WO2022011640A1 - 电池组件和储能系统 - Google Patents

电池组件和储能系统 Download PDF

Info

Publication number
WO2022011640A1
WO2022011640A1 PCT/CN2020/102403 CN2020102403W WO2022011640A1 WO 2022011640 A1 WO2022011640 A1 WO 2022011640A1 CN 2020102403 W CN2020102403 W CN 2020102403W WO 2022011640 A1 WO2022011640 A1 WO 2022011640A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery assembly
load
battery
current
power
Prior art date
Application number
PCT/CN2020/102403
Other languages
English (en)
French (fr)
Inventor
陈保国
朱建华
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to JP2023502589A priority Critical patent/JP2023534687A/ja
Priority to CN202080018443.7A priority patent/CN114270657A/zh
Priority to EP20945529.4A priority patent/EP4167433A4/en
Priority to PCT/CN2020/102403 priority patent/WO2022011640A1/zh
Publication of WO2022011640A1 publication Critical patent/WO2022011640A1/zh
Priority to US18/152,278 priority patent/US20230163626A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1213Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for DC-DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • H02H7/268Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured for dc systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of energy technology, and in particular, to a battery assembly and an energy storage system.
  • Battery components such as lead-acid batteries and lithium batteries are widely used in various backup power scenarios.
  • the present application provides a battery assembly and an energy storage system to solve the phenomenon that the energy storage system is down due to a short circuit of the load and/or power failure of the power supply.
  • the battery pack has a short-circuit current-limiting output characteristic when the load is short-circuited, and can output a discharge current whose amplitude is greater than the maximum nominal discharge current of the battery pack and less than the short-circuit protection current of the battery pack, so that the load takes precedence over the battery pack.
  • the energy system is cut off, and the busbar voltage in the energy storage system can be automatically restored.
  • the battery pack has a short-term overload discharge capability after the power supply is powered off, which can improve the discharge capacity of the battery pack during the period from the power down to the secondary load.
  • the secondary load supplies power, which ensures that the energy storage system will not be shut down. It can also restore the maximum nominal discharge capacity of the battery components after the power supply is powered off until the secondary load is powered off, so that the battery components can supply power to the important loads. Guaranteed backup time for important loads.
  • the present application provides a battery assembly including: a control unit and a DCDC converter.
  • the control unit is configured to control the DCDC converter to output the first current when the first load is short-circuited during the process of supplying power to the first load from the battery assembly.
  • the first current is greater than the maximum nominal discharge current of the battery assembly, which is used to disconnect the electrical connection between the first load and the bus bar, and is smaller than the short-circuit protection current of the battery assembly;
  • the maximum nominal discharge current of the battery assembly is the battery assembly.
  • the maximum current allowed during normal discharge, the short-circuit protection current of the battery assembly is the current that can disconnect the electrical connection between the battery assembly and the bus bar.
  • the battery pack has the characteristics of short-circuit current limiting output. Specifically, the battery pack can continue to work with current limiting when any load is short-circuited, and the magnitude of the discharge current output by the battery pack is greater than the maximum value of the battery pack.
  • the nominal discharge current is smaller than the short-circuit protection current of the battery pack, and the duration of the discharge current of the battery pack is stable and controllable, so that in the event of a short circuit in any load, the short-circuited load will be removed from the energy storage system before the battery pack.
  • the cut-off also enables the busbar voltage in the energy storage system to recover automatically.
  • the battery assembly further includes: a battery pack; the first end of the DCDC converter is electrically connected to the positive pole of the battery pack, the second end of the DCDC converter is electrically connected to the negative pole of the battery pack, and the DCDC converter is electrically connected to the negative pole of the battery pack.
  • the third end of the converter is electrically connected to the first bus bar
  • the fourth end of the DCDC converter is electrically connected to the second bus bar
  • the fifth end of the DCDC converter is electrically connected to the control unit
  • the first bus bar and the second bus bar are used to provide Direct current
  • the first load is electrically connected in parallel between the first bus bar and the second bus bar
  • the control unit is specifically configured to control the DCDC converter to connect the battery components to the battery pack based on the third pulse width of the first signal when the first load is short-circuited.
  • the equivalent loop impedance of the first signal is adjusted to be small, so as to control the discharge current of the battery assembly as the first current; wherein, the first signal represents the duty cycle of the power switch tube in the DCDC converter, and the pulse width of the first signal is used to adjust the discharge current of the battery assembly. Equivalent loop impedance to control the discharge current of the battery pack. Therefore, the control unit in the battery pack controls the duty cycle of the power switch tube in the DCDC converter, so that the discharge current output by the battery pack is the first current, which provides a possible implementation for the battery pack to output the first current .
  • control unit is also specifically configured to monitor the port voltage of the battery assembly in the discharge state; and determine that the first load is short-circuited when the port voltage of the battery assembly in the discharge state is less than or equal to the first preset voltage , and control the battery pack to output the first current. Therefore, the control unit in the battery assembly can determine whether the load is short-circuited based on the terminal voltage of the battery assembly in the discharge state, so as to timely control the discharge current output by the DCDC converter to be the first current. Therefore, the control unit can determine whether the load is short-circuited, so as to control the DCDC converter to output the discharge current of the battery assembly to the first current in time.
  • the present application provides a battery assembly including: a control unit and a DCDC converter.
  • the control unit is used to control the discharge capacity of the battery assembly to be greater than the maximum nominal discharge capacity of the battery assembly after the power supply is powered off, and supply power to the first load and the second load through the DCDC converter; after the first load is powered off, The discharge capacity of the control battery assembly is restored to the maximum nominal discharge capacity, and power is supplied to the second load through the DCDC converter; wherein, the power supply is used to provide direct current to the first load and the second load before the power supply is not powered off, and the first The two loads are powered prior to the first load.
  • the monitoring unit in the energy storage system controls the power-off of the secondary load by means of the power-off alarm signal, so as to ensure the backup time of the important load.
  • the battery pack has a short-term overload discharge capacity.
  • the discharge capacity (such as discharge power or discharge current) of the battery pack during the time period from the power failure of the power supply to the power off of the secondary load is greater than the maximum nominal discharge capacity of the battery pack. (such as maximum nominal discharge power or maximum nominal discharge current), and the discharge capacity (such as discharge power or discharge current) of the battery assembly is stable and controllable.
  • the battery components supply power to the important load and the secondary load at the same time, which ensures that the energy storage system will not be shut down.
  • the discharge capacity (such as discharge power or discharge current) of the battery assembly returns to the maximum nominal discharge capacity of the battery assembly (such as the maximum nominal discharge power or the maximum nominal discharge current) , so that the battery components supply power to the important loads, ensuring the backup time of the important loads.
  • the control unit when the discharge capacity of the battery assembly is characterized by the discharge power of the battery assembly, the control unit is configured to control the battery assembly from the power failure of the power supply to the first load after the power supply is powered off.
  • the discharge power in the period of time is greater than the maximum nominal discharge power, and the maximum nominal discharge power is the maximum power allowed when the battery assembly is normally discharged; after the first load is powered off, the battery assembly is controlled to restore the maximum nominal discharge power. Therefore, the battery assembly uses the discharge power to characterize the discharge capacity of the battery assembly, thereby providing a possible implementation method for adjusting the discharge capacity of the battery assembly.
  • the control unit is configured to control the discharge current of the battery assembly during the period from the power failure of the power supply to the first load after the power supply is powered off to be greater than Maximum nominal discharge current, the maximum nominal discharge current is the maximum current allowed when the battery assembly is normally discharged; after the first load is powered off, the battery assembly is controlled to restore the maximum nominal discharge current. Therefore, the battery assembly uses the discharge current to characterize the discharge capacity of the battery assembly, thereby providing another possible implementation for adjusting the discharge capacity of the battery assembly.
  • the first load is used for implementing 5G data services
  • the second load is used for voice services and transmission services other than 5G data services.
  • control unit is further configured to control the discharge capacity of the battery assembly to be greater than the maximum nominal discharge capacity of the battery assembly when the port voltage of the battery assembly in the charging state or the standby state is less than or equal to the second preset voltage .
  • control unit can determine whether the power supply is powered off, so as to improve the discharge capacity of the battery assembly in time.
  • the battery assembly further includes: a battery pack; the first end of the DCDC converter is electrically connected to the positive pole of the battery pack, the second end of the DCDC converter is electrically connected to the negative pole of the battery pack, and the DCDC converter is electrically connected to the negative pole of the battery pack.
  • the third end of the converter is electrically connected to the first bus bar
  • the fourth end of the DCDC converter is electrically connected to the second bus bar
  • the fifth end of the DCDC converter is electrically connected to the control unit
  • the first bus bar and the second bus bar are used for passing
  • the power supply provides direct current
  • the first load and the second load are electrically connected in parallel between the first bus bar and the second bus bar
  • the control unit is specifically configured to control the DCDC converter to convert the battery assembly based on the first pulse width of the first signal.
  • the equivalent loop impedance is reduced to control the discharge capacity of the battery assembly to be greater than the maximum nominal discharge capacity of the battery assembly; after a preset time period, based on the second pulse width of the first signal, the DCDC converter is controlled to convert the equivalent loop of the battery assembly
  • the impedance is increased to control the discharge capacity of the battery assembly to return to the maximum nominal discharge capacity of the battery assembly; wherein, the first pulse width is greater than or equal to the second pulse width, and the pulse width of the first signal is used to adjust the equivalent circuit of the battery assembly impedance to control the discharge power or discharge current of the battery pack. Therefore, the control unit in the battery assembly changes the discharge capacity of the battery assembly by controlling the duty cycle of the power switch tube in the DCDC converter, which provides a possible implementation for adjusting the discharge capacity of the battery assembly.
  • the present application provides an energy storage system, including: a power supply assembly, a first busbar, a second busbar, and a battery assembly in any possible design of the first aspect and the first aspect; and/or a power supply assembly , a first busbar, a second busbar, and a battery assembly in any possible design of the second aspect and the second aspect.
  • the energy storage system further includes: a monitoring unit, the monitoring unit is electrically connected to the power supply component; the power supply component is used to send a power failure alarm signal to the monitoring unit after the power supply is powered off; the monitoring unit also It is used to control the power-off of the secondary load in the power-consuming load when the power-off alarm signal is received. Therefore, the monitoring unit can control the secondary load to be powered off in time when the power supply is powered off, so that the battery assembly does not need to have a long-term overload discharge capability to avoid damage to the battery assembly.
  • the energy storage system includes any one of the following: a data center, a communication site, or an energy storage power station.
  • FIG. 1 is a schematic structural diagram of an energy storage system provided by an embodiment of the present application.
  • FIG. 2A is a schematic structural diagram of a battery assembly provided by an embodiment of the present application.
  • 2B is a schematic structural diagram of an existing lithium battery
  • FIG. 3 is a schematic time sequence diagram of a short-circuit current-limiting output of a battery assembly according to an embodiment of the present application
  • FIG. 4A is a schematic diagram of a time sequence from charging to discharging of a battery assembly according to an embodiment of the present application
  • 4B is an external characteristic curve diagram of the voltage U-current I of the battery assembly provided by an embodiment of the application.
  • FIG. 4C is an external characteristic curve diagram of the voltage U-current I of the battery assembly provided by an embodiment of the present application.
  • 10 energy storage system
  • 20 electric load
  • 30 power supply
  • 200 two-way switch
  • 300 charger
  • 400 controller
  • the present application provides a battery assembly and an energy storage system, which can be applied to various backup power scenarios such as communication sites, data centers, and energy storage power stations.
  • the battery pack has the characteristics of short-circuit current limiting output. Specifically, the battery pack can continue to limit the current when any load is short-circuited, and the magnitude of the discharge current output by the battery pack is greater than the maximum nominal discharge current of the battery pack and less than
  • the short-circuit protection current of the battery components, and the discharge current of the battery components are stable and controllable, so that in the event of a short-circuit of any load, the short-circuited load will be cut off from the energy storage system before the battery components, which also makes the energy storage system.
  • the busbar voltage in the energy system can be restored automatically.
  • the monitoring unit in the energy storage system uses the power-off alarm signal to control the power-off of the secondary load and ensure the backup time of the important load.
  • the battery pack has a short-term overload discharge capacity. Specifically, the discharge capacity (such as discharge power or discharge current) of the battery pack during the time period from the power failure of the power supply to the power off of the secondary load is greater than the maximum nominal discharge capacity of the battery pack. (such as maximum nominal discharge power or maximum nominal discharge current), and the discharge capacity (such as discharge power or discharge current) of the battery assembly is stable and controllable.
  • the battery components supply power to the important load and the secondary load at the same time, which ensures that the energy storage system will not be shut down.
  • the discharge capacity (such as discharge power or discharge current) of the battery assembly returns to the maximum nominal discharge capacity of the battery assembly (such as the maximum nominal discharge power or the maximum nominal discharge current) , so that the battery components supply power to the important loads, ensuring the backup time of the important loads.
  • whether the load gives priority to power supply may be set based on the importance of the service of the load. In general, the higher the importance of the service, the corresponding load will be powered preferentially, that is, the important load will be powered prior to the secondary load. In addition, the present application does not limit the specific types of secondary loads and important loads.
  • FIG. 1 shows a schematic structural diagram of an energy storage system provided by an embodiment of the present application.
  • the energy storage system 10 of the present application may include: a power supply assembly 11, a first bus bar W1, a second bus bar W2, and at least one battery assembly 12.
  • the present application does not limit the specific implementation manner of the energy storage system 10 .
  • the energy storage system 10 may include any of the following: a data center, a communication site, or an energy storage power station.
  • the first bus bar W1 and the second bus bar W2 are used for providing direct current.
  • the busbar voltage in the energy storage system 10 is the voltage between the first busbar W1 and the second busbar W2.
  • the battery pack 12 may be electrically connected in parallel between the first bus bar W1 and the second bus bar W2 so that the battery pack 12 can be charged or discharged.
  • the electrical load 20 is also electrically connected in parallel between the first bus bar W1 and the second bus bar W2, so that the electrical load 20 can obtain electrical energy.
  • the disconnection of the electrical connection between the battery assembly 12 and the busbar is illustrated by taking the disconnection of the electrical connection between the battery assembly 12 and the second busbar W2 as an example, and the electrical load 20 and the busbar are disconnected.
