WO2023127215A1 - 空調給気可能な二酸化炭素ガス分離濃縮装置 - Google Patents

空調給気可能な二酸化炭素ガス分離濃縮装置 Download PDF

Info

Publication number
WO2023127215A1
WO2023127215A1 PCT/JP2022/036262 JP2022036262W WO2023127215A1 WO 2023127215 A1 WO2023127215 A1 WO 2023127215A1 JP 2022036262 W JP2022036262 W JP 2022036262W WO 2023127215 A1 WO2023127215 A1 WO 2023127215A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
gas
zone
dioxide gas
rotor
Prior art date
Application number
PCT/JP2022/036262
Other languages
English (en)
French (fr)
Inventor
岡野浩志
Original Assignee
岡野浩志
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岡野浩志 filed Critical 岡野浩志
Priority to KR1020237039188A priority Critical patent/KR20230165346A/ko
Priority to DE112022001386.9T priority patent/DE112022001386T5/de
Priority to CN202280039619.6A priority patent/CN117529360A/zh
Priority to CA3204602A priority patent/CA3204602A1/en
Publication of WO2023127215A1 publication Critical patent/WO2023127215A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/02Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour over or through a liquid bath
    • B01D47/022Separating dispersed particles from gases, air or vapours by liquid as separating agent by passing the gas or air or vapour over or through a liquid bath by using a liquid curtain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1412Controlling the absorption process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention is a wet thermal swing method that can recover with a high recovery rate, can be concentrated to a high concentration, has high durability, can use exhaust heat of around 100 ° C., consumes less energy, is inexpensive and can be easily made compact. It relates to a carbon dioxide gas separation and concentration device and/or an air conditioner.
  • the present invention relates to a technology that can separate and concentrate carbon dioxide gas to a high concentration not only from gases emitted from thermal power plants and combustion furnaces, but also from the atmosphere and conditioned air. It is not installed adjacent to a facility that emits a large amount of carbon dioxide gas, but it is adjacent to a place where recovered carbon dioxide gas is recovered or used, or it is related to carbon dioxide gas separation and concentration technology that can be easily made compact for portability. It is.
  • Thermal power plants that use fossil fuels such as coal, petroleum, and natural gas are the most common, and there are also those that incinerate waste generated by cities to generate power. Such thermal power plants are characterized by their low fuel cost, their technological history and achievements, and their ability to stably supply power. However, thermal power plants emit carbon dioxide gas and have the problem of accelerating global warming.
  • the carbon dioxide gas in the exhaust gas is separated, collected and concentrated, and the collected carbon dioxide gas is stored underground or in the deep sea, or it is used for enhanced crude oil recovery (CO2 - EOR), and various other reuses.
  • CO2 - EOR enhanced crude oil recovery
  • Methods are being researched and developed.
  • As means for separating, collecting and concentrating the carbon dioxide gas various methods such as a cryogenic method, an absorption method, an adsorption method, and a membrane separation method have been proposed.
  • the cryogenic method pressurizes the source gas and uses the difference in liquefaction temperature of each gas under pressure to liquefy and separate carbon dioxide gas. Electric power for the compressor that compresses the gas and electric power for the refrigerator that cools it down is required. Since it must be compressed and deep-cooled, it has the disadvantage of excessive energy consumption.
  • the absorption method is a method in which carbon dioxide gas is absorbed by an amine-based alkaline liquid such as monoethanolamine, recovered, and heated to desorb and concentrate carbon dioxide gas.
  • Handling liquids requires expensive corrosion-resistant materials, resulting in high costs.
  • concentration of the amine aqueous solution is around 30%, and around 70% is water, and the heat capacity of the liquid to be handled is enormous. ing.
  • the adsorption method uses gas adsorbents such as zeolite and activated carbon.
  • gas adsorbents such as zeolite and activated carbon.
  • the PSA method uses the principle that the amount of carbon dioxide gas adsorbed changes depending on the pressure. It pressurizes to adsorb only carbon dioxide gas, and decompresses to desorb and recover carbon dioxide gas. There is a problem that it is difficult to increase the size because precision machines such as solenoid valves, compressors, and vacuum pumps are required as equipment.
  • Patent Document 4 Concentration of carbon dioxide gas has also been studied, and Patent Document 4 is disclosed for separating and concentrating carbon dioxide gas from combustion exhaust gas, and Patent Document 5 is also disclosed for separating and concentrating carbon dioxide gas in the atmosphere.
  • Patent Document 6 discloses a technology for desorption and concentration using superheated steam in a moving bed system of granular adsorbent instead of a honeycomb rotor, but there are many problems such as recovery cost.
  • the present inventor has been researching and developing Patent Documents 7, 8, 9, and 10 that use saturated steam for regeneration and desorption as a new technology, but there are still carbon dioxide gas recovery efficiency, concentration concentration, cost reduction, and energy saving. There are many issues for practical application.
  • DAC Patent Documents 11, 12, 13 technology for directly separating and collecting carbon dioxide gas in the atmosphere
  • Advantages of DACs are: (1) they can target dispersed and moving sources of emissions, such as automobiles and aircraft; (2) Carbon dioxide gas emitted in the past can also be targeted. (3) Carbon dioxide raw materials can be obtained in the vicinity of the factory where the recovery equipment is installed without being restricted by the emission source. There are examples of large-scale demonstration tests being conducted in Europe and the United States due to such characteristics.
  • the present invention relates to a method for separating and concentrating carbon dioxide gas not only from exhaust gas from power plants, but also from outside air and conditioned air.
  • a wet TSA carbon dioxide gas separation and concentration apparatus which is low in cost, has high durability, can utilize exhaust heat of about 100° C., and has high thermal efficiency.
  • Adsorption and absorption phenomena are different but similar phenomena, and the term sorption is sometimes used when both elements are present.
  • the ion-exchange resin considered for carbon dioxide gas recovery is of a gel type, there are pores filled with water due to water absorption, and the pores diffuse into the fixed amine groups on the inner surface of the pores. It is believed that carbon adsorbs, similar to the adsorption removal of organic matter by activated carbon in water.
  • treatment/regeneration for the adsorbent
  • sorption/desorption the difference is whether the sorption material is the main or the gas is the main, and they mean the same operation phenomenologically. It is. Both expressions are used either to follow the cited literature or to clarify the situation at the time.
  • Patent document 4 discloses a method for concentrating and recovering carbon dioxide gas from flue gas or the like by a conventional dry TSA method using a zeolite honeycomb rotor capable of adsorbing carbon dioxide. It is an improved version of the flow that This flow was devised and invented for the purpose of cooling the rotor, removing the heat of adsorption, pursuing energy saving, and improving the recovery rate and recovery concentration in the TSA rotor concentration method.
  • Patent Document 5 The technology disclosed in Patent Document 5 has been researched and developed for the purpose of increasing the energy efficiency of air conditioning by separating and removing carbon dioxide gas from conditioned air and the atmosphere, and increasing the energy efficiency of air conditioning.
  • concentration of the removed carbon dioxide gas is around 1000ppm, and a large amount of regeneration air with the same air volume as the processing air is required, resulting in a large rotor, and the installation space and cost of large supply/exhaust ducts for regeneration were issues.
  • Patent Document 6 discloses a method for recovering high-concentration carbon dioxide gas by sorbing carbon dioxide gas from the exhaust gas of a furnace using spherical silica gel impregnated with amine by a moving bed method, and regenerating and desorbing it with superheated steam. ing.
  • the wet TSA method is difficult in a packed bed, moving bed, or fluidized bed of spherical silica gel. This is because the condensed water clogs the flow path or drifts, or the surface tension of the condensed water causes problems due to adhesion and coalescence of particles.
  • the depth becomes a thermodynamic burden.
  • the deep part where absorption and desorption are slow behaves as a sensible heat storage medium, and the adsorbed water in the deep part is added to the sensible heat storage.
  • the deep portion of the slow-reacting spherical silica gel accumulates heat during desorption heating, delaying the rise of desorption, producing excessive and harmful condensed water, and becomes a heat load during sorption, delaying the start of sorption.
  • Patent Document 6 a drying process must be added after the desorption process in order to treat the excess condensed water due to the collapse of the balance between condensation and evaporation. Although the method of doing is proposed, it becomes a countermeasure against energy saving.
  • the sorbent used in the wet TSA method of the present invention is a sheet supporting 0.1 mm or less amine-based ion exchange resin fine particles disclosed in Patent Document 7 or a polymer sheet having a carbon dioxide sorption function with a thickness of 1 mm or less.
  • Patent Document 10 discloses a method of using an sorbent body in which sheets in which granular sorbents are dispersedly supported are laminated instead of a honeycomb structure. It is free from adverse effects such as coalescence of particles due to surface tension of condensed water and channel clogging due to capillary force. In none of the patents 7, 8, 9 and 10 the behavior of condensed water is to migrate out of the surface of the particles or honeycombs.
  • the wet TSA method uses saturated steam at 100 ° C or less instead of superheated steam for desorption of carbon dioxide gas, and not only can the carbon dioxide gas be concentrated and recovered at a high concentration by the heat of condensation of the saturated steam, but also condensed from water vapor during desorption.
  • the desorbed moisture remains on the inner surface of the honeycomb and sorbs carbon dioxide gas while being evaporatively cooled in the treatment zone.
  • the sorption performance of carbon dioxide gas is dramatically improved compared to the dry TSA method.
  • the techniques disclosed in Patent Documents 7, 8, 9, and 10 are insufficient in terms of recovery rate, recovery concentration, energy conservation, and cost reduction, and problems remain.
  • Patent Document 11 before moving to the desorption step after carbon dioxide sorption, the pressure is reduced to 20 to 400 mb to reduce the oxygen concentration to avoid oxidative deterioration of the amine-functionalized sorbent material, and to recover carbon dioxide gas.
  • Techniques for increasing the purity of recovered carbon dioxide gas by preventing gas contamination, such as air, and a method for pre-purging the sorbent chamber with an inert gas to remove oxygen-containing gases prior to the desorption operation are also disclosed.
  • gas contamination such as air
  • inert gas to remove oxygen-containing gases prior to the desorption operation
  • Patent Document 12 before shifting from the sorption process to the desorption process, purging with an inert gas to remove oxygen from the desorption path. Also disclosed is a method of cooling the sorbent structure with an inert gas prior to returning to the sorption process to avoid oxidative damage to the sorbent.
  • the cost of the inert gas and the initial cost of the purging device are problems, and it is necessary to consider the decrease in the carbon dioxide concentration due to the contamination of the purge gas.
  • Patent Document 13 discloses a rotary sorption concentrator, which has a sealable regeneration box, reduces the pressure by using an exhaust pump or the like, cools the system, and reduces the oxygen concentration to prevent thermal and oxidative deterioration. It is however, the method of depressurizing with an exhaust pump involves the initial and running costs of the exhaust pump, as well as the cost of a regeneration box that requires pressure resistance and the difficulty of ensuring sealing performance.
  • Patent Document 9 describes a wet TSA method in which a gas circulation path communicating between an inlet and an outlet of a desorption zone is configured, and a mixed gas of carbon dioxide gas and water vapor emitted from the desorption zone is circulated while supplying saturated steam. discloses a method. As a result, the oxygen concentration in the desorption path is reduced, the thermal/oxidative deterioration of the carbon dioxide sorbent is prevented, and the durability is improved. However, although this method produced a certain effect, the principle of desorption is to use a heated mixed gas of carbon dioxide gas and water vapor. We found that there is a limit to the carbon gas recovery rate and recovery concentration, and thought that a further breakthrough in wet TSA carbon dioxide gas separation, recovery and concentration technology using saturated steam was necessary.
  • Patent Literature 1 discloses a flow of a rotor-rotating energy-saving ultra-low dew point dehumidifier. It is divided into a second adsorption zone, a first adsorption zone, a second regeneration zone, a first regeneration zone, and a pre-cooling purge zone in order of the rotation direction of the rotor. Process air is dehumidified as it passes through the honeycombs of the first adsorption zone. Since the treated air after dehumidification rises in temperature due to the heat of adsorption, it is cooled and then further dehumidified to an ultra-low dew point in the second adsorption zone before being supplied.
  • part of the exit air of the second adsorption zone is introduced into the precooling purge zone, and the honeycomb immediately after regeneration is cooled while being purged with ultra-low dew point air, and the honeycomb rotates to the second adsorption zone. Since the purge outlet air has been heated by recovering the heat of the honeycomb, it is further heated by the regeneration air heater and passed through the honeycomb in the first regeneration zone for regeneration. Since the air that has passed through the first regeneration zone is still at a regenerably low dew point and high temperature, it is reheated and regenerated through the honeycomb of the second regeneration zone.
  • Patent Document 2 What is disclosed in Patent Document 2 is a flow for concentrating a gas with a dilute concentration, which includes an adsorption zone, a first desorption zone, a concentration zone, and a second desorption zone in order of the rotation direction of the rotor. Heated air obtained by heating a part of the processing gas with an air heater is introduced into the first desorption zone and the second desorption zone. In the first desorption zone, the gas adsorbed in the adsorption zone is concentrated and desorbed. The primary enriched gas exiting the first desorption zone is introduced into the enrichment zone and re-adsorbed. Further, the honeycomb is rotationally moved to the second desorption zone, and is highly concentrated and recovered by introduction of the desorption air described above. This method is limited to the assumption of ten-odd to twenty-odd times concentration, and it is not possible to increase the concentration any higher.
  • Patent Document 3 is also a flow for concentrating a dilute gas as much as possible, and has an adsorption zone, a first desorption zone, a second desorption zone, a third desorption zone, and a purge zone in the rotation direction of the rotor.
  • a part of the processing gas is passed through the purge zone to cool the rotor, while the purged passing air is heat-recovered and heated, and further heated by passing through the heater to the first desorption zone, the second desorption zone and the third desorption zone. Introduced and detached.
  • the first desorption zone outlet gas with low concentration in the initial stage of desorption and the third desorption zone outlet gas with low concentration just before the end of desorption are returned to the treatment inlet side and mixed to increase the adsorption concentration.
  • Patent Literatures 2 and 3 are flows for concentrating VOC gas having a dilute concentration to a concentration as high as possible, ten-odd to twenty-odd times.
  • Patent Documents 1, 2, and 3 are all dry TSA methods, and from the outside air with a carbon dioxide concentration of several hundred ppm aimed at by the present invention, or from the combustion exhaust gas with a concentration of around 10%, a high concentration of 50% to 100%. It is theoretically impossible to concentrate and recover.
  • a method for separating and recovering from a concentration of several hundred ppm and concentrating to a high concentration of several tens of percent or more by the rotating rotor type TSA method As described above, in the knowledge of the prior patents that have been filed so far, there has been no proposal of a method for separating and recovering from a concentration of several hundred ppm and concentrating to a high concentration of several tens of percent or more by the rotating rotor type TSA method.
  • heat resistance is required, it is insulated with a glass fiber heat insulating material, etc., and if it is for the purpose of preventing condensation, it is insulated with a foamed styrene heat insulating plate, etc. As described above, the number of man-hours is large and a cost increase cannot be avoided.
  • a heat insulating board made by sandwiching a foamed styrene plate between two steel plates is used to assemble a box-shaped board via a molded aluminum frame, and a rotor, a blower, and other equipment are installed inside for heat insulation.
  • Patent Literature 14 relates to heat insulation and cost reduction of a heat exchange ventilator.
  • Heat exchange element structure with built-in heat exchange element and integrally molded with styrene foam
  • exhaust fan side structure with built-in exhaust fan and integrally molded with styrene foam
  • upply fan with built-in air supply fan and integrally molded with styrene foam
  • This technology aims to reduce the noise and cost of heat exchange ventilation fans for home use. It is not suitable for a small-volume production system that corresponds to the design of the equipment scale. In addition, since it is a static total heat exchanger ventilation system, it can be handled with such materials and structures.
  • the carbon dioxide gas separation and concentration apparatus by the wet TSA method which is the object of the present invention, requires high heat insulation and heat resistance, has a sliding seal part for the rotating rotor, a complicated purge and flow path, and is saturated steam. Since it is used, there is a different dimension of difficulty.
  • the rotor is housed and rotated in a sealed casing, and in the process gas zone, the rotor is brought into contact with air or a mixed gas containing carbon dioxide gas in a wet state to evaporate and cool while sorbing the carbon dioxide gas and saturating the desorption zone.
  • It is a carbon dioxide gas separation and concentration device and/or an air conditioner that introduces steam, desorbs high-concentration carbon dioxide gas by the heat of condensation of the steam, and recovers it through a recovery zone.
  • the present invention is different in that the desorption outlet gas desorbed with the desorption gas (saturated vapor) having the highest energy is passed through the recovery zone to recover heat, cool, dehumidify, and recover. That is, saturated steam close to 100° C. is introduced into the desorption zone to desorb carbon dioxide gas from the honeycomb, and the mixed gas of carbon dioxide gas and saturated steam at the outlet is introduced through the recovery zone on the upstream side in the rotation direction to pass the carbon dioxide gas. is a method of recovering
  • a rotor capable of sorbing carbon dioxide gas is housed and rotated in a sealed casing having, at least in rotational order, a process gas zone, a process gas purge zone, a recovery zone, a desorption zone, and a desorption gas purge zone.
  • a carbon dioxide gas separation and concentration device and/or an air conditioner that introduces saturated steam into a desorption zone, desorbs high-concentration carbon dioxide gas by condensation heat of the steam, and recovers the carbon dioxide gas through a recovery zone.
