WO2023127159A1 - ワーク加工装置 - Google Patents

ワーク加工装置 Download PDF

Info

Publication number
WO2023127159A1
WO2023127159A1 PCT/JP2021/049014 JP2021049014W WO2023127159A1 WO 2023127159 A1 WO2023127159 A1 WO 2023127159A1 JP 2021049014 W JP2021049014 W JP 2021049014W WO 2023127159 A1 WO2023127159 A1 WO 2023127159A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining
processing
group
unit
work
Prior art date
Application number
PCT/JP2021/049014
Other languages
English (en)
French (fr)
Inventor
貴史 伊藤
雅彦 森
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2021/049014 priority Critical patent/WO2023127159A1/ja
Publication of WO2023127159A1 publication Critical patent/WO2023127159A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • This specification relates to a work processing device.
  • Patent Document 1 discloses a skip means that, when a machining abnormality is detected during machining, interrupts the machining and skips the rest of the machining to advance to the next machining.
  • a storage means for storing the machining start position of the skipped machining and the pointer of the machining program, and positioning to the stored machining start position by a machining restart command, skipping based on the machining program and the stored pointer
  • a laser processing apparatus includes a reprocessing means for performing the processed processing. According to this laser processing apparatus, the program processing of the processing program enables positioning to the processing start position of the processing that was skipped due to cutting failure and resuming the processing, thereby further improving the efficiency of the work.
  • this specification discloses a workpiece machining apparatus that can resume machining from a more appropriate position when a machining abnormality is detected.
  • the present specification includes a processing unit that performs processing of a workpiece using a processing tool according to a processing program grouped into a plurality of processing groups, and an abnormality detection unit that detects an abnormality during the processing by the processing unit.
  • a machining stop unit for stopping the machining when the abnormality is detected by the abnormality detection unit; and restarting the machining from the beginning of the machining group when the machining is stopped by the machining stop unit.
  • a workpiece machining apparatus is disclosed that includes a machining restart section.
  • the machining restarting unit detects the abnormality by the abnormality detecting unit and the machining is stopped by the machining stopping unit
  • the machining program is divided into groups, and when the machining is stopped by the machining stopping unit, Machining is restarted from
  • the workpiece machining device it is possible to restart machining from an appropriate position according to the grouping of machining groups. As a result, when a machining abnormality is detected, machining can be resumed from a more appropriate position. can be done.
  • FIG. 1 is a perspective view showing the inside of a multitasking machine 1 to which a work machining device is applied;
  • FIG. FIG. 2 is a side view showing the inside of the multi-tasking machine 1 shown in FIG. 1;
  • FIG. 2 is a side view showing the tool spindle device 2 shown in FIG. 1;
  • 2 is an external front view of the multi-tasking machine 1 shown in FIG. 1.
  • FIG. 5 is a front view of the operation panel 110 shown in FIG. 4;
  • FIG. 1 is a block diagram showing a multi-tasking machine 1;
  • FIG. FIG. 7 is a flow chart showing a program executed by the control device 90 shown in FIG. 6;
  • FIG. 7 is a diagram showing an example of a program executed by a control device 90 shown in FIG. 6;
  • FIG. 11 shows a resume group selection screen 90b1;
  • a multitasking machine 1 of this embodiment is a machine tool having both functions of an NC lathe and a machining center. As shown in FIG. 1, this multitasking machine 1 includes a first work spindle device 3 and a second work spindle device 4 that rotate a gripped work W, and a plurality of tools T (turrets) corresponding to machining of the work W. A first turret device 5 and a second turret device 6 each having a tool) are arranged bilaterally symmetrically. ing.
  • the multitasking machine 1 is a work processing device for processing a work W, and includes a first work spindle device 3 and a second work spindle device 4, a first turret device 5 and a second turret device 6, and a tool spindle device 2. It is mounted on bed 7.
  • the multitasking machine 1 has a compact configuration so as to achieve space saving.
  • a first work spindle device 3 and a second work spindle device 4 are arranged on the front side of the machine body, and a first turret device 5 and a second turret device 6 are arranged behind it (Fig. 2). reference).
  • the multi-tasking machine 1 has a tool spindle device 2 arranged in the center of the machine body so as to be sandwiched between the first turret device 5 and the second turret device 6 .
  • the first work spindle device 3 and the second work spindle device 4 are designed so that the center line of the main shaft is parallel to the machine body width direction and horizontal, and the moving direction is the Z-axis direction parallel to the main shaft.
  • the first and second turret devices 5 and 6 and the tool spindle device 2 move along the longitudinal direction and the vertical direction of the machine body perpendicular to the main axis (Z-axis).
  • the moving direction of the tool spindle device 2 is the horizontal Y-axis and the vertical X-axis
  • the moving directions of the first and second turret devices 5 and 6 are the Y-axis and the X-axis inclined by 45 degrees.
  • the YL axis see FIG. 2) and the XL axis.
  • the bed 7 has a slant bed structure in order to suppress the dimension in the longitudinal direction of the machine body, and the mounting surface of the first and second work spindle devices 3 and 4 is a front inclined surface 11 with the front lowered, Conversely, the mounting surface for the first and second turret devices 5 and 6 arranged on the rear side of the fuselage is a rear inclined surface 12 (see FIG. 2) with the rear lowered. Further, the front side inclined surface 11 is formed at a low position and the rear side inclined surface 12 is formed at a high position so that the arrangement of the entire apparatus is inclined forward.
  • the first and second work spindle devices 3 and 4 (hereinafter referred to as work spindle devices 3 and 4 when both devices are described in common) have the same structure, and as shown in FIGS.
  • a spindle is rotatably incorporated in the headstock 22, and a chuck mechanism 21 for gripping and releasing a workpiece W to be processed is assembled there.
  • a belt is stretched between the spindle and the rotating shaft of the spindle motor 23 via a pulley, so that the workpiece W gripped by the chuck mechanism 21 can be phased during processing and rotated at a predetermined speed. ing.
  • the current (driving current) of the spindle motor 23 is detected by a current sensor 23a (see FIG. 6), and the detection result is output to the control device 90, which will be described later.
  • the work spindle devices 3 and 4 are provided with a drive mechanism in which a headstock 22 and a spindle motor 23 are mounted on a spindle slide 24 and the front inclined surface 11 of the bed 7 is moved along the Z-axis direction.
  • Two guide rails 25 parallel to the Z-axis are fixed to the front inclined surface 11, and a guide block 26 fixed to the lower surface of the main shaft slide 24 is slidably engaged.
  • the main shaft slide 24 has its lower surface aligned with the angle of the front inclined surface 11, and the headstock 22 and the spindle motor 23 are vertically mounted so as not to protrude greatly forward from the front inclined surface 11. - ⁇
  • the work spindle devices 3 and 4 are movable along the Z-axis direction by means of a ball screw mechanism. supported through A Z-axis servomotor 28 is provided outside in the machine body width direction, and its rotating shaft is connected to the screw shaft 27 .
  • a nut member through which a screw shaft 27 passes is fixed to the main shaft slide 24, and the main shaft slide 24 is configured to linearly move along the Z-axis direction by the rotational output of the Z-axis servomotor 28.
  • a current (driving current) of the Z-axis servomotor 28 is detected by a current sensor 28a (see FIG. 6), and the detection result is output to the control device 90, which will be described later.
  • the first turret device 5 and the second turret device 6 index a corresponding tool T out of a plurality of tools T for rotation. , and performs predetermined processing such as cutting on the work W.
  • the tool T is a cutting tool such as a cutting tool and a drill, and is a type of processing tool for processing the workpiece W in this embodiment.
  • the turret devices 5 and 6 have a plurality of tools T attached to a disk-shaped turret 31 at equal intervals along the circumference. , any tool T can be positioned at a machining position on the circumference.
  • the tool T of the turret 31 is attached such that the tip of a cutting tool, drill, or the like faces the outside in the width direction of the machine body (a pair of work spindle devices). Therefore, during machining, the work spindle devices 3 and 4 move along the Z-axis direction, so that the tool T is brought into contact with the work W moving along the Z-axis direction from the machine body center side.
  • the turret devices 5 and 6 move the tool T to the machining position, so that the turret 31 is positioned on the XY plane perpendicular to the Z axis and 45 degrees to the horizontal and vertical directions.
  • a driving mechanism is provided for moving along the YL and XL directions having an angle of .
  • a rear inclined surface 12 parallel to the YL axis is formed on the bed 7, and a YL axis guide rail 33 is fixed thereon.
  • a base slide 34 having a substantially triangular cross-section is provided with a guide portion 35 for sliding on the YL-axis guide rail 33 on one surface thereof, and a surface adjacent thereto at 90 degrees is a mounting surface for the turret 31, where the XL-axis guide is mounted.
  • a rail 36 is provided.
  • the guide portion 40 of the turret slide 37 is slidably engaged with the XL-axis guide rail 36 .
  • a ball screw mechanism is provided on the base slide 34 and the turret slide 37.
  • a screw shaft parallel to each of the YL-axis guide rail 33 and the XL-axis guide rail 36 is supported by bearings, and passes through a nut member fixed to the base slide 34 and the turret slide 37 .
  • Each screw shaft is connected to the rotary shaft of the YL-axis servomotor 38 or the XL-axis servomotor 39 .
  • the turret devices 5 and 6 control the movement of the turret 31 along the respective directions of the YL and XL axes by drive control of the YL-axis servomotor 38 and the XL-axis servomotor 39, and also combine movements in both axial directions. It is possible to control movement along the horizontal direction.
  • the current (driving current) of the YL-axis servomotor 38 is detected by a current sensor 38a (see FIG. 6), and the detection result is output to the control device 90, which will be described later.
  • a current (driving current) of the XL-axis servomotor 39 is detected by a current sensor 39 a (see FIG. 6), and the detection result is output to the control device 90 .
  • the tool spindle device 2 enables workpiece machining at depths and angles that cannot be achieved with the turret devices 5 and 6 .
  • the tool spindle device 2 incorporates a spindle servomotor 41a (see FIG. 6) and a tool spindle in a spindle head 41, and an automatic tool changer 8 (see FIG. 4 See), various tools T (spindle head tools) are exchanged.
  • the spindle head 41 is rotatably attached to the spindle slide 42 and configured to transmit the rotation of the B-axis motor 43 via a rotation transmission mechanism.
  • the current (driving current) of the spindle servo motor 41 a is detected by a current sensor 41 a 1 (see FIG. 6), and the detection result is output to the control device 90 .
  • a current (driving current) of the B-axis motor 43 is detected by a current sensor 43 a (see FIG. 6), and the detection result is output to the control device 90 .
