed, acceleration, position coordinates in the earth coordinate system, and the like.
  • INS inertial navigation system
  • the navigation system 70 is described as being applied to an inertial navigation system, but it is not particularly limited, and any navigation system 70 may be used.
  • the navigation device 70 is an inertial navigation device including a GPS (Global Positioning System) as a position measurement unit in order to improve the position measurement accuracy.
  • GPS Global Positioning System
  • an inertial navigation system including GPS will be described, but the present invention is not limited to GPS, and any position measurement unit capable of accurately measuring positions may be used.
  • a quasi-zenith satellite system may be used.
  • the navigation device 70 may acquire at least a part of various data with a sensor.
  • the data transmission device 80 is included in the automatic departure/arrival system 100, which will be described later, and exchanges various signals with the data transmission device 40 mounted on the vertical take-off and landing aircraft 1 by wireless communication.
  • the operation display unit 90 is a user interface for an operator on board the ship 5 to grasp the control status and input various instructions.
  • the instruction input by the operator through the operation display unit 90 includes, for example, a control mode transition instruction, which will be described later. Details of the migration instruction will be described later.
  • An instruction input through the operation display unit 90 is transmitted from the data transmission device 80 to the data transmission device 40 .
  • the control status of the vertical take-off and landing aircraft 1 is transmitted from the data transmission device 40 to the data transmission device 80 . That is, the data transmission device 40 and the data transmission device 80 are capable of two-way communication.
  • the anemometer 95 is included in the automatic departure/arrival system 100, which will be described later, in the same way as the data transmission device 80, and measures and acquires the direction and wind speed of the relative wind on the ship 5.
  • FIG. The relative wind is the relative wind flow between the ship 5 and the air.
  • the anemometer 95 transmits the measured direction and wind speed of the relative wind from the data transmission device 80 to the data transmission device 40 .
  • An automatic takeoff and landing system 100 for a vertical takeoff and landing aircraft 1 is a system that controls the position of the vertical takeoff and landing aircraft 1 in order to land the vertical takeoff and landing aircraft 1 in flight at a landing target point 2 .
  • the automatic take-off and landing system 100 is mounted on the vertical take-off and landing aircraft 1 and the ship 5 .
  • the automatic departure/arrival system 100 includes a camera 10, a navigation device 20, a control section 30, and a data transmission device 40, as shown in FIG.
  • the control unit 30 of the automatic take-off and landing system 100 uses the control unit mounted on the vertical take-off and landing aircraft 1, but the control unit mounted on the ship 5 may be used.
  • the control section of the take-off/landing aircraft 1 and the control section of the ship 5 may be made to cooperate with each other.
  • the camera 10 is mounted on the vertical take-off and landing aircraft 1 via a gimbal (not shown).
  • the camera 10 may be a monocular camera, a compound eye camera, an infrared camera, or the like as long as it can photograph the marker 7 .
  • a camera 10 is provided to photograph the marker 7 provided at the landing target point 2 from the vertical take-off and landing aircraft 1 .
  • the camera 10 can adjust its shooting direction via a gimbal (not shown).
  • the camera 10 is controlled by the control unit 30 so that its photographing range (angle of view) B (see FIG. 2) faces directly downward in the vertical direction, for example.
  • the camera 10 may be controlled by the control unit 30 so that the imaging range B faces obliquely forward with respect to the vertical direction.
  • the camera 10 may be fixed directly below the fuselage of the vertical take-off/landing aircraft 1 so that the camera 10 may omit the gimbal, and the shooting direction may be directed downward in the vertical direction, for example.
  • the navigation system 20, like the navigation system 70, is, for example, an inertial navigation system including GPS.
  • the navigation device 20 may be an inertial navigation device including a position measurement unit such as GPS, or may be an inertial navigation device without a position measurement unit such as GPS, similar to the navigation device 70. It is not particularly limited.
  • a navigation device 20 including a GPS obtains the attitude angles of the vertical take-off and landing aircraft 1 in the pitch direction and the roll direction, the heading, the aircraft speed and acceleration of the vertical take-off and landing aircraft 1, the position coordinates in the earth coordinate system, and the like.
  • the navigation device 20 includes an attitude angle sensor for detecting the attitude angle of the vertical take-off and landing aircraft 1, a speed detection sensor for detecting the aircraft speed of the vertical take-off and landing aircraft 1, an acceleration detection sensor for detecting the aircraft acceleration of the vertical take-off and landing aircraft 1, a vertical It may have a sensor for detecting the heading of the take-off/landing aircraft 1 .
  • the navigation device 20 outputs the acquired attitude angle, body speed, body acceleration, and position coordinates of the vertical take-off and landing aircraft 1 to the control unit 30 .
  • the automatic takeoff/landing system 100 includes an altitude sensor 25 that detects the altitude of the vertical take-off and landing aircraft 1 from the ground surface or water surface.
  • the altitude sensor 25 is, for example, a laser altimeter, and measures the relative altitude ⁇ h (see FIG. 2) from the vertical takeoff/landing aircraft 1 to the landing target point 2 .
  • a radio altimeter may be used, a barometric altimeter may be used, or any altimeter may be used.
  • these altimeters may be used in appropriate combination according to the usage environment, that is, in order to measure the altitude from the surface of the ground and the altitude from the surface of the sea.
  • the altitude sensor 25 outputs the detected relative altitude ⁇ h of the vertical take-off and landing aircraft 1 to the control unit 30 .
  • the altitude sensor 25 measures the altitude of the vertical take-off and landing aircraft 1 and outputs it to the control unit 30, and the control unit 30 calculates the landing target point 2 relative altitude ⁇ h (see FIG. 2) may be calculated.
  • the automatic takeoff/arrival system 100 is not limited to the altitude sensor 25, and the image processing unit 32, which will be described later, performs image processing on the image including the marker 7 captured by the camera 10, so that the vertical takeoff/landing aircraft 1 and the ship 5 can be detected.
  • the relative altitude ⁇ h may be calculated.
  • the control unit 30 has an image processing unit 32 , a guidance calculation unit 34 and a flight control unit 36 .
  • the control unit 30 includes a photographing control unit (not shown) that controls the photographing direction of the camera 10 via a gimbal (not shown) provided in the vertical take-off and landing aircraft 1 .
  • the photographing range B of the camera 10 is adjusted so as to face directly downward in the vertical direction.
  • the image processing unit 32 performs image processing on the image captured by the camera 10 to calculate the center of the marker 7, that is, the landing target point 2.
  • the center here is a coordinate point in a camera-fixed coordinate system with the center of the image captured by the camera 10 as the origin, and can be calculated from the number of pixels from the image center.
  • the landing target point 2 is not limited to the center of the marker 7 , and may be any of the four corners of the marker 7 or may be offset from the center of the marker 7 .
  • the image processing unit 32 performs image processing on the image including the marker 7 captured by the camera 10 to calculate the relative altitude ⁇ h between the vertical take-off/landing aircraft 1 and the vessel 5. good too. Further, the image processing unit 32 performs image processing on the image including the marker 7 captured by the camera 10 to identify the orientation of the marker 7, and the heading of the vertical take-off and landing aircraft 1 acquired by the navigation device 20. You may calculate the heading of the ship 5 by matching. Note that the ship 5 may be provided with a separate marker for calculating the heading.
  • the guidance calculation unit 34 calculates the control amount of the vertical take-off and landing aircraft 1 for guiding the vertical take-off and landing aircraft 1 to the landing target point 2 .
  • the control amount is a control amount for adjusting the body speed of the vertical take-off and landing aircraft 1, the attitude angle, the change rate of the attitude angle, and the like.
  • the guidance calculation unit 34 calculates the relative position (X, Y) between the vertical take-off/landing aircraft 1 and the landing target point 2 and the relative velocity between the vertical take-off/landing aircraft 1 and the landing target point 2 in order to calculate the control amount.
  • the guidance calculation unit 34 calculates the center of the marker 7 calculated by the image processing unit 32, the orientation of the camera 10, that is, the heading of the vertical take-off and landing aircraft 1, and the altitude of the vertical take-off and landing aircraft 1 (relative altitude ⁇ h with respect to the landing target point 2). ), the relative position (X, Y) between the vertical take-off and landing aircraft 1 and the landing target point 2 is calculated.
  • the azimuth of the camera 10 and the heading of the vertical take-off and landing aircraft 1 are made to match, but there is no particular limitation, and the azimuth of the camera 10 and the heading of the vertical take-off and landing aircraft 1 may not may
  • the relative position (X, Y) is the distance between the vertical takeoff/landing aircraft 1 and the landing target point 2 in the horizontal direction.
  • the guidance calculation unit 34 converts the center of the marker 7 in the camera-fixed coordinate system calculated by the image processing unit 32 into the heading of the vertical take-off/landing aircraft 1 and the altitude of the vertical take-off/landing aircraft 1 (landing target point 2 relative altitude ⁇ h) to the relative position of the vertical takeoff and landing aircraft 1 and the landing target point 2 in the ship inertial system, and further, the relative position of the vertical takeoff and landing aircraft 1 and the landing target point 2 in the aircraft inertial system ( X, Y).
  • the guidance calculation unit 34 calculates the vertical take-off and landing aircraft 1 and the landing target point 2 may be directly converted into a relative position (X, Y).
  • the ship inertial system is a coordinate system with the landing target point 2 as the origin, the direction along the heading of the ship 5, the direction perpendicular to the heading of the ship 5 in the horizontal direction, and the vertical direction as orthogonal axes.
  • the aircraft inertial frame has the vertical take-off and landing aircraft 1 as the origin, the direction along the heading of the vertical take-off and landing aircraft 1 as the X axis, and the heading and horizontal direction of the vertical take-off and landing aircraft 1 as It is a coordinate system in which the orthogonal direction is the Y axis and the vertical direction is the Z axis.
  • the guidance calculation unit 34 calculates the relative speed between the vertical take-off and landing aircraft 1 and the landing target point 2. More specifically, the guidance calculation unit 34 calculates the relative speed based on the difference between the body speed of the vertical take-off/landing aircraft 1 and the body speed of the ship 5, which are obtained by the navigation devices 20 and 70, for example. Further, the guidance calculation unit 34 may calculate the relative velocity based on the pseudo-differentiation of the relative position (X, Y). The guidance calculation unit 34 also calculates the relative azimuth between the heading of the vertical take-off and landing aircraft 1 and the heading of the ship 5 .
  • the guidance calculation unit 34 calculates the relative altitude ⁇ h to the landing target point 2 based on the altitude of the vertical take-off and landing aircraft 1 detected by the altitude sensor 25 .
  • the relative altitude ⁇ h between the vertical take-off/landing aircraft 1 and the vessel 5 may be calculated by performing image processing on the image including the marker 7 captured by the camera 10 in the image processing unit 32 .
  • the guidance calculation unit 34 calculates a control amount by feedback control (for example, PID control) based on the relative position (X, Y), relative velocity, relative heading, and body acceleration.
  • the guidance calculation unit 34 calculates the control amount of the vertical take-off/landing aircraft 1 by feedback control so that the relative position (X, Y) becomes zero.
  • the guidance calculation unit 34 calculates the control amount of the vertical take-off/landing aircraft 1 by feedback control so that the relative azimuth becomes a predetermined azimuth.
  • the predetermined azimuth is a range that satisfies that the vertical take-off and landing aircraft 1 can stably fly even under the influence of the relative wind.
  • the guidance calculation unit 34 calculates the control amount of the vertical take-off/landing aircraft 1 by feedback control so that the relative speed is within a predetermined speed and the aircraft acceleration is within a predetermined acceleration. Within the predetermined speed and within the predetermined acceleration are ranges that satisfy that the vertical take-off/landing aircraft 1 is in a state capable of stably flying at a predetermined relative altitude ⁇ h. For example, the predetermined speed is zero and the predetermined acceleration is zero.