  • the circulating purge gas is circulated by a pump.
  • Carbon dioxide gas separation, concentration and recovery alone is not viable as a business. Therefore, we devised a method to combine the recovery of carbon dioxide gas with the effective use of air with a low concentration of carbon dioxide gas after treatment.
  • the mixed gas containing carbon dioxide is the atmosphere or conditioned air, the carbon dioxide gas separation and concentration device and/or the air conditioner that supplies the air that has left the processing gas zone for air conditioning and recovers the carbon dioxide gas that has left the recovery zone It is a device.
  • the energy-saving effect of air-conditioning and ventilation, and the effect of increasing the amount of carbon dioxide gas recovered per amount of air to be processed, can be expected because air-conditioned air has a higher concentration of carbon dioxide gas than the atmosphere.
  • Conventional air processing equipment such as dehumidifiers and VOC concentrators are assembled by painting canned products assembled by welding sheet metal products, installing blowers, rotors and sealing devices, heaters, internal ducts and other components. It is produced with heat insulation and electrical wiring at key points. Insufficient heat insulation results in poor performance, energy loss, and dew condensation.
  • the wet TSA separation and concentration method requires a higher level of heat insulation than conventional products. This is because saturated steam at nearly 100° C. has an enthalpy several hundred times that of air or carbon dioxide gas at the same temperature. Saturated water vapor at 100° C. is 100% water vapor, but the lower the temperature, the higher the mixing ratio of gases other than water vapor. For this reason, we thought that bringing the saturated steam temperature as close to 100°C as possible is an essential condition for heat/oxidative deterioration countermeasures and high-concentration recovery.
  • the wet TSA method carbon dioxide gas separation and concentration apparatus of the present invention has a complex zone as described above, and has advanced heat insulation, moisture resistance, and moisture resistance to prevent condensation condensation and heat loss of steam in unnecessary places. Heat resistance is required, and since there is a large concentration difference between the raw material gas and the recovered gas, high sealing performance is required.
  • Module board laminated unit structure is to process the installation space of the component equipment and the gas flow path on multiple foam boards, assemble the component equipment such as the rotor and the drive device, and laminate the module plates to assemble the dioxide. It is completed as a carbon gas separation and concentration device and/or an air conditioner.
  • a "rotor cassette module plate” in which a drive system consisting of a honeycomb rotor having a carbon dioxide gas sorption function, a drive motor and a drive belt is incorporated in a foam plate, and a rotor shaft holding and rotor end faces A “rotor end surface” in which a “laminated structure purge/recovery block” composed of a plurality of heat-resistant foamed rubber plates, etc., having spaces and communication passages for attachment, detachment, recovery, and purge passages is incorporated into the foam plate that slides on the support seal. It is a carbon dioxide gas separating and concentrating device and/or an air conditioner in which the front and rear of the "module plate” and the "blowing system module plate” incorporating the process gas blower are laminated and integrated.
  • the “laminated structure purge/collection block” which constitutes the recovery, desorption, purge, etc. zones. Also required are durability, heat resistance, and water resistance.
  • the “laminated structure purge/recovery block” is a laminated structure of fan-shaped sheets with or without at least zones for desorption, recovery, and purge. A moving sheet, a foam rubber sheet layer below it, a foam rubber sheet layer or a foam plate layer with communication paths between zones below it, and a heat insulating plate with no zone space on the bottom are laminated and bonded.
  • a "laminated structure purge/recovery block” having a steam introduction part and a desorption gas recovery part provided on the outer peripheral part or the bottom surface is constructed.
  • the bottom heat insulating plate can be made of either foamed rubber or resin-based foamed plate.
  • the "laminated structure purge/recovery block” configured as described above is incorporated into the "rotor end face module plate”.
  • the newly invented flow has a process gas zone, a recovery zone, and a desorption zone in the order of the rotation direction of the rotor.
  • the carbon dioxide gas sorbed on the honeycomb is desorbed by the heat of condensation of water vapor, and the gas is introduced and passed through a recovery zone upstream in the rotation direction to recover the carbon dioxide gas.
  • the air brought into the recovery zone by the rotation of the rotor is purged and recovered, and combined with the effect of preventing oxygen from entering the desorption zone, which has the highest temperature, oxidative deterioration of the sorbent is suppressed, and saturated steam near 100 ° C is generated.
  • the energy saving effect of preheating and recovering heat from the honeycomb before desorption and the effect of lowering the gas temperature and steam content from the recovered gas side contributes to the cooling load for separating carbon dioxide gas and water vapor after recovery. can also be reduced.
  • the effect of solving the problem 3 of the conventional technology "module board laminated unit structure” is to select a foam board made of a material that matches the required characteristics of the required place, extract the required place, incorporate the component parts into a module, and create each module board. Since the entire device is integrated by stacking, there is no need for can manufacturing, leak-proof sealing of welded parts, or anti-corrosion coating. can also be handled, and significant cost reduction is possible.
  • a “laminated structure purge/recovery block” for the desorption, recovery, and purge functions it has high precision, low friction sliding property, sealing effect, and good follow-up performance, even though it has multiple complex zones, and does not require complicated adjustments. , heat resistance, heat insulation and durability can be secured, and costs can be reduced.
  • FIG. 1 is a basic flow diagram of a carbon dioxide gas separation and concentration apparatus and/or an air conditioner according to a first embodiment of the present invention
  • FIG. 2 is a basic flow diagram of a carbon dioxide gas separation and concentration apparatus and/or an air conditioner according to a second embodiment of the present invention
  • 4 is a diagram for explaining the mixture rate of gases other than steam depending on the temperature of saturated steam.
  • FIG. 2 is an exploded photograph before assembly of a carbon dioxide gas separation and concentrator and/or a foam module plate lamination unit of an air conditioner according to a second embodiment of the present invention
  • FIG. 1 is a basic flow diagram of a carbon dioxide gas separation and concentration apparatus and/or an air conditioner according to a first embodiment of the present invention
  • FIG. 2 is a basic flow diagram of a carbon dioxide gas separation and concentration apparatus and/or an air conditioner according to a second embodiment of the present invention
  • FIG. 4 is a part view of the second embodiment of the carbon dioxide gas separation and concentration device and/or the “laminated purge/recovery block” of the air conditioner of the present invention before assembly.
  • Fig. 3 is a view after assembly of the carbon dioxide gas separation and concentration apparatus and/or the "laminated purge/recovery block" of the air conditioner according to the second embodiment of the present invention.
  • 1 is a photograph of a carbon dioxide gas separation and concentration apparatus and/or a "laminated purge/recovery block" of an air conditioner according to a second embodiment of the present invention being incorporated into a rotor end face module plate.
  • FIG. 2 is a conceptual diagram of a middle-sized scale-up of the carbon dioxide gas separation and concentration apparatus and/or the air conditioner of the second embodiment of the present invention.
  • 1 is a conceptual diagram of a large-sized carbon dioxide separation, recovery and concentration facility in which middle-sized carbon dioxide gas separation and concentrators and/or air conditioners of a second embodiment according to the present invention are collectively arranged.
  • 1] is a diagram for explaining the outline of a dry TSA method experiment of Comparative Example 1. [FIG.
  • FIG. 4 is a time change graph of carbon dioxide gas recovery concentration and recovery rate at the start-up of the experimental apparatus of Comparative Example 2.
  • FIG. 4 is a graph of the temperatures at the rotor inlet and outlet of the desorption-side circulation path and the temperature rise ⁇ T of the process air in Comparative Example 2.
  • FIG. is a graph showing the influence of the treatment flow rate: desorption side circulation flow rate ratio of Comparative Example 2; is a graph showing an attempt to improve performance by increasing the steam input in Comparative Example 2; 10 is a distribution graph of the treated gas outlet temperature for each rotor rotation angle in Comparative Example 2.
  • FIG. 4 is a time change graph of carbon dioxide gas recovery concentration and recovery rate at the start-up of the experimental apparatus of Comparative Example 2.
  • FIG. 4 is a graph of the temperatures at the rotor inlet and outlet of the desorption-side circulation path and the temperature rise ⁇ T of the process air in Comparative Example 2.
  • FIG. is a graph showing the influence of the treatment flow rate: desorption side circulation flow rate
  • FIG. 10 is a graph of carbon dioxide recovery rate at the treated gas outlet by rotor rotation angle in Comparative Example 2.
  • FIG. is a photograph of the portable prototype prototype tester No. 1 of Comparative Example 3.
  • FIG. is a photograph showing the "rotor cassette module plate” by removing the "rotor end surface module plate” on the near side of the portable prototype test machine No. 2 of the second embodiment example 2; 10 is a graph of recovery rate and recovery concentration after startup of the test apparatus in Example 2 of the second embodiment.
  • Example 10 is a graph of changes in carbon dioxide concentration at a treatment outlet after startup of the test apparatus of Example 2 of the second embodiment. is a graph of the concentration of carbon dioxide at the outlet of the processing side and the concentration of recovered carbon dioxide for each rotor rotation angle in Example 2 of the second embodiment. shows a time change graph of the carbon dioxide gas recovery amount after starting the test apparatus of Example 2 of the second embodiment.
  • a sealed casing having a gas zone 4, a recovery zone 5 and a desorption zone 6, respectively.
  • the wet rotor is brought into contact with air or mixed gas containing carbon dioxide gas to sorb the carbon dioxide gas while being evaporatively cooled, and the saturated steam is introduced into the desorption zone 6 to condense the steam.
  • High-concentration carbon dioxide gas is desorbed by heat, and the exit gas is passed through a recovery zone 5 to be recovered.
  • the honeycomb is preheated and heat recovered prior to desorption, which improves the energy efficiency. It has many advantages, such as reducing the cooling load.
  • the collection zone 5 can be folded back to the front stage side of the rotor rotation to add two or three stages.
  • the carbon dioxide gas separation and concentration apparatus and/or air conditioner according to the second embodiment of the present invention has a rotor 1 capable of sorbing carbon dioxide gas arranged in a process gas zone 4 in order of at least the rotation direction.
  • a carbon dioxide gas separator and/or air conditioner having a process gas purge zone 7, a recovery zone 5, a desorption zone 6, and a desorption gas purge zone 8, wherein the process gas purge zone 7 and the desorption gas purge zone 8 are circulated and purged. is.
  • the circulating purge gas is circulated by a constant displacement pump such as a diaphragm type.
  • the oxygen-containing gas contained in the honeycomb and brought from the processing gas zone by the rotation of the rotor is exhausted in the processing gas purge zone 7, and the exhaust gas is introduced into the desorption gas purge zone 8 to push out and replace the desorption gas contained in the honeycomb.
  • the replaced desorption gas is circulated into the process gas purge zone 7 .
  • Laminate structure purge/recovery block that realizes a complicated flow configuration at low cost and with high accuracy
  • Various conventional separation/concentration devices have a chamber structure of welded sheet metal for the recovery, desorption, and purge zones, etc., and a small cast iron chamber structure. Since the flow path is configured, a complicated flow path configuration is practically impossible.
  • a method was devised to implement such a complicated zone and flow configuration as simply as possible with high thermal insulation and at a low cost. It is a “laminated structure purge/recovery block” structure that integrates zone configurations for recovery, desorption, purge, etc.
  • Elasticity, heat resistance, and sealability are required for the “laminated structure purge/recovery block”.
  • the foaming ratio and material of the rubber plate are selected according to the heat resistance and other required properties.
  • a silicone rubber foam plate (expressed as a plate assuming a certain degree of thickness and hardness) having a thickness of 3 to 4 mm or more, or 5 mm or more depending on the size of the device, is used as the dioxide of the second embodiment of the present invention.
  • FIG. 7 which is a part diagram before assembly of the "laminated purge/recovery block" of the carbon gas separation and concentration device and/or the air conditioner, each zone space and communication path are created for each layer.
  • mass production can be performed by Thomson processing, laser processing, water jet processing and other existing methods. In the future, it can also be developed into a manufacturing method using a 3D printer that builds up each layer.
  • a fluororesin-based sheet with low sliding friction is attached.
  • a soft foam rubber layer having excellent flexibility conformability can be selected for the layer immediately below, and a hard foam rubber plate can be selected for the bottom layer. If rigidity is required for scale-up, a harder foam rubber plate or resin foam plate is used in the lower layer. If necessary, it is easy to insert a plate of laser-cut metal or the like in the middle for reinforcement.
  • the recovery zone 5 is folded back and a second recovery zone is added on the front side in the rotation direction to create a two-stage gas purging block. It is also possible to further improve energy saving by the heat recovery precooling effect of the honeycomb and the preheating effect of the honeycomb.
  • Module plate laminated unit structure is to process and configure the installation space for the component equipment and the gas flow path on multiple foam plates, assemble the component equipment, and stack and assemble the module plates to separate and concentrate carbon dioxide gas. It is completed as a device and/or an air conditioner. Specifically, as shown in FIG. 6, which is an exploded photograph before assembly of the carbon dioxide gas separation and concentration apparatus of the second embodiment of the present invention and/or the foam module plate laminated unit of the air conditioner, carbon dioxide gas is adsorbed on the foam plate.
  • a "rotor cassette module plate” 14 formed by incorporating a honeycomb rotor 1 having a function and a drive system, and a plurality of heat-resistant foam rubber plates forming flow passage spaces on foam plates that support and seal the rotor shaft and both end faces.
  • the front 15 rear 16 of the "rotor end face module plate” is constructed by incorporating the above-mentioned “laminated structure purge/recovery block” 18, which is laminated with glass fiber-containing fluororesin-based sliding material on the sliding surface. and a "blowing system module plate” 17 incorporating a processing gas blower are laminated and assembled together.
  • a small boiler and a circulation pump are built in by forming a space in one of the module plates. If the "laminated structure purge/recovery block" 18 is set so as to protrude slightly from the rotor end face sliding contact surface of the "rotor end face module plate" by the amount of pressure contact, the followability and sealing performance of the zone block to the rotor end face will be improved. Desirably, maintenance replacement and adjustment are also facilitated.
  • the "laminated structure purge/recovery block" 18 formed by the foamed rubber laminated structure is attached to the front and rear "rotor end face module plates" 15 and 16 made of foamed polystyrene plates or the like. Installation of carbon dioxide gas separation and concentration equipment and/or "laminated purge/recovery block” of air conditioner to rotor end face module plate. Further, the "rotor cassette module plate” 14 and the “blower system module plate” 17 are laminated and integrated in the order of 15, 14, 16, 17 to complete the "module plate laminated unit structure". "Module board laminated unit structure" Fig. 10 makes it possible to provide a device that combines cost reduction, high heat insulation, flexible sealing performance, and energy saving. It is also within the scope of the design to bond or cover the exterior of the laminated unit with a colored steel plate or the like in order to withstand portability and outdoor use, and from the necessity of design.
  • the "module board laminated unit structure" of the apparatus of the present invention selects a heat insulating foam board made of a material that meets the required characteristics of the required locations, extracts the required locations, incorporates the constituent parts, and modularizes each. Since the entire device is integrated by stacking the module plates, there is no need for can manufacturing, leak-proof sealing of welded parts, or anti-corrosion coating. It can also be mass-produced, and a large cost reduction is possible.
  • the present invention will be explained using a honeycomb rotor system.
  • a rotor 1 in which a honeycomb made of an inorganic fiber sheet, a metal sheet, a plastic sheet, or the like carries an sorbent material having an amine group with a particle diameter of 1 mm or less
  • the treatment is performed in order of the rotation direction of the rotor as shown in FIG.
  • a gas zone 4 After passing through a gas zone 4 , a process gas purge zone 7 , a recovery zone 5 , a desorption zone 6 , and a desorption gas purge zone 8 , it returns to the process gas zone 4 again.
  • a simpler configuration it is also possible to omit the gas purge zones 7 and 8 as shown in FIG. 2 invented earlier.
  • the honeycomb it is also possible to use an adsorbent formed by stacking sheets in which granular adsorbents are dispersedly bonded, and the rotor may be of a cylinder type instead of a disk type.
  • the outlet gas of the desorption zone 6 is a mixed gas of high-concentration carbon dioxide gas and saturated steam, and this mixed gas is passed through the recovery zone 5 and recovered.
  • the risk of oxygen contamination in the desorption zone 6 is further reduced, and the honeycomb is preheated by the passing gas prior to desorption, and has a heat recovery effect, and is precooled from the recovered gas side, so that it can be separated by steam cooling in the subsequent process. Energy load can be reduced.
  • the honeycomb rotates from the desorption zone 6 to the desorption gas purge zone 8, and the mixed gas of desorption gas and saturated vapor contained in the honeycomb voids is purged.
  • the gas used for purging is mainly composed of the process gas purged and circulated in the process gas purge zone 7 described above.
  • the desorption gas-based gas purged in the desorption gas purge zone 8 circulates to the process gas purge zone 7 described above.
  • the circulating gas purge zones 7 and 8 described above can be omitted as shown in FIG. no problem.
  • the honeycomb that has desorbed carbon dioxide gas then rolls into the process gas zone 4 .
  • the honeycomb is still hot immediately after it is moved, but since the surface is covered with condensed water, it does not come into direct contact with oxygen-containing air, and is quickly cooled by the latent heat of vaporization of the condensed water, thereby avoiding thermal oxidation deterioration.
  • the rotor cooled by the latent heat of vaporization starts to sorb carbon dioxide gas, and the heat of sorption is cooled off by the latent heat of vaporization of the condensed water, so the temperature rise is suppressed and the sorption proceeds efficiently.
