WO2023125826A1 - 双向充电管理系统及其电池监管设备 - Google Patents

双向充电管理系统及其电池监管设备 Download PDF

Info

Publication number
WO2023125826A1
WO2023125826A1 PCT/CN2022/143465 CN2022143465W WO2023125826A1 WO 2023125826 A1 WO2023125826 A1 WO 2023125826A1 CN 2022143465 W CN2022143465 W CN 2022143465W WO 2023125826 A1 WO2023125826 A1 WO 2023125826A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
common
power supply
battery
electrically connected
Prior art date
Application number
PCT/CN2022/143465
Other languages
English (en)
French (fr)
Inventor
刘炳
张建平
Original Assignee
奥动新能源汽车科技有限公司
上海电巴新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奥动新能源汽车科技有限公司, 上海电巴新能源科技有限公司 filed Critical 奥动新能源汽车科技有限公司
Publication of WO2023125826A1 publication Critical patent/WO2023125826A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to the technical field of battery management, in particular to a bidirectional charging management system and battery monitoring equipment.
  • the technical problem to be solved by the present invention is to overcome the defects in the charging system in the prior art that the charging system cannot charge bidirectionally, or the circuit structure is complicated, and the cost is high, and the purpose is to provide a bidirectional charging management system and its battery monitoring equipment.
  • the present invention provides a battery monitoring device.
  • the battery monitoring device is applied in a substation or an energy storage station.
  • the battery monitoring device includes at least one battery pack management unit, and each battery pack corresponds to one of the battery pack management units;
  • the battery pack management unit includes a common-mode suppression circuit, a first power supply module, and a first control module electrically connected in sequence, and the common-mode suppression circuit is electrically connected to an external AC power supply;
  • the common mode suppression circuit includes several EMI power filters (electromagnetic interference power filters);
  • the first power supply module is used to supply power to the first control module
  • the common-mode suppression circuit is used to block the common-mode current formed in the corresponding circuit when the first power supply module supplies power to the first control module.
  • a plurality of EMI power filters are connected in the following manner:
  • all of the multiple EMI power filters can be connected in series, all in parallel, or partly in series and partly in parallel, so as to meet the design requirements of different circuit structures.
  • the specific connection method and the specific number of multiple EMI power filters can be designed or adjusted according to actual needs; it can be flexibly designed and adjusted according to different actual needs, and can meet higher requirements for battery management scenarios.
  • the common-mode suppression circuit also includes several isolation transformers, and the several isolation transformers and the several EMI power filters are connected in the following manner:
  • the first control module includes a charge controller and a BMS (battery management system) battery management module;
  • BMS battery management system
  • the first power module includes a first power unit and a second power unit
  • the first power supply unit is electrically connected to the charge controller, and the first power supply unit is used to provide a first set DC voltage to the charge controller;
  • the second power supply unit is electrically connected to the BMS battery management module, and the second power supply unit is used to provide a second set DC voltage to the BMS battery management module.
  • Corresponding power supply units are set up for the charge controller and BMS battery management module respectively to realize the independent power supply for each battery, and at the same time meet the charging requirements of the respective set DC voltages of the charge controller and BMS battery management module, and ensure The rationality and safety of charging.
  • the first power supply unit is a first rectifier
  • the second power supply unit is a second rectifier
  • the input end of the common mode suppression circuit is electrically connected to the external AC power supply
  • the output end of the common mode suppression circuit is electrically connected to the input end of the first rectifier
  • the first rectifier is used to connect the common mode Converting the AC voltage output by the mode suppression circuit into the first set DC voltage, and using the first set DC voltage to supply power to the charge controller
  • the input end of the second rectifier is electrically connected to the output end of the common-mode suppression circuit, and the second rectifier is used to convert the AC voltage output by the common-mode suppression circuit into the second set DC voltage, And use the second set DC voltage to supply power to the BMS battery management module.
  • the common-mode suppression circuit is set on the main circuit directly connected to the external AC power supply, so as to realize that in the process of the DC voltage converter supplying power to the BMS battery management module, the common-mode suppression circuit is used to block the power generated in the circuit in time. Common mode current, to achieve the effect of timely suppression.
  • the battery pack management unit further includes a reset switch
  • the reset switch is electrically connected between the second power supply unit and the BMS battery management module, and is electrically connected to the charging controller.
  • the reset switch is used to perform a reset operation under set conditions. For example, when an abnormal situation occurs, it is reset in time to restore the circuit to a normal operating state, so as to ensure the stability of the charging process.
  • the battery pack management unit further includes a second common-mode suppression circuit.
  • the present invention also provides a two-way charging management system, which includes the above-mentioned battery monitoring device.
  • the two-way charging management system further includes a background service device, and a charger connected in communication with the background service device and the battery monitoring device, respectively.
  • the above-mentioned battery monitoring equipment is integrated in the bidirectional charging management system, and the bidirectional charging management system is built through the battery monitoring equipment, the charger, and the background service device with a common mode suppression circuit to ensure the bidirectional charging of the battery pack.
  • the timely and effective suppression of the common-mode current in the corresponding circuit during the process effectively improves the overall operating performance and efficiency of the bidirectional charging management system.
  • a common-mode suppression loop is integrated in the background service device.
  • the common-mode suppression loop includes a differential operational amplifier circuit, a magnetic isolation amplifier, a common-mode magnetic loop or an optocoupler isolation.
  • a common-mode suppression circuit is set in the background service device to further ensure the suppression effect of the common-mode current in the corresponding circuit during the bidirectional charging of the battery pack, effectively improving the overall operating performance of the bidirectional charging management system and efficiency.
  • the charger includes a rectifier unit, a second control module, several second power modules and battery packs, each of the battery packs corresponds to one second power module;
  • the input end of the rectification unit is electrically connected to an external AC power supply
  • the output end of the second power supply module is electrically connected to the positive electrode corresponding to the battery pack
  • the output end of the rectification unit, each of the second power supply modules The input end of the battery pack and the corresponding negative pole of the battery pack are both connected to the common DC bus;
  • the rectification unit is used to rectify the externally input AC voltage to obtain a rectified voltage, and output the rectified voltage to the common DC bus;
  • the second power module is used to obtain the rectified voltage from the common DC bus, convert the rectified voltage into a third set DC voltage, and supply the corresponding battery pack with the three set DC voltages. powered by;
  • the second control module is configured to generate a first trigger instruction and send it to the second power module after receiving the external power reverse instruction;
  • the second control module is configured to generate a second trigger instruction and send it to the Rectifier unit;
  • the second power supply module is used to enter a reverse discharge state according to the first trigger instruction, and the rectifier unit is used to adjust the power angle to a set position according to the second trigger instruction, so as to rectify the charger from The state switches to the reverse state.
  • the rectification unit is an AC/DC (alternating current to direct current) voltage converter
  • the AC/DC voltage converter adopts PWM rectification, 24-pulse rectification, or a combination of Vienna rectification and PFC rectification.
  • the second control module is used to obtain the fault parameters reported by the battery monitoring device; wherein, the fault parameters include the fault type and the number of occurrences corresponding to the same fault type;