  • the guidance calculation unit 34 outputs the calculated control amount to the flight control unit 36 .
  • the guidance computation unit 34 controls the vertical take-off/landing aircraft 1 in a plurality of control modes in order to guide the vertical take-off/landing aircraft 1 to the landing target point 2 for landing in such calculation of the control amount.
  • the multiple control modes include an approach mode, a hovering mode including a high altitude hovering mode and a low altitude hovering mode, and a landing mode. Details of each control mode will be described later.
  • the flight control unit 36 causes the vertical take-off and landing aircraft 1 to fly by controlling each component of the vertical take-off and landing aircraft 1 according to the control amount calculated by the guidance calculation unit 34, which will be described later.
  • the flight control unit 36 controls the blade pitch angle, rotation speed, etc. of each rotor according to the control amount, and adjusts the body speed, attitude angle, attitude angle change rate, etc. of the vertical take-off and landing aircraft 1 . Thereby, the vertical take-off and landing aircraft 1 is guided to the landing target point 2 .
  • the image processing unit 32 and the guidance calculation unit 34 are described as functional units separate from the flight control unit 36. However, the flight control unit 36, the image processing unit 32, and the guidance calculation unit 34 are integrated. It may be a functional part. That is, the flight control unit 36 may perform the processing of the image processing unit 32 and the guidance calculation unit 34 .
  • FIG. 3 is a flow chart showing an example of the procedure of the departure/arrival control method during landing of the vertical take-off and landing aircraft according to the present embodiment.
  • FIG. 4 is an explanatory diagram showing the landing operation of the vertical take-off and landing aircraft according to this embodiment.
  • FIG. 5 is a flow chart showing an example of the procedure of the departure/arrival control method during landing of the vertical take-off and landing aircraft according to the present embodiment.
  • FIG. 6 is an explanatory diagram illustrating patterns of takeoff/arrival control during landing of the vertical take-off and landing aircraft according to the present embodiment.
  • the vertical take-off and landing aircraft 1 executes a plurality of control modes in a series of landing operations for landing (landing) on the vessel 5 from a flight state. Specifically, the vertical take-off and landing aircraft 1 performs step S1 for executing the return mode, step S2 for executing the approach mode and the high altitude hovering mode, step S3 for executing the low altitude hovering mode, and step S3 for executing the landing mode.
  • a series of landing operations are performed by performing S4 in order.
  • the return mode is a mode in which the vertical take-off and landing aircraft 1 is moved toward the ship 5 and moved to the return position P (see FIG. 6) in the vicinity of the ship 5 in response to a command from the ship 5.
  • the approach mode is a mode in which the vertical take-off and landing aircraft 1 approaches the deck of the ship 5 from the return position P (S2).
  • the return position P is an arbitrary position, and may be, for example, a position where the ship 5 is entered from the side (in the width direction).
  • the high-altitude hovering mode is a mode in which the vertical take-off and landing aircraft 1 shifts when the camera 10 captures the marker 7 on the deck when the approach mode is executed, and the landing target point 2 is the imaging range (image) of the camera 10. It is in a hovering mode so as to come to the center of corner B (S2). In the low-altitude hovering mode, the vertical take-off and landing aircraft 1 descends and hovers at a lower altitude than in the high-altitude hovering mode (S3).
  • the landing mode is a mode in which the vertical take-off and landing aircraft 1 lands at the landing target point 2 (S4).
  • the automatic takeoff/arrival system 100 executes the takeoff/arrival control shown in FIG.
  • the take-off/arrival control shown in FIG. 5 is a control for causing the heading of the vertical take-off/landing aircraft 1 to face the direction of the relative wind during the landing operation.
  • the departure/arrival control shown in FIG. 5 is executed during execution of the return mode or after completion of the return mode and immediately before shifting to the approach mode. Note that the departure/arrival control shown in FIG. 5 is not particularly limited to the timing described above, and may be performed at any timing as long as it is before landing at the landing target point 2 .
  • the ship 5 measures and acquires the direction and wind speed of the relative wind by the anemometer 95, and the control unit 30 of the vertical takeoff and landing aircraft 1 acquires the direction and wind speed of the relative wind acquired by the ship 5. acquire (step S11).
  • the control unit 30 acquires the direction of the relative wind measured by the anemometer 95, but the control unit 30 acquires the direction of the relative wind according to the input of the operator who operates the vertical take-off and landing aircraft 1. good too.
  • the control unit 30 of the vertical take-off and landing aircraft 1 acquires the heading of the vertical take-off and landing aircraft 1 from the navigation device 20 (step S12).
  • the control unit 30 performs flight control of the vertical take-off/landing aircraft 1 based on the obtained azimuth of the relative wind and the azimuth of the aircraft so that the azimuth of the relative wind and the azimuth of the aircraft are opposed to each other (step S13). Specifically, in step S13, the azimuth (relative wind angle) of the relative wind coming from the front of the ship 5 is used as the reference (0 deg). Then, in step S13, when the relative wind is in a predetermined direction, the vertical take-off/landing aircraft 1 is flight-controlled so that the heading and the direction obtained by adding the direction of the relative wind to the heading are matched.
  • the control unit 30 controls the flight of the vertical take-off and landing aircraft 1 in step S13
  • the flight control of the vertical take-off and landing aircraft 1 may be performed by an operator who operates the vertical take-off and landing aircraft 1.
  • step S13 the control unit 30 determines whether or not the azimuth of the relative wind and the heading are opposed to each other, that is, whether or not the azimuth of the heading matches the azimuth obtained by adding the azimuth of the relative wind to the heading. (step S14).
  • step S14 determines in step S14 that the direction of the relative wind and the heading direction are opposed (step S14: Yes)
  • step S14: No the process proceeds to step S13 again, and the direction of the relative wind and the heading Flight control is executed until the azimuth is opposite.
  • step S4 the control unit 30 executes a series of controls related to the landing operation shown in FIG. 4 to land the vertical take-off/landing aircraft 1 at the landing target point 2 (step S4).
  • the control unit 30 executes the following control based on the wind speed of the relative wind acquired by the anemometer 95.
  • the control unit 30 determines whether the wind speed of the relative wind is greater than or equal to the first wind speed. It is determined whether there is The first wind speed and the second wind speed are wind speeds when the relative wind speed is high, and the first wind speed is higher than the second wind speed.
  • the first wind speed is set as a wind speed at which safe departure and arrival is difficult and at which arrival and departure control is not desirable.
  • the second wind speed is a wind speed at which departure/arrival control can be performed, but the influence of a turbulent area formed by the structure of the ship 5 (to be described later) increases.
  • the first wind speed is 35 kt
  • the second wind speed is 20 kt.
  • the first wind speed and the second wind speed are not particularly limited to the above numerical values.
  • the control part 30 performs step S12 or subsequent ones, when the wind speed of the acquired relative wind is smaller than a 2nd wind speed.
  • the control unit 30 controls the speed of the first wind speed with respect to the ship 5 and the vertical take-off and landing aircraft 1 without executing the take-off/arrival control of the vertical take-off and landing aircraft 1 .
  • An instruction to move to an area smaller than is output.
  • the control unit 30 prompts the operator to move the ship 5 by causing the operation display unit 90 of the ship 5 to display information indicating that the ship 5 will move to a region lower than the first wind speed. .
  • control unit 30 notifies the operator of the vertical take-off and landing aircraft 1 of information to the effect that the vertical take-off and landing aircraft 1 will move to an area where the wind speed is lower than the first wind speed, thereby prompting the operator to move the vertical take-off and landing aircraft 1 .
  • control unit 30 executes flight control of the vertical take-off and landing aircraft 1 and movement control of the vessel 5 when the vertical take-off and landing aircraft 1 and the vessel 5 are unmanned aircraft.
  • the control unit 30 outputs an instruction to move to a region where the wind speed is lower than the first wind speed.
  • the vessel 5 may be moved to an area where the wind speed is less than the first wind speed.
  • the control unit 30 controls the turbulence avoidance area for avoiding the turbulence area generated at the landing target point 2 by the relative wind. Execute control. That is, by controlling the movement of the vessel 5 so that the vertical take-off and landing aircraft 1 can enter the vessel 5 while avoiding the turbulent area formed by the structure of the vessel 5 to be described later, the position of the turbulent area formed by to control.
  • the turbulence avoidance control for example, the movement of the ship 5 is controlled so that the heading is ⁇ 120 degrees or less with respect to the direction of the relative wind. Note that ⁇ 120 deg or less is a range from ⁇ 120 deg to +120 deg via 0 deg.
  • ⁇ 120 deg or less is used when the landing target point 2 is provided on the bow side of the ship 5 .
  • the control unit 30 performs turbulence avoidance control so that the heading of the ship 5 is ⁇ 30 degrees or more with respect to the direction of the relative wind. Control movement.
  • ⁇ 30 deg or more is a range from -30 deg to +30 deg via 180 deg.
  • the control unit 30 performs The operator may be notified by displaying information for reducing the wind speed below the second wind speed on the operation display unit 90 of the vessel 5 .
  • step S13 when the relative wind is in a predetermined direction, the vertical take-off/landing aircraft 1 is flight-controlled so that the heading and the direction obtained by adding the direction of the relative wind to the heading are matched.
  • the directions of the relative wind are 0deg, 30deg, 60deg, 90deg, 120deg, 150deg, and 180deg in order from the left side of FIG. 6, the vertical take-off and landing aircraft 1 is positioned at the return position P. As shown in FIG.
  • the control unit 30 of the vertical take-off and landing aircraft 1 executes flight control so that the heading matches the heading. Therefore, when the vertical take-off/landing aircraft 1 approaches the ship 5, the heading and the heading are the same.
  • the control unit 30 of the vertical take-off/landing aircraft 1 derives the azimuth obtained by adding 30 deg to the heading (azimuth + 30 deg), and controls the flight so that the azimuth coincides with the azimuth + 30 deg. Execute control. Therefore, when the vertical take-off and landing aircraft 1 approaches the vessel 5, the heading is tilted by 30 degrees with respect to the heading.
  • the control unit 30 of the vertical take-off and landing aircraft 1 derives the azimuth obtained by adding 60 deg or 90 deg to the heading (azimuth +60 deg, azimuth +90 deg). is aligned with heading +60 deg or heading +90 deg. Therefore, when the vertical take-off and landing aircraft 1 approaches the vessel 5, the heading is tilted by 60 degrees or 90 degrees with respect to the heading.
  • the control unit 30 of the vertical take-off/landing aircraft 1 determines the direction obtained by adding 120deg, 150deg or 180deg to the heading (heading +120deg, heading +150deg, heading +180deg). to derive
  • the control unit 30 performs flight control so that the heading coincides with heading +120 degrees, heading +150 degrees, or heading +180 degrees.
  • the vertical take-off and landing aircraft 1 when the vertical take-off and landing aircraft 1 approaches the vessel 5, the heading is tilted by 120 degrees, 150 degrees, or 180 degrees with respect to the heading. Therefore, the vertical take-off/landing aircraft 1 can be landed at the landing target point 2 with a heading that is less likely to be affected by the turbulence area E.
  • FIG. 7 is an explanatory diagram showing the takeoff operation of the vertical take-off and landing aircraft according to this embodiment.
  • FIG. 8 is a flow chart showing an example of the procedure of the departure/arrival control method at the time of takeoff of the vertical take-off and landing aircraft according to the present embodiment.
  • FIG. 9 is an explanatory diagram illustrating patterns of takeoff/arrival control during takeoff of the vertical takeoff and landing aircraft according to the present embodiment.
  • the takeoff operation of the vertical takeoff and landing aircraft 1 will be described with reference to FIGS.
  • the vertical takeoff/landing aircraft 1 performs a takeoff mode in a series of takeoff operations for taking off (taking off from the ship) from the ship 5 .