  • the wet TSA method exchanges the heat of sorption of carbon dioxide gas with the heat of vaporization of water during sorption, and exchanges the heat of desorption of carbon dioxide gas with the heat of condensation of water vapor during desorption to effectively produce carbon dioxide. Gas can be separated and concentrated.
  • FIG. 10 can be scaled up to realize a medium-sized unit in which the air blowing function and the detachable/collecting function are also integrated as shown in FIG. In the case of further increasing the size, it is easy to combine a plurality of them as shown in FIG. 12 because of their lightweight characteristics.
  • the flue gas When recovering carbon dioxide gas from flue gas, etc., the flue gas is hot and humid and contains pollutant gases such as sulfur oxides, nitrogen oxides, and dust.
  • a pretreatment device such as a filter is installed to remove harmful gases and dust, and the treated gas is used. Since the treated gas after pretreatment is still hot and humid for sorption, it is desirable to cool and dehumidify it.
  • the humidity In the zeolite system, the humidity must be dehumidified to a minus dew point temperature, but in the wet TSA method, the outside temperature and humidity are sufficient throughout the year, and the rotary total heat exchanger disclosed in Patent Document 9 exchanges total heat with the outside air. There is also a method of lowering the temperature and humidity by using this method, which only slightly increases the running cost and keeps the initial cost low. Others are the same as when the outside air or conditioned air is used as the processing gas, but since the processing gas from the flue or the like has a high concentration of carbon dioxide gas, each zone ratio may be specially designed.
  • Patent Document 13 proposes a rotary type that removes oxygen-containing gas with a vacuum pump, but this increases the strength of the device, the initial cost of the vacuum pump, and the running cost. There are many difficult problems such as cost reduction.
  • FIG. 13 shows an example of atmospheric carbon dioxide gas separation and recovery test by the conventional dry TSA method.
  • the honeycomb rotor 12 is formed by corrugating porous paper mainly composed of inorganic fibers such as glass fibers to a pitch of 3.0 mm and a height of 2.0 mm, and winding the corrugated paper.
  • a honeycomb rotor 12 having a bulk specific gravity of 150 kg/m 3 containing 50% by weight of the fine powder and a width of ⁇ 200 mm ⁇ 200 mm is obtained by impregnating with a coating liquid obtained by mixing a basic ion-exchange resin fine powder and a heat- and water-resistant binder and drying it, followed by grinding. get
  • Carbon dioxide gas concentration was measured by a non-dispersive infrared method (NDIR) using a measured concentration of 0 to 10000 ppm.
  • the test conditions were a treatment:desorption zone ratio and flow rate ratio of 1:1, and a treatment gas passing air velocity of 2 m/s.
  • the outside air is the same on both the processing gas side and the desorption side, and the desorption side is heated to 55° C. and introduced into the desorption zone. This temperature is used to avoid thermal oxidation deterioration of the ion exchange resin, but it was found from experiments that the resin deteriorated even under this condition.
  • the carbon dioxide gas recovery rate was 45%, but when the treated gas becomes a high carbon dioxide gas concentration of around 10% such as flue gas, a huge amount of carbon dioxide gas sorption heat is generated, so such a removal rate cannot be expected. do not have.
  • the recovery rate cannot be improved unless the processing gas is circulated many times while being cooled as in Patent Document 4, and in addition, it is impossible at a desorption temperature of about 100°C.
  • the wet TSA method As shown in the upper diagram of FIG. 1, saturated steam is introduced into the desorption zone to desorb carbon dioxide with the heat of condensation of the steam, and the honeycomb is rotated to the treatment gas zone while being moistened with the condensed water.
  • the dry TSA method when a gas containing carbon dioxide is caused to flow into the processing gas zone to sorb carbon dioxide gas on the honeycomb, the temperature of the sorbent material and the raw material gas rises due to the heat of sorption of the carbon dioxide gas and water vapor, resulting in the formation of carbon dioxide.
  • the amount of carbon gas sorption decreases
  • the wet TSA method as shown in the lower diagram of FIG. , the temperature rise of the honeycomb and the raw material gas is suppressed, and carbon dioxide gas can be sorbed with high efficiency.
  • Saturated steam close to 100°C has an enthalpy 100 times or more that of heated air at 100°C or carbon dioxide gas. There is no need to circulate while In addition, since saturated steam with a large heat capacity requires a small introduction volume, the desorption zone can be made smaller, and the rotor can be made smaller.
  • the saturated steam introduced into the desorption zone is cooled by heating the honeycomb and supplying the desorption heat of carbon dioxide gas, and condenses on the surfaces of the honeycomb and the sorbent material.
  • honeycomb and sorbent material immediately after moving to the process gas zone are wet for the reasons described above, but when the process gas flows in, they are strongly cooled by the evaporative cooling phenomenon of water, and the sorption of carbon dioxide gas begins.
  • it is desirable to cool and dehumidify the processing gas but unlike the case of using synthetic zeolite, it is not necessary to dehumidify to the minus dew point, and the temperature and humidity range of the outside air is sufficient.
  • the heat of sorption is converted into the heat of vaporization of the condensed water and effectively cooled by the evaporative cooling phenomenon of the processing gas, and high sorption performance can be maintained.
  • the latent heat of vaporization of 369.9 kJ/kg to the latent heat of sublimation of 573 kJ/kg which is considered to be a measure of the sorption heat of carbon dioxide gas
  • the latent heat of vaporization of water is 2500 kJ/kg, so it is attached to or absorbed by the honeycomb and the sorption material. It is calculated that the evaporation of 1 kg of water can remove the sorption heat of about 4 to 5 kg of carbon dioxide gas.
  • Some solid amine-based carbon dioxide sorbents and amine-based ion-exchange resins can withstand heat up to 100°C in the absence of oxygen, but in some cases they are significantly deteriorated even at about 40°C in dry conditions in the air. Ion-exchange resins are more durable in a hydrated state, and the same is believed to be the case with other amine-based sorbents. In the method of the present invention, it is believed that durability is improved by operating all steps in a wet hydration state.
  • the temperature rise during sorption is kept low by the evaporative cooling phenomenon of condensed water.
  • the desorption zone reaches 60 to 100° C., but carbon dioxide gas and saturated steam are mainly present, and there is almost no oxygen. Avoiding direct contact with the water, the evaporative cooling phenomenon caused by condensed water cools quickly, preventing oxidative deterioration and improving durability.
  • a comparative example of the wet TSA method experimental apparatus Fig. 14 is shown.
  • carbon dioxide gas is desorbed by the condensation heat of water vapor, and when the carbon dioxide gas is sorbed, the sorption heat is removed by the latent heat of vaporization of the condensed water, thereby dramatically improving the recovery rate and recovery concentration.
  • Outside air was used as the processing gas.
  • the carbon dioxide gas concentration meter uses a diaphragm electrode method that can measure both liquid and gas phases, and the measurement concentration is 0.1 to 100%.
  • the carbon dioxide gas concentration on the process gas side was measured by a non-dispersive infrared (NDIR) method, and concentrations of 0 to 10000 ppm were used.
  • NDIR non-dispersive infrared
  • the test rotor is of the same type and specification as Comparative Example 1. Since the desorption side uses saturated steam with high energy density, the desorption zone is much smaller as in FIG. 14 with a treat gas:desorption zone ratio of 10:1. The passing air velocity on the processing gas side is set to the same condition at 2 m/s. On the desorption side, while circulating the recovered carbon dioxide-containing gas, saturated steam at 100° C. is introduced and mixed to adjust the temperature to around 80° C. and introduced into the desorption zone.
  • FIG. 15 is a graph of changes over time in carbon dioxide gas recovery concentration and recovery rate at the start-up of the apparatus. After the start-up, the recovery rate reaches equilibrium in 1 to 2 hours, and the recovery gas concentration reaches equilibrium in about 3 hours.
  • FIG. 16 shows the temperature at the rotor inlet and outlet of the desorption side circulation. The temperature difference between the inlet and outlet is less than 10°C, and this energy difference is supplied by introducing saturated steam of 100°C from the steam humidifier. The temperature rise of the processing side air, that is, the inlet/outlet temperature difference, was due to the evaporative cooling effect of the wet TSA method, and was less than 1°C until the end of the experiment. The recovered gas concentration was 2-3%, much higher than in Comparative Example 1, and no detectable deterioration in performance was observed during the four months of the experiment.
  • FIG. 18 shows the same experimental apparatus, in which an attempt was made to improve the carbon dioxide gas recovery rate and concentration concentration by increasing the steam input.
  • the desorption temperature was adjusted to about 80° C. by manipulating the amount of circulating gas on the desorption side and the rotation speed of the rotor.
  • the recovery rate was 50-70%, which was better than the dry TSA method of Comparative Example 1.
  • Figures 19 and 20 show the measured distribution of the process gas outlet temperature and the carbon dioxide gas recovery rate by rotor rotation angle.
  • the three lines in FIG. 19 show the results of three measurements, but immediately after the rotation from the desorption zone to the process gas zone, the outlet temperature is also high, and in FIG. 20, the recovery at the same point is significantly negative.
  • the concentration of carbon dioxide gas is higher than that of the processing gas, migration outflow of the desorption gas from the desorption zone to the processing gas zone due to rotor rotation was observed.
  • Prototype 1 of a portable carbon dioxide gas separation and concentration device that is assumed to use conditioned air or air from which carbon dioxide gas has been removed from the atmosphere as conditioned air, and to supply the recovered and concentrated carbon dioxide gas to promote the growth of vegetables in a plant factory.
  • a prototype was tested on the machine (Fig. 21).
  • the test rotor has a width of ⁇ 300 ⁇ 50mm in consideration of portability.
  • the honeycomb size is the same as in Examples 1 and 2, and the honeycomb is impregnated with an amine-based sorbent material.
  • the zone configuration is almost the same as that of the second embodiment, and since the pressure loss is low, an axial exhaust fan is adopted on the processing gas side.
  • a small blower with variable air volume forms a circulation path.
  • the boiler parts of a household steam cleaner are used, and the generated steam is introduced into the circulation path and the gas is recovered from the circulation path.
  • Fig. 22 shows the test results. This figure shows the effect on the carbon dioxide gas concentration by adjusting the desorption circulating gas amount and the processing side air amount. Increasing the amount of desorption circulating gas reduces the carbon dioxide gas recovery concentration. It was thought that gas leakage increased due to an increase in differential pressure due to an increase in the amount of circulating gas more than necessary. The influence of the processing air volume was confirmed by using two processing fans and increasing the air volume from 269 CMH (1.33 m/S) to 356 CMH (1.76 m/S). Although there was some effect of improving the recovery concentration, the future was visible, and from this result it was found that a further breakthrough is necessary for practical use.
  • Example 1 During the prototype test of Example 1, deformation and leakage occurred due to insufficient heat resistance of the foam board. Since the "laminated structure purge/recovery block" can be manufactured at low cost and with high accuracy even with complex purge and flow configurations, it has been developed into the second embodiment of the invention, which further improves recovery performance, concentration performance, and energy saving. In order to expedite research and development, the performance test of Example 1 was suspended and priority was given to Example 2, so no test data was collected.
  • FIG. 3 it is configured to return to the processing gas zone 4 through the processing gas zone 4, the processing gas purge zone 7, the recovery zone 5, the desorption zone 6, the desorption gas purge zone 8 in order of the rotation direction of the rotor.
  • Saturated steam close to 100° C. is introduced into the desorption zone to desorb carbon dioxide gas by the heat of condensation of the saturated steam, and the desorbed gas is introduced and passed through the recovery zone 5 at the upstream stage in the rotational direction to be recovered.
  • the processing gas contained in the honeycomb is moved to the processing gas purge zone 7 by the rotation of the rotor.
  • By recovering it through the outlet gas of it is possible to prevent oxygen from entering the desorption zone 6, which reaches the highest temperature.
  • the desorption outlet gas passing through the recovery zone that is, the mixed gas of carbon dioxide gas and saturated steam
  • the desorption outlet gas passing through the recovery zone has the effect of recovering heat from the gas passing through the recovery zone and preheating the honeycomb.
  • the removal of the latent heat of the gas immediately after desorption reduces the steam separation load of the recovered gas after recovery, and also has the effect of improving the energy efficiency of the entire system.
  • gas exchange in the processing gas purge zone 7 and the desorption gas purge zone 8 improves the carbon dioxide gas recovery rate and recovery concentration, and further improves the energy saving effect.
  • Fig. 10 shows an assembly photograph of the portable type prototype No. 2.
  • the rotor is the same as in Comparative Example 3. Processing air is sucked from the opening shown in this figure and exhausted by a 41 W fan installed on the back side.
  • a honeycomb rotor with a width of 50 mm has a small pressure loss, so an axial ventilation fan is sufficient, and the air velocity is 3.4 m/s and the air volume is 7.3 CMM.
  • Portable type prototype No. 2 is prototyped with the "foam module board laminated unit structure" invented as a means of improving the recovery rate and concentration of carbon dioxide gas, improving energy efficiency, and reducing costs.
  • a "rotor cassette module plate” 16 in which the rotor, casing, and rotor driving device, which are the core parts of the carbon dioxide gas separation and concentration, are formed of foam plates, and the “laminated purge/
  • the figure shows the front and rear "rotor end surface module plates” 15 and 16 in which the flow path is constructed by incorporating the recovery block 18, and the "blowing system module plate” 17 in which the processing gas blower and the purge air pump are incorporated (Embodiment 2) before assembly. 6 as shown in the photograph.
  • a small boiler is built in by constructing a mounting space across a plurality of module plates. When each module board is laminated and integrated, the device shown in the photograph of FIG. 10 is obtained.
  • FIG. 23 is a photograph (embodiment 2) showing the "rotor cassette module plate” 14 by removing the "rotor end face module plate” 15 in front of the prototype No. 2 machine.
  • Prototype No. 2 was created for a 50 mm wide rotor, but it is easy to support a wide rotor as an option by replacing the foam plate with a thicker one or stacking multiple layers.
  • the "laminated purge/recovery block” 18 that constitutes the recovery zone 5, the desorption zone 6, and the purge zones 7 and 8 must have heat resistance, heat insulation, flexibility, elasticity, sealability, slidability, and wear resistance.
  • the foamed silicone rubber plate has a plate with each zone space cut out as shown in FIG. , a bottom plate with an outlet tube installed, etc., and a “laminated purge/recovery block” 18 as shown in the photograph of FIG. , 16.
  • a glass cloth-reinforced fluororesin sheet with excellent heat resistance, slidability and wear resistance is adhered to ensure sealability and slidability.
  • the steam boiler 10 is a part of a household steam cleaner 1 kW. Steam can be generated for about 10 minutes with a capacity of 350 cc, but an additional water supply tank was installed to secure an operating time of 15 minutes or more. For continuous operation, automatic water supply from water supply or plastic tank should be used.
  • a purge air pump 11 is built in the blowing system module plate 17 shown in the photograph of FIG. 6, and a circulation tube to the purge zone is connected.
  • FIG. 24 shows the startup situation after the device is started.
  • FIG. 15 of Comparative Example 2 although the data started after preheating the steam humidifier, it took 1 hour to stabilize the recovery rate and 3 hours to reach a recovery concentration of 2.5%. In spite of the rise time from 1, the recovery rate reached 45% in about 3 minutes after the start, and the recovery concentration reached 50% concentration in about 15 minutes. It can be seen that the start-up is overwhelmingly faster than that of Comparative Example 2, that is, the thermal efficiency is excellent. Gas-contacting parts and the main body are highly insulated and have a small heat capacity, so there is little heat loss associated with starting and stopping the device, making it easy to start and stop frequently. In both Comparative Examples 2 and 3, condensed water unexpectedly flowed out from the test apparatus, but in Example 2, no condensed water was generated except for the carbon dioxide gas recovery tube. Therefore, the heat loss due to heat insulation and residual heat of the device is almost eliminated.
  • FIG. 25 shows changes in the carbon dioxide gas concentration at the processing outlet after startup. It can be seen that the outside air of about 440 ppm becomes about 250 ppm after 2 to 3 minutes of operation, after which the air is supplied stably. If this air is used for air conditioning, energy saving can be improved, and an intellectual productivity effect can be expected.
  • the recovery rate was about 45%, but the rotor width was 50 mm and the processing side flow velocity was 3.3 m/s.
  • Comparative Example 1 of the dry TSA method shows similar removal rate data at a width of 200 mm and 2 m/s, the superiority of the wet TSA method can be understood.
  • FIG. 26 shows measurement data of the carbon dioxide gas concentration for each rotation angle at the outlet of the treatment zone.
  • the recovered (removed) concentration obtained by subtracting the treatment outlet concentration from the outside air concentration is also shown. Even at the point immediately after the rotation from the desorption gas purge zone to the treatment zone, the carbon dioxide gas concentration was sufficiently low, and no carbon dioxide gas concentration higher than the treated gas concentration as in Comparative Example 2 was observed, thus confirming the effect of the circulation purge zone. rice field.
  • FIG. 27 shows changes in the amount of carbon dioxide gas recovered after startup. An equilibrium state was reached in about 3 minutes, and the amount of carbon dioxide gas recovered was almost stable at 0.9 liters per minute. This data is in the middle of optimizing each parameter, and the recovery concentration is 50% in the middle of optimizing the rotor rotation speed and purge gas flow rate. By optimizing the parameters, it is considered possible to achieve a concentration close to 100%.
  • the present invention relates to a wet TSA method carbon dioxide gas separation and concentration apparatus that can concentrate to a high concentration with a high recovery rate, has high durability, can use exhaust heat of around 100 ° C., has good energy efficiency, is inexpensive, and can be easily made compact. Since carbon dioxide gas can be separated, concentrated and collected not only from flue gas but also from the atmosphere and conditioned air, the air with reduced carbon dioxide gas concentration can be used for air conditioning ventilation, and the collected high-concentration carbon dioxide gas can be used in plant factories, etc. It is possible to contribute to the productivity improvement of vegetables by supplying them.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