  • the tool spindle device 2 is provided with a drive mechanism that moves the spindle head 41 along the horizontal Y-axis direction and the vertical X-axis direction in order to move the tool T to the machining position.
  • a horizontal guide rail 44 is fixed on the bed 7, and a guide portion 46 of a base slide 45 is slidably engaged.
  • the base slide 45 has a vertical guide portion 46 (extending along the X-axis direction) on the front side, and a guide portion 47 of the main shaft slide 42 is slidably engaged therewith. Both the base slide 45 and the main shaft slide 42 are provided with a ball screw mechanism.
  • a screw shaft in each direction passes through a nut member fixed to the base slide 45 or the main shaft slide 42, and a Y-axis servomotor 48 or an X-axis servomotor 49 is connected.
  • a current (driving current) of the Y-axis servomotor 48 is detected by a current sensor 48 a (see FIG. 6), and the detection result is output to the control device 90 .
  • the current (driving current) of the X-axis servomotor 49 is detected by a current sensor 49a (see FIG. 6), and the detection result is output to the control device 90.
  • the multi-tasking machine 1 is capable of simultaneously machining the workpiece W with the first work spindle device 3 and the second work spindle device 4 and also performing tool exchange in the tool spindle device 2 . Therefore, as shown in FIG. 1, two separating shutters 15 are provided so that each device is not affected by coolant, chips, and the like.
  • the separation shutters 15 are arranged on both sides in the width direction of the tool spindle device 2 and configured to move horizontally along the longitudinal direction of the machine body by means of a drive mechanism.
  • the multi-tasking machine 1 separates a first machining chamber 10A comprising the first work spindle device 3 and the turret device 5, a second machining chamber 10B comprising the second work spindle device 4 and the second turret device 6, It can be divided into a tool changing chamber 10C for the tool spindle device 2 and a tool changing chamber 10C.
  • the space including the tool exchange chamber 10C can be used as the first processing chamber 10A or the second processing chamber 10B.
  • the multitasking machine 1 includes a first work spindle device 3 on the bed 7, a body cover 100, an automatic tool changer 8, an automatic work transfer device 9, a control device 90, and the like.
  • a machine cover 100 covers the tool spindle device 2 , the work spindle devices 3 and 4 , the turret devices 5 and 6 , the automatic tool changer 8 , the automatic work transfer device 9 , the control device 90 , and the like.
  • the gantry-type automatic work transfer device 9 is provided so as to protrude upward from the body cover 100, and is configured to move the gripped work W inside the body along three axial directions.
  • An operation panel 110 is provided in the center of the front of the machine body, and a left front door 151 and a right front door 152 are formed on both left and right sides thereof.
  • the tool spindle device 2 is positioned behind the operation panel 110, and behind the left front door 151 and the right front door 152 are the first and second machining chambers 10A and 10B.
  • the automatic tool changer 8 is arranged such that its tool magazine protrudes forward beyond the left and right front doors 151 and 152 on the front surface of the machine body, and is covered with a magazine cover 153 .
  • the operation panel 110 includes an input device 90a and a display device 90b, as shown in FIG.
  • the input device 90a has an operation switch section 90a1, a keyboard section 90a2, and the like.
  • the operation switch section 90a1 has an operation preparation switch 90a11, an automatic/individual mode selector switch 90a12, an automatic start switch 90a13, an emergency stop switch 90a14, an abnormality reset switch 90a15, and a continuous disconnection switch 90a16.
  • the abnormality reset switch 90a15 is a switch that is turned on in order to eliminate the abnormal state and reset the abnormal state in the multi-tasking machine 1 in which the automatic operation has been stopped due to the occurrence of an abnormality.
  • the display device 90b displays a restart group selection screen (see FIG. 9), which will be described later.
  • the control device 90 drives and controls the tool spindle device 2 , the work spindle devices 3 and 4 , the turret devices 5 and 6 , the automatic tool changer 8 , and the automatic work transfer device 9 .
  • the control device 90 stops work machining when an abnormality occurs during work machining, and when restarting work machining, restarts the machining program from the top of the machining group into which the machining programs are grouped.
  • the control device 90 includes an input device 90a, a display device 90b, a storage device 90c, current sensors 23a, 28a, 38a, 39a, 41a1, 43a, 48a, 49a, and motors 23, 28, 32. , 38 , 39 , 41 a , 43 , 48 , 49 , an automatic tool changer 8 , and an automatic workpiece transfer device 9 .
  • the input device 90 a is provided on the front surface of the multi-tasking machine 1 and is used by the operator (user) to input various settings and instructions to the control device 90 .
  • the display device 90b is provided on the front surface of the multi-tasking machine 1, and is used to display information such as operating conditions and maintenance conditions to the operator.
  • the storage device 90c stores data related to the control of the multi-tasking machine 1, such as control programs (machining programs), parameters used in the control programs, data relating to various settings and instructions, actual detection data, association data, and the like. (storage unit).
  • the control device 90 has a microcomputer (not shown), and the microcomputer has an input/output interface, a CPU, a RAM and a ROM (all not shown) connected via a bus.
  • the CPU executes various programs to acquire data, detection signals, control information, etc. from the input device 90a, the storage device 90c and the current sensors 23a, 28a, 38a, 39a, 41a1, 43a, 48a, 49a, It controls the display device 90b, the motors 23, 28, 32, 38, 39, 41a, 43, 48, 49, the automatic tool changer 8, and the automatic work transfer device 9.
  • the RAM temporarily stores variables necessary for executing the program
  • the ROM stores the program.
  • the control device 90 starts automatic operation related to workpiece machining (machining unit).
  • machining unit workpiece machining
  • the machining programs are grouped into a plurality of machining groups as shown in FIG.
  • the processing groups are grouped according to the content of processing.
  • the details of machining include the type of machining tool, the part to be machined, and the like. Examples of the processed part include end surface processing, inner diameter processing, outer diameter processing, and the like.
  • the processing group has a name (program name) of O01.
  • the machining program O01 has machining groups A to E grouped according to the types of machining tools. Processing group A has three blocks with sequence numbers 1-3. Machining group B is a group for machining using tool T with tool number T200, and has 14 blocks with sequence numbers 4-17. Machining group C is a group for machining using tool T with tool number T300, and has 16 blocks with sequence numbers 18-33. Machining group D is a group for machining using tool T with tool number T400, and has 15 blocks with sequence numbers 34-48. Processing group E has six blocks with sequence numbers 49-54. Each block has general G code and M code.
  • the head of machining group A is the block with sequence number 1
  • the head of machining group B is the block of sequence number 4
  • the head of machining group C is the block of sequence number 18
  • the head of machining group D is is the block with the sequence number 34
  • the top of the machining group E is the block with the sequence number 49.
  • blocks having words described as "N2T200***", “N3T300***", and "N4T400***” are arranged.
  • "N**” is a word indicating the head of the machining group.
  • the control device 90 can detect the head of each machining group, and further, based on the detected head of the machining group, assigns the machining program to the machining group. Grouping is possible.
  • the control device 90 When receiving an instruction to start automatic operation, the control device 90 starts automatic operation related to workpiece machining. Specifically, in step S102, the control device 90 determines whether automatic operation has started based on the on/off state of the automatic start switch 90a13. If the automatic start switch 90a13 is on, the controller 90 determines that automatic operation has started ("YES” in step S102), and advances the program to step S104. On the other hand, if the automatic start switch 90a13 is off, the control device 90 determines that automatic operation has not started ("NO" in step S102), and repeats the process of step S102.
  • step S104 the control device 90 performs automatic operation to process the workpiece W (workpiece machining) (processing unit).
  • the work W is processed according to the following flow.
  • a workpiece W in the input-side stocker is conveyed to the first workpiece spindle device 3 by the automatic workpiece transfer device 9 and gripped by the chuck mechanism 21 .
  • the tool T selected by driving the turret 31 moves on the machining movement line L1 parallel to the YL axis and is positioned at the machining position for the workpiece W.
  • the work W gripped by the chuck mechanism 21 is rotated by driving the spindle motor 23, and the work W is moved along the guide rail 25 along the Z-axis direction by the spindle slide 24.
  • a tool T is brought into contact with it to perform a predetermined machining.
  • the first machining of the workpiece W in the first workpiece spindle device 3 is machining by the first turret device 5, machining with the addition of the tool spindle device 2, or machining by the tool spindle device 2 alone.
  • the turret 31 is separated from the first work spindle device 3 .
  • the tool spindle device 2 is positioned by movement along the Y-axis direction and the X-axis direction, and the angle of the tool T is adjusted by rotating the spindle head 41 on the B-axis.
  • both devices approach the center of the machine body, and the second work spindle device moves to the first work spindle device 3 that has stopped earlier. 4 goes to pick up the work W, and the work W is re-gripped by the chuck mechanisms 21 .
  • the workpiece W is subjected to the second machining by the second turret device 6 in the same manner as the first machining, or the machining by the tool spindle device 2 is added, or only the tool spindle device 2 is used. processing takes place. Then, the workpiece W that has undergone the second machining is taken out by the automatic workpiece transfer device 9 and collected in the output side stocker.
  • the control device 90 stops automatic operation when an abnormality occurs during automatic operation (during work processing). Specifically, in step S106, the control device 90 detects an abnormality (abnormality detection unit) during the work machining in step S104 (during automatic operation (during work machining)). For example, the control device 90 detects an abnormality in the processing load, which is a detectable physical quantity that is a physical quantity related to the processing of the workpiece W. Specifically, the machining load is a load generated when the workpiece W is cut (machined) by a cutting tool, and is a physical quantity (machining resistance) that acts as a resistance to machining.
  • an abnormality abnormality detection unit
  • the control device 90 detects an abnormality in the processing load, which is a detectable physical quantity that is a physical quantity related to the processing of the workpiece W.
  • the machining load is a load generated when the workpiece W is cut (machined) by a cutting tool, and is a physical quantity (machining resistance) that acts as a resistance to
