WO2019203166A1 - 飛行制御装置、方法、及びプログラム - Google Patents

飛行制御装置、方法、及びプログラム Download PDF

Info

Publication number
WO2019203166A1
WO2019203166A1 PCT/JP2019/016054 JP2019016054W WO2019203166A1 WO 2019203166 A1 WO2019203166 A1 WO 2019203166A1 JP 2019016054 W JP2019016054 W JP 2019016054W WO 2019203166 A1 WO2019203166 A1 WO 2019203166A1
Authority
WO
WIPO (PCT)
Prior art keywords
uav
follower
leader
line segment
flight
Prior art date
Application number
PCT/JP2019/016054
Other languages
English (en)
French (fr)
Inventor
宮川 勲
杵渕 哲也
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Publication of WO2019203166A1 publication Critical patent/WO2019203166A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C19/00Aircraft control not otherwise provided for
    • B64C19/02Conjoint controls
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • B64U2201/102UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] adapted for flying in formations

Definitions

  • the present invention relates to a flight control device, method, and program, and more particularly, to a flight control device, method, and program for controlling an unmanned airplane.
  • the quad-rotor type UAV (Unmanned Aerial Vehicle) is an unmanned airplane that has four propellers and controls the lift applied to each propeller. Many unmanned airplanes called drones are a kind of quadrotor type UAV. The unmanned airplane that will be handled hereinafter is abbreviated as UAV.
  • a local coordinate system is set in the aircraft as shown in FIG.
  • the UAV forward direction is the X axis
  • the direction perpendicular to the X axis is the Y axis
  • the direction opposite to gravity is the Z axis.
  • a certain global coordinate system is set as shown in FIG.
  • the coordinate system is a three-dimensional coordinate system
  • the measurement coordinate system is a global coordinate system.
  • the UAV posture is expressed by the rotation angle of the local coordinate system with respect to the global coordinate system.
  • the rotation around the X axis is roll rotation (rotation angle ⁇ )
  • the rotation around the Y axis is pitch rotation (rotation angle ⁇ )
  • the Z axis is set as shown in FIG.
  • the center of gravity of the UAV that is, the position of the UAV (the origin of the local coordinate system)
  • the UAV posture is expressed by the rotation angle of the local coordinate system with respect to the global coordinate system.
  • the rotation around the X axis is roll rotation (rotation angle ⁇ )
  • the rotation around is called yaw rotation (rotation angle ⁇ ).
  • the flight movement of the UAV generates rotation about the X axis, rotation about the Y axis, and rotation about the Z axis by changing the lift applied to the four propellers.
  • Rotation around the Y axis produces a translational motion in the X axis direction
  • rotation around the X axis produces a translational motion in the Y axis direction.
  • Rotation around the Z-axis produces azimuthal rotation, and when the same lift is applied to the four propellers simultaneously, it produces a translational movement (high elevation) in the Z-axis direction.
  • Non-Patent Document 1 discloses backstepping control based on UAV equations of motion and angular equations of motion.
  • Non-Patent Document 2 discloses a flight motion control method for AR Drone 2.0 (commercially available low-cost quadrotor UAV).
  • discrete predetermined positions and predetermined directions are given as flight trajectories in the global coordinate system, and the movement is controlled so that the UAV tracks each point and each direction.
  • a formation flight using a plurality of UAVs can provide patrol, rescue, transportation, etc. from a wider viewpoint.
  • Non-Patent Document 1 Prior art relating to flight motion control of a single UAV is known in Non-Patent Document 1 and Non-Patent Document 2, and formation flight control using a plurality of UAVs is known in Non-Patent Document 3.
  • Fig. 17 shows an example of formation flight using multiple UAVs.
  • flight is performed by a leader-follower formation.
  • the UAV acting as a follower flies following the UAV acting as a leader who guides the entire flight.
  • the trail is the leader UAV headed and the follower UAVs fly in a single line, and the abrest is the leader UAV and the follower UAVs flew in a line.
  • the UAV of the leader follows the flight so that the UAV of the follower forms a triangle.
  • Non-Patent Document 1 and Non-Patent Document 2 it is possible to appropriately control the movement of the UAV so as to fly along a predetermined route.
  • these technologies are intended to reach a target location along a predetermined path for a single UAV, but in formation flight, control the movement of each UAV so that it does not collide between UAVs. It is not guaranteed.
  • a constraint condition can be set in the space so as not to fly in a specific place.
  • various sensors and cameras may be attached to the UAV.
  • the altitude from the ground or floor can be measured with an ultrasonic sensor, and the speed and posture of the aircraft can be measured with a gyro sensor and an acceleration sensor.
  • Cameras are used to fly autonomously in space while detecting moving objects.
  • Non-Patent Document 3 a method for controlling formation flight shown in FIG. 17 is disclosed, but this method is limited to a case where the relationship between input data and output (motion) data given to UAV is given by a mathematical model.
  • the commercially available quadrotor type UAV is a black box whose input / output characteristics are unknown, it is necessary to control formation flight while measuring the exact position and orientation of each aircraft.
  • the present invention has been made to solve the above-described problems, and provides a flight control device, method, and program capable of controlling a plurality of UAVs to form a formation so that they can fly smoothly and stably. For the purpose.
  • a flight control apparatus controls formation flight of a plurality of UAVs (UnmannedUnAerial Vehicle) and forms a formation according to a leader UAV that leads the formation flight and the leader UAV.
  • a flight control device for controlling each of a plurality of follower UAVs, each of which is assigned to the leader UAV and each of the plurality of follower UAVs, and each of the three-dimensional markers having a known distance between the markers Based on a position measurement sensor for measuring coordinates, the three-dimensional coordinates of each of the markers of the reader UAV measured by the position measurement sensor, and a preset target point of the target location of the reader UAV, For the leader UAV, the intersection of the first line segment and the second line segment connecting the three-dimensional coordinates of each of the markers, before the intersection A leader position detection unit for calculating an azimuth angle of the first line segment connecting the vector to the target point and the three-dimensional coordinates of each of the markers with respect to the target point in the global coordinate system
  • an extension line of the first line segment or the second line segment is determined in advance from the three-dimensional coordinates of each of the markers of the follower UAV and the intersection of the first line segment and the second line segment of the leader UAV. Based on the target point of the follower UAV determined by coordinates separated by a certain distance, An intersection of a first line segment and a second line segment connecting each three-dimensional coordinate of the car, a vector from the intersection to the target point, and a three-dimensional coordinate of each of the markers with respect to the target point in a global coordinate system.
  • a follower position detecting unit for calculating an azimuth angle of the connected first line segment, and a position of the follower UAV for each of the plurality of follower UAVs based on a distance obtained from a vector to the target point of the follower UAV
  • the formation control unit for updating the second control data for controlling the reader, the first control data updated for the reader UAV, and the azimuth angle calculated for the reader UAV, , Calculate flight command data, and based on the calculated flight command data, the reader UAV
  • a flight command in the follower UAV is controlled based on the second control data updated for the follower UAV and the azimuth angle calculated for the follower UAV for each of the plurality of follower UAVs.
  • a flight command conversion unit that calculates data and controls movement of the follower UAV based on the calculated flight command data.
  • a flight control method controls formation flight of a plurality of UAVs (Unmanned Aerial Vehicle), and leads each of a leader UAV that leads the formation flight and a plurality of followers UAV that form a formation according to the leader UAV.
  • UAVs Unmanned Aerial Vehicle
  • the leader UAV For the leader UAV, the first line segment connecting the three-dimensional coordinates of each of the markers and the second Calculating an azimuth angle of the first line segment connecting the three-dimensional coordinates of each of the markers with respect to the target point in a global coordinate system, and an intersection of the line segment, a vector from the intersection point to the target point, and a global coordinate system;
  • a leader position control unit updating first control data for controlling the position of the leader UAV based on a distance obtained from a vector to the target point of the leader UAV; and a flight command conversion unit, Based on the first control data updated for the leader UAV and the azimuth angle calculated for the leader UAV, flight command data in the leader UAV is calculated, and based on the calculated flight command data, the flight command data is calculated.
  • a formation control unit for each of the plurality of follower UAVs, a vector to the target point of the follower UAV Updating the second control data for controlling the position of the follower UAV based on the distance obtained from the distance, and the flight command conversion unit
  • the program according to the third invention is a program for causing a computer to function as each part of the flight control device according to the first invention.
  • flight command data in the leader UAV is calculated based on the first control data updated for the leader UAV and the azimuth angle calculated for the leader UAV.
  • the movement of the leader UAV is controlled based on the calculated flight command data, and for each of the plurality of follower UAVs, the second control data updated for the follower UAV and the azimuth angle calculated for the follower UAV.
  • a flight command indicating a three-dimensional position and direction is appropriately issued to each UAV, so that a plurality of UAVs can collide with each other to form a flight freely and freely. It is possible to do. Furthermore, by controlling each UAV with the intention of the user, it becomes possible for a plurality of UAVs to support or collaborate in a work that cannot be realized by a single action of a person in an actual environment surrounding the person.
  • each UAV is flying at an arbitrary position in the initial state.
  • a trail in which the leader UAV 14 flies in a vertical row with the leader UAV 14 in the leader-follower formation will be described as a formation.
  • the flight control apparatus 100 includes a CPU, a RAM, a ROM for storing a program and various data for executing a flight control processing routine to be described later, Can be configured with a computer including Functionally, the flight control apparatus 100 includes a position measurement sensor 10, a calculation unit 20, and a communication unit 50 as shown in FIG. In this configuration, the position measurement sensor 10 does not necessarily have to be connected as a component, and only needs to acquire data necessary for processing.
  • the leader position detection unit 30, the leader position control unit 32, and the flight command in the calculation unit 20 The data flow from the conversion unit 34, the follower position detection unit 40, and the formation control unit 42 to the respective arrows is performed using a recording medium such as a hard disk, a RAID device, a CD-ROM, or remotely via a network. Either form using data resources may be used.
  • the position measurement sensor 10 measures the three-dimensional coordinates of each of a plurality of markers given to each UAV and whose distance between the markers is known as measurement data.