【課題】煙道ガス等だけでなく、空調空気や大気中の二酸化炭素ガスを高効率に分離し、かつ高濃度に濃縮出来、100℃以下の低温排熱の利用が可能で、小型コンパクト化でき、エネルギー効率の高い、湿式TSAロータ回転型二酸化炭素ガス分離濃縮装置及び、又は空調装置に関する。 【解決手段】ロータの回転方向の順に少なくとも処理ガスゾーン、回収ゾーン、脱着ゾーンに区分シールした発泡モジュール板積層ユニット構造ケーシング内で、二酸化炭素ガス収着ロータを回転させ、処理ガスゾーンでハニカムが湿った状態で蒸発冷却しながら二酸化炭素ガスを収着させ、脱着ゾーンには飽和蒸気を導入して凝縮熱により二酸化炭素ガスを脱着し、回転方向前段の回収ゾーンを通過パージさせ回収する。これにより収着材の熱・酸化劣化を防止すると共に、二酸化炭素ガスを高効率に分離、高濃度に濃縮し、かつ高いエネルギー効率で回収することができる。

Description

空調給気可能な二酸化炭素ガス分離濃縮装置
 本発明は、高い回収率で回収し、高濃度に濃縮でき、耐久性が高く、100℃前後の排熱を利用でき、かつ消費エネルギーの少ない、安価でコンパクト化が容易な、湿式サーマルスイング法二酸化炭素ガス分離濃縮装置及び、又は空調装置に関するものである。
 地球温暖化対策として、産業や自動車及び家庭から排出される二酸化炭素ガスをできるだけ削減しようとする取り組みが世界レベルで行われている。例えばエネルギー多消費機器を省エネルギー型に代替するという取り組み。また、化石由来ではなく太陽光や風力等再生可能エネルギーに代替する取り組み、火力発電所など大規模二酸化炭素ガス発生源から二酸化炭素ガスを分離濃縮して、地中や深海に貯留する技術、採油末期の油田に二酸化炭素ガスを注入して採油量を増やす原油増進回収法(CO2―EOR)、あるいは大気中から二酸化炭素ガスを分離回収して燃料等にリサイクルする技術等も研究開発されている。
 以上のような取り組みの中で、本件発明は火力発電所や燃焼炉等から排出されるガスのみならず、大気や空調空気からでも二酸化炭素ガスを分離して高濃度濃縮可能な技術に関する。二酸化炭素ガスを大量に排出する施設に隣接して設置するのではなく、回収二酸化炭素ガスを回収利用する場所に隣接して、あるいは持ち運び用にコンパクト化も容易な、二酸化炭素ガス分離濃縮技術に関するものである。
 火力発電所は、燃料に石炭や石油、天然ガス等化石燃料を用いるものが最も普及しており、これ以外には都市より排出されるゴミを焼却発電するもの等がある。このような火力発電所は燃料が安価で、技術の歴史や実績があり、安定して電力を供給できるという特徴がある。 しかし火力発電所は二酸化炭素ガスを排出し、地球の温暖化を促進するという問題が有る。
 この対策として、排ガス中の二酸化炭素ガスを分離回収濃縮し、回収した二酸化炭素ガスを地中や深海に貯留する、あるいは原油増進回収法(CO2―EOR)に利用する他に様々な再利用方法が研究開発されている。この二酸化炭素ガスの分離回収濃縮手段としては、深冷法、吸収法、吸着法、膜分離法等種々提案されている。
 深冷法は原料ガスを加圧して、加圧下での各ガスの液化温度の差を利用して、二酸化炭素ガスを液化分離する方法である。ガスを圧縮するコンプレッサの電力と、深冷する冷凍機の電力が必要で、例えば二酸化炭素ガス濃度が10%前後の場合、二酸化炭素ガス以外の、回収する必要のないその他90%のガスも一緒に圧縮、深冷しなくてはならない為、エネルギー消費が過大になる欠点が有る。
 吸収法は、二酸化炭素ガスをモノエタノールアミン等アミン系のアルカリ液に吸収させて回収し、加熱することで二酸化炭素ガスを脱離させて濃縮する方法で、すでに実用化されているが、アルカリ液を取り扱うことで耐蝕性の高価な材料が必要で高コストである。また、アミン水溶液の濃度は30%前後で、70%前後が水であり、取り扱う液体の熱容量が膨大なため、要所に熱交換器を配置して熱回収しても省エネルギー化の限界に近づいている。
 吸着法はゼオライトや活性炭などのガス吸着材を用いるもので、圧力差を利用して吸・脱着するプレッシャースイング法(以下PSA法)と温度差を利用して吸・脱着するサーマルスイング法(以下TSA法)とがある。PSA法は圧力により二酸化炭素ガスの吸着量が変わる原理を利用して、加圧して二酸化炭素ガスのみを吸着させ、減圧して二酸化炭素ガスを脱着分離回収する方法なので高圧容器が必要で、周辺機器として電磁弁やコンプレッサ、真空ポンプ等精密機械も必要となり大型化が困難という問題が有る。
 TSA法は摂氏50℃以下(以降、温度は全て「摂氏」とする)の温度で二酸化炭素ガスを吸着させ、100~200℃前後の温度に加熱したガスで二酸化炭素ガスを脱着させて回収する方法である。二酸化炭素吸着材を充填した複数の吸着塔を吸着と再生と交互に切り替える多塔式では、ガスの圧力損失が高く、塔の切り替えによる濃度、圧力の変動が避けられない、大型化が困難などの欠点が有る。
 TSA法の中でも、低圧力損失で大型化の可能な回転型吸着ハニカムロータを用いる除湿技術や、塗装排気等から有機溶剤を回収濃縮する技術も実用化されている。ロータの入り口出口をセクターで仕切って複数のゾーンを構成し、処理ガスと脱着ガスの各ゾーンへのフロー(流し方)を工夫して性能向上が図られてきた。これまで極限的な超低露点温度まで除湿するためのガス吸着機(特許文献1)や、稀薄濃度のVOCをできるだけ高濃度に濃縮する特許文献2、3の方法も開示されている。二酸化炭素ガスの濃縮に関しても研究され、燃焼排ガスからの分離濃縮では特許文献4や大気中の二酸化炭素ガス分離空調では特許文献5も開示されている。しかし二酸化炭素ガスに関しては、従来のTSA法では回収率、回収濃度、省エネルギー性等の点で原理的限界に来ていることが分かってきた。特許文献6にはハニカムロータではなく、粒状吸着材の移動層方式で過熱蒸気を用いて脱着濃縮する技術も開示されているが回収コスト等課題が多い。本発明者は新規技術として飽和蒸気を再生脱着に用いる特許文献7、8、9、10の研究開発をして来たが、依然として二酸化炭素ガスの回収効率、濃縮濃度、低コスト化、省エネ性等実用化のための課題が多い。
 近年、特に海外にて大気中の二酸化炭素ガスを直接分離回収する技術(Direct Air Capture以下DAC 特許文献11、12、13)の開発や実証試験も行われている。DACの長所は(1)自動車や航空機等、分散してかつ移動する排出源を対象にすることができる。(2)過去に排出した二酸化炭素ガスも対象にすることができる。(3)回収装置の設置場所が排出源に制約されず再利用する工場近傍で二酸化炭素原料を得ることができる。等の特徴から欧州や米国にて大規模な実証試験が行われている例が有る。
 一方二酸化炭素ガスは溶接用、医療用、食品保管用その他一定の需要が有り、その原料ガスは石油化学プラントやアンモニア合成プラント等の副産物として回収利用されている。アンモニアは肥料用等として世界人口の70%の命を支える、人類が最も多く生産する化学物質とされ、その製造過程で発生する二酸化炭素は全排出量の3%を超えている。アンモニアは二酸化炭素ガスを出さない燃料として注目されつつあるが、その製造工程では天然ガスなどの化石燃料を利用するので二酸化炭素ガスが発生する。発生した二酸化炭素ガスは回収利用されているが、それでも回収できない二酸化炭素ガスは大気中に排出され地球温暖化を促進させる原因になる。
今後、従来のアンモニア生産方法による二酸化炭素ガスの発生や、プラスチックゴミによる環境汚染等への懸念から資源リサイクルの推進や、より環境負荷の少ない生産方法に見直されて製品二酸化炭素の原料ガス源も不足してくると予想され、将来的に製品二酸化炭素源も再生可能型に変わって行くと思われる。
特許第2673300号公報 特開平11-309330号公報 特開2000-37611号公報 特許第6498483号公報 特開2011-94821号公報 特開2020-69423号公報 特許第6605548号公報 特許第6408082号公報 特許第6510702号公報 特許第6632005号公報 特表2017-528318号公報 特開2018-23976号公報 特表2017-502833号公報 特開平11-132522号公報
 本発明は、発電所などの排ガスだけでなく、外気や空調空気からでも二酸化炭素ガスを分離濃縮できる方法に関するもので、高い回収率で回収し、高濃度に濃縮でき、小型コンパクト化でき、低コストで、耐久性が高く、100℃程度の排熱を利用でき、かつ熱効率の高い湿式TSA法二酸化炭素ガス分離濃縮装置を提案するものである。
 吸着と吸収現象は異なるが似た現象で、両方の要素がある場合には収着という言葉を用いることもある。例えば二酸化炭素ガス回収に検討されるイオン交換樹脂はゲル型であっても、含水により水で満たされた細孔が存在し、その細孔内を拡散して細孔内面の固定アミン基に二酸化炭素が吸着すると考えられ、水中での活性炭による有機質の吸着除去と類似している。
ここでは吸着、吸収の表現の混乱を避けるため引用文献や従来の乾式TSA法では従来通り「吸着」とし、湿式TSA法の二酸化炭素に関しては「収着」と表現する。
また収着「材」とか「剤」とする表現もあるが、「剤」は形状の定まらないもので、細孔構造や表面積なども制御され、官能基が固定された構造によって機能や優劣が生じるものは「材」として、本明細書中では「材」とする。
また水と水蒸気の表記を使い分けるように、化学物質や分子的表現は二酸化炭素とするが、あきらかにガスを指す場合は二酸化炭素ガスと表記する。更に、二酸化炭素の回収率、回収二酸化炭素濃度をそれぞれ単に回収率、回収濃度と表記する。
 除湿機など除湿処理された空気を目的物とする場合は吸着材に対して処理・再生と表現され、VOCガス物質等の濃縮を目的とする場合は、回収するガス物質に対して吸着・脱着と表現されることが有る。文中にも「処理・再生」表現と「収着・脱着」表現が混在するが、収着材を主体とするか、ガスを主体とするかの違いで、現象的には同じ操作を意味するものである。引用文献に従うか、その時の状況に応じて分りやすく説明するために両方の表現を使用している。
高性能化の限界
特許文献4に開示されたものは、二酸化炭素吸着の可能なゼオライトハニカムロータを用いて従来の乾式TSA法にて、煙道ガス等から二酸化炭素ガスを濃縮回収するフローの改良型である。TSAロータ濃縮法で、ロータの冷却や吸着熱の除去及び省エネ性の追求及び回収率と回収濃度向上を目的に工夫、発明したフローである。回収率を高くするために吸着出口ガスを冷却しながら何度も冷却ゾーン(=吸着ゾーン)を循環させる方法と、回収濃度を高くするために脱着した二酸化炭素ガスを加熱しながら脱着ゾーンを何度も循環させ、さらに特殊なパージ方法とを組み合わせても回収率60%、回収濃度75%程度が限界で、どちらかを高くしようとすればもう一方が低下するというトレードオフ関係にある。また吸着側ガスと脱着側ガスを複数回循環させなくてはならないので、特許文献8に示すように除湿用やVOC濃縮用ロータの2倍以上の直径が必要になる。以上のように例え二酸化炭素収着材のイノベーションがあっても、従来の乾式TSA法の延長線上ではこれ以上の大幅な高性能化は望めず、全く新しい考えでブレークスルーが必要であることが分かった。
ロータ大型化及び再生多風量
 特許文献5に開示されたものは、空調空気や大気から二酸化炭素ガスを分離除去して空調給気し、空調の省エネ性を高める目的で研究開発してきたが、分離除去した二酸化炭素ガス濃度は1000ppm前後で、処理空気と同風量の大量の再生空気が必要でロータが大型になり、再生用の大型給・排気ダクトの設置スペースやコストが課題であった。
水蒸気の介在による性能低下、エネルギーロス
 特許文献7、8、9に開示されたものは以上の研究経験、知見からブレークスルーを目指して湿式TSA法を発明したものである。先に比較のため従来の乾式TSA法の問題について説明する。従来の乾式TSA法では、二酸化炭素収着時に原料ガス中の水蒸気も吸着して吸着熱を発生し、二酸化炭素ガスの収着を阻害するだけでなく、二酸化炭素ガス脱着時には吸着水の脱着エネルギー消費により顕著なエネルギーロスを生じる。
 特許文献6にはアミンを添着した球状シリカゲルを移動層方式にて、炉の排ガスから二酸化炭素ガスを収着して、過熱蒸気で再生脱着して高濃度二酸化炭素ガスを回収する方法が開示されている。しかし球状シリカゲルによる充填層及び移動層や流動層では、湿式TSA法は困難である。それは凝縮水による流路閉塞や偏流、あるいは凝縮水の表面張力による粒子の付着団結による不具合が発生するからである。
この様な問題を避けるには1mm以上の粒径の球状シリカゲルを選択せざるを得ないが、1mm以上の粒径になると収着・脱着サイクルにおいて反応の早い表層部に対し、反応の遅い中心深部が熱力学的重荷となる。つまり収・脱着の遅い深部は顕熱蓄熱体として振る舞い、また深部の吸着水も顕熱蓄熱に加算される。つまり反応の遅い球状シリカゲルの深部は脱着加熱時には蓄熱して脱着の立ち上がりを遅らせて過剰で有害な凝縮水を生じ、収着時には熱負荷となって収着開始が遅れる。
また収着、脱着に伴う水蒸気の凝縮、蒸発のバランスが崩れると連続運転の支障となる凝縮水が蓄積するので、乾燥工程が必要になり、さらに冷却工程も増える。さらに粒子内部拡散抵抗により有効収脱着率を生かすには収着帯の長さが長くなり、圧力損失の上昇や粒状シリカゲルの所要量が増えざるを得ない。
特許文献6では凝縮‐蒸発のバランスが崩れて余剰となった凝縮水の処理のために、脱着工程の後に乾燥工程を追加しなくてはならず、それを避ける方法として蒸気過熱温度をコントロール供給する方法が提案されているが、省エネ的に反する対策になってしまう。本発明の湿式TSA法に用いる収着体は、特許文献7で開示した0.1mm以下のアミン系イオン交換樹脂微粒子を担持したシートまたは厚さ1mm以下の二酸化炭素収着機能を有する高分子シート、又は特許文献8に開示した粒子径1mm以下の粒子を接着固定担持したシートをハニカム加工するなどして作成した収着体を用いるので凝縮‐蒸発のバランスは崩れ難く凝縮水による悪影響も生じない。また特許文献10にはハニカム状ではなく、粒状収着材を分散担持したシートを、積層した収着体を用いる方法を開示しているが、粒状吸着材は距離を保って固定されているので凝縮水の表面張力による粒子の団結や、毛細管力による流路閉塞等の悪影響を受けない。特許文献7、8、9、10の何れも、凝縮水の挙動は粒子やハニカムの表面から移動流出しない。従って前述のような1mm以上の径の粒子層の熱挙動により余剰になった凝縮水処理の問題は発生しない。従って脱着後の乾燥工程や冷却工程、凝縮水量を制御するための過熱蒸気も必要としない。
湿式TSA法は、二酸化炭素ガスの脱着に過熱蒸気ではなく、100℃以下の飽和蒸気を用いて、飽和蒸気の凝縮熱で二酸化炭素ガスを高濃度に濃縮回収できるだけでなく、脱着時に水蒸気から凝縮した水分がハニカム内表面に残り、処理ゾーンでは蒸発冷却しながら二酸化炭素ガスを収着するため、脱着直後のロータの速やかな冷却だけで無く、二酸化炭素ガスの収着熱をトレードオフして温度上昇を抑えるため、乾式TSA法より二酸化炭素ガスの収着性能が飛躍的に向上する。特許文献7、8、9、10に開示された技術では回収率や回収濃度、省エネ性、低コスト化の点で不十分で課題が残った。
技術課題1 収着材の熱・酸化劣化
 アミン系二酸化炭素収着材の熱・酸化劣化防止と、脱着温度高温化による性能向上とはトレードオフ関係にあり、常に重要課題としてつきまとう。
特許文献5では二酸化炭素ガス分離が可能なアミン系弱塩基性イオン交換樹脂を採用し、収着材の熱・酸化劣化を避けるため低温再生方式で実験した。しかし45℃程度の低温再生でも、乾燥状態の空気中では短時間で顕著に性能劣化する事が分った。
 特許文献11には二酸化炭素収着後の脱着工程に移る前に20~400mbに減圧して酸素濃度を低下させてアミン官能化収着材の酸化劣化を回避するとともに、回収二酸化炭素ガスへの空気などのガス混入を防止することで回収二酸化炭素ガスの純度を高める技術や、また脱着操作の前に、不活性ガスで収着材チャンバーをプレパージして酸素を含むガスを除去する方法も開示されているが、減圧設備、装置の耐圧性、不活性ガス代等コストアップの要因が多い。
 特許文献12には、収着工程から脱着工程に移行する前に、不活性ガスでパージして、脱着経路から酸素を除去する事。また収着工程に戻す前に不活性ガスで収着材構造を冷却することで、収着材への酸化ダメージが起こらないようにする方法が開示されている。しかし不活性ガスでパージする方法では、不活性ガスコストやパージ装置のイニシャルコストが課題となり、パージガスの混入による二酸化炭素濃度低下も考慮する必要がある。