  • the machining load is the amount of force and energy consumed by the workpiece W and the cutting tool (driven side) that generate machining resistance to the driving side (in this embodiment, each servomotor described above). This refers to the magnitude, for example, the torque load applied to the drive shaft.
  • step S106 the control device 90 acquires, for example, the drive current of the spindle motor 23 for driving the spindle of the work spindle from the current sensor 23a that detects the drive current of the spindle motor 23, and from the detected current, the machining load of the spindle motor 23 (work spindle torque load (work spindle machining load)) can be derived (derivation section).
  • the machining load is derived as the machining load corresponding to the detected current by using a map or an arithmetic expression showing the correlation between the drive current and the machining load.
  • the machining load of the motor that drives other drive axes Z-axis machining load, tool spindle machining load, etc.
  • step S106 the control device 90 compares the detected actual detection data (processing load) with the monitoring range (teaching data) stored in the storage device 90c. By determining whether or not there is an abnormality in the processing load related to machining of the workpiece W (abnormal load on the workpiece W), it is determined whether or not there is an abnormality.
  • the monitoring range is a range for monitoring (determining) the state of the processing load (detectable physical quantity). If the actual detection data is within the monitoring range, the control device 90 determines that there is no abnormality in the processing load ("NO" in step S106). determines that there is an abnormality in the machining load (immediate stop abnormality has occurred) (“NO" in step S106), and advances the program to step S108.
  • step S108 the control device 90 stops automatic operation.
  • the control device 90 stops the workpiece machining (machining stop part) when an abnormality is detected by step S106 (abnormality detection part).
  • the control device 90 preferably stores the program (block) in which the abnormality occurred in the storage device 90c. In this embodiment, it is assumed that the immediate stop abnormality occurred at sequence number 22, so that fact is stored in the storage device 90c.
  • control device 90 notifies the operator of the stoppage of the automatic operation of the multi-tasking machine 1 .
  • the operator can investigate the cause of the abnormality of the multi-tasking machine 1 by the notification, identify the cause of the abnormality, and eliminate the abnormal state. After resolving the abnormal state, the operator turns on the abnormality reset switch 90a15 to return the multi-tasking machine 1 to a state in which normal automatic operation can be performed.
  • the control device 90 resumes automatic operation when the abnormal state is canceled (machining restart unit). Specifically, when detecting that the abnormality reset switch 90a15 is turned on, the control device 90 determines that the abnormal state has been canceled ("YES" in step S110), advances the program to step S112 and thereafter, and starts automatic operation. Resume automatically. On the other hand, until the abnormality reset switch 90a15 is turned on until the abnormality reset switch 90a15 is turned on, the control device 90 repeatedly determines "NO" in step S110. In step S110, the control device 90 detects cancellation of the abnormal state.
  • the control device 90 preferably allows the operator to specify (select) the processing group to be resumed (designating section).
  • the control device 90 displays the restarted machining location on the display device 90b.
  • the control device 90 displays a restart group selection screen 90b1 shown in FIG. 9 on the display device 90b.
  • the restart group selection screen 90b1 has a first selection button 90b1a, a second selection button 90b1b, and a third selection button 90b1c.
  • the first selection button 90b1a is a button for resuming the automatic operation from the processing group one before the processing group (processing stop group) containing the program (block) in which the automatic operation has been stopped.
  • the second selection button 90b1b is a button for resuming the automatic operation from the machining stop group.
  • the third selection button 90b1c is a button for restarting the automatic operation from the machining group one after the machining stop group.
  • the machining stop group is the machining group C including the sequence number 22 in which the abnormality occurred, the machining group one before is the machining group B, and the machining group one after The group is processing group D.
  • the second selection button 90b1b "from stopped group" is selected from the beginning (set to default). This is to prevent forgetting to select a restart group.
  • control device 90 may display the machining program, the machining group corresponding to the machining program, and the location where the abnormality occurred, as shown in FIG. 8, on the restart group selection screen. According to this, the operator can select a restart group while actually referring to the block in which the abnormality has occurred and the machining program, and can restart from a more appropriate location.
  • step S114 When the selection of the machining location (resume group) to be resumed is completed (determines "YES” in step S114), the control device 90 advances the program to step S116 and resumes automatic operation from the selected location. On the other hand, the control device 90 repeats the process of step S114 until the selection of the machining location (resume group) to be resumed is completed (determined as "NO” in step S114). Note that the control device 90 may determine that the selection is completed by turning on the automatic activation switch 90a13 after selecting the restart group.
  • the control device 90 selects the respective selection buttons 90b1a, 90b1b . If any one of 90b1c is selected, it is determined that a resuming machining location has been selected. Otherwise, it is determined that a resuming machining location has not been selected. In this manner, in step S114, selection (designation) of a machining location (restart group) to be restarted is performed (designation unit).
  • step S116 the control device 90 resumes machining from the top of the selected (designated) machining group (machining restart unit).
  • the control device 90 calculates the processing group corresponding to the selected processing group based on the sequence number in which the abnormality occurred stored in the storage device 90c. Then, the control device 90 resumes automatic operation from the top of the calculated processing group.
  • the control device 90 selects machining group C including sequence number 22 based on sequence number 22. Calculate as a machining stop group, calculate the machining group B one before the calculated machining stop group as one group before, and calculate the machining group D one after the calculated machining stop group as one group after. calculate. Since the selected machining group is the machining stop group, the control device 90 determines machining group C as the selected machining group. Then, the control device 90 resumes automatic operation from sequence number 18, which is the top of the determined processing group C.
  • the control device 90 continues the automatic operation until the machining program ends, that is, until the work machining ends (determines "NO” in step S118), and when the machining program ends and the work machining ends (step "YES” is determined in S118), and the automatic operation ends.
  • a cutting tool is used as a processing tool, but other processing tools for processing the workpiece W may be used.
  • the multitasking machine 1 is used as the work processing device, it is not limited to this, and any device that processes the work W may be used, such as a simple lathe processing device or a machining center. .
  • the automatic operation when the automatic operation (workpiece machining) is stopped due to the detection of an abnormality, the automatic operation is restarted from the top of the machining group selected by the operator. Without waiting, after the abnormality is resolved, the machining may be resumed from the beginning of the machining group (the machining stop group) in which the machining was stopped.
  • the control device 90 machining resuming unit
  • the control device 90 omits the processing of steps S112 and S114 after step S110 described above, and performs the processing of step S116.
  • step S116 the control device 90 restarts machining from the top of the machining stop group (machining restart section).
  • the work processing apparatus (multitasking machine 1) according to the above-described embodiment is a processing unit (control device) that performs processing of a work W using a processing tool (tool T) according to a processing program grouped into a plurality of processing groups.
  • control device 90; step S104 an abnormality detection unit (control device 90; step S106) that detects an abnormality during the processing by the control device 90 (step S104; processing unit), and a control device 90 (step S106; abnormality detection unit ) to stop the machining when the abnormality is detected, and when the machining is stopped by the control device 90 (step S108; machining stopping unit), and a machining resuming section (control device 90; step S116) for resuming the machining from the beginning of the machining group.
  • an abnormality detection unit control device 90; step S106
  • step S106 abnormality detection unit
  • the control device 90 (step S116; machining resuming unit) detects the abnormality by the control device 90 (step S106; abnormality detection unit), thereby causing the control device 90 ( Step S108; machining stop unit) restarts machining from the beginning of the machining group into which the machining program is grouped.
  • the control device 90 (step S116; machining resuming unit) detects the abnormality by the control device 90 (step S106; abnormality detection unit), thereby causing the control device 90 ( Step S108; machining stop unit) restarts machining from the beginning of the machining group into which the machining program is grouped.
  • Step S108 machining stop unit
  • the processing groups are grouped according to the content of the processing. According to this, it is possible to resume machining from an appropriate position according to the content of the machining.
  • the processing content is the type of the tool T. According to this, it is possible to resume machining from an appropriate position according to the type of tool T.
  • the content of the processing is the processed portion on which the processing is performed. According to this, it becomes possible to resume processing from an appropriate position according to the processed portion.
  • control device 90 (step S116; machining resuming section), when the machining is stopped by the control device 90 (step S108; machining stopping section), the machining group whose machining has been stopped The machining is restarted from the beginning of the . According to this, it is possible to reliably restart the machining related to the program of the machining group in the middle of machining from the beginning.
  • the multi-tasking machine 1 further includes a designation unit (control device 90; step S114) that allows the operator to designate the processing group for resuming the processing. section) restarts the machining from the top of the machining group specified by the control device 90 (step S116; specifying section) when the machining is stopped by the control device 90 (step S108; machining stopping section). . According to this, it is possible to resume processing from an appropriate position according to the operator's judgment.
  • a designation unit control device 90; step S114
  • step S116 specifying section
  • step S108 machining stopping section
  • Multitasking machine workpiece machining device
  • 90... Control device machining unit; step S104, abnormality detection unit; step S106, machining stop unit; step S108, machining restart unit; step S116, designation unit; step S114), T... processing tool (tool), W... work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