  • a motion capture device can measure the three-dimensional coordinates of a predetermined marker in real time with high accuracy.
  • a motion capture device is used as an example of the position measurement sensor 10.
  • the position measurement sensor 10 is set up to measure three-dimensional coordinates in a global coordinate system, and the three-dimensional coordinates of each marker assigned to each UAV are sequentially measured at a certain interval.
  • the target location is indicated by a point p, and the coordinate value is arbitrarily set according to the flight plan.
  • an example of formation flight control using three UAVs will be described, but it goes without saying that the method of the embodiment of the present invention can be easily extended even when four or more UAVs are used.
  • Sensing markers are attached to the leader UAV 14 at the positions of points a, b, c, and d. It is assumed that the first line segment connecting point a and point b is orthogonal to the second line segment connecting point c and point d at the position of point e. The position of the point e only needs to satisfy the condition that the line segments are orthogonal to each other, and need not be the midpoint of each line segment.
  • the follower UAV15 # 1 is provided with sensing markers at points a 1 , b 1 , c 1 , and d 1 .
  • the first line segment connecting the points a 1 and the point b 1 are orthogonal with the position of the second line segment and the point e 1 connecting the point c 1 and the point d 1.
  • sensing markers are attached to the positions of the points a 2 , b 2 , c 2 , and d 2 in the follower UAV 15 # 2.
  • the first line segment connecting the points a 2 and the point b 2 are orthogonal with a second position of the line segment and the point e 2 connecting the point c 2 and the point d 2.
  • the position of the point e 1 and the point e 2 may satisfy the condition that the line segment is perpendicular, not necessarily the midpoint of each line segment.
  • the calculation unit 20 includes a leader position detection unit 30 that detects the position of the leader UAV 14 in the global coordinate system by the position measurement sensor 10, a leader position control unit 32 that controls the flight of the leader UAV 14 along a predetermined path, and a leader UAV 14 And the flight command conversion unit 34 for sending command data to the follower UAV 15, the follower position detection unit 40 for detecting the position of the follower UAV 15 in the global coordinate system by the position measurement sensor 10, and the follower UAV 15 based on the position of the leader UAV 14. And a formation control unit 42 for controlling the flight of the vehicle.
  • the specific processing content of each processing unit will be described in the description of the operation described later.
  • the leader position detection unit 30 includes the three-dimensional coordinates of the marker points a, b, c, and d of the leader UAV 14 measured by the position measurement sensor 10 and preset target points of the target location 12 of the UAV 14. Based on p, the first line segment connecting the three-dimensional coordinates of the marker points a and b, the point c, the intersection e of the second line segment connecting the points d, and the vector T from the intersection e to the target point p And the azimuth angle ⁇ of the first line segment connecting the three-dimensional coordinates of the marker points a and b with respect to the target point p in the global coordinate system.
  • the leader position control unit 32 updates the first control data u for controlling the position of the leader UAV 14 based on the distance
  • the flight command conversion unit 34 determines the rotational speed V x around the X axis and the rotational speed V around the Y axis in the leader UAV 14 based on the updated control data u and the calculated azimuth angle ⁇ for the leader UAV 14. y , the speed V z along the Z axis, and the rotational speed V ⁇ around the Z axis are calculated as flight command data, and the flight command data is transmitted to the reader UAV 14 via the communication unit 50, thereby calculating the calculated flight command. The movement of the reader UAV 14 is controlled based on the data.
  • the rotation speed V x around the axis, the rotation speed V y around the Y axis, the speed V z along the Z axis, and the rotation speed V ⁇ around the Z axis are calculated as flight command data, and the flight command data is converted into the communication unit 50.
  • the movement of the follower UAV15 is controlled based on the calculated flight command data.
  • the follower position detector 40 for each of the plurality of followers UAV15, the three-dimensional coordinates of each marker of the follower UAV15 measured by the position measurement sensor 10 and the intersection e of the first line segment and the second line segment of the leader UAV14 from determined by the predetermined distance away coordinate on the extension of the first line or second line segments, based on the target point p i followers UAV 15, the follower UAV 15, the point of the marker a i, point b i first line segments and the point c i connecting the three-dimensional coordinates of the second line segment intersection connecting points d i, the vector T i to the target point p i from the intersection, and the target point p in the global coordinate system point a i of markers for i, and calculates the azimuth angle of the first line segment connecting the three-dimensional coordinates of the point b i.
  • Formation control unit 42 for each of a plurality of followers UAV 15, on the basis of the distance
  • the control data u i is updated.
  • the flight control device 100 executes a flight control processing routine shown in FIG.
  • the leader position detection unit 30 uses the three-dimensional coordinates of the marker points a, b, c, and d of the leader UAV 14 measured by the position measurement sensor 10 and a preset leader UAV 14. From the first line segment connecting the three-dimensional coordinates of the marker point a and the point b and the second line segment connecting the point c and the point d, and the intersection point e from the intersection point e. The azimuth angle ⁇ of the first line segment connecting the vector T up to the target point p and the three-dimensional coordinates of the marker points a and b with respect to the target point p in the global coordinate system is calculated.
  • step S102 the leader position control unit 32 controls the position of the leader UAV 14 based on the distance
  • step S104 the flight command conversion unit 34 determines the rotation speed V x around the X axis in the leader UAV 14 based on the control data u updated in step S102 and the calculated azimuth angle ⁇ for the leader UAV 14.
  • the rotation speed V y around the Y axis, the speed V z along the Z axis, and the rotation speed V ⁇ around the Z axis are calculated as flight command data, and the flight command data is transmitted to the reader UAV 14 via the communication unit 50.
  • the movement of the leader UAV 14 is controlled based on the calculated flight command data.
  • the follower position detecting unit 40 calculates the three-dimensional coordinates of each marker of the follower UAV15 # i measured by the position measurement sensor 10 and the intersection e of the first line segment and the second line segment of the leader UAV14. determined by the first line segments or predetermined distance away coordinate on the extension of the second segment of the leader UAV14, based on the target point p i followers UAV 15, the follower UAV 15 # i, the point of the marker a i, point b the first line segment and the point c i connecting the three-dimensional coordinates of the i, second line of intersection connecting points d i, the vector T i to the target point p i from the intersection, and in the global coordinate system
  • the azimuth angle of the first line segment connecting the three-dimensional coordinates of the marker points a i and b i with respect to the target point p i is calculated.
  • step S110 the formation control unit 42 determines the position of the follower UAV15 # i for the follower UAV15 # i based on the distance
  • the second control data u i for controlling is updated.
  • step S112 the flight command conversion unit 34, the follower UAV 15 # i, and a second control data u i updated in step S110, based on the calculated azimuth angle theta i, in follower UAV 15 # i, X
  • the rotation speed V x around the axis, the rotation speed V y around the Y axis, the speed V z along the Z axis, and the rotation speed V ⁇ around the Z axis are calculated as flight command data, and the flight command data is converted into the communication unit 50. Is transmitted to the follower UAV15 # i, the movement of the follower UAV15 # i is controlled based on the calculated flight command data.
  • step S114 it is determined whether or not control has been completed for all followers UAV15 # i. If not completed, the process returns to step S106 to select the next follower UAV15 # i and repeat the process. The control processing routine ends.
  • FIG. 4 is a flowchart of the processing of the leader position detection unit 30.
  • the leader position detection unit 30 starts the process, in step S1000, the leader position detection unit 30 sets a target point p of the target place 12 in the global coordinate system.
  • the target point p may be any three-dimensional coordinate determined by the operator.
  • step S1002 the point a, point b, point c, and point d of the marker of the reader UAV 14 are detected by the position measurement sensor 10, and the position of the intersection point e is calculated.
  • a sensing marker may be installed at the intersecting position e.
  • the position of the point e is calculated from the points a, b, c, and d of the four markers. Ask for.
  • the three-dimensional coordinates of the point e are referred to as the current position, and hereinafter, the point e is set as the current position of the reader UAV14.
  • step S1006 a rotation angle (azimuth angle) necessary for the vector ab from the point a to the point b to be orthogonal to the vector T is calculated using the relationship between the vector inner products.
  • Figure 5 represents the point of the marker a, point markers b, and the relationship between the position and orientation as viewed from the Z w axis point p of the target areas.
  • step S1008 it is determined whether or not the position detection process is to be stopped. If the process is to be stopped, the process of the leader position detection unit 30 is terminated. If not, the process returns to step S1002 to repeat the process. Note that the case where the process is stopped is a case where the operator ends the flight control of the leader UAV 14 here, and the same applies to the following processes.
  • the leader position detection unit 30 calculates the current position (point e) of the leader UAV, the vector T up to the target point p, and the azimuth angle ⁇ by the above processing.
  • step S102 details of the control process of the reader position control unit 32 in step S102 will be described.
  • a processing flow for controlling a straight flight from the current position to the target location based on the vector T obtained by the leader position detection unit 30 will be described.
  • FIG. 6 is a process flow diagram of the leader position control unit 32.
  • the allowable distance is a distance ⁇ L for determining whether or not the current position e of the leader UAV 14 has reached the target point p. Since fluctuation due to air resistance affects the flight of UAV, the allowable distance ⁇ L is set to 10 centimeters as an example.
  • the current position (point e) of the leader UAV 14 is obtained in time series using the position measurement sensor 10, and is given to step S1102 of this processing routine each time the current position is acquired (FIG. 4 and FIG. 6 are marked with X).
  • step S1102 the distance
  • represents the norm (size) of the vector.
  • step S1104 it is determined whether the distance
  • step S1106 control is performed so that the reader UAV 14 waits in the hovering state, and the process proceeds to step S1102.
  • step S1108 the first control data is Obtained by calculating The first control data u is used as a flight command to the leader UAV 14 in the flight command converter 34.
  • the first control data u is calculated, it is passed to the flight command converter 34 (indicated as Y in FIG. 6).
  • the leader UAV 14 approaches the point p of the target location, and when