  • the second control module is also used to determine that electromagnetic interference occurs between the battery monitoring device and the charger when the number of occurrences corresponding to the same fault type satisfies a preset condition within a set time period, and generate a third trigger Instructions are sent to the battery monitoring device to drive the battery monitoring device to power off or power on again to reset.
  • the second power module is a non-isolated DC/DC converter.
  • the power transistor of the second power module is a silicon carbide MOS transistor (Metal-Oxide Semiconductor Field Effect Transistor).
  • the second power module uses a silicon carbide MOS tube (SiC MOSFET) as the power tube.
  • SiC MOSFET silicon carbide MOS tube
  • the on-resistance and switching loss of the silicon carbide MOS tube are greatly reduced, which can Suitable for higher operating frequency, and has better high temperature stability.
  • the first power supply module supplies power to the first control module. Cut off the common-mode current formed in the corresponding circuit to achieve a good common-mode suppression effect, avoiding the interference effect of the common-mode current on the circuit or other devices, so that when each battery pack is powered independently, each battery pack is guaranteed Control the timeliness, rationality and effectiveness of management.
  • the above-mentioned battery monitoring equipment is integrated in the bidirectional charging management system, and the bidirectional charging management system is built through the battery monitoring equipment, the charger, and the background service device with a common mode suppression circuit to ensure that during the bidirectional charging of the battery pack Timely and effective suppression of the common-mode current in the corresponding circuit; at the same time, by improving the circuit design of the charger, it can support the bidirectional charging function, and the circuit structure is simple, low in cost, and high in efficiency, which effectively improves the overall bidirectional charging management system. Operating performance and efficiency.
  • FIG. 1 is a schematic structural diagram of a battery monitoring device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a battery monitoring device according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of a first structure of a battery pack management unit according to Embodiment 2 of the present invention.
  • FIG. 4 is a second structural schematic diagram of the battery pack management unit according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic diagram of a first structure of a bidirectional charging management system according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic diagram of a second structure of a bidirectional charging management system according to Embodiment 3 of the present invention.
  • FIG. 7 is a schematic diagram of a third structure of a bidirectional charging management system according to Embodiment 3 of the present invention.
  • the battery monitoring device in this embodiment is applied in a power station or an energy storage station.
  • the battery monitoring device 1 in this embodiment includes at least one battery pack management unit 2 , and each battery pack corresponds to a battery pack management unit 2 .
  • the battery pack management unit 2 includes a common-mode suppression circuit 3, a first power supply module 4 and a first control module 5 that are electrically connected in sequence, and the common-mode suppression circuit 3 is electrically connected to an external AC power supply; wherein, the common-mode suppression circuit 3 includes several EMI power filter6.
  • the first power supply module 4 is used to supply power to the first control module 5;
  • the common-mode suppression circuit 3 is used to block the common-mode current formed in the corresponding circuit when the first power supply module 4 supplies power to the first control module 5 .
  • a common-mode suppression circuit in the battery monitoring device for example, adding several EMI power filters with a high common-mode rejection ratio at the AC power inlet, to realize the process of supplying power to the first control module by the first power supply module
  • the common-mode current formed in the corresponding circuit is blocked in time to achieve a good common-mode suppression effect, avoiding the interference of the common-mode current to the circuit or other devices, so that when each battery pack is powered independently, it is guaranteed.
  • the battery monitoring device 1 in this embodiment is a further improvement on Embodiment 1, specifically:
  • the common mode suppression circuit 3 includes a plurality of EMI power filters 6, a plurality of EMI power filters 6 are connected in the following manner:
  • the common mode rejection ratio of the EMI power filter used is higher than 25dB to achieve a good suppression effect on the common mode current on the circuit
  • Multiple EMI power filters 6 can be all connected in series, all in parallel, or partially connected in series and partially connected in parallel, so as to meet the design requirements of different circuit structures.
  • the specific connection method and the specific number of multiple EMI power filters 6 can be designed or adjusted according to actual needs; this enables flexible design and adjustment according to different actual needs, and can meet higher requirements for battery management scenarios.
  • the common-mode suppression circuit corresponds to an EMI power filter, it can achieve the effect of blocking the common-mode current formed in the corresponding circuit. At the same time, the hardware cost is low and the circuit structure is relatively simplified;
  • the common-mode suppression circuit corresponds to multiple EMI power filters, it can achieve a more comprehensive, timely and effective effect of blocking the common-mode current formed in the corresponding circuit. At this time, the hardware cost is relatively high, and the circuit structure Relatively more complicated.
  • the common mode suppression circuit may be designed, configured or adjusted according to actual requirements.
  • the common-mode suppression circuit 3 also includes several isolation transformers 7, and several isolation transformers 7 and several EMI power filters 6 are connected in the following manner:
  • common-mode suppression circuits 3 of several EMI power filters 6 and isolation transformers 7 they can all be connected in series, all in parallel, or partly in series and partly in parallel, so as to meet the design requirements of different circuit structures; Designed and adjusted to meet higher requirements for battery management scenarios.
  • connection method the specific number of EMI power filters and isolation transformers can be designed or adjusted according to actual needs.
  • the first control module 5 includes a charge controller 8 and a BMS battery management module 9;
  • the first power supply module 4 includes a first power supply unit 10 and a second power supply unit 11;
  • the first power supply unit 10 is electrically connected to the charge controller 8, and the first power supply unit 10 is used to provide the charge controller 8 with a first set DC voltage;
  • the second power supply unit 11 is electrically connected to the BMS battery management module 9 , and the second power supply unit 11 is used to provide the BMS battery management module 9 with a second set DC voltage.
  • Corresponding power supply units are respectively provided for the charging controller 8 and the BMS battery management module 9 to realize the independent power supply for each battery while meeting the charging requirements of the DC voltages corresponding to the charging controller 8 and the BMS battery management module 9 respectively. , and ensure the rationality and safety of charging.
  • the first power supply unit 10 is a first rectifier
  • the second power supply unit 11 is a second rectifier
  • the input end of the common mode suppression circuit 3 is electrically connected to an external AC power supply, the output end of the common mode suppression circuit 3 is electrically connected to the input end of the first rectifier, and the first rectifier is used to convert the AC voltage output by the common mode suppression circuit 3 into The first set DC voltage, and using the first set DC voltage to supply power to the charge controller 8;
  • the input end of the second rectifier is electrically connected to the output end of the common mode suppression circuit 3, and the second rectifier is used for converting the AC voltage output by the common mode suppression circuit 3 into a second set DC voltage, and using the second set DC voltage to The BMS battery management module 9 supplies power.
  • the power supply circuit of each battery pack adopts an independent DC/DC converter to obtain an isolated 12V power supply.
  • the 12V power supply needs to control the capacitance value between the primary and secondary sides, and ensure that the common mode rejection ratio of the circuit where the common mode rejection circuit is located is high. 25dB to achieve good suppression of common-mode currents on this circuit.
  • both the first rectifier and the second rectifier are AC/DC converters, the first rectifier outputs 24V DC voltage to be output to the charging controller; the second rectifier outputs 12V DC voltage to output to the BMS battery management module.
  • the common-mode suppression circuit 3 is arranged on the main circuit directly connected to the external AC power supply, so as to realize that the common-mode suppression circuit 3 is used to timely block the common Mode current, to achieve the effect of timely suppression.
  • the battery pack management unit 2 further includes a reset switch 12;
  • the reset switch 12 is electrically connected between the second power supply unit 11 and the BMS battery management module 9 , and is electrically connected to the charge controller 8 .