 特許文献13には回転型の収着濃縮装置で、シール可能な再生ボックスを有し、排気ポンプ等により減圧して冷却するとともに、酸素濃度を低下させて熱・酸化劣化を防止する方法が開示されている。しかし排気ポンプで減圧する方法では排気ポンプのイニシャル、ランニングコストと共に、耐圧強度が必要な再生ボックスコストやシール性確保の困難性がある。
 特許文献9には湿式TSA法にて、脱着ゾーンの入口と出口を連通するガス循環路を構成し、脱着ゾーンから出た二酸化炭素ガスと水蒸気の混合気体に、飽和蒸気を供給しながら循環させる方法を開示している。それにより脱着経路の酸素濃度が低減され、二酸化炭素収着材の熱・酸化劣化が防止され耐久性が向上する。しかしこの方法で一定の効果を上げたものの、二酸化炭素ガスと水蒸気の加熱混合気体で脱着する原理なので、後述の比較例にて詳説するが混合気体の二酸化炭素ガス分圧に影響されてか二酸化炭素ガス回収率や回収濃度に限界のある事が分り、飽和蒸気による湿式TSA法二酸化炭素ガス分離回収濃縮技術のさらなるブレークスルーが必要と考えた。
技術課題2 回収濃度向上方法(過去の発明分析)
 特許文献1にはロータ回転式省エネルギー超低露点除湿機のフローが開示されている。ロータの回転方向の順に第2吸着ゾーン、第1吸着ゾーン、第2再生ゾーン、第1再生ゾーン、予冷パージゾーンに分割されている。処理空気は第1吸着ゾーンのハニカムを通過しながら除湿される。除湿後の処理空気は吸着熱により昇温するので冷却してから第2吸着ゾーンでさらに超低露点まで除湿して供給される。
 再生側は第2吸着ゾーンの出口空気の一部を予冷パージゾーンに導入、再生直後のハニカムを超低露点空気でパージしながら冷却し、ハニカムは第2吸着ゾーンに回転移動する。パージ出口空気はハニカムの熱を回収して昇温しているのでさらに再生空気加熱ヒータで昇温して第1再生ゾーンのハニカムを再生通過する。第1再生ゾーンを通過した空気はまだ再生可能な程に低露点であり温度も高いので、その空気を再度加熱して第2再生ゾーンのハニカムを通過再生排気する。このようなフロー構成にて、一台のロータ装置で省エネルギーを達成しながら超低露点まで除湿できる。この方法は処理空気中の水蒸気の除去率を極限まで高めながら再生エネルギー消費を抑制する工夫がされているが、回収濃度を高めることは不可能である。
 特許文献2に開示されたものは、希薄濃度のガスを濃縮するためのフローで、ロータの回転方向の順に吸着ゾーン、第一脱着ゾーン、濃縮ゾーン、第二脱着ゾーンを備えている。また処理ガスの一部をエアヒータにて昇温した加熱空気を第一脱着ゾーンと第二脱着ゾーンとに導入する。第一脱着ゾーンでは吸着ゾーンで吸着されたガスが濃縮脱着される。第一脱着ゾーンを出た一次濃縮ガスは濃縮ゾーンに導入再吸着される。さらにそのハニカムは第二脱着ゾーンに回転移動し、前述の脱着空気の導入により高倍率に濃縮回収される。この方法は十数倍~二十数倍濃縮想定に留まりこれ以上の高濃度にはできない。
 特許文献3に開示されたものも希薄濃度のガスをできるだけ濃縮するためのフローで、ロータの回転方向に吸着ゾーン、第一脱着ゾーン、第二脱着ゾーン、第三脱着ゾーン、パージゾーンを備えている。処理ガスの一部をパージゾーンに通してロータを冷却しつつパージ通過空気は熱回収して昇温し、さらにヒータを通過加熱して第一脱着ゾーン、第二脱着ゾーン、第三脱着ゾーン夫々に導入脱着する。ロータ回転により脱着初期で濃縮度の低い第一脱着ゾーン出口ガスと、脱着終了間際で濃縮度の低い第三脱着ゾーン出口ガスを処理入り口側に戻して混合し、吸着濃度を高めるよう工夫している。三つの脱着ゾーンで最も濃度ピークになる第二脱着ゾーンの出口から濃縮ガスを回収するフローである。この方法も十数倍~二十数倍濃縮を想定に留まりこれ以上の濃縮は不可能である。
特許文献2、3共に希薄濃度のVOCガスをできるだけ濃い濃度に、十数倍から二十数倍に濃縮しようとするフローである。特許文献1、2、3は何れも乾式TSA法で、本発明が目指している二酸化炭素濃度数百ppmの外気、又は10%前後の濃度の燃焼排ガスから、50%~100%濃度に高濃度濃縮回収するのは原理的に不可能である。以上の様にこれまで出願されている先行特許知見にて、ロータ回転式TSA法で、数百ppm濃度から分離回収し数十%以上に高濃度濃縮できる方法は提案されていなかった。
技術課題3 低コスト、断熱性を達成する装置構成
従来の乾式TSA法で再生に用いられる加熱ガスと比較して、飽和蒸気は100℃以下ながらエネルギー密度が高く、わずか数度の温度低下で多量の凝縮水とエネルギーロスを生じるので、コスト上昇を抑制しながら高断熱性を確保できる方法を検討した。
 従来の空気処理装置製造方法では、板金加工、溶接組み立てした製缶品に塗装し、板金の重なり部のリーク防止のためコーキング材で目止めされる。ロータや熱交換コイル、ヒータ、送風機等の機器を組み込み配線し、必要な箇所に断熱処理する。耐熱性の必要が有ればガラス繊維断熱材等で、結露防止目的であれば発泡スチレン保温板等で断熱される。以上の様に工数が多くコストアップが避けられない。
 別の従来技術では、2枚の鋼板の間に発泡スチレン板等をサンドイッチ接着した断熱ボードを用いて、成形アルミフレームを介して箱型に組み立て、内部にロータや送風機等の機器を組み込んで断熱工数などコスト削減する工法も有るが、空調空気や冷熱を対象にした中~大型機器向け用であり、TSA操作を要するような機器ではさらに内部耐熱ダクトや断熱手段を講じなければならず、やはりコストアップになる。
特許文献14は、熱交換換気装置の断熱性低コスト化に関するものである。熱交換素子を組み込み発泡スチロールで成形一体化した「熱交換素子構造体」、排気ファンを組み込み発泡スチロールで成形一体化した「排気ファン側構造体」、給気ファンを組み込み発泡スチロールで成形一体化した「給気ファン側構造体」の夫々を組み合わせ一体化することによって排気側、給気側の各流路が構成され、断熱性が高く、防音性の高い換気装置を実現する技術が開示されている。
 この技術は家庭用の熱交換換気扇の静粛性、低コスト化を目的としたもので、断熱性、静粛性、生産性、低コスト化の点で優れているが、少品種多量生産向きで、設備規模の設計対応少量生産システム向きではない。また静止型全熱交換器換気装置なのでこのような材料、構造体で対応できる。本発明の目的とする湿式TSA法による二酸化炭素ガス分離濃縮装置は高断熱性と共に耐熱性が必要で、回転ロータのための摺動シール部や複雑なパージや流路もあり、かつ飽和蒸気を用いるので次元の異なる困難さが有る。
技術課題1及び課題2の同時解決手段
湿式TSA法の性能をさらに向上するために飽和蒸気温度を100℃近くまで上げる事を検討し、脱着ゾーンに持ち込まれた酸素により収着材が熱・酸化劣化する現象の対策を考えた。試作開発試験を繰り返しながら新たに発明した方法及び装置は、二酸化炭素ガスの収着能力を有するロータを、少なくともロータの回転方向の順に、処理ガスゾーンと、回収ゾーンと、脱着ゾーンとを有する夫々シールされたケーシング内に収納回転させ、処理ガスゾーンにてロータの湿った状態で二酸化炭素ガスを含む空気又は混合ガスと接触させて気化冷却しながら二酸化炭素ガスを収着し、脱着ゾーンに飽和蒸気を導入して蒸気の凝縮熱により高濃度の二酸化炭素ガスを脱着させ回収ゾーンを通して回収する二酸化炭素ガス分離濃縮装置及び、又は空調装置である。
これまでロータ式ガス回収濃縮装置のフローは様々発明されているが、何れも最も高エネルギーな脱着気体で脱着された脱着ゾーン出口ガスを回収する。しかし本発明は最も高エネルギーな脱着気体(飽和蒸気)で脱着された脱着出口ガスを回収ゾーンに通過させて熱回収、冷却、減湿させて回収する点で異なる。つまり100℃近い飽和蒸気を脱着ゾーンに導入してハニカムから二酸化炭素ガスを脱着し、その出口の二酸化炭素ガスと飽和水蒸気の混合気体を回転方向前段側の回収ゾーンに導入通過させて二酸化炭素ガスを回収する方法である。
 さらに回収率、回収濃度、省エネ性を高める方法として前記回収ゾーンと脱着ゾーンの前後に循環パージゾーンを組み合わせる方法の装置を考えた。二酸化炭素ガスの収着能力を有するロータを、少なくとも回転方向の順に、処理ガスゾーンと、処理ガスパージゾーンと、回収ゾーンと、脱着ゾーンと、脱着ガスパージゾーンを有する夫々シールされたケーシング内に収納回転させ、処理ガスゾーンにてロータの湿った状態で二酸化炭素ガスを含む空気又は混合ガスと接触させて気化冷却しながら二酸化炭素ガスを収着し、処理ガスパージゾーンと脱着ガスパージゾーンが循環パージし、脱着ゾーンに飽和蒸気を導入して蒸気の凝縮熱により高濃度の二酸化炭素ガスを脱着させ回収ゾーンを通して回収する二酸化炭素ガス分離濃縮装置及び、又は空調装置である。循環パージガスはポンプで循環させる。
二酸化炭素ガス分離濃縮回収は、それのみでは事業として成り立ちにくい。そこで二酸化炭素ガスの回収と共に、処理後の二酸化炭素ガス濃度の低い空気の有効利用を組み合わせる方法を考えた。二酸化炭素を含む混合ガスが大気又は空調空気であり、処理ガスゾーンを出た空気を空調用に給気し、回収ゾーンを出た二酸化炭素ガスを回収する二酸化炭素ガス分離濃縮装置及び、又は空調装置である。空調換気の省エネ効果と、空調空気は大気よりも二酸化炭素ガス濃度が高いので、処理風量当たりの二酸化炭素ガス回収量を増す効果が期待できる。
技術課題3 装置の高断熱性とコスト低減を同時に達成する手段
本発明が目的とする湿式TSA法二酸化炭素分離濃縮技術は、後述する比較例2、3の実験結果から凝縮水の水漏れや排水量に注目し、高断熱性構造にすることが絶対条件と考えた。回収ガス以外での凝縮水の流出は膨大な熱ロスを意味するからである。
従来除湿機やVOC濃縮装置等この種空気処理装置は、板金加工品を溶接して組み立てた製缶加工品を塗装し、送風機、ロータ及びシール装置、ヒータ、内部ダクトその他構成機器を取り付け組み立て、要所に断熱処理や電気配線をして生産される。断熱性の不具合は性能不足やエネルギーロス、結露水発生による不具合を生じるため、手間をかけて処理され、加工工数が増えコストアップの要因となっている。
湿式TSA分離濃縮法では、従来製品より各段に高い断熱性が要求される。100℃近い飽和蒸気は同じ温度の空気や二酸化炭素ガスの数百倍のエンタルピを有するからである。また100℃の飽和水蒸気は100%水蒸気だが、温度が下がるほど水蒸気以外のガスの混入率が高くなる。このことから飽和蒸気温度をできるだけ100℃に近づける事は、熱・酸化劣化対策と高濃度回収のためには必須条件であると考えた。
本発明の湿式TSA法二酸化炭素ガス分離濃縮装置は、前述のように複雑なゾーンを有しており、不要な箇所での蒸気の結露凝縮や熱ロスを防止するため高度な断熱性や耐湿・耐熱性が必要で、さらに原料ガスと回収ガスの濃度差が大きいので高いシール性が要求される。このような装置を高い生産性で、低コストでかつ断熱性が高く軽量な構造を実現できる方法を検討し、所要箇所の要求特性により材質選定した発泡板に、各機器、流路を作り込んだ複数の発泡モジュール板を、積層組み立て一体化する「モジュール板積層ユニット構造」を発明した。
「モジュール板積層ユニット構造」は、複数の発泡板に構成機器の設置空間及びガスの流通路を夫々加工し、ロータや駆動装置など構成機器を組付け、夫々のモジュール板を積層組み立てることで二酸化炭素ガス分離濃縮装置及び、又は空調装置として完成される。具体的には二酸化炭素ガスの収着機能を有するハニカムロータと駆動モータ及び駆動ベルトで構成する駆動系を発泡板に組み込んだ「ロータカセットモジュール板」と、ロータ軸の保持及びロータの両端面を支持シール摺動する発泡板に、脱着、回収、パージ流路等の空間と連通路を有する複数の耐熱性発泡ゴム板等で構成した「積層構造パージ・回収ブロック」を夫々組み込んだ「ロータ端面モジュール板」の前後と、処理ガス送風機を組み込んだ「送風系モジュール板」とを積層組み立て一体化する二酸化炭素ガス分離濃縮装置及び、又は空調装置である。
「ロータカセットモジュール板」の中でも特に重要なのは回収、脱着、パージ等のゾーン部を構成する扇形部分「積層構造パージ・回収ブロック」で、シール性確保のための弾力性や摺動性、耐摩耗性、耐熱性、耐水性も必要である。「積層構造パージ・回収ブロック」は少なくとも脱着、回収、パージ等各ゾーン空間を有した又は有していない扇形シートの積層構造であって、ロータ端面に接する摺動面は耐熱耐摩耗性の摺動シートと、その下段は発泡ゴムシート層と、その下段は各ゾーン間の連通路を設けた発泡ゴムシート層または発泡板層と、底面部はゾーン空間を有していない断熱板を積層接着してブロック化し、外周部又は底面に蒸気導入部と脱着ガス回収部を設けた「積層構造パージ・回収ブロック」を構成する。底部断熱板は、発泡ゴムや樹脂系発泡板何れも可能である。以上のように構成した「積層構造パージ・回収ブロック」を「ロータ端面モジュール板」に組み込む。
 技術課題1及び課題2の同時解決効果
新たに発明したフローは、ロータの回転方向の順に処理ガスゾーン、回収ゾーン、脱着ゾーンを設け、脱着ゾーンに100℃近い飽和蒸気を導入して水蒸気の凝縮熱によりハニカムに収着した二酸化炭素ガスを脱着し、そのガスを回転方向前段の回収ゾーンに導入通過させて二酸化炭素ガスを回収する。
このフローにより、ロータ回転によって回収ゾーンに持ち込まれた空気がパージ回収されて最も高温になる脱着ゾーンに酸素が混入しない効果も合わさって収着材の酸化劣化が抑止され、100℃近い飽和蒸気を常用できる。また回収ゾーンでは脱着前にハニカムを予熱・熱回収する省エネ効果と、回収ガスの側から見ればガス温度や含有蒸気量を低下させる効果により回収後の二酸化炭素ガスと水蒸気分離のための冷却負荷も削減できる。
さらに回収率、回収濃度、エネルギー効率を高める方法として、前述回収ゾーンと脱着ゾーンの前後に循環パージゾーンを組み合わせることを考えた。処理ガスゾーンからロータ回転によって、ハニカム空隙に内包して移行する処理ガスは処理ガスパージゾーンで排気され、その排気は循環路にて脱着ガスパージゾーンに導入され、脱着ガスパージゾーンに回転移動したハニカムに内包される脱着ガスを置換押し出す。押し出された脱着ガスは循環路で処理ガスパージゾーンに導入される。
以上の循環パージ原理で二酸化炭素ガスの回収ゾーンと脱着ゾーンの前後に組み合わせたパージゾーンにてハニカム空隙中のガスを相互に置換して、回収率、回収濃度を向上させエネルギー効率を高める効果が有る。この循環パージ技術は特許文献1にも開示されている。
従来技術の課題3の解決効果
 「モジュール板積層ユニット構造」は所要箇所の要求特性に合った材質の発泡板を選定し、夫々所要箇所を抜き取って構成部品を組み込んでモジュール化し、夫々のモジュール板を積層して装置全体を一体化構成するので、製缶加工や溶接部の漏れ止めシーリング、防錆塗装が不要で、簡単な組み立てにより、十分な断熱性も確保でき、少量生産から大量生産にも対応でき、大幅なコストダウンが可能である。また脱着、回収、パージ機能部「積層構造パージ・回収ブロック」採用により複雑な複数ゾーンを有しながら高精度で低摩擦摺動性、シール効果、追従性も良好で、煩雑な調整は不要で、耐熱性と断熱性と耐久性を確保でき、かつコストを抑えられる。
は湿式TSA法の収・脱着原理説明図である。 は本発明の第一実施形態の二酸化炭素ガス分離濃縮装置及び、又は空調装置の基本フロー図である。 は本発明の第二実施形態の二酸化炭素ガス分離濃縮装置及び、又は空調装置の基本フロー図である。 は飽和蒸気温度と加熱空気のエンタルピの比較図である。 は飽和蒸気の温度による、蒸気以外のガスの混入率を説明する図である。 は本発明の第二実施形態の二酸化炭素ガス分離濃縮装置及び、又は空調装置の発泡モジュール板積層ユニットの組み立て前の分解写真である。 は本発明の第二実施形態の二酸化炭素ガス分離濃縮装置及び、又は空調装置の「積層パージ・回収ブロック」の組み立て前のパーツ図である。 は本発明の第二実施形態の二酸化炭素ガス分離濃縮装置及び、又は空調装置の「積層パージ・回収ブロック」の組み立て後の図である。 は本発明の第二実施形態の二酸化炭素ガス分離濃縮装置及び、又は空調装置の「積層パージ・回収ブロック」のロータ端面モジュール板への組込み写真である。 は本発明の第二実施形態の二酸化炭素ガス分離濃縮装置及び、又は空調装置の「発泡モジュール板積層ユニット構造」による二酸化炭素分離回収濃縮装置ポータブルプロトタイプ2号機、実施例2の試作機の写真である。 は本発明の第二実施形態の二酸化炭素ガス分離濃縮装置及び、又は空調装置の中型スケールアップの構想図である。 は本発明による第二実施形態の二酸化炭素ガス分離濃縮装置及び、又は空調装置の中型を、集合配置した大型二酸化炭素分離回収濃縮設備の構想図である。 は比較例1の乾式TSA法実験概要説明図である。 は比較例2の湿式TSA法実験概要説明図である。 は比較例2の実験装置立ち上げ時の二酸化炭素ガス回収濃度と回収率の時間変化グラフである。 は比較例2の脱着側循環路のロータ入口と出口の温度、及び処理空気の上昇温度ΔTのグラフである。 は比較例2の処理流量:脱着側循環流量比の影響を示すグラフである。 は比較例2において蒸気入力を上げて性能向上を試みたグラフである。 は比較例2においてロータ回転角度別処理ガス出口温度の分布グラフである。 は比較例2においてロータ回転角度別処理ガス出口二酸化炭素回収率グラフである。 は比較例3の、ポータブルプロトタイプ試作試験機1号機の写真である。 は比較例3の試験機の脱着循環側流量増による性能影響と、処理側風速=風量増による性能向上効果比較グラフである。 は第二実施形態実施例2の、ポータブルプロトタイプ試作試験機2号機の手前側「ロータ端面モジュール板」を外して「ロータカセットモジュール板」の見える写真である。 は第二実施形態実施例2の試験装置起動後の回収率、回収濃度の立ち上がり状況グラフである。 は第二実施形態実施例2の試験装置起動後の処理出口二酸化炭素濃度変化グラフである。 は第二実施形態実施例2のロータ回転角度別処理側出口二酸化炭素濃度と回収濃度のグラフである。 は第二実施形態実施例2の試験装置起動後の二酸化炭素ガス回収量の時間変化グラフを示す。