ワーク加工装置は、加工工具によるワークの加工を、複数の加工グループにグループ分けされた加工プログラムに沿って実施する加工部と、前記加工部による前記加工の途中に異常を検出する異常検出部と、前記異常検出部によって前記異常が検出された場合に、前記加工を停止する加工停止部と、前記加工停止部によって前記加工が停止された場合に、前記加工グループの先頭から前記加工を再開する加工再開部と、を備えている。

Description

ワーク加工装置
 本明細書は、ワーク加工装置に関する。
 ワーク加工装置の一形式として、特許文献1には、加工中に加工異常を検出したとき、加工を中断すると共に加工中の残りをスキップして次の加工に進めるスキップ手段と、このスキップ手段によりスキップしたとき、スキップした加工の加工開始位置、及び加工プログラムのポインタを記憶する記憶手段と、加工再開指令により、記憶された加工開始位置に位置決めし、加工プログラムと記憶されたポインタに基づいてスキップした加工を行う再加工手段とを備えたレーザ加工装置が開示されている。このレーザ加工装置によれば、加工プログラムのプログラム処理により、切断不良でスキップした加工の加工開始位置へ位置決めし加工再開を行うことができ、さらに作業の効率化を図ることができる。
特開2004-306073号公報
 上述した特許文献1に記載されているレーザ加工装置において、加工異常を検出した際には、一旦停止した加工を、スキップした加工の加工開始位置から再開することができるものの、より適切な位置から加工再開を行うことが要請されている。
 このような事情に鑑みて、本明細書は、加工異常を検出した際に、より適切な位置から加工再開を行うことができるワーク加工装置を開示する。
 本明細書は、加工工具によるワークの加工を、複数の加工グループにグループ分けされた加工プログラムに沿って実施する加工部と、前記加工部による前記加工の途中に異常を検出する異常検出部と、前記異常検出部によって前記異常が検出された場合に、前記加工を停止する加工停止部と、前記加工停止部によって前記加工が停止された場合に、前記加工グループの先頭から前記加工を再開する加工再開部と、を備えたワーク加工装置を開示する。
 本開示によれば、ワーク加工装置において、加工再開部が、異常検出部によって前記異常が検出されることにより加工停止部によって加工が停止された場合に、加工プログラムをグループ分けした加工グループの先頭から加工を再開する。これによれば、ワーク加工装置において、加工グループのグループ分けに応じた適切な位置から加工再開を行うことが可能となり、その結果、加工異常を検出した際に、より適切な位置から加工再開を行うことが可能となる。
ワーク加工装置が適用された複合加工機1の内部を示す斜視図である。 図1に示す複合加工機1の内部を示す側面図である。 図1に示す工具主軸装置2を示す側面図である。 図1に示す複合加工機1の外観正面図である。 図4に示す操作盤110の正面図である。 複合加工機1を示すブロック図である。 図6に示す制御装置90にて実施されるプログラムを表すフローチャートである。 図6に示す制御装置90にて実施されるプログラムの一例を示す図である。 再開グループ選択画面90b1を示す図である。
 以下、ワーク加工装置が適用された複合加工機の一実施形態について説明する。本実施形態の複合加工機1は、NC旋盤とマシニングセンタの両方の機能を持った工作機械である。この複合加工機1は、図1に示すように、把持したワークWに回転を与える第1ワーク主軸装置3および第2ワーク主軸装置4と、ワークWの加工に対応した複数の工具T(タレット工具)を有する第1タレット装置5および第2タレット装置6が、それぞれ左右対称に配置された対向二軸旋盤に加え、機体中央に旋盤では難しい加工を実行するための工具主軸装置2が設けられている。
(複合加工機)
 複合加工機1は、ワークWを加工するワーク加工装置であり、第1ワーク主軸装置3および第2ワーク主軸装置4、第1タレット装置5および第2タレット装置6、工具主軸装置2が一つのベッド7に搭載されている。特に、複合加工機1は、省スペース化を達成することができるようにコンパクトな構成になっている。具体的には、機体前方側に第1ワーク主軸装置3と第2ワーク主軸装置4とが配置され、その後方には第1タレット装置5と第2タレット装置6が配置されている(図2参照)。そして、複合加工機1は、こうした対向二軸旋盤に加えて第1タレット装置5と第2タレット装置6に挟まれるようにして機体中央に工具主軸装置2が配置されている。
(対向二軸旋盤)
 第1ワーク主軸装置3および第2ワーク主軸装置4は、主軸の中心線が機体幅方向であって且つ水平になるよう設計されており、その移動方向は主軸と平行なZ軸方向である。第1および第2タレット装置5,6と工具主軸装置2とは、いずれも主軸(Z軸)と直交する機体前後方向と機体上下方向に沿って移動するものである。特に、工具主軸装置2の移動方向が水平なY軸と鉛直なX軸であるのに対し、第1および第2タレット装置5,6の移動方向は、Y軸及びX軸を45度傾けたYL軸(図2参照)とXL軸である。
 複合加工機1は、機体前後方向の寸法を抑えるため、ベッド7がスラントベッド構造であり、第1および第2ワーク主軸装置3,4の搭載面が前を低くした前側傾斜面11であり、逆に機体後方側に配置された第1および第2タレット装置5,6の搭載面は後を低くした後側傾斜面12(図2参照)である。そして、装置全体の配置が前傾になるように、前側傾斜面11は低い位置に形成され、後側傾斜面12は高い位置に形成されている。
 第1および第2ワーク主軸装置3,4(以下、両装置共通の説明する場合はワーク主軸装置3,4とする)は同じ構造であり、図1,図2に示すように、円筒形状の主軸台22にスピンドルが回転自在に組み込まれ、そこに加工対象であるワークWを把持および解放するチャック機構21が組付けられている。スピンドルにはスピンドルモータ23の回転軸との間にプーリを介してベルトが掛け渡され、チャック機構21に把持されたワークWに対する加工時の位相決めや所定速度での回転が与えられるようになっている。スピンドルモータ23の電流(駆動電流)は、電流センサ23a(図6参照)によって検出され、その検出結果は後述する制御装置90に出力されている。
 ワーク主軸装置3,4は、主軸台22やスピンドルモータ23が主軸スライド24に搭載され、ベッド7の前側傾斜面11をZ軸方向に沿って移動するようにした駆動機構が設けられている。前側傾斜面11には、Z軸に平行な2本のガイドレール25が固定され、主軸スライド24の下面に固定されたガイドブロック26が摺動可能に噛み合っている。主軸スライド24は、下面が前側傾斜面11の角度に合わせられ、主軸台22およびスピンドルモータ23が、前側傾斜面11から前方側に大きく突き出ないように、上下に搭載されている。
 ワーク主軸装置3,4は、図1に示すように、ボールネジ機構によってZ軸方向に沿った移動が可能であり、2本のガイドレール25の間にはZ軸に平行なネジ軸27が軸受を介して支持されている。機体幅方向の外側にZ軸サーボモータ28が設けられ、その回転軸がネジ軸27に連結されている。一方、主軸スライド24にはネジ軸27が通ったナット部材が固定され、Z軸サーボモータ28の回転出力により主軸スライド24がZ軸方向に沿って直線移動するよう構成されている。Z軸サーボモータ28の電流(駆動電流)は、電流センサ28a(図6参照)によって検出され、その検出結果は後述する制御装置90に出力されている。
 次に、第1タレット装置5および第2タレット装置6(以下、両装置共通の説明する場合はタレット装置5,6とする)は、複数の工具Tの中から該当する工具Tを旋回割出しによって選択し、ワークWに対する切削など所定の加工を行うものである。工具Tは、本実施形態では、バイト、ドリルなどの切削工具であり、ワークWを加工する加工工具の一種である。タレット装置5,6は、図1,図2に示すように、円盤状のタレット31に複数の工具Tが円周方向に沿って等間隔で取り付けられ、割出し用サーボモータ32の回転制御によって、任意の工具Tを円周上の加工位置に位置決めできるよう構成されている。タレット31の工具Tは、バイトやドリルなどの先端が機体幅方向の外側(対になっているワーク主軸装置)を向いて取り付けられている。従って、加工時には、ワーク主軸装置3,4がZ軸方向に沿って移動することにより、Z軸方向に沿って移動するワークWに対して工具Tが機体中央側から当てられることになる。