  • the reset switch 12 is used to perform a reset operation under set conditions, such as when an abnormal situation occurs, to reset in time to restore the circuit to a normal operating state, so as to ensure the stability of the charging process.
  • a common-mode suppression circuit in the battery monitoring equipment, such as adding an EMI power filter with a high common-mode rejection ratio, several isolation transformers, etc.
  • the common-mode current formed in the corresponding circuit is blocked in time to achieve a good common-mode suppression effect, avoiding the interference of the common-mode current to the circuit or other devices, so that when each battery pack is independently powered , to ensure the timeliness, rationality and effectiveness of the control and management of each battery pack.
  • the two-way charging management system of this embodiment includes the battery monitoring device 1 in Embodiment 1 or 2 (corresponding to the secondary side in Figure 6), and also includes a background service device 13, And the charger 14 (corresponding to the primary side in FIG. 6 ) that is communicatively connected with the background service device 13 and the battery monitoring device 1 respectively.
  • the background service device 13 is integrated with a common mode suppression loop 15 .
  • the common-mode suppression loop 15 includes, but is not limited to, a differential operational amplifier circuit, a magnetic isolation amplifier, a common-mode magnetic loop, or an optocoupler isolation.
  • the charger 14 includes a rectifying unit 16, a second control module 17, several second power supply modules 18 and battery packs 19, each battery pack 19 corresponds to a second power supply module 18, and several second power supply modules 18 The two power supply modules 18 are connected in parallel.
  • the input terminal of the rectifying unit 16 is electrically connected to an external AC power supply (A in FIG.
  • the input terminals of the two power supply modules 18 and the negative poles of the corresponding battery packs 19 are all connected to the common DC bus (B in Fig. 7); in addition, each branch circuit in Fig. 7 corresponds to a battery pack 19, and each battery pack 19
  • the charging port of the battery pack is electrically connected to the common DC bus, and how to set the charging port of the specific battery pack on the common DC bus can be connected according to actual design requirements.
  • the rectification unit 16 is used to rectify the externally input AC voltage to obtain a rectified voltage, and output the rectified voltage to the common DC bus;
  • the second power supply module 18 is used to obtain the rectified voltage from the common DC bus, and convert the rectified voltage into a Three setting the DC voltage, and using the three setting DC voltage to supply power to the corresponding battery pack 19;
  • the second control module 17 is used to generate a first trigger instruction and send it to the second power supply module 18 after receiving the external power reverse instruction;
  • the second control module 17 is used to generate a second trigger command and send it to the rectification unit 16 when receiving an external reverse power transmission command and determining that all battery packs 19 on the same common DC bus are in a discharging state;
  • the second power module 18 is used to enter the reverse discharge state according to the first trigger command, and the rectifier unit 16 is used to adjust the power angle to a set position according to the second trigger command, so as to switch the charger 14 from the rectification state to the inverter state.
  • the second power supply module 18 is a non-isolated DC/DC, for example, converts an input voltage of 800V to a DC voltage less than 750V;
  • the rectification unit 16 is an AC/DC voltage converter, and the AC/DC voltage converter can adopt: PWM rectification, 24-pulse rectification, or a combination of Vienna rectification and PFC rectification.
  • the front-end rectifier unit when supplying energy in the forward direction, is responsible for stabilizing the voltage in the public DC bus, and the second power module at the rear end operates in a constant current mode, and is responsible for providing suitable power for the battery according to the requirements of the BMS and the control system of the power station.
  • the charging current when controlling the reverse energy supply of the second power module, the rectifier adjusts the power angle to a negative value according to the control command, so that the circuit function enters the inverter state from the rectification state, and realizes the improved design of the circuit of the charger to support two-way Charging function, capable of automatic, flexible and precise switching control of bidirectional charging of battery packs.
  • the controller When the external power grid or the customer has an emergency demand, the controller will control the DC/DC of the battery to enter the reverse discharge state after receiving the corresponding external command; other batteries on the same common DC bus
  • the rectifier (such as a PWM rectifier) will automatically adjust the power angle to a negative value in time according to the command, enter the inverter state from the rectification state, and send the power back to the grid.
  • the power transistor of the second power module is a silicon carbide MOS transistor.
  • the second power module uses silicon carbide MOS tube (SiC MOSFET) as the power tube.
  • SiC MOSFET silicon carbide MOS tube
  • the on-resistance and switching loss of the silicon carbide MOS tube are greatly reduced, and can be applied to higher operating frequency, and has better high temperature stability.
  • the second control module 17 is used to obtain the fault parameters reported by the battery monitoring device 1; wherein, the fault parameters include the fault type, the number of occurrences corresponding to the same fault type, the time of occurrence of the fault, the duration of the fault, and the like.
  • the second control module 17 is also used to determine that electromagnetic interference occurs between the battery monitoring device 1 and the charger 14 when the number of occurrences corresponding to the same fault type meets the preset condition within the set time period, generate a third trigger command and send it To the battery monitoring device 1, to drive the battery monitoring device 1 to power off or power on again to reset.
  • the BMS When it is detected that the BMS reports a software fault related to the charging structure, battery insulation detection, etc. (such as a typical fault type: low battery insulation resistance), and the number of occurrences exceeds the acceptable set number of times: for example, occurs within 24 hours If the frequency does not exceed 5 times and does not occur repeatedly within 5 minutes, it can be determined that electromagnetic interference has occurred in the circuit. At this time, the charger will power off and power on the battery monitoring device 1 to ensure that it returns to normal work. state.
  • a software fault related to the charging structure, battery insulation detection, etc. such as a typical fault type: low battery insulation resistance
  • a step-down transformer is provided at the connection between the charger 14 and the external grid, and the neutral point of the step-down transformer is not grounded to form a floating system. By setting the step-down transformer to ensure the safety and reliability of the operation of the entire charging system.
  • DC circuit breakers or fuses should be installed on the AC/DC DC output and each DC/DC input side to achieve the effect of protecting the circuit.
  • an independent on-line ground-to-ground insulation detection device needs to be specially installed on the side of the common DC bus. Since the negative poles of all the common DC buses are directly connected together, the insulation of any battery All faults will be detected as system insulation faults.
  • a common-mode suppression circuit in the battery monitoring equipment, for example, adding an isolation transformer at the inlet of the AC power supply, an EMI power filter with a high common-mode rejection ratio, etc., to realize the transmission from the first power supply module to the first control module During the power supply process, the common-mode current formed in the corresponding circuit is blocked in time to achieve a good common-mode suppression effect, avoiding the interference of the common-mode current to the circuit or other devices, so that when each battery pack is independently powered, it is guaranteed It ensures the timeliness, rationality and effectiveness of the control and management of each battery pack.
  • the above-mentioned battery monitoring equipment is integrated in the bidirectional charging management system, and the bidirectional charging management system is built through the battery monitoring equipment, the charger, and the background service device with a common mode suppression circuit to ensure that during the bidirectional charging of the battery pack Timely and effective suppression of the common-mode current in the corresponding circuit; at the same time, by improving the circuit design of the charger, it can support the bidirectional charging function, effectively improving the overall operating performance and efficiency of the bidirectional charging management system.
  • the charging efficiency of the above-mentioned two-way charging management system can be significantly improved (the specific improvement efficiency depends on the device type used by the charger and rectifier), and the cost can be significantly reduced.