 以下、本発明を適用した実施形態を、図面に基づいて詳述する。なお、各図面において同じ符号を付した部材等は、同一又は類似の構成のものであり、これらについての重複説明は適宜省略するものとする。また各図面においては、説明に不要な部材等は適宜、図示を省略している。
高性能化のための処理収着、脱着、回収、パージフロー
性能向上するために飽和蒸気温度を100℃近くまで上げる事を検討し、脱着ゾーンに持ち込まれた酸素により収着材が熱・酸化劣化する現象の対策を考えた。本発明の第一実施形態の二酸化炭素ガス分離濃縮装置及び、又は空調装置の基本フローは、図2に示すように二酸化炭素ガスの収着能力を有するロータ1を、少なくとも回転方向の順に、処理ガスゾーン4と、回収ゾーン5と、脱着ゾーン6とを有する夫々シールされたケーシング内に収納回転させる。処理ガスゾーン4にてロータの湿った状態で二酸化炭素ガスを含む空気又は混合ガスと接触させて気化冷却しながら二酸化炭素ガスを収着し、脱着ゾーン6に飽和蒸気を導入して蒸気の凝縮熱により高濃度の二酸化炭素ガスを脱着させ、その出口ガスを、回収ゾーン5を通過させて回収するようになっている。
このフローにより、酸素混入リスクを最小限にできるので、最も高温になる脱着ゾーンでの収着材の酸化劣化が抑止され、かつ100℃近い飽和蒸気の常用が可能になり性能向上できる。また回収ゾーン5では脱着に先立ってハニカムを予熱・熱回収するエネルギー効率向上効果と、回収ガス側から見れば二酸化炭素ガスの温度や蒸気量が減少するので、回収したガスの水蒸気分離のための冷却負荷も減少できるなどメリットが多い。回収ゾーン5はさらに省エネ性向上のため、ロータ回転の前段側に折り返して2段、3段に増設することも出来る。
さらに回収率、回収濃度、省エネ性を高めるフローとして前記回収ゾーンと脱着ゾーンの前後に循環パージゾーンを組み合わせる第二の実施形態図3の装置を発明した。本発明の第二実施形態の二酸化炭素ガス分離濃縮装置及び、又は空調装置は図3に示すように、二酸化炭素ガスの収着能力を有するロータ1を、少なくとも回転方向の順に、処理ガスゾーン4と、処理ガスパージゾーン7と、回収ゾーン5と、脱着ゾーン6と、脱着ガスパージゾーン8を有し、処理ガスパージゾーン7と脱着ガスパージゾーン8が循環パージする二酸化炭素ガス分離濃縮装置及び、又は空調装置である。循環パージガスはダイヤフラム式等の定容積型ポンプで循環させるようになっている。
 ロータ回転によってハニカムに内包して処理ガスゾーンから持ち込まれる酸素を含むガスは処理ガスパージゾーン7で排気され、その排気は脱着ガスパージゾーン8に導入されてハニカムに内包する脱着ガスを押し出し置換される。置換された脱着ガスは処理ガスパージゾーン7に循環導入される。以上のように回収・脱着ゾーンの前後にてハニカム空隙中のガスを相互に置換することで、回収率、回収濃度、エネルギー効率を向上させる効果が有る。
複雑なフロー構成を安価に高精度に実現する「積層構造パージ・回収ブロック」
従来の各種分離濃縮装置は、回収、脱着、パージゾーン等は板金を溶接したタイプや、小型では鋳物製のチャンバー構造になっており、各チャンバーは断熱処理され、ガス流路は外付けダクトにより流路が構成されるので複雑な流路構成は現実的には不可能であった。 このような複雑なゾーン及びフロー構成をできるだけシンプルで高断熱、安価に実施できる方法を考えた。回収、脱着、パージ等のゾーン構成を一体化した「積層構造パージ・回収ブロック」構造である。
「積層構造パージ・回収ブロック」は弾力性や耐熱性、シール性が要求される。材質は耐熱性やその他要求特性に応じてゴム板の発泡倍率、材質等を選定する。例えば3~4mm以上の、装置の大きさによっては5mm以上の厚さのシリコーンゴム発泡板(ある程度の厚みや硬さを想定して板と表現する)を、本発明の第二実施形態の二酸化炭素ガス分離濃縮装置及び、又は空調装置の「積層パージ・回収ブロック」の組み立て前のパーツ図である図7のように各層毎に各ゾーン空間と連絡路を作りこむ。この加工に当たってはトムソン加工、レーザ加工、水ジェット加工その他既存の方法で量産できる。また将来的には各層を積み上げて構成していく3Dプリンターよる製造方法にも発展できる。
ロータ端面に接して摺動する部分には、例えばフッ素樹脂系の摺動摩擦の少ないシートを貼り合わせ。その直下の層には柔軟追従性に優れた軟質の発泡ゴム層を、その最下層には硬質の発泡ゴム板を選定することができる。スケールアップのため剛性が必要な場合は下層段に硬めの発泡ゴム板や樹脂系発泡板で構成する。必要に応じてレーザーカットした金属等の板を中間に挟み込んで補強することも容易である。これらの各層の発泡ゴム板を図8のように積層接着することで各ゾーン及び必要な連通路を構成した「積層構造パージ・回収ブロック」18ができる。このように複雑な複数ゾーンを有しながら高精度で低摩擦摺動性、シール効果、追従性も良好で、煩雑な調整は不要で、耐熱性と断熱性と耐久性を確保でき、かつコストを抑えられる。
また「積層構造パージ・回収ブロック」は複雑なフロー構成でも低コストで容易に装置化できるので、回収ゾーン5を折り返して回転方向の前段側に第二の回収ゾーンを増設し、2段階にガスの熱回収予冷効果、ハニカムの余熱効果によりさらに省エネ性を向上することも可能である。
低コストで実現できる高断熱構造「モジュール板積層ユニット構造」
湿式TSA分離濃縮法(図1)では、従来製品より各段に高い断熱性が要求される。その理由は、図4のように100℃近い飽和蒸気は同じ温度の空気や二酸化炭素ガスの数百倍のエンタルピを有するからである。さらに図5から100℃の飽和水蒸気では水蒸気が100%だが、80℃では水蒸気以外のガスの混入率は50%になることが分かる。このことから飽和蒸気温度をできるだけ100℃に近づける事は、熱・酸化劣化対策と高濃度回収のためには必須条件であると考えた。また図4から、飽和蒸気100℃から数度低下するだけで膨大なエネルギーロスを生じることから高断熱性が必要であることが分かる。そこで低コストで高断熱を達成できる「モジュール板積層ユニット構造」を考えた。
 「モジュール板積層ユニット構造」は、複数の発泡板に構成機器の設置空間及びガスの流通路を夫々加工構成し、構成機器を組付け、夫々のモジュール板を積層組み立てることで二酸化炭素ガス分離濃縮装置及び、又は空調装置として完成される。具体的には本発明の第二実施形態の二酸化炭素ガス分離濃縮装置及び、又は空調装置の発泡モジュール板積層ユニットの組み立て前の分解写真である図6のように発泡板に二酸化炭素ガス収着機能を有するハニカムロータ1及び駆動系を組み込み形成した「ロータカセットモジュール板」14と、ロータ軸及び両端面を支持シール摺動する発泡板に、流路空間を構成した複数の耐熱性発泡ゴム板等で積層し摺動面にガラス繊維入りフッ素樹脂系の摺動材を貼り合わせ積層した前述「積層構造パージ・回収ブロック」18を夫々組み込んで構成した「ロータ端面モジュール板」の前15後16と、処理ガス送風機を組み込んだ「送風系モジュール板」17とを、積層組み立て一体化する方法である。
小型ボイラや循環ポンプは何れかのモジュール板に空間を構成して組み込む。「積層構造パージ・回収ブロック」18は、「ロータ端面モジュール板」のロータ端面摺動接触面より圧接分だけ少し突出させてセットするとゾーンブロックのロータ端面への追従性シール性が向上するのでより望ましく、メンテナンス交換や調整も容易となる。
以上の様に発泡ゴム積層構造により形成した「積層構造パージ・回収ブロック」18を、発泡ポリスチレン板等で作成した前後「ロータ端面モジュール板」15、16に図9(本発明の第二実施形態の二酸化炭素ガス分離濃縮装置及び、又は空調装置の「積層パージ・回収ブロック」のロータ端面モジュール板への組込み写真)のように組み込み外周シールをセットする。さらに「ロータカセットモジュール板」14と「送風系モジュール板」17とを、15、14、16、17の順で積層一体化し「モジュール板積層ユニット構造」が完成する。
「モジュール板積層ユニット構造」図10により低コスト化と高断熱性、柔軟密封シール性、省エネ性を兼ね備える装置が可能になる。持ち運びや屋外での使用に耐えるよう、また意匠性の必要性から、積層ユニットの外装をカラー鋼板等で貼り合わせ、または覆うことも設計の範囲内である。
 本発明装置の「モジュール板積層ユニット構造」は前述のように、所要箇所の要求特性に合った材質の断熱性発泡板を選定し、夫々所要箇所を抜き取って構成部品を組み込んでモジュール化し、夫々のモジュール板を積層して装置全体を一体化構成するので、製缶加工や溶接部の漏れ止めシーリング、防錆塗装が不要で、簡単な組み立てにより、十分な断熱性も確保でき、少量生産から大量生産にも対応でき、大幅なコストダウンが可能である。
 本発明をハニカムロータ式で説明する。無機繊維シート、又は金属シート、又はプラスチックシート等で出来たハニカムに粒子径1mm以下のアミン基を有する収着材等を担持したロータ1を用い、図3のようにロータの回転方向の順に処理ガスゾーン4、処理ガスパージゾーン7、回収ゾーン5、脱着ゾーン6、脱着ガスパージゾーン8を経て、再び処理ガスゾーン4に戻る構成にしている。より簡単な構成では、先に発明した図2のように各ガスパージゾーン7、8を省略するフローも可能である。またハニカム以外に、粒状吸着材を分散接着したシートを積層した吸着体を用いることも可能であり、ロータも円盤型ではなくシリンダー型も可能である。
 外気や空調空気から二酸化炭素ガスを回収する例について図3により解説する。
処理ガスは大気あるいは空調空気なので特に前処理は必要なく、一般空調機に採用されている租塵フィルター程度が有れば良い。例えば外気を処理ガスゾーン4に通過させ、ハニカムロータ1に二酸化炭素ガスを収着させて送風機で排気する。この排気は二酸化炭素ガス濃度が外気よりも低いので室内空調に利用すると換気負荷を低減させ、知的生産性を向上させる効果も期待できる。二酸化炭素ガスを収着したロータは処理ガスパージゾーン7に回転移動し、脱着ガスパージゾーン8からのガスでパージされ、次の回収ゾーン5に回転移動する。回収ゾーン5では脱着ゾーン6の出口ガスが導入され、通過したガスが高濃度二酸化炭素ガスとして回収される。
脱着ゾーン6の出口ガスは高濃度二酸化炭素ガスと飽和蒸気の混合ガスで、この混合ガスを回収ゾーン5に通して回収する。これにより脱着ゾーン6への酸素混入リスクをさらに低下させると共に、ハニカムは脱着に先立って通過ガスにより予熱される熱回収効果と、回収ガス側から見れば予冷されて、後工程での水蒸気冷却分離エネルギー負荷が削減できる。
 ハニカムが回収ゾーン5から脱着ゾーン6に回転すると100℃近い飽和蒸気が導入される。蒸気の凝縮熱によりハニカムに収着している二酸化炭素ガスが脱着され、同時に水蒸気が凝縮する。先立って回収ゾーン5にて脱着ゾーン6の出口ガス通過回収で混入酸素が除去されているので、脱着ゾーン6で100℃近い飽和蒸気が導入されても収着材の熱酸化劣化は抑制される。
ハニカムは脱着ゾーン6から脱着ガスパージゾーン8に回転移動し、ハニカム空隙に含まれる脱着ガスと飽和蒸気の混合ガスはパージされる。パージに用いるガスは前述の処理ガスパージゾーン7でパージされて循環した処理ガス主体のガスである。脱着ガスパージゾーン8でパージされた脱着ガス主体のガスは前述の処理ガスパージゾーン7へと循環していく。
前述の循環ガスパージゾーン7、8は図2のように省略が可能で、その場合回収ガスに処理ガスゾーンからの空気が混入して二酸化炭素濃度を減ずるが、植物工場等で再利用する場合は問題ない。
循環ガスパージゾーン7、8の無い場合、二酸化炭素ガスを脱着したハニカムは次に処理ガスゾーン4へと回転移動する。移動直後のハニカムはまだ高温であるが、凝縮水で表面が覆われているので酸素を含む空気とは直接接触せず、凝縮水の蒸発潜熱によりすぐに冷却され熱酸化劣化は回避される。蒸発潜熱で冷却されたロータは二酸化炭素ガスの収着を開始し、収着熱は凝縮水の蒸発潜熱により冷却除去されるので温度上昇が抑えられ、効率的な収着が進行する。このようにして湿式TSA法は、収着時には二酸化炭素ガスの収着熱と水の気化熱を交換し、脱着時には二酸化炭素ガスの脱着熱と水蒸気の凝縮熱を交換しながら効果的に二酸化炭素ガスを分離濃縮することができる。
中型化については、図10をスケールアップして、図11のように送風機能や脱着回収機能も一体化した中型ユニットを実現できる。さらに大型化する場合は軽量の特徴から図12のように複数組み合わせることも容易である。
 煙道ガス等から二酸化炭素ガスを回収する場合、煙道ガスは高温高湿度で、硫黄酸化物、窒素酸化物、粉塵等の汚染ガスも含まれるため、脱硝装置、ウェットスクラバー、脱硫装置、バグフィルタ等前処理装置を設けて、有害なガスや粉塵を除去処理し、処理ガスとする。前処理後の処理ガスは収着するにはまだ高温多湿なので冷却減湿するのが望ましい。
ゼオライト系ではマイナス露点温度まで減湿しなくてはならないが、湿式TSA法では年間を通しての外気温湿度程度で良く、特許文献9に開示する回転型全熱交換器にて外気と全熱交換して温湿度を下げる方法もあり、この方法ではランニングコスト増は僅かで、イニシャルコストも低く抑えられる。その他は外気や空調空気を処理ガスとする場合と同じだが、煙道等からの処理ガスは二酸化炭素ガス濃度が高いので、それぞれのゾーン比は専用に設計すればよい。
実施検討の経緯
低温排熱を利用して二酸化炭素ガスの分離濃縮をするには脱着温度の高いゼオライト系では無理で、アミン系は有望だが、熱・酸化劣化しやすいので脱着温度に制限がある。各研究機関、各研究者が耐熱・耐酸化性収着材を研究しているが、装置や運用方法の面でもブレークスルーが望まれる。特許文献11、12に解決策が紹介されているが不活性ガスでパージする方法ではパージガス及びパージガス供給設備にコストがかかり不活性ガスの混入により回収濃度が低下する問題がある
特許文献13には真空ポンプで酸素を含むガスを抜く回転式も提案されているが、装置強度や真空ポンプのイニシャル、ランニングコストも増加し、大気圧と真空切り替えシール構造、さらにスケールアップや低コスト化等に関する難題が多い。
比較例1
 図13に従来の乾式TSA法による大気中二酸化炭素ガス分離回収試験例を示す。ハニカムロータ12は、ガラス繊維等無機繊維主体の多孔質ペーパをピッチ3.0mm、高さ2.0mmにコルゲート加工し、それを巻きつけて、粒度分布0.02~0.1mmのアミン系弱塩基性イオン交換樹脂微粉と、耐熱耐水性のバインダーとを混合したコート液を含浸乾燥後研削加工して、前記微粉を50重量%含む嵩比重150kg/m、Φ200mm×200mm幅のハニカムロータ12を得る。
二酸化炭素ガス濃度測定は非分散型赤外線式(NDIR)で、測定濃度0~10000ppmを使用した。試験条件は、処理:脱着ゾーン比及び通過流量比は1:1、処理ガス通過風速は2m/Sである。処理ガス側も脱着側も同じ外気で、脱着側は55℃に加熱して脱着ゾーンに導入している。この温度はイオン交換樹脂の熱酸化劣化を避けるためだが、実験の結果この条件でも劣化することが分かった。
乾式TSA法では処理ガスゾーンのハニカムに空気を通過させると脱着ゾーンから持ち込んだ蓄熱と、二酸化炭素ガスの収着熱と水蒸気の吸着熱で、入口空気温度18.9℃が、出口では42.2℃に上昇し、二酸化炭素ガス回収率は45%、回収側二酸化炭素ガス濃度は710ppmであった。このような低温加熱空気による再生は、脱着エネルギー量を風量で補うために多量の脱着空気を必要とし、高濃度濃縮は不可能である。