 タレット装置5,6は、図2に示すように、工具Tを加工位置へと移動させるため、タレット31をZ軸に直交するXY平面上であって、水平方向および鉛直方向に対して45度の角度をもったYL軸方向とXL軸方向に沿って移動させるようにした駆動機構が設けられている。ベッド7にはYL軸に平行な後側傾斜面12が形成され、そこにYL軸ガイドレール33が固定されている。断面略三角形状のベーススライド34は、その一面にYL軸ガイドレール33を摺動するガイド部35が設けられ、90度で隣り合う面がタレット31の搭載面であり、そこにはXL軸ガイドレール36が設けられている。タレットスライド37は、そのガイド部40がXL軸ガイドレール36に対して摺動可能に噛み合っている。
 ベーススライド34とタレットスライド37にはボールネジ機構が設けられている。YL軸ガイドレール33とXL軸ガイドレール36とのそれぞれに平行なネジ軸が軸受によって支持され、そのネジ軸がベーススライド34やタレットスライド37に固定されたナット部材を通っている。各々のネジ軸はYL軸サーボモータ38またはXL軸サーボモータ39の回転軸に連結されている。従って、タレット装置5,6は、YL軸サーボモータ38とXL軸サーボモータ39の駆動制御によってタレット31のYL軸およびXL軸の各方向に沿った移動制御のほか、両軸方向の移動を合成した水平方向に沿った移動制御が可能になっている。尚、YL軸サーボモータ38の電流(駆動電流)は、電流センサ38a(図6参照)によって検出され、その検出結果は後述する制御装置90に出力されている。XL軸サーボモータ39の電流(駆動電流)は、電流センサ39a(図6参照)によって検出され、その検出結果は制御装置90に出力されている。
(工具主軸装置)
 工具主軸装置2は、タレット装置5,6ではできない深さや角度でのワーク加工を可能にするものである。工具主軸装置2は、主軸ヘッド41内に主軸用サーボモータ41a(図6参照)や工具スピンドルが内蔵され、その下端部に設けられた工具装着部に対して、自動工具交換装置8(図4参照)に収められた様々な工具T(主軸ヘッド工具)の取り替えが行われるようになっている。図3に示すように、主軸ヘッド41は、主軸スライド42に対して回転可能に取り付けられ、回転伝達機構を介してB軸モータ43の回転が伝達されるよう構成されている。主軸用サーボモータ41aの電流(駆動電流)は、電流センサ41a1(図6参照)によって検出され、その検出結果は制御装置90に出力されている。B軸モータ43の電流(駆動電流)は、電流センサ43a(図6参照)によって検出され、その検出結果は制御装置90に出力されている。
 工具主軸装置2は、工具Tを加工位置へと移動させるため、主軸ヘッド41を水平なY軸方向と鉛直なX軸方向に沿って移動させるようにした駆動機構が設けられている。ベッド7上に水平なガイドレール44が固定され、ベーススライド45のガイド部46が摺動可能に噛み合っている。ベーススライド45には、前側に鉛直な(X軸方向に沿って延びる)ガイド部46が構成され、そこに主軸スライド42のガイド部47が摺動可能に噛み合っている。ベーススライド45と主軸スライド42は、ともにボールネジ機構が設けられている。各方向のネジ軸がベーススライド45または主軸スライド42に固定されたナット部材を通り、Y軸サーボモータ48またはX軸サーボモータ49が連結されている。Y軸サーボモータ48の電流(駆動電流)は、電流センサ48a(図6参照)によって検出され、その検出結果は制御装置90に出力されている。X軸サーボモータ49の電流(駆動電流)は、電流センサ49a(図6参照)によって検出され、その検出結果は制御装置90に出力されている。
 複合加工機1は、第1ワーク主軸装置3と第2ワーク主軸装置4で同時にワークWを加工するほか、工具主軸装置2における工具交換も行うことが可能である。そのため、図1に示すように、各装置がクーラントや切屑などの影響を受けないように、2枚の分離シャッタ15が設けられている。分離シャッタ15は、工具主軸装置2の幅方向両側に配置され、駆動機構によって機体前後方向に沿って水平移動するよう構成されたものである。複合加工機1は、この分離シャッタ15によって、第1ワーク主軸装置3とタレット装置5による第1加工室10Aと、第2ワーク主軸装置4と第2タレット装置6による第2加工室10Bと、工具主軸装置2に対して行われる工具交換室10Cとに分けることができる。なお、一方の分離シャッタ15だけを閉じることにより、工具交換室10Cを含めた空間を第1加工室10Aまたは第2加工室10Bとすることもできる。
 さらに、複合加工機1は、図4に示すように、ベッド7上の第1ワーク主軸装置3などのほか、機体カバー100、自動工具交換装置8、ワーク自動搬送装置9、制御装置90などを備えている。工具主軸装置2、ワーク主軸装置3,4、タレット装置5,6、自動工具交換装置8、ワーク自動搬送装置9、制御装置90などは、機体カバー100によって覆われている。ガントリ式のワーク自動搬送装置9は、機体カバー100から上方に突き出すようにして設けられ、機体の内部では把持したワークWを3軸方向に沿って移動させるよう構成されている。機体正面には中央に操作盤110が設けられ、その左右両側には左正面扉151と右正面扉152とが形成されている。操作盤110の奥には工具主軸装置2が位置し、左正面扉151と右正面扉152の奥には第1および第2加工室10A,10Bがある。そして、自動工具交換装置8は、そのツールマガジンが機体前面の左右正面扉151,152よりも前方に突き出すようにして配置され、マガジンカバー153によって覆われている。
 操作盤110は、図5に示すように、入力装置90a及び表示装置90bを備えている。入力装置90aは、操作スイッチ部90a1、キーボード部90a2などを有している。操作スイッチ部90a1は、運転準備スイッチ90a11、自動・各個モード切替スイッチ90a12、自動起動スイッチ90a13、非常停止スイッチ90a14、異常リセットスイッチ90a15及び連続切スイッチ90a16を有している。異常リセットスイッチ90a15は、異常が発生して自動運転が停止された複合加工機1において、異常状態が解消され異常状態をリセットするためにオンされるスイッチである。表示装置90bは、後述する再開グループ選択画面(図9参照)を表示する。
(制御装置)
 制御装置90は、工具主軸装置2、ワーク主軸装置3,4、タレット装置5,6、自動工具交換装置8、及びワーク自動搬送装置9を駆動制御する制御装置である。特に、制御装置90は、ワーク加工中にて異常が発生した場合にワーク加工を停止し、ワーク加工を再開する場合には、加工プログラムをグループ分けした加工グループの先頭から再開する。制御装置90は、図6に示すように、入力装置90a、表示装置90b、記憶装置90c、各電流センサ23a,28a,38a,39a,41a1,43a,48a,49a、各モータ23,28,32,38,39,41a,43,48,49、自動工具交換装置8、及び、ワーク自動搬送装置9に接続されている。
 入力装置90aは、複合加工機1の前面に設けられており、作業者(ユーザ)が各種設定、各種指示などを制御装置90に入力するためのものである。表示装置90bは、複合加工機1の前面に設けられており、作業者に対して運転状況やメンテナンス状況などの情報を表示するためのものである。記憶装置90cは、複合加工機1の制御に係るデータ、例えば、制御プログラム(加工プログラム)、制御プログラムで使用するパラメータ、各種設定や各種指示に関するデータ、実検出データ、関連付けデータなどを記憶している(記憶部)。
 制御装置90は、マイクロコンピュータ(不図示)を有しており、マイクロコンピュータは、バスを介してそれぞれ接続された入出力インターフェース、CPU、RAMおよびROM(いずれも不図示)を備えている。CPUは、各種プログラムを実施して、入力装置90a、記憶装置90c及び各電流センサ23a,28a,38a,39a,41a1,43a,48a,49aからデータ、検出信号、制御情報などを取得したり、表示装置90b、各モータ23,28,32,38,39,41a,43,48,49、自動工具交換装置8、及び、ワーク自動搬送装置9を制御したりする。RAMは同プログラムの実施に必要な変数を一時的に記憶するものであり、ROMは前記プログラムを記憶するものである。