  • the disconnection of the electrical connection is illustrated by taking the disconnection of the electrical connection between the electrical load 20 and the second bus bar W2 as an example.
  • the present application does not limit the number and specific implementation structure of the battery components 12 .
  • the energy storage system 10 may further include: a battery shunt 13 and a battery low voltage down (BLVD) contactor K1.
  • BLVD battery low voltage down
  • the present application usually adds a switch module K2 between the battery pack 12 and the second bus bar W2 to protect the battery pack 12 .
  • two battery assemblies 12 are used for illustration in FIG. 1 , and each battery assembly 12 is electrically connected to the second bus bar W2 through the switch module K2 via the BLVD contactor K1 and the battery shunt 13 .
  • FIG. 2A shows a schematic structural diagram of a battery assembly provided by an embodiment of the present application.
  • the battery assembly 12 of the present application may include: a battery pack 121 , a DCDC converter 122 (direct current-direct current converter, DC-DC converter) and a control unit 123 .
  • the first terminal 1 of the DCDC converter 122 is electrically connected to the positive pole (+) of the cell pack 121
  • the second terminal 2 of the DCDC converter 122 is electrically connected to the negative pole (-) of the cell pack 121
  • the second terminal 2 of the DCDC converter 122 is electrically connected to the negative pole (-) of the cell pack 121
  • the three terminals 3 are electrically connected to the first bus bar W1
  • the fourth terminal 4 of the DCDC converter 122 is electrically connected to the second bus bar W2
  • the fifth terminal 5 of the DCDC converter 122 is electrically connected to the control unit 123 .
  • the present application does not limit the specific implementation manner of the cell pack 121 .
  • the cell pack 121 may include: at least one cell.
  • the cell pack 121 includes multiple cells, the multiple cells are electrically connected in series; or, the multiple cells are electrically connected in parallel; or, the multiple cells are electrically connected in series and parallel.
  • the present application does not limit the specific type of the cell.
  • the type of cell may be a lithium battery.
  • the DCDC converter 122 may include any one of the following: a buck converter circuit (Buck circuit), a boost converter circuit (Boost circuit), a buck-boost converter circuit (Buck-Boost circuit) ), flyback circuits, forward circuits, half-bridge topologies, full-bridge topologies, and isolated or non-isolated circuits composed of at least one of the foregoing topologies.
  • a buck converter circuit Buck circuit
  • Boost circuit boost converter circuit
  • Buck-Boost circuit buck-boost converter circuit
  • the control unit 123 may be an integrated chip, such as a microcontroller unit (MCU) or a system on a chip (SoC), or a combination of multiple components, or an integrated chip and It is formed by combining peripheral circuits, which is not limited in this application.
  • MCU microcontroller unit
  • SoC system on a chip
  • control unit 123 may include: a sampling module 1231 , an adjustment module 1232 , and a battery management system (BMS) 1233 .
  • BMS battery management system
  • the sampling module 1231 is used to collect the discharge current of the battery assembly 12, and to collect the port voltage of the battery assembly 12 based on the first bus W1 and the second bus W2 (that is, the voltage between the third terminal 3 and the fourth terminal 4 of the DCDC converter 122). Voltage).
  • the sampling module 1231 sends the discharge current and the port voltage of the battery pack 12 to the adjustment module 1232 .
  • the port voltage of the battery assembly 12 may include: the port voltage of the battery assembly 12 in the discharge state, and the port voltage of the battery assembly 12 in the charging state or the standby state.
  • the adjustment module 1232 is configured to determine whether the electrical load 20 is short-circuited based on the port voltage of the battery assembly 12 in the discharge state and the first preset voltage, and the port voltage of the battery assembly 12 in the discharge state is less than or equal to the first preset voltage , it is determined that the electrical load 20 is short-circuited.
  • the first preset voltage may be configured based on the length of the line between the battery assembly 12 and the second bus bar W2.
  • the adjustment module 1232 is further configured to calculate and obtain the first signal based on the discharge current of the battery assembly 12 , or calculate and obtain the first signal based on the discharge current of the battery assembly 12 and the port voltage of the battery assembly 12 in the discharge state. For example, the adjustment module 1232 obtains the first signal through a single-loop or multi-loop proportional-integral-derivative control (proportional-integral-derivative control, PID control). The adjustment module 1232 outputs the first signal to the DCDC converter 122 .
  • the first signal represents the duty cycle of the power switch tube in the DCDC converter 122 , and the first signal is used to adjust the equivalent loop impedance of the battery pack 12 to control the discharge power or discharge current of the battery pack 12 .
  • the present application does not limit the specific implementation manner of the first signal.
  • the first signal may be a pulse width modulation (pulse width modulation, PWM) signal or the like.
  • the adjustment module 1232 is further configured to determine whether the power supply 30 is powered down based on the port voltage of the battery assembly 12 in the charging state or the standby state, so that the battery assembly 12 determines whether to charge, stand by or discharge. For example, the adjustment module 1232 may preconfigure the second preset voltage. Wherein, the present application does not limit the specific size of the second preset voltage. Generally, the second preset voltage is slightly smaller than the port voltage of the battery assembly 12 in the charging state or the standby state.
  • the adjustment module 1232 may determine that the power supply source 30 is powered down, so that the battery assembly 12 can be switched from the charging state or the standby state to the discharging state.
  • the charging state can be understood as a floating state or an equalizing state
  • the standby state can be understood as the charging channel of the battery assembly 12 is disconnected and the discharging channel of the battery assembly 12 is open, that is, the battery assembly 12 cannot be charged and can be discharged.
  • the BMS 1233 is used to manage the rechargeable and discharge capacity of the battery pack 121 and other battery management functions.
  • the BMS 1233 can be implemented by software algorithms and/or hardware circuits.
  • the control unit 123 can determine whether the electrical load 20 is short-circuited based on the terminal voltage of the battery assembly 12 in the discharge state and the first preset voltage, and determine whether the terminal voltage of the battery assembly 12 in the discharge state is less than or equal to the first When the voltage is preset, it is determined that the electrical load 20 is short-circuited. Therefore, the control unit 123 can control the DCDC converter 122 to adjust the equivalent loop impedance of the battery assembly 12 based on the first signal, so that the discharge current of the battery assembly 12 changes.
  • control unit 123 can determine whether the power supply 30 is powered off based on the port voltage and the second preset voltage of the battery assembly 12 in the charging state or the standby state, so that the battery assembly 12 determines whether to perform charging, standby or discharging, and When the port voltage of the battery assembly 12 in the charging state or the standby state is less than or equal to the second preset voltage, the control unit 30 determines that the power supply source 30 is powered off, and the battery assembly 12 can be switched from the charging state or the standby state to the discharging state. Therefore, the control unit 123 can control the DCDC converter 122 to adjust the equivalent loop impedance of the battery assembly 12 based on the first signal, so that the discharge power or the discharge current of the battery assembly 12 is changed.
  • the battery assembly 12 is not limited to the above implementation.
  • the present application does not limit the quantity and type of the electrical loads 20 .
  • the energy storage system 10 may further include: a load shunt 15 and a load low voltage down (Load Low Voltage Down, LLVD) contactor K3.
  • the present application usually adds a load circuit breaker (K41 and K42) between the electrical load 20 and the second bus bar W2.
  • the first end of the first load 21 is electrically connected to the first bus bar W1 , and the second end of the first load 21 passes through the load of the first load 21 .
  • the switch K41 is electrically connected to the second bus bar W2.
  • the load circuit breaker K41 of the first load 21 can be used to avoid overcurrent of the first load 21 during a short circuit.
  • the second load 22 supplies power before the first load 21 . That is, the first load 21 is a secondary load, and the second load 22 is an important load.
  • the first load 21 is used for implementing 5G data services
  • the second load 22 is used for voice services and transmission services other than 5G data services, such as 2G/3G/4G services. It should be noted that the first load 21 is a secondary load and the second load 22 is an important load involved here only as examples, and the application does not make any limitation on the specific types of the first load 21 and the second load 22 .
  • one important load and two secondary loads namely, a second load 22 and two first loads 21 are used for illustration in FIG. 1 , and the two first loads 21 pass through the LLVD contactor through the load switch K41 respectively K3 and the load shunt 15 are electrically connected to the second busbar W2, and the second load 22 is electrically connected to the second busbar W2 through the load switch K42 via the LLVD contactor K3 and the load shunt 15.
  • the power supply source 30 provides DC power to the second bus bar W2 through the power supply assembly 11 , and the power supply assembly 11 can also monitor the state of the power supply source 30 . Wherein, the present application does not limit the specific implementation manner of the power supply assembly 11 .
  • the power supply assembly 11 may be composed of a rectifier unit.
  • the input terminal of the rectifier unit is electrically connected to the power supply 30 (ie, the AC power supply), the output ground terminal of the rectifier unit is electrically connected to the first bus bar W1, and the output power supply end of the rectifier unit is electrically connected to the second bus bar W2.
  • the rectifying unit converts the alternating current provided by the power supply 30 into direct current, and the rectifying unit provides the direct current to the second bus bar W2.
  • the present application does not limit the specific implementation of the rectifier unit.
  • the rectifying unit includes a rectifying circuit and a filtering circuit.
  • the power supply source 30 may be an energy source such as wind energy.
  • the power supply component 11 may also be composed of a DCDC power converter.
  • the input terminal of the DCDC power converter is electrically connected to the power supply 30 (ie, the DC power supply), the output ground terminal of the DCDC power converter is electrically connected to the first bus W1, and the output power supply terminal of the DCDC power converter is electrically connected to the second bus W2 is electrically connected, and the DCDC power converter provides DC power to the second bus W2.
  • the present application does not limit the specific implementation of the DCDC power converter.
  • the power supply source 30 may be energy sources such as high voltage direct current (HVDC), solar panels and the like.
  • the energy storage system 10 of the present application may further include: a monitoring unit 14 .
  • the monitoring unit 14 is electrically connected to the power supply assembly 11, and the monitoring unit 14 is also electrically connected to the control terminals of the LLVD contactor K3 and the BLVD contactor K1.
  • the monitoring unit 14 may be electrically connected in parallel between the first bus bar W1 and the second bus bar W2 to obtain electrical energy, thereby realizing the normal operation of the monitoring unit 14 .
  • the power supply component 11 can send a power failure warning signal to the monitoring unit 14, so that the monitoring unit 14 controls the LLVD contactor K3 to disconnect, so that the secondary load (ie the first load 21) is removed from the energy storage system Cut off in 10.
  • the present application does not limit the specific representation form of the power failure alarm signal.
  • the battery assembly is required to supply power to the electrical load 20 so that the electrical load 20 can maintain operation.
  • the electrical load 20 including the aforementioned first load 21 as an example.
  • the battery assembly supplies power to the first load 21
  • the battery assembly, the first bus bar W1 , the second bus bar W2 and the first load 21 may form a loop.
  • the existing lead-acid battery When the battery module adopts the existing lead-acid battery, if the first load 21 is short-circuited, the existing lead-acid battery will output a discharge current of several hundreds to thousands of amps, and the discharge current is uncontrollable, which will affect the entire energy storage system. bring security risks. Therefore, the existing lead-acid battery needs to be equipped with an expensive DC fuse (that is, the switch module K2 adopts a DC fuse), and then use the DC fuse and the trip current threshold and time difference of the load switch K41 corresponding to the first load 21 to achieve short-circuit classification protection, but the cost of DC fuses is high and the footprint is large.
  • an expensive DC fuse that is, the switch module K2 adopts a DC fuse
  • the existing lithium battery may include: a battery pack 121 , a two-way switch 200 , a charger 300 and a controller 400 .
  • the first end of the cell pack 121 is electrically connected to the second bus bar W2 via the bidirectional switch 200, and the second end of the cell pack 121 is electrically connected to the first bus bar W1.
  • the charger 300 is electrically connected on both sides of the bidirectional switch 200 in parallel.
  • FIG. 2B is only a feasible connection method between the existing lithium battery and the first bus bar W1 and the second bus bar W2, respectively.
  • the existing lithium battery and the first bus bar W1 and/or the existing lithium battery and Other modules may also be included between the second bus bars W2, which are not limited in this application.
  • the bidirectional switch 200 may include, but is not limited to, a contactor, a relay, or two series-connected power semiconductor devices (eg, bidirectional MOS transistors) and other components.
  • the load switch K41 of the first load 21 is usually a mechanical switch.
  • the switch 200 uses a bidirectional MOS tube, which is an electronic switch.
  • the sensitivity of the electronic switch is higher than that of the mechanical switch, that is, the mechanical switch will trip after a delay for a period of time, and the electronic switch will be disconnected immediately after receiving the corresponding command. Therefore, the existing lithium battery may protect itself in advance, and will be disconnected from the second busbar W2 before the first load 21, causing the busbar voltage in the energy storage system 10 to be dragged to death by the short-circuited first load 21. Risk, resulting in the downtime phenomenon of the energy storage system 10 .
  • the bidirectional switch 200 uses a contactor or a relay, when the first load 21 is short-circuited, the contactor or relay is forcibly tripped under the short-circuit current, which will seriously damage the contacts in the contactor or the relay, and even cause the contactor or the relay to be damaged. Contacts inside melt and stick.
  • the present application is provided with a first current that is greater than the maximum nominal discharge current of the battery assembly 12 and smaller than the short-circuit protection current of the battery assembly 12 , and the first current is a short circuit in the first load 21 .
  • the maximum nominal discharge current of the battery pack 12 is the maximum current allowed when the battery pack 12 is normally discharged
  • the short-circuit protection current of the battery pack 12 is the current capable of breaking the electrical connection between the battery pack 12 and the second bus bar W2 .
  • the second current is the current at which the first load 21 is electrically disconnected from the second bus bar W2 , that is, the tripping current threshold of the load switch K41 of the first load 21 .
  • the second current is generally less than or equal to the maximum nominal current of the battery assembly 12 . Therefore, the first current is greater than the second current.
  • the present application does not limit the specific magnitudes of the first current, the second current, the short-circuit protection current of the battery assembly 12 and the maximum nominal discharge current of the battery assembly 12 .
  • the tripping current threshold may approach or even exceed the maximum nominal discharge current of the battery assembly 12 .
  • the capacity of the load circuit breaker here refers to the maximum current allowed to pass through the load switch without tripping the load circuit breaker.
  • the first current may be set greater than 50% of the maximum nominal discharge current of the battery assembly 12 and the second current may be set greater than 25%-30% of the maximum nominal discharge current of the battery assembly 12 .
  • the battery assembly 12 of the present application has a short-circuit current-limiting output characteristic, that is, when the load is short-circuited, the amplitude of the first current output by the battery assembly 12 of the present application is greater than the maximum nominal discharge current amplitude of the battery assembly 12 and is smaller than the magnitude of the short-circuit protection current of the battery assembly 12 , so that the duration of the first current output by the battery assembly 12 of the present application is stable and controllable, so that the first load 21 precedes the battery assembly 12 of the present application and the second bus bar W2 Disconnecting the electrical connection enables the voltage of the busbars in the energy storage system 10 to be automatically restored, thereby avoiding the risk of the energy storage system 10 being down.
  • the battery assembly 12 can determine whether the first load 21 is short-circuited based on the terminal voltage of the battery assembly 12 in the discharge state and the first preset voltage. When the terminal voltage of the battery assembly 12 in the discharge state is less than or equal to the first preset voltage, it may be determined that the first load 21 is short-circuited. If the first load 21 is short-circuited, since the first current is set greater than the maximum nominal discharge current of the battery assembly 12 and less than the short-circuit protection current of the battery assembly 12, the battery assembly 12 can control the DCDC converter 122 based on the first signal The equivalent loop impedance of the battery pack 12 is adjusted to be smaller, so that the discharge current of the battery pack 12 is increased.