Abstract

本发明公开了一种双向充电管理系统及其电池监管设备,该电池监管设备包括至少一个电池包管理单元,每个电池包对应一个电池包管理单元;电池包管理单元包括共模抑制电路、第一电源模块和第一控制模块,共模抑制电路与外接交流电源电连接;共模抑制电路包括若干个EMI电源滤波器,第一电源模块用于向第一控制模块供电;共模抑制电路用于在第一电源模块向第一控制模块供电过程中,阻断对应电路中形成的共模电流。本发明通过在电池监管设备中增设共模抑制电路,例如在交流电源入口增加隔离变压器、EMI电源滤波器等,以实现在第一电源模块向第一控制模块供电过程中,及时阻断对应电路中形成的共模电流,达到良好的共模抑制效果。

Description

双向充电管理系统及其电池监管设备
本申请要求申请日为2021/12/30的中国专利申请2021116592273的优先权,以及要求申请日为2022/12/26的中国专利申请2022116803230的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及电池管理技术领域,特别涉及一种双向充电管理系统及其电池监管设备。
背景技术
在电动汽车换电站中,对电池充电大部分采用和常规充电桩相同的方式进行,基于的拓扑结构为维也纳整流/PFC(功率因数校正)并结合单向隔离型DC/DC(直流转直流),这种电路对前级变压器接地形式没有要求,对车和电网的适用性都很强;但是,该方式存在效率较低,结构复杂等缺点,同时受制于拓扑结构,这种方式只能实现功率的单向流动,也即可以通过电网向汽车电池进行充电,但是无法实现双向流动,或从电池向电网倒送电量。在该电路结构下,若要实现双向充电,除了要把前级维也纳整流改为双向PWM(脉冲宽度调制)整流之外,还需要将后端的DC/DC改为双向,而现有改进后的电路结构存在控器件数量大幅度上升,导致成本成倍增加等问题。
发明内容
本发明要解决的技术问题是为了克服现有技术中充电系统存在要么无法双向充电、要么电路结构复杂、成本较高等缺陷,目的在于提供一种双向充电管理系统及其电池监管设备。
本发明是通过下述技术方案来解决上述技术问题:
本发明提供一种电池监管设备,所述电池监管设备应用在换电站或储能站中,所述电池监管设备包括至少一个电池包管理单元,每个电池包对应一个所述电池包管理单元;
所述电池包管理单元包括依次电连接的共模抑制电路、第一电源模块和第一控制模块,所述共模抑制电路与外接交流电源电连接;
其中,所述共模抑制电路包括若干个EMI电源滤波器(电磁干扰电源滤波器);
所述第一电源模块用于向所述第一控制模块供电;
所述共模抑制电路用于在所述第一电源模块向所述第一控制模块供电过程中,阻断 对应电路中形成的共模电流。
本方案中,通过在电池监管设备中增设共模抑制电路,例如在交流电源入口增加高共模抑制比的EMI电源滤波器,以实现在第一电源模块向第一控制模块供电过程中,及时阻断对应电路中形成的共模电流,达到良好的共模抑制效果,避免了共模电流对电路或其他器件造成干扰影响,使得在对每个电池包独立供电时,保证了对每个电池包控制管理的及时性、合理性和有效性。
较佳地,在所述共模抑制电路包括多个所述EMI电源滤波器时,多个所述EMI电源滤波器采用如下方式连接:
全部依次串联电连接、全部并联电连接、或一部分串联电连接且剩余部分并联电连接;其中,所述EMI电源滤波器的共模抑制比大于设定阈值。
本方案中,对于多个EMI电源滤波器可以全部串联、全部并联,或者部分串联部分并联,以满足不同的电路结构的设计需求。具体采用何种连接方式、多个EMI电源滤波器的具体数量均可以根据实际需求进行设计或调整;使得可以根据不同的实际需求进行灵活设计与调整,能够满足更高要求的电池管理场景。
较佳地,所述共模抑制电路还包括若干个隔离变压器,若干个所述隔离变压器和若干个所述EMI电源滤波器之间采用如下方式连接:
全部依次串联电连接、全部并联电连接、或一部分串联电连接且剩余部分并联电连接;其中,所述EMI电源滤波器的共模抑制比大于设定阈值。
本方案中,对于若干EMI电源滤波器和隔离变压器的共模抑制电路,可以全部串联、全部并联,或者部分串联部分并联,以满足不同的电路结构的设计需求;使得可以根据不同的实际需求进行灵活设计与调整,能够满足更高要求的电池管理场景。另外,在电路中同时考虑隔离变压器和EMI电源滤波器两种类别的滤波器,进一步地提高了对电路中形成的共模电流的抑制效果。
较佳地,所述第一控制模块包括充电控制器和BMS(电池管理系统)电池管理模块;
所述第一电源模块包括第一电源单元和第二电源单元;
所述第一电源单元与所述充电控制器电连接,所述第一电源单元用于向所述充电控制器提供第一设定直流电压;
所述第二电源单元与所述BMS电池管理模块电连接,所述第二电源单元用于向所述BMS电池管理模块提供第二设定直流电压。
对充电控制器和BMS电池管理模块分别设置对应的供电单元,实现对每个电池的独立供电的同时,满足充电控制器和BMS电池管理模块各自对应的设定直流电压的充电要 求,且保证了充电的合理性和安全性。
较佳地,所述第一电源单元为第一整流器,所述第二电源单元为第二整流器;
所述共模抑制电路的输入端与所述外接交流电源电连接,所述共模抑制电路的输出端与所述第一整流器的输入端电连接,所述第一整流器用于将所述共模抑制电路输出的交流电压转换为所述第一设定直流电压,并采用所述第一设定直流电压向所述充电控制器供电;
所述第二整流器的输入端与所述共模抑制电路的输出端电连接,所述第二整流器用于将所述共模抑制电路输出的交流电压转换为所述第二设定直流电压,并采用所述第二设定直流电压向所述BMS电池管理模块供电。
本方案中,将共模抑制电路设置在直接与外接交流电源的主电路上,以实现在直流电压转换器向BMS电池管理模块供电过程中,采用共模抑制电路及时阻断该电路中形成的共模电流,达到及时抑制的效果。
较佳地,所述电池包管理单元还包括复位开关;
所述复位开关电连接在所述第二电源单元与所述BMS电池管理模块之间,且与所述充电控制器电连接。
本方案中,该复位开关用于在设定条件下执行复位操作,如在发生异常情况时,及时复位以使得电路恢复至正常运行状态,以保证充电过程的稳定性。较佳地,所述电池包管理单元还包括第二共模抑制电路。
本发明还提供一种双向充电管理系统,所述双向充电管理系统包括上述的电池监管设备。
较佳地,所述双向充电管理系统还包括后台服务装置,以及分别与所述后台服务装置和所述电池监管设备通信连接的充电机。
本方案中,在双向充电管理系统中集成上述的电池监管设备,通过电池监管设备、充电机,以及设置有共模抑制回路的后台服务装置搭建该双向充电管理系统,保证在对电池包双向充电过程中对应电路中的共模电流的及时有效抑制,有效地提升了双向充电管理系统的整体运行性能与效率。
较佳地,所述后台服务装置中集成设置有共模抑制回路。
较佳地,所述共模抑制回路包括差分运放电路、磁隔离放大器、共模磁环或光耦隔离。
本方案中,在后台服务装置中设置共模抑制回路,以进一步地保证在对电池包双向充电过程中对应电路中的共模电流的抑制效果,有效地提升了双向充电管理系统的整体 运行性能与效率。
较佳地,所述充电机包括整流单元、第二控制模块、若干个第二电源模块和电池包,每个所述电池包对应一个所述第二电源模块;
所述整流单元的输入端与外接交流电源电连接,所述第二电源模块的输出端与对应所述电池包的正极电连接,所述整流单元的输出端、每个所述第二电源模块的输入端以及对应的所述电池包的负极均连接至公共直流母线;
所述整流单元用于对外部输入的交流电压进行整流处理以获取整流电压,并将所述整流电压输出至所述公共直流母线;
所述第二电源模块用于从所述公共直流母线获取所述整流电压,将所述整流电压转换为第三设定直流电压,并采用所述三设定直流电压向对应的所述电池包供电;
