WO2023125983A1 - 液压集成控制模块及具有其的液压悬架系统、车辆 - Google Patents

液压集成控制模块及具有其的液压悬架系统、车辆 Download PDF

Info

Publication number
WO2023125983A1
WO2023125983A1 PCT/CN2022/144182 CN2022144182W WO2023125983A1 WO 2023125983 A1 WO2023125983 A1 WO 2023125983A1 CN 2022144182 W CN2022144182 W CN 2022144182W WO 2023125983 A1 WO2023125983 A1 WO 2023125983A1
Authority
WO
WIPO (PCT)
Prior art keywords
accumulator
hydraulic
oil
control module
integrated control
Prior art date
Application number
PCT/CN2022/144182
Other languages
English (en)
French (fr)
Inventor
许豪伦
廖银生
黄泰硕
张宏洲
黄飞
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to AU2022424223A priority Critical patent/AU2022424223A1/en
Publication of WO2023125983A1 publication Critical patent/WO2023125983A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0152Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control

Definitions

  • the present application relates to the field of vehicles, in particular to a hydraulic integrated control module, a hydraulic suspension system having the same, and a vehicle.
  • Suspension is a device that transmits the interaction force between the body and the axle. It is one of the four major components of the car and a key component that affects the driving performance of the car.
  • the suspension can transmit the force and moment of road feedback, dampen the vibration of the wheel, alleviate the impact, improve the driver's driving experience, and enable the vehicle to obtain ideal sports characteristics and stable driving ability.
  • Most of the suspensions in the related art are composed of springs, guide mechanisms, and shock absorbers. The damping coefficient and spring stiffness of the shock absorbers are fixed, so it is difficult to balance comfort and operational stability.
  • some suspensions use hydraulic pressure to adjust the stiffness and/or damping of the suspension. However, since various pipes need to be connected to circulate oil, the suspension is relatively bulky, and the connection is prone to the risk of fluid leakage.
  • This application aims to solve one of the technical problems in the related art at least to a certain extent.
  • one purpose of the present application is to propose a hydraulic integrated control module, the volume of the entire hydraulic integrated control module is reduced, and there is no complicated oil circuit for connection, reducing the risk of liquid leakage.
  • the present application also proposes a hydraulic suspension system with the above-mentioned hydraulic integrated control module, which can improve the operating stability of the vehicle without compromising the comfort of the vehicle.
  • the present application also proposes a vehicle having the above-mentioned hydraulic suspension system.
  • the hydraulic integrated control module includes: an integrated seat, an oil channel is provided in the integrated seat, and an external connection port connected to the oil channel is provided on the outer peripheral wall of the integrated seat, the The external connection port is suitable for communicating with the shock absorber; the liquid reservoir, the liquid reservoir is installed on the integrated seat, and the liquid reservoir communicates with the oil passage; the control valve, the control valve is connected in series to the inside the oil channel to control the conduction or cut-off of the oil channel; the accumulator module, the accumulator module is installed on the integrated seat, the accumulator module is connected with the oil channel, the The accumulator module is used to adjust the amount of oil in the oil passage.
  • the hydraulic integrated control module of the embodiment of the present application by integrating the oil passage in the integration seat, the accumulator and the accumulator module are installed on the integration seat to be connected with the oil passage, so that the oil passage, the liquid storage
  • the accumulator and accumulator modules are integrated together, so that the volume of the entire hydraulic integrated control module is reduced, and there is no complicated oil circuit connection, which reduces the risk of liquid leakage.
  • it When it is used in a vehicle, it effectively solves the contradiction between vehicle comfort and handling stability.
  • a first branch is provided in the integrated seat, and the first branch is connected to the oil channel;
  • the energy storage module includes a stiffness adjustment accumulator and a stiffness adjustment valve,
  • the stiffness adjustment valve is connected in series on the first branch circuit to turn on or off the first branch circuit, and the stiffness adjustment accumulator is installed on the integrated seat and communicated with the first branch circuit.
  • the stiffness adjustment accumulator is installed on the installation plane of the liquid reservoir on the integrated seat.
  • the accumulator module includes a damping regulating valve and a damping accumulator, and the damping regulating valve is connected in series to the oil passage to adjust the damping of the oil passage; the damping accumulator
  • the energy device is installed on the integration seat and communicates with the oil passage.
  • the installation plane of the damping accumulator on the integrated seat is perpendicular to the installation plane of the liquid reservoir on the integrated seat, and the damping accumulator and the damping The regulating valves are located on the same mounting plane.
  • a third branch and a fourth branch are provided in the integrated seat, and the third branch is respectively connected to the oil channel and the liquid outlet of the reservoir, The fourth branch is respectively connected with the oil channel and the liquid inlet of the reservoir, and the third branch is provided with a control pump to guide the oil in the reservoir to the oil road channel.
  • an oil return valve for conducting or blocking the fourth branch is connected in series.
  • a one-way valve is provided on the third branch, and the one-way valve is used to lead the oil to the oil channel in one direction.
  • a pressure-stabilizing accumulator is provided on the third branch, and the pressure-stabilizing accumulator is installed on the integration seat, and the liquid reservoir is installed on the integration seat on the mounting surface above.
  • the hydraulic integrated control module further includes a signal receiver, the signal receiver is arranged on the integrated seat, and the signal receiver cooperates with the control valve to control the operation of the control valve state.
  • control valve is a solenoid valve
  • signal receiver is a coil
  • the hydraulic suspension system includes: a plurality of hydraulic integrated control modules, the hydraulic integrated control modules are the hydraulic integrated control modules according to any one of the above-mentioned hydraulic control modules in the present application; a plurality of shock absorbers, the The vibrator includes a first cylinder, a piston and a piston rod, the piston is located in the first cylinder to cooperate with the first cylinder to define an upper chamber and a lower chamber, and the piston rod is connected to the piston And the upper end of the piston rod is suitable for connecting with the vehicle body, the plurality of shock absorbers are arranged in one-to-one correspondence with the plurality of hydraulic integrated control modules, and the external connection port of each integrated seat is connected to the lower The chambers are connected.
  • the reservoir and the accumulator module are installed on the integrated seat to be connected with the oil passage, so that the oil passage, the liquid storage
  • the accumulator and accumulator modules are integrated together, so that the volume of the entire hydraulic integrated control module is reduced, and there is no complicated oil circuit connection, which reduces the risk of liquid leakage.
  • the vehicle according to the embodiment of the present application includes: a vehicle body and a control unit; a hydraulic suspension system, the hydraulic suspension system is the hydraulic suspension system according to the above-mentioned embodiment of the application, and the upper end of each piston rod is connected to the The vehicle body is connected, and the control valves of multiple hydraulic integrated control modules are respectively connected with the control unit of the vehicle.
  • the vehicle according to the embodiment of the present application includes multiple sets of independently controlled hydraulic integrated control modules, which can adjust the height of the vehicle body at different positions and the suspension stiffness according to the actual situation, so that the hydraulic suspension system can meet different needs and realize anti-side It can improve the operating stability of the vehicle and effectively solve the contradiction between vehicle comfort and handling stability.
  • the reservoir and the accumulator module are installed to the integrated seat to be connected with the oil channel, so that the oil channel, the accumulator and the accumulator module are integrated together, so that The volume of the entire hydraulic integrated control module is reduced, and there is no complicated oil circuit for connection, reducing the risk of liquid leakage.
  • 1-3 are schematic diagrams of different angles of an integrated oil circuit module according to an embodiment of the present application.
  • Fig. 4 is an oil circuit diagram of an integrated oil circuit module according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a hydraulic suspension system according to some embodiments of the present application.
  • Fig. 6 is a schematic diagram of a hydraulic suspension system according to other embodiments of the present application.
  • FIG. 7 is a schematic diagram of a left front shock absorber assembly and a right front shock absorber assembly according to an embodiment of the present application;
  • Fig. 8 is a sectional view of the shock absorber assembly shown in Fig. 7;
  • FIG. 9 is a cross-sectional view of a central control cylinder according to an embodiment of the present application.
  • FIG. 10 is a perspective view of a central control cylinder according to an embodiment of the present application.
  • Fig. 11 is a schematic diagram of a metal bellows accumulator according to an embodiment of the present application.
  • Hydraulic suspension system 1000 control unit 2000,
  • Hydraulic integrated control module 100 liquid reservoir 1
  • shock absorber assembly 2 shock absorber 200, first cylinder 201, upper chamber 2011, lower chamber 2012, piston 202, piston rod 203, oil channel 204, damping spring 205,
  • Coil 33 pressure sensor 34, left front acceleration sensor 35, right front acceleration sensor 36, rear body acceleration sensor 37, left front level sensor 38, right front level sensor 39, left rear level sensor 40, right rear level sensor 41, oil Road channel 44, the third branch 45, the fourth branch 46.
  • the outer peripheral wall of the integrated seat 32 is provided with an external connection port 320 connected to the oil channel 44 , and the external connection port 320 is suitable for communicating with the shock absorber 200 .
  • the liquid reservoir 1 is installed on the integration seat 32 , and the liquid reservoir 1 communicates with the oil channel 44 .
  • the control valve 12 is connected in series in the oil passage 44 to control the conduction or cutoff of the oil passage 44 .
  • the accumulator module is installed on the integration seat 32 , and the accumulator module is connected with the oil channel 44 , and the accumulator module is used to adjust the amount of oil in the oil channel 44 .
  • oil is stored in the reservoir 1 , and the oil in the reservoir 1 can be discharged to the oil channel 44 .
  • the control valve 12 is closed to block the oil passage 44 to prevent oil leakage from the external connection port 320 .
  • the accumulator module plays the role of energy storage, that is, oil can flow into the accumulator module for energy storage, and when the hydraulic integrated control module 100 needs it, the oil in the accumulator module is discharged to Supplement to the oil channel 44.
  • the accumulator module is used to adjust the amount of oil in the oil channel 44 means that the accumulator module can adjust the amount of oil in the oil channel 44 to adjust the damping and/or Or; the accumulator module can be connected to or disconnected from the oil channel 44 to adjust the stiffness of the oil channel 44 .
  • the external connection port 320 is connected to the shock absorber 200 , so that the oil in the oil channel 44 can be discharged into the shock absorber 200 .
  • the control valve 12 is electrically connected with a control unit of the vehicle to be opened or closed according to a received signal.
  • the shock absorber 200 includes a first cylinder 201, a piston 202 and a piston rod 203, the first cylinder 201 is adapted to be connected to the axle, the piston 202 is located in the first cylinder 201 and cooperates with the first cylinder 201 An upper chamber 2011 and a lower chamber 2012 are defined, one end of the piston rod 203 is connected to the piston 202 , and the piston rod 203 is adapted to be connected to the vehicle body, and the external connection port 320 communicates with the lower chamber 2012 .
  • the oil in the reservoir 1 and/or the accumulator module can be discharged into the shock absorber 200, when the oil is discharged into the shock absorber 200, due to the shock absorber 200
  • the increase of the oil in the lower chamber 2012 causes the piston rod 203 to move upwards to achieve the purpose of lifting the vehicle body.
  • the hydraulic pressure in the lower chamber 2012 of the shock absorber 200 decreases so that the piston 202 moves downward, The downward movement of the piston 202 drives the piston rod 203 to move downward, so as to drive the vehicle body to move downward, so as to achieve the purpose of reducing the height of the vehicle body.
  • the height of the vehicle body when used in a vehicle, can be adjusted according to road conditions, for example, when passing through a rough mountain road, it can enter the lift mode, which can increase the center of mass of the vehicle and improve stability of the vehicle. When it is necessary to reduce the influence of the body on the driving speed, it can enter the height reduction mode, so that the center of mass of the vehicle is lowered.
  • the lift mode When it is necessary to reduce the influence of the body on the driving speed, it can enter the height reduction mode, so that the center of mass of the vehicle is lowered.
  • the height of the vehicle body can also be adjusted according to actual needs during driving.
  • the adjustment of the damping and/or stiffness of the shock absorber 200 can be realized, so that it can be adjusted according to actual conditions, such as road conditions, to ensure the damping and/or stiffness Or the stiffness can meet the vibration reduction requirements, effectively solving the contradiction between vehicle comfort and handling stability.
  • the hydraulic integrated control module 100 of the embodiment of the present application by integrating the oil channel 44 in the integrated seat 32, the accumulator 1 and the accumulator module are installed on the integrated seat 32 to be connected with the oil channel 44, so that The oil channel 44, the liquid reservoir 1 and the accumulator module are integrated together, so that the volume of the entire hydraulic integrated control module 100 is reduced, and there is no complicated oil circuit for connection, reducing the risk of liquid leakage.
  • a first branch is provided in the integrated seat 32 , and the first branch is connected to the oil channel 44 .
  • the energy storage module includes a stiffness adjustment accumulator 10 and a stiffness adjustment valve 11.
  • the stiffness adjustment valve 11 is connected in series on the first branch to conduct or cut off the first branch. A path connects. Specifically, the stiffness adjustment valve 11 is electrically connected to a control unit of the vehicle.
  • the stiffness adjustment valve 11 can be closed, so that the stiffness adjustment accumulator 10 is disconnected from the shock absorber 200 , so that the stiffness of the shock absorber 200 can be increased.
  • the stiffness regulating valve 11 can be closed.
  • the stiffness adjustment accumulator 10 is installed on the installation plane of the liquid reservoir 1 on the integration seat 32 . That is to say, the stiffness adjustment accumulator 10 and the liquid accumulator 1 are installed on the same installation plane, so that the space can be rationally utilized and the compactness of the hydraulic integrated control module 100 can be improved.