  • the battery assembly 12 can output the first current with a stable and controllable amplitude and duration, and the first current is greater than the second current, so that the first load 21 is electrically disconnected from the second bus bar W2 before the battery assembly 12 . In this way, the short-circuited first load 21 is cut off from the energy storage system 10 , and the busbar voltage in the energy storage system 10 is automatically restored.
  • the control unit 123 in the battery assembly 12 can increase the pulse width of the first signal (ie, the third pulse width), so that the equivalent loop impedance of the battery assembly 12 is increased. becomes smaller, so that the first current output by the battery assembly 12 becomes larger, and the first current output by the battery assembly 12 is greater than the maximum nominal current of the battery assembly 12 .
  • the third pulse width of the first signal can be set according to the maximum nominal current of the battery assembly 12 and the second current.
  • the second current is the trip current threshold of the load switch K41 of the first load 21 . Therefore, the first load 21 is automatically disconnected through the load switch K41 of the first load 21, that is, the load switch K41 of the first load 21 is tripped, so that the first load 21 is electrically disconnected from the second bus bar W2, thereby The first load 21 is disconnected from the energy storage system 10 , and the DCDC converter 122 and the second bus bar W2 can continue to be electrically connected to ensure that the battery assembly 12 can continue to supply power to other loads in the electrical load 20 .
  • FIG. 3 shows a timing diagram of a short-circuit current-limiting output of a battery assembly provided by an embodiment of the present application.
  • the abscissa is the time t
  • the ordinate is the current I.
  • Curve 1 represents the curve of the discharge current of the existing lead-acid battery with time when the first load 21 is short-circuited
  • curve 2 represents the discharge current of the existing lithium battery with the short-circuit of the first load 21.
  • the time-varying curve, the curve 3 represents the time-varying curve of the discharge current of the battery assembly 12 of the present application when the first load 21 is short-circuited.
  • the first load 21 is short-circuited at time t1, so that after time t1, the discharge current of the existing lead-acid battery, the discharge current of the existing lithium battery, and the discharge current of the battery assembly 12 of the present application have respective amplitudes increase in size.
  • the DCDC converter 122 will output the first current I3, so that the magnitude of the first current I3 of the battery assembly 12 of the present application is greater than the maximum nominal discharge current of the battery assembly 12 and is smaller than the magnitude of the short-circuit protection current of the battery assembly 12 , and the duration of the first current I3 remains stable and controllable.
  • the first current I3 is greater than the second current, so that the load switch K41 of the first load 21 is automatically tripped, so that the busbar voltage in the energy storage system is automatically restored.
  • the two-way switch will quickly cut off the electrical connection between the existing lithium battery and the second bus W2, so that the discharge current of the existing lithium battery becomes zero, resulting in the lock of the existing lithium battery. death, resulting in the phenomenon of energy storage system downtime.
  • the DC fuse will disconnect the electrical connection between the existing lead-acid battery and the second bus W2, so that the discharge current of the existing lead-acid battery becomes zero.
  • the battery assembly 12 of the present application can automatically limit the current when the first load 21 is short-circuited, and within a safe range, there is no need for expensive DC fuses like the existing lead-acid batteries. device.
  • the battery assembly 12 of the present application solves the problem that the existing lithium battery locks up when the first load 21 is short-circuited, causing the energy storage system to shut down, and it is not necessary to manually restore the normal operation of the battery assembly 12 or manually. The short-circuited first load 21 is removed to reduce maintenance costs.
  • the electrical load 20 is cut off from the busbar voltage in the energy storage system 10 before the battery assembly 12 is short-circuited.
  • the magnitude and duration of the short-circuit discharge current of the battery assembly 12 can be configured by the user, increasing the flexibility of the energy storage system 10 .
  • the power failure of the power supply will also affect the reliability of the backup power of the energy storage system.
  • Existing energy storage systems often support 5G data services and 2G/3G/4G voice and transmission services at the same time.
  • the electrical load 20 including the aforementioned first load 21 and the second load 22 as an example.
  • the second load 22 supplies power before the first load 21 , that is, the first load 21 is a secondary load, and the second load 22 is an important load. That is, the battery components of the existing energy storage system are in the charging state or the standby state.
  • the battery components When the power supply source 30 is powered off, the battery components will be converted from the charging state or the standby state to the discharging state, and the battery components will send the electricity to the electrical load 20 . Power is supplied, and power is supplied to the first load 21 and the second load 22 at the same time.
  • the monitoring unit in the existing energy storage system usually controls the secondary load to be powered off first, and then controls the important load to be powered off, so as to ensure that the power supply at a lower Under the configuration of battery capacity, the backup time of important loads can be extended.
  • the specific implementation process includes: after the power supply source 30 is powered off, the existing battery components in the existing energy storage system supply power to the important load and the secondary load at the same time, and the monitoring unit detects the busbar voltage in real time at the same time.
  • the monitoring unit in the existing energy storage system controls the secondary load to power off until the busbar voltage reaches the BLVD power-off voltage, the existing energy storage system
  • the monitoring unit in the control unit controls the action of the BLVD contactor K1 to separate the existing battery assembly from the existing energy storage system.
  • the existing energy storage system only needs to configure the capacity of the existing battery components (i.e. I2*T11) according to the current I2 of the important load and the backup time T11 (ie, I2*T11).
  • the power supply component 11 of the present application may send a power-off alarm signal to the monitoring unit 14 .
  • the monitoring unit 14 receives the power-off alarm signal, it controls the LLVD contactor K3 to disconnect, so that the first load 21 is powered off.
  • the battery assembly 12 of the present application switches from the charging state or the standby state to the discharging state after judging that the power supply source 30 is powered off, so that the battery assembly 12 of the present application supplies power to the electrical load 20 .
  • the battery assembly 12 of the present application can determine whether the power supply 30 is powered down by the port voltage of the battery assembly 12 in the charging state or the standby state .
  • the control unit 123 in the battery assembly 12 can determine the magnitude of the port voltage of the battery assembly 12 in the charging state or the standby state and the second preset voltage to determine whether the power supply source 30 is powered off, and further control the battery assembly 12 from charging state or the standby state transitions to the discharge state.
  • the battery assembly 12 of the present application may determine that the power supply source 30 is powered off, so that the battery assembly 12 of the present application changes from the charging state or the The standby state transitions to the discharge state.
  • the present application sets the discharge capacity of the battery assembly 12 during the time period from the power supply source 30 to the first load 21. current) is greater than the maximum nominal discharge capacity (ie, the maximum nominal discharge power or the maximum nominal discharge current).
  • the maximum nominal discharge power of the battery assembly 12 is the maximum power allowed when the battery assembly 12 is normally discharged. After the first load 21 is powered off, the discharge capacity of the battery assembly 12 is restored to the maximum nominal discharge capacity, that is, before the power supply source 30 is powered off, the discharge capacity of the battery assembly 12 is the maximum nominal discharge capacity.
  • the battery assembly 12 of the present application adjusts the equivalent loop impedance of the battery assembly 12 based on the first signal, so that the battery assembly 12 is powered off during the time period from the power supply source 30 to the first load 21 is powered off.
  • the discharge power is greater than the maximum nominal discharge power of the battery assembly 12, which also enables the battery assembly 12 to recover the maximum nominal discharge power after the first load 21 is powered off.
  • the actual discharge power of the battery assembly 12 depends on the load of the important load.
  • the battery assembly 12 of the present application adjusts the equivalent loop impedance of the battery assembly 12 based on the first signal, so that the discharge current of the battery assembly 12 is greater than that of the battery during the time period from the power supply source 30 is powered off to the first load 21 is powered off.
  • the maximum nominal discharge current of the assembly 12 also enables the battery assembly 12 to recover the maximum nominal discharge current after the first load 21 is powered off, and the actual discharge current of the battery assembly 12 depends on the load of the important load.
  • the control unit 123 in the battery assembly 12 may increase the pulse width of the first signal (ie, the first pulse width). , so that the equivalent loop impedance of the battery assembly 12 becomes smaller, thereby increasing the discharge power or discharge current of the battery assembly 12 .
  • the battery assembly 12 of the present application can reduce the pulse width of the first signal (ie, the second pulse width), so that the equivalent loop impedance of the battery assembly 12 becomes larger, thereby reducing the discharge power of the battery assembly 12 or The discharge current becomes smaller, that is, the battery assembly 12 restores the maximum nominal discharge power, or the battery assembly 12 restores the maximum nominal discharge current, so as to restore the normal operation of the battery assembly 12 .
  • the first pulse width is greater than the second pulse width.
  • the starting time of the preset duration is the time when the battery assembly 12 transitions from the charging state or the standby state to the discharging state.
  • This application does not limit the specific size of the preset duration.
  • the present application can control the discharge capacity of the DCDC converter 122 in the battery assembly 12 according to the power of the total load.
  • the discharge capacity (ie, discharge power or discharge current) of the battery assembly 12 of the present application is enabled to support the total load.
  • the present application can configure the backup capacity of the battery assembly 12 only according to the power (or current) of the important load and the backup time.
  • the monitoring unit 14 controls the power-off of the secondary load by monitoring the power-off alarm signal, and does not need to collect the busbar voltage to control the sequence of hierarchical power-off.
  • LLVD and BLVD which avoids the influence of the polarization characteristics of existing battery components on the effect of graded power-off under high-rate discharge, and also avoids existing batteries under short-term high-rate discharge.
  • the component triggers the overcurrent protection action.
  • the discharge capacity in the time period before the secondary load is powered off is improved, and power can be supplied to the important load and the secondary load at the same time, ensuring the energy storage of the present application.
  • the system 10 is not powered off, which avoids the phenomenon that the energy storage system is down.
  • the discharge capacity of the battery assembly 12 is restored to the maximum nominal discharge capacity, and at this time, the battery assembly 12 only provides backup power for the important load. Therefore, the battery assembly 12 of the present application basically does not affect the backup time of important loads under the configuration of less capacity.
  • the battery assembly 12 takes the first load 21 as a secondary load and the second load 22 as an important load as an example.
  • the battery assembly 12 has a short-term overload discharge capability, so that the battery assembly 12 supplies power to the first load 21 and the second load 22, supporting the energy storage of the present application
  • the total load in the system 10 avoids the phenomenon of downtime in the energy storage system.
  • the battery assembly 12 supplies power to the second load 22, which ensures the backup time of important loads. Therefore, the capacity configuration of the battery components 12 in the energy storage system 10 of the present application is saved, the number of the battery components 12 in the energy storage system 10 is reduced, and the cost is reduced.
  • FIG. 4A shows a schematic diagram of a time sequence from charging to discharging of a battery assembly provided by an embodiment of the present application.
  • the abscissa is the time t
  • the ordinate is the current I.
  • the battery assembly 12 in the time period from 0 to t1, the battery assembly 12 is in a charging state, that is, a curve in which the battery assembly 12 is in a charging state may be curve 1 or curve 2.
  • the curve 1 represents that the battery assembly 12 is in a floating charge state
  • the curve 2 represents that the battery assembly 12 is in an equalizing state.
  • the power supply 30 is powered off.
  • the battery assembly 12 supplies power to the first load 21 and the second load 22, and the discharge current of the battery assembly 12 is I1+I2.
  • the first load 21 is disconnected from the energy storage system 10
  • the battery assembly 12 supplies power to the second load 22, and the discharge current of the battery assembly 12 becomes I2.
  • I1 is the discharge current of the battery assembly 12 supplying power to the first load 21
  • I2 is the discharge current of the battery assembly 12 supplying power to the second load 22.
  • the battery assembly 12 has a short-term overload discharge capability in the time period T1, and the discharge power (or discharge current) of the battery assembly 12 is greater than the discharge power (or discharge current) of the battery assembly 12 after the time t2, and the battery assembly 12 is in the The discharge power (or discharge current) in the T1 period is also stable and controllable.
  • the discharge capacity of the battery assembly 12 after time t2 is restored to the maximum nominal discharge capacity, so that the battery assembly 12 continues to supply power according to the discharge power (or discharge current) in normal operation.
  • FIGS. 4B-4C show external characteristic curves of voltage U-current I in a battery assembly provided by an embodiment of the present application.
  • the abscissa is the current I
  • the ordinate is the voltage V.
  • the working mode of the battery assembly 12 may include any one of the constant voltage mode, the constant power mode or the constant current mode as shown in FIG. 4B . Wherein, when the battery assembly 12 is in the constant voltage mode, the DCDC converter 122 can ensure that the battery assembly 12 can output constant voltage.
  • the working mode of the battery assembly 12 may also include: as shown in FIG. 4C , which simulates the working mode of a real battery, that is, the port voltage gradually decreases as the discharge time prolongs.
  • Curve 1 represents a battery pack 12 with only short-term overload discharge capability.
  • Curve 2 represents the battery pack 12 having both short-circuit current limiting output characteristics and short-term overload discharge capability.
  • the battery assembly 12 is powered off during the period from the power supply source 30 is powered off to the first load 21 is powered off.
  • the external characteristic curve of the voltage U-current I changes from curve 1 to curve 2. Therefore, the battery assembly 12 has a short-term overload discharge capability, so that the battery assembly 12 can supply power to the first load 21 and the second load 22 . After the first load 21 is powered off, the battery assembly 12 supplies power to the second load 22 .
  • the battery assembly 12 may determine that the first load 21 is short-circuited. Therefore, based on the first signal, the battery assembly 12 controls the magnitude of the discharge current of the battery assembly 12 below the V1 operating point to be greater than the maximum nominal discharge current above the V1 operating point and less than the short-circuit protection current of the battery assembly 12, and is controlled at The magnitude and duration of the discharge current of the battery assembly 12 below the V1 operating point are both stable and controllable, that is, the current of the battery assembly 12 increases from the current I4 to the current I3 (ie, the first current). Wherein, the current I4 is the maximum nominal discharge current of the battery assembly 12 during normal operation.
  • the battery assembly of the present application can not only have short-circuit current limiting output characteristics, but also have short-term overload discharge capability. It should be noted that the battery assembly of the present application may only have the short-circuit current-limiting output characteristic, may only have the short-term overload discharge capability, and may simultaneously have the short-circuit current-limiting output characteristic and the short-time overload discharge capability.
  • the present application also provides a user equipment.
  • the device of the present application may include: an electrical load 20 and an energy storage system 10 .
  • the power supply source 30 is used to supply power to the energy storage system 10 and the electrical load 20 , and the energy storage system 10 supplies power to the electrical load 20 , which can ensure the normal operation of the electrical equipment.
  • the electrical load 20 may include a transceiver device for receiving signals or transmitting signals.
  • the electrical device of the present application may further include a control device, and the control device may control the transceiver device to receive signals or send signals.
  • the electrical equipment of the present application can be used to implement the technical solutions of the embodiments shown in FIG. 1 to FIG. 4C , and its implementation principles and technical effects are similar. It is not repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