  • step S1100 it is determined whether to stop the position control process. If the process is stopped, the process of the reader position control unit 32 is terminated. If not, the process returns to step S1102 to repeat the process.
  • the leader position control unit 32 outputs the first control data u according to the distance
  • the control data u given by the leader position control unit 32 and the orientation ⁇ obtained by the leader position detection unit 30 are converted into flight command flight command data according to the leader UAV 14 for the leader UAV14. Then, a command is given from the communication unit 50 via radio.
  • a command is given from the communication unit 50 via radio.
  • the first control data u i and the azimuth angle ⁇ i are converted into flight command data for each of the plurality of followers UAV15. Control.
  • FIG. 7 is a flowchart of processing of the flight command conversion unit 34.
  • the flight command conversion unit 34 receives input of the updated control data u and the calculated azimuth angle ⁇ in step S1200.
  • step S1202 the combination of the control data u and the azimuth angle ⁇ is converted into flight command data for transmission to the reader UAV14.
  • the flight command data to the leader UAV 14 includes the rotation speed V x around the X axis, the rotation speed V y around the Y axis, the speed V z along the Z axis, and the rotation speed V ⁇ around the Z axis set in the aircraft. become.
  • rotation around the X-axis produces Y-axis translation
  • rotation around the Y-axis produces X-axis translation.
  • flight command data given to the reader UAV14 is expressed by the following equation (1): Convert by.
  • step S1204 the flight command data calculated by the equation (1) is transmitted to the UAV 14 by wireless communication via the communication unit 50.
  • the flight command data calculated by the equation (1) is continuously sent to the leader UAV 14.
  • the orientation of the leader UAV 14 with respect to the target point p is corrected so that the marker point a and the marker point b coincide with the point A and the point B. Is done.
  • FIG. 8 is a flowchart of the processing of the follower position detection unit 40.
  • the position of the follower UAV15 # i is detected.
  • Followers position detection unit 40 starts the process in step S1300, with respect to follower UAV 15 # i, sets the three-dimensional coordinates p i of the target areas in trail formation.
  • the point p i is a coordinate value separated from the current position e of the leader UAV 14 by a distance L i on the extension line of the second line connecting the points c and d. That is, it is determined by the coordinates separated by the distance L i on the extension line of the second line segment from the intersection e of the first line segment and the second line segment of the leader UAV14.
  • L 2 >> L 1 is set so that the follower UAV 15 # 1 and the follower UAV 15 # 2 are sufficiently separated to form a formation.
  • the distance of the follower UAV15 # i is set to have a predetermined relationship. 9 shows the positional relationship between the leader UAV14 and the follower UAV15 # i in the initial state.
  • step S1302 the marker point a i , point b i, point c i , and point d i attached to the follower UAV15 # i are detected by the position measurement sensor 10 to calculate the position of the intersection e i . Coordinates of the point e i is the current position of the follower UAV15 # i.
  • step S1306 the vector a i -b i from point a i to point b i is calculated vector T i and forms rotation angle theta i (the azimuth angle) by using the relationship between the vector dot product.
  • step S1308 it is determined whether or not the position detection process is to be stopped. If the process is to be stopped, the process of the follower position detection unit 40 is terminated. If not, the process returns to step S1302 to repeat the process.
  • the present position of the follower position detecting unit 40 in the follower UAV 15 # i (point e i)
  • the azimuth angle ⁇ i of the follower UAV15 # i is calculated.
  • FIG. 10 is a flowchart of the process of the formation control unit 42.
  • control is performed so that the formation of the follower UAV15 # i on the right side of FIG.
  • the allowable distance is designated in step S1400.
  • the allowable distance is a distance ⁇ L i for determining whether or not the current position e i of the follower UAV 15 #i has reached the point p i of the target location. Since fluctuation due to air resistance affects the flight of UAV, the allowable distance ⁇ L i is set to 10 centimeters as an example.
  • the current position (point e i ) of the follower UAV15 # i is obtained in time series using the position measurement sensor 10, and is given to step S1402 every time the current position is acquired (FIG. 9). Is marked with Z).
  • step S1402 the distance
  • step S1404 it is determined whether the distance
  • step S1406 control is performed so that the follower UAV15 # i waits in the hovering state, and the process proceeds to step S1402.
  • step S1408 the second control data is Obtained by calculating The second control data u i is used as a flight command to the follower UAV 15 #i in the flight command conversion unit 34.
  • I a gain parameter in feedback control and is set by the user according to the situation.
  • the second control data u i is calculated, it is passed to the flight command converter 34 (indicated as Y in FIG. 10).
  • the follower UAV 15 #i approaches the target point p i and flies according to the formation on the right side of FIG. 9 when
  • the formation control unit 42 outputs the control data u i according to the distance
  • the position measurement sensor 10 calculates the positions and orientations of the leader UAV 14 and the follower UAV 15 #i and can fly in the formation of the trail formation. Further, by setting the position p of the target location of the leader UAV 14 in the space at intervals along the spatial path, the formation of the trail formation can fly along the trajectory.
  • a plurality of UAVs can be controlled to fly smoothly and stably by forming a formation.
  • the follower UAV 15 flies side by side with the leader UAV 14 in the leader-follower formation of FIG.
  • the process for controlling the flight of the follower UAV 15 in accordance with the Absorption formation is different from that in the first embodiment.
  • the follower position detection unit 40 of the present embodiment follows the flow of FIG.
  • Followers position detection unit 40 starts the process in step S1300, it sets the three-dimensional coordinates p i of the target locations followers UAV 15 # i in Abreast-formation.
  • the point p i is a coordinate value separated from the current position e of the leader UAV 14 by a distance M i on the extension line of the first line connecting the points a and b. That is, it is determined by the coordinates separated by the distance M i on the extension line of the first line segment from the intersection e of the first line segment and the second line segment of the leader UAV14.
  • step S1302 the marker point a i , point b i, point c i , and point d i attached to the follower UAV15 # i are detected by the position measurement sensor 10 to calculate the position of the intersection e i . Coordinates of the point e i is the current position of the follower UAV15 # i.
  • step S1306 the vector c i -d i from point c i to point d i is calculated vector T i and forms rotation angle theta i (the azimuth angle) by using the relationship between the vector dot product.
  • the current position of the follower position detecting unit 40 in the follower UAV 15 # i (point e i), the vector T i of the current position of the follower UAV 15 # i from (point e i) to the target locations (points p i)
  • Abreast-shown below 11 Can fly in formation formations. Furthermore, by setting the position p of the target location of the leader UAV 14 in the space at intervals along the spatial path, the formation of the Absorption Formation can fly along the trajectory.
  • the third embodiment of the present invention performs flight so that the follower UAV15 forms a triangle with the leader UAV14 at the head in the leader-follower formation of FIG.
  • the process for controlling the flight of the follower UAV 15 in accordance with the delta formation is different from that in the first embodiment.
  • only differences from the first embodiment will be described.
  • the follower position detection unit 40 of the present embodiment follows the flow of FIG.
  • Followers position detection unit 40 starts the process in step S1300, it sets the three-dimensional coordinates p i of the target locations followers UAV 15 # i in Abreast-formation.
  • Point p i is the coordinate apart on an extension line of the second line segment connecting the current position e the points c and d by a distance L i leader UAV14, an extension of the first line segment connecting the points a and b and coordinate value determined from only away coordinate distance M i to. That is, from the intersection of the first line segment and the second line segment of the leader UAV 14, coordinates that are separated by a distance L i on the extension line of the first line segment, and coordinates that are separated by a distance M i on the extension line of the second line segment, It depends on.
  • step S1302 the marker point a i , point b i, point c i , and point d i attached to the follower UAV15 # i are detected by the position measurement sensor 10 to calculate the position of the intersection e i . Coordinates of the point e i is the current position of the follower UAV15 # i.
  • step S1306 the vector c i -d i from point c i to point d i is calculated vector T i and forms rotation angle theta i (the azimuth angle) by using the relationship between the vector dot product.
  • the current position of the follower position detecting unit 40 in the follower UAV 15 # i point e i
  • delta formation shown in FIG. 13 You can fly in the formation. Furthermore, by setting the position p of the target location of the leader UAV 14 in the space at intervals along the spatial path, the formation of the delta formation can fly along the trajectory.
  • the fourth embodiment of the present invention is an example in which the formation flight is controlled so as to draw various geometric patterns in the space in the configuration of the first to third embodiments of FIG.
  • FIG. 14 shows an example of the flight path of the leader UAV 14 based on the geometric pattern.
  • 14A in the configuration of the first to third embodiments of FIG. 1, the target of the leader UAV 14 is such that the straight flight from the point A to the point B and the straight flight from the point B to the point A are continued.
  • the leader UAV 14 and the follower UAV 15 #i fly on a round trip between the points A and B.
  • the leader UAV14 and the follower UAV15 # i fly in a triangular orbit formed by the points A, B, and C by setting the target location p of the leader UAV14 so as to continue the straight flight and controlling the flight. .
  • the leader UAV14 and the follower UAV15 # i are set to a point A, a point B, a point C, by setting the target location p of the leader UAV 14 so as to continue the flight and the straight line flight from the point D to the point A. Fly around a square orbit formed at point D.
  • the straight flight from the point A to the point B, the straight flight from the point B to the point C, and the straight line from the point C to the point D is set by controlling the flight by setting the target location p of the leader UAV14 so that the flight, the straight flight from the D point to the E point, and the straight flight from the E point to the A point are continued. Flies to draw a pentagonal shape formed at point A, point B, point C, point D and point E.
  • the leader UAV14 and the follower UAV15 # i are pentagons formed at point A, point D, point B, point E, point C by setting the target location p of the leader UAV 14 so as to continue straight flight and controlling the flight. Fly around the shape.
  • acceleration, constant speed, and deceleration are controlled on the basis of straight flight, so that a geometric pattern drawn by straight flight can fly along an arbitrary geometric path. .
  • the present invention is not limited to this, and the flight control system is a leader flight control.
  • the apparatus and the follower flight control apparatus may be configured, and the leader UAV14 and the follower UAV15 # i may be controlled by the respective apparatuses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