  • the vertical take-off/landing aircraft 1 executes the take-off/arrival control shown in FIG. 8 before executing the take-off mode.
  • the ship 5 is provided with a heading changer 98 that changes the heading of the vertical take-off and landing aircraft 1 that has landed at the landing target point 2 .
  • the heading changing unit 98 is, for example, a rotary table and is controlled by the ship 5 side.
  • the ship 5 measures and acquires the direction and wind speed of the relative wind by the anemometer 95, and the control unit 30 of the vertical takeoff and landing aircraft 1 acquires the direction and wind speed of the relative wind acquired by the ship 5. acquire (step S21). Subsequently, the control unit 30 of the vertical take-off and landing aircraft 1 acquires the heading of the vertical take-off and landing aircraft 1 from the navigation device 20 (step S22). Next, the ship 5 acquires the heading obtained by the vertical take-off and landing aircraft 1, and controls the heading changing unit 98 so that the obtained heading of the relative wind and the heading are opposed to each other (step S23 ).
  • step S23 as in step S13, the heading changing unit 98 changes the heading so that the heading and the heading obtained by adding the relative wind direction to the heading match. .
  • the control unit 30 determines whether or not the azimuth of the relative wind and the heading are opposed to each other, that is, whether or not the azimuth of the heading and the azimuth obtained by adding the azimuth of the relative wind to the heading are matched. (step S24).
  • step S24 determines in step S24 that the direction of the relative wind and the heading direction are opposed (step S24: Yes)
  • the control unit 30 shifts to takeoff mode (step S25).
  • step S24 the control unit 30 determines that the direction of the relative wind does not face the heading (step S24: No).
  • step S23 the process proceeds to step S23 again, and the heading of the vertical take-off/landing aircraft 1 is changed by the heading changing section 98 until the heading of the relative wind and the heading of the vertical take-off/landing aircraft 1 oppose each other.
  • the control unit 30 After shifting to the takeoff mode in step S ⁇ b>25 , the control unit 30 causes the vertical takeoff/landing aircraft 1 to take off from the landing target point 2 . Note that the control based on the wind speed of the relative wind is the same control during the takeoff operation of the vertical takeoff/landing aircraft 1 as that during the landing operation of the vertical takeoff/landing aircraft 1 .
  • step S23 when the relative wind is in a predetermined direction, the heading changing unit 98 adjusts the heading so that the heading and the heading obtained by adding the relative wind to the heading match. Heading is changed.
  • the directions of the relative wind are 0deg, 30deg, 60deg, 90deg, 120deg, 150deg, and 180deg in order from the left side of FIG.
  • the ship 5 When the direction of the relative wind is 0 degrees, the ship 5 performs heading change control by the heading changing unit 98 so that the heading matches the heading. Therefore, the vertical take-off and landing aircraft 1 is in a state where the heading and the heading match.
  • the control unit 30 of the vertical take-off and landing aircraft 1 derives the azimuth (azimuth + 30 deg) by adding 30 deg to the azimuth.
  • the ship 5 performs heading change control by the heading changing unit 98 so that the heading coincides with the heading +30 degrees. Therefore, the vertical take-off and landing aircraft 1 is in a state in which the heading is tilted by 30 degrees with respect to the heading.
  • the control unit 30 of the vertical take-off and landing aircraft 1 adds 60deg or 90deg to the heading (heading +60deg, heading +90deg) to derive the azimuth.
  • the ship 5 performs heading change control by the heading changing section 98 so that the heading coincides with heading +60 degrees or heading +90 degrees. Therefore, the vertical take-off and landing aircraft 1 is in a state in which the heading is inclined by 60 degrees or 90 degrees with respect to the heading.
  • the control unit 30 of the vertical take-off/landing aircraft 1 determines the direction obtained by adding 120deg, 150deg or 180deg to the heading (heading +120deg, heading +150deg, heading +180deg). to derive A turbulent area E is formed on the bow side during takeoff as well as during landing. Even in this case, the ship 5 performs heading change control by the heading changing unit 98 so that the heading coincides with heading +120 degrees, heading +150 degrees, or heading +180 degrees. Therefore, the vertical take-off/landing aircraft 1 is in a state in which the heading is inclined by 120 degrees, 150 degrees, or 180 degrees with respect to the heading. Therefore, the vertical take-off/landing aircraft 1 can take off from the landing target point 2 with a heading that is less likely to be affected by the turbulence area E.
  • the vertical take-off and landing aircraft 1 is controlled so that the heading and the direction of the relative wind match.
  • it may include a heading error angle, which is an error angle between the heading and the heading of the relative wind.
  • the angle at which the heading of the aircraft and the heading of the relative wind are opposed to each other is defined as a reference angle of 0 deg.
  • the control unit 30 may cause the heading to face the direction of the relative wind within a range where the heading error angle is ⁇ 30 degrees with respect to the reference angle of 0 degrees. That is, the heading of the vertical take-off and landing aircraft 1 does not have to match the direction of the relative wind, and may be ⁇ 30 degrees with respect to the direction of the relative wind. For example, as shown in FIG.
  • the heading direction of the vertical take-off/landing aircraft 1 is 90 degrees with respect to the heading direction of the ship 5 . Therefore, by setting the heading error angle to ⁇ 30 degrees, for example, the heading direction of the vertical take-off/landing aircraft 1 may be set to 60 degrees with respect to the heading of the ship 5 .
  • the automatic takeoff and landing system 100 is installed on the vertical takeoff and landing aircraft 1 and the ship 5, but it may be installed only on the vertical takeoff and landing aircraft 1. In this case, it is necessary to obtain the relative wind direction and wind speed at the ship 5, which can be derived from the speed of the ship 5 and the true wind in the ground coordinate system. Therefore, when the automatic takeoff and landing system 100 is installed only in the vertical take-off and landing aircraft 1, it can be realized by acquiring the speed of the ship 5 and the true wind direction and wind speed in the ground coordinate system.
  • the heading changing unit 98 is controlled by the ship 5, but may be controlled by the control unit 30 of the vertical take-off and landing aircraft 1.
  • the automatic takeoff and landing system for a vertical takeoff and landing aircraft As described above, the automatic takeoff and landing system for a vertical takeoff and landing aircraft, the vertical takeoff and landing aircraft, and the takeoff and landing control method for the vertical takeoff and landing aircraft according to the present embodiment are grasped as follows, for example.
  • An automatic take-off and landing system 100 for a vertical take-off and landing aircraft 1 includes a relative wind information acquisition unit (wind direction and speed meter 95) that acquires the direction of the relative wind in a moving object (ship 5), and a control unit 30 that executes take-off and landing control for taking off and landing the vertical take-off and landing aircraft 1 at the landing target point 2, wherein the control unit 30 acquires in the relative wind information acquisition unit at the time of take-off and arrival of the vertical take-off and landing aircraft Based on the azimuth of the relative wind, the departure/arrival control is executed in a state in which the heading of the vertical take-off/landing aircraft 1 is opposed to the azimuth of the relative wind.
  • a relative wind information acquisition unit wind direction and speed meter 95
  • control unit 30 that executes take-off and landing control for taking off and landing the vertical take-off and landing aircraft 1 at the landing target point 2
  • the control unit 30 acquires in the relative wind information acquisition unit at the time of take-off and arrival of the vertical take-off
  • the vertical take-off and landing aircraft 1 can take off and land with the heading of the vertical take-off and landing aircraft 1 facing the direction of the relative wind.
  • the vertical take-off and landing aircraft 1 can be made less susceptible to the relative wind, and the vertical take-off and landing aircraft 1 can take off and land regardless of the direction of the relative wind. Therefore, the take-off and landing restrictions due to the relative wind can be relaxed, and the take-off and landing of the vertical take-off and landing aircraft 1 at the landing target point 2 can be performed favorably.
  • the relative wind information acquiring unit acquires the wind speed of the relative wind
  • the control unit acquires the wind velocity acquired by the relative wind information acquiring unit when the vertical take-off and landing aircraft 1 takes off and arrives. Turbulence for avoiding a turbulence area generated at the landing target point by the relative wind when control based on the wind speed of the relative wind is executed and the wind speed of the relative wind is greater than or equal to a second wind speed. Perform avoidance control.
  • the turbulence avoidance control is executed to avoid the turbulence area generated at the landing target point. It is possible to make it difficult to be affected by the relative wind.
  • the control unit 30 does not execute the take-off/arrival control of the vertical take-off/landing aircraft 1 when the relative wind speed is equal to or higher than a first wind speed, which is higher than the second wind speed.
  • the moving body and the vertical take-off and landing aircraft 1 are instructed to move to an area where the wind speed is lower than the first wind speed.
  • the moving body and the vertical take-off and landing aircraft 1 can be encouraged to move to the region where the wind speed of the relative wind is weak. Safe departure and arrival at the landing target point 2 of 1 can be performed.
  • the control unit 30 when the wind speed of the relative wind is equal to or higher than the second wind speed, the control unit 30 causes the operator who operates the moving body to make the wind speed lower than the second wind speed.
  • the moving body when the wind speed of the relative wind is strong wind equal to or higher than the second wind speed, the moving body can be caused to move to weaken the wind speed of the relative wind, and the landing target of the vertical take-off and landing aircraft 1 can be set. A safe arrival and departure to point 2 can be made.
  • the control unit 30 instructs the operator operating the moving body to Information for making the wind speed smaller than 1 is notified.
  • the moving body when the wind speed of the relative wind is a strong wind equal to or higher than the first wind speed, the moving body can be caused to move to weaken the wind speed of the relative wind, and the landing target of the vertical take-off and landing aircraft 1 can be controlled. A safe arrival and departure to point 2 can be made.
  • an error angle formed by the heading and the relative wind direction is defined as a heading error angle, and an angle at which the heading and the relative wind direction face and match is a reference angle. Assuming that it is 0 deg, the control unit 30 causes the heading to face the azimuth of the relative wind within the range where the heading error angle is 0 ⁇ 30 deg with respect to the reference angle of 0 deg.
  • the mobile body is a ship 5 and the landing target point 2 is provided on the bow side of the ship 5 .
  • the control unit 30 controls the vertical takeoff and landing aircraft 1 At the time of takeoff, when the heading of the vertical take-off and landing aircraft 1 changed by the heading changing unit 98 and the direction of the relative wind acquired by the relative wind information acquiring unit face each other, the landing The vertical take-off and landing aircraft 1 is caused to take off from the target point 2 .
  • the heading of the vertical take-off/landing aircraft 1 at the landing target point 2 is changed by the heading changing unit 98, so that the vertical take-off/landing aircraft 1 takes off while facing the direction of the relative wind.
  • the vertical takeoff and landing aircraft 1 includes the automatic takeoff and landing system 100 of the vertical takeoff and landing aircraft 1 described above.
  • a takeoff/landing control method for a vertical takeoff/landing aircraft includes automatic takeoff/arrival of a vertical takeoff/landing aircraft 1 that executes takeoff/arrival control for taking off/arriving the vertical takeoff/landing aircraft 1 from a landing target point 2 provided on a moving object (ship 5).
  • S13, S23, and steps S4, S25 of landing and taking off the vertical take-off/landing aircraft 1 from the landing target point 2 are executed.
  • the vertical take-off and landing aircraft 1 can take off and land with the heading of the vertical take-off and landing aircraft 1 facing the direction of the relative wind.
  • the vertical take-off and landing aircraft 1 can be made less susceptible to the relative wind, and the vertical take-off and landing aircraft 1 can take off and land regardless of the direction of the relative wind. Therefore, the take-off and landing restrictions due to the relative wind can be relaxed, and the take-off and landing of the vertical take-off and landing aircraft 1 at the landing target point 2 can be performed favorably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