(ワーク加工)
 さらに、上述したワーク加工装置(複合加工機1)におけるワーク加工について図7に示すフローチャートに沿って説明する。制御装置90は、自動運転開始の指示があれば、ワーク加工に係る自動運転を開始する(加工部)。自動運転においては、加工工具によるワークWの加工が加工プログラムに沿って実施される。加工プログラムは、図8に示すように、複数の加工グループにグループ分けされている。加工グループは、加工の内容によりグループ分けされている。加工の内容としては、加工工具の種別、加工が実施される加工部位などが挙げられる。加工部位としては、端面加工、内径加工、外径加工などが挙げられる。
 加工グループについて、図8を参照して説明する。当該加工プログラムはO01なる名称(プログラム名)である。加工プログラムO01は、加工工具の種別に応じてグループ分けされた加工グループA~加工グループEを有している。加工グループAは、シーケンス番号1~3の3個のブロックを有している。加工グループBは、工具番号T200の工具Tを使用して加工するグループであり、シーケンス番号4~17の14個のブロックを有している。加工グループCは、工具番号T300の工具Tを使用して加工するグループであり、シーケンス番号18~33の16個のブロックを有している。加工グループDは、工具番号T400の工具Tを使用して加工するグループであり、シーケンス番号34~48の15個のブロックを有している。加工グループEは、シーケンス番号49~54の6個のブロックを有している。尚、各ブロックは、一般的なGコード、Mコードを有している。
 加工グループAの先頭は、シーケンス番号1のブロックであり、加工グループBの先頭は、シーケンス番号4のブロックであり、加工グループCの先頭は、シーケンス番号18のブロックであり、加工グループDの先頭は、シーケンス番号34のブロックであり、加工グループEの先頭は、シーケンス番号49のブロックである。加工グループB~加工グループDの先頭には、それぞれ「N2T200***」、「N3T300***」、「N4T400***」と記載されたワードを有するブロックが配置されている。「N**」が加工グループの先頭であることを示すワードである。制御装置90は、「N**」を検知(記憶)することにより、各加工グループの先頭を検知することが可能となり、さらには、検知した加工グループの先頭に基づいて加工プログラムを加工グループにグループ分けすることが可能となる。
 制御装置90は、自動運転開始の指示があれば、ワーク加工に係る自動運転を開始する。具体的には、ステップS102において、制御装置90は、自動起動スイッチ90a13のオン・オフに基づいて自動運転が開始されたか否かを判定する。制御装置90は、自動起動スイッチ90a13がオンであれば自動運転が開始されたと判定し(ステップS102にて「YES」)、プログラムをステップS104に進める。一方、制御装置90は、自動起動スイッチ90a13がオフであれば自動運転が開始されていないと判定し(ステップS102にて「NO」)、ステップS102の処理を繰り返す。
 ステップS104において、制御装置90は、ワークWの加工(ワーク加工)を実施する自動運転を実施する(加工部)。例えば、複合加工機1では、次のような流れによってワークWの加工が行われる。入力側ストッカのワークWがワーク自動搬送装置9によって第1ワーク主軸装置3へと運ばれ、チャック機構21によって把持される。第1タレット装置5では、タレット31の駆動によって選択された工具Tが、YL軸に平行な加工移動線L1上を移動し、ワークWに対する加工位置に位置決めされる。第1ワーク主軸装置3では、スピンドルモータ23の駆動によりチャック機構21に把持されたワークWが回転し、主軸スライド24がガイドレール25に沿ってZ軸方向に沿って移動することにより、ワークWに対して工具Tが当てられて所定の加工が行われる。
 第1ワーク主軸装置3におけるワークWの第1加工は、第1タレット装置5による加工のほか、工具主軸装置2を加えた加工、或いは工具主軸装置2のみによる加工が行われる。工具主軸装置2によってワークWの加工が行われる場合には、タレット31が第1ワーク主軸装置3から離れる。工具主軸装置2は、Y軸方向およびX軸方向に沿った移動によって位置決めが行われ、主軸ヘッド41がB軸の回転により工具Tの角度が調整される。
 次に、第1ワーク主軸装置3から第2ワーク主軸装置4へとワークWを移すため、両装置が機体中央に近づき、先に停止した第1ワーク主軸装置3に対して第2ワーク主軸装置4がワークWを取りにいき、チャック機構21同士によるワークWの掴み替えが行われる。第2ワーク主軸装置4では、第1加工と同様にワークWに対して第2タレット装置6による第2加工が実行され、或いは工具主軸装置2による加工を加え、また、工具主軸装置2のみによる加工が行われる。そして、第2加工が終了したワークWは、ワーク自動搬送装置9によって取り出されて、出力側ストッカに回収される。
 制御装置90は、自動運転中(ワーク加工中)に異常が発生した場合に、自動運転を停止する。具体的には、制御装置90は、ステップS106において、ステップ104によるワーク加工の途中(自動運転中(ワーク加工中))に異常を検出する(異常検出部)。例えば、制御装置90は、ワークWの加工に係る物理量であって検出可能である検出可能物理量である加工負荷の異常を検出する。具体的には、加工負荷は、ワークWを切削工具により切削(加工)する際に発生する負荷であり、加工に対して抵抗となる物理量(加工抵抗)である。ここでは、加工負荷は、駆動する側(本実施例では、上述した各サーボモータ)に対して、加工抵抗を発生させるワークWや切削工具(駆動される側)が及ぼす力や消費するエネルギーの大きさをいい、例えば駆動軸にかかるトルク負荷のことをいう。
 ステップS106においては、制御装置90は、例えば、ワーク主軸のスピンドルを駆動するためのスピンドルモータ23の駆動電流を検出した電流センサ23aから取得し、その検出電流からスピンドルモータ23の加工負荷(ワーク主軸にかかるトルク負荷(ワーク主軸加工負荷))を導出することができる(導出部)。例えば、加工負荷は、駆動電流と加工負荷との相関関係を示すマップまたは演算式を使用することにより、検出電流に対応する加工負荷として導出される。ワーク主軸加工負荷と同様に、他の駆動軸(Z軸加工負荷、工具主軸加工負荷など)を駆動するモータの加工負荷も導出することができる。
 さらに、ステップS106においては、制御装置90は、検出した実検出データ(加工負荷)と、記憶装置90cに記憶されている監視範囲(ティーチングデータ)とを比較し、実検出データが監視範囲外であるか否かを判定することにより、ワークWの加工に関する加工負荷の異常(ワークWの負荷異常)の有無を判定する。監視範囲は、加工負荷(検出可能物理量)の状態を監視(判定)するための範囲である。制御装置90は、実検出データが監視範囲内にある場合には、加工負荷に異常はないと判定し(ステップS106にて「NO」)、一方、実検出データが監視範囲外である場合には、加工負荷に異常がある(即停止異常が発生した旨)と判定し(ステップS106にて「NO」)、プログラムをステップS108に進める。
 ステップS108において、制御装置90は、自動運転を停止する。このように、制御装置90は、ステップS106(異常検出部)によって異常が検出された場合に、ワーク加工を停止する(加工停止部)。さらに、制御装置90は、異常が発生したプログラム(ブロック)を記憶装置90cに記憶するのが好ましい。本実施形態では、即停止異常がシーケンス番号22にて発生したと仮定するので、その旨が記憶装置90cに記憶されている。
 さらに、制御装置90は、複合加工機1の自動運転の停止とともに、作業者にその旨を通知する。作業者は、その通知によって複合加工機1の異常原因を調査し、異常原因を突き止め、異常状態を解消することが可能となる。作業者は、異常状態を解消すると、異常リセットスイッチ90a15をオンし、複合加工機1を通常の自動運転が実施可能な状態に戻す。
 制御装置90は、異常状態が解除された場合に、自動運転を再開する(加工再開部)。具体的には、制御装置90は、異常リセットスイッチ90a15のオンを検知すると、異常状態が解除されたと判定し(ステップS110にて「YES」)、プログラムをステップS112以降に進めて、自動運転を自動的に再開する。一方、異常状態が解消されないで、異常リセットスイッチ90a15がオンされるまでは、制御装置90は、ステップS110にて「NO」と判定を繰り返す。ステップS110において、制御装置90は、異常状態の解除を検出する。