複数台のUAVが編隊を組んで円滑かつ安定的に飛行させるように制御できる。 飛行コマンド変換部が、リーダーUAVについて更新された第1制御データと、リーダーUAVについて算出された方位角とに基づいて、リーダーUAVにおける、飛行指令データを算出し、算出した前記飛行指令データに基づいてリーダーUAVの運動を制御し、複数のフォロワーUAVの各々について、フォロワーUAVについて更新された第2制御データと、フォロワーUAVについて算出された方位角とに基づいて、フォロワーUAVにおける、飛行指令データを算出し、算出した飛行指令データに基づいてフォロワーUAVの運動を制御する。

Description

飛行制御装置、方法、及びプログラム
 本発明は、飛行制御装置、方法、及びプログラムに係り、特に、無人飛行機を制御する飛行制御装置、方法、及びプログラムに関する。
 クアッドロータ型UAV(Unmanned Aerial Vehicle)は4つのプロペラを持ち、それぞれのプロペラに与える揚力を制御することにより飛行操縦する無人飛行機である。ドローンと呼ばれる無人飛行機の多くは、クアッドロータ型UAVの一種である。以降で扱う無人飛行機をUAVと略称する。
 一般的に、UAVの姿勢を計測するために、図15に示すように機体にローカル座標系が設定される。UAVの前進方向をX軸、X軸と垂直な方向をY軸、重力とは逆方向をZ軸とする。
 また、UAVの三次元位置を計測するため、図16に示すように、ある基準となるグローバル座標系を設定する。GPSでは世界座標系とした三次元座標となり、モーションキャプチャシステムではその計測座標系がグローバル座標系となる。UAVの重心すなわちUAVの位置(ローカル座標系の原点)はグローバル座標系の点P=(X,Y,Z)として表現する。また、UAVの姿勢はグローバル座標系に対するローカル座標系の回転角で表現し、X軸周りの回転はロール回転(回転角φ)、Y軸周りの回転はピッチ回転(回転角ω)、Z軸周りの回転はヨー回転(回転角θ)と呼ばれる。UAVの飛行運動は、4つのプロペラに与える揚力を変化させることにより、X軸周りの回転、Y軸周りの回転、Z軸周りの回転を発生させる。Y軸周りの回転はX軸方向の並進運動を生み出し、X軸周りの回転はY軸方向の並進運動を生み出す。Z軸周りの回転は方位の回転を生み出し、同じ揚力が同時に4つのプロペラに与えられたとき、その強弱によってZ軸方向の並進運動(高度の昇降)を生み出す。
 グローバル座標系において所定の座標値(X,Y,Z)と方位θが与えられたとき、UAVの現在位置P=(X,Y,Z)と現在方位から、その所定位置へ飛行して所定方位に機体を向けるためには、UAVの姿勢と位置を制御する必要がある。非特許文献1には、UAVの運動方程式と角運動方程式に基づいたバックステッピング制御が公開されている。非特許文献2では、AR Drone 2.0(市販の低価格なクアッドロータ型UAV)に関する飛行運動制御法が公開されている。従来技術の多くは、グローバル座標系における飛行の軌跡として離散的な所定位置と所定方位が与えられ、UAVが各点と各方位を追跡するようにその運動が制御される。一方、単体のUAVを使った飛行とは異なり、複数台のUAVを使った編隊飛行はより広域な視点からのパトロール、レスキュー、運搬などを提供することができる。複数台のUAVを使った編隊飛行では、ミッション(パトロール、レスキュー、運搬などの作業目的)に応じてそれぞれのUAVの位置と姿勢を制御する必要があり、非特許文献3では編隊飛行制御の方法が公開されている。
 単体UAVの飛行運動制御に関する先行技術は非特許文献1と非特許文献2に、複数台のUAVを使った編隊飛行制御は非特許文献3において公知となっている。
T. Madani and A. Benallegue: "Backstepping Control for a Quadrotor Helicopter", IEEE Conference on Intelligent Robots and Systems, 2006. L. V. Santana, A. S. Brandao, M. S-Filho, and R. Carelli: "A Trajectory Tracking and 3D Positioning Controller for the AR.Drone Quadrotor", International Conference on Unmanned Aircraft Systems (ICUAS) May 27-30, 2014. M. Iskandarani, S. N. Givigi, G. Fusina, and A. Beaulieu: "Unmanned Aerial Vehicle Formation Flying using Linear Model Predictive Control", 2014 8th Annual IEEE Systems Conference(SysCon), 2014.
 複数台のUAVを使った編隊飛行の例を図17に示す。一般的に、編隊飛行では、リーダー・フォロワー編隊(leader-follower formation)により飛行する。飛行全体を指導するリーダー役のUAVに対して、フォロワー役のUAVが追従して飛行する。トレイルとは、リーダーのUAVを先頭に、フォロワーのUAVが縦一列に並んで飛行し、アブレストとは、リーダーのUAVを中心に、フォロワーのUAVが横一列に並んで飛行する。これに対して、デルタでは、リーダーのUAVを先頭に、フォロワーのUAVが三角形を形成するように追従して飛行する。
 非特許文献1と非特許文献2によれば、所定の経路に従って飛行するように、UAVの運動を適切に制御することができる。しかしながら、これらの技術は単体のUAVを所定の経路に沿って目標地に到達することを目的とした制御であるが、編隊飛行においてはUAV間で衝突しないようにそれぞれのUAVの運動を制御することが保証されていない。
一方、障害物あるいは人との衝突を避けるため、特定の場所を飛行しないように空間中に拘束条件を設定することができる。また、飛行運動中の飛行トラブルを回避するため、UAVには多様なセンサやカメラが取り付けられている場合がある。例えば、超音波センサにより地面あるいは床からの高度を計測し、ジャイロセンサと加速度センサによって機体の速度と姿勢を計測することができる。また、移動物体を検出しながら、空間中を自律的に飛行させることにカメラが利用されている。これらの機体から計測した空間情報や画像情報を使うことも考えられるが、大半のUAVに内蔵されているセンサの精度はミリ単位での正確な精度で計測できることを保証しておらず、別の手段を使って機体の正確な位置と方位を計測する必要がある。
 非特許文献3では図17に示した編隊飛行を制御する方法が公開されているが、その方法は、UAVに与える入力データと出力(運動)データの関係が数式モデルで与えられる場合に限定される。しかしながら、市販のクアッドロータ型UAVは入出力特性が不明のブラックボックスであるため、各機体の正確な位置と方位を計測しながら編隊飛行を制御する必要がある。
 本発明は、上記問題点を解決するために成されたものであり、複数台のUAVが編隊を組んで円滑かつ安定的に飛行させるように制御できる飛行制御装置、方法、及びプログラムを提供することを目的とする。
 上記目的を達成するために、第1の発明に係る飛行制御装置は、複数のUAV(Unmanned Aerial Vehicle)の編隊飛行を制御し、前記編隊飛行を先導するリーダーUAVと前記リーダーUAVに従って編隊を形成する複数のフォロワーUAVの各々を制御する飛行制御装置であって、前記リーダーUAVと前記複数のフォロワーUAVの各々とに付与され、かつ、マーカー間の距離が既知の複数のマーカーの各々の三次元座標を計測する位置計測センサと、前記位置計測センサによって計測された前記リーダーUAVの前記マーカーの各々の三次元座標と、予め設定された前記リーダーUAVの目標地の目標点とに基づいて、前記リーダーUAVについて、前記マーカーの各々の三次元座標を結ぶ第1線分及び第2線分の交点、前記交点からの前記目標点までのベクトル、及びグローバル座標系における前記目標点に対する前記マーカーの各々の三次元座標を結んだ前記第1線分の方位角を算出するリーダー位置検出部と、前記リーダーUAVの前記目標点までのベクトルから求まる距離に基づいて、前記リーダーUAVの位置を制御するための第1制御データを更新するリーダー位置制御部と、前記複数のフォロワーUAVの各々について、前記位置計測センサによって計測された前記フォロワーUAVの前記マーカーの各々の三次元座標と、前記リーダーUAVの第1線分及び第2線分の交点から、前記第1線分又は前記第2線分の延長線上に予め定められた距離だけ離れた座標により定まる、前記フォロワーUAVの目標点とに基づいて、前記フォロワーUAVについて、前記マーカーの各々の三次元座標を結ぶ第1線分及び第2線分の交点、前記交点からの前記目標点までのベクトル、及びグローバル座標系における前記目標点に対する前記マーカーの各々の三次元座標を結んだ前記第1線分の方位角を算出するフォロワー位置検出部と、前記複数のフォロワーUAVの各々について、前記フォロワーUAVの前記目標点までのベクトルから求まる距離に基づいて、前記フォロワーUAVの位置を制御するための第2制御データを更新するフォーメーション制御部と、前記リーダーUAVについて更新された前記第1制御データと、前記リーダーUAVについて算出された前記方位角とに基づいて、前記リーダーUAVにおける、飛行指令データを算出し、算出した前記飛行指令データに基づいて前記リーダーUAVの運動を制御し、前記複数のフォロワーUAVの各々について、前記フォロワーUAVについて更新された前記第2制御データと、前記フォロワーUAVについて算出された前記方位角とに基づいて、前記フォロワーUAVにおける、飛行指令データを算出し、算出した前記飛行指令データに基づいて前記フォロワーUAVの運動を制御する飛行コマンド変換部と、を含んで構成されている。
 第2の発明に係る飛行制御方法は、複数のUAV(Unmanned Aerial Vehicle)の編隊飛行を制御し、前記編隊飛行を先導するリーダーUAVと前記リーダーUAVに従って編隊を形成する複数のフォロワーUAVの各々を制御する飛行制御装置における飛行制御方法であって、位置計測センサが、前記リーダーUAVと前記複数のフォロワーUAVの各々とに付与され、かつ、マーカー間の距離が既知の複数のマーカーの各々の三次元座標を計測するステップと、リーダー位置検出部が、前記位置計測センサによって計測された前記リーダーUAVの前記マーカーの各々の三次元座標と、予め設定された前記リーダーUAVの目標地の目標点とに基づいて、前記リーダーUAVについて、前記マーカーの各々の三次元座標を結ぶ第1線分及び第2線分の交点、前記交点からの前記目標点までのベクトル、及びグローバル座標系における前記目標点に対する前記マーカーの各々の三次元座標を結んだ前記第1線分の方位角を算出するステップと、リーダー位置制御部が、前記リーダーUAVの前記目標点までのベクトルから求まる距離に基づいて、前記リーダーUAVの位置を制御するための第1制御データを更新するステップと、飛行コマンド変換部が、前記リーダーUAVについて更新された前記第1制御データと、前記リーダーUAVについて算出された前記方位角とに基づいて、前記リーダーUAVにおける、飛行指令データを算出し、算出した前記飛行指令データに基づいて前記リーダーUAVの運動を制御するステップと、フォロワー位置検出部が、前記複数のフォロワーUAVの各々について、前記位置計測センサによって計測された前記フォロワーUAVの前記マーカーの各々の三次元座標と、前記リーダーUAVの第1線分及び第2線分の交点から、前記第1線分又は前記第2線分の延長線上に予め定められた距離だけ離れた座標により定まる、前記フォロワーUAVの目標点とに基づいて、前記フォロワーUAVについて、前記マーカーの各々の三次元座標を結ぶ第1線分及び第2線分の交点、前記交点からの前記目標点までのベクトル、及びグローバル座標系における前記目標点に対する前記マーカーの各々の三次元座標を結んだ前記第1線分の方位角を算出するステップと、フォーメーション制御部が、前記複数のフォロワーUAVの各々について、前記フォロワーUAVの前記目標点までのベクトルから求まる距離に基づいて、前記フォロワーUAVの位置を制御するための第2制御データを更新するステップと、前記飛行コマンド変換部が、前記複数のフォロワーUAVの各々について、前記フォロワーUAVについて更新された前記第2制御データと、前記フォロワーUAVについて算出された前記方位角とに基づいて、前記フォロワーUAVにおける、飛行指令データを算出し、算出した前記飛行指令データに基づいて前記フォロワーUAVの運動を制御するステップと、を含んで実行することを特徴とする。
 第3の発明に係るプログラムは、コンピュータを、第1の発明に係る飛行制御装置の各部として機能させるためのプログラムである。
 本発明の飛行制御装置、方法、及びプログラムによれば、リーダーUAVについて更新された第1制御データと、リーダーUAVについて算出された方位角とに基づいて、リーダーUAVにおける、飛行指令データを算出し、算出した前記飛行指令データに基づいてリーダーUAVの運動を制御し、複数のフォロワーUAVの各々について、フォロワーUAVについて更新された第2制御データと、フォロワーUAVについて算出された方位角とに基づいて、フォロワーUAVにおける、飛行指令データを算出し、算出した飛行指令データに基づいてフォロワーUAVの運動を制御することにより、複数台のUAVが編隊を組んで円滑かつ安定的に飛行させるように制御できる、という効果が得られる。
本発明の実施形態に係る飛行制御装置の構成を示すブロック図である。 UAVの飛行を制御する状況の一例を示す図である。 本発明の実施形態に係る飛行制御装置における飛行制御処理ルーチンを示すフローチャートである。 飛行制御処理ルーチンにおけるリーダー位置検出処理のフローチャートである。 マーカーの点a、点b、及び目標地の点pをZ軸方向から視た位置と方位の関係を表す図である。 飛行制御処理ルーチンにおけるリーダー位置制御処理のフローチャートである。 飛行コマンド変換処理ルーチンにおける飛行コマンド変換処理のフローチャートである。 飛行コマンド変換処理ルーチンにおけるフォロワー位置検出処理のフローチャートである。 トレイル・フォーメーションのリーダーUAVとフォロワーUAVとの位置関係を示す図である。 飛行コマンド変換処理ルーチンにおけるフォーメーション制御処理のフローチャートである。 アブレスト・フォーメーションのリーダーUAVとフォロワーUAVとの位置関係を示す図である。 デルタ・フォーメーションのリーダーUAVとフォロワーUAVとの位置関係を示す図である。 デルタ・フォーメーションの制御後のリーダーUAVとフォロワーUAVとの位置関係を示す図である。 幾何パターンに基づいたUAVの飛行経路の例を示す図である。 UAVの概観とUAV固定のローカル座標系の一例を示す図である。 グローバル座標系とUAV固定のローカル座標系の関係の一例を示す図である。 編隊飛行のフォーメーションの例を示す図である。