  • the accumulator module includes a damping regulating valve 8 and a damping accumulator 9, and the damping regulating valve 8 is connected in series to the oil passage 44 to adjust the damping of the oil passage 44; the damping accumulator 9 is installed To the integration seat 32 and communicate with the oil channel 44 .
  • the damping regulating valve 8 can adjust the oil flow of the corresponding oil passage 44, so the damping of the corresponding oil passage 44 can be adjusted to achieve the purpose of adjusting the damping of the shock absorber 200, so that the actual Adjusting the damping of the shock absorber 200 according to the situation, for example, can be adjusted according to road conditions, etc., to ensure that the damping of the shock absorber 200 can meet the vibration reduction requirements, effectively solving the contradiction between vehicle comfort and handling stability.
  • the damping regulating valve 8 includes a first motor and a first valve body, and the first motor can control the movement of the valve in the first valve body to change the flow area of the first valve body to realize the adjustment of the flow rate. Purpose.
  • the installation plane of the damping accumulator 9 on the integration seat 32 is perpendicular to the installation plane of the liquid reservoir 1 on the integration seat 32 , and the damping accumulator 9 and the damping regulating valve 8 are located on the same installation plane. Therefore, the space of the integrated seat 32 can be reasonably utilized.
  • the integrated seat 32 is provided with a third branch 45 and a fourth branch 46
  • the third branch 45 is respectively connected with the oil channel 44 and the liquid outlet of the reservoir 1
  • the second The four branches 46 are respectively connected with the oil passage 44 and the liquid inlet of the reservoir 1
  • the third branch 45 is provided with a control pump 26 to guide the oil in the reservoir 1 to the oil passage 44 .
  • the liquid reservoir 11 has an independent liquid return channel (that is, the fourth branch 46) and a liquid outlet channel (that is, the third branch 45), so that by arranging two independent channels, the flow of liquid out and liquid back is ensured. performed reliably.
  • the fourth branch 46 is connected in series with an oil return valve 27 for conducting or blocking it.
  • the control pump 26 When liquid needs to be discharged, the control pump 26 is turned on and the oil return valve 27 is in a closed state, and the control pump 26 directs the oil to the oil channel 44 .
  • the control pump 26 When liquid return is required, the control pump 26 is turned off and the oil return valve 27 is opened, and the oil in the oil passage 44 can flow to the liquid reservoir 11 through the oil return valve 27 . Therefore, by setting two independent channels, the reliable operation of liquid outlet and liquid return is ensured.
  • the control pump 26 includes a control valve body 260 and a drive motor 261, the drive motor 261 is electrically connected to the valve in the control valve body 260, and the drive motor 261 rotates to control The valve is rotated to effect control of pump 26 on or off. Therefore, the opening or closing of the control pump 26 can be realized through the cooperation of the driving motor 261 and the valve, which can ensure the reliable operation of the control pump 26 and reduce the influence of oil on the opening or closing of the control pump 26 .
  • a one-way valve 28 is provided on the third branch 45 , and the one-way valve 28 is used for one-way leading the oil to the oil channel 44 . Therefore, during liquid return, due to the existence of the one-way valve 28, the oil liquid can be effectively prevented from flowing to the control pump 26, and the oil liquid can be prevented from flowing to the liquid outlet through the control pump 26 when an accident occurs in the control pump 26.
  • a pressure-stabilizing accumulator 29 is provided on the third branch 45 , and the voltage-stabilizing accumulator 29 is installed on the integrated seat 32 and installed on the reservoir 1 On the mounting plane on the integrated seat 32. Therefore, the pressure stabilizing accumulator 29 can stabilize the pressure and eliminate the flow fluctuation at the outlet end of the control pump 26, and can also rationally utilize the space arrangement.
  • the pressure-stabilizing accumulator 29 may be a metal bellows accumulator.
  • the metal bellows type accumulator consists of a cylinder assembly and a bellows assembly.
  • the barrel assembly includes an upper cover, a sealing ring, a cylinder barrel, a snap ring and a sealing ring;
  • the bellows assembly includes a sealing cover, a guide ring, a bellows and a lower cover.
  • Metal bellows accumulators can replace bladders or diaphragms, using metal bellows 101 as a flexible separation element between fluid and gas.
  • the bellows can be used in a very wide temperature range.
  • the metal bellows are welded to the other components and are therefore completely airtight. It is able to move up and down inside the accumulator without any friction or wear and will run for a long time with just one adjustment.
  • the hydraulic integrated control module 100 further includes a signal receiver, the signal receiver is arranged on the integration seat 32 , and the signal receiver cooperates with the control valve 12 to control the operating state of the control valve 12 . Therefore, the hydraulic integrated control module 100 can independently receive signals, which facilitates the electrical connection between the hydraulic integrated control module 100 and the control unit of the vehicle.
  • control valve 12 is a solenoid valve
  • the signal receiver is a coil, so that signal reception is simple and reliable.
  • the stiffness-adjusting accumulator 10 and the pressure-stabilizing accumulator 29 are threadedly connected to the integration seat 32 and fixed beside the control pump 26 .
  • the control pump 26 is fixed on one side of the integrated seat 32 through three fixing nuts, and the stiffness regulating valve 11 and the control valve 12 are fixed on the other side.
  • the control valve 12 directly controls the opening and closing of the oil channel 44 in the integrated seat 32 .
  • the reservoir 1 is fixed above the control pump 26 .
  • the damping regulating valve 8 and the damping accumulator 9 are threadedly connected with the integration seat 32 and fixed on the lower side of the control pump 26 .
  • the stiffness adjustment valve 11 and the control valve 12 are electromagnetic valves respectively, and the integrated seat 32 is provided with a coil 33 for inputting external signals, and the coil 33 cooperates with the stiffness adjustment valve 11 and the control valve 12 . That is, the coil 33 receives an external signal, and then the stiffness adjustment valve 11 and the control valve 12 are opened or closed according to the external signal. Therefore, the control mode of the stiffness regulating valve 11 and the control valve 12 is simple, reliable and automatic. It can be understood that by controlling the magnitude and direction of the current passed into the coil 33 , the operating states of the stiffness adjustment valve 11 and the control valve 12 can be controlled.
  • the stiffness adjustment valve 11 and the control valve 12 are two-position two-way solenoid valves respectively.
  • the oil return valve 27 is a solenoid valve and cooperates with the coil 33 .
  • the oil return valve 27 is a two-position two-way solenoid valve.
  • the stiffness adjustment valve 11, the control valve 12 and the oil return valve 27 are all placed in the end cover 42, so that by setting the end cover 42, the stiffness adjustment valve 11, control Valve 12 and oil return valve 27 play a protective role and can also improve integration.
  • the installation positions of the accumulator 1, the stiffness adjustment accumulator 10, the stiffness adjustment valve 11 and the control valve 12 can be adjusted according to the actual situation, for example, according to the layout space of the whole vehicle.
  • the damping adjustment valve 8 is set on the same side as the external connection port 320, and the damping accumulator 9 is placed on the opposite side of the reservoir 1, so that the space of the external connection port 320 can be rationally used to arrange the damping adjustment The position of valve 8.
  • the damping regulating valve 8 is placed on the opposite side of the liquid reservoir 1, and the damping accumulator 9 is placed on the front side.
  • the pressure accumulator 29, the stiffness adjustment accumulator 10 and the damping accumulator 9, this arrangement is conducive to saving the surrounding space of the integrated seat 32, so that the surrounding area of the integrated seat 32 can be rationally used for vehicle layout.
  • the damping regulating valve 8 is placed on the opposite side of the accumulator 1, and the damping accumulator 9 is arranged on the opposite side of the external connection port 320, and the damping accumulator 9 and the damping regulating valve 8 Vertically arranged, this kind of arrangement is beneficial to the flow channel arrangement in the integrated seat 32 .
  • the following describes a hydraulic suspension system 1000 according to an embodiment of the present application with reference to FIGS. 1-11 , wherein the hydraulic suspension system 1000 is used on a vehicle, and the hydraulic suspension system 1000 is used to connect the vehicle axle and the vehicle body.
  • the front refers to the direction towards the front of the vehicle
  • the rear refers to the direction towards the rear of the vehicle.
  • the direction of the right hand of the main driver is the right side. Take the left hand direction of the main driver as the left side.
  • the hydraulic suspension system 1000 includes: multiple groups of hydraulic integrated control modules 100 and multiple shock absorbers 200, and multiple groups of hydraulic integrated control modules 100 are connected to multiple One-to-one correspondence with the hubs.
  • multiple groups of hydraulic integrated control modules 100 include a left front hydraulic integrated control module 100, a right front hydraulic integrated control module 100, a left rear hydraulic integrated control module 100 and a right rear hydraulic integrated control module 100, and the left front hydraulic integrated control module 100 is used for Control the left front body, the right front hydraulic integrated control module 100 is used to control the right front body, the left rear hydraulic integrated control module 100 is used to control the left rear body, and the right rear hydraulic integrated control module 100 is used to control the right rear body.
  • the shock absorber 200 includes a first cylinder 201, a piston 202 and a piston rod 203.
  • the piston 202 is located in the first cylinder 201 to cooperate with the first cylinder 201 to define an upper chamber 2011 and a lower chamber 2012.
  • the piston rod 203 It is connected with the piston 202 and the upper end of the piston rod 203 is suitable for connecting with the vehicle body.
  • a plurality of shock absorbers 200 and a plurality of hydraulic integrated control modules 100 are arranged in one-to-one correspondence.
  • the external connection port 320 of each integrated seat 32 is connected to the lower chamber 2012 connected.
  • the hydraulic suspension system 1000 of the embodiment of the present application by integrating the oil channel 44 in the integrated seat 32, the liquid reservoir 1 and the accumulator module are installed on the integrated seat 32 to be connected with the oil channel 44, so that The oil channel 44, the liquid reservoir 1 and the accumulator module are integrated together, so that the volume of the entire hydraulic integrated control module 100 is reduced, and there is no complicated oil circuit for connection, reducing the risk of liquid leakage.
  • it When it is used in a vehicle, it effectively solves the contradiction between vehicle comfort and handling stability.
  • the oil inlet and outlet of the stiffness adjustment accumulator 10 are connected to the oil channel 44 through the first branch, and the stiffness adjustment valve 11 is connected in series on the first branch, and the stiffness adjustment valve 11 is used to guide pass or cut off the first branch.
  • the control valve 12 is connected in series on the oil channel 44 to control whether the oil flows to the shock absorber 200.
  • the stiffness adjustment valve 11 is opened and the control valve 12 is closed, the oil in the reservoir 1 enters through the first branch. into the stiffness adjusting accumulator 10 so that the stiffness adjusting accumulator 10 stores energy, when both the stiffness adjusting valve 11 and the control valve 12 are opened, the oil in the stiffness adjusting accumulator 10 can flow into the shock absorber 200, and the stiffness adjusting
  • the valve 11 and the control valve 12 are respectively adapted to be connected with a control unit 2000 of the vehicle.
  • the hydraulic suspension system 1000 has a pressurized mode.
  • the stiffness adjustment valve 11 is opened and the control valve 12 is closed, and the oil in the fluid storage assembly enters the stiffness adjustment accumulator 10 so that the stiffness The accumulator 10 is adjusted to store energy.
  • each hydraulic control mode receives a control signal, and the control unit 2000 controls the stiffness adjustment valve 11 and the control valve 12 in each hydraulic integrated control module 100 are all in the open state, and the oil in the stiffness adjustment accumulator 10 enters into the lower chamber 2012 of the corresponding shock absorber 200, so that the oil in the lower chamber 2012 increases to push the piston 202 upward, and the piston 202 Move up to drive the piston rod 203 to rise to lift the vehicle body, thereby completing the lifting function of the vehicle body.
  • the hydraulic suspension system 1000 of the present application can complete one lift after each energy storage. When lifting again, the stiffness adjustment accumulator 10 needs to be stored.
  • the oil in the lower chamber 2012 can also be discharged into the oil channel 44 under the action of gravity of the vehicle to flow back into the liquid storage assembly, thereby reducing the height of the vehicle body.
  • the height of the vehicle body can be adjusted according to the road conditions, for example, when passing through a rough mountain road, it can enter the lift mode, which can improve the center of mass of the vehicle and improve the stability of the vehicle .
  • the lift mode When it is necessary to reduce the influence of the body on the driving speed, it can enter the height reduction mode, so that the center of mass of the vehicle is lowered.
  • the height of the vehicle body can also be adjusted according to actual needs during driving.
  • the stiffness adjustment valve 11 can be closed, so that the stiffness adjustment accumulator 10 is disconnected from the shock absorber 200 , so that the stiffness of the hydraulic integrated control module 100 can be increased.
  • the front axle needs to provide greater stiffness.
  • the stiffness regulating valve 11 of the left front hydraulic integrated control module 100 can be closed and the stiffness of the right front hydraulic integrated control module 100 can be closed. Regulating valve 11.
  • each group of hydraulic integrated control modules 100 includes a stiffness adjustment accumulator 10, a stiffness adjustment valve 11 and a control valve 12, the stiffness adjustment valve 11 and the control valve 12 of each group of hydraulic integrated control modules 100 are connected with the control The unit 2000 is electrically connected, so each group of hydraulic integrated control modules 100 can be independently controlled, that is, the left front body can be lifted separately, the left front body and the right front body can be lifted separately, etc., which can be selected according to actual needs.
  • the control unit 2000 can control the stiffness regulating valve 11 and the control valve 12 in the right front hydraulic integrated control module 100, the left rear hydraulic integrated control module 100, and the right rear hydraulic integrated control module 100 to be in the open state, and control the right front body, right rear The body and the left rear body are raised to avoid rollover.
  • control unit 2000 can control the stiffness adjustment valve 11 in the left front hydraulic integrated control module 100 and the right front hydraulic integrated control module 100 And control valve 12 is all in open state, to raise left front vehicle body and right front vehicle body, thereby can realize the purpose of anti-nodding.