本申请提供一种电池组件和储能系统。电池组件包括:控制单元和DCDC转换器。控制单元,用于在电池组件向第一负载供电的过程中,当第一负载发生短路时控制DCDC转换器输出第一电流,第一电流大于电池组件的最大标称放电电流,用于断开第一负载与母线之间的电连接,且小于电池组件的短路保护电流。和/或,控制单元,用于在供电源掉电后,控制电池组件的放电能力大于电池组件的最大标称放电能力,通过DCDC转换器向第一负载和第二负载供电;在第一负载下电之后,控制电池组件的放电能力恢复为最大标称放电能力,通过DCDC转换器向第二负载供电。从而,避免了包括电池组件的储能系统宕站。

Description

电池组件和储能系统 技术领域
本申请涉及能源技术领域,尤其涉及一种电池组件和储能系统。
背景技术
铅酸电池、锂电池等电池组件广泛用于各种备电场景。然而,在实际应用过程中,常常会存在负载发生短路和/或供电源掉电的现象,容易导致系统宕站。
发明内容
本申请提供一种电池组件和储能系统,以解决由于负载发生短路和/或供电源掉电而导致储能系统宕站的现象。一方面,电池组件在负载发生短路时具备短路限流输出特性,能够输出幅值大于电池组件的最大标称放电电流且小于电池组件的短路保护电流的放电电流,使得负载优先于电池组件从储能系统中切离,也使得储能系统中的母排电压能够自动恢复。另一方面,电池组件在供电源掉电之后具备短时过载放电能力,能够在供电源掉电到次要负载下电的时间段内提升电池组件的放电能力,使得电池组件同时向重要负载和次要负载供电,保障了储能系统不会出现宕站的现象,还能够在供电源掉电至次要负载下电之后恢复电池组件的最大标称放电能力,使得电池组件向重要负载供电,保证了重要负载的备电时长。
第一方面,本申请提供一种电池组件,包括:控制单元和DCDC转换器。
控制单元,用于在电池组件向第一负载供电的过程中,当第一负载发生短路时,控制DCDC转换器输出第一电流。其中,第一电流大于电池组件的最大标称放电电流,用于断开第一负载与母线之间的电连接,且小于电池组件的短路保护电流;电池组件的最大标称放电电流为电池组件正常放电时所允许的最大电流,电池组件的短路保护电流为能够断开电池组件与母线之间的电连接的电流。
通过第一方面提供的电池组件,电池组件具备短路限流输出特性,具体的,电池组件在任意一个负载发生短路时能够继续限流工作,电池组件输出的放电电流的幅值大于电池组件的最大标称放电电流且小于电池组件的短路保护电流,且电池组件的放电电流持续时长稳定可控,使得在任意一个负载发生短路的情况下,发生短路的负载会先于电池组件从储能系统中切离,也使得储能系统中的母排电压能够自动恢复。
在一种可能的设计中,电池组件还包括:电芯包;DCDC转换器的第一端与电芯包的正极电连接,DCDC转换器的第二端与电芯包的负极电连接,DCDC转换器的第三端与第一母线电连接,DCDC转换器的第四端与第二母线电连接,DCDC转换器的第五端与控制单元电连接,第一母线和第二母线用于提供直流电,第一负载并联电连 接在第一母线与第二母线之间;控制单元,具体用于在第一负载发生短路时,基于第一信号的第三脉宽,控制DCDC转换器将电池组件的等效回路阻抗调小,以控制电池组件的放电电流为第一电流;其中,第一信号表征DCDC转换器内功率开关管的占空比,第一信号的脉宽用于调节电池组件的等效回路阻抗,以控制电池组件的放电电流。由此,电池组件中的控制单元通过控制DCDC转换器内功率开关管的占空比,使得电池组件输出的放电电流为第一电流,为电池组件输出第一电流提供了一种可能的实现方式。
在一种可能的设计中,控制单元,还具体用于监测电池组件在放电状态的端口电压;并在电池组件在放电状态的端口电压小于等于第一预设电压时,确定第一负载发生短路,并控制电池组件输出第一电流。由此,电池组件中的控制单元基于电池组件在放电状态的端口电压,可以判断出负载是否发生短路,以便及时控制DCDC转换器输出的放电电流为第一电流。由此,控制单元能够判断出负载是否发生短路,以便及时控制DCDC转换器输出电池组件的放电电流为第一电流。
第二方面,本申请提供一种电池组件,包括:控制单元和DCDC转换器。
控制单元,用于在供电源掉电后,控制电池组件的放电能力大于电池组件的最大标称放电能力,通过DCDC转换器向第一负载和第二负载供电;在第一负载下电之后,控制电池组件的放电能力恢复为最大标称放电能力,通过DCDC转换器向第二负载供电;其中,供电源用于在供电源未掉电前向第一负载和第二负载提供给直流电,第二负载先于第一负载被供电。
通过第二方面提供的电池组件,储能系统中的监控单元借助掉电告警信号,控制次要负载下电,保障重要负载的备电时长。且电池组件具备短时过载放电能力,具体的,在供电源掉电到次要负载下电的时间段内电池组件的放电能力(如放电功率或者放电电流)大于电池组件的最大标称放电能力(如最大标称放电功率或者最大标称放电电流),且电池组件的放电能力(如放电功率或者放电电流)稳定可控。从而,在供电源掉电至次要负载下电的时间段内,电池组件同时向重要负载和次要负载供电,保障了储能系统不会出现宕站的现象。在供电源掉电至次要负载下电之后,电池组件的放电能力(如放电功率或者放电电流)恢复为电池组件的最大标称放电能力(如最大标称放电功率或者最大标称放电电流),使得电池组件向重要负载供电,保证了重要负载的备电时长。
在一种可能的设计中,在电池组件的放电能力采用电池组件的放电功率表征时,控制单元,用于在供电源发生掉电后,控制电池组件在供电源掉电到第一负载下电的时间段内的放电功率大于最大标称放电功率,最大标称放电功率为电池组件正常放电时所允许的最大功率;在第一负载下电之后,控制电池组件恢复最大标称放电功率。由此,电池组件采用放电功率来表征电池组件的放电能力,从而为调整电池组件的放电能力提供了一种可能的实现方式。
或者,
在电池组件的放电能力采用电池组件的放电电流表征时,控制单元,用于在供电源发生掉电后,控制电池组件在供电源掉电到第一负载下电的时间段内的放电电流大于最大标称放电电流,最大标称放电电流为电池组件正常放电时所允许的最大电流; 在第一负载下电之后,控制电池组件恢复最大标称放电电流。由此,电池组件采用放电电流来表征电池组件的放电能力,从而为调整电池组件的放电能力提供了另一种可能的实现方式。
在一种可能的设计中,第一负载用于实现5G数据业务,第二负载用于除了5G数据业务之外的语音业务和传输业务。
在一种可能的设计中,控制单元,还用于在电池组件在充电状态或者待机状态的端口电压小于等于第二预设电压时,控制电池组件的放电能力大于电池组件的最大标称放电能力。由此,控制单元可以判断出供电源是否发生掉电,以便及时提升电池组件的放电能力。
在一种可能的设计中,电池组件还包括:电芯包;DCDC转换器的第一端与电芯包的正极电连接,DCDC转换器的第二端与电芯包的负极电连接,DCDC转换器的第三端与第一母线电连接,DCDC转换器的第四端与第二母线电连接,DCDC转换器的第五端与控制单元电连接,第一母线和第二母线用于通过供电源提供直流电,第一负载和第二负载并联电连接在第一母线与第二母线之间;控制单元,具体用于基于第一信号的第一脉宽,控制DCDC转换器将电池组件的等效回路阻抗调小,以控制电池组件的放电能力大于电池组件的最大标称放电能力;经过预设时长,基于第一信号的第二脉宽,控制DCDC转换器将电池组件的等效回路阻抗调大,以控制电池组件的放电能力恢复为电池组件的最大标称放电能力;其中,第一脉宽大于等于第二脉宽,第一信号的脉宽用于调节电池组件的等效回路阻抗,以控制电池组件的放电功率或者放电电流。由此,电池组件中的控制单元通过控制DCDC转换器内功率开关管的占空比,使得电池组件的放电能力发生改变,为调整电池组件的放电能力提供了一种可能的实现方式。
第三方面,本申请提供一种储能系统,包括:供电组件、第一母线、第二母线和第一方面及第一方面任一种可能的设计中的电池组件;和/或,供电组件、第一母线、第二母线和第二方面及第二方面任一种可能的设计中的电池组件。
在一种可能的设计中,储能系统还包括:监控单元,监控单元与供电组件电连接;供电组件,用于在供电源掉电后,向监控单元发送掉电告警信号;监控单元,还用于在接收到掉电告警信号时,控制用电负载中的次要负载下电。由此,监控单元在供电源发生掉电时能够及时控制次要负载下电,使得电池组件无需具备较长时长的过载放电能力,以避免电池组件发生损坏。
在一种可能的设计中,储能系统包括如下任意一种:数据中心、通信站点或者储能电站。
上述第三方面以及上述第三方面的各可能的设计中所提供的储能系统,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,和/或,其有益效果可以参见上述第二方面和第二方面的各可能的实施方式所带来的有益效果,在此不再赘述。
附图说明
图1为本申请一实施例提供的储能系统的结构示意图;
图2A为本申请一实施例提供的电池组件的结构示意图;
图2B为一种现有锂电池的结构示意图;
图3为本申请一实施例提供的电池组件短路限流输出的时序示意图;
图4A为本申请一实施例提供的电池组件从充电到放电的时序示意图;
图4B为本申请一实施例提供的电池组件的电压U-电流I的外特性曲线图;
图4C为本申请一实施例提供的电池组件的电压U-电流I的外特性曲线图。
附图标记说明:
10—储能系统;20—用电负载;30—供电源;
11—供电组件;W1—第一母线;W2—第二母线;12—电池组件;13—电池分流器;K1—BLVD接触器;K2—开关模块;21—第一负载;22—第二负载;14—监控单元;15—负载分流器;K3—LLVD接触器;K41和K42—负载空开;121—电芯包;122—DCDC转换器;123—控制单元;1231—采样模块;1232—调整模块;1233—BMS;
200—双向开关;300—充电器;400—控制器。
具体实施方式
本申请提供一种电池组件和储能系统,可应用于通信站点、数据中心、储能电站等各种备电场景。一方面,电池组件具备短路限流输出特性,具体的,电池组件在任意一个负载发生短路时能够继续限流工作,电池组件输出的放电电流的幅值大于电池组件的最大标称放电电流且小于电池组件的短路保护电流,且电池组件的放电电流持续时长稳定可控,使得在任意一个负载发生短路的情况下,发生短路的负载会先于电池组件从储能系统中切离,也使得储能系统中的母排电压能够自动恢复。
另一方面,储能系统中的监控单元借助掉电告警信号,控制次要负载下电,保障重要负载的备电时长。且电池组件具备短时过载放电能力,具体的,在供电源掉电到次要负载下电的时间段内电池组件的放电能力(如放电功率或者放电电流)大于电池组件的最大标称放电能力(如最大标称放电功率或者最大标称放电电流),且电池组件的放电能力(如放电功率或者放电电流)稳定可控。从而,在供电源掉电至次要负载下电的时间段内,电池组件同时向重要负载和次要负载供电,保障了储能系统不会出现宕站的现象。在供电源掉电至次要负载下电之后,电池组件的放电能力(如放电功率或者放电电流)恢复为电池组件的最大标称放电能力(如最大标称放电功率或者最大标称放电电流),使得电池组件向重要负载供电,保证了重要负载的备电时长。
其中,负载是否优先供电可以基于负载的业务的重要程度进行设置。一般情况下,业务的重要程度越高,对应的负载会优先被供电,即重要负载优先于次要负载被供电。另外,本申请对次要负载和重要负载的具体类型不做限定。
下面,结合具体的实施例,分别对本申请的电池组件12和储能系统10的具体实现方式进行详细说明。
图1示出了本申请一实施例提供的储能系统的结构示意图。如图1所示,本申请 的储能系统10可以包括:供电组件11、第一母线W1、第二母线W2以及至少一个电池组件12。其中,本申请对储能系统10的具体实现方式不做限定。在一些实施例中,储能系统10可以包括如下任意一种:数据中心、通信站点或者储能电站。
第一母线W1和第二母线W2用于提供直流电。其中,储能系统10中的母排电压为第一母线W1与第二母线W2之间的电压。电池组件12可以并联电连接在第一母线W1与第二母线W2之间,使得电池组件12能够充电或放电。且用电负载20也并联电连接在第一母线W1与第二母线W2之间,使得用电负载20能够获取电能。需要说明的是,本申请中,电池组件12与母线之间的电连接断开以电池组件12与第二母线W2之间的电连接断开为例进行示意,用电负载20与母线之间的电连接断开以用电负载20与第二母线W2之间的电连接断开为例进行示意。
其中,本申请对电池组件12的数量和具体实现结构不做限定。当电池组件12的数量大于1时,继续结合图1,储能系统10中还可以包括:电池分流器13和电池电压低下电(battery low voltage down,BLVD)接触器K1。另外,在电池组件12并联电连接在第一母线W1与第二母线W2之间时,本申请通常会在电池组件12与第二母线W2之间加入开关模块K2来保护电池组件12。为了便于说明,图1中采用两个电池组件12进行示意,每个电池组件12均通过开关模块K2经由BLVD接触器K1和电池分流器13与第二母线W2电连接。
下面,结合图2A介绍本申请的电池组件12的具体实现结构。需要说明的是,图2A中的开关模块K2、电池分流器13和BLVD接触器K1均未进行示意。
图2A示出了本申请一实施例提供的电池组件的结构示意图。如图2A所示,本申请的电池组件12可以包括:电芯包121、DCDC转换器122(direct current-direct current converter,直流-直流转换器)和控制单元123。