 以下、図面を参照して本発明の実施形態を詳細に説明する。本発明の実施形態に係る手法は、各UAVに対して3次元位置と方位を示す飛行指令を適切に出すことにより、複数のUAV同士を衝突させることなく、編隊を組んで自由自在に自律飛行することを可能とする。さらに、ユーザの意図で各UAVを制御することにより、人を取り巻く実環境において、人の単独行動では実現不可能な作業を複数のUAVが支援する、あるいは協調作業することを可能とする。
<本発明の第1の実施形態に係る飛行制御装置の構成>
 本発明の第1の実施形態に係るクアッドロータ型UAVの飛行制御装置の構成について説明する。本実施形態は複数台のUAVによる編隊飛行を制御する形態である。
 初期状態において、各UAVは任意の位置で飛行しているとする。本実施形態では、図17(A)に示したように、リーダー・フォロワー編隊においてリーダーUAV14を先頭に、フォロワーUAV15が縦一列に並んで飛行するトレイルをフォーメーションとして説明する。
 図1に示すように、本発明の第1の実施形態に係る飛行制御装置100は、CPUと、RAMと、後述する飛行制御処理ルーチンを実行するためのプログラムや各種データを記憶したROMと、を含むコンピュータで構成することが出来る。この飛行制御装置100は、機能的には図1に示すように位置計測センサ10と、演算部20と、通信部50とを備えている。この構成において、位置計測センサ10は必ずしも構成要素として接続している必要はなく、処理に必要なデータを取得すればよく、演算部20におけるリーダー位置検出部30、リーダー位置制御部32、飛行コマンド変換部34、フォロワー位置検出部40、フォーメーション制御部42のからそれぞれの矢印へのデータの流れは、ハードディスク、RAID装置、CD-ROMなどの記録媒体を利用する、または、ネットワークを介してリモートなデータ資源を利用する形態でもどちらでも構わない。
 位置計測センサ10は、各UAVに付与され、かつ、マーカー間の距離が既知の複数のマーカーの各々の三次元座標を計測データとして計測する。一般的に、モーションキャプチャ装置は、所定のマーカーの3次元座標をリアルタイムで高精度に計測できることが知られている。本実施形態では、位置計測センサ10の例として、モーションキャプチャ装置を利用する。図2に示す状況において、位置計測センサ10はグローバル座標系において3次元座標を計測するようにセットアップされており、各UAVに付与された各マーカーの3次元座標が、ある一定間隔で逐次計測される。目標地は点pで示されており、その座標値は飛行計画に応じて任意に設定する。以降では、3台のUAVによる編隊飛行制御の例を説明するが、4台以上のUAVを利用する場合にも本発明の実施形態の手法を容易に拡張することができることは言うまでもない。
 リーダーUAV14には点a、点b、点c、並びに点dの位置にセンシング用のマーカーが取り付けられている。点aと点bとを結ぶ第1線分が点cと点dとを結ぶ第2線分と点eの位置で直交しているとする。点eの位置は、線分が直交する条件を満たせばよく、各線分の中点である必要はない。フォロワーUAV15#1には点a、点b、点c、及び点dにセンシング用のマーカーが取り付けられている。点aと点bとを結ぶ第1線分が点cと点dとを結ぶ第2線分と点eの位置で直交しているとする。同様に、フォロワーUAV15#2には点a、点b、点c、並びに点dの位置にセンシング用のマーカーが取り付けられている。点aと点bとを結ぶ第1線分が点cと点dとを結ぶ第2線分と点eの位置で直交しているとする。フォロワーUAV15において、点eと点eの位置は、線分が直交する条件を満たせばよく、各線分の中点である必要はない。
 演算部20は、位置計測センサ10によりグローバル座標系におけるリーダーUAV14の位置を検出するリーダー位置検出部30と、所定の経路に沿ってリーダーUAV14の飛行を制御するリーダー位置制御部32と、リーダーUAV14及びフォロワーUAV15に指令データを送出するための飛行コマンド変換部34と、位置計測センサ10によりグローバル座標系におけるフォロワーUAV15の位置を検出するフォロワー位置検出部40と、リーダーUAV14の位置に基づいてフォロワーUAV15の飛行を制御するフォーメーション制御部42とを含んで構成されている。なお各処理部の具体的な処理内容は後述の作用の説明において説明する。
 リーダー位置検出部30は、位置計測センサ10によって計測されたリーダーUAV14のマーカーの点a、点b、点c、及び点dの三次元座標と、予め設定されたUAV14の目標地12の目標点pとに基づいて、マーカーの点a、点bの三次元座標を結ぶ第1線分及び点c、点dを結ぶ第2線分の交点e、交点eからの目標点pまでのベクトルT、及びグローバル座標系における目標点pに対するマーカーの点a、点bの三次元座標を結んだ第1線分の方位角θを算出する。
 リーダー位置制御部32は、リーダーUAV14の目標点pまでのベクトルTから求まる距離||T||に基づいて、リーダーUAV14の位置を制御するための第1制御データuを更新する。
 飛行コマンド変換部34は、リーダーUAV14について、更新された制御データuと、算出された方位角θとに基づいて、リーダーUAV14における、X軸周りの回転速度Vx、Y軸周りの回転速度Vy、Z軸に沿った速度V、及びZ軸周りの回転速度Vθを飛行指令データとして算出し、飛行指令データを通信部50を介してリーダーUAV14に送信することで、算出した飛行指令データに基づいてリーダーUAV14の運動を制御する。また、複数のフォロワーUAV15の各々についても同様に、フォロワーUAV15について、後述するフォーメーション制御部42で更新された制御データuと、算出された方位角θとに基づいて、フォロワーUAV15における、X軸周りの回転速度Vx、Y軸周りの回転速度Vy、Z軸に沿った速度V、及びZ軸周りの回転速度Vθを飛行指令データとして算出し、飛行指令データを通信部50を介してフォロワーUAV15に送信することで、算出した飛行指令データに基づいてフォロワーUAV15の運動を制御する。
 フォロワー位置検出部40は、複数のフォロワーUAV15の各々について、位置計測センサ10によって計測されたフォロワーUAV15のマーカーの各々の三次元座標と、リーダーUAV14の第1線分及び第2線分の交点eから、第1線分又は第2線分の延長線上に予め定められた距離だけ離れた座標により定まる、フォロワーUAV15の目標点pとに基づいて、フォロワーUAV15について、マーカーの点a、点bの三次元座標を結ぶ第1線分及び点c、点dを結ぶ第2線分の交点、交点からの目標点pまでのベクトルT、及びグローバル座標系における目標点pに対するマーカーの点a、点bの三次元座標を結んだ第1線分の方位角を算出する。
 フォーメーション制御部42は、複数のフォロワーUAV15の各々について、フォロワーUAV15の目標点pまでのベクトルTから求まる距離||T||に基づいて、フォロワーUAV15の位置を制御するための第2制御データuを更新する。
 <本発明の第1の実施形態に係る飛行制御装置の作用>
 次に、本発明の第1の実施形態に係る飛行制御装置100の作用について説明する。
 リーダーUAV14及び複数のフォロワーUAV15の各々の三次元座標の計測を開始すると、飛行制御装置100は、図3に示す飛行制御処理ルーチンを実行する。
 まず、ステップS100では、リーダー位置検出部30が、位置計測センサ10によって計測されたリーダーUAV14のマーカーの点a、点b、点c、及び点dの三次元座標と、予め設定されたリーダーUAV14の目標地12の目標点pとに基づいて、マーカーの点a、点bの三次元座標を結ぶ第1線分及び点c、点dを結ぶ第2線分の交点e、交点eからの目標点pまでのベクトルT、及びグローバル座標系における目標点pに対するマーカーの点a、点bの三次元座標を結んだ第1線分の方位角θを算出する。
 次に、ステップS102では、リーダー位置制御部32が、リーダーUAV14の目標点pまでのベクトルTから求まる距離||T||に基づいて、リーダーUAV14の位置を制御するための第1制御データuを更新する。
 ステップS104では、飛行コマンド変換部34が、リーダーUAV14について、ステップS102で更新された制御データuと、算出された方位角θとに基づいて、リーダーUAV14における、X軸周りの回転速度Vx、Y軸周りの回転速度Vy、Z軸に沿った速度V、及びZ軸周りの回転速度Vθを飛行指令データとして算出し、飛行指令データを通信部50を介してリーダーUAV14に送信することで、算出した飛行指令データに基づいてリーダーUAV14の運動を制御する。
 ステップS106では、複数のフォロワーUAV15を順番に制御するため、フォロワーUAV15#i(i=1,2,・・・)を選択する。
 ステップS108では、フォロワー位置検出部40が、位置計測センサ10によって計測されたフォロワーUAV15#iのマーカーの各々の三次元座標と、リーダーUAV14の第1線分及び第2線分の交点eから、リーダーUAV14の第1線分又は第2線分の延長線上に予め定められた距離だけ離れた座標により定まる、フォロワーUAV15の目標点pとに基づいて、フォロワーUAV15#iについて、マーカーの点a、点bの三次元座標を結ぶ第1線分及び点c、点dを結ぶ第2線分の交点、交点からの目標点pまでのベクトルT、及びグローバル座標系における目標点pに対するマーカーの点a、点bの三次元座標を結んだ第1線分の方位角を算出する。
 ステップS110では、フォーメーション制御部42は、フォロワーUAV15#iについて、フォロワーUAV15#iの目標点pまでのベクトルTから求まる距離||T||に基づいて、フォロワーUAV15#iの位置を制御するための第2制御データuを更新する。
 ステップS112では、飛行コマンド変換部34が、フォロワーUAV15#iについて、ステップS110で更新された第2制御データuと、算出された方位角θとに基づいて、フォロワーUAV15#iにおける、X軸周りの回転速度Vx、Y軸周りの回転速度Vy、Z軸に沿った速度V、及びZ軸周りの回転速度Vθを飛行指令データとして算出し、飛行指令データを通信部50を介してフォロワーUAV15#iに送信することで、算出した飛行指令データに基づいてフォロワーUAV15#iの運動を制御する。
 ステップS114では、全てのフォロワーUAV15#iについて制御を終了したかを判定し、終了していなければステップS106に戻って次のフォロワーUAV15#iを選択して処理を繰り返し、終了していれば飛行制御処理ルーチンを終了する。
 次に、ステップS100のリーダー位置検出部30の位置検出処理の詳細について説明する。
 図4はリーダー位置検出部30の処理のフロー図である。リーダー位置検出部30は処理を開始すると、ステップS1000で、グローバル座標系における目標地12の目標点pを設定する。目標点pは操作者が決定した任意の三次元座標でよい。
 ステップS1002で、リーダーUAV14のマーカーの点a、点b、点c、及び点dを位置計測センサ10により検出し、その交点eの位置を算出する。交差する位置eにセンシング用のマーカーを設置してもよいが、本実施形態では汎用性のために、点eの位置を4つのマーカーの点a、点b、点c、及び点dから計算で求める。本処理では、点eの3次元座標を現在位置と称しており、以降では、点eをリーダーUAV14の現在位置とする。
 ステップS1004で、リーダーUAV14の現在位置(点e)から目標地(点p)までのベクトルTを、T=p-eの計算により求める。
 ステップS1006で、点aから点bへのベクトルa-bがベクトルTと直交するために必要な回転角(方位角)をベクトル内積の関係を利用して算出する。図5は、マーカーの点a、マーカーの点b、及び目標地の点pをZ軸方向から視た位置と方位の関係を表す。方位角θ=0のとき、ベクトルa-bがベクトルTと直交する。
 ステップS1008で、位置検出の処理を停止するかを判定し、処理を停止する場合にはリーダー位置検出部30の処理を終了し、終了しない場合にはステップS1002に戻って処理を繰り返す。なお、処理を停止する場合とは、ここでは操作者がリーダーUAV14の飛行制御を終了する場合とし、以下の処理においても同様である。
 リーダー位置検出部30では、以上の処理により、リーダーUAVの現在位置(点e)と、目標点pまでのベクトルTと、方位角θとを算出する。
 次に、ステップS102のリーダー位置制御部32の制御処理の詳細について説明する。本処理では、リーダー位置検出部30で得たベクトルTに基づき、現在位置から目標地までの直線飛行を制御するための処理フローを説明する。
 図6はリーダー位置制御部32の処理のフロー図である。リーダー位置制御部32は処理を開始すると、ステップS1100で、許容距離を指定する。許容距離とは、リーダーUAV14の現在位置eが目標地の点pに到達したかどうかを判定するための距離ΔLである。UAVの飛行には空気抵抗によるゆらぎが影響を与えるため、許容距離ΔLの例として10センチメートルとする。
 リーダー位置検出部30において、リーダーUAV14の現在位置(点e)が位置計測センサ10を使って時系列に得られており、現在位置を取得するたびに本処理ルーチンのステップS1102に与えられる(図4及び図6にはXと記した)。
 ステップS1102で、与えられた現在位置のデータにより、現在位置eから目標地の点pまでの距離||T||を算出する。||・||はベクトルのノルム(大きさ)を表す。
 ステップS1104で、距離||T||が許容距離ΔL以下(||T||≦ΔL)であるか否かを判定する。||T||≦ΔLであればステップS1106へ移行する。||T||≦ΔLでなく、||T||>ΔLであれば運動を制御するためステップS1108へ移行する。
 ステップS1106で、ホバリング状態でリーダーUAV14を待機させるように制御し、ステップS1102へ移行する。
 ステップS1108で、第1制御データを
Figure JPOXMLDOC01-appb-I000001