垂直離着陸機の自動発着システムは、移動体における相対風の方位を取得する相対風情報取得部と、前記移動体上に設けられる着陸目標点に、垂直離着陸機を発着させる発着制御を実行する制御部と、を備え、前記制御部は、前記垂直離着陸機の発着時において、前記相対風情報取得部において取得した前記相対風の方位に基づいて、前記垂直離着陸機の機首方位を前記相対風の方位に対向させた状態で、前記発着制御を実行する。

Description

垂直離着陸機の自動発着システム、垂直離着陸機および垂直離着陸機の発着制御方法
 本開示は、垂直離着陸機の自動発着システム、垂直離着陸機および垂直離着陸機の発着制御方法に関するものである。
 従来、所定の着陸地点への航空機の着陸を支援する航空機の着陸支援装置が知られている(例えば、特許文献1参照)。この着陸支援装置は、着陸地点周辺の形状と、着陸地点上空の風向及び風速とに基づいて、着陸地点の風向及び風速を高精度に推定している。
特開2020-045049号公報
 ところで、垂直離着陸機等の航空機が、船舶等の移動体上にある着陸地点に発着陸する場合、垂直離着陸機の機首方位と、船舶の船首方位とを一致させて、垂直離着陸機の着陸地点への発着陸を行っている。このとき、垂直離着陸機は、垂直離着陸機に対する相対的な風である相対風の影響を考慮して、着陸地点への発着陸を行っている。船舶及び垂直離着陸機には、安全な発着陸が可能なように、相対風による発着制限が設定されている。相対風による発着制限としては、安全な発着陸が可能な相対風の風向き(方位)と風の強さ(風速)との範囲であり、この範囲内において、垂直離着陸機の着陸地点への発着陸を行っている。
 しかしながら、相対風による発着制限の範囲外となる場合において、航行しているときには、発着制限の範囲内となるように、一時的に、垂直離着陸機の機首方位及び船舶の船首方位を変更する必要が生じる。船舶の船首方位を変更することは、船舶の針路を変更することになり、船舶の航行に影響が生じてしまう。
 そこで、本開示は、相対風による発着制限を緩和し、着陸目標点への発着陸を好適に行うことができる垂直離着陸機の自動発着システム、垂直離着陸機および垂直離着陸機の発着制御方法を提供することを課題とする。
 本開示の垂直離着陸機の自動発着システムは、移動体における相対風の方位を取得する相対風情報取得部と、前記移動体上に設けられる着陸目標点に、垂直離着陸機を発着させる発着制御を実行する制御部と、を備え、前記制御部は、前記垂直離着陸機の発着時において、前記相対風情報取得部において取得した前記相対風の方位に基づいて、前記垂直離着陸機の機首方位を前記相対風の方位に対向させた状態で、前記発着制御を実行する。
 本開示の垂直離着陸機は、上記の垂直離着陸機の自動発着システムを備える。
 本開示の垂直離着陸機の発着制御方法は、移動体上に設けられる着陸目標点に、垂直離着陸機を発着させる発着制御を実行する垂直離着陸機の自動発着システムに、前記移動体における相対風の方位を取得するステップと、取得した前記相対風の方位に基づいて、前記垂直離着陸機の機首方位を前記相対風の方位に対向させるステップと、前記着陸目標点に前記垂直離着陸機を発着させるステップと、を実行させる。
 本開示によれば、相対風による制限を緩和し、着陸目標点への着陸を好適に行うことができる。
図1は、本実施形態にかかる垂直離着陸機の自動発着システムの一例を示す概略構成図である。 図2は、本実施形態にかかる垂直離着陸機が着陸目標点に向かう様子を示す説明図である。 図3は、本実施形態にかかる垂直離着陸機の着陸時における発着制御方法の処理手順の一例を示すフローチャートである。 図4は、本実施形態にかかる垂直離着陸機の着陸動作を示す説明図である。 図5は、本実施形態にかかる垂直離着陸機の着陸時における発着制御方法の処理手順の一例を示すフローチャートである。 図6は、本実施形態にかかる垂直離着陸機の着陸時における発着制御のパターンを例示する説明図である。 図7は、本実施形態にかかる垂直離着陸機の離陸動作を示す説明図である。 図8は、本実施形態にかかる垂直離着陸機の離陸時における発着制御方法の処理手順の一例を示すフローチャートである。 図9は、本実施形態にかかる垂直離着陸機の離陸時における発着制御のパターンを例示する説明図である。
 以下に、本開示に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態により本開示が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能であり、また、実施形態が複数ある場合には、各実施形態を組み合わせることも可能である。
[実施形態]
 図1は、本実施形態にかかる垂直離着陸機の自動発着システムの一例を示す概略構成図であり、図2は、本実施形態にかかる垂直離着陸機が着陸目標点に向かう様子を示す説明図である。本実施形態にかかる垂直離着陸機1は、回転翼機としての飛行体(例えばヘリコプタ、ドローン等)である。本実施形態において、垂直離着陸機1は、無人機であり、機首及び機尾を含む方位性を有する機体となっている。具体的に、垂直離着陸機1は、無人ヘリコプタである。なお、垂直離着陸機1は、前進、後進、横進、旋回、ホバリングが可能な飛行体であればよく、有人機であってもよい。また、垂直離着陸機1が無人機である場合、自動操縦による無人機の飛行制御中において、遠隔手動操縦が実行されたときには、遠隔手動操縦に基づく飛行制御が優先される。同様に、垂直離着陸機1が有人機である場合、自動操縦による有人機の飛行制御中において、手動操縦が実行されたときには、手動操縦に基づく飛行制御が優先される。この垂直離着陸機1は、自動発着システム100を搭載しており、自動発着システム100により飛行が制御され、図2に示す着陸目標点2に着陸する。
(着陸目標点)
 本実施形態において、着陸目標点2は、図2に示すように、船舶5の船首側に設けられている。垂直離着陸機1は、水上を移動する移動体としての船舶5に着陸(着船)する。ただし、着陸目標点2は、船舶5の船首側に限らず、船舶5の船尾側に設けられてもよい。また、着陸目標点2は、地上を移動する移動体としての車両等に設けられてもよい。さらに、本実施形態において、船舶5は、有人船となっているが、無人船であってもよい。着陸目標点2には、垂直離着陸機1が着陸目標点2の位置を捕捉するためのマーカー7が設けられている。マーカー7は、画像処理により着陸目標点2の位置を捕捉することができるマーカーとなっている。
 (船舶)
 船舶5は、図1に示すように、航法装置70と、データ伝送装置80と、操作表示部90と、風向風速計(相対風情報取得部)95と、を備える。航法装置70は、例えば、慣性航法装置(INS:Inertial Navigation System)であり、船舶5のピッチ方向およびロール方向の姿勢角、船首方位、速度、加速度および地球座標系における位置座標等を取得する。なお、本実施形態において、航法装置70は、慣性航法装置に適用して説明するが、特に限定されず、いずれの航法装置70を用いてもよい。また、航法装置70は、本実施形態において、位置の計測精度を向上させるために、位置計測部としてのGPS(Global Positioning System)を含んだ慣性航法装置となっている。本実施形態では、GPSを含んだ慣性航法装置に適用して説明するが、GPSに特に限定されず、精度よく位置を計測可能な位置計測部であればよく、例えば、準天頂衛星システムを用いたものであってもよいし、航法装置70のみで精度よく位置を計測可能であれば、GPS等の位置計測部を省いた構成であってもよい。また、航法装置70は、各種データの少なくとも一部をセンサで取得するものとしてもよい。データ伝送装置80は、後述する自動発着システム100に含まれ、垂直離着陸機1に搭載されたデータ伝送装置40と無線通信により各種信号をやり取りする。操作表示部90は、船舶5に乗員するオペレータが制御ステータスを把握し、各種指示を入力するユーザーインターフェースである。操作表示部90によりオペレータが入力する指示としては、例えば、後述する制御モードの移行指示が含まれる。移行指示の詳細については、後述する。操作表示部90で入力された指示は、データ伝送装置80からデータ伝送装置40へと送信される。また、垂直離着陸機1の制御ステータスは、データ伝送装置40からデータ伝送装置80へ送信される。つまり、データ伝送装置40及びデータ伝送装置80は双方向通信が可能となっている。風向風速計95は、データ伝送装置80と同様に、後述する自動発着システム100に含まれ、船舶5における相対風の方位及び風速を計測し取得している。相対風は、船舶5と空気との相対的な風の流れである。風向風速計95は、計測した相対風の方位及び風速を、データ伝送装置80からデータ伝送装置40へと送信する。
(自動発着システム)
 本実施形態にかかる垂直離着陸機1の自動発着システム100は、飛行中の垂直離着陸機1を着陸目標点2に着陸させるために、垂直離着陸機1の位置を制御するシステムである。自動発着システム100は、垂直離着陸機1及び船舶5に搭載される。自動発着システム100は、図1に示すように、カメラ10と、航法装置20と、制御部30と、データ伝送装置40とを備える。なお、本実施形態において、自動発着システム100の制御部30は、垂直離着陸機1に搭載された制御部を用いているが、船舶5に搭載された制御部を用いてもよく、また、垂直離着陸機1の制御部及び船舶5の制御部を協働させたものであってもよい。
 カメラ10は、垂直離着陸機1に図示しないジンバルを介して搭載されている。カメラ10は、マーカー7を撮影することができれば、単眼カメラ、複眼カメラ、赤外線カメラ等であってもよい。カメラ10は、垂直離着陸機1から着陸目標点2に設けられたマーカー7を撮影するために設けられる。カメラ10は、図示しないジンバルを介して撮影方向を調整可能である。本実施形態において、カメラ10は、その撮影範囲(画角)B(図2参照)が、一例として、鉛直方向の真下を向くように制御部30によって制御される。なお、カメラ10は、撮影範囲Bが、鉛直方向に対して斜め前方側を向くように制御部30によって制御されてもよい。また、カメラ10は、ジンバルを省いてもよく、撮影方向が、例えば、鉛直方向の下方側を向くように、垂直離着陸機1の機体直下に固定してもよい。