所述第二控制模块用于在接收到外部倒送电指令后,生成第一触发指令并发送至所述第二电源模块;
所述第二控制模块用于在接收到所述外部倒送电指令,且确定同一所述公共直流母线上的所有所述电池包都处于放电状态时,生成第二触发指令并发送至所述整流单元;
所述第二电源模块用于根据所述第一触发指令进入反向放电状态,所述整流单元用于根据所述第二触发指令调整功角至设定位置,以将所述充电机从整流状态切换为逆变状态。
本方案中,通过对充电机的电路改进设计,能够支持双向充电功能,能够对电池包双向充电的自动、灵活且精确的切换控制,有效地提升了双向充电管理系统的整体运行性能与效率。
较佳地,所述整流单元为AC/DC(交流转直流)电压转换器;
其中,所述AC/DC电压转换器采用PWM整流方式、24脉波整流方式、或维也纳整流和PFC整流相结合的整流方式。
较佳地,所述第二控制模块用于获取所述电池监管设备上报的故障参数;其中,所述故障参数包括故障类型以及同一所述故障类型对应的发生次数;
所述第二控制模块还用于在设定时长内,同一故障类型对应的发生次数满足预设条件时,则确定所述电池监管设备和所述充电机之间发生电磁干扰,生成第三触发指令并发送至所述电池监管设备,以驱动所述电池监管设备断电或重新上电复位。
本方案中,通过及时分析上报的故障数据,以及时确定电池监管设备和充电机之间是否发生电磁干扰,并在确定发生时及时进行断电或重新上电复位的操作,以确保电路能够恢复至正常工作状态,从而能够保证对每个电池包独立供电的稳定性、可靠性和有 效性。
较佳地,所述第二电源模块为非隔离型DC/DC转换器。
较佳地,所述第二电源模块的功率管为碳化硅MOS管(金属-氧化物半导体场效应晶体管)。
本方案中,第二电源模块采用碳化硅MOS管(SiC MOSFET)作为功率管,与传统的硅MOS管(Si MOSFET)相比,碳化硅MOS管的导通电阻、开关损耗均大幅降低,能够适用于更高的工作频率,且具有更好的高温稳定性。
在符合本领域常识的基础上,所述各优选条件,可任意组合,即得本发明各较佳实施例。
本发明的积极进步效果在于:
本发明中,通过在电池监管设备中增设共模抑制电路,例如在交流电源入口高共模抑制比的EMI电源滤波器,以实现在第一电源模块向第一控制模块供电过程中,及时阻断对应电路中形成的共模电流,达到良好的共模抑制效果,避免了共模电流对电路或其他器件造成干扰影响,使得在对每个电池包独立供电时,保证了对每个电池包控制管理的及时性、合理性和有效性。另外,在双向充电管理系统中集成上述的电池监管设备,通过电池监管设备、充电机,以及设置有共模抑制回路的后台服务装置搭建该双向充电管理系统,保证在对电池包双向充电过程中对应电路中的共模电流的及时有效抑制;同时,通过对充电机的电路改进设计,能够支持双向充电功能,且电路结构简单、成本低、效率高,有效地提升了双向充电管理系统的整体运行性能与效率。
附图说明
图1为本发明实施例1的电池监管设备的结构示意图。
图2为本发明实施例2的电池监管设备的结构示意图。
图3为本发明实施例2的电池包管理单元的第一结构示意图。
图4为本发明实施例2的电池包管理单元的第二结构示意图。
图5为本发明实施例3的双向充电管理系统的第一结构示意图。
图6为本发明实施例3的双向充电管理系统的第二结构示意图。
图7为本发明实施例3的双向充电管理系统的第三结构示意图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施 例范围之中。
实施例1
本实施例中的电池监管设备应用在换电站或储能站中。
如图1所示,本实施例中的电池监管设备1包括至少一个电池包管理单元2,每个电池包对应一个电池包管理单元2。
电池包管理单元2包括依次电连接的共模抑制电路3、第一电源模块4和第一控制模块5,共模抑制电路3与外接交流电源电连接;其中,共模抑制电路3包括若干个EMI电源滤波器6。
第一电源模块4用于向第一控制模块5供电;
共模抑制电路3用于在第一电源模块4向第一控制模块5供电过程中,阻断对应电路中形成的共模电流。
本实施例中,通过在电池监管设备中增设共模抑制电路,例如在交流电源入口增加若干个高共模抑制比的EMI电源滤波器,以实现在第一电源模块向第一控制模块供电过程中,及时阻断对应电路中形成的共模电流,达到良好的共模抑制效果,避免了共模电流对电路或其他器件造成干扰影响,使得在对每个电池包独立供电时,保证了对每个电池包控制管理的及时性、合理性和有效性。
实施例2
本实施例中的电池监管设备1是对实施例1的进一步改进,具体地:
在一可实施的方案中,在共模抑制电路3包括多个EMI电源滤波器6时,多个EMI电源滤波器6采用如下方式连接:
全部依次串联电连接、全部并联电连接、或一部分串联电连接且剩余部分并联电连接;其中,EMI电源滤波器6的共模抑制比大于设定阈值。
例如,采用的EMI电源滤波器对应的共模抑制比高于25dB,以实现该对电路上共模电流的良好抑制效果
对于多个EMI电源滤波器6可以全部串联、全部并联,或者部分串联部分并联,以满足不同的电路结构的设计需求。具体采用何种连接方式、多个EMI电源滤波器6的具体数量均可以根据实际需求进行设计或调整;使得可以根据不同的实际需求进行灵活设计与调整,能够满足更高要求的电池管理场景。
当共模抑制电路对应一个EMI电源滤波器时,可以达到阻断对应电路中形成的共模电流的效果同时,硬件成本投入较低,电路结构相对简化;
当共模抑制电路对应多个EMI电源滤波器时,则可以达到更全面、更及时、更有效 的阻断对应电路中形成的共模电流的效果,此时硬件成本投入相对高些,电路结构相对复杂些。
具体可以根据实际需求进行对共模抑制电路进行设计、配置或调整。
在一可实施的方案中,如图2所示,共模抑制电路3还包括若干个隔离变压器7,若干个隔离变压器7和若干个EMI电源滤波器6之间采用如下方式连接:
全部依次串联电连接、全部并联电连接、或一部分串联电连接且剩余部分并联电连接;其中,EMI电源滤波器6的共模抑制比大于设定阈值。
对于若干EMI电源滤波器6和隔离变压器7的共模抑制电路3,可以全部串联、全部并联,或者部分串联部分并联,以满足不同的电路结构的设计需求;使得可以根据不同的实际需求进行灵活设计与调整,能够满足更高要求的电池管理场景。
另外,还可以将全部的EMI电源滤波器串联、全部的隔离变压器串联,然后在将两个串联后的组合进行并联;或,将全部的EMI电源滤波器并联、全部的隔离变压器并联,然后在将两个串联后的组合进行串联;或,将全部的EMI电源滤波器串联作为一个整体,然后与每个隔离变压器并联;或,将全部的隔离变压器串联作为一个整体,然后与每个EMI电源滤波器并联。
具体采用何种连接方式、若干EMI电源滤波器和隔离变压器的具体数量均可以根据实际需求进行设计或调整。
在电路中同时考虑隔离变压器和EMI电源滤波器两种类别的滤波器,进一步地提高了对电路中形成的共模电流的抑制效果。
在一可实施的方案中,如图3和图4所示,第一控制模块5包括充电控制器8和BMS电池管理模块9;
第一电源模块4包括第一电源单元10和第二电源单元11;
第一电源单元10与充电控制器8电连接,第一电源单元10用于向充电控制器8提供第一设定直流电压;
第二电源单元11与BMS电池管理模块9电连接,第二电源单元11用于向BMS电池管理模块9提供第二设定直流电压。
对充电控制器8和BMS电池管理模块9分别设置对应的供电单元,实现对每个电池的独立供电的同时,满足充电控制器8和BMS电池管理模块9各自对应的设定直流电压的充电要求,且保证了充电的合理性和安全性。
具体地,第一电源单元10为第一整流器,第二电源单元11为第二整流器;
共模抑制电路3的输入端与外接交流电源电连接,共模抑制电路3的输出端与第一 整流器的输入端电连接,第一整流器用于将共模抑制电路3输出的交流电压转换为第一设定直流电压,并采用第一设定直流电压向充电控制器8供电;