 制御装置90は、作業者に再開する加工グループを指定(選択)させるのが好ましい(指定部)。最初に、制御装置90は、ステップS112において、再開する加工箇所を表示装置90bに表示する。具体的には、制御装置90は、図9に示す再開グループ選択画面90b1を表示装置90bに表示する。再開グループ選択画面90b1は、第1選択ボタン90b1a、第2選択ボタン90b1b及び第3選択ボタン90b1cを有している。第1選択ボタン90b1aは、自動運転が停止されたプログラム(ブロック)を含む加工グループ(加工停止グループ)の一つ前の加工グループから自動運転を再開するためのボタンである。第2選択ボタン90b1bは、加工停止グループから自動運転を再開するためのボタンである。第3選択ボタン90b1cは、加工停止グループの一つ後の加工グループから自動運転を再開するためのボタンである。
 本実施形態では、図8に示すように、加工停止グループは、異常が発生したシーケンス番号22の含む加工グループCであり、一つ前の加工グループは加工グループBであり、一つ後の加工グループは加工グループDである。尚、再開グループ選択画面90b1においては、「停止したグループから」である第2選択ボタン90b1bが最初から選択されている(デフォルトに設定される)のが好ましい。再開グループの選択忘れを抑制するためである。
 尚、制御装置90は、再開グループ選択画面に、図8に示すような、加工プログラム、加工プログラムに対応した加工グループ、及び、異常が発生した箇所を示すようにしてもよい。これによれば、作業者が、異常が発生したブロック、及び加工プログラムを実際に参照しながら、再開グループを選択することができ、より適切な箇所から再開することが可能となる。
 制御装置90は、再開する加工箇所(再開グループ)の選択が完了すると(ステップS114にて「YES」と判定し)、プログラムをステップS116に進めて、選択された箇所から自動運転を再開する。一方、制御装置90は、再開する加工箇所(再開グループ)の選択が完了するまで(ステップS114にて「NO」と判定し)、ステップS114の処理を繰り返し実施する。尚、制御装置90は、再開グループを選択した後、自動起動スイッチ90a13をオンされることで、選択が完了すると判定してもよい。
 ステップS114において、制御装置90は、各選択ボタン90b1a,90b1b.90b1cのいずれか一つが選択されている場合に、再開する加工箇所が選択されたと判定し、一方、そうでなければ、再開する加工箇所が選択されていないと判定する。このように、ステップS114において、再開する加工箇所(再開グループ)の選択(指定)が実施される(指定部)。
 ステップS116において、制御装置90は、選択(指定)された加工グループの先頭から加工を再開する(加工再開部)。制御装置90は、選択された加工グループに対応した加工グループを、記憶装置90cに記憶されている異常が発生したシーケンス番号に基づいて算出する。そして、制御装置90は、その算出した加工グループの先頭から自動運転を再開する。本実施形態では、シーケンス番号22で異常が発生し、「停止したグループから」が選択された場合には、制御装置90は、シーケンス番号22に基づいて、そのシーケンス番号22を含む加工グループCを加工停止グループとして算出し、その算出した加工停止グループの一つ前の加工グループBを一つ前グループとして算出し、その算出した加工停止グループの一つ後の加工グループDを一つ後グループとして算出する。制御装置90は、選択された加工グループが加工停止グループであるので、加工グループCを選択された加工グループとして決定する。そして、制御装置90は、その決定した加工グループCの先頭であるシーケンス番号18から自動運転を再開する。
 制御装置90は、加工プログラムが終了するまで、すなわちワーク加工が終了するまで(ステップS118にて「NO」と判定し)、自動運転を継続し、加工プログラムが終了しワーク加工が終了すると(ステップS118にて「YES」と判定し)、自動運転を終了する。
 尚、上述した実施形態においては、加工工具として切削工具を使用するようにしたが、ワークWを加工する他の加工工具を使用するようにしてもよい。また、ワーク加工装置として、複合加工機1を採用することとしたが、これに限定されず、ワークWを加工する装置であればよく、単なる旋盤加工装置、マシニングセンタを採用するようにしてもよい。
 また、上述した実施形態においては、異常検出により自動運転(ワーク加工)が停止された場合に、作業者によって選択された加工グループの先頭から自動運転を再開するようにしたが、選択するのを待つまでもなく、異常が解消された後に、加工が停止した加工グループ(加工停止グループ)の先頭から再開するようにしてもよい。具体的には、制御装置90(加工再開部)は、上述したステップS110の後のステップS112及びステップS114の処理を省略し、ステップS116の処理を実施する。このとき、ステップS116において、制御装置90は、加工停止グループの先頭から加工を再開する(加工再開部)。
(本実施形態の作用効果)
 上述した実施形態によるワーク加工装置(複合加工機1)は、加工工具(工具T)によるワークWの加工を、複数の加工グループにグループ分けされた加工プログラムに沿って実施する加工部(制御装置90;ステップS104)と、制御装置90(ステップS104;加工部)による前記加工の途中に異常を検出する異常検出部(制御装置90;ステップS106)と、制御装置90(ステップS106;異常検出部)によって前記異常が検出された場合に、前記加工を停止する加工停止部(制御装置90;ステップS108)と、制御装置90(ステップS108;加工停止部)によって前記加工が停止された場合に、前記加工グループの先頭から前記加工を再開する加工再開部(制御装置90;ステップS116)と、を備えている。
 本実施形態によれば、複合加工機1において、制御装置90(ステップS116;加工再開部)が、制御装置90(ステップS106;異常検出部)によって前記異常が検出されることにより制御装置90(ステップS108;加工停止部)によって加工が停止された場合に、加工プログラムをグループ分けした加工グループの先頭から加工を再開する。これによれば、複合加工機1において、加工グループのグループ分けに応じた適切な位置から加工再開を行うことが可能となり、その結果、加工異常を検出した際に、より適切な位置から加工再開を行うことが可能となる。
 また、本実施形態において、前記加工グループは、前記加工の内容によりグループ分けされている。これによれば、加工の内容に応じた適切な位置から加工再開を行うことが可能となる。
 また、本実施形態において、前記加工の内容は、前記工具Tの種別である。これによれば、工具Tの種別に応じた適切な位置から加工再開を行うことが可能となる。
 また、本実施形態において、前記加工の内容は、前記加工が実施される加工部位である。これによれば、加工部位に応じた適切な位置から加工再開を行うことが可能となる。
 また、本実施形態において、制御装置90(ステップS116;加工再開部)は、制御装置90(ステップS108;加工停止部)によって前記加工が停止された場合に、前記加工が停止された前記加工グループの先頭から前記加工を再開する。これによれば、加工途中の加工グループのプログラムに係る加工を先頭から確実に再開することが可能となる。
 また、本実施形態において、複合加工機1は、作業者によって前記加工を再開する前記加工グループを指定できる指定部(制御装置90;ステップS114)をさらに備え、制御装置90(ステップS116;加工再開部)は、制御装置90(ステップS108;加工停止部)によって前記加工が停止された場合に、制御装置90(ステップS116;指定部)によって指定された前記加工グループの先頭から前記加工を再開する。これによれば、作業者の判断に応じた適切な位置から加工再開を行うことが可能となる。
 1…複合加工機(ワーク加工装置)、90…制御装置(加工部;ステップS104、異常検出部;ステップS106、加工停止部;ステップS108、加工再開部;ステップS116、指定部;ステップS114)、T…加工工具(工具)、W…ワーク。