 航法装置20は、航法装置70と同様に、例えば、GPSを含んだ慣性航法装置となっている。なお、航法装置20も、航法装置70と同様に、GPS等の位置計測部を含む慣性航法装置であってもよいし、GPS等の位置計測部を省いた慣性航法装置であってもよく、特に限定されない。GPSを含んだ航法装置20は、垂直離着陸機1のピッチ方向およびロール方向の姿勢角、機首方位、垂直離着陸機1の機体速度、機体加速度および地球座標系における位置座標等を取得する。なお、航法装置20は、垂直離着陸機1の姿勢角を検出する姿勢角センサ、垂直離着陸機1の機体速度を検出する速度検出センサ、垂直離着陸機1の機体加速度を検出する加速度検出センサ、垂直離着陸機1の機首方位を検出するセンサを有するものであってもよい。航法装置20は、取得した垂直離着陸機1の姿勢角、機体速度、機体加速度および位置座標を制御部30に出力する。
 また、自動発着システム100は、図1に示すように、垂直離着陸機1の地表面または水面からの高度を検出する高度センサ25を備えている。高度センサ25は、例えば、レーザ高度計であり、垂直離着陸機1から着陸目標点2までの相対高度Δh(図2参照)を計測している。なお、高度センサ25としては、電波高度計を用いてもよいし、気圧高度計を用いてもよく、いずれの高度計を用いてもよい。また、これらの高度計を、使用環境に応じて、すなわち地表面からの高度、海面からの高度を計測するために、適宜組み合わせて適用してもよい。高度センサ25は、検出した垂直離着陸機1の相対高度Δhを制御部30に出力する。なお、高度センサ25は、垂直離着陸機1の高度を計測して制御部30に出力し、制御部30は、後述する誘導演算部34において、垂直離着陸機1の高度に基づいて、着陸目標点2までの相対高度Δh(図2参照)を算出するものであってもよい。また、自動発着システム100は、高度センサ25に限らず、後述する画像処理部32において、カメラ10で撮影したマーカー7を含む画像に画像処理を施すことで、垂直離着陸機1と船舶5との相対高度Δhを算出するものであってもよい。
(制御部)
 制御部30は、画像処理部32と、誘導演算部34と、飛行制御部36とを有する。なお、制御部30は、垂直離着陸機1に設けられた図示しないジンバルを介して、カメラ10の撮影方向を制御する図示しない撮影制御部を備えている。本実施形態では、上述したように、カメラ10の撮影範囲Bが鉛直方向の真下を向くように調整される。
 画像処理部32は、カメラ10で撮影された画像に画像処理を施して、マーカー7の中心すなわち着陸目標点2を算出する。ここでの中心は、カメラ10で撮影された画像の中心を原点とするカメラ固定座標系における座標点であり、画像中心からの画素数により算出することができる。なお、着陸目標点2は、マーカー7の中心に限定されず、マーカー7の四隅のいずれかであってもよいし、マーカー7の中心からオフセットした位置であってもよい。
 また、画像処理部32は、上述したように、カメラ10で撮影したマーカー7を含む画像に画像処理を施すことで、垂直離着陸機1と船舶5との相対高度Δhを算出するものであってもよい。さらに、画像処理部32は、カメラ10で撮影したマーカー7を含む画像に画像処理を施すことで、マーカー7の向きを特定し、航法装置20で取得される垂直離着陸機1の機首方位と対応づけることで、船舶5の船首方位を算出してもよい。なお、船舶5に、船首方位を算出するためのマーカーを別途設けてもよい。
 誘導演算部34は、垂直離着陸機1を着陸目標点2に誘導するための垂直離着陸機1の制御量を算出する。制御量は、垂直離着陸機1の機体速度、姿勢角、姿勢角の変化レート等を調整するための制御量である。誘導演算部34は、制御量を算出するために、垂直離着陸機1と着陸目標点2との相対位置(X、Y)および垂直離着陸機1と着陸目標点2との相対速度を算出する。
 誘導演算部34は、画像処理部32で算出されたマーカー7の中心と、カメラ10の方位すなわち垂直離着陸機1の機首方位と、垂直離着陸機1の高度(着陸目標点2に対する相対高度Δh)とに基づいて、垂直離着陸機1と着陸目標点2との相対位置(X、Y)を算出する。なお、本実施形態では、カメラ10の方位と垂直離着陸機1の機首方位とを一致させたが、特に限定されず、カメラ10の方位と垂直離着陸機1の機首方位とを一致させなくてもよい。相対位置(X、Y)は、水平方向における垂直離着陸機1と着陸目標点2との距離となる。より詳細には、誘導演算部34は、画像処理部32で算出されたカメラ固定座標系におけるマーカー7の中心を、垂直離着陸機1の機首方位と垂直離着陸機1の高度(着陸目標点2に対する相対高度Δh)とに基づいて船慣性系における垂直離着陸機1と着陸目標点2との相対位置に変換し、さらに、航空機慣性系における垂直離着陸機1と着陸目標点2との相対位置(X、Y)に変換している。このとき、誘導演算部34は、垂直離着陸機1の機首方位と垂直離着陸機1の高度(着陸目標点2に対する相対高度Δh)とに基づいて航空機慣性系における垂直離着陸機1と着陸目標点2との相対位置(X、Y)に直接的に変換してもよい。なお、船慣性系は、着陸目標点2を原点として、船舶5の船首方位に沿った方向、船舶5の船首方位と水平方向で直交する方向、鉛直方向を直交軸とする座標系である。また、航空機慣性系は、図2に示すように、垂直離着陸機1を原点として、垂直離着陸機1の機首方位に沿った方向をX軸、垂直離着陸機1の機首方位と水平方向で直交する方向をY軸、鉛直方向をZ軸とする座標系である。
 また、誘導演算部34は、垂直離着陸機1と着陸目標点2との相対速度を算出する。より詳細には、誘導演算部34は、例えば、航法装置20、70で取得される垂直離着陸機1の機体速度と船舶5の船体速度との差分により、相対速度を算出する。また、誘導演算部34は、相対位置(X、Y)の擬似微分に基づいて相対速度を算出してもよい。また、誘導演算部34は、垂直離着陸機1の機首方位と船舶5の船首方位との相対方位を算出する。
 また、誘導演算部34は、高度センサ25で検出された垂直離着陸機1の高度に基づいて、着陸目標点2までの相対高度Δhを算出する。なお、画像処理部32において、カメラ10で撮影したマーカー7を含む画像に画像処理を施すことで、垂直離着陸機1と船舶5との相対高度Δhを算出してもよい。
 そして、誘導演算部34は、相対位置(X、Y)、相対速度、相対方位および機体加速度に基づいて、フィードバック制御(例えばPID制御)により制御量を算出する。本実施形態において、誘導演算部34は、相対位置(X、Y)がゼロとなるように、フィードバック制御によって垂直離着陸機1の制御量を算出する。また、誘導演算部34は、相対方位が所定方位となるように、フィードバック制御によって垂直離着陸機1の制御量を算出する。所定方位は、垂直離着陸機1が相対風の影響を受けても安定して飛行可能な状態であることを満たす範囲となっている。さらに、誘導演算部34は、相対速度が所定速度以内となるように、また、機体加速度が所定加速度以内となるように、フィードバック制御によって垂直離着陸機1の制御量を算出する。所定速度以内および所定加速度以内としては、垂直離着陸機1が所定の相対高度Δhにおいて安定して飛行可能な状態であることを満たす範囲となっている。例えば、所定速度としてはゼロであり、所定加速度としてはゼロである。誘導演算部34は、算出した制御量を飛行制御部36に出力する。誘導演算部34は、このような制御量の算出において、垂直離着陸機1を着陸目標点2へと誘導して着陸させるために、垂直離着陸機1を複数の制御モードで制御する。複数の制御モードは、アプローチモードと、高高度ホバリングモードおよび低高度ホバリングモードを含むホバリングモードと、着陸モードとを含む。各制御モードの詳細については、後述する。
 飛行制御部36は、後述する誘導演算部34で算出された制御量にしたがって、垂直離着陸機1の各構成要素を制御して垂直離着陸機1を飛行させる。飛行制御部36は、制御量にしたがって各回転翼のブレードピッチ角、回転数等を制御し、垂直離着陸機1の機体速度、姿勢角、姿勢角の変化レート等を調整する。それにより、垂直離着陸機1は、着陸目標点2へと誘導される。なお、本実施形態では、画像処理部32および誘導演算部34を飛行制御部36とは別の機能部として説明するが、飛行制御部36、画像処理部32および誘導演算部34は、一体の機能部であってもよい。すなわち、飛行制御部36において画像処理部32および誘導演算部34の処理を行ってもよい。
(垂直離着陸機の発着制御方法)
 次に、本実施形態にかかる垂直離着陸機の発着制御方法として、制御部30により垂直離着陸機1を着陸目標点2へと誘導して着陸させるための手順について説明する。図3は、本実施形態にかかる垂直離着陸機の着陸時における発着制御方法の処理手順の一例を示すフローチャートである。図4は、本実施形態にかかる垂直離着陸機の着陸動作を示す説明図である。図5は、本実施形態にかかる垂直離着陸機の着陸時における発着制御方法の処理手順の一例を示すフローチャートである。図6は、本実施形態にかかる垂直離着陸機の着陸時における発着制御のパターンを例示する説明図である。
 先ず、図3及び図4を参照して、垂直離着陸機1の着陸動作について説明する。垂直離着陸機1は、飛行状態から、船舶5に着陸(着船)する一連の着陸動作において、複数の制御モードを実行する。具体的に、垂直離着陸機1は、帰投モードを実行するステップS1と、アプローチモード及び高高度ホバリングモードを実行するステップS2と、低高度ホバリングモードを実行するステップS3と、着陸モードを実行するステップS4とを順に行うことで、一連の着陸動作を行っている。
 図4に示すように、帰投モードは、船舶5からの指令により、垂直離着陸機1を船舶5へ向けて移動させると共に、船舶5近傍の帰投位置P(図6参照)まで移動させるモードとなっている(S1)。アプローチモードは、垂直離着陸機1を帰投位置Pから船舶5の甲板上に進入させるモードとなっている(S2)。なお、帰投位置Pは、任意の位置となっており、例えば、船舶5の横(船幅方向)から進入する位置であってもよい。高高度ホバリングモードは、アプローチモードの実行時において、垂直離着陸機1が、甲板上のマーカー7をカメラ10により捕捉すると移行するモードとなっており、着陸目標点2がカメラ10の撮影範囲(画角)Bの中心にくるように、ホバリングするモードとなっている(S2)。低高度ホバリングモードは、垂直離着陸機1が降下を行い、高高度ホバリングモードよりも低高度でホバリングを行うモードとなっている(S3)。着陸モードは、垂直離着陸機1が着陸目標点2に着陸するモードとなっている(S4)。
 このような着陸動作に関する一連の制御において、自動発着システム100は、図5に示す発着制御を実行している。図5に示す発着制御は、着陸動作時において、垂直離着陸機1の機首方位を相対風の方位に対向させる制御となっている。図5に示す発着制御は、帰投モードの実行中または帰投モードの完了後であって、アプローチモードに移行する直前のタイミングで実行される。なお、図5に示す発着制御は、上記のタイミングに特に限定されず、着陸目標点2への着陸前であれば、何れのタイミングであってもよい。