第二整流器的输入端与共模抑制电路3的输出端电连接,第二整流器用于将共模抑制电路3输出的交流电压转换为第二设定直流电压,并采用第二设定直流电压向BMS电池管理模块9供电。
对每个电池包的供电电路采用独立DC/DC转换器,得到隔离的12V电源,该12V电源需要控制原副边之间的电容值,并保证共模抑制电路所在电路的共模抑制比高于25dB,以实现该电路上共模电流的良好抑制效果。
具体地,第一整流器和第二整流器均为AC/DC转换器,第一整流器输出24V直流电压,以输出至充电控制器;第二整流器输出12V直流电压,以输出至BMS电池管理模块。
将共模抑制电路3设置在直接与外接交流电源的主电路上,以实现在直流电压转换器向BMS电池管理模块9供电过程中,采用共模抑制电路3及时阻断该电路中形成的共模电流,达到及时抑制的效果。
在一可实施的方案中,电池包管理单元2还包括复位开关12;
复位开关12电连接在第二电源单元11与BMS电池管理模块9之间,且与充电控制器8电连接。
该复位开关12用于在设定条件下执行复位操作,如在发生异常情况时,及时复位以使得电路恢复至正常运行状态,以保证充电过程的稳定性。
本实施例中,通过在电池监管设备中增设共模抑制电路,例如在交流电源入口增加高共模抑制比的EMI电源滤波器、若干个隔离变压器等,以实现在第一电源模块向第一控制模块供电过程中,及时阻断对应电路中形成的共模电流,达到良好的共模抑制效果,避免了共模电流对电路或其他器件造成干扰影响,使得在对每个电池包独立供电时,保证了对每个电池包控制管理的及时性、合理性和有效性。
实施例3
如图5、图6以及图7所示,本实施例的双向充电管理系统包括实施例1或2中的电池监管设备1(对应图6中的二次侧),还包括后台服务装置13,以及分别与后台服务装置13和电池监管设备1通信连接的充电机14(对应图6中的一次侧)。
其中,后台服务装置13中集成设置有共模抑制回路15。
具体地,共模抑制回路15包括但不限于差分运放电路、磁隔离放大器、共模磁环或光耦隔离。
在一可实施的方案中,充电机14包括整流单元16、第二控制模块17、若干个第二电源模块18和电池包19,每个电池包19对应一个第二电源模块18,若干个第二电源模块18之间并联连接。
其中,整流单元16的输入端与外接交流电源(图7中的A)电连接,第二电源模块18的输出端与对应电池包19的正极电连接,整流单元16的输出端、每个第二电源模块18的输入端以及对应的电池包19的负极均连接至公共直流母线(图7中的B);另外,图7中的每个分支电路对应一个电池包19,每个电池包19的充电端口电连接至公共直流母线上,具体的电池包的充电端口如何设置在公共直流母线上可以根据实际设计需求进行连接。
整流单元16用于对外部输入的交流电压进行整流处理以获取整流电压,并将整流电压输出至公共直流母线;第二电源模块18用于从公共直流母线获取整流电压,将整流电压转换为第三设定直流电压,并采用三设定直流电压向对应的电池包19供电;
第二控制模块17用于在接收到外部倒送电指令后,生成第一触发指令并发送至第二电源模块18;
第二控制模块17用于在接收到外部倒送电指令,且确定同一公共直流母线上的所有电池包19都处于放电状态时,生成第二触发指令并发送至整流单元16;
第二电源模块18用于根据第一触发指令进入反向放电状态,整流单元16用于根据第二触发指令调整功角至设定位置,以将充电机14从整流状态切换为逆变状态。
具体地,第二电源模块18为非隔离型DC/DC,例如将800V的输入电压转换为小于750V的直流电压;整流单元16为AC/DC电压转换器,AC/DC电压转换器可以采用:PWM整流方式、24脉波整流方式、或维也纳整流和PFC整流相结合等整流方式。
其中,在正向供能时,前端的整流单元用于负责稳定公共直流母线中的电压,后端的第二电源模块按照恒流方式运行,负责按照BMS和换电站控制系统的要求给电池提供适合的充电电流;在控制第二电源模块反向供能时,整流器根据控制指令调整功角为负值,使得电路功能从整流状态进入逆变状态,实现通过对充电机的电路改进设计,支持双向充电功能,能够对电池包双向充电的自动、灵活且精确的切换控制。
触发反向能量供应的条件:当外部电网或者客户有紧急需求时,由控制器接收到对应的外部指令后,控制电池的DC/DC进入反向放电状态;在同一公共直流母线上其他电池都进入放电状态,且电网允许倒送电时,则整流器(如PWM整流器)会及时根据指令自动调整功角为负值,从整流状态进入逆变状态,并将电能倒送回电网。
具体地,第二电源模块的功率管为碳化硅MOS管。
第二电源模块采用碳化硅MOS管(SiC MOSFET)作为功率管,与传统的硅MOS管(Si MOSFET)相比,碳化硅MOS管的导通电阻、开关损耗均大幅降低,能够适用于更高的工作频率,且具有更好的高温稳定性。
另外,第二控制模块17用于获取电池监管设备1上报的故障参数;其中,故障参数包括故障类型、同一故障类型对应的发生次数、故障的发生时间、故障的持续时长等。
第二控制模块17还用于在设定时长内,同一故障类型对应的发生次数满足预设条件时,则确定电池监管设备1和充电机14之间发生电磁干扰,生成第三触发指令并发送至电池监管设备1,以驱动电池监管设备1断电或重新上电复位。
在DC/DC并联数量较多时,需要对BMS设置复位电路,如检测到确定由于共模干扰导致的故障时,则允许对BMS重复上电复位。
当检测到BMS报出和充电架构、电池绝缘检测等相关的软件故障(例如典型的故障类型:电池绝缘阻抗低)时,且发生次数超过可接受的设定次数内:例如24小时之内出现次数不超过5次,且5分钟内不重复出现,则可判定为电路中发生电磁干扰,此时充电机将对电池监管设备1实施断电和重新上电操作,从而确保其回到正常工作状态。
通过及时分析上报的故障数据,以及时确定电池监管设备1和充电机之间是否发生电磁干扰,并在确定发生时及时进行断电或重新上电复位的操作,以确保电路能够恢复至正常工作状态,从而能够保证对每个电池包独立供电的稳定性、可靠性和有效性。
在充电机14和外部电网连接处设置降压变压器,且降压变压器的中性点不接地以形成浮地系统。通过设置降压变压器以保证整个充电系统运行的安全性和可靠性。
需要说明的是,考虑双向充电管理系统中涉及较多直流环节,在AC/DC直流输出,以及每路DC/DC输入侧,应设置直流断路器或熔断器,以达到保护电路的效果。
另外,本实施例的双向充电管理系统中,还需在公共直流母线侧专门设置一个独立的在线式对地绝缘检测装置,由于所有公共直流母线的负极均直接连在一起,任意一个电池的绝缘故障均将被检测为系统绝缘故障。
本实施例中,通过在电池监管设备中增设共模抑制电路,例如在交流电源入口增加隔离变压器、高共模抑制比的EMI电源滤波器等,以实现在第一电源模块向第一控制模块供电过程中,及时阻断对应电路中形成的共模电流,达到良好的共模抑制效果,避免了共模电流对电路或其他器件造成干扰影响,使得在对每个电池包独立供电时,保证了对每个电池包控制管理的及时性、合理性和有效性。另外,在双向充电管理系统中集成上述的电池监管设备,通过电池监管设备、充电机,以及设置有共模抑制回路的后台服务装置搭建该双向充电管理系统,保证在对电池包双向充电过程中对应电路中的共模电 流的及时有效抑制;同时,通过对充电机的电路改进设计,能够支持双向充电功能,有效地提升了双向充电管理系统的整体运行性能与效率。相较于传统双向充电改进方案,上述的双向充电管理系统充电效率能够显著提升具体提升效率取决于充电机和整流器所采用的器件类型),且显著降低成本。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本发明的保护范围由所附权利要求书限定。