  • each group of hydraulic integrated control modules 100 can be controlled according to the vehicle speed, road conditions, vehicle startup needs anti-head up, vehicle emergency braking needs anti-nod, etc.
  • the rigidity in the valve 11 and the opening and closing of the control valve 12 can meet various demands.
  • the automatic height adjustment mode includes: the height of the vehicle changes with the vehicle speed according to the set program in the moving state, load balance, trailer mode, towed mode, jack mode, automatic height restraint function, and raising the vehicle body to get out of trouble mode etc.
  • the height of the vehicle can be raised in the trailer mode, and the height of the vehicle can be lowered in the towed mode.
  • the hydraulic suspension system 1000 includes multiple sets of independently controlled hydraulic integrated control modules 100, which can adjust the height of the vehicle body and the suspension stiffness at different positions according to the actual situation, so that the hydraulic suspension system 1000 can meet different requirements. It can achieve the purpose of anti-rolling and anti-pitching, can improve the operating stability of the vehicle, and effectively solve the contradiction between vehicle comfort and handling stability.
  • Fig. 5-Fig. When the pressure at the liquid outlet of the control pump 26 reaches a certain threshold, the pressure relief valve 31 is opened to release the pressure, so as to protect the hydraulic suspension system 1000 within a normal pressure range. It should be noted that the working principle of the pressure relief valve 31 is already in the prior art, and will not be described in detail here. In some examples of the present application, as shown in FIG. 5 and FIG.
  • each group of hydraulic integrated control modules 100 includes a pressure sensor 34, and the pressure sensor 34 is used to detect the pressure at the outlet end of the control pump 26 to ensure that the control pump 26 can When the pressure of the liquid outlet reaches a certain threshold, it is detected in time to ensure that the hydraulic suspension system 1000 is within a normal pressure range.
  • the hollow piston rod 203 to define the oil passage 204, the oil in the reservoir 1 can enter the lower chamber 2012 through the oil passage 204, and the oil in the lower chamber 2012 can pass through the oil passage.
  • the channel 204 discharges the shock absorber 200 , so that the weight of the shock absorber 200 can be reduced and the cost can be saved on the basis of ensuring that the oil can enter and exit the shock absorber 200 smoothly.
  • the adjustment method is simple, the reliability is high, and the response speed is fast.
  • each group of hydraulic integrated control modules 100 can adjust its damping according to actual needs, that is, four groups of hydraulic integrated control modules 100 can adjust the damping at the same time, or one, two or three of them can perform damping adjust.
  • hydraulic suspension system 1000 requires adjustment of damping in the following modes: hammer sensitivity control, large amplitude control, roll control, anti-nod control, and high speed control.
  • the above-mentioned hammer sensitivity control is mainly triggered when there are small undulations on the road, but the undulations are not large, and the off-road conditions are not met. In order to cope with small undulations, the damping will not increase, mainly to ensure the comfort requirements of the vehicle body.
  • the above-mentioned large-amplitude control mainly triggers off-road conditions with large undulations on the road. At low speeds, the undulations are large, and the damping will increase to ensure the stability of the vehicle body.
  • the above-mentioned roll control mainly triggers changing the damping force when cornering, reducing the roll.
  • the control unit 2000 recognizes that the lateral acceleration is greater than a certain value (for example, greater than 0.2g), the outer damping is increased when the roll is performed, and this operation will be maintained for a certain period of time (for example, 0.5s), and the height change function is inhibited at this time.
  • the anti-nodding control described above mainly triggers changes in the damping force during braking, alleviating nodding.
  • the control unit 2000 recognizes that the acceleration is greater than a certain value (for example greater than 0.2g), it will suppress the height change, increase the front side damping and increase the front side stiffness when nodding.
  • the altitude suppression function will be maintained until the acceleration is lower than a certain value (for example, lower than 0.2g) and maintained for 1 second.
  • the above-mentioned anti-head-up control mainly triggers changing the damping force during acceleration, reducing head-up, thereby increasing rear side damping during acceleration.
  • the above-mentioned high-speed control is mainly triggered to change the magnitude of the damping force with the speed of the vehicle, that is, the damping is small at low speeds, and the damping is large at high speeds.
  • the damping accumulator 9 adopts a metal bellows accumulator
  • the stiffness adjustment accumulator 10 adopts a diaphragm type accumulator, which has faster The pressure storage capacity and more pressure storage capacity.
  • the diaphragm accumulator can achieve a higher pressure storage capacity in a short time, so the stiffness adjustment accumulator 10 uses the diaphragm accumulator to store the pressure of each suspension so as to realize the lifting of the vehicle body.
  • the hydraulic suspension system 1000 further includes a central control cylinder 24, wherein the central control cylinder 24 includes a second cylinder body 240 and a moving part 241, and the moving part 241 is movably arranged Inside the second cylinder 240 and cooperate with the second cylinder 240 to define a first chamber 243, a second chamber 244, a third chamber 245 and a fourth chamber 246, the first chamber 243, the second The chamber 244, the third chamber 245 and the fourth chamber 246 are sequentially arranged in the moving direction of the moving part 241, and the first chamber 243 and the second chamber 244 are distributed on one side of the middle contact part 2411 of the moving part 241. On one side, the third chamber 245 and the fourth chamber 246 are distributed on the other side of the middle contact part 2411 , and the middle contact part 2411 is in cooperation with the inner wall of the second cylinder 240 for movement.
  • the central control cylinder 24 includes a second cylinder body 240 and a moving part 241
  • the moving part 241 is movably arranged Inside
  • the oil passage 44 of the left front hydraulic integrated control module 100 is connected to one of the first chamber 243 and the second chamber 244, and the corresponding oil passage 44 of the right rear hydraulic integrated control module 100 is connected to the first chamber 243 and the second chamber 244.
  • the other of the second chambers 244 is connected.
  • the oil passage 44 corresponding to the right front hydraulic integrated control module 100 is connected to one of the third chamber 245 and the fourth chamber 246, and the oil passage 44 corresponding to the left rear hydraulic integrated control module 100 is connected to the third chamber 245 and the fourth chamber 246.
  • the other of the fourth chambers 246 is connected.
  • the oil passage 44 of the left front hydraulic integrated control module 100 is connected to the first chamber 243
  • the oil passage 44 of the right rear hydraulic integrated control module 100 is connected to the second chamber 244
  • the left rear hydraulic integrated control The oil passage 44 of the module 100 is connected to the third chamber 245
  • the oil passage 44 of the right front hydraulic integrated control module 100 is connected to the fourth chamber 246 as an example to describe the principle.
  • the integrated control module is also provided with a connection port connected with the central control cylinder.
  • the piston rods 203 corresponding to the left front hydraulic integrated control module 100 and the left rear hydraulic integrated control module 100 are compressed, and at this time the lower chamber 2012 corresponding to the left front hydraulic integrated control module 100
  • the oil in the lower chamber 2012 corresponding to the left rear hydraulic integrated control module 100 is discharged to the third chamber 245 through the oil passage 204, because the first chamber The chamber 243 and the third chamber 245 are located on both sides of the intermediate contact portion 2411, and the direction of the force of the oil in the first chamber 243 on the intermediate contact portion 2411 is the same as the force of the third chamber 245 on the intermediate contact portion 2411.
  • the directions are opposite, and the two opposing forces cancel each other so that the moving member 241 does not move, so that the movement of the piston rod 203 corresponding to the left front hydraulic integrated control module 100 and the piston rod 203 corresponding to the left rear hydraulic integrated control module 100 can be suppressed. , can play a role in suppressing the roll.
  • the left front wheel of the vehicle When the left front wheel of the vehicle encounters an obstacle such as a stone, the left front wheel is raised so that the compression range corresponding to the left front hydraulic integrated control module 100 is greater than the corresponding compression range of the left rear hydraulic integrated control module 100, from the left front hydraulic integrated control module.
  • the amount of oil discharged into the first chamber 243 by 100 is greater than the amount of oil discharged from the left rear hydraulic integrated control module 100 into the third chamber 245, so that the moving member 241 moves rightward and squeezes the third chamber chamber 245 and the fourth chamber 246, the oil in the third chamber 245 can be discharged into the lower chamber 2012 corresponding to the left rear hydraulic integrated control module 100 so that the piston rod 203 moves up, and the oil in the fourth chamber 246
  • the oil can be discharged into the lower chamber 2012 corresponding to the right front hydraulic integrated control module 100 to make the piston rod 203 move up, thereby reducing the risk of the left rear wheel and the right front wheel getting off the ground and improving the stability of the vehicle.
  • the hydraulic suspension system can adjust the posture of the vehicle body according to the road conditions through the above-mentioned central control cylinder 24, thereby improving and enhancing the adaptability of the off-road vehicle to all-terrain working conditions ability.
  • the moving part 241 includes a moving body part 2410, and the intermediate contact part 2411 is an annular protrusion provided on the moving body part 2410.
  • the second cylinder body 240 is provided with a central cavity, a left cavity and a right cavity, and the protruding entrance of the left cavity and the protruding entrance of the right cavity are located on the inner wall of the central cavity.
  • the left end of the moving body part 2410 extends into the left cavity through the opening of the left cavity, and the right end of the moving body part 2410 extends into the right cavity through the opening of the right cavity.
  • a first chamber 243 is defined between the left end of the mobile body part 2410 and the left cavity, a part of the mobile body part 2410 is slidably fitted with the inner wall of the left cavity, and the middle contact part 2411 is slidably fitted with the inner wall of the middle cavity to define Out of the second chamber 244 and the third chamber 245 , a fourth chamber 246 is defined between the right end of the moving body part 2410 and the right cavity.
  • the central control cylinder 24 also includes a first return spring 247 and a second return spring 248, and the two ends of the first return spring 247 respectively stop against the ends of the second cylinder body 240 and the moving member 241.
  • the left end and the two ends of the second return spring 248 respectively abut against the second cylinder 240 and the right end of the moving piece 241 , and the first return spring 247 and the second return spring 248 push the moving piece 241 to return toward the middle.
  • the first return spring 247 can push the moving member 241 to the right to return the moving member 241 .
  • the second return spring 248 can push the moving part 241 to the left to reset the moving part 241 , thereby ensuring the reliability of the central control cylinder 24 .
  • the central control cylinder 24 includes a guide assembly 249
  • the wire assembly includes a first guide 2490 and a second guide 2491
  • the first guide 2490 and the second guide 2491 slide Cooperate
  • the first guide piece 2490 is fixed on the second cylinder body 240
  • the second guide piece 2491 is fixed on the moving piece 241
  • the first return spring 247 is sleeved on the guide assembly 249 on the left side and the first return spring 247 stops
  • the second return spring 248 is sleeved on the guide assembly 249 on the right side and the second return spring 248 stops against the first guide 2490, thus by setting the guide assembly 249 it is not only convenient for the first return spring
  • the assembly of 247 and the second return spring 248 is also convenient to limit the degree of deformation of the first return spring 247 and the second return spring 248, so as to avoid failure due to excessive deformation of the first return spring 247 and the second return spring 248.
  • the second guide 2491 is a screw, and one end of the second guide 2491 protrudes into the first guide 2490 to move and cooperate with the first guide 2490 , so that the structure of the guide assembly 249 is simple and reliable.
  • the ports connecting the central control cylinder 24 with the piston rods 203 of the four hydraulic integrated control modules 100 are located on the same side, so as to facilitate pipeline connection.
  • the hydraulic suspension system 1000 further includes a plurality of damping springs 205, and the plurality of damping springs 205 are set in one-to-one correspondence with the plurality of shock absorbers. Both ends of the vibrating spring 205 are adapted to be connected with the vehicle body and the axle. Therefore, by setting the damping spring 205, the buffering effect of each set of shock absorbers can be increased, and the bumping of the vehicle body can be reduced during the running of the vehicle.
  • the hydraulic suspension system 1000 includes shock absorber assemblies 2, and each shock absorber assembly 2 includes a shock absorber 200 and a shock absorber spring 205, so that the vehicle body can be cushioned by the shock absorber assembly 2 The effect of vibration reduction.
  • the outer casing of the damping spring 205 of the left front hydraulic integrated control module 100 is fixed on the shock absorber 200
  • the outer casing of the vibration damping spring 205 of the right front hydraulic integrated control module 100 is fixed on the shock absorber.
  • the damping spring 205 of the left rear hydraulic integrated control module 100 is arranged side by side with the shock absorber 200
  • the damping spring 205 and the shock absorber 200 of the right rear hydraulic integrated control module 100 are arranged side by side.
  • the hydraulic suspension system 1000 includes a left front hydraulic integrated control module 100 , a right front hydraulic integrated control module 100 , a left rear hydraulic integrated control module 100 and a right rear hydraulic integrated control module 100 .
  • Each hydraulic integrated control module 100 includes: a liquid reservoir 1, a control pump 26, an oil return valve 27, a one-way valve 28, a pressure stabilizing accumulator 29, a pressure relief valve 31, a damping regulating valve 8, and a damping accumulator 9 , Stiffness adjustment accumulator 10 and decompression accumulator 30.
  • Both the left front hydraulic integrated control module 100 and the right front hydraulic integrated control module 100 are respectively equipped with a shock absorber 200 and a shock absorber spring 205 , and the shock absorber 205 is fixed on the shock absorber 200 .
  • the left rear hydraulic integrated control module 100 and the right rear hydraulic integrated control module 100 are respectively equipped with a shock absorber 200 and a shock absorber 205, and the shock absorber 205 and the shock absorber 200 are arranged side by side.
  • the two ends of the vibrating spring 205 are respectively connected with the vehicle body and the vehicle axle.
  • the two ends of the damping spring 205 corresponding to the right rear hydraulic integrated control module 100 are respectively connected with the vehicle body and the vehicle axle.