 自動発着システム100において、船舶5では、風向風速計95により相対風の方位及び風速を計測して取得し、船舶5で取得した相対風の方位及び風速を、垂直離着陸機1の制御部30が取得する(ステップS11)。なお、ステップS11では、風向風速計95により計測した相対風の方位を制御部30が取得したが、垂直離着陸機1を操縦するオペレータの入力によって、相対風の方位を制御部30が取得してもよい。続いて、垂直離着陸機1の制御部30は、航法装置20から、垂直離着陸機1の機首方位を取得する(ステップS12)。制御部30は、取得した相対風の方位及び機首方位に基づいて、相対風の方位と機首方位とが対向するように、垂直離着陸機1を飛行制御する(ステップS13)。具体的に、ステップS13では、船舶5の船首方位の正面からくる相対風の方位(相対風角度)を、基準(0deg)としている。そして、ステップS13では、相対風が所定の方位である場合、機首方位と、船首方位に相対風の方位を加算した方位と、が一致するように、垂直離着陸機1を飛行制御する。なお、ステップS13では、制御部30が垂直離着陸機1を飛行制御したが、垂直離着陸機1を操縦するオペレータによって垂直離着陸機1の飛行制御を行ってもよい。つまり、垂直離着陸機1の飛行制御をオペレータが行う場合、ステップS11においてオペレータが相対風の方位を確認し、ステップS13において、垂直離着陸機1の機首方位が、船首方位に相対風の方位を加算した方位と一致するように、オペレータが飛行制御を行ってもよい。
 ステップS13の実行後、制御部30は、相対風の方位と機首方位とが対向しているか否か、つまり、機首方位と、船首方位に相対風の方位を加算した方位とが一致しているか否かを判定する(ステップS14)。制御部30は、ステップS14において、相対風の方位と機首方位とが対向している(ステップS14:Yes)と判定すると、アプローチモードへ移行可能な状態となる。一方で、制御部30は、ステップS14において、相対風の方位と機首方位とが対向していない(ステップS14:No)と判定すると、再び、ステップS13に進み、相対風の方位と機首方位とが対向するまで、飛行制御を実行する。制御部30は、アプローチモードへ移行した後、図4に示す着陸動作に関する一連の制御を実行して、着陸目標点2に垂直離着陸機1を着陸させる(ステップS4)。
 ところで、制御部30は、垂直離着陸機1の着陸動作時において、風向風速計95により取得した相対風の風速に基づく下記の制御を実行している。制御部30は、図5のステップS11において、相対風の風速を取得すると、相対風の風速が、第1の風速以上であるか否か、第1の風速よりも小さく第2の風速以上であるか否かを判定している。第1の風速及び第2の風速は、相対風の風速が大きい場合の風速となっており、第1の風速は、第2の風速よりも大きいものとなっている。例えば、第1の風速は、安全な発着が難しく、発着制御を行うことが望ましくない風速として設定される。第2の風速は、発着制御を行うことが可能だが後述する船舶5の構造体により形成される乱流エリアの影響が大きくなる風速であり、発着に際して乱流回避制御を合わせて行うことが望ましい風速として設定される。具体的に、第1の風速は、35ktとなっており、第2の風速は、20ktとなっている。なお、第1の風速及び第2の風速は、上記の数値に特に限定されない。また、制御部30は、取得した相対風の風速が第2の風速よりも小さい場合、ステップS12以降を実行する。
 制御部30は、取得した相対風の風速が、第1の風速以上となる場合、垂直離着陸機1の発着制御を実行せずに、船舶5及び垂直離着陸機1に対して、第1の風速よりも小さくなる領域への移動指示を出力する。具体的に、制御部30は、船舶5の操作表示部90に、第1の風速よりも小さい領域へ移動する旨の情報を表示させることで、オペレータ(操作者)に船舶5の移動を促す。同様に、制御部30は、垂直離着陸機1のオペレータに、第1の風速よりも小さい領域へ移動する旨の情報を報知することで、オペレータに垂直離着陸機1の移動を促す。なお、制御部30は、垂直離着陸機1及び船舶5が無人機である場合は、垂直離着陸機1の飛行制御及び船舶5の移動制御を実行する。また、本実施形態では、制御部30が第1の風速よりも小さくなる領域への移動指示を出力したが、船舶5のオペレータ(例えば、船長)が相対風の風速及び方位を確認して、船舶5を第1の風速よりも小さくなる領域へ移動させてもよい。
 制御部30は、取得した相対風の風速が、第1の風速よりも小さく第2の風速以上となる場合、相対風によって着陸目標点2に発生する乱流エリアを回避するための乱流回避制御を実行する。すなわち、後述する船舶5の構造体により形成される乱流エリアを避けて垂直離着陸機1が船舶5へ進入できるように、船舶5の移動制御を行うことで、形成される乱流エリアの位置を制御する。乱流回避制御としては、例えば、船首方位が相対風の方位に対して±120deg以下となるように、船舶5の移動を制御する。なお、±120deg以下とは、-120degから0degを経由して+120degとなる範囲である。また、±120deg以下とするのは、着陸目標点2が船舶5の船首側に設けられる場合である。一方で、着陸目標点2が船舶5の船尾側に設けられる場合、制御部30は、乱流回避制御として、船首方位が相対風の方位に対して±30deg以上となるように、船舶5の移動を制御する。なお、±30deg以上とは、-30degから180degを経由して+30degとなる範囲である。なお、制御部30は、取得した相対風の風速が、第1の風速よりも小さく第2の風速以上となる場合、前述の船舶5の移動制御(乱流回避制御)に代えて、船舶5のオペレータに対して、第2の風速よりも小さくさせるための情報を、船舶5の操作表示部90に表示することで、オペレータに報知してもよい。
 ここで、図6を参照して、垂直離着陸機1の着陸時における発着制御のパターンについて、例示して説明する。上記したように、ステップS13では、相対風が所定の方位である場合、機首方位と、船首方位に相対風の方位を加算した方位とが一致するように、垂直離着陸機1を飛行制御している。図6の左側から順に、相対風の方位が、0deg、30deg、60deg、90deg、120deg、150deg、180degとなっている。また、図6では、垂直離着陸機1が帰投位置Pに位置した状態となっている。
 相対風の方位が0degの場合、垂直離着陸機1の制御部30は、機首方位が船首方位と一致するように、飛行制御を実行する。このため、垂直離着陸機1の船舶5への進入方法は、機首方位と船首方位とが一致した状態となる。
 相対風の方位が30degの場合、垂直離着陸機1の制御部30は、船首方位に30degを加算した方位(船首方位+30deg)を導出し、機首方位が船首方位+30degと一致するように、飛行制御を実行する。このため、垂直離着陸機1の船舶5への進入方法は、船首方位に対して機首方位が30degだけ傾いた状態となる。
 同様に、相対風の方位が60degまたは90degの場合、垂直離着陸機1の制御部30は、船首方位に60degまたは90degを加算した方位(船首方位+60deg、船首方位+90deg)を導出し、機首方位が船首方位+60deg、または船首方位+90degと一致するように、飛行制御を実行する。このため、垂直離着陸機1の船舶5への進入方法は、船首方位に対して機首方位が60degまたは90degだけ傾いた状態となる。
 また、相対風の方位が120deg、150degまたは180degの場合、垂直離着陸機1の制御部30は、船首方位に120deg、150degまたは180degを加算した方位(船首方位+120deg、船首方位+150deg、船首方位+180deg)を導出する。ここで、着陸目標点2の船尾側に船橋またはコンテナ等の構造物がある場合、相対風は、後方側からの風向きとなるため、構造物によって相対風が乱されることにより、船首側には乱流エリアEが形成される。この場合においても、制御部30は、機首方位が船首方位+120deg、船首方位+150deg、または船首方位+180degと一致するように、飛行制御を実行する。このため、垂直離着陸機1の船舶5への進入方法は、船首方位に対して機首方位が120deg、150degまたは180degだけ傾いた状態となる。よって、乱流エリアEに対しても、影響を受け難い機首方位で、着陸目標点2に垂直離着陸機1を着陸させることができる。
 次に、本実施形態にかかる垂直離着陸機の発着制御方法として、制御部30により着陸目標点2から垂直離着陸機1を離陸させるための手順について説明する。図7は、本実施形態にかかる垂直離着陸機の離陸動作を示す説明図である。図8は、本実施形態にかかる垂直離着陸機の離陸時における発着制御方法の処理手順の一例を示すフローチャートである。図9は、本実施形態にかかる垂直離着陸機の離陸時における発着制御のパターンを例示する説明図である。
 図7及び図8を参照して、垂直離着陸機1の離陸動作について説明する。垂直離着陸機1は、船舶5から離陸(離船)する一連の離陸動作において、離陸モードを実行する。具体的に、垂直離着陸機1は、離陸モードの実行前に、図8に示す発着制御を実行している。ここで、図7に示すように、船舶5には、着陸目標点2に着陸した垂直離着陸機1の機首方位を変更する機首方位変更部98が設けられている。機首方位変更部98は、例えば、回転テーブルであり、船舶5側で制御されている。
 自動発着システム100において、船舶5では、風向風速計95により相対風の方位及び風速を計測して取得し、船舶5で取得した相対風の方位及び風速を、垂直離着陸機1の制御部30が取得する(ステップS21)。続いて、垂直離着陸機1の制御部30は、航法装置20から、垂直離着陸機1の機首方位を取得する(ステップS22)。次に、船舶5は、垂直離着陸機1で取得した機首方位を取得し、取得した相対風の方位と機首方位とが対向するように、機首方位変更部98を制御する(ステップS23)。なお、ステップS23では、ステップS13と同様に、機首方位と、船首方位に相対風の方位を加算した方位と、が一致するように、機首方位変更部98により機首方位が変更される。この後、制御部30は、相対風の方位と機首方位とが対向しているか否か、つまり、機首方位と、船首方位に相対風の方位を加算した方位とが一致しているか否かを判定する(ステップS24)。制御部30は、ステップS24において、相対風の方位と機首方位とが対向している(ステップS24:Yes)と判定すると、離陸モードへ移行する(ステップS25)。一方で、制御部30は、ステップS24において、相対風の方位と機首方位とが対向していない(ステップS24:No)と判定する。すると、再び、ステップS23に進み、垂直離着陸機1は、相対風の方位と機首方位とが対向するまで、機首方位変更部98により機首方位が変更される。制御部30は、ステップS25の離陸モードへ移行すると、着陸目標点2から垂直離着陸機1を離陸させる。なお、相対風の風速に基づく制御については、垂直離着陸機1の離陸動作時においても、垂直離着陸機1の着陸動作時と同様の制御となっている。