DCDC转换器122的第一端1与电芯包121的正极(+)电连接,DCDC转换器122的第二端2与电芯包121的负极(-)电连接,DCDC转换器122的第三端3与第一母线W1电连接,DCDC转换器122的第四端4与第二母线W2电连接,DCDC转换器122的第五端5与控制单元123电连接。
其中,本申请对电芯包121的具体实现方式不做限定。在一些实施例中,电芯包121可以包括:至少一个电芯。在电芯包121包括多个电芯时,多个电芯串联电连接;或者,多个电芯并联电连接;或者,多个电芯串并联电连接。另外,本申请对电芯的具体类型不做限定。例如,电芯的类型可以为锂电池。
其中,本申请对DCDC转换器122的具体实现方式不做限定。在一些实施例中,DCDC转换器122可以包括如下任意一种:降压式变换电路(Buck电路)、升压式变换电路(Boost电路)、降压-升压式变换电路(Buck-Boost电路)、反激电路、正激电路、半桥拓扑、全桥拓扑,以及由前述至少一个拓扑构成的隔离或非隔离电路。
其中,控制单元123可以为集成芯片,如微控制单元(microcontroller unit,MCU)或者系统级芯片(system on a chip,SoC),也可以为多个元器件组合而成,也可以为集成芯片和外围电路组合而成,本申请对此不做限定。
在一些实施例中,控制单元123可以包括:采样模块1231、调整模块1232以及电池管理系统(battery management system,BMS)1233。
采样模块1231用于采集电池组件12的放电电流,以及基于第一母线W1和第二母线W2采集电池组件12的端口电压(即DCDC转换器122的第三端3与第四端4之间的电压)。采样模块1231向调整模块1232发送电池组件12的放电电流和端口电压。其中,电池组件12的端口电压可以包括:电池组件12在放电状态的端口电压,以及电池组件12在充电状态或待机状态的端口电压。
调整模块1232用于基于电池组件12在放电状态的端口电压和第一预设电压,可以判断用电负载20是否发生短路,并在电池组件12在放电状态的端口电压小于等于第一预设电压时,确定用电负载20发生短路。其中,第一预设电压可基于电池组件12与第二母线W2之间的线长长度进行配置。
调整模块1232还用于基于电池组件12的放电电流计算得到第一信号,或者,基于电池组件12的放电电流和电池组件12在放电状态的端口电压计算得到第一信号。例如,调整模块1232通过单环或者多环的比例积分微分控制(proportional-integral-derivative control,PID控制)得到第一信号。调整模块1232向DCDC转换器122输出第一信号。
其中,第一信号表征DCDC转换器122内功率开关管的占空比,第一信号用于调节电池组件12的等效回路阻抗,达到控制电池组件12的放电功率或者放电电流的目的。本申请对第一信号的具体实现方式不做限定。例如,第一信号可以为脉冲宽度调制(pulse width modulation,PWM)信号等。
调整模块1232还用于基于电池组件12在充电状态或待机状态的端口电压,可以判断供电源30是否发生掉电,使得电池组件12确定是进行充电或待机还是进行放电。例如,调整模块1232可以预先配置第二预设电压。其中,本申请对第二预设电压的具体大小不做限定。一般情况下,第二预设电压会略小于电池组件12在充电状态或待机状态的端口电压。在电池组件12在充电状态或待机状态的端口电压小于等于第二预设电压时,调整模块1232可以确定供电源30发生掉电,从而电池组件12可以从充电状态或者待机状态转换到放电状态。其中,充电状态可以理解为浮充状态或者均充状态,待机状态可以理解为电池组件12的充电通道断开且电池组件12的放电通道打开,即电池组件12无法充电且可放电。
BMS 1233用于管理电芯包121的可充放电容量以及其他电池管理功能。BMS 1233可以通过软件算法和/或硬件电路实现。
基于上述描述,控制单元123基于电池组件12在放电状态的端口电压和第一预设电压,可以判断用电负载20是否发生短路,并在判断电池组件12在放电状态的端口电压小于等于第一预设电压时,确定用电负载20发生短路。从而,控制单元123基于第一信号,可以控制DCDC转换器122调节电池组件12的等效回路阻抗,使得电池组件12的放电电流发生改变。
并且,控制单元123基于电池组件12在充电状态或待机状态的端口电压和第二预设电压,可以判断供电源30是否发生掉电,使得电池组件12确定是进行充电或待机还是进行放电,并在电池组件12在充电状态或待机状态的端口电压小于等于第二预设电压时,控制单元30确定供电源30发生掉电,且电池组件12可以从充电状态或者待机状态转换到放电状态。从而,控制单元123基于第一信号,可以控制DCDC转换器 122调节电池组件12的等效回路阻抗,使得电池组件12的放电功率或者放电电流发生改变。
一般情况下,第一信号的脉宽越大,电池组件12的等效回路阻抗越小,电池组件12的放电功率或者放电电流越大。第一信号的脉宽越小,电池组件12的等效回路阻抗越大,电池组件12的放电功率和放电电流越小。
需要说明的是,电池组件12不限于上述实现方式。
其中,本申请对用电负载20的数量和类型不做限定。在用电负载20中次要负载的数量大于1时,继续结合图1,储能系统10中还可以包括:负载分流器15和负载电压低下电(Load Low Voltage Down,LLVD)接触器K3。另外,在用电负载20并联电连接在第一母线W1与第二母线W2之间时,本申请通常会在用电负载20与第二母线W2之间加入负载空开(K41和K42)。
在一些实施例中,当用电负载20包括第一负载21时,第一负载21的第一端与第一母线W1电连接,第一负载21的第二端通过第一负载21的负载空开K41与第二母线W2电连接。其中,第一负载21的负载空开K41可用于避免第一负载21在短路时过流。
在另一些实施例中,当用电负载20包括第一负载21和第二负载22时,第二负载22先于第一负载21供电。即,第一负载21为次要负载,第二负载22为重要负载。在一些实施例中,第一负载21用于实现5G数据业务,第二负载22用于除了5G数据业务之外的语音业务和传输业务,如2G/3G/4G业务。需要说明的是,此处涉及的第一负载21为次要负载以及第二负载22为重要负载仅为实例,本申请对第一负载21和第二负载22的具体类型不做任何限定。
为了便于说明,图1中采用一个重要负载和两个次要负载,即一个第二负载22和两个第一负载21进行示意,两个第一负载21分别通过负载空开K41经由LLVD接触器K3和负载分流器15与第二母线W2电连接,第二负载22通过负载空开K42经由LLVD接触器K3和负载分流器15与第二母线W2电连接。供电源30通过供电组件11向第二母线W2提供直流电,且供电组件11还可以监测供电源30的状态。其中,本申请对供电组件11的具体实现方式不做限定。
在一些实施例中,供电组件11可以由整流单元组成。其中,整流单元的输入端与供电源30(即交流供电源)电连接,整流单元的输出接地端与第一母线W1电连接,整流单元的输出供电端与第二母线W2电连接。整流单元将供电源30提供的交流电转换为直流电,且整流单元向第二母线W2提供直流电。其中,本申请对整流单元的具体实现方式不做限定。例如,整流单元包括整流电路和滤波电路。且供电源30可以为风能等能源。
在另一些实施例中,供电组件11也可以由DCDC电源转换器组成。其中,DCDC电源转换器的输入端与供电源30(即直流供电源)电连接,DCDC电源转换器的输出接地端与第一母线W1电连接,DCDC电源转换器的输出供电端与第二母线W2电连接,且DCDC电源转换器向第二母线W2提供给直流电。其中,本申请对DCDC电源转换器的具体实现方式不做限定。其中,供电源30可以为高压直流(HVDC)、太阳能板等能源。
另外,本申请的储能系统10还可以包括:监控单元14。监控单元14与供电组件11电连接,且监控单元14还与LLVD接触器K3和BLVD接触器K1的控制端电连接。另外,监控单元14可以通过并联电连接在第一母线W1和第二母线W2之间,获得电能,实现监控单元14的正常工作。
在供电源30发生掉电时,供电组件11可以向监控单元14发送掉电告警信号,使得监控单元14控制LLVD接触器K3断开,使得次要负载(即第一负载21)从储能系统10中切离。其中,本申请对掉电告警信号的具体表示形式不做限定。
在实际应用过程中,供电源30掉电之后,需要电池组件向用电负载20供电,使得用电负载20能够维持工作。以用电负载20包括前文提及的第一负载21为例。在电池组件向第一负载21供电时,电池组件、第一母线W1、第二母线W2以及第一负载21可以构成一回路。
当电池组件采用现有铅酸电池时,如果第一负载21发生短路,那么现有铅酸电池会输出几百到上千安的放电电流,且该放电电流不可控,会对整个储能系统带来安全隐患。因此,现有铅酸电池须配置昂贵的直流熔断器(即开关模块K2采用直流熔断器),进而利用直流熔断器和第一负载21对应的负载开关K41的脱扣电流阈值以及时间差实现短路分级保护,但直流熔断器的成本高且占用体积较大。
当电池组件采用现有锂电池时,如图2B所示,现有锂电池可以包括:电芯包121、双向开关200、充电器300和控制器400。其中,电芯包121的第一端经由双向开关200与第二母线W2电连接,电芯包121的第二端与第一母线W1电连接。充电器300并联电连接在双向开关200的两侧。
需要说明的是,图2B仅是现有锂电池分别与第一母线W1和第二母线W2的一种可行的连接方式,在现有锂电池与第一母线W1和/或现有锂电池与第二母线W2之间还可以包括其他模块,本申请对此不做限定。
如果第一负载21发生短路,那么在现有锂电池输出的放电电流达到一定阈值时,双向开关200会切断回路。其中,双向开关200可包括但不限于:接触器,继电器或者两个串联的功率半导体器件(如双向MOS管)等元器件。
由于该回路中的电流不可控,且持续时长较短(通常为几百微妙),且可以理解是的,第一负载21的负载空开K41通常为机械开关,如果现有锂电池中的双向开关200使用了双向MOS管,双向MOS管为电子开关,电子开关的灵敏度高于机械开关的灵敏度,即机械开关会延迟一段时长后脱扣,电子开关在接收到相应指令后会立即断开。因此,现有锂电池可能会提前保护自身,且会先于第一负载21与第二母线W2断开电连接,造成储能系统10中的母排电压被短路的第一负载21拖死的风险,导致储能系统10出现宕站现象。如果双向开关200使用了接触器或继电器,在第一负载21发生短路时,在短路电流下强行脱扣接触器或继电器,会严重损伤接触器或继电器内的触点,甚至造成接触器或继电器内的触点熔融并粘连。
可见,采用现有铅酸电池或现有锂电池在负载发生短路时,均存在一定的安全风险及系统宕站风险。
当电池组件采用本申请的电池组件12时,本申请设置有第一电流大于电池组件 12的最大标称放电电流且小于电池组件12的短路保护电流,第一电流为在第一负载21发生短路时电池组件12输出的放电电流。其中,电池组件12的最大标称放电电流为电池组件12正常放电时所允许的最大电流,电池组件12的短路保护电流为能够断开电池组件12与第二母线W2之间的电连接的电流。本申请中,第二电流为第一负载21与第二母线W2断开电连接的电流,即第一负载21的负载空开K41的脱扣电流阈值。本领域技术人员可以理解,第二电流通常小于等于电池组件12的最大标称电流。因此,第一电流大于第二电流。
其中,本申请对第一电流、第二电流、电池组件12的短路保护电流以及电池组件12的最大标称放电电流的具体大小不做限定。在一些实施例中,针对负载较大的场景,在配置负载空开(K41或K42)的容量时,脱扣电流阈值会接近甚至超过电池组件12的最大标称放电电流。此处的负载空开的容量指的是在负载空开不脱扣的情况下,允许通过负载开关的最大电流。例如,第一电流可以设置为大于电池组件12的最大标称放电电流的50%以上,第二电流设置为大于电池组件12的最大标称放电电流的25%-30%。
基于前述配置,本申请的电池组件12具备短路限流输出特性,即在负载发生短路时,本申请的电池组件12输出的第一电流的幅值大于电池组件12的最大标称放电电流幅值且小于电池组件12的短路保护电流的幅值,使得本申请的电池组件12输出的第一电流的持续时长稳定可控,使得第一负载21先于本申请的电池组件12与第二母线W2断开电连接,使得储能系统10中的母排电压能够自动恢复,避免了储能系统10出现宕站的风险。
在一些实施例中,电池组件12基于电池组件12在放电状态的端口电压和第一预设电压,可以判断第一负载21是否发生短路。电池组件12在放电状态的端口电压小于等于第一预设电压时,可以确定第一负载21发生短路。如果第一负载21发生短路,那么由于设置第一电流大于电池组件12的最大标称放电电流且小于电池组件12的短路保护电流,因此,电池组件12可以基于第一信号,控制DCDC转换器122调节电池组件12的等效回路阻抗变小,使得电池组件12的放电电流变大。从而,电池组件12能够输出幅值和时长稳定可控的第一电流,且第一电流大于第二电流,使得第一负载21会先于电池组件12与第二母线W2断开电连接。由此,将短路的第一负载21从储能系统10中切离,让储能系统10中的母排电压自动恢复。