  • Each shock absorber 200 includes a first cylinder 201, a piston rod 203 and a piston 202, the piston rod 203 is connected with the piston 202, and the piston 202 is movably arranged in the first cylinder 201 to define an upper chamber 2011 and a lower chamber.
  • the piston rod 203 is provided with an oil channel 204 , and the oil channel 204 communicates with the lower chamber 2012 .
  • each shock absorber 200 is connected with the reservoir 1 through the oil passage 44 .
  • the control valve 12 is connected to the oil channel 44 to control its opening or closing.
  • the liquid reservoir 1 has a liquid outlet and a liquid inlet, and the control pump 26 is respectively connected to the liquid outlet and the oil passage 44 to guide the oil in the liquid reservoir 1 to the oil passage 44 .
  • the oil return valve 27 is connected with the liquid inlet and the oil passage 44 respectively. When the oil return valve 27 is opened, the oil flows from the oil passage 44 to the liquid inlet.
  • the one-way valve 28 is arranged at the outlet end of the control pump 26 and conducts in one direction.
  • the pressure stabilizing accumulator 29 is arranged at the outlet end of the control pump 26 and between the one-way valve 28 and the control pump 26 , the pressure stabilizing accumulator 29 can stabilize and eliminate the flow fluctuation at the outlet end of the control pump 26 .
  • the pressure relief valve 31 is connected to the oil passage 44 .
  • the stiffness adjusting accumulator 10 corresponding to each hydraulic integrated control module 100 is connected to the oil channel 44, and the oil inlet and outlet of the stiffness adjusting accumulator 10 are provided with a stiffness adjusting valve 11, and the stiffness adjusting valve 11 is in a normally closed state.
  • Each oil channel 44 is also provided with a damping regulating valve 8, a damping accumulator 9 and a control valve 12, and the damping regulating valve 8 is used to adjust the flow rate flowing through the corresponding oil channel 44 to adjust the damping of the hydraulic suspension system 1000 .
  • the damping accumulator 9 can store energy.
  • the control valve 12 is arranged between the damping accumulator 9 and the stiffness adjustment accumulator 10 .
  • the hydraulic suspension system 1000 has a boost mode, a lift mode, and a height lower mode.
  • the control valve 12 is closed, the stiffness adjustment valve 11 is opened, and the control pump 26 operates so that the oil in the reservoir 1 It flows into the corresponding stiffness-adjusting accumulator 10 for energy storage. After each stiffness adjusting accumulator 10 is charged, the stiffness adjusting valve 11 is closed.
  • the oil in the reservoir 1 or the oil in the stiffness adjustment accumulator 10 can enter the corresponding oil passage 204, and the hydraulic oil entering each oil passage 204 flows into the lower chamber chamber 2012, so that the hydraulic pressure in the lower chamber 2012 increases to make the piston 202 move upward, and the upward movement of the piston 202 drives the piston rod 203 to move upward.
  • the piston rod 203 of the left front hydraulic integrated control module 100 moves upward
  • the piston rod 203 of the right front hydraulic integrated control module 100 moves upward
  • the piston rod 203 of the left rear hydraulic integrated control module 100 moves upward
  • the piston rod 203 of the right rear hydraulic integrated control module 100 moves upward
  • 203 moves upwards to drive the vehicle body to move upwards to achieve the purpose of lifting the vehicle body.
  • each hydraulic integrated control module 100 flows out from the oil passage 204, and the hydraulic pressure in the lower chamber 2012 of each shock absorber 200 is reduced so that the piston 202 moves downward, and the downward movement of the piston 202 drives The piston rod 203 moves downward.
  • the piston rod 203 of the left front hydraulic integrated control module 100 moves downward
  • the piston rod 203 of the right front hydraulic integrated control module 100 moves downward
  • the piston rod 203 of the left rear hydraulic integrated control module 100 moves downward
  • the right rear hydraulic integrated control module 100 moves downward and the right rear hydraulic integrated control module 100
  • the piston rod 203 moves downward to drive the vehicle body to move downward, so as to achieve the purpose of reducing the height of the vehicle body.
  • the oil return valve 27 is opened to release pressure to protect the hydraulic suspension system 1000 within the normal pressure range, at this time
  • the oil in each shock absorber 200 can flow into the accumulator 1 through the oil channel 44 and the oil return valve 27 .
  • the oil quantity of the oil channel 44 can be adjusted through the damping regulating valve 8 to adjust the hydraulic suspension system. 1000 damping, when the opening of the damping regulating valve 8 decreases so that the amount of oil that can flow through the oil passage 44 decreases, a part of the oil in the oil passage 44 can enter the damping accumulator 9 for energy storage . When the opening of the damping regulating valve 8 is increased, the oil in the damping accumulator 9 can enter the oil passage 44 for oil replenishment, so that the damping of the hydraulic suspension system 1000 can be reliably adjusted.
  • the stiffness adjustment valve 11 can be controlled to open, and the oil in the stiffness adjustment accumulator 10 can be added to each oil channel 44, thereby reducing the hydraulic pressure.
  • the stiffness of the suspension system 1000 can increase the cushioning effect of the hydraulic suspension system 1000 on bumps.
  • the hydraulic suspension system 1000 according to the embodiment of the present application further includes a central control cylinder 24 .
  • the central control cylinder 24 includes a second cylinder body 240 and a moving part 241.
  • the moving part 241 is movably arranged in the second cylinder body 240 and cooperates with the second cylinder body 240 to define a first chamber 243, a second chamber 244, the third chamber 245 and the fourth chamber 246, the first chamber 243, the second chamber 244, the third chamber 245 and the fourth chamber 246 are arranged sequentially in the moving direction of the moving part 241, the first chamber A chamber 243 and a second chamber 244 are distributed on one side of the middle contact portion 2411 of the moving member 241, a third chamber 245 and a fourth chamber 246 are distributed on the other side of the middle contact portion 2411, and the middle contact portion 2411 It cooperates with the movement of the inner wall of the second cylinder body 240 .
  • the oil passage 204 corresponding to the left front hydraulic integrated control module 100 is connected to one of the first chamber 243 and the second chamber 244, and the oil passage 204 corresponding to the right rear hydraulic integrated control module 100 is connected to the first chamber 243 and the second chamber 244.
  • the other of the second chambers 244 is connected.
  • the oil passage 204 corresponding to the left rear hydraulic integrated control module 100 is connected to one of the third chamber 245 and the fourth chamber 246, and the oil passage 204 corresponding to the right front hydraulic integrated control module 100 is connected to the third chamber 245 and one of the fourth chamber 246.
  • the other of the fourth chambers 246 is connected.
  • the oil passage 204 corresponding to the left front hydraulic integrated control module 100 is connected to the first chamber 243
  • the oil passage 204 corresponding to the right rear hydraulic integrated control module 100 is connected to the second chamber 244
  • the left rear hydraulic integrated control module 100 is connected to the second chamber 244.
  • the oil passage 204 corresponding to the integrated control module 100 is connected to the third chamber 245
  • the oil passage 204 corresponding to the right front hydraulic integrated control module 100 is connected to the fourth chamber 246 as an example to describe the principle.
  • the piston rods 203 corresponding to the left front hydraulic integrated control module 100 and the left rear hydraulic integrated control module 100 are compressed, and the right front hydraulic integrated control module 100 and the right rear hydraulic integrated control module 100 correspond to The piston rod 203 is stretched.
  • the oil in the lower chamber 2012 corresponding to the left front hydraulic integrated control module 100 is discharged to the first chamber 243 through the oil passage 204, and the lower chamber corresponding to the left rear hydraulic integrated control module
  • the oil in the chamber 2012 is discharged to the third chamber 245 through the oil passage 204.
  • the oil in the first chamber 243 is relatively
  • the direction of the acting force of the middle contact part 2411 is opposite to the direction of the acting force of the third chamber 245 on the middle contact part 2411, and the two opposite acting forces cancel each other out so that the moving part 241 does not move, thereby inhibiting the integration of the left front hydraulic pressure.
  • the movement of the piston rod 203 corresponding to the control module 100 and the piston rod 203 corresponding to the left rear hydraulic integrated control module 100 can suppress roll.
  • the left front wheel of the vehicle When the left front wheel of the vehicle encounters an obstacle such as a stone, the left front wheel is raised so that the compression range corresponding to the left front hydraulic integrated control module 100 is greater than the corresponding compression range of the left rear hydraulic integrated control module 100, from the left front hydraulic integrated control module.
  • the amount of oil discharged into the first chamber 243 by 100 is greater than the amount of oil discharged from the left rear hydraulic integrated control module 100 into the third chamber 245, so that the moving member 241 moves rightward and squeezes the third chamber chamber 245 and the fourth chamber 246, the oil in the third chamber 245 can be discharged into the lower chamber 2012 of the left rear hydraulic integrated control module 100 to make the piston rod 203 move upwards, the oil in the fourth chamber 246 The oil can be discharged into the lower chamber 2012 of the right front hydraulic integrated control module 100 to make the piston rod 203 move up, thereby reducing the risk of the left rear wheel and the right front wheel getting off the ground and improving the stability of the vehicle.
  • the vehicle according to the embodiment of the present application includes the hydraulic suspension system 1000 according to any one of the above-mentioned embodiments of the present application.
  • the vehicle can have an entertainment mode, which can quickly change the vehicle posture (lower or raise the vehicle body) according to the entertainment (movies, disco, music) content, and obtain the required acceleration in the corresponding state.
  • the vehicle may have a pre-collision suspension control function, which is combined with the radar/camera.
  • the control unit 2000 senses the pre-collision signal, it actively controls the stiffness of the front suspension to increase, and changes the pitch angle to optimize the frictional resistance. , to reduce the braking distance.
  • the vehicle may have a suspension memory function and a road condition memory function, combined with a navigation map, to automatically switch the previous control strategy (manual adjustment memory) when passing a specific road section next time.
  • the vehicle can run with a flat tire, and the vehicle can still travel safely for a certain distance after a single tire is blown out.
  • the vehicle is provided with a control key, and the vehicle user can manually control the operating state of the control valve 12 and the stiffness adjustment valve 11 in each hydraulic integrated control module 100 through the control key so that the vehicle operates in multiple modes. to switch between.
  • the height of the vehicle body can be adjusted according to road conditions, for example, when passing through a relatively rough mountain road, it can enter the lifting mode, which can increase the center of mass of the vehicle and improve the stability of the vehicle. When it is necessary to reduce the influence of the body on the driving speed, it can enter the height reduction mode, so that the center of mass of the vehicle is lowered.
  • the lifting mode can increase the center of mass of the vehicle and improve the stability of the vehicle.
  • it can enter the height reduction mode, so that the center of mass of the vehicle is lowered.
  • the above is only an exemplary description, and the height of the vehicle body can also be adjusted according to actual needs during driving.
  • the vehicle according to the embodiment of the present application includes multiple sets of independently controlled hydraulic integrated control modules 100, which can adjust the height and suspension stiffness of the vehicle body at different positions according to the actual situation, so that the hydraulic suspension system 1000 can meet different requirements and realize
  • the purpose of anti-rolling and anti-pitching can improve the operating stability of the vehicle, and effectively solve the contradiction between vehicle comfort and handling stability.
  • the vehicle further includes: a left front acceleration sensor 35, a right front acceleration sensor 36, a rear body acceleration sensor 37, and the left front acceleration sensor 35, the right front acceleration sensor 36, and the rear body acceleration sensor 37 are respectively connected to the control unit 2000 , the control unit 2000 controls the opening and closing states of the stiffness adjustment valve 11 and the control valve 12 according to the detection results of the left front acceleration sensor 35 , the right front acceleration sensor 36 , and the rear body acceleration sensor 37 . Therefore, it is possible to adjust the height of the vehicle body and suspension stiffness at different positions in real time according to the actual situation, effectively solving the contradiction between vehicle comfort and handling stability, and the above independent adjustment method can effectively improve the active safety of the vehicle.
  • the vehicle also includes: a left front level sensor 38, a right front level sensor 39, a left rear level sensor 40 and a right rear level sensor 41, a left front level sensor 38, a right front level sensor 39 , the left rear level sensor 40 and the right rear level sensor 41 are respectively used to detect the height of the corresponding position of the vehicle body, the left front level sensor 38, the right front level sensor 39, the left rear level sensor 40 and the right rear level sensor 41 They are respectively connected to the control unit 2000, and the control unit 2000 controls the opening and closing states of the stiffness regulating valve 11 and the control valve 12 according to the detection results. Therefore, the height of the vehicle body at different positions can be adjusted in real time according to the actual situation, effectively solving the contradiction between vehicle comfort and handling stability, and the above independent adjustment method can effectively improve the active safety of the vehicle.
  • the control unit 2000 when the control unit 2000 recognizes that the lateral acceleration is greater than a certain value (for example, greater than 0.2g), the outer damping is increased when the roll is performed, and this operation will be maintained for a certain period of time (for example, 0.5s).
  • a certain value for example, greater than 0.2g
  • the anti-nodding control described above mainly triggers changes in the damping force during braking, alleviating nodding.
  • the control unit 2000 recognizes that the acceleration is greater than a certain value (for example greater than 0.2g), it will suppress the height change, increase the front side damping and increase the front side stiffness when nodding.
  • the altitude suppression function will be maintained until the acceleration is lower than a certain value (for example, lower than 0.2g) and maintained for 1 second.
  • the above-mentioned anti-head-up control mainly triggers changing the damping force during acceleration, reducing head-up, thereby increasing rear side damping during acceleration.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • a first feature being "on” or “under” a second feature may mean that the first and second features are in direct contact, or that the first and second features are indirect through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