 ここで、図9を参照して、垂直離着陸機1の離陸時における発着制御のパターンについて、例示して説明する。上記したように、ステップS23では、相対風が所定の方位である場合、機首方位と、船首方位に相対風の方位を加算した方位とが一致するように、機首方位変更部98により機首方位が変更される。図9の左側から順に、相対風の方位が、0deg、30deg、60deg、90deg、120deg、150deg、180degとなっている。
 相対風の方位が0degの場合、船舶5は、機首方位が船首方位と一致するように、機首方位変更部98による方位変更制御を実行する。このため、垂直離着陸機1は、機首方位と船首方位とが一致した状態となる。
 相対風の方位が30degの場合、垂直離着陸機1の制御部30は、船首方位に30degを加算した方位(船首方位+30deg)を導出する。船舶5は、機首方位が船首方位+30degと一致するように、機首方位変更部98による方位変更制御を実行する。このため、垂直離着陸機1は、船首方位に対して機首方位が30degだけ傾いた状態となる。
 同様に、相対風の方位が60degまたは90degの場合、垂直離着陸機1の制御部30は、船首方位に60degまたは90degを加算した方位(船首方位+60deg、船首方位+90deg)を導出する。船舶5は、機首方位が船首方位+60deg、または船首方位+90degと一致するように、機首方位変更部98による方位変更制御を実行する。このため、垂直離着陸機1は、船首方位に対して機首方位が60degまたは90degだけ傾いた状態となる。
 また、相対風の方位が120deg、150degまたは180degの場合、垂直離着陸機1の制御部30は、船首方位に120deg、150degまたは180degを加算した方位(船首方位+120deg、船首方位+150deg、船首方位+180deg)を導出する。離陸時においても、着陸時と同様に、船首側には乱流エリアEが形成される。この場合においても、船舶5は、機首方位が船首方位+120deg、船首方位+150deg、または船首方位+180degと一致するように、機首方位変更部98による方位変更制御を実行する。このため、垂直離着陸機1は、船首方位に対して機首方位が120deg、150degまたは180degだけ傾いた状態となる。よって、乱流エリアEに対しても、影響を受け難い機首方位で、着陸目標点2から垂直離着陸機1を離陸させることができる。
 なお、本実施形態では、機首方位と相対風の方位とが一致するように、垂直離着陸機1を制御していた。しかしながら、機首方位と相対風の方位とが為す誤差角度である機首方位誤差角を含んでいてもよい。ここで、機首方位と相対風の方位とが対向して一致する角度を基準角0degとする。制御部30は、基準角0degに対して、機首方位誤差角が±30degとなる範囲で、機首方位を相対風の方位に対向させてもよい。つまり、垂直離着陸機1の機首方位は、相対風の方位に対して一致させなくてもよく、相対風の方位に対して±30degとしてもよい。例えば、図6に示すように、相対風の方位が90degの場合、基準角が0degであると、垂直離着陸機1の機首方向が、船舶5の船首方位に対して90degとなる。このため、機首方位誤差角を、例えば、-30degとすることで、垂直離着陸機1の機首方向を、船舶5の船首方位に対して60degとしてもよい。
 また、本実施形態において、自動発着システム100は、垂直離着陸機1及び船舶5に搭載したが、垂直離着陸機1のみに搭載してもよい。この場合、船舶5における相対風の方位及び風速を取得する必要があり、船舶5における相対風の方位及び風速は、船舶5の速度及び地上座標系における真の風から導出できる。このため、自動発着システム100を垂直離着陸機1のみに搭載する場合、船舶5の速度及び地上座標系における真の風の方位及び風速を取得することで、実現することができる。
 また、本実施形態において、機首方位変更部98は、船舶5により制御されたが、垂直離着陸機1の制御部30が制御してもよい。
 以上のように、本実施形態に記載の垂直離着陸機の自動発着システム、垂直離着陸機および垂直離着陸機の発着制御方法は、例えば、以下のように把握される。
 第1の態様に係る垂直離着陸機1の自動発着システム100は、移動体(船舶5)における相対風の方位を取得する相対風情報取得部(風向風速計95)と、前記移動体上に設けられる着陸目標点2に、垂直離着陸機1を発着させる発着制御を実行する制御部30と、を備え、前記制御部30は、前記垂直離着陸機の発着時において、前記相対風情報取得部において取得した前記相対風の方位に基づいて、前記垂直離着陸機1の機首方位を前記相対風の方位に対向させた状態で、前記発着制御を実行する。
 この構成によれば、垂直離着陸機1の機首方位を相対風の方位に対向させた状態で、垂直離着陸機1を発着させることができる。このため、垂直離着陸機1を、相対風の影響を受け難い状態とすることができるため、相対風の方位がいずれの方位あっても、垂直離着陸機1を発着させることができる。よって、相対風による発着制限を緩和し、垂直離着陸機1の着陸目標点2への発着陸を好適に行うことができる。
 第2の態様として、前記相対風情報取得部は、前記相対風の風速を取得しており、前記制御部は、前記垂直離着陸機1の発着時において、前記相対風情報取得部において取得した前記相対風の風速に基づく制御を実行しており、前記相対風の風速が、第2の風速以上となる場合、前記相対風によって前記着陸目標点に発生する乱流エリアを回避するための乱流回避制御を実行する。
 この構成によれば、相対風の風速が第2の風速以上となる強風である場合、乱流回避制御を実行することで、着陸目標点に発生する乱流エリアを回避することができるため、相対風の影響を受け難いものとすることができる。
 第3の態様として、前記制御部30は、前記相対風の風速が、第2の風速よりも大きい第1の風速以上となる場合、前記垂直離着陸機1の発着制御を実行せずに、前記移動体及び前記垂直離着陸機1に対して、前記第1の風速よりも小さくなる領域へ移動を指示する。
 この構成によれば、相対風の風速が第1の風速以上となる強風である場合、相対風の風速が弱い領域へ、移動体及び垂直離着陸機1の移動を促すことができ、垂直離着陸機1の着陸目標点2への安全な発着を行うことができる。
 第4の態様として、前記制御部30は、前記相対風の風速が、前記第2の風速以上となる場合、前記移動体を操作する操作者に対して、前記第2の風速よりも小さくさせるための情報を報知する。
 この構成によれば、相対風の風速が第2の風速以上となる強風である場合、相対風の風速を弱くするための移動を移動体に実行させることができ、垂直離着陸機1の着陸目標点2への安全な発着を行うことができる。
 第5の態様として、前記制御部30は、前記相対風の風速が、前記第2の風速よりも大きい第1の風速以上となる場合、前記移動体を操作する操作者に対して、前記第1の風速よりも小さくさせるための情報を報知する。
 この構成によれば、相対風の風速が第1の風速以上となる強風である場合、相対風の風速を弱くするための移動を移動体に実行させることができ、垂直離着陸機1の着陸目標点2への安全な発着を行うことができる。
 第6の態様として、前記機首方位と前記相対風の方位とが為す誤差角度を機首方位誤差角とし、前記機首方位と前記相対風の方位とが対向して一致する角度を基準角0degとすると、前記制御部30は、前記基準角0degに対して、前記機首方位誤差角が0±30degとなる範囲で、前記機首方位を前記相対風の方位に対向させる。
 この構成によれば、相対風の方位と垂直離着陸機1の機首方向とを対向させる場合であっても、相対風の方位と垂直離着陸機1の機首方向とを一致させる(0degとする)必要がない。このため、垂直離着陸機1の着陸目標点2への安全な発着陸を優先させることができる。
 第7の態様として、前記移動体は、船舶5であり、前記着陸目標点2は、前記船舶5の船首側に設けられる。
 この構成によれば、着陸目標点2を船首側に設けることで、船尾側にある構造物によって発生する乱流の影響を受け難いものとすることができる。
 第8の態様として、前記着陸目標点2に着陸した前記垂直離着陸機1の前記機首方位を変更する機首方位変更部98を、さらに備え、前記制御部30は、前記垂直離着陸機1の離陸時において、前記機首方位変更部98により変更された前記垂直離着陸機1の機首方位と、前記相対風情報取得部において取得した前記相対風の方位とが対向した状態になると、前記着陸目標点2から前記垂直離着陸機1を離陸させる。
 この構成によれば、着陸目標点2にある垂直離着陸機1の機首方位を機首方位変更部98により変更することで、相対風の方位に対向させた状態で、垂直離着陸機1を離陸させることができる。
 第9の態様に係る垂直離着陸機1は、上記の垂直離着陸機1の自動発着システム100を備える。
 この構成によれば、船舶5の速度及び地上座標系における真の風の方位及び風速を取得できれば、自動発着システム100を垂直離着陸機1のみに搭載した構成を実現することができる。
 第10の態様に係る垂直離着陸機の発着制御方法は、移動体(船舶5)上に設けられる着陸目標点2に、垂直離着陸機1を発着させる発着制御を実行する垂直離着陸機1の自動発着システム100に、前記移動体における相対風の方位を取得するステップS11,S21と、取得した前記相対風の方位に基づいて、前記垂直離着陸機の機首方位を前記相対風の方位に対向させるステップS13,S23と、前記着陸目標点2に前記垂直離着陸機1を発着させるステップS4,S25と、を実行させる。
 この構成によれば、垂直離着陸機1の機首方位を相対風の方位に対向させた状態で、垂直離着陸機1を発着させることができる。このため、垂直離着陸機1を、相対風の影響を受け難い状態とすることができるため、相対風の方位がいずれの方位あっても、垂直離着陸機1を発着させることができる。よって、相対風による発着制限を緩和し、垂直離着陸機1の着陸目標点2への発着陸を好適に行うことができる。
 1 垂直離着陸機
 2 着陸目標点
 5 船舶
 7 マーカー
 10 カメラ
 20,70 航法装置
 30 制御部
 32 画像処理部
 34 誘導演算部
 36 飛行制御部
 40,80 データ伝送装置
 95 風向風速計
 98 機首方位変更部
 100 自動発着システム