 
の計算により求める。第1制御データuは、飛行コマンド変換部34においてリーダーUAV14への飛行指令として使われる。
Figure JPOXMLDOC01-appb-I000002

 
はフィードバック制御におけるゲインパラメータであり、ユーザが状況に応じて設定する。第1制御データuが計算されると、飛行コマンド変換部34に渡される(図6にはYと記した)。
 この反復を続けることによりリーダーUAV14は目標地の点pに近づき、||T||≦ΔLを満たすとき、リーダーUAV14が目標地に到達したと判定してホバリング状態になる。
 ステップS1100で、位置制御の処理を停止するかを判定し、処理を停止する場合にはリーダー位置制御部32の処理を終了し、終了しない場合にはステップS1102に戻って処理を繰り返す。
 以上の処理によって、リーダー位置制御部32は、リーダーUAV14の現在位置eから目標地の点pまでの距離||T||に応じて第1制御データuを出力する。
 次に、ステップS104の飛行コマンド変換部34の飛行コマンド変換処理の詳細について説明する。
 飛行コマンド変換部34の処理により、リーダーUAV14について、リーダー位置制御部32より与えられる制御データuとリーダー位置検出部30で得た方位θを、リーダーUAV14に応じて飛行コマンドの飛行指令データへ変換して通信部50から無線経由で指令する。UAV14への飛行コマンドには様々なデータ形式が存在するが、本実施形態では、市販製品のAR Drone 2.0を例にした場合を示す。ただし、それ以外のUAV14の飛行を制御する場合にも、本実施形態を利用できることは言うまでもない。また、以下はリーダーUAV14の場合を例に説明するが、リーダーUAV14と同様に、複数のフォロワーUAV15の各々についても、第1制御データuと方位角θとを飛行指令データに変換して制御する。
 図7は飛行コマンド変換部34の処理のフロー図である。飛行コマンド変換部34は処理を開始すると、ステップS1200で、更新された制御データuと、算出された方位角θとの入力を受け付ける。
 ステップS1202で、制御データuと方位角θとの組み合わせを、リーダーUAV14へ送信するための飛行指令データへ変換する。リーダーUAV14への飛行指令データは、機体に設定されたX軸周りの回転速度V、Y軸周りの回転速度V、Z軸に沿った速度Vと、Z軸周りの回転速度Vθになる。制御データuがu=(u,u,u)と与えられるとする。UAV14では、X軸周りの回転がY軸の並進運動を生み出し、Y軸周りの回転がX軸の並進運動を生み出するため、本処理では、リーダーUAV14に与える飛行指令データを以下(1)式により変換する。
Figure JPOXMLDOC01-appb-M000003

 
・・・(1)
 係数α、α、α、αθはAR Drone 2.0が扱うことができる変換係数であり、パラメータとしてユーザが決めてよく、例えば、α=α=α=αθ=0.1と与える。
 ステップS1204で、通信部50を介して無線通信により(1)式で算出した飛行指令データをUAV14へ送信する。
 本処理は、リーダー位置制御部32で得た制御データuとリーダー位置検出部30で得た方位角θが与えられるたびに、(1)式で算出した飛行指令データをリーダーUAV14へ送り続ける。図5で示したように、方位角θを送出することにより、目標地の点pに対するリーダーUAV14の向きはマーカーの点aとマーカーの点bは点Aと点Bとに一致するように補正される。
 図8はフォロワー位置検出部40の処理のフロー図である。図8において、フォロワーUAV15#iの位置を検出する。i=1の場合がフォロワーUAV15#1に関するフォロワー位置検出部40の処理フローであり、i=2の場合がフォロワーUAV15#2に関するフォロワー位置検出部40の処理フローである。
 フォロワー位置検出部40は処理を開始すると、ステップS1300で、フォロワーUAV15#iに対して、トレイル・フォーメーションにおける目標地の3次元座標pを設定する。点pはリーダーUAV14の現在位置eから点cと点dを結ぶ第2線分の延長線上に距離Lだけ離れた座標値とする。つまり、リーダーUAV14の第1線分及び第2線分の交点eから、第2線分の延長線上に距離Lだけ離れた座標により定まる。リーダーUAV14の運動に従ってフォーメーション飛行するため機体座標系が世界座標系と考えると、p=e+(-L,0,0),L>0と与える。図17(A)のトレイル・フォーメーションで示したように、リーダーUAV14を先頭にして飛行する場合、フォロワーUAV15#1についてはp=e+(-L,0,0)と設定し、フォロワーUAV15#2についてはp=e+(-L,0,0)と設定する(リーダーUAV14の進行方向をX軸の正の方向とするため、後方から追従して飛行するフォロワーUAV15の位置はX軸の負の値になる)。ただし、衝突防止のため、フォロワーUAV15#1とフォロワーUAV15#2が十分に離れてフォーメーションを形成するようにL>>Lとする。このようにフォロワーUAV15#iの距離を所定の関係となるように設定する。図9左に、リーダーUAV14とフォロワーUAV15#iの初期状態での位置関係を示す。
 ステップS1302で、フォロワーUAV15#iに装着したマーカー点a、点bi、点c、及び点dを位置計測センサ10により検出して、交点eの位置を算出する。点eの座標はフォロワーUAV15#iの現在位置となる。
 次に、ステップS1304で、図9左に示すように、フォロワーUAV15#iの現在位置(点e)から目標地(点p)までのベクトルTを、T=p-eの計算により求める。
 ステップS1306で、点aから点bへのベクトルa-bがベクトルTとなす回転角θ(方位角)をベクトル内積の関係を利用して算出する。
 ステップS1308で、位置検出の処理を停止するかを判定し、処理を停止する場合にはフォロワー位置検出部40の処理を終了し、終了しない場合にはステップS1302に戻って処理を繰り返す。
 以上の処理により、フォロワー位置検出部40ではフォロワーUAV15#iの現在位置(点e)と、フォロワーUAV15#iの現在位置(点e)から目標地(点p)までのベクトルTと、フォロワーUAV15#iの方位角θを算出する。
 図10はフォーメーション制御部42の処理のフロー図である。図10において、フォロワーUAV15#iの図9右のフォーメーションとなるように制御する。i=1の場合がフォロワーUAV15#1に関するフォーメーション制御部42の処理フローであり、i=2の場合がフォロワーUAV15#2に関するフォーメーション制御部42の処理フローである。
 フォーメーション制御部42は処理を開始すると、ステップS1400で、許容距離を指定する。許容距離とは、フォロワーUAV15#iの現在位置eが目標地の点pに到達したかどうかを判定するための距離ΔLである。UAVの飛行には空気抵抗によるゆらぎが影響を与えるため、許容距離ΔLの例として10センチメートルとする。
 フォロワー位置検出部40において、フォロワーUAV15#iの現在位置(点e)が位置計測センサ10を使って時系列に得られており、現在位置を取得するたびにステップS1402に与えられる(図9にはZと記した)。
 ステップS1402で、与えられた現在位置のデータから、フォロワーUAV15#iの現在位置eから目標地の点pまでの距離||T||を算出する。
 ステップS1404で、距離||T||が許容距離ΔL以下(||T||≦ΔL)であるか否かを判定する。||T||≦ΔLであればステップS1406へ移行する。||T||≦ΔLでなく、||T||>ΔLであれば運動を制御するためステップS1408へ移行する。
 ステップS1406で、ホバリング状態でフォロワーUAV15#iを待機させるように制御し、ステップS1402へ移行する。
 ステップS1408で、第2制御データを
Figure JPOXMLDOC01-appb-I000004

 
の計算により求める。第2制御データuは、飛行コマンド変換部34においてフォロワーUAV15#iへの飛行指令として使われる。
Figure JPOXMLDOC01-appb-I000005