Claims (15)

  1. 一种电池监管设备,其特征在于,所述电池监管设备应用在换电站或储能站中,所述电池监管设备包括至少一个电池包管理单元,每个电池包对应一个所述电池包管理单元;
    所述电池包管理单元包括依次电连接的共模抑制电路、第一电源模块和第一控制模块,所述共模抑制电路与外接交流电源电连接;
    其中,所述共模抑制电路包括若干个EMI电源滤波器;
    所述第一电源模块用于向所述第一控制模块供电;
    所述共模抑制电路用于在所述第一电源模块向所述第一控制模块供电过程中,阻断对应电路中形成的共模电流。
  2. 如权利要求1所述的电池监管设备,其特征在于,在所述共模抑制电路包括多个所述EMI电源滤波器时,多个所述EMI电源滤波器采用如下方式连接:
    全部依次串联电连接、全部并联电连接、或一部分串联电连接且剩余部分并联电连接;其中,所述EMI电源滤波器的共模抑制比大于设定阈值。
  3. 如权利要求1或2所述的电池监管设备,其特征在于,所述共模抑制电路还包括若干个隔离变压器,若干个所述隔离变压器和若干个所述EMI电源滤波器之间采用如下方式连接:
    全部依次串联电连接、全部并联电连接、或一部分串联电连接且剩余部分并联电连接;其中,所述EMI电源滤波器的共模抑制比大于设定阈值。
  4. 如权利要求1-3中至少一项所述的电池监管设备,其特征在于,所述第一控制模块包括充电控制器和BMS电池管理模块;
    所述第一电源模块包括第一电源单元和第二电源单元;
    所述第一电源单元与所述充电控制器电连接,所述第一电源单元用于向所述充电控制器提供第一设定直流电压;
    所述第二电源单元与所述BMS电池管理模块电连接,所述第二电源单元用于向所述BMS电池管理模块提供第二设定直流电压。
  5. 如权利要求4所述的电池监管设备,其特征在于,所述第一电源单元为第一整流器,所述第二电源单元为第二整流器;
    所述共模抑制电路的输入端与所述外接交流电源电连接,所述共模抑制电路的输出端与所述第一整流器的输入端电连接,所述第一整流器用于将所述共模抑制电路输出的 交流电压转换为所述第一设定直流电压,并采用所述第一设定直流电压向所述充电控制器供电;
    所述第二整流器的输入端与所述共模抑制电路的输出端电连接,所述第二整流器用于将所述共模抑制电路输出的交流电压转换为所述第二设定直流电压,并采用所述第二设定直流电压向所述BMS电池管理模块供电。
  6. 如权利要求5所述的电池监管设备,其特征在于,所述电池包管理单元还包括复位开关;
    所述复位开关电连接在所述第二电源单元与所述BMS电池管理模块之间,且与所述充电控制器电连接。
  7. 一种双向充电管理系统,其特征在于,所述双向充电管理系统包括权利要求1-6中任一项所述的电池监管设备。
  8. 如权利要求7所述的双向充电管理系统,其特征在于,所述双向充电管理系统还包括后台服务装置,以及分别与所述后台服务装置和所述电池监管设备通信连接的充电机。
  9. 如权利要求8所述的双向充电管理系统,其特征在于,所述后台服务装置中集成设置有共模抑制回路。
  10. 如权利要求7-9中至少一项所述的双向充电管理系统,其特征在于,所述共模抑制回路包括差分运放电路、磁隔离放大器、共模磁环或光耦隔离。
  11. 如权利要求8-10中至少一项所述的双向充电管理系统,其特征在于,所述充电机包括整流单元、第二控制模块、若干个第二电源模块和电池包,每个所述电池包对应一个所述第二电源模块;
    所述整流单元的输入端与外接交流电源电连接,所述第二电源模块的输出端与对应所述电池包的正极电连接,所述整流单元的输出端、每个所述第二电源模块的输入端以及对应的所述电池包的负极均连接至公共直流母线;
    所述整流单元用于对外部输入的交流电压进行整流处理以获取整流电压,并将所述整流电压输出至所述公共直流母线;
    所述第二电源模块用于从所述公共直流母线获取所述整流电压,将所述整流电压转换为第三设定直流电压,并采用所述三设定直流电压向对应的所述电池包供电;
    所述第二控制模块用于在接收到外部倒送电指令后,生成第一触发指令并发送至所述第二电源模块;
    所述第二控制模块用于在接收到所述外部倒送电指令,且确定同一所述公共直流母 线上的所有所述电池包都处于放电状态时,生成第二触发指令并发送至所述整流单元;
    所述第二电源模块用于根据所述第一触发指令进入反向放电状态,所述整流单元用于根据所述第二触发指令调整功角至设定位置,以将所述充电机从整流状态切换为逆变状态。
  12. 如权利要求11所述的双向充电管理系统,其特征在于,所述整流单元为AC/DC电压转换器;
    其中,所述AC/DC电压转换器采用PWM整流方式、24脉波整流方式、或维也纳整流和PFC整流相结合的整流方式。
  13. 如权利要求11所述的双向充电管理系统,其特征在于,所述第二控制模块用于获取所述电池监管设备上报的故障参数;其中,所述故障参数包括故障类型以及同一所述故障类型对应的发生次数;
    所述第二控制模块还用于在设定时长内,同一故障类型对应的发生次数满足预设条件时,则确定所述电池监管设备和所述充电机之间发生电磁干扰,生成第三触发指令并发送至所述电池监管设备,以驱动所述电池监管设备断电或重新上电复位。
  14. 权利要求11-13中至少一项所述的双向充电管理系统,其特征在于,所述第二电源模块为非隔离型DC/DC转换器。
  15. 如权利要求14所述的双向充电管理系统,其特征在于,所述第二电源模块的功率管为碳化硅MOS管。
PCT/CN2022/143465 2021-12-30 2022-12-29 双向充电管理系统及其电池监管设备 WO2023125826A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111659227.3 2021-12-30
CN202111659227 2021-12-30
CN202211680323.0A CN116388317A (zh) 2021-12-30 2022-12-26 双向充电管理系统及其电池监管设备
CN202211680323.0 2022-12-26