Claims (6)

  1.  加工工具によるワークの加工を、複数の加工グループにグループ分けされた加工プログラムに沿って実施する加工部と、
     前記加工部による前記加工の途中に異常を検出する異常検出部と、
     前記異常検出部によって前記異常が検出された場合に、前記加工を停止する加工停止部と、
     前記加工停止部によって前記加工が停止された場合に、前記加工グループの先頭から前記加工を再開する加工再開部と、を備えたワーク加工装置。
  2.  前記加工グループは、前記加工の内容によりグループ分けされた請求項1に記載のワーク加工装置。
  3.  前記加工の内容は、前記加工工具の種別である請求項2に記載のワーク加工装置。
  4.  前記加工の内容は、前記加工が実施される加工部位である請求項2に記載のワーク加工装置。
  5.  前記加工再開部は、前記加工停止部によって前記加工が停止された場合に、前記加工が停止された前記加工グループの先頭から前記加工を再開する請求項1から請求項4のいずれか一項に記載のワーク加工装置。
  6.  作業者によって前記加工を再開する前記加工グループを指定できる指定部をさらに備え、
     前記加工再開部は、前記加工停止部によって前記加工が停止された場合に、前記指定部によって指定された前記加工グループの先頭から前記加工を再開する請求項1から請求項4のいずれか一項に記載のワーク加工装置。
PCT/JP2021/049014 2021-12-29 2021-12-29 ワーク加工装置 WO2023127159A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/049014 WO2023127159A1 (ja) 2021-12-29 2021-12-29 ワーク加工装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/049014 WO2023127159A1 (ja) 2021-12-29 2021-12-29 ワーク加工装置

Publications (1)

Publication Number Publication Date
WO2023127159A1 true WO2023127159A1 (ja) 2023-07-06

Family

ID=86998486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/049014 WO2023127159A1 (ja) 2021-12-29 2021-12-29 ワーク加工装置

Country Status (1)

Country Link
WO (1) WO2023127159A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312005A (ja) * 1986-07-02 1988-01-19 Brother Ind Ltd 自動プログラミング装置
JPH0288142A (ja) * 1988-09-27 1990-03-28 Mitsubishi Electric Corp 数値制御装置
JPH02257202A (ja) * 1989-03-30 1990-10-18 Toshiba Corp Ncプログラム制御の機械装置
JP2003001547A (ja) * 2001-06-22 2003-01-08 Murata Mach Ltd 工作機械の制御装置
JP2020008979A (ja) * 2018-07-04 2020-01-16 Dmg森精機株式会社 数値制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6312005A (ja) * 1986-07-02 1988-01-19 Brother Ind Ltd 自動プログラミング装置
JPH0288142A (ja) * 1988-09-27 1990-03-28 Mitsubishi Electric Corp 数値制御装置
JPH02257202A (ja) * 1989-03-30 1990-10-18 Toshiba Corp Ncプログラム制御の機械装置
JP2003001547A (ja) * 2001-06-22 2003-01-08 Murata Mach Ltd 工作機械の制御装置
JP2020008979A (ja) * 2018-07-04 2020-01-16 Dmg森精機株式会社 数値制御装置

Similar Documents

Publication Publication Date Title
JP5415311B2 (ja) 自動運転を再開可能な工作機械の制御方法およびその装置
EP2028573B1 (en) Numerical controller with program resuming function
US20230052323A1 (en) Machine tool and information processing device
JP6329419B2 (ja) 複数の主軸を備えた複合旋盤の機械状態表示装置
JP2022536752A (ja) 数値制御工作機械で使用するための制御装置、および制御装置を含む工作機械
KR930010589B1 (ko) 절삭공구의 정지 제어장치
WO2023127159A1 (ja) ワーク加工装置
JPH08263113A (ja) 異常処理制御装置
CN102902231A (zh) 控制机床重新启动自动操作的装置
JP4859467B2 (ja) 2主軸対向旋盤の再起動方法
JP2008036804A (ja) 工作機械の早送り制御方法
JPH05285800A (ja) 自動加工装置
JPH1119837A (ja) ピストンリング加工装置のワーククランプ装置
WO2022190155A1 (ja) ワーク加工装置
JP2002273601A (ja) 多軸工作機械
WO2022030437A1 (ja) 数値制御装置、製造機械、および製造機械の制御方法
JPH0716806B2 (ja) 旋盤工作機
JP6863184B2 (ja) 工作機械、制御装置、制御方法及びコンピュータプログラム
WO2021230202A1 (ja) 数値制御装置及び制御方法
JP4261708B2 (ja) Nc加工装置
JPH04322303A (ja) 数値制御装置
JP2023067294A (ja) ワーク加工装置
KR102495718B1 (ko) 공구 교환 제어장치 및 제어방법
JPH11212617A (ja) 複数の加工プログラムの制御装置
JPH1165626A (ja) 加工負荷情報検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21970039

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023570631

Country of ref document: JP