在一些实施例中,在第一负载21发生短路时,电池组件12中的控制单元123可以将第一信号的脉宽调大(即第三脉宽),使得电池组件12的等效回路阻抗变小,从而电池组件12输出的第一电流变大,且电池组件12输出的第一电流大于电池组件12的最大标称电流。
其中,第一信号的第三脉宽可以根据电池组件12的最大标称电流以及第二电流进行设置。
在一些实施例中,第二电流为第一负载21的负载空开K41的脱扣电流阈值。由此,第一负载21通过第一负载21的负载空开K41自动断开,即将第一负载21的负载空开K41脱扣,使得第一负载21与第二母线W2断开电连接,从而将第一负载21与储能系统10切离,且DCDC转换器122与第二母线W2可以继续保持电连接,保 证电池组件12能够继续给用电负载20中的其他负载供电。
下面,结合图3,对现有铅酸电池、现有锂电池以及本申请的电池组件12的放电电流的变化情况进行举例说明。
图3示出了本申请一实施例提供的电池组件短路限流输出的时序示意图。图3中,横坐标为时间t,纵坐标为电流I。曲线1代表在第一负载21发生短路的情况下,现有铅酸电池的放电电流随时间变化的曲线,曲线2代表在第一负载21发生短路的情况下,现有锂电池的放电电流随时间变化的曲线,曲线3代表在第一负载21发生短路的情况下,本申请的电池组件12的放电电流随时间变化的曲线。
如图3所示,第一负载21在t1时刻发生短路,使得t1时刻之后现有铅酸电池的放电电流、现有锂电池的放电电流以及本申请的电池组件12的放电电流各自的幅值均变大。针对本申请的电池组件12而言,在t2时刻,DCDC转换器122会输出第一电流I3,使得本申请的电池组件12的第一电流I3的幅值大于电池组件12的最大标称放电电流且小于电池组件12的短路保护电流的幅值,且第一电流I3的持续时长保持稳定可控。第一电流I3大于第二电流,使得第一负载21的负载开关K41自动脱扣,使得储能系统中的母排电压自动恢复。针对现有锂电池而言,在t3时刻,双向开关会迅速切断现有锂电池与第二母线W2之间的电连接,使得现有锂电池的放电电流变为零,导致现有锂电池锁死,造成储能系统宕站的现象。针对现有铅酸电池而言,在t4时刻,直流熔断器会分断现有铅酸电池与第二母线W2之间的电连接,使得现有铅酸电池的放电电流变为零。
由此,与曲线1相比,本申请的电池组件12在第一负载21发生短路的情况下,能够自动限流,且在安全范围内,无需如现有铅酸电池须配昂贵的直流熔断器。与曲线2相比,本申请的电池组件12解决了在第一负载21短路时现有锂电池锁死而造成储能系统宕站的问题,无需手动恢复电池组件12的正常工作,或者无需人工去掉短路的第一负载21,降低了维护成本。
从而,本申请中,基于电池组件12与用电负载20的精准配合,使得用电负载20短路后先于电池组件12从储能系统10中的母排电压中切离。另外,电池组件12的短路放电电流的幅值和持续时长可由用户配置,增加了储能系统10的柔性。
在实际应用场景中,除了负载短路会给储能系统带来宕站风险外,供电源发生掉电,也会对储能系统的备电可靠性造成影响。现有储能系统常常同时支持5G数据业务和2G/3G/4G语音和传输业务。以用电负载20包括前文提及的第一负载21和第二负载22为例。其中,第二负载22先于第一负载21供电,即第一负载21为次要负载,第二负载22为重要负载。即,现有储能系统的电池组件处于充电状态或者待机状态,在供电源30发生掉电的情况下,电池组件会从充电状态或者待机状态转换到放电状态,由电池组件向用电负载20供电,并同时向第一负载21和第二负载22供电。
现有技术中,如果供电源30发生掉电,那么现有储能系统中的监控单元通常先控制次要负载下电,再控制重要负载下电,从而通过分级下电,确保了在较低电池容量的配置下能够延长重要负载的备电时长。
具体实现过程包括:供电源30发生掉电后,现有储能系统中的现有电池组件同时 给重要负载和次要负载供电,同时监控单元实时检测母排电压。在母排电压随着放电时长增加而降低至LLVD下电电压时,现有储能系统中的监控单元控制次要负载下电,直至母排电压达到BLVD下电电压时,现有储能系统中的监控单元控制BLVD接触器K1动作,将现有电池组件与现有储能系统脱离开来。
由于电池组件通常较昂贵,在很多场景下,现有储能系统仅需按照重要负载的电流I2和备电时长T11配置现有电池组件的容量(即I2*T11),在这种配置条件下,供电源掉电后的初始放电倍率为IL/(I2*T11),其中,IL为重要负载的电流I2和次要负载的电流I1之和。如果IL远大于I2,那么现有电池组件的实际放电倍率(倍率=电流/容量)会很大。此时,会出现如下两个问题:
问题1,现有电池组件的极化特性很严重,现有电池组件的端口电压跌落较快,分级下电的效果不理想。
问题2,若现有电池组件的实际放电倍率远大于1C,则现有电池组件会发生过流保护,引起现有电池组件自动保护而从现有储能系统中脱离开来,使得现有储能系统出现宕站的现象。
本申请中,在供电源30发生掉电时,本申请的供电组件11可以向监控单元14发送掉电告警信号。监控单元14在接收到掉电告警信号时,控制LLVD接触器K3断开,使得第一负载21下电。且本申请的电池组件12在判断供电源30发生掉电后从充电状态或者待机状态转换到放电状态,使得本申请的电池组件12为用电负载20供电。
由于电池组件12的端口电压会随着供电源30掉电而快速跌落,因此,本申请的电池组件12可以通过电池组件12在充电状态或待机状态的端口电压来判断供电源30是否发生掉电。例如,电池组件12中的控制单元123可以判断电池组件12在充电状态或待机状态的端口电压与第二预设电压的大小,来确定供电源30是否发生掉电,进一步控制电池组件12从充电状态或者待机状态转换到放电状态。例如,在电池组件12在充电状态或待机状态的端口电压小于等于第二预设电压时,本申请的电池组件12可以确定供电源30发生掉电,从而本申请的电池组件12从充电状态或者待机状态转换到放电状态。
又由于监控单元14控制LLVD接触器K3断开存在一定延迟,因此,本申请设置电池组件12在供电源30掉电到第一负载21下电的时间段内的放电能力(即放电功率或放电电流)大于最大标称放电能力(即最大标称放电功率或者最大标称放电电流)。其中,电池组件12的最大标称放电功率为电池组件12正常放电时所允许的最大功率。在第一负载21下电后,电池组件12的放电能力恢复为最大标称放电能力,即在供电源30掉电前,电池组件12的放电能力即为最大标称放电能力。
在一些实施例中,本申请的电池组件12基于第一信号,通过调节电池组件12的等效回路阻抗,使得电池组件12在供电源30掉电到第一负载21下电的时间段内的放电功率大于电池组件12的最大标称放电功率,也使得电池组件12在第一负载21下电后恢复最大标称放电功率,电池组件12实际的放电功率取决于重要负载的负载量。
或者,本申请的电池组件12基于第一信号,通过调节电池组件12的等效回路阻抗,使得电池组件12在供电源30掉电到第一负载21下电的时间段内的放电电流大于电池组件12的最大标称放电电流,也使得电池组件12在第一负载21下电后恢复最大 标称放电电流,电池组件12实际的放电电流取决于重要负载的负载量。
在一些实施例中,在本申请的电池组件12从充电状态或者待机状态转换到放电状态时,电池组件12中的控制单元123可以将第一信号的脉宽调大(即第一脉宽),使得电池组件12的等效回路阻抗变小,从而将电池组件12的放电功率或放电电流变大。经过预设时长,本申请的电池组件12可以将第一信号的脉宽变调小(即第二脉宽),使得电池组件12的等效回路阻抗变大,从而将电池组件12的放电功率或放电电流变小,即电池组件12恢复最大标称放电功率,或者电池组件12恢复最大标称放电电流,以恢复电池组件12的正常工作。其中,第一脉宽大于第二脉宽。
其中,预设时长的起始时刻为电池组件12从充电状态或者待机状态转换到放电状态的时刻。本申请对预设时长的具体大小不做限定。其中,本申请可以按照总负载的功率控制电池组件12中DCDC转换器122的放电能力。从而,使得本申请的电池组件12的放电能力(即放电功率或放电电流)能够支撑总负载。在此基础上,本申请可仅按照重要负载的功率(或电流)和备电时长配置电池组件12的备电容量。
与现有技术相比,本申请中,在供电源30发生掉电时,监控单元14通过监测掉电告警信号控制次要负载下电,无需采集母排电压来控制分级下电的顺序,也无需依赖LLVD和BLVD这两个下电电压参数的设置,避免了大倍率放电下现有电池组件的极化特性对分级下电的效果产生影响,也避免了短时大倍率放电下现有电池组件触发过流保护动作。
且电池组件12从充电状态或者待机状态转换到放电状态后,在次要负载下电前的时间段内的放电能力提升,能够同时向重要负载和次要负载供电,保证了本申请的储能系统10不掉电,避免了储能系统出现宕站的现象。在次要负载下电之后,电池组件12的放电能力恢复为最大标称放电能力,此时电池组件12仅为重要负载提供备电。因此,本申请的电池组件12在较少的容量配置下,重要负载的备电时长基本不受影响。
以第一负载21为次要负载,第二负载22为重要负载为例。在供电源30掉电到第一负载21下电的时间段内,电池组件12具备短时过载放电能力,使得电池组件12向第一负载21和第二负载22供电,支撑本申请的储能系统10中的总负载,避免了储能系统出现宕站的现象。在第一负载21下电之后,电池组件12向第二负载22供电,保障了重要负载的备电时长。从而,节省了本申请的储能系统10中电池组件12的容量配置,减少了储能系统10中电池组件12的数量,降低了成本。
下面,结合图4A-图4C,对本申请的电池组件12在供电源30掉电后的具体工作过程进行举例说明。
图4A示出了本申请一实施例提供的电池组件从充电到放电的时序示意图。图4A中,横坐标为时间t,纵坐标为电流I。
如图4A所示,0-t1时间段,电池组件12处于充电状态,即电池组件12处于充电状态的曲线可以为曲线1,也可以为曲线2。其中,曲线1代表电池组件12处于浮充状态,曲线2代表电池组件12处于均充状态。在t1时刻,供电源30发生掉电,此时,电池组件12向第一负载21和第二负载22供电,电池组件12的放电电流为I1+I2。在t2时刻,即经过T1时间段,第一负载21从储能系统10中切离,电池组件12向第二负载22供电,电池组件12的放电电流变为I2。其中,I1为电池组件12向第一负载 21供电的放电电流,I2为电池组件12向第二负载22供电的放电电流。
由此,电池组件12在T1时间段内具有短时过载放电能力,且电池组件12的放电功率(或者放电电流)大于t2时刻之后电池组件12的放电功率(或者放电电流),电池组件12在T1时间段内的放电功率(或者放电电流)还稳定可控。电池组件12在t2时刻之后的放电能力恢复为最大标称放电能力,使得电池组件12按照正常工作的放电功率(或者放电电流)继续供电。
图4B-图4C示出了本申请一实施例提供的电池组件中的电压U-电流I的外特性曲线图。图4B-图4C中,横坐标为电流I,纵坐标为电压V。
电池组件12的工作模式可以包括:如图4B所示的恒压模式、恒功率模式或者恒流模式中的任意一种。其中,电池组件12处于恒压模式时,DCDC转换器122可确保电池组件12能够恒压输出。电池组件12的工作模式也可以包括:如图4C所示的模拟真实电池的工作模式,即端口电压随着放电时间的延长而逐渐下降。
曲线1代表仅具备短时过载放电能力的电池组件12。曲线2代表同时具备短路限流输出特性和短时过载放电能力的电池组件12。
继续结合图4B和图4C,无论电池组件12处于哪个工作模式,电池组件12在供电源30发生掉电后,在供电源30掉电到第一负载21下电的时间段内,电池组件12的电压U-电流I的外特性曲线从曲线1变成曲线2。从而,使得电池组件12具备短时过载放电能力,实现电池组件12向第一负载21和第二负载22供电。在第一负载21下电之后,电池组件12向第二负载22供电。
另外,在电池组件12在放电状态的端口电压下降至电压V1(即第一预设电压)时,电池组件12可以确定第一负载21发生短路。从而,电池组件12基于第一信号,控制在V1工作点以下的电池组件12的放电电流的幅值大于V1工作点以上的最大标称放电电流且小于电池组件12的短路保护电流,且控制在V1工作点以下的电池组件12的放电电流的幅值和持续时长均稳定可控,即电池组件12的电流从电流I4提升至电流I3(即第一电流)。其中,电流I4为电池组件12正常工作时的最大标称放电电流。
综上,本申请的电池组件不仅可以具备短路限流输出特性,还可以具备短时过载放电能力。需要说明的是,本申请的电池组件可以仅具备短路限流输出特性,还可以仅具备短时过载放电能力,还可以同时具备短路限流输出特性和短时过载放电能力。
示例性地,本申请还提供一种用户设备。本申请的设备可以包括:用电负载20以及储能系统10。
其中,本申请对用户设备的具体实现方式不做限定。
供电源30用于向储能系统10和用电负载20供电,储能系统10向用电负载20供电,能够保证用电设备正常运转。用电负载20可以包括收发设备,收发设备用于接收信号或者发送信号。另外,本申请的用电设备还可以包括控制设备,控制设备可以控制收发设备接收信号或者发送信号。
本申请的用电设备,可以用于执行图1-图4C所示实施例的技术方案,其实现原理和技术效果类似,其中各个模块的实现的操作可以进一步参考方法实施例的相关描 述,此处不再赘述。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (11)