Publications (1)

Publication Number Publication Date
WO2023125826A1 true WO2023125826A1 (zh) 2023-07-06

Family

ID=86966190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143465 WO2023125826A1 (zh) 2021-12-30 2022-12-29 双向充电管理系统及其电池监管设备

Country Status (2)

Country Link
CN (1) CN116388317A (zh)
WO (1) WO2023125826A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117856431A (zh) * 2024-03-05 2024-04-09 四川新能源汽车创新中心有限公司 一种分布式电源控制系统的冗余供电装置及供电方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050272A (ja) * 2010-08-27 2012-03-08 Toshiba Corp 組電池モジュール、二次電池装置、車両、および、プロセッサ
CN105375503A (zh) * 2015-09-02 2016-03-02 国网上海市电力公司 一种储能就地监控系统
CN107394864A (zh) * 2017-08-29 2017-11-24 邢建强 一种电动汽车蓄电池充放电状态监控系统
CN210970736U (zh) * 2019-09-16 2020-07-10 湖北省电力装备有限公司 一种充电桩充电管理系统
CN112277671A (zh) * 2019-07-22 2021-01-29 比亚迪股份有限公司 电动汽车及其充电控制系统
CN113043893A (zh) * 2019-12-26 2021-06-29 奥动新能源汽车科技有限公司 用于换电站或储能站的充电系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050272A (ja) * 2010-08-27 2012-03-08 Toshiba Corp 組電池モジュール、二次電池装置、車両、および、プロセッサ
CN105375503A (zh) * 2015-09-02 2016-03-02 国网上海市电力公司 一种储能就地监控系统
CN107394864A (zh) * 2017-08-29 2017-11-24 邢建强 一种电动汽车蓄电池充放电状态监控系统
CN112277671A (zh) * 2019-07-22 2021-01-29 比亚迪股份有限公司 电动汽车及其充电控制系统
CN210970736U (zh) * 2019-09-16 2020-07-10 湖北省电力装备有限公司 一种充电桩充电管理系统
CN113043893A (zh) * 2019-12-26 2021-06-29 奥动新能源汽车科技有限公司 用于换电站或储能站的充电系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117856431A (zh) * 2024-03-05 2024-04-09 四川新能源汽车创新中心有限公司 一种分布式电源控制系统的冗余供电装置及供电方法

Also Published As

Publication number Publication date
CN116388317A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
US11088538B2 (en) Module of suppressing inrush current, method of controlling the same and on-board bidirectional charger using the same
CN113949111B (zh) 储能系统
CN102355042B (zh) 一种基于超级电容的电站直流电源装置及其供电方法
JP6470003B2 (ja) 無停電電源装置及び無停電電源装置システム
KR102234290B1 (ko) 에너지 저장 시스템 및 그의 구동방법
CN108155657B (zh) 储能变流器及其主电路拓扑结构以及均衡控制方法
CN109861532A (zh) 一种dc/dc变换器及基于其的整车控制方法
WO2012144358A1 (ja) 電力供給装置、電力供給装置の制御方法、および直流給電システム
US5754384A (en) Overcurrent protection circuitry for non-isolated battery discharge controller
WO2023125826A1 (zh) 双向充电管理系统及其电池监管设备
WO2023124502A1 (zh) 一种储能系统和储能系统的控制方法
WO2022011640A1 (zh) 电池组件和储能系统
WO2023125829A1 (zh) 电池管理装置及双向充电系统
WO2023246710A1 (zh) 一种功率转换装置、充电桩、车载充电器和电动汽车
WO2023125827A1 (zh) 电池管理设备、充电装置
CN116896278A (zh) 一种直流变压装置、储能系统及控制方法
CN219145063U (zh) 双向充电管理系统及其电池监管设备
CN219145064U (zh) 电池管理装置及双向充电系统
CN219145062U (zh) 电池管理设备、充电装置
CN115421064A (zh) 一种蓄电池在线式逆变核容系统及方法
CN111130198B (zh) 一种电动汽车的充电系统及方法
JP2014055902A (ja) 原子力発電プラント用直流電源設備
KR101058351B1 (ko) 레귤레이터와 인버터를 갖는 배터리 충전/방전 제어회로
CN219960166U (zh) 电池供电装置及供电系统
CN115842345B (zh) 能源路由器控制方法和能源路由器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915075

Country of ref document: EP

Kind code of ref document: A1