 
はフィードバック制御におけるゲインパラメータであり、ユーザが状況に応じて設定する。第2制御データuが計算されると、飛行コマンド変換部34に渡される(図10にはYと記した)。
 この反復を続けることによりフォロワーUAV15#iは目標地の点pに近づくことになり、||T||≦ΔLを満たすとき図9右のフォーメーションに従って飛行する。
 以上の処理によって、フォーメーション制御部42は、フォロワーUAV15#iの現在位置eから目標地の点pまでの距離||T||に応じて制御データuを出力する。
 以上により、本実施形態は、位置計測センサ10によってリーダーUAV14とフォロワーUAV15#iの位置と方位を算出し、トレイル・フォーメーションの編隊で飛行することができる。さらに、リーダーUAV14の目標地の位置pを空間経路に沿って間隔を空けて空間中に設定することで、トレイル・フォーメーションの編隊がその軌跡に沿って飛行することができる。
 以上説明したように、第1の実施形態に係る飛行制御装置によれば、複数台のUAVが編隊を組んで円滑かつ安定的に飛行させるように制御できる。
<本発明の第2の実施形態に係る飛行制御装置の構成及び作用>
 本発明の第2の実施形態は、上記図1の第1の実施形態の構成により、図17(B)のリーダー・フォロワー編隊において、リーダーUAV14を中心にフォロワーUAV15が横一列に並んで飛行するアブレストをフォーメーションとした編隊飛行の制御の実施形態である.本実施形態では、アブレスト・フォーメーションに応じてフォロワーUAV15の飛行を制御する処理が第1の実施形態と異なる。以降では、第1の実施形態との差分のみを説明する。
 本実施形態のフォロワー位置検出部40は図8のフローに従う。
 フォロワー位置検出部40は処理を開始すると、ステップS1300で、アブレスト・フォーメーションにおけるフォロワーUAV15#iの目標地の3次元座標pを設定する。点pはリーダーUAV14の現在位置eから点aと点bを結ぶ第1線分の延長線上に距離Mだけ離れた座標値とする。つまり、リーダーUAV14の第1線分及び第2線分の交点eから、第1線分の延長線上に距離Mだけ離れた座標により定まる。リーダーUAV14の運動に従ってフォーメーション飛行するため機体座標系が世界座標系と考えると、p=e+(0,M,0),L>0と与える。図17(B)のアブレスト・フォーメーションで示したように、リーダーUAV14を中心にして飛行する場合、フォロワーUAV15#1についてはp=e+(0,M,0)と設定し、フォロワーUAV15#2についてはp=e+(0,-M,0),M>0と設定する。
 一般的には、リーダーUAV14とフォロワーUAV15#iの位置関係は、図11上で示される。ステップS1302で、フォロワーUAV15#iに装着したマーカー点a、点bi、点c、及び点dを位置計測センサ10により検出して、交点eの位置を算出する。点eの座標はフォロワーUAV15#iの現在位置となる。
 ステップS1304で、図11上に示すように、フォロワーUAV15#iの現在位置(点e)から目標地(点p)までのベクトルTを、T=p-eの計算により求める。
 ステップS1306で、点cから点dへのベクトルc-dがベクトルTとなす回転角θ(方位角)をベクトル内積の関係を利用して算出する。
 以上の処理により、フォロワー位置検出部40ではフォロワーUAV15#iの現在位置(点e)と、フォロワーUAV15#iの現在位置(点e)から目標地(点p)までのベクトルTと、フォロワーUAV15#iの方位角θを算出し、第1の実施形態と同様にフォーメーション制御部42の処理と飛行コマンド変換部34の処理を反復することにより、図11下に示すアブレスト・フォーメーションの編隊で飛行することができる。さらに、リーダーUAV14の目標地の位置pを空間経路に沿って間隔を空けて空間中に設定することで、アブレスト・フォーメーションの編隊がその軌跡に沿って飛行することができる。
<本発明の第3の実施形態に係る飛行制御装置の構成及び作用>
 本発明の第3の実施形態は、上記図1の第1の実施形態の構成により、図17(C)のリーダー・フォロワー編隊において、リーダーUAV14を先頭にフォロワーUAV15が三角形を形成するように飛行するデルタをフォーメーションとした編隊飛行の制御の実施形態である.本実施形態では、デルタ・フォーメーションに応じてフォロワーUAV15の飛行を制御する処理が第1の実施形態と異なる。以降では、第1の実施形態との差分のみを説明する。
 本実施形態のフォロワー位置検出部40は図8のフローに従う。
 フォロワー位置検出部40は処理を開始すると、ステップS1300で、アブレスト・フォーメーションにおけるフォロワーUAV15#iの目標地の3次元座標pを設定する。点pは、リーダーUAV14の現在位置eから点cと点dを結ぶ第2線分の延長線上に距離Lだけ離れた座標と、点aと点bを結ぶ第1線分の延長線上に距離Mだけ離れた座標とから定まる座標値とする。つまり、リーダーUAV14の第1線分及び第2線分の交点から、第1線分の延長線上に距離Lだけ離れた座標と第2線分の延長線上に距離Mだけ離れた座標とにより定まる。リーダーUAV14の運動に従ってフォーメーション飛行するため機体座標系が世界座標系と考えると、p=e+(-L,M,0),L>0と与える。図17(C)のデルタ・フォーメーションで示したように、リーダーUAV14を先頭にして飛行する場合、フォロワーUAV15#1についてはp=e+(-L,M,0),M>0と設定し、フォロワーUAV15#2についてはp=e+(-L,-M,0),M>0,L=Lと設定する。
 一般的には、リーダーUAV14とフォロワーUAV15#iの位置関係は、図12上で示される。ステップS1302で、フォロワーUAV15#iに装着したマーカー点a、点bi、点c、及び点dを位置計測センサ10により検出して、交点eの位置を算出する。点eの座標はフォロワーUAV15#iの現在位置となる。
 ステップS1304で、図12上に示すように、フォロワーUAV15#iの現在位置(点e)から目標地(点p)までのベクトルTを、T=p-eの計算により求める。
 ステップS1306で、点cから点dへのベクトルc-dがベクトルTとなす回転角θ(方位角)をベクトル内積の関係を利用して算出する。
 以上の処理により、フォロワー位置検出部40ではフォロワーUAV15#iの現在位置(点e)と、フォロワーUAV15#iの現在位置(点e)から目標地(点p)までのベクトルTと、フォロワーUAV15#iの方位角θを算出し、第1の実施形態と同様にフォーメーション制御部42の処理と飛行コマンド変換部34の処理を反復することにより、図13に示すデルタ・フォーメーションの編隊で飛行することができる。さらに、リーダーUAV14の目標地の位置pを空間経路に沿って間隔を空けて空間中に設定することで、デルタ・フォーメーションの編隊がその軌跡に沿って飛行することができる。
<本発明の第4の実施形態に係る飛行制御装置の構成及び作用>
 本発明の第4の実施形態は、上記図1の第1~3の実施形態の構成において、空間中において多様な幾何パターンを描くように編隊飛行を制御する例である。図14に幾何パターンに基づいたリーダーUAV14の飛行経路の例を示す。図14(A)では、上記図1の第1~3の実施形態の構成において、A地点からB地点への直線飛行とB地点からA地点への直線飛行を連続するようにリーダーUAV14の目標地pを設定して飛行制御することにより、リーダーUAV14及びフォロワーUAV15#iはA地点とB地点間の往復路を飛行する。
 図14(B)では、上記図1の第1~3の実施形態の構成において、A地点からB地点への直線飛行、B地点からC地点への直線飛行、並びにC地点からA地点への直線飛行を連続するようにリーダーUAV14の目標地pを設定して飛行制御することにより、リーダーUAV14及びフォロワーUAV15#iはA地点、B地点、C地点で形成される三角形状の周回を飛行する。
 図14(C)では、上記図1の第1~3の実施形態の構成において、A地点からB地点への直線飛行、B地点からC地点への直線飛行、C地点からD地点への直線飛行、並びにD地点からA地点への直線飛行を連続するようにリーダーUAV14の目標地pを設定して飛行制御することにより、リーダーUAV14及びフォロワーUAV15#iはA地点、B地点、C地点、D地点で形成される四角形状の周回を飛行する。
 図14(D)では、上記図1の第1~3の実施形態の構成において、A地点からB地点への直線飛行、B地点からC地点への直線飛行、C地点からD地点への直線飛行、D地点からE地点への直線飛行、並びにE地点からA地点への直線飛行を連続するようにリーダーUAV14の目標地pを設定して飛行制御することにより、リーダーUAV14及びフォロワーUAV15#iはA地点、B地点、C地点、D地点、E地点で形成される五角形状を描くように飛行する。あるいは、A地点からD地点への直線飛行、D地点からB地点への直線飛行、B地点からE地点への直線飛行、E地点からC地点への直線飛行、並びにC地点からA地点への直線飛行を連続するようにリーダーUAV14の目標地pを設定して飛行制御することにより、リーダーUAV14及びフォロワーUAV15#iはA地点、D地点、B地点、E地点、C地点で形成される五角形状の周回を飛行する。第1~3の実施形態は直線飛行を基本にして加速、等速、減速の制御が行われるため、直線飛行で描く幾何パターンであれば任意の幾何形状の経路に沿って飛行することができる。
 なお、本発明は、上述した実施の形態に限定されるものではなく、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。
 例えば、上述した各実施形態では、飛行制御装置により、リーダーUAV14とフォロワーUAV15#iとを制御する場合を例に説明したが、これに限定されるものではなく、飛行制御システムとして、リーダー飛行制御装置とフォロワー飛行制御装置とを構成し、リーダーUAV14とフォロワーUAV15#iとをそれぞれの装置によって制御するようにしてもよい。
10 位置計測センサ
12 目標地
20 演算部
30 リーダー位置検出部
32 リーダー位置制御部
34 飛行コマンド変換部
40 フォロワー位置検出部
42 フォーメーション制御部
50 通信部
100飛行制御装置

Claims (7)