一种液压集成控制模块(100),包括:集成座(32)、储液器(1)、控制阀(12)和蓄能器模块,集成座(32)内设有油路通道(44),集成座(32)的外周壁设有与油路通道(44)相连的外部连接口(320),外部连接口(320)适于连通减振器(200);储液器(1)安装至集成座(32),储液器(1)与油路通道(44)连通;控制阀(12)串联在油路通道(44)内以控制油路通道(44)导通或截止;蓄能器模块安装至集成座(32),蓄能器模块与油路通道(44)相连,蓄能器模块用于调整油路通道(44)内的油液量。整个液压集成控制模块体积减小,且无复杂的油路进行连接,减少漏液风险;在不损害车辆舒适性的前提下,具有液压集成控制模块的液压悬架系统可以提高车辆的操作稳定性。

Description

液压集成控制模块及具有其的液压悬架系统、车辆
相关申请的交叉引用
本申请基于申请号为202111651770.9、申请日为2021年12月30日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及车辆领域,尤其是涉及一种液压集成控制模块及具有其的液压悬架系统、车辆。
背景技术
悬架是传递车身与车桥之间相互作用力的装置,是汽车四大组成部分之一,是影响汽车行驶性能的关键组成。悬架可传递路面反馈的作用力和力矩,衰减车轮的振动,缓和冲击,提高驾驶员的驾驶体验,使车辆获得理想的运动特性和稳定的行驶能力。相关技术的悬架大部分由弹簧、导向机构以及减振器等组成,减振器阻尼系数和弹簧刚度都为固定的,难以兼顾舒适性和操作稳定性。相关技术还有一部分悬架利用液压调整悬架的刚度和/或阻尼,但是由于需要连接各种管道以流通油液,因此悬架体积较大,且连接处还容易出现漏液风险。
申请内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的一个目的在于提出一种液压集成控制模块,整个液压集成控制模块体积减小,且无复杂的油路进行连接,减少漏液风险。
本申请还提出一种具有上述液压集成控制模块的液压悬架系统,在不损害车辆舒适性的前提下,可以提高车辆的操作稳定性。
本申请还提出一种具有上述液压悬架系统的车辆。
根据本申请实施例的液压集成控制模块,包括:集成座,所述集成座内设有油路通道,所述集成座的外周壁设有与所述油路通道相连的外部连接口,所述外部连接口适于连通减振器;储液器,所述储液器安装至所述集成座,所述储液器与所述油路通道连通;控制阀,所述控制阀串联在所述油路通道内以控制所述油路通道导通或截止;蓄能器模块,所述蓄能器模块安装至所述集成座,所述蓄能器模块与所述油路通道相连,所述蓄能器模块用于调整所述油路通道内的油液量。
根据本申请实施例的液压集成控制模块,通过将油路通道集成在集成座内,使得储液器和蓄能器模块安装至集成座以与油路通道相连,从而使得油路通道、储液器和蓄能器模块集成在一起,使得整个液压集成控制模块体积减小,且无复杂的油路进行连接,减少漏液风险。当其用于车辆时,有效地解决了车辆舒适性与操纵稳定性之间的矛盾。
在申请的一些实施例中,所述集成座内设有第一支路,所述第一支路与所述油路通道相连;所述蓄能模块包括刚度调节蓄能器和刚度调节阀,所述刚度调节阀串联在所述第一支路上以导通或截止所述第一支路,所述刚度调节蓄能器安装至所述集成座且与所述第一支路连通。
在申请的一些实施例中,所述刚度调节蓄能器安装在所述储液器在所述集成座上的安装平面上。
在申请的一些实施例中,所述蓄能器模块包括阻尼调节阀和阻尼蓄能器,所述阻尼调节阀串联至所述油路通道以调整所述油路通道的阻尼;所述阻尼蓄能器安装至所述集成座且与所述油路通道连通。
在申请的一些实施例中,所述阻尼蓄能器在所述集成座上的安装平面与所述储液器在所述集成座上的安装平面垂直,所述阻尼蓄能器及所述阻尼调节阀位于同一安装平面上。
在申请的一些实施例中,所述集成座内设有第三支路和第四支路,所述第三支路分别与所述油路通道和所述储液器的出液口相连,所述第四支路分别与所述油路通道和所述储液器的进液口相连,所述第三支路上设有控制泵以将所述储液器内的油液导向所述油路通道。
在申请的一些实施例中,所述第四支路上串联有用于导通或截止其的回油阀。
在申请的一些实施例中,所述第三支路上设有单向阀,所述单向阀用于将油液单向导通至所述油路通道。
在申请的一些实施例中,所述第三支路上设有稳压蓄能器,所述稳压蓄能器安装在所述集成座上,且安装在所述储液器在所述集成座上的安装平面上。
在申请的一些实施例中,液压集成控制模块还包括信号接收器,所述信号接收器设在所述集成座上,所述信号接收器 与所述控制阀配合以控制所述控制阀的运行状态。
在申请的一些实施例中,所述控制阀为电磁阀,所述信号接收器为线圈。
根据本申请实施例的液压悬架系统,包括:多个液压集成控制模块,所述液压集成控制模块为根据本申请上述任一所述的液压集成控制模块;多个减振器,所述减振器包括第一缸体、活塞及活塞杆,所述活塞位于所述第一缸体内以与所述第一缸体配合限定出上腔室和下腔室,所述活塞杆与活塞连接且所述活塞杆的上端适于与车身连接,所述多个减振器与多个所述液压集成控制模块一一对应设置,每个所述集成座的所述外部连接口与所述下腔室连通。
根据本申请实施例的液压悬架系统,通过将油路通道集成在集成座内,使得储液器和蓄能器模块安装至集成座以与油路通道相连,从而使得油路通道、储液器和蓄能器模块集成在一起,使得整个液压集成控制模块体积减小,且无复杂的油路进行连接,减少漏液风险。当其用于车辆时,有效地解决了车辆舒适性与操纵稳定性之间的矛盾。
根据本申请实施例的车辆,包括:车身和控制单元;液压悬架系统,所述液压悬架系统为根据申请上述实施例所述的液压悬架系统,每个所述活塞杆的上端与所述车身相连,多个液压集成控制模块的所述控制阀分别与所述车辆的控制单元相连。
根据本申请实施例的车辆,包括多组独立控制的液压集成控制模块,可以根据实际情况调整不同位置的车身的高度和悬架刚度,从而使得液压悬架系统可以满足不同需求,可以实现抗侧倾和抗俯仰等目的,可以提高车辆的操作稳定性,有效地解决了车辆舒适性与操纵稳定性之间的矛盾。通过将油路通道集成在集成座内,使得储液器和蓄能器模块安装至集成座以与油路通道相连,从而使得油路通道、储液器和蓄能器模块集成在一起,使得整个液压集成控制模块体积减小,且无复杂的油路进行连接,减少漏液风险。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1-图3为根据本申请实施例的集成式油路模块的不同角度示意图;
图4为根据本申请实施例的集成式油路模块的油路图。
图5为根据本申请一些实施例的液压悬架系统的示意图;
图6为根据本申请另一些实施例的液压悬架系统的示意图;
图7为根据本申请实施例的左前侧减振器总成和右前侧减振器总成的示意图;
图8为图7所示的减振器总成的剖视图;
图9为根据本申请实施例的中央控制缸的剖面图;
图10为根据本申请实施例的中央控制缸的立体图;
图11为根据本申请实施例的金属波纹管蓄能器的示意图。
附图标记:
液压悬架系统1000、控制单元2000、
液压集成控制模块100、储液器1、
减振器总成2、减振器200、第一缸体201、上腔室2011、下腔室2012、活塞202、活塞杆203、油液通道204、减振弹簧205、
阻尼调节阀8、
阻尼蓄能器9、
刚度调节蓄能器10、金属波纹管101、
刚度调节阀11、
控制阀12、
中央控制缸24、第二缸体240、移动件241、移动本体部2410、中间接触部2411、第一腔室243、第二腔室244、第三腔室245、第四腔室246、第一复位弹簧247、第二复位弹簧248、导向组件249、第一导向件2490、第二导向件2491、控制泵26、控制阀体260、驱动电机261、回油阀27、单向阀28、稳压蓄能器29、减压蓄能器30、泄压阀31、集成座32、外部连接口320、端盖42、
线圈33、压力传感器34、左前加速度传感器35、右前加速度传感器36、后车身加速度传感器37、左前水平高度传感器38、右前水平高度传感器39、左后水平高度传感器40、右后水平高度传感器41、油路通道44、第三支路45、第四支路46。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考图1-图4描述根据本申请实施例的液压集成控制模块100,包括:集成座32、储液器1、控制阀12和蓄能器模块,其中集成座32内设有油路通道44,集成座32的外周壁设有与所述油路通道44相连的外部连接口320,外部连接口320适于连通减振器200。储液器1安装至集成座32,储液器1与油路通道44连通。控制阀12串联在油路通道44内以控制油路通道44导通或截止。蓄能器模块安装至集成座32,蓄能器模块与油路通道44相连,蓄能器模块用于调整油路通道44内的油液量。
具体而言,储液器1内储存有油液,储液器1内的油液可以排向油路通道44。当液压集成控制模块100未安装至车辆时,控制阀12处于关闭状态以截止油路通道44,以避免油液从外部连接口320排出而造成漏液现象。
可以理解的是,蓄能器模块起到蓄能的作用,即油液可以流入到蓄能器模块内进行蓄能,当液压集成控制模块100需要时,蓄能器模块中的油液排出以进行补给到油路通道44内。
需要进行说明的是,蓄能器模块用于调整油路通道44内的油液量指的是蓄能器模块可以调整油路通道44内的油液量以调节油路通道44的阻尼和/或;蓄能器模块可以与油路通道44连通或者断开以调整油路通道44的刚度。
当液压集成控制模块100安装至车辆时,外部连接口320与减振器200相连,从而使得油路通道44内的油液可以排入到减振器200内。控制阀12与车辆的控制单元电连接以根据接收的信号开启或者关闭。具体地,减振器200包括第一缸体201、活塞202及活塞杆203,第一缸体201适于与车桥连接,活塞202位于第一缸体201内且与第一缸体201配合限定出上腔室2011和下腔室2012,活塞杆203的一端与活塞202连接,且活塞杆203适于与车身连接,外部连接口320与下腔室2012连通。
当控制阀12打开时,储液器1和/或蓄能器模块内的油液可以排向减振器200内,当油液排入到减振器200内时,由于减振器200的下腔室2012内的油液增多使得活塞杆203上移,实现对车身进行举升的目的。当减振器200的下腔室2012内的油液通过油路通道44排回至液压集成控制模块100内时,减振器200的下腔室2012的液压减小使得活塞202向下移动,活塞202向下移动带动活塞杆203向下移动,以带动车身向下移动,实现降低车身高度的目的。
车辆在行驶过程中,会遇到各种各样的路况,相关技术的车辆的悬架系统一经选定后,在汽车行驶过程中就无法进行调节,使得传统的悬架只能保证汽车在一种特定的道路和速度条件下达到性能最优的匹配,并且只能被动地承受地面对车身的作用力,而不能根据道路、车速的不同而改变悬架参数,更不能主动地控制地面对车身的作用力。
根据本申请实施例的液压集成控制模块100,用于车辆时,可以根据路况等对车身的高度进行调整,例如在经过比较崎岖的山路时,可以进入举升模式,可以提高车辆的质心,提高车辆行驶的稳定性。当需要降低车身对行驶速度的影响,可以将进入高度降低模式,使得车辆的质心降低。当然可以理解的是,上述仅仅是示例性描述,还可以根据行驶过程中的实际需要调整车身的高度。
当蓄能器模块用于调整油路通道44的阻尼/或刚度时,即实现对减振器200的阻尼和/或刚度的调节,从而可以根据实际情况例如根据路况进行调节,保证阻尼和/或刚度可以满足减振要求,有效地解决了车辆舒适性与操纵稳定性之间的矛盾。
根据本申请实施例的液压集成控制模块100,通过将油路通道44集成在集成座32内,使得储液器1和蓄能器模块安装至集成座32以与油路通道44相连,从而使得油路通道44、储液器1和蓄能器模块集成在一起,使得整个液压集成控制模块100体积减小,且无复杂的油路进行连接,减少漏液风险。
在本申请的一些实施例中,集成座32内设有第一支路,第一支路与油路通道44相连。蓄能模块包括刚度调节蓄能器10和刚度调节阀11,刚度调节阀11串联在第一支路上以导通或截止第一支路,刚度调节蓄能器10安装至集成座32且与第一支路连通。具体地,刚度调节阀11与车辆的控制单元电连接。
当需要增加刚度时,可以关闭刚度调节阀11,使得刚度调节蓄能器10与减振器200断开,从而可以提高减振器200的刚度。例如在抗制动点头工况和转弯抗侧倾工况时,需要提供较大刚度时,可以关闭刚度调节阀11。
可选地,刚度调节蓄能器10安装在储液器1在集成座32上的安装平面上。也就是说,刚度调节蓄能器10和储液器1安装在同一个安装平面上,从而可以合理利用空间,提高液压集成控制模块100的紧凑性。
在本申请的一些实施例中,蓄能器模块包括阻尼调节阀8和阻尼蓄能器9,阻尼调节阀8串联至油路通道44以调整 油路通道44的阻尼;阻尼蓄能器9安装至集成座32且与油路通道44连通。需要进行说明的是,阻尼调节阀8可以调整相应的油路通道44的油液流量,因此可以调整相应的油路通道44的阻尼,实现调整减振器200的阻尼的目的,从而可以根据实际情况调整减振器200的阻尼,例如可以根据路况等进行调节,保证减振器200的阻尼可以满足减振要求,有效地解决了车辆舒适性与操纵稳定性之间的矛盾。在本申请的一些示例中,阻尼调节阀8包括第一电机和第一阀体,第一电机可以控制第一阀体内的阀门的运动,以改变第一阀体的流通面积,实现调整流量的目的。
可选地,阻尼蓄能器9在集成座32上的安装平面与储液器1在集成座32上的安装平面垂直,阻尼蓄能器9及阻尼调节阀8位于同一安装平面上。从而可以合理利用集成座32的空间。
在本申请的一些实施例中,集成座32内设有第三支路45和第四支路46,第三支路45分别与油路通道44和储液器1的出液口相连,第四支路46分别与油路通道44和储液器1的进液口相连,第三支路45上设有控制泵26以将储液器1内的油液导向油路通道44。也就是说,储液器11具有独立的回液通道(即第四支路46)和出液通道(即第三支路45),从而通过设置两条独立的通道,保证出液和回液的可靠进行。
可选地,第四支路46上串联有用于导通或截止其的回油阀27。在需要出液时,控制泵26开启且回油阀27处于关闭状态,控制泵26将油液导向油路通道44。在需要回液时,控制泵26关闭且回油阀27打开,油路通道44内的油液可以通过回油阀27流向储液器11。从而通过设置两条独立的通道,保证出液和回液的可靠进行。
在本申请的一些示例中,如图1-图2所示,控制泵26包括控制阀体260和驱动电机261,驱动电机261与控制阀体260内的阀门电连接,驱动电机261转动以控制阀门转动以实现控制泵26的打开或关闭。从而通过采用驱动电机261和阀门配合的方式实现控制泵26的打开或关闭,可以保证控制泵26比较可靠的运行,降低油液对控制泵26的打开或关闭的影响。
在本申请的一些示例中,如图4所示,第三支路45上设有单向阀28,单向阀28用于将油液单向导通至油路通道44。因此在回液时,由于单向阀28的存在,可以有效避免油液流向控制泵26,避免因控制泵26出现意外时油液通过控制泵26流向出液口。
在本申请的一些实施例中,如图4所示,第三支路45上设有稳压蓄能器29,稳压蓄能器29安装在集成座32上,且安装在储液器1在集成座32上的安装平面上。从而稳压蓄能器29可以稳压并消除控制泵26的出口端的流量波动,还可以合理利用空间排布。
在本申请的一些示例中,稳压蓄能器29可以采用金属波纹管蓄能器,如图11所示,金属波纹管式蓄能器由筒体总成和波纹管总成组成。其中筒体总成包括上盖、密封圈、缸筒、卡环和密封环;波纹管总成包括密封盖、导向环、波纹管和下盖。金属波纹管蓄能器可代替气囊或隔膜,使用金属波纹管101作为流体和气体之间的柔性分离元件。该波纹管可在非常宽的温度范围内使用。金属波纹管焊接到其他部件上,因此是完全气密的。它能够在蓄能器内部上下移动而不会产生任何摩擦或磨损,并且只需一次调整就可以运行很长时间。
在本申请的一些实施例中,液压集成控制模块100还包括信号接收器,信号接收器设在集成座32上,信号接收器与控制阀12配合以控制控制阀12的运行状态。从而使得液压集成控制模块100可以独立接受信号,便于液压集成控制模块100与车辆的控制单元电连接。
可选地,控制阀12为电磁阀,信号接收器为线圈,从而使得信号的接收简单可靠。
在本申请的一些示例中,如图1-图3所示,刚度调节蓄能器10和稳压蓄能器29分别与集成座32螺纹连接,并固定于控制泵26旁边。控制泵26通过三个固定螺母固定在集成座32的一侧,另一侧固定有刚度调节阀11和控制阀12。控制阀12直接控制集成座32内的油路通道44的开启和关闭。
储液器1固定控制泵26的上方。阻尼调节阀8和阻尼蓄能器9与集成座32螺纹连接,并固定于控制泵26的下侧。
在本申请的一些实施例中,刚度调节阀11和控制阀12分别为电磁阀,集成座32上设有用于输入外部信号的线圈33,线圈33与刚度调节阀11和控制阀12配合。即线圈33接收外部信号,然后刚度调节阀11和控制阀12根据外部信号开启或关闭。从而使得刚度调节阀11和控制阀12的控制方式简单可靠且自动化。可以理解的是,通过控制通入到线圈33内的电流的大小及方向,可以控制刚度调节阀11和控制阀12的运行状态。
可选地,刚度调节阀11和控制阀12分别为双位双通电磁阀。在本申请的一些示例中,回油阀27为电磁阀且与线圈33配合。可选地,回油阀27为双位双通电磁阀。