 また処理ガスは外気なので二酸化炭素ガス濃度が低く、処理ガスゾーン通過による温度上昇Δt=23.3℃の主体が水蒸気の吸着熱によると考えられる。二酸化炭素ガス回収率は45%だったが、処理ガスが煙道ガス等二酸化炭素ガス濃度10%前後の高濃度になると膨大な二酸化炭素ガス収着熱を発生するためこのような除去率は望めない。特許文献4のように処理ガスを冷却しながら何度も循環させないと回収率を向上させることはできず、加えて100℃程度の脱着温度では不可能である。
 そこで湿式TSA法を発明開発してきた。図1上図のように脱着ゾーンでは飽和蒸気を導入して水蒸気の凝縮熱で二酸化炭素を脱着し、ハニカムは凝縮水で湿ったまま処理ガスゾーンに回転移動する。処理ガスゾーンに二酸化炭素を含むガスを流してハニカムに二酸化炭素ガスを収着させるときに、乾式TSA法では二酸化炭素ガスや水蒸気の収着熱により収着材や原料ガスが温度上昇して二酸化炭素ガス収着量が減少するが、湿式TSA法では図1下図のように、二酸化炭素ガスの収着によって生ずる収着熱は同時に進行するハニカム表面の凝縮水の蒸発冷却によって除去されることで、ハニカムや原料ガスの温度上昇が抑制され、高効率に二酸化炭素ガスを収着することが出来る。
100℃近い飽和蒸気は同じ100℃の加熱空気や二酸化炭素ガスの100倍以上のエンタルピを有するので、特許文献1のように二酸化炭素ガスを脱着させるために二酸化炭素ガスを何度も再加熱しながら循環させる必要がない。また熱容量の膨大な飽和蒸気は必要な導入容積が少ないので脱着ゾーンは小さくなりロータも小型化できる。脱着ゾーンに導入した飽和蒸気は、ハニカムの加熱および二酸化炭素ガスの脱着熱供給により冷却され、ハニカム及び収着材表面に凝縮する。
 処理ガスゾーンに移動した直後のハニカム及び収着材は前述の理由で濡れているが、処理ガスが流入すると水の蒸発冷却現象により強力に冷却され、二酸化炭素ガスの収着が始まる。処理ガスの蒸発冷却効果を利用するためは、処理ガスを冷却減湿する事が望ましいが、合成ゼオライトを用いる場合のように、マイナス露点まで除湿する必要はなく、外気の温湿度範囲で良い。
 湿式TSA法では、ハニカムは水に濡れているので処理ガスによる気化冷却現象により、収着熱は凝縮水の気化熱に変換して効果的に冷却され、高い収着性能を維持することが出来る。ちなみに二酸化炭素ガスの収着熱の目安と考えられる気化潜熱369.9kJ/kg~昇華潜熱573kJ/kgに対し、水の気化潜熱は2500kJ/kgなのでハニカム及び収着材に付着または吸収している水1kgの蒸発によって、二酸化炭素ガス約4~5kg分の収着熱を除去することが出来る計算になる。
 さらに耐久性向上効果がある。固体アミン系二酸化炭素収着材やアミン系イオン交換樹脂は酸素がなければ耐熱性は100℃まで耐えるものがあるが、空気中の乾燥状態では40℃程度でも著しく劣化する例がある。イオン交換樹脂は水和状態の方が耐久性が高く、他のアミン系収着材についても同様と考えられる。本発明の方法では、全工程が湿式の水和状態で運用されることでも耐久性が向上すると考えられる。
収着時の温度上昇は凝縮水の気化冷却現象で低く抑えられる。脱着ゾーンは60~100℃になるが二酸化炭素ガスと飽和蒸気が主体で酸素がほとんど無く、再び処理ゾーン4に回転移動した直後の高温時は収着材表面が凝縮水で覆われて酸素との直接接触を避け、凝縮水による気化冷却現象により速やかに冷却されるため酸化劣化が防止され、耐久性が向上する。
 特許文献9の湿式TSA法では脱着した二酸化炭素ガスを脱着ゾーンに循環させながら飽和蒸気を混入することで酸素濃度を抑えると共に、脱着温度も抑えて熱酸化劣化を抑制する方法が開示している。例えば二酸化炭素収着用に検討されることのある弱塩基性イオン交換樹脂の場合には乾燥状態より水和状態の方が安定性の高いことは知られており、他のアミン系収着材においても水和状態の方が安定すると考えられ、実験でもその傾向を確認している。しかし比較例2で解説するが、この方法では脱着循環路の二酸化炭素ガスの分圧が比較的高く脱着温度も80℃程度なので回収濃度は数%程度が限界で、回収濃度向上にはさらにブレークスルーが必要と考えた。
比較例2
 次に湿式TSA法実験装置図14の比較例を示す。湿式TSA法では水蒸気の凝縮熱で二酸化炭素ガスを脱着し、二酸化炭素ガスの収着時には凝縮水の蒸発潜熱で収着熱を除去して回収率及び回収濃度を飛躍的に向上させる方法である。処理ガスは外気を使用した。回収ガスは高湿度で高濃度になるので、二酸化炭素ガス濃度計は液相、気相いずれも測定可能な隔膜式電極法で、測定濃度は0.1~100%のものを使用している。処理ガス側の二酸化炭素ガス濃度は非分散型赤外線式(NDIR)で、測定濃度0~10000ppmを使用した。
試験ロータは比較例1と同じ種類、同じ仕様のものである。脱着側は高エネルギー密度の飽和蒸気を用いるので図14のように脱着ゾーンははるかに小さく処理ガス:脱着ゾーン比は10:1である。処理ガス側の通過風速は2m/Sで同じ条件にしている。脱着側は回収した二酸化炭素含有ガスを循環させながら100℃の飽和蒸気を導入混合して80℃前後に調整して脱着ゾーンに導入している。
図15~16に実験データを示す。図15は装置立ち上げ時の二酸化炭素ガス回収濃度と回収率の時間変化のグラフである。立ち上げ後の回収率は1~2時間、回収ガス濃度は3時間位で平衡状態になる。図16は脱着側循環路のロータ入口と出口の温度を示す。入口出口の温度差は10℃以下で、このエネルギー差を蒸気加湿器からの100℃の飽和蒸気導入によって供給している。処理側空気の温度上昇、つまり入口・出口温度差は湿式TSA法の気化冷却効果で、実験の終了まで1℃以下と僅かであった。回収ガス濃度は2~3%と比較例1よりはるかに高く、4ヶ月程の実験中に、検知できるような性能劣化は観察されなかった。
図17は脱着回収循環側の流量を固定して処理流量増減による二酸化炭素ガス回収率と回収濃度への関係を調べた。回収濃度を高めるには処理側流量を多くするのが良いと考えたが効果は限定的で回収率は減少した。除去率=回収率が要求される場合には処理側流量を少なくした方が良いというトレードオフ関係が分かった。
図18は同じ実験装置で、蒸気入力を上げて二酸化炭素ガス回収率と濃縮濃度を向上させることを試みた。収着材の劣化を避けるために脱着温度は脱着側循環ガス量とロータ回転数を操作して脱着温度80℃程度に調整した。回収率は50~70%で、比較例1の乾式TSA法より向上した。蒸気入力を上げロータ回転数を調整して二酸化炭素ガス回収率は向上するが回収濃度向上効果は少なかった。回収濃度向上にはさらにブレークスルーが必要であることが分かった。
 図19~20は処理ガス出口の温度及び二酸化炭素ガス回収率のロータ回転角度別分布を測定したものである。図19の3本の線は3回分の測定結果を示すが、脱着ゾーンから処理ガスゾーンに回転した直後の箇所は出口温度も高く、図20では同じ個所の回収率は大幅にマイナスである。つまり処理ガスよりも二酸化炭素ガス濃度が高い事から、ロータ回転による脱着ゾーンから処理ガスゾーンへの脱着ガスの移行流出が観測された。二酸化炭素ガス回収率を高めるためにはガスパージの検討が必要で、この点は処理ゾーンから回収・脱着ゾーンに空気が移行流入して回収濃度を減じることに対する工夫も必要であることを示唆している。
比較例3
 空調空気や大気から二酸化炭素ガスを除去低減した空気を空調空気に利用し、回収濃縮した二酸化炭素ガスを植物工場の野菜生育促進用に供給する想定のポータブル型二酸化炭素ガス分離濃縮装置のプロトタイプ1号機(図21)を試作試験した。
試験ロータはポータブル性を考慮してΦ300×50mm幅。ハニカムサイズは実施例1、2と同じでアミン系収着材を含浸している。ゾーン構成は実施例2とほぼ同じで、圧損が低いので処理ガス側は軸流型排気ファンを採用している。脱着側は風量可変型の小型ブロアで循環路を構成している。蒸気は家庭用スチームクリーナーのボイラ部品を転用し、発生した蒸気を循環路に導入し循環路からのガスを回収する構成にした。
 試験結果を図22に示す。この図は脱着循環ガス量及び処理側風量を調整することによる二酸化炭素ガス濃度への影響を示している。脱着循環ガス量を増すと二酸化炭素ガス回収濃度が低下する。循環ガス量を必要以上に増すことで差圧増加によりガスリークが増えたためと考えた。処理風量の影響は処理ファンを2台にして風量269CMH(1.33m/S)、から356CMH(1.76m/S)に増して確認した。幾らか回収濃度向上効果はあったが先が見えており、この結果から実用化のためにはさらにブレークスルーが必要であることが分かった。
 比較例2、3と同じ湿式TSA法により空調空気や大気から二酸化炭素ガスを除去した空気を空調空気に利用し、回収濃縮した二酸化炭素ガスは植物工場等の野菜生育促進用に供給する想定のポータブル型二酸化炭素ガス分離濃縮装置のプロトタイプ2号機を試作試験した。ロータは比較例3と同じものである。
比較例2、3では回収率、回収濃度共に限界を感じ100℃の飽和蒸気を直接脱着ゾーンに投入できる方法を検討採用した。図2のようにロータの回転方向の順に、処理ガスゾーン4、回収ゾーン5、脱着ゾーン6を経て再び処理ガスゾーン4に戻るように構成した。脱着ゾーン6に100℃近い飽和蒸気を導入して飽和蒸気の凝縮熱で二酸化炭素ガスを脱着し、その脱着ガスを回転方向前段の回収ゾーン5に導入通過させて回収する。
実施例1の試作試験中に発泡板の耐熱不足による変形、リークが発生し、対策検討の結果「積層構造パージ・回収ブロック」を発明した。「積層構造パージ・回収ブロック」は複雑なパージ、フロー構成でも低コストで高精度に製作可能なことから、さらに回収性能、濃縮性能、省エネルギー性を高める発明、実施例2に発展。研究開発を急ぐため実施例1の性能試験は中断して実施例2を優先させたので試験データは採取していない。
図3のようにロータの回転方向の順に、処理ガスゾーン4、処理ガスパージゾーン7、回収ゾーン5、脱着ゾーン6、脱着ガスパージゾーン8を経て再び処理ガスゾーン4に戻るように構成した。脱着ゾーンに100℃近い飽和蒸気を導入して飽和蒸気の凝縮熱で二酸化炭素ガスを脱着し、その脱着ガスを回転方向前段の回収ゾーン5に導入通過させて回収する。
ロータ回転によってハニカムに内包される処理ガスが処理ガスパージゾーン7に移動するが、脱着ガスパージゾーン8からのガスで処理ガスをパージし、それでも混入する可能性のある酸素は回収ゾーン5に脱着ゾーン6の出口ガスを通して回収することで、最も高温になる脱着ゾーン6への酸素混入は防止され、100℃近い飽和蒸気を投入しても酸化劣化が防止される。
回収ゾーンを通過する脱着出口ガス、つまり二酸化炭素ガスと飽和水蒸気の混合ガスは、ハニカムの側から見れば、回収ゾーンを通過するガスから熱回収してハニカムを余熱する効果があると同時に、回収ガス側から見れば脱着直後のガスの潜熱除去により、回収後の回収ガスの水蒸気分離負荷を低減し、システム全体のエネルギー効率を向上させる効果も有る。また処理ガスパージゾーン7及び脱着ガスパージゾーン8のガス交換により、二酸化炭素ガス回収率及び回収濃度の向上及び省エネ効果もさらに向上する。
 図10にポータブルタイプ試作2号機の組み立て写真を示す。ロータは比較例3と同じである。この図の開口部から処理空気を吸引し、裏側に設置した41Wのファンで排気する。50mm幅のハニカムロータは圧力損失が少ないので軸流式の換気ファンで十分で、風速は3.4m/S、風量は7.3CMMであった。
 ポータブルタイプ試作2号機は二酸化炭素ガスの回収率、回収濃度、省エネ性向上、低コスト化の手段として発明した「発泡モジュール板積層ユニット構造」で試作している。二酸化炭素ガス分離濃縮のコア部であるロータとケーシング及びロータ駆動装置を発泡板で形成した「ロータカセットモジュール板」16、ロータ軸心及び両端面を支持シール摺動する発泡板に「積層パージ・回収ブロック」18を組み込んで流路を構成した前後「ロータ端面モジュール板」15、16そして処理ガス送風機やパージエアポンプを内蔵した「送風系モジュール板」17等の組み立て前(実施例2)を図6写真に示す。小型ボイラは複数のモジュール板にまたがって装着空間を構成して内蔵する。各モジュール板を積層組み立て一体化すれば図10写真の装置になる。
図23は試作2号機の、手前の「ロータ端面モジュール板」15を外して「ロータカセットモジュール板」14の見える写真(実施例2)である。試作2号機は50mm幅のロータ用に作成したが、発泡板を厚い物に代えるか、複数段重ねれば広幅ロータのオプション対応も容易である。右上には4Wのロータ駆動モータ、ロータの斜め下には1kwの小型ボイラと給水タンクがあるが、すべて断熱ボードに埋め込まれているので断熱性が高い。
 回収ゾーン5、脱着ゾーン6、及び各パージゾーン7、8を構成する「積層パージ・回収ブロック」18は耐熱性、断熱性及び柔軟弾力性、シール性、摺動性、耐摩耗性が必要なので、この実施例2では発泡シリコーンゴム板にて 図7のように各ゾーン空間を切り抜いた板、各ゾーン空間に連通路を構成するように切り抜いた板、さらに最下層は切り抜きが無くガスの入口、出口チューブを設置した底板等を夫々作成し、シリコーンコーキングにて図8の写真のように「積層パージ・回収ブロック」18を接着一体化して図9写真のように「ロータ端面モジュール板」15、16に組み込んだ。またロータ端面を摺動する表層は、耐熱性、摺動性及び耐摩耗性に優れたガラスクロス補強フッ素樹脂シートを貼り合わせてシール性と摺動性を確保した。
 蒸気ボイラ10は家庭用スチームクリーナー1kWの部品を転用した。350cc容量で約10分蒸気発生できるが、増設給水タンクを設けて15分以上の運転時間を確保した。連続運転する場合は、水道やポリタンクからの自動給水式にすればよい。
図6写真の送風系モジュール板17にパージ用エアーポンプ11を内蔵しパージゾーンへの循環チューブを接続している。
 図24は装置起動後の立ち上がり状況を示している。比較例2の図15では蒸気加湿器余熱後にスタートしたデータながら回収率の安定に1時間、回収濃度2.5%までに3時間かかったのに対し、実施例1の図24ではボイラの水温からの立ち上がり時間にもかかわらず始動後3分位で回収率は45%に達し、回収濃度は15分程で50%濃度に達している。比較例2より圧倒的に立ち上がりが早く、つまり熱効率が優れていることが分かる。接ガス部や本体が高断熱でかつ熱容量も少ないので装置の起動、停止に伴う熱ロスが少なく、頻繁な起動停止が容易なことも大きな特徴である。
 比較例2、3共に試験装置から想定外の結露水の流出があったが、実施例2では二酸化炭素ガス回収チューブ以外からは結露水も発生しなかった。従って断熱性や装置の余熱に起因する熱ロスが殆ど解消された。
 図25は起動後の処理出口二酸化炭素ガス濃度の変化を示す。440ppm程度の外気が2~3分の運転で250ppm程度になり、その後安定して供給できていることが分かる。この空気を空調用に利用すれば省エネ性を向上出来、知的生産性効果も期待できる。回収率は45%程度であったが、ロータ幅が50mm幅で処理側流速が3.3m/Sである。これに対し乾式TSA法の比較例1が200mm幅、2m/Sにて同程度の除去率データであることを考えると、湿式TSA法の優位性が理解できる。
図26は処理ゾーン出口の回転角度別二酸化炭素ガス濃度の測定データである。外気濃度から処理出口濃度を差し引いた回収(除去)濃度も示している。脱着ガスパージゾーンから処理ゾーンに回転直後のポイントでも二酸化炭素ガス濃度は十分に低く、比較例2のような処理ガス濃度より高い二酸化炭素ガス濃度は観察されず、従って循環パージゾーンの効果が確認された。
図27は起動後の二酸化炭素ガス回収量推移を示す。3分程度で平衡状態になり、二酸化炭素ガス回収量は0.9リットル毎分でほぼ安定していた。このデータは各パラメータの最適化途中で、ロータ回転数やパージガス流量の最適化も途中の状態での回収濃度50%であり、実験の過程で100%濃度を測定したこともあったことで、パラメータを最適化すれば100%近い濃度も可能と考えられる。
 本発明は高回収率で高濃度に濃縮でき、耐久性が高く、100℃前後の排熱を利用でき、エネルギー効率が良く安価でコンパクト化容易な、湿式TSA法二酸化炭素ガス分離濃縮装置に関する。煙道ガスのみならず大気や空調空気からでも二酸化炭素ガスを分離濃縮回収できるので、二酸化炭素ガス濃度を低減した空気を空調換気に利用すると共に、回収した高濃度二酸化炭素ガスを植物工場等に供給して野菜の生産性向上に寄与することができる。
 