  1. 一种电池组件,其特征在于,包括:控制单元和DCDC转换器,
    所述控制单元,用于在所述电池组件向第一负载供电的过程中,当所述第一负载发生短路时,控制所述DCDC转换器输出第一电流;
    其中,所述第一电流大于所述电池组件的最大标称放电电流,用于断开所述第一负载与母线之间的电连接,且小于所述电池组件的短路保护电流;所述电池组件的最大标称放电电流为所述电池组件正常放电时所允许的最大电流,所述电池组件的短路保护电流为能够断开所述电池组件与所述母线之间的电连接的电流。
  2. 根据权利要求1所述的电池组件,其特征在于,所述电池组件还包括:电芯包;
    所述DCDC转换器的第一端与所述电芯包的正极电连接,所述DCDC转换器的第二端与所述电芯包的负极电连接,所述DCDC转换器的第三端与第一母线电连接,所述DCDC转换器的第四端与第二母线电连接,所述DCDC转换器的第五端与所述控制单元电连接,所述第一母线和所述第二母线用于提供直流电,所述第一负载并联电连接在第一母线与第二母线之间;
    所述控制单元,具体用于在所述第一负载发生短路时,基于第一信号的第三脉宽,控制所述DCDC转换器将所述电池组件的等效回路阻抗调小,以控制所述电池组件的放电电流为所述第一电流;
    其中,所述第一信号表征所述DCDC转换器内功率开关管的占空比,所述第一信号的脉宽用于调节所述电池组件的等效回路阻抗,以控制所述电池组件的放电电流。
  3. 根据权利要求1或2所述的电池组件,其特征在于,
    所述控制单元,还具体用于监测所述电池组件在放电状态的端口电压;并在所述电池组件在放电状态的端口电压小于等于第一预设电压时,控制所述DCDC转换器输出所述第一电流。
  4. 一种电池组件,其特征在于,包括:控制单元和DCDC转换器,
    所述控制单元,用于在供电源掉电后,控制所述电池组件的放电能力大于所述电池组件的最大标称放电能力,通过所述DCDC转换器向第一负载和第二负载供电;在所述第一负载下电之后,控制所述电池组件的放电能力恢复为最大标称放电能力,通过所述DCDC转换器向所述第二负载供电;
    其中,所述供电源用于在所述供电源未掉电前向所述第一负载和所述第二负载提供给直流电,所述第二负载先于所述第一负载被供电。
  5. 根据权利要求4所述的电池组件,其特征在于,
    在所述电池组件的放电能力采用所述电池组件的放电功率表征时,所述控制单元,用于在所述供电源发生掉电后,控制所述电池组件在所述供电源掉电到所述第一负载下电的时间段内的放电功率大于最大标称放电功率,所述最大标称放电功率为所述电池组件正常放电时所允许的最大功率;在所述第一负载下电之后,控制所述电池组件恢复最大标称放电功率;
    或者,
    在所述电池组件的放电能力采用所述电池组件的放电电流表征时,所述控制单元, 用于在所述供电源发生掉电后,控制所述电池组件在所述供电源掉电到所述第一负载下电的时间段内的放电电流大于最大标称放电电流,所述最大标称放电电流为所述电池组件正常放电时所允许的最大电流;在所述第一负载下电之后,控制所述电池组件恢复最大标称放电电流。
  6. 根据权利要求4或5所述的电池组件,其特征在于,所述第一负载用于实现5G数据业务,所述第二负载用于除了5G数据业务之外的语音业务和传输业务。
  7. 根据权利要求4-6任一项所述的电池组件,其特征在于,
    所述控制单元,还用于在所述电池组件在充电状态或者待机状态的端口电压小于等于第二预设电压时,控制所述电池组件的放电能力大于所述电池组件的最大标称放电能力。
  8. 根据权利要求4-7任一项所述的电池组件,其特征在于,所述电池组件还包括:电芯包;
    所述DCDC转换器的第一端与所述电芯包的正极电连接,所述DCDC转换器的第二端与所述电芯包的负极电连接,所述DCDC转换器的第三端与第一母线电连接,所述DCDC转换器的第四端与第二母线电连接,所述DCDC转换器的第五端与所述控制单元电连接,所述第一母线和所述第二母线用于通过所述供电源提供直流电,所述第一负载和所述第二负载并联电连接在第一母线与第二母线之间;
    所述控制单元,具体用于基于第一信号的第一脉宽,控制所述DCDC转换器将所述电池组件的等效回路阻抗调小,以控制所述电池组件的放电能力大于所述电池组件的最大标称放电能力;经过预设时长,基于所述第一信号的第二脉宽,控制所述DCDC转换器将所述电池组件的等效回路阻抗调大,以控制所述电池组件的放电能力恢复为所述电池组件的最大标称放电能力;
    其中,所述第一脉宽大于等于所述第二脉宽,所述第一信号的脉宽用于调节所述电池组件的等效回路阻抗,以控制所述电池组件的放电功率或者放电电流。
  9. 一种储能系统,其特征在于,包括:供电组件、第一母线、第二母线和如权利要求1-3任一项所述的电池组件;和/或,供电组件、第一母线、第二母线和如权利要求4-8任一项所述的电池组件。
  10. 根据权利要求9所述的储能系统,其特征在于,所述储能系统还包括:监控单元,所述监控单元与所述供电组件电连接;
    所述供电组件,用于在所述供电源掉电后,向所述监控单元发送掉电告警信号;
    所述监控单元,还用于在接收到所述掉电告警信号时,控制用电负载中的次要负载下电。
  11. 根据权利要求9或10所述的储能系统,其特征在于,所述储能系统包括如下任意一种:数据中心、通信站点或者储能电站。
PCT/CN2020/102403 2020-07-16 2020-07-16 电池组件和储能系统 WO2022011640A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023502589A JP2023534687A (ja) 2020-07-16 2020-07-16 バッテリーアセンブリ及びエネルギー貯蔵システム
CN202080018443.7A CN114270657A (zh) 2020-07-16 2020-07-16 电池组件和储能系统
EP20945529.4A EP4167433A4 (en) 2020-07-16 2020-07-16 BATTERY ARRANGEMENT AND ENERGY STORAGE SYSTEM
PCT/CN2020/102403 WO2022011640A1 (zh) 2020-07-16 2020-07-16 电池组件和储能系统
US18/152,278 US20230163626A1 (en) 2020-07-16 2023-01-10 Battery assembly and energy storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/102403 WO2022011640A1 (zh) 2020-07-16 2020-07-16 电池组件和储能系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/152,278 Continuation US20230163626A1 (en) 2020-07-16 2023-01-10 Battery assembly and energy storage system