Claims (10)

  1.  移動体における相対風の方位を取得する相対風情報取得部と、
     前記移動体上に設けられる着陸目標点に、垂直離着陸機を発着させる発着制御を実行する制御部と、を備え、
     前記制御部は、
     前記垂直離着陸機の発着時において、前記相対風情報取得部において取得した前記相対風の方位に基づいて、前記垂直離着陸機の機首方位を前記相対風の方位に対向させた状態で、前記発着制御を実行する垂直離着陸機の自動発着システム。
  2.  前記相対風情報取得部は、前記相対風の風速を取得しており、
     前記制御部は、
     前記垂直離着陸機の発着時において、前記相対風情報取得部において取得した前記相対風の風速に基づく制御を実行しており、
     前記相対風の風速が、第2の風速以上となる場合、前記相対風によって前記着陸目標点に発生する乱流エリアを回避するための乱流回避制御を実行する請求項1に記載の垂直離着陸機の自動発着システム。
  3.  前記制御部は、
     前記相対風の風速が、第2の風速よりも大きい第1の風速以上となる場合、前記垂直離着陸機の発着制御を実行せずに、前記移動体及び前記垂直離着陸機に対して、前記第1の風速よりも小さくなる領域へ移動を指示する請求項1または2に記載の垂直離着陸機の自動発着システム。
  4.  前記制御部は、
     前記相対風の風速が、前記第2の風速以上となる場合、前記移動体を操作する操作者に対して、前記第2の風速よりも小さくさせるための情報を報知する請求項2に記載の垂直離着陸機の自動発着システム。
  5.  前記制御部は、
     前記相対風の風速が、前記第2の風速よりも大きい第1の風速以上となる場合、前記移動体を操作する操作者に対して、前記第1の風速よりも小さくさせるための情報を報知する請求項3に記載の垂直離着陸機の自動発着システム。
  6.  前記機首方位と前記相対風の方位とが為す誤差角度を機首方位誤差角とし、
     前記機首方位と前記相対風の方位とが対向して一致する角度を基準角0degとすると、
     前記制御部は、前記基準角0degに対して、前記機首方位誤差角が±30degとなる範囲で、前記機首方位を前記相対風の方位に対向させる請求項1から5のいずれか1項に記載の垂直離着陸機の自動発着システム。
  7.  前記移動体は、船舶であり、
     前記着陸目標点は、前記船舶の船首側に設けられる請求項1から6のいずれか1項に記載の垂直離着陸機の自動発着システム。
  8.  前記着陸目標点に着陸した前記垂直離着陸機の前記機首方位を変更する機首方位変更部を、さらに備え、
     前記制御部は、
     前記垂直離着陸機の離陸時において、前記機首方位変更部により変更された前記垂直離着陸機の機首方位と、前記相対風情報取得部において取得した前記相対風の方位とが対向した状態になると、前記着陸目標点から前記垂直離着陸機を離陸させる請求項1から7のいずれか1項に記載の垂直離着陸機の自動発着システム。
  9.  請求項1から8のいずれか1項に記載の垂直離着陸機の自動発着システムを備える垂直離着陸機。
  10.  移動体上に設けられる着陸目標点に、垂直離着陸機を発着させる発着制御を実行する垂直離着陸機の自動発着システムに、
     前記移動体における相対風の方位を取得するステップと、
     取得した前記相対風の方位に基づいて、前記垂直離着陸機の機首方位を前記相対風の方位に対向させるステップと、
     前記着陸目標点に前記垂直離着陸機を発着させるステップと、を実行させる垂直離着陸機の発着制御方法。
PCT/JP2022/040661 2021-12-27 2022-10-31 垂直離着陸機の自動発着システム、垂直離着陸機および垂直離着陸機の発着制御方法 WO2023127289A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-213299 2021-12-27
JP2021213299A JP2023097126A (ja) 2021-12-27 2021-12-27 垂直離着陸機の自動発着システム、垂直離着陸機および垂直離着陸機の発着制御方法

Publications (1)

Publication Number Publication Date
WO2023127289A1 true WO2023127289A1 (ja) 2023-07-06

Family

ID=86998761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040661 WO2023127289A1 (ja) 2021-12-27 2022-10-31 垂直離着陸機の自動発着システム、垂直離着陸機および垂直離着陸機の発着制御方法

Country Status (2)

Country Link
JP (1) JP2023097126A (ja)
WO (1) WO2023127289A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06247394A (ja) * 1993-02-23 1994-09-06 Tech Res & Dev Inst Of Japan Def Agency 着船支援センサ装置
JP2020149640A (ja) * 2019-03-15 2020-09-17 株式会社テクノアクセルネットワークス 飛行システム及び着陸制御方法
JP2021062719A (ja) * 2019-10-11 2021-04-22 三菱重工業株式会社 垂直離着陸機の自動着陸システム、垂直離着陸機および垂直離着陸機の着陸制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06247394A (ja) * 1993-02-23 1994-09-06 Tech Res & Dev Inst Of Japan Def Agency 着船支援センサ装置
JP2020149640A (ja) * 2019-03-15 2020-09-17 株式会社テクノアクセルネットワークス 飛行システム及び着陸制御方法
JP2021062719A (ja) * 2019-10-11 2021-04-22 三菱重工業株式会社 垂直離着陸機の自動着陸システム、垂直離着陸機および垂直離着陸機の着陸制御方法

Also Published As

Publication number Publication date
JP2023097126A (ja) 2023-07-07

Similar Documents

Publication Publication Date Title
JP4253239B2 (ja) 画像認識を用いた航法装置
US20230027342A1 (en) Automatic landing system for vertical takeoff/landing aircraft, vertical takeoff/landing aircraft, and control method for landing of vertical takeoff/landing aircraft
JP4328660B2 (ja) 航空機の自動離陸装置、自動着陸装置及び自動離着陸装置並びに航空機の自動離陸方法、自動着陸方法及び自動離着陸方法
CN106249755B (zh) 一种无人机自主导航系统及导航方法
CN109085849A (zh) 一种舰载无人机定点着陆的自主控制方法
CN108255190B (zh) 基于多传感器的精确着陆方法及使用该方法的系留无人机
EP2118713A2 (en) Precision approach control
CN114967737A (zh) 一种飞行器控制方法及飞行器
WO2007124014A2 (en) System for position and velocity sense and control of an aircraft
KR20150113586A (ko) 비전센서가 결합된 다중회전익 무인비행체 및 다중회전익 무인비행체의 자율비행 제어방법, 그 방법을 수행하기 위한 프로그램이 기록된 기록매체
US20220382298A1 (en) Aircraft position control system, aircraft, and aircraft position control method
WO2019203166A1 (ja) 飛行制御装置、方法、及びプログラム
CN111813133A (zh) 一种基于相对精密单点定位的无人机舰船自主着陆方法
JPH05170191A (ja) 着船誘導センサー・システム
US20180164122A1 (en) Electronic Control Device for Controlling a Drone, Related Drone, Controlling Method and Computer Program
WO2023127289A1 (ja) 垂直離着陸機の自動発着システム、垂直離着陸機および垂直離着陸機の発着制御方法
EP2598841A1 (en) Method for compensating drift in a position measuring device
JP5166349B2 (ja) 固定翼機、固定翼機システムおよび固定翼機の着陸方法
CN112445230A (zh) 大跨域复杂环境下高动态飞行器多模制导系统及制导方法
US20230409050A1 (en) Aircraft control system, aircraft, aircraft control method, and program
CN110017831B (zh) 利用地磁信息和声呐传感器解算飞行器姿态的方法
JP4399287B2 (ja) 航空機及び航空機の風向推定方法
WO2022101892A1 (ja) 垂直離着陸機の自動着陸システム、垂直離着陸機および垂直離着陸機の着陸制御方法
WO2022101894A1 (ja) 航空機の位置制御システム、航空機、及び航空機の位置制御方法
CN107885195A (zh) 一种基于飞机起落架的机器人自动导航方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915522

Country of ref document: EP

Kind code of ref document: A1