1      二酸化炭素収着ハニカムロータ
2      ロータ駆動モータ
3      ロータ駆動ベルト
4      処理ガスゾーン
5      回収ゾーン
6      脱着ゾーン
7      処理ガスパージゾーン
8      脱着ガスパージゾーン
9      処理ガスファン
10    蒸気ボイラ
11    パージポンプ
12    エアヒータ
13    ブロア
14    ロータカセットモジュール板
15  前ロータ端面モジュール板
16  後ロータ端面モジュール板
17  送風系モジュール板
18  積層パージ・回収ブロック

Claims (5)

  1. 二酸化炭素ガスの収着能力を有するロータを、少なくともロータの回転方向の順に、処理ガスゾーンと、結露水を生じない高断熱性構造の「積層構造パージ・回収ブロック」に形成された回収ゾーンと脱着ゾーンとを有する夫々シールされたケーシング内に収納回転させ、処理ガスゾーンにてロータの湿った状態で二酸化炭素ガスを含む空気又は混合ガスと接触させて気化冷却しながら二酸化炭素ガスを収着し、脱着ゾーンに100℃近い飽和蒸気を導入して蒸気の凝縮熱により高濃度の二酸化炭素ガスを脱着させ回収ゾーンを通して回収する処理出口空気を空調給気可能な二酸化炭素ガス分離濃縮装置。
  2. 二酸化炭素ガスの収着能力を有するロータを、少なくとも回転方向の順に、処理ガスゾーンと、結露水を生じない高断熱性構造の「積層構造パージ・回収ブロック」に形成された処理ガスパージゾーンと回収ゾーンと脱着ゾーンと脱着ガスパージゾーンを有する夫々シールされたケーシング内に収納回転させ、処理ガスゾーンにてロータの湿った状態で二酸化炭素ガスを含む空気又は混合ガスと接触させて気化冷却しながら二酸化炭素ガスを収着し、処理ガスパージゾーンと脱着ガスパージゾーンが循環パージし、脱着ゾーンに100℃近い飽和蒸気を導入して蒸気の凝縮熱により高濃度の二酸化炭素ガスを脱着させ回収ゾーンを通して回収する処理出口空気を空調給気可能な二酸化炭素ガス分離濃縮装置。
  3. 二酸化炭素を含む混合ガスが大気又は空調空気であり、処理ガスゾーンを出た空気を空調用に給気し、回収ゾーンを出た二酸化炭素ガスを回収する請求項1又は請求項2の処理出口空気を空調給気可能な二酸化炭素ガス分離濃縮装置。
  4. ハニカムロータと駆動モータ及び駆動ベルトで構成する駆動系を発泡板に組み込んだ「ロータカセットモジュール板」と、ロータ軸の保持及びロータの両端面を支持シール摺動する発泡板に、脱着、回収、パージ流路等の空間と連通路を有する複数の耐熱性発泡ゴム板等で構成した「積層構造パージ・回収ブロック」を夫々組み込んだ「ロータ端面モジュール板」の前後と、処理ガス送風機を組み込んだ「送風系モジュール板」とを積層組み立て一体化する請求項1又は請求項2の処理出口空気を空調給気可能な二酸化炭素ガス分離濃縮装置。
  5. 各ゾーン空間を有した又は有していない扇形シートの積層構造であって、ロータ端面に接する摺動面は耐熱耐摩耗性の摺動シートと、その下層は発泡ゴムシート層と、さらにその下層は各ゾーン間の連通路を設けた発泡ゴムシート層または発泡板層と、最下層はゾーン空間を有していない断熱板を積層接着してブロック化し、外周部又は底面に蒸気導入部と脱着ガス回収部を設けた「積層構造パージ・回収ブロック」及び、それを組み込んだ請求項1又は請求項2の、処理出口空気を空調給気可能な二酸化炭素ガス分離濃縮装置。
PCT/JP2022/036262 2021-12-27 2022-09-28 空調給気可能な二酸化炭素ガス分離濃縮装置 WO2023127215A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237039188A KR20230165346A (ko) 2021-12-27 2022-09-28 공조 급기 가능한 이산화탄소 가스 분리 농축 장치
DE112022001386.9T DE112022001386T5 (de) 2021-12-27 2022-09-28 Kohlendioxidgas-Abscheidungs/Konzentrationsvorrichtung, die Luft klimatisieren kann
CN202280039619.6A CN117529360A (zh) 2021-12-27 2022-09-28 可空调供气的二氧化碳气体分离浓缩装置
CA3204602A CA3204602A1 (en) 2021-12-27 2022-09-28 Carbon dioxide gas separation/concentration device capable of feeding conditioned air

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021211907A JP7132475B1 (ja) 2021-12-27 2021-12-27 空調給気可能な二酸化炭素ガス分離濃縮装置
JP2021-211907 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023127215A1 true WO2023127215A1 (ja) 2023-07-06

Family

ID=83191724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036262 WO2023127215A1 (ja) 2021-12-27 2022-09-28 空調給気可能な二酸化炭素ガス分離濃縮装置

Country Status (6)

Country Link
JP (1) JP7132475B1 (ja)
KR (1) KR20230165346A (ja)
CN (1) CN117529360A (ja)
CA (1) CA3204602A1 (ja)
DE (1) DE112022001386T5 (ja)
WO (1) WO2023127215A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005943A (ja) * 2010-06-24 2012-01-12 Seibu Giken Co Ltd 二酸化炭素回収装置
US20150008366A1 (en) * 2013-07-08 2015-01-08 Exxonmobil Research And Engineering Company Compositions for carbon dioxide separation using steam regeneration, and method for preparing same
JP2016175014A (ja) * 2015-03-20 2016-10-06 株式会社西部技研 ガス回収濃縮装置
JP2019013906A (ja) * 2017-07-11 2019-01-31 株式会社西部技研 ガス回収濃縮装置
JP2019025482A (ja) * 2018-10-01 2019-02-21 日立化成株式会社 Co2除去装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2673300B2 (ja) 1988-02-01 1997-11-05 株式会社西部技研 低濃度ガス収着機
JP3456880B2 (ja) 1997-10-24 2003-10-14 松下エコシステムズ株式会社 換気装置
JPH11309330A (ja) 1998-04-28 1999-11-09 Seibu Giken Co Ltd ガス濃縮装置
JP3581255B2 (ja) 1998-07-14 2004-10-27 株式会社西部技研 ガス吸着濃縮装置
US8163066B2 (en) 2007-05-21 2012-04-24 Peter Eisenberger Carbon dioxide capture/regeneration structures and techniques
JP5627870B2 (ja) 2009-10-27 2014-11-19 株式会社西部技研 空気調和装置
EP3089809A4 (en) 2013-12-31 2017-10-25 Chichilnisky, Graciela Rotating multi-monolith bed movement system for removing co2 from the atmosphere
JP6622302B2 (ja) 2014-07-10 2019-12-18 クライムワークス アーゲー 二酸化炭素回収のための水蒸気アシスト真空脱着プロセス
JP6605548B2 (ja) 2017-08-01 2019-11-13 株式会社西部技研 換気空調装置
JP6510702B1 (ja) 2018-03-28 2019-05-08 株式会社西部技研 ガス回収濃縮装置
JP6632005B1 (ja) 2018-08-29 2020-01-15 株式会社西部技研 ガス吸着体とその製法及び二酸化炭素ガス濃縮装置
JP7123748B2 (ja) 2018-10-30 2022-08-23 公益財団法人地球環境産業技術研究機構 二酸化炭素分離回収システム及び方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005943A (ja) * 2010-06-24 2012-01-12 Seibu Giken Co Ltd 二酸化炭素回収装置
US20150008366A1 (en) * 2013-07-08 2015-01-08 Exxonmobil Research And Engineering Company Compositions for carbon dioxide separation using steam regeneration, and method for preparing same
JP2016175014A (ja) * 2015-03-20 2016-10-06 株式会社西部技研 ガス回収濃縮装置
JP2019013906A (ja) * 2017-07-11 2019-01-31 株式会社西部技研 ガス回収濃縮装置
JP2019025482A (ja) * 2018-10-01 2019-02-21 日立化成株式会社 Co2除去装置

Also Published As

Publication number Publication date
CN117529360A (zh) 2024-02-06
KR20230165346A (ko) 2023-12-05
DE112022001386T5 (de) 2023-12-28
JP7132475B1 (ja) 2022-09-07
JP2023096276A (ja) 2023-07-07
CA3204602A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
CA3077339C (en) Gas recovery and concentration device
CN110290850B (zh) 气体回收浓缩装置
JP6383467B1 (ja) 除湿空調装置
EP1722881B1 (en) Process for producing purified compressed gas and adsorbent wheel system
JP7112081B2 (ja) 二酸化炭素分離回収装置
CN109323352B (zh) 换气空调装置
US20180099244A1 (en) Gas recovery concentration apparatus
US20210252451A1 (en) Co2 scrubber with moving bed structure
WO2023228457A1 (ja) 空調給気も可能な空気中二酸化炭素をガス源とするドライアイス製造システム
JP2009090979A (ja) 小型デシカント空調装置
JP7481859B2 (ja) ガス分離回収装置
JP2011143358A (ja) 吸湿フィルタおよび加湿装置
JP7132475B1 (ja) 空調給気可能な二酸化炭素ガス分離濃縮装置
JP2009083851A (ja) 小型デシカント空調装置
JP2009138975A (ja) クリーンルーム排気の清浄化方法
KR102670625B1 (ko) 공조 급기도 가능한 공기 중 이산화탄소를 가스원으로 하는 드라이아이스 제조 시스템
JP7455566B2 (ja) ガス除去濃縮装置
KR101331192B1 (ko) 실린더형 유기 화합물 가스 농축장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3204602

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915450

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022001386

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20237039188

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237039188

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280039619.6

Country of ref document: CN