在本申请的一些示例中,如图3所示,刚度调节阀11、控制阀12和回油阀27都放置在端盖42内,从而通过设置端盖42,可以对刚度调节阀11、控制阀12和回油阀27起到保护作用,还可以提高集成性。
当然可以理解的是,储液器1、刚度调节蓄能器10、刚度调节阀11和控制阀12的安装位置可以根据实际情况例如根 据整车布置空间进行调整。例如在本申请的一些示例中,阻尼调节阀8与外部连接口320同侧设置,阻尼蓄能器9放置于储液器1的对侧,从而可以合理利用外部连接口320的空间布置阻尼调节阀8的位置。
在本申请的一些示例中,阻尼调节阀8放置于储液器1的对侧,并将阻尼蓄能器9布置于前侧,此时集成座32的前侧同时布置有控制泵26、稳压蓄能器29、刚度调节蓄能器10和阻尼蓄能器9,此种布置方式有利于节约集成座32周边空间从而合理利用集成座32的周边区域进行整车布置。
在本申请的又一些示例中,阻尼调节阀8放置于储液器1的对侧,并将阻尼蓄能器9布置于外部连接口320的对侧,阻尼蓄能器9和阻尼调节阀8垂直设置,此种布置方式有利于集成座32内的流道布置。
下面参考图1-图11描述根据本申请实施例的液压悬架系统1000,其中液压悬架系统1000用于车辆上,液压悬架系统1000用于连接车辆的车桥和车身。需要进行说明的是,在本申请的描述中,前指的是朝向车头的方向,后指的是朝向车尾的方向,在朝前的方向上,以主驾驶员的右手方向为右侧,以主驾驶员的左手方向为左侧。
图1-图10所示,根据本申请实施例的液压悬架系统1000,包括:多组液压集成控制模块100和多个减振器200,多组液压集成控制模块100分别与车辆的多个轮毂一一对应。具体而言,多组液压集成控制模块100包括左前液压集成控制模块100、右前液压集成控制模块100、左后液压集成控制模块100和右后液压集成控制模块100,左前液压集成控制模块100用于控制左前车身,右前液压集成控制模块100用于控制右前车身,左后液压集成控制模块100用于控制左后车身,右后液压集成控制模块100用于控制右后车身。
减振器200包括第一缸体201、活塞202和活塞杆203,活塞202位于第一缸体201内以与第一缸体201配合限定出上腔室2011和下腔室2012,活塞杆203与活塞202连接且活塞杆203的上端适于与车身连接,多个减振器200与多个液压集成控制模块100一一对应设置,每个集成座32的外部连接口320与下腔室2012连通。
根据本申请实施例的液压悬架系统1000,通过将油路通道44集成在集成座32内,使得储液器1和蓄能器模块安装至集成座32以与油路通道44相连,从而使得油路通道44、储液器1和蓄能器模块集成在一起,使得整个液压集成控制模块100体积减小,且无复杂的油路进行连接,减少漏液风险。当其用于车辆时,有效地解决了车辆舒适性与操纵稳定性之间的矛盾。
在本申请的一些实施例中,刚度调节蓄能器10的油液进出口通过第一支路连接至油路通道44,第一支路上串联有刚度调节阀11,刚度调节阀11用于导通或截止所述第一支路。
控制阀12串联在油路通道44上以控制油液是否流向所述减振器200,其中刚度调节阀11打开且控制阀12关闭时,储液器1内的油液通过第一支路进入到刚度调节蓄能器10内使得刚度调节蓄能器10蓄能,刚度调节阀11和控制阀12均打开时,刚度调节蓄能器10内的油液可流入减振器200内,刚度调节阀11和控制阀12分别适于与车辆的控制单元2000相连。
具体而言,液压悬架系统1000具有增压模式,在增压模式中,刚度调节阀11打开且控制阀12关闭,储液总成内的油液进入到刚度调节蓄能器10内使得刚度调节蓄能器10蓄能。
当需要对相应的车身进行举升,例如当需要提升整个车身的高度时,每个液压控制模式接收控制信号,控制单元2000控制每组液压集成控制模块100中的刚度调节阀11和控制阀12均处于打开状态,从刚度调节蓄能器10内的油液进入到相应的减振器200的下腔室2012内,从而下腔室2012内的油液增加以推动活塞202上移,活塞202上移以带动活塞杆203上升以抬高车身,从而完成对车身的举升功能,在本申请的一些示例中,本申请的液压悬架系统1000每次蓄能后可以完成一次举升。当再次举升时,需要对刚度调节蓄能器10进行蓄能。
当需要降低车身的高度时,下腔室2012内的油液还可以在车辆重力作用下排出至油路通道44内以流回至储液总成内,实现车身高度的降低。
车辆在行驶过程中,会遇到各种各样的路况,相关技术的车辆的悬架系统一经选定后,在汽车行驶过程中就无法进行调节,使得传统的悬架只能保证汽车在一种特定的道路和速度条件下达到性能最优的匹配,并且只能被动地承受地面对车身的作用力,而不能根据道路、车速的不同而改变悬架参数,更不能主动地控制地面对车身的作用力。
根据本申请实施例的液压悬架系统1000,可以根据路况等对车身的高度进行调整,例如在经过比较崎岖的山路时,可以进入举升模式,可以提高车辆的质心,提高车辆行驶的稳定性。当需要降低车身对行驶速度的影响,可以将进入高度降低模式,使得车辆的质心降低。当然可以理解的是,上述仅仅是示例性描述,还可以根据行驶过程中的实际需要调整车身的高度。
当需要增加刚度时,可以关闭刚度调节阀11,使得刚度调节蓄能器10与减振器200断开,从而可以提高液压集成控制模块100的刚度。例如在抗制动点头工况和转弯抗侧倾工况时,需要前轴提供较大刚度,此时可以关闭左前液压集成控 制模块100的刚度调节阀11和关闭右前液压集成控制模块100的刚度调节阀11。
可以理解的是,由于每组液压集成控制模块100均包括刚度调节蓄能器10、刚度调节阀11和控制阀12,每组液压集成控制模块100的刚度调节阀11和控制阀12均与控制单元2000电连接,因此可以对每组液压集成控制模块100进行独立控制,即可以是单独对左前车身进行举升、单独对左前车身和右前车身进行举升等,可以根据实际需求进行选择。
在车辆行驶过程中,左前轮遇到障碍例如石头抬高时,左前液压集成控制模块100的活塞杆203会下移挤压下腔室2012,下腔室2012内的油液排出相应的储液总成内。此时控制单元2000可以控制右前液压集成控制模块100、左后液压集成控制模块100和右后液压集成控制模块100中的刚度调节阀11和控制阀12均处于打开状态,控制右前车身、右后车身和左后车身抬高,从而可以避免出现侧倾现象。
在车辆行驶过程中,当遇到紧急情况急刹车时,容易出现俯仰现象中的点头情况,此时控制单元2000可以控制左前液压集成控制模块100和右前液压集成控制模块100中的刚度调节阀11和控制阀12均处于打开状态,以抬高左前车身和右前车身,从而可以实现抗点头的目的。
需要进行说明的是,上述仅仅是两种示例性描述,在车辆行驶过程中,可以根据车速、路况、车辆启动需要抗抬头、车辆急刹需要抗点头等情况,控制每组液压集成控制模块100中的刚度调节阀11和控制阀12的开闭情况,从而满足各种需求。
在本申请的一些具体示例中,自动高度调节模式包括:运动状态下车高随车速按照设定程序变化、载荷平衡、拖车模式、被拖模式、千斤顶模式、自动高度抑制功能和抬高车身脱困模式等。其中拖车模式中可以上升车身高度,被拖模式中可以降低车身高度。
根据本申请实施例的液压悬架系统1000,包括多组独立控制的液压集成控制模块100,可以根据实际情况调整不同位置的车身的高度和悬架刚度,从而使得液压悬架系统1000可以满足不同需求,可以实现抗侧倾和抗俯仰等目的,可以提高车辆的操作稳定性,有效地解决了车辆舒适性与操纵稳定性之间的矛盾。
根据本申请的一些实施例中,如图5-图6所示,液压悬架系统1000还包括泄压阀31,泄压阀31连接至油路通道44,即泄压阀31位于控制泵26的出端口,当控制泵26的出液口压力达到一定阈值时,泄压阀31打开进行泄压,从而保护液压悬架系统1000处于正常的压力范围内。需要进行说明的是,泄压阀31的工作原理已为现有技术,在此不对其进行详细描述。在本申请的一些示例中,如图5和图6所示,每组液压集成控制模块100包括压力传感器34,压力传感器34用于检测控制泵26的出口端的压力,以保证可以在控制泵26的出液口压力达到一定阈值时及时检测到,以保证液压悬架系统1000处于正常的压力范围内。
在本申请的一些实施例中,如图5-图8所示,每个活塞杆203内设有油液通道204,油液通道204与下腔室2012连通,油路通道44与活塞杆203相连。从而通过设置中空的活塞杆203限定出油液通道204,储液器1内的油液可以通过油液通道204进入到下腔室2012内,从下腔室2012内的油液可以通过油液通道204排出减振器200,从而在保证油液可以顺畅进出减振器200的基础上,可以减少减振器200的重量,还可以节约成本,调整方式简单,可靠性高,相应速度快。
可以理解的是,每组液压集成控制模块100可以根据实际需求调整其的阻尼,即可以是四组液压集成控制模块100同时调整阻尼,也可以是其中一个、其中两个或者其中三个进行阻尼调节。
在本申请的一些示例中,液压悬架系统1000在如下模式中需要调整阻尼:锤击敏感度控制、大振幅控制、侧倾控制、抗点头抬头控制和高速控制。上述的锤击敏感度控制主要触发在道路中有小起伏,起伏不大,没达到越野工况的情况下,为应对小的起伏,阻尼不会增大,主要保证车身舒适性要求。上述的大振幅控制主要触发在道路中有大起伏的越野工况下,低速下,起伏很大,阻尼会增大,保证车身操纵稳定性要求。上述的侧倾控制主要触发在转弯时改变阻尼力,降低侧倾。当控制单元2000识别侧向加速度大于某一值(例如大于0.2g),侧倾时增大外侧阻尼,此操作会保持一定时间(例如保持0.5s),此时高度变化功能被抑制。上述的抗点头控制主要触发在制动时改变阻尼力,减轻点头。控制单元2000识别加速度大于某一值(例如大于0.2g),它将抑制高度变化,点头时增大前侧阻尼,增大前侧刚度。高度抑制功能将保持直到加速度低于某值(例如低于0.2g)并保持1秒。上述的抗抬头控制主要触发在加速时改变阻尼力,减抬点头,从而加速时增大后侧阻尼。上述的高速控制主要触发在随车速改变阻尼力的大小,即低速时阻尼小,高速时阻尼大。
本申请的一些示例中,阻尼蓄能器9采用金属波纹管蓄能器,刚度调节蓄能器10采用隔膜式蓄能器,隔膜式蓄能器相比于金属波纹管蓄能器具有更快速的蓄压能力以及更多的蓄压量。隔膜式蓄能器可以在较短时间内达到更高的蓄压量,因此刚度调节蓄能器10采用隔膜式蓄能器进行各悬架的蓄压从而实现车身举升。需要进行说明的是,金属波纹管蓄能器和隔膜式蓄能器的蓄能原理均为现有技术,这里就不进行详细描述。
如图6所示,在本申请的一些实施例中,液压悬架系统1000还包括中央控制缸24,其中中央控制缸24包括第二缸 体240和移动件241,移动件241可移动地设在第二缸体240内且与第二缸体240配合以限定出第一腔室243、第二腔室244、第三腔室245和第四腔室246,第一腔室243、第二腔室244、第三腔室245和第四腔室246在移动件241的移动方向上顺序排布,第一腔室243和第二腔室244分布在移动件241的中间接触部2411的一侧,第三腔室245和第四腔室246分布在中间接触部2411的另一侧,中间接触部2411与第二缸体240的内壁移动配合。
左前液压集成控制模块100的的油路通道44与第一腔室243和第二腔室244中的其中一个相连,右后液压集成控制模块100对应的油路通道44与第一腔室243和第二腔室244中的另一个相连。右前液压集成控制模块100对应的油路通道44与第三腔室245和第四腔室246中的其中一个相连,左后液压集成控制模块100对应的油路通道44与第三腔室245和第四腔室246中的另一个相连。下面为了便于描述,使得左前液压集成控制模块100的油路通道44与第一腔室243相连,右后液压集成控制模块100的油路通道44与第二腔室244相连,左后液压集成控制模块100的油路通道44与第三腔室245相连,右前液压集成控制模块100的油路通道44与第四腔室246相连为例进行原理描述。
为此,集成控制模块上还设置有与中央控制缸连接的连接口。
具体而言,当车辆具有侧倾倾向时,例如左前液压集成控制模块100和左后液压集成控制模块100对应的活塞杆203被压缩,此时左前液压集成控制模块100对应的下腔室2012内的油液通过油液通道204排向第一腔室243,左后液压集成控制模块100对应的下腔室2012内的油液通过油液通道204排向第三腔室245,由于第一腔室243和第三腔室245位于中间接触部2411的两侧,第一腔室243内的油液对中间接触部2411的作用力的方向与第三腔室245对中间接触部2411的作用力的方向相反,两个方向相反的作用力相互抵消从而使得移动件241不移动,从而可以抑制左前液压集成控制模块100对应的活塞杆203和左后液压集成控制模块100对应的活塞杆203的移动,可以起到抑制侧倾的作用。
当车辆的左前轮遇到障碍物例如石头时,左前轮抬高使得左前液压集成控制模块100对应的压缩幅度大于左后液压集成控制模块100对应的压缩幅度时,从左前液压集成控制模块100排入到第一腔室243内的油液量大于从左后液压集成控制模块100排入到第三腔室245内的油液量,从而使得移动件241朝右移动挤压第三腔室245和第四腔室246,第三腔室245内的油液可以排入到左后液压集成控制模块100对应的下腔室2012内以使得活塞杆203上移,第四腔室246内的油液可以排入到右前液压集成控制模块100对应的下腔室2012内以使得活塞杆203上移,从而降低了左后轮和右前轮的离地风险,提高车辆的稳定性。
当然可以理解的是,上述几种情况仅仅是示例性描述,当车辆遇到其他工况例如右前轮抬高、左后轮抬高等,油液均根据上述的联动原理进行流动以避免车辆出现侧倾,这里就不对每个工况进行详细描述。
越野车在通过起伏路面时,如果离地间隙和通过角较小,会影响车辆的通过性。爬坡及离坡时,接近角和离去角太小会“托头”和“托尾”,使车辆不能正常通过。在侧坡行驶时,侧坡坡度太大容易造成车辆滑坡或侧翻,行驶安全性得不到保障。在公路行驶时,车辆转弯侧向加速度过大或受外力冲击时,有侧翻的危险,越野车由于其较高的质心,更容易发生侧翻,其安全性和稳定性更加难以得到保障。针对上述复杂多变的地形和路况行驶需求,根据本申请实施例的液压悬架系统通过上述的中央控制缸24,可以可根据路况调节车身姿态,从而改善和提升越野车的全地形工况适应能力。
在本申请的一些实施例中,如图9所示,移动件241包括移动本体部2410,中间接触部2411为设在移动本体部2410上的环形凸起,在移动件241的移动方向上,第二缸体240内设有中间空腔、左空腔和右空腔,左空腔的伸入口和右空腔的伸入口位于中间空腔的内壁上。移动本体部2410的左端通过左空腔的伸入口伸入到左空腔内,移动本体部2410的右端通过右空腔的伸入口伸入到右空腔内。
移动本体部2410的左端部和左空腔之间限定出第一腔室243,移动本体部2410的一部分与左空腔的内壁滑动配合,中间接触部2411与中间空腔的内壁滑动配合以限定出第二腔室244和第三腔室245,移动本体部2410的右端部与右空腔之间限定出第四腔室246。从而使得中央控制缸24的结构简单。
可选地,如图9所示,中央控制缸24还包括第一复位弹簧247和第二复位弹簧248,第一复位弹簧247的两端分别止抵在第二缸体240和移动件241的左端,第二复位弹簧248的两端分别止抵在第二缸体240和移动件241的右端,第一复位弹簧247和第二复位弹簧248推动移动件241朝向中间复位。具体而言,当车辆侧倾使得移动件241朝左移动时,第一复位弹簧247可以朝右推动移动件241使得移动件241复位。当车辆侧倾使得移动件241朝右移动时,第二复位弹簧248可以朝左推动移动件241使得移动件241复位,从而可以保证中央控制缸24的可靠性。
在本申请的一些示例中,如图9所示,中央控制缸24包括导向组件249,导线组件包括第一导向件2490和第二导向件2491,第一导向件2490和第二导向件2491滑动配合,第一导向件2490固定在第二缸体240上,第二导向件2491固定在移动件241上,第一复位弹簧247外套在左侧的导向组件249上且第一复位弹簧247止抵在第一导向件2490上,第二复位弹簧248外套在右侧的导向组件249上且第二复位弹簧248止抵在第一导向件2490,由此通过设置导向组件249 不仅便于第一复位弹簧247和第二复位弹簧248的装配,还便于限定第一复位弹簧247和第二复位弹簧248的变形程度,避免因为第一复位弹簧247和第二复位弹簧248过度形变而失效。
可选地,第二导向件2491为螺钉,第二导向件2491的一端伸入到第一导向件2490内以与第一导向件2490移动配合,从而使得导向组件249的结构简单可靠。
如图10所示,中央控制缸24与四个液压集成控制模块100的活塞杆203相连的端口位于同一侧,从而便于管路连接。
如图5-图6所示,在本申请的一些实施例中,液压悬架系统1000还包括多个减振弹簧205,多个减振弹簧205与多个减振器一一对应设置,减振弹簧205的两端适于与车身和车桥相连。从而通过设置减振弹簧205,可以增加每组减振器的缓冲效果,减少车辆行驶过程中对车身的颠簸。可以理解的是,液压悬架系统1000包括减振器总成2,每个减振器总成2包括减振器200和减振弹簧205,从而通过减振器总成2对车身起到缓冲减振的效果。