  1.  複数のUAV(Unmanned Aerial Vehicle)の編隊飛行を制御し、前記編隊飛行を先導するリーダーUAVと前記リーダーUAVに従って編隊を形成する複数のフォロワーUAVの各々を制御する飛行制御装置であって、
     前記リーダーUAVと前記複数のフォロワーUAVの各々とに付与され、かつ、マーカー間の距離が既知の複数のマーカーの各々の三次元座標を計測する位置計測センサと、
     前記位置計測センサによって計測された前記リーダーUAVの前記マーカーの各々の三次元座標と、予め設定された前記リーダーUAVの目標地の目標点とに基づいて、前記リーダーUAVについて、前記マーカーの各々の三次元座標を結ぶ第1線分及び第2線分の交点、前記交点からの前記目標点までのベクトル、及びグローバル座標系における前記目標点に対する前記マーカーの各々の三次元座標を結んだ前記第1線分の方位角を算出するリーダー位置検出部と、
     前記リーダーUAVの前記目標点までのベクトルから求まる距離に基づいて、前記リーダーUAVの位置を制御するための第1制御データを更新するリーダー位置制御部と、
     前記複数のフォロワーUAVの各々について、前記位置計測センサによって計測された前記フォロワーUAVの前記マーカーの各々の三次元座標と、前記リーダーUAVの第1線分及び第2線分の交点から、前記第1線分又は前記第2線分の延長線上に予め定められた距離だけ離れた座標により定まる、前記フォロワーUAVの目標点とに基づいて、前記フォロワーUAVについて、前記マーカーの各々の三次元座標を結ぶ第1線分及び第2線分の交点、前記交点からの前記目標点までのベクトル、及びグローバル座標系における前記目標点に対する前記マーカーの各々の三次元座標を結んだ前記第1線分の方位角を算出するフォロワー位置検出部と、
     前記複数のフォロワーUAVの各々について、前記フォロワーUAVの前記目標点までのベクトルから求まる距離に基づいて、前記フォロワーUAVの位置を制御するための第2制御データを更新するフォーメーション制御部と、
     前記リーダーUAVについて更新された前記第1制御データと、前記リーダーUAVについて算出された前記方位角とに基づいて、前記リーダーUAVにおける、飛行指令データを算出し、算出した前記飛行指令データに基づいて前記リーダーUAVの運動を制御し、前記複数のフォロワーUAVの各々について、前記フォロワーUAVについて更新された前記第2制御データと、前記フォロワーUAVについて算出された前記方位角とに基づいて、前記フォロワーUAVにおける、飛行指令データを算出し、算出した前記飛行指令データに基づいて前記フォロワーUAVの運動を制御する飛行コマンド変換部と、
     を含む飛行制御装置。
  2.  i台目の前記フォロワーUAVについて予め定められた距離は、i-1台目の前記フォロワーUAVの距離に対し所定の関係となるように定められる請求項1に記載の飛行制御装置。
  3.  前記フォロワーUAVの目標点は、
    前記リーダーUAVの第1線分及び第2線分の交点から、前記第1線分の延長線上に予め定められた距離だけ離れた座標により定まるか、
    前記リーダーUAVの第1線分及び第2線分の交点から、前記第2線分の延長線上に予め定められた距離だけ離れた座標により定まるか、又は
    前記リーダーUAVの第1線分及び第2線分の交点から、前記第1線分の延長線上に予め定められた距離だけ離れた座標と、前記第2線分の延長線上に予め定められた距離だけ離れた座標とにより定まる請求項1または請求項2に記載の飛行制御装置。
  4.  複数のUAV(Unmanned Aerial Vehicle)の編隊飛行を制御し、前記編隊飛行を先導するリーダーUAVと前記リーダーUAVに従って編隊を形成する複数のフォロワーUAVの各々を制御する飛行制御装置における飛行制御方法であって、
     位置計測センサが、前記リーダーUAVと前記複数のフォロワーUAVの各々とに付与され、かつ、マーカー間の距離が既知の複数のマーカーの各々の三次元座標を計測するステップと、
     リーダー位置検出部が、前記位置計測センサによって計測された前記リーダーUAVの前記マーカーの各々の三次元座標と、予め設定された前記リーダーUAVの目標地の目標点とに基づいて、前記リーダーUAVについて、前記マーカーの各々の三次元座標を結ぶ第1線分及び第2線分の交点、前記交点からの前記目標点までのベクトル、及びグローバル座標系における前記目標点に対する前記マーカーの各々の三次元座標を結んだ前記第1線分の方位角を算出するステップと、
     リーダー位置制御部が、前記リーダーUAVの前記目標点までのベクトルから求まる距離に基づいて、前記リーダーUAVの位置を制御するための第1制御データを更新するステップと、
     飛行コマンド変換部が、前記リーダーUAVについて更新された前記第1制御データと、前記リーダーUAVについて算出された前記方位角とに基づいて、前記リーダーUAVにおける、飛行指令データを算出し、算出した前記飛行指令データに基づいて前記リーダーUAVの運動を制御するステップと、
     フォロワー位置検出部が、前記複数のフォロワーUAVの各々について、前記位置計測センサによって計測された前記フォロワーUAVの前記マーカーの各々の三次元座標と、前記リーダーUAVの第1線分及び第2線分の交点から、前記第1線分又は前記第2線分の延長線上に予め定められた距離だけ離れた座標により定まる、前記フォロワーUAVの目標点とに基づいて、前記フォロワーUAVについて、前記マーカーの各々の三次元座標を結ぶ第1線分及び第2線分の交点、前記交点からの前記目標点までのベクトル、及びグローバル座標系における前記目標点に対する前記マーカーの各々の三次元座標を結んだ前記第1線分の方位角を算出するステップと、
     フォーメーション制御部が、前記複数のフォロワーUAVの各々について、前記フォロワーUAVの前記目標点までのベクトルから求まる距離に基づいて、前記フォロワーUAVの位置を制御するための第2制御データを更新するステップと、
     前記飛行コマンド変換部が、前記複数のフォロワーUAVの各々について、前記フォロワーUAVについて更新された前記第2制御データと、前記フォロワーUAVについて算出された前記方位角とに基づいて、前記フォロワーUAVにおける、飛行指令データを算出し、算出した前記飛行指令データに基づいて前記フォロワーUAVの運動を制御するステップと、
     を含む飛行制御方法。
  5.  i台目の前記フォロワーUAVについて予め定められた距離は、i-1台目の前記フォロワーUAVの距離に対し所定の関係となるように定められる請求項4に記載の飛行制御方法。
  6.  前記フォロワーUAVの目標点は、
    前記リーダーUAVの第1線分及び第2線分の交点から、前記第1線分の延長線上に予め定められた距離だけ離れた座標により定まるか、
    前記リーダーUAVの第1線分及び第2線分の交点から、前記第2線分の延長線上に予め定められた距離だけ離れた座標により定まるか、又は
    前記リーダーUAVの第1線分及び第2線分の交点から、前記第1線分の延長線上に予め定められた距離だけ離れた座標と、前記第2線分の延長線上に予め定められた距離だけ離れた座標とにより定まる請求項4または請求項5に記載の飛行制御方法。
  7.  コンピュータを、請求項1~請求項3のいずれか1項に記載の飛行制御装置の各部として機能させるためのプログラム。
PCT/JP2019/016054 2018-04-16 2019-04-12 飛行制御装置、方法、及びプログラム WO2019203166A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018078532A JP2019185603A (ja) 2018-04-16 2018-04-16 飛行制御装置、方法、及びプログラム
JP2018-078532 2018-04-16

Publications (1)

Publication Number Publication Date
WO2019203166A1 true WO2019203166A1 (ja) 2019-10-24

Family

ID=68238823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016054 WO2019203166A1 (ja) 2018-04-16 2019-04-12 飛行制御装置、方法、及びプログラム

Country Status (2)

Country Link
JP (1) JP2019185603A (ja)
WO (1) WO2019203166A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112068598A (zh) * 2020-09-28 2020-12-11 西北工业大学 一种无人机编队飞行方法及控制系统
CN113960994A (zh) * 2020-07-01 2022-01-21 中国船舶重工集团公司第七一一研究所 一种多无人艇协同航行的s面自适应控制算法
US20230058405A1 (en) * 2021-08-20 2023-02-23 Sony Group Corporation Unmanned aerial vehicle (uav) swarm control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102351747B1 (ko) * 2021-10-15 2022-01-17 주식회사 공간지적측량 지형 변화에 따른 드론 측량 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289127A (ja) * 2004-03-31 2005-10-20 Nagasaki Prefecture 飛行装置の姿勢位置制御システムおよび姿勢位置制御装置
US20150301529A1 (en) * 2012-02-13 2015-10-22 C & P Technologies, Inc. Method and apparatus for dynamic swarming of airborne drones for a reconfigurable array
CN105955288A (zh) * 2016-07-15 2016-09-21 零度智控(北京)智能科技有限公司 飞行器定位及控制方法及系统
JP2017052389A (ja) * 2015-09-09 2017-03-16 公立大学法人会津大学 ドローンおよびドローン群
JP2017056899A (ja) * 2015-09-18 2017-03-23 株式会社日立システムズ 自律飛行制御システム
JP2019059314A (ja) * 2017-09-26 2019-04-18 日本電信電話株式会社 飛行制御装置、方法、及びプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289127A (ja) * 2004-03-31 2005-10-20 Nagasaki Prefecture 飛行装置の姿勢位置制御システムおよび姿勢位置制御装置
US20150301529A1 (en) * 2012-02-13 2015-10-22 C & P Technologies, Inc. Method and apparatus for dynamic swarming of airborne drones for a reconfigurable array
JP2017052389A (ja) * 2015-09-09 2017-03-16 公立大学法人会津大学 ドローンおよびドローン群
JP2017056899A (ja) * 2015-09-18 2017-03-23 株式会社日立システムズ 自律飛行制御システム
CN105955288A (zh) * 2016-07-15 2016-09-21 零度智控(北京)智能科技有限公司 飞行器定位及控制方法及系统
JP2019059314A (ja) * 2017-09-26 2019-04-18 日本電信電話株式会社 飛行制御装置、方法、及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAMERIKAWA, TORU: "Decentralized Model Predictive Formation Control for a Multi-UAV System", SYSTEMS, CONTROL AND INFORMATION, vol. 61, no. 2, 15 February 2017 (2017-02-15), pages 69 - 75, XP055643314 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113960994A (zh) * 2020-07-01 2022-01-21 中国船舶重工集团公司第七一一研究所 一种多无人艇协同航行的s面自适应控制算法
CN113960994B (zh) * 2020-07-01 2024-03-26 中国船舶集团有限公司第七一一研究所 一种多无人艇协同航行的s面自适应控制算法
CN112068598A (zh) * 2020-09-28 2020-12-11 西北工业大学 一种无人机编队飞行方法及控制系统
CN112068598B (zh) * 2020-09-28 2021-11-16 西北工业大学 一种无人机编队飞行方法及控制系统
US20230058405A1 (en) * 2021-08-20 2023-02-23 Sony Group Corporation Unmanned aerial vehicle (uav) swarm control

Also Published As

Publication number Publication date
JP2019185603A (ja) 2019-10-24

Similar Documents

Publication Publication Date Title
WO2019203166A1 (ja) 飛行制御装置、方法、及びプログラム
AU2017386252B2 (en) Rotor units having asymmetric rotor blades
JP6758271B2 (ja) 飛行制御装置、方法、及びプログラム
Thomas et al. Toward image based visual servoing for aerial grasping and perching
WO2020032058A1 (ja) 飛行制御装置、方法、及びプログラム
Kushleyev et al. Towards a swarm of agile micro quadrotors
US10023323B1 (en) Estimating wind from an airborne vehicle
JP2009173263A (ja) 無人航空機(uav)によって移動目標物を自律的に追跡するための方法及びシステム
Chowdhary et al. Self-contained autonomous indoor flight with ranging sensor navigation
US20240076066A1 (en) Fixed-wing unmanned aerial vehicle capable of high angle-of-attack maneuvering
Schnipke et al. Autonomous navigation of UAV through GPS-denied indoor environment with obstacles
Fink et al. Dynamic visual servoing for a quadrotor using a virtual camera
WO2019172335A1 (ja) 飛行制御装置、方法、プログラム、及び記憶媒体
Mueller et al. Model predictive control for vision-based quadrotor guidance
AU2020364319B2 (en) Contingent use of commanded speed in lieu of sensed airspeed to inform flight control decisions
WO2019194011A1 (ja) 飛行制御装置、方法、及びプログラム
WO2023127289A1 (ja) 垂直離着陸機の自動発着システム、垂直離着陸機および垂直離着陸機の発着制御方法
Rossouw et al. An open-source autopilot and source localisation for bio-inspired miniature blimps
Chowdhary et al. Integrated guidance navigation and control for a fully autonomous indoor uas
Suzuki et al. Teleoperation of a tail-sitter VTOL UAV
Li et al. Off-board visual odometry and control of an ultralight quadrotor mav
Blouin et al. Optimal control for the trajectory planning of micro airships
Nagata et al. Flexible flight navigation for quadcopters based on geometric formation using motion sensing
Kiyak et al. Obstacle detection and collision avoidance using indoor quadrocopter
Jaques Receding Horizon Control for Autonomous UAS Shipboard Landing with Tau Guidance and Polynomial Trajectory Planning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19788732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19788732

Country of ref document: EP

Kind code of ref document: A1