可选地,如图5-图6所示,左前液压集成控制模块100的减振弹簧205外套固定在减振器200上,右前液压集成控制模块100的减振弹簧205外套固定在减振器200上,左后液压集成控制模块100的减振弹簧205与减振器200并列设置,右后液压集成控制模块100的减振弹簧205和减振器200并列设置。
下面参考图5-图6详细描述根据本申请两个具体实施例的液压悬架系统1000,可以理解的是,上述每个实施例仅是示例性描述,而不是限定性描述,可以根据实际情况对每个实施例进行示例性修改。
实施例1:
如图5所示,根据本申请实施例的液压悬架系统1000,包括左前液压集成控制模块100、右前液压集成控制模块100、左后液压集成控制模块100和右后液压集成控制模块100。每个液压集成控制模块100包括:储液器1、控制泵26、回油阀27、单向阀28、稳压蓄能器29、泄压阀31、阻尼调节阀8、阻尼蓄能器9、刚度调节蓄能器10和减压蓄能器30。
左前液压集成控制模块100和右前液压集成控制模块100均对应设置减振器200和减振弹簧205,减振弹簧205外套固定在减振器200上。左后液压集成控制模块100和右后液压集成控制模块100均对应设置减振器200和减振弹簧205,减振弹簧205和减振器200并列设置,左后液压集成控制模块100对应的减振弹簧205的两端分别与车身和车桥相连。右后液压集成控制模块100对应的减振弹簧205的两端分别与车身和车桥相连。每个减振器200包括第一缸体201、活塞杆203和活塞202,活塞杆203与活塞202相连,活塞202可移动地设在第一缸体201内以限定出上腔室2011和下腔室2012,活塞杆203内设有油液通道204,油液通道204与下腔室2012连通。
每个减振器200的油液通道204通过油路通道44与储液器1相连。控制阀12连接油路通道44上以控制其开启或关闭。
储液器1具有出液口和进液口,控制泵26分别与出液口和油路通道44相连以将储液器1内的油液导向油路通道44。回油阀27分别与进液口和油路通道44相连,回油阀27打开时,油液从油路通道44流向进液口。单向阀28设在控制泵26的出口端且单向导通。稳压蓄能器29设在控制泵26的出口端且位于单向阀28和控制泵26之间,稳压蓄能器29可以稳定并消除控制泵26的出口端的流量波动。
泄压阀31连接至油路通道44。
每个液压集成控制模块100对应的刚度调节蓄能器10连接至油路通道44上,刚度调节蓄能器10的油液进出口设有刚度调节阀11,刚度调节阀11处于常闭状态。
每个油路通道44还设有阻尼调节阀8、阻尼蓄能器9和控制阀12,阻尼调节阀8用于调整流经相应的油路通道44的流量以调整液压悬架系统1000的阻尼。阻尼蓄能器9可以进行蓄能。控制阀12设在阻尼蓄能器9和刚度调节蓄能器10之间。
具体地,液压悬架系统1000具有增压模式、举升模式和高度降低模式,在增压模式,控制阀12关闭,刚度调节阀11打开,控制泵26运行使得储液器1内的油液流向相应的刚度调节蓄能器10内以进行蓄能。在对每个刚度调节蓄能器10进行蓄能后刚度调节阀11关闭。
在举升模式,储液器1内的油液或者是刚度调节蓄能器10中油液可以进入到相应的油液通道204内,进入到每个油液通道204内的液压油流入到下腔室2012内,从而使得下腔室2012内的液压增大而使得活塞202向上移动,活塞202向上移动带动活塞杆203向上移动。左前液压集成控制模块100的活塞杆203向上移动、右前液压集成控制模块100的活塞杆203向上移动、左后液压集成控制模块100的活塞杆203向上移动和右后液压集成控制模块100的活塞杆203向上移动以带动车身向上移动,实现对车身进行举升的目的。
在高度降低模式,每个液压集成控制模块100的油液从油液通道204流出,每个减振器200的下腔室2012的液压减小使得活塞202向下移动,活塞202向下移动带动活塞杆203向下移动。左前液压集成控制模块100的活塞杆203向下移 动、右前液压集成控制模块100的活塞杆203向下移动、左后液压集成控制模块100的活塞杆203向下移动和右后液压集成控制模块100的活塞杆203向下移动以带动车身向下移动,实现降低车身高度的目的。当液压悬架系统1000内的压力较大例如检测控制泵26出口的压力达到一定阈值(30MPa),回油阀27开启进行泄压以保护液压悬架系统1000处于正常的压力范围内,此时每个减振器200内的油液可以通过油路通道44和回油阀27流向储液器1内。
如果进行泄压后,液压悬架系统1000内的压力还是较大或者是运行过程中压力较大,则可以使用泄压阀31打开以进行泄压,以保证整个液压悬架系统1000的可靠工作。
在车辆行驶过程中,如果液压悬架系统1000的阻尼较大,则会使得车身较颠簸而影响舒适性,则可以通过阻尼调节阀8调节油路通道44的油液量以调整液压悬架系统1000的阻尼,当阻尼调节阀8的开度减小使得油路通道44可以流通的油液的量降低时,油路通道44内的一部分油液可以进入到阻尼蓄能器9能进行蓄能。当阻尼调节阀8的开度增大时,阻尼蓄能器9内的油液可进入到油路通道44内进行油液的补给,从而可以可靠调整液压悬架系统1000的阻尼。
当液压悬架系统1000的刚度较大降低车辆的舒适性时,可以控制刚度调节阀11打开,刚度调节蓄能器10内的油液可以补充到每个油路通道44内,从而可以减低液压悬架系统1000的刚度,可以增加液压悬架系统1000对颠簸的缓冲效果。
实施例2:
如图6所示,在该实施例中,与实施例1相比,根据本申请实施例的液压悬架系统1000还包括中央控制缸24。
中央控制缸24包括第二缸体240和移动件241,移动件241可移动地设在第二缸体240内且与第二缸体240配合以限定出第一腔室243、第二腔室244、第三腔室245和第四腔室246,第一腔室243、第二腔室244、第三腔室245和第四腔室246在移动件241的移动方向上顺序排布,第一腔室243和第二腔室244分布在移动件241的中间接触部2411的一侧,第三腔室245和第四腔室246分布在中间接触部2411的另一侧,中间接触部2411与第二缸体240的内壁移动配合。
左前液压集成控制模块100对应的油液通道204与第一腔室243和第二腔室244中的其中一个相连,右后液压集成控制模块100对应的油液通道204与第一腔室243和第二腔室244中的另一个相连。左后液压集成控制模块100对应的油液通道204与第三腔室245和第四腔室246中的其中一个相连,右前液压集成控制模块100对应的油液通道204与第三腔室245和第四腔室246中的另一个相连。下面为了便于描述,使得左前液压集成控制模块100对应的油液通道204与第一腔室243相连,右后液压集成控制模块100对应的油液通道204与第二腔室244相连,左后液压集成控制模块100对应的油液通道204与第三腔室245相连,右前液压集成控制模块100对应的油液通道204与第四腔室246相连为例进行原理描述。
具体而言,当车辆具有侧倾倾向时,例如左前液压集成控制模块100和左后液压集成控制模块100对应的活塞杆203被压缩,右前液压集成控制模块100和右后液压集成控制模块100对应的活塞杆203被拉伸,此时左前液压集成控制模块100对应的下腔室2012内的油液通过油液通道204排向第一腔室243,左后液压集成控制模块100对应的下腔室2012内的油液通过油液通道204排向第三腔室245,由于第一腔室243和第三腔室245位于中间接触部2411的两侧,第一腔室243内的油液对中间接触部2411的作用力的方向与第三腔室245对中间接触部2411的作用力的方向相反,两个方向相反的作用力相互抵消从而使得移动件241不移动,从而可以抑制左前液压集成控制模块100对应的活塞杆203和左后液压集成控制模块100对应的活塞杆203的移动,可以起到抑制侧倾的作用。
当车辆的左前轮遇到障碍物例如石头时,左前轮抬高使得左前液压集成控制模块100对应的压缩幅度大于左后液压集成控制模块100对应的压缩幅度时,从左前液压集成控制模块100排入到第一腔室243内的油液量大于从左后液压集成控制模块100排入到第三腔室245内的油液量,从而使得移动件241朝右移动挤压第三腔室245和第四腔室246,第三腔室245内的油液可以排入到左后液压集成控制模块100的下腔室2012内以使得活塞杆203上移,第四腔室246内的油液可以排入到右前液压集成控制模块100的下腔室2012内以使得活塞杆203上移,从而降低了左后轮和右前轮的离地风险,提高车辆的稳定性。
当然可以理解的是,上述几种情况仅仅是示例性描述,当车辆遇到其他工况例如右前轮抬高、左后轮抬高等,油液均根据上述的联动原理进行流动以避免车辆出现侧倾,这里就不对每个工况进行详细描述。
根据本申请实施例的车辆,包括根据本申请上述任一实施例所述的液压悬架系统1000。
在本申请的一些具体示例中,车辆可以具有娱乐模式,可以根据娱乐(电影,蹦迪,音乐)内容,改变迅速车辆姿态(降低或抬高车身),获得相应状态下所需的加速度。在本申请的一些示例中,车辆可以具有预碰撞悬架控制功能,与雷达/摄像头结合,当控制单元2000感知到预碰撞信号,主动控制前悬刚度增大,改变俯仰角从,优化摩擦阻力,减少制动 距离。在本申请的一些示例中,车辆可以具有悬架记忆功能,路况记忆功能,结合导航地图,在下次经过特定路段时自动切换之前的控制策略(手动调节记忆)。在本申请的一些示例中,车辆可以爆胎行驶,单个车轮爆胎之后,车辆仍能安全行驶一定距离。
在本申请的一些示例中,车辆上设置有控制键,车辆使用者可以通过控制键手动控制每个液压集成控制模块100中的控制阀12和刚度调节阀11的运行状态使得车辆在多个模式之间进行切换。
根据本申请实施例的车辆,可以根据路况等对车身的高度进行调整,例如在经过比较崎岖的山路时,可以进入举升模式,可以提高车辆的质心,提高车辆行驶的稳定性。当需要降低车身对行驶速度的影响,可以将进入高度降低模式,使得车辆的质心降低。当然可以理解的是,上述仅仅是示例性描述,还可以根据行驶过程中的实际需要调整车身的高度。
根据本申请实施例的车辆,包括多组独立控制的液压集成控制模块100,可以根据实际情况调整不同位置的车身的高度和悬架刚度,从而使得液压悬架系统1000可以满足不同需求,可以实现抗侧倾和抗俯仰等目的,可以提高车辆的操作稳定性,有效地解决了车辆舒适性与操纵稳定性之间的矛盾。通过将油路通道44集成在集成座32内,使得储液器1和蓄能器模块安装至集成座32以与油路通道44相连,从而使得油路通道44、储液器1和蓄能器模块集成在一起,使得整个液压集成控制模块100体积减小,且无复杂的油路进行连接,减少漏液风险。
在本申请的一些实施例中,车辆还包括:左前加速度传感器35、右前加速度传感器36、后车身加速度传感器37,左前加速度传感器35、右前加速度传感器36、后车身加速度传感器37分别与控制单元2000相连,控制单元2000根据左前加速度传感器35、右前加速度传感器36、后车身加速度传感器37的检测结果控制刚度调节阀11和控制阀12的开闭状态。从而可以实现实时根据实际情况调整不同位置的车身的高度和悬架刚度,有效地解决了车辆舒适性与操纵稳定性之间的矛盾,上述独立调节方式可以有效地提升汽车主动安全。
在本申请的一些实施例中,车辆还包括:左前水平高度传感器38、右前水平高度传感器39、左后水平高度传感器40和右后水平高度传感器41,左前水平高度传感器38、右前水平高度传感器39、左后水平高度传感器40和右后水平高度传感器41分别用于检测车身的相应位置的高度,左前水平高度传感器38、右前水平高度传感器39、左后水平高度传感器40和右后水平高度传感器41分别与控制单元2000相连,控制单元2000根据检测结果控制刚度调节阀11和控制阀12的开闭状态。从而可以实现实时根据实际情况调整不同位置的车身的高度,有效地解决了车辆舒适性与操纵稳定性之间的矛盾,上述独立调节方式可以有效地提升汽车主动安全。
在本申请的一些实施例中,当控制单元2000识别侧向加速度大于某一值(例如大于0.2g),侧倾时增大外侧阻尼,此操作会保持一定时间(例如保持0.5s),此时高度变化功能被抑制。上述的抗点头控制主要触发在制动时改变阻尼力,减轻点头。控制单元2000识别加速度大于某一值(例如大于0.2g),它将抑制高度变化,点头时增大前侧阻尼,增大前侧刚度。高度抑制功能将保持直到加速度低于某值(例如低于0.2g)并保持1秒。上述的抗抬头控制主要触发在加速时改变阻尼力,减抬点头,从而加速时增大后侧阻尼。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中, 对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种液压集成控制模块,其中,包括:
    集成座,所述集成座内设有油路通道,所述集成座的外周壁设有与所述油路通道相连的外部连接口,所述外部连接口适于连通减振器;
    储液器,所述储液器安装至所述集成座,所述储液器与所述油路通道连通;
    控制阀,所述控制阀串联在所述油路通道内以控制所述油路通道导通或截止;
    蓄能器模块,所述蓄能器模块安装至所述集成座,所述蓄能器模块与所述油路通道相连,所述蓄能器模块用于调整所述油路通道内的油液量。
  2. 根据权利要求1所述的液压集成控制模块,其中,所述集成座内设有第一支路,所述第一支路与所述油路通道相连;
    所述蓄能模块包括刚度调节蓄能器和刚度调节阀,所述刚度调节阀串联在所述第一支路上以导通或截止所述第一支路,所述刚度调节蓄能器安装至所述集成座且与所述第一支路连通。
  3. 根据权利要求2所述的液压集成控制模块,其中,所述刚度调节蓄能器安装在所述储液器在所述集成座上的安装平面上。
  4. 根据权利要求1-3中任一项所述的液压集成控制模块,其中,所述蓄能器模块包括阻尼调节阀和阻尼蓄能器,所述阻尼调节阀串联至所述油路通道以调整所述油路通道的阻尼;
    所述阻尼蓄能器安装至所述集成座且与所述油路通道连通。
  5. 根据权利要求4所述的液压集成控制模块,其中,所述阻尼蓄能器在所述集成座上的安装平面与所述储液器在所述集成座上的安装平面垂直,所述阻尼蓄能器及所述阻尼调节阀位于同一安装平面上。
  6. 根据权利要求1-5中任一项所述的液压集成控制模块,其中,所述集成座内设有第三支路和第四支路,所述第三支路分别与所述油路通道和所述储液器的出液口相连,所述第四支路分别与所述油路通道和所述储液器的进液口相连,所述第三支路上设有控制泵以将所述储液器内的油液导向所述油路通道。
  7. 根据权利要求6所述的液压集成控制模块,其中,所述第四支路上串联有用于导通或截止其的回油阀。
  8. 根据权利要求6或7所述的液压集成控制模块,其中,所述第三支路上设有单向阀,所述单向阀用于将油液单向导通至所述油路通道。
  9. 根据权利要求6-8中任一项所述的液压集成控制模块,其中,所述第三支路上设有稳压蓄能器,所述稳压蓄能器安装在所述集成座上,且安装在所述储液器在所述集成座上的安装平面上。
  10. 根据权利要求1-9中任一项所述的液压集成控制模块,其中,还包括信号接收器,所述信号接收器设在所述集成座上,所述信号接收器与所述控制阀配合以控制所述控制阀的运行状态。
  11. 根据权利要求10所述的液压集成控制模块,其中,所述控制阀为电磁阀,所述信号接收器为线圈。
  12. 一种液压悬架系统,其中,包括:
    多个液压集成控制模块,所述液压集成控制模块为根据权利要求1-11中任一项所述的液压集成控制模块;
    多个减振器,所述减振器包括第一缸体、活塞及活塞杆,所述活塞位于所述第一缸体内以与所述第一缸体配合限定出上腔室和下腔室,所述活塞杆与活塞连接且所述活塞杆的上端适于与车身连接,所述多个减振器与多个所述液压集成控制模块一一对应设置,每个所述集成座的所述外部连接口与所述下腔室连通。
  13. 一种车辆,其中,包括:
    车身和控制单元;
    液压悬架系统,所述液压悬架系统为根据权利要求12所述的液压悬架系统,每个所述活塞杆的上端与所述车身相连,多个液压集成控制模块的所述控制阀分别与所述车辆的控制单元相连。
PCT/CN2022/144182 2021-12-30 2022-12-30 液压集成控制模块及具有其的液压悬架系统、车辆 WO2023125983A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2022424223A AU2022424223A1 (en) 2021-12-30 2022-12-30 Hydraulic integrated control module, hydraulic suspension system having hydraulic integrated control module, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111651770.9A CN116409106A (zh) 2021-12-30 2021-12-30 液压集成控制模块及具有其的液压悬架系统、车辆
CN202111651770.9 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023125983A1 true WO2023125983A1 (zh) 2023-07-06

Family

ID=86998213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/144182 WO2023125983A1 (zh) 2021-12-30 2022-12-30 液压集成控制模块及具有其的液压悬架系统、车辆

Country Status (3)

Country Link
CN (1) CN116409106A (zh)
AU (1) AU2022424223A1 (zh)
WO (1) WO2023125983A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0495442A1 (de) * 1991-01-17 1992-07-22 HEMSCHEIDT FAHRWERKTECHNIK GmbH & Co. Hydropneumatisches Federungssystem insbesondere für KFZ-Fahrerkabinen
JPH1086624A (ja) * 1996-09-19 1998-04-07 Mazda Motor Corp 車高調整装置
JP2007161077A (ja) * 2005-12-13 2007-06-28 Toyota Motor Corp 車高調整装置および液圧源制御装置
CN201272219Y (zh) * 2008-06-30 2009-07-15 徐州重型机械有限公司 油气悬架控制回路、多轴车辆油气悬架系统及起重机
CN101612872A (zh) * 2009-02-16 2009-12-30 郭孔辉 悬架举升与载荷调节阀及控制系统
CN104442262A (zh) * 2014-06-25 2015-03-25 常州万安汽车部件科技有限公司 车辆悬架系统
CN110541861A (zh) * 2018-05-29 2019-12-06 Fsp流动系统合伙控股股份公司 液压系统、液压单元、车辆、方法和用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2708034Y (zh) * 2004-07-07 2005-07-06 重庆大学 车辆悬架减振器
JP2008247209A (ja) * 2007-03-30 2008-10-16 Toyota Motor Corp 車高制御装置
CN102632803B (zh) * 2012-05-03 2015-06-10 德州学院 新型液压馈能减振系统
CN106427942A (zh) * 2016-10-28 2017-02-22 江苏理工学院 一种汽车轮边分布式制动系统自驱动式制动执行机构
CN112550445B (zh) * 2020-01-10 2022-07-01 北京航天发射技术研究所 一种液压助力转向系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0495442A1 (de) * 1991-01-17 1992-07-22 HEMSCHEIDT FAHRWERKTECHNIK GmbH & Co. Hydropneumatisches Federungssystem insbesondere für KFZ-Fahrerkabinen
JPH1086624A (ja) * 1996-09-19 1998-04-07 Mazda Motor Corp 車高調整装置
JP2007161077A (ja) * 2005-12-13 2007-06-28 Toyota Motor Corp 車高調整装置および液圧源制御装置
CN201272219Y (zh) * 2008-06-30 2009-07-15 徐州重型机械有限公司 油气悬架控制回路、多轴车辆油气悬架系统及起重机
CN101612872A (zh) * 2009-02-16 2009-12-30 郭孔辉 悬架举升与载荷调节阀及控制系统
CN104442262A (zh) * 2014-06-25 2015-03-25 常州万安汽车部件科技有限公司 车辆悬架系统
CN110541861A (zh) * 2018-05-29 2019-12-06 Fsp流动系统合伙控股股份公司 液压系统、液压单元、车辆、方法和用途

Also Published As

Publication number Publication date
AU2022424223A1 (en) 2024-07-11
CN116409106A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US11685221B2 (en) Load dependent damper for a vehicle suspension system
US8075002B1 (en) Semi-active suspension system
EP1757473A2 (en) Vehicle suspension spring system
WO2023125961A1 (zh) 液压式主动悬架及具有其的车辆
AU616141B2 (en) Suspension system for vehicles
CN217598271U (zh) 液压悬架系统及具有其的车辆
US7377523B2 (en) Hydraulic suspension with a lock-out mechanism for an off-highway vehicle
CN113291114B (zh) 一种半主动防侧倾结构及控制方法
WO2023125983A1 (zh) 液压集成控制模块及具有其的液压悬架系统、车辆
GB2547479A (en) Suspension assembly for a vehicle
CN212775336U (zh) 一种车用液压减震平衡系统及汽车底盘总成
KR20240125670A (ko) 유압 통합 제어 모듈, 유압 통합 제어 모듈을 구비한 유압 서스펜션 시스템, 및 차량
WO2023125949A1 (zh) 液压悬架装置及具有其的液压悬架系统、车辆
WO2023125984A1 (zh) 液压悬架系统及具有其的车辆
JP2796013B2 (ja) 自動車用の受動懸架装置
CN116409099A (zh) 液压悬架系统及具有其的车辆
CN221340113U (zh) 悬架系统和车辆
GB2378231A (en) A damper for a vehicle suspension with externally mounted semi-active system
WO2024127709A1 (ja) 緩衝器
WO2024087053A1 (zh) 悬架系统及车辆
CN116691256A (zh) 悬架系统和车辆
CN115450968A (zh) 一种主动式液压升降控制系统
US9944147B1 (en) Combination shock and small deflection mitigator with tire wall control in cornering
CN115042573A (zh) 复合式悬架系统及车辆
JP2532004Y2 (ja) 減衰力可変バルブ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915230

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024012412

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2022424223

Country of ref document: AU

Ref document number: AU2022424223

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 3242425

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022915230

Country of ref document: EP

Effective date: 20240730