Publications (1)

Publication Number Publication Date
WO2022011640A1 true WO2022011640A1 (zh) 2022-01-20

Family

ID=79555934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102403 WO2022011640A1 (zh) 2020-07-16 2020-07-16 电池组件和储能系统

Country Status (5)

Country Link
US (1) US20230163626A1 (zh)
EP (1) EP4167433A4 (zh)
JP (1) JP2023534687A (zh)
CN (1) CN114270657A (zh)
WO (1) WO2022011640A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024032932A1 (en) * 2022-08-10 2024-02-15 Eaton Intelligent Power Limited Multiport protection apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3905423A4 (en) * 2018-12-25 2022-02-16 SANYO Electric Co., Ltd. STANDBY POWER SUPPLY DEVICE AND RECHARGEABLE BATTERY CHARGING METHOD
CN116599204B (zh) * 2023-07-12 2023-09-29 新誉轨道交通科技有限公司 供电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928964A (zh) * 2014-04-30 2014-07-16 中国能源建设集团广东省电力设计研究院 变电站一体化电源通信用电装置
CN103972979A (zh) * 2014-05-21 2014-08-06 华为技术有限公司 通信电源电路
FR3005534A1 (fr) * 2013-05-07 2014-11-14 Commissariat Energie Atomique Protection d'une alimentation incluant plusieurs batteries en parallele contre un court circuit externe
CN108340788A (zh) * 2018-03-29 2018-07-31 西南交通大学 一种燃料电池混合动力有轨电车联合制动系统及方法
KR20180092508A (ko) * 2017-02-09 2018-08-20 주식회사 엘지화학 배터리 팩과 외부 시스템의 체결 시 돌입전류와 쇼트전류를 구분하는 스위치 제어장치 및 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100830351B1 (ko) * 2007-09-12 2008-05-20 국제통신공업 주식회사 아이지비티 유피에스 시스템
US20150092311A1 (en) * 2013-09-30 2015-04-02 Abb Technology Ag Methods, systems, and computer readable media for protection of direct current building electrical systems
DE102014102352A1 (de) * 2014-02-24 2015-08-27 Ge Energy Power Conversion Technology Limited Batteriespeichersystem mit Störlichtbogenschutz, Energieumwandlungssystem und Schutzverfahren
CN204144918U (zh) * 2014-08-15 2015-02-04 北京人民电器厂有限公司 一种高频开关电源系统使用的直流断路器
CN206272312U (zh) * 2016-12-13 2017-06-20 国网山东省电力公司 一种具有并联电池模块的直流电源系统
CN106532889A (zh) * 2016-12-13 2017-03-22 山东鲁能智能技术有限公司 一种具有并联电池模块的直流电源系统及方法
US10110000B2 (en) * 2017-02-27 2018-10-23 Hamilton Sundstrand Corporation Power management and distribution architecture for a space vehicle
KR102515128B1 (ko) * 2018-01-25 2023-03-28 엘지이노텍 주식회사 직류직류 컨버터를 포함하는 에너지 저장 시스템 및 이를 포함하는 전력 공급 시스템 및 이의 제어 방법
CN109120051B (zh) * 2018-10-10 2024-06-04 北京凯华网联技术有限公司 多路混用电池管理器、锂电池供电单元的控制方法、基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3005534A1 (fr) * 2013-05-07 2014-11-14 Commissariat Energie Atomique Protection d'une alimentation incluant plusieurs batteries en parallele contre un court circuit externe
CN103928964A (zh) * 2014-04-30 2014-07-16 中国能源建设集团广东省电力设计研究院 变电站一体化电源通信用电装置
CN103972979A (zh) * 2014-05-21 2014-08-06 华为技术有限公司 通信电源电路
KR20180092508A (ko) * 2017-02-09 2018-08-20 주식회사 엘지화학 배터리 팩과 외부 시스템의 체결 시 돌입전류와 쇼트전류를 구분하는 스위치 제어장치 및 방법
CN108340788A (zh) * 2018-03-29 2018-07-31 西南交通大学 一种燃料电池混合动力有轨电车联合制动系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024032932A1 (en) * 2022-08-10 2024-02-15 Eaton Intelligent Power Limited Multiport protection apparatus

Also Published As

Publication number Publication date
EP4167433A4 (en) 2023-11-15
CN114270657A (zh) 2022-04-01
US20230163626A1 (en) 2023-05-25
EP4167433A1 (en) 2023-04-19
JP2023534687A (ja) 2023-08-10

Similar Documents

Publication Publication Date Title
WO2022011640A1 (zh) 电池组件和储能系统
CN202856431U (zh) 避免电池浮充的控制系统及供电系统
CN102545291B (zh) 太阳能蓄电系统及太阳能供电系统
CN102957173B (zh) 一种多节串联锂电池组均衡及保护系统
KR102234290B1 (ko) 에너지 저장 시스템 및 그의 구동방법
CN203014423U (zh) 一种不间断电源的电池模组管理与控制装置
CN103078384B (zh) 一种不间断电源
CN102368630B (zh) 一种两组直流电源的无缝无环流切换系统
CN106787045B (zh) 直流电源系统及其控制方法
CN110932357A (zh) 储能装置
CN110021925A (zh) 直流供电系统及其控制方法
WO2023179734A1 (zh) 一种全电流控制电池模块及全电流控制电池储能系统
CN105262171A (zh) 一种电池充电保护控制系统及方法
KR101207142B1 (ko) 리튬폴리머 배터리를 이용한 무정전 전원공급장치
WO2023125826A1 (zh) 双向充电管理系统及其电池监管设备
WO2023125829A1 (zh) 电池管理装置及双向充电系统
CN111092471A (zh) 一种储能电池组用过充过放保护电路的使用方法
CN205829291U (zh) 一种rs485数据采集环网设备的系统及供电电路
CN215883385U (zh) 一种电池包、电池管理系统及车辆
CN102957175B (zh) 一种多节串联锂电池组均衡及保护系统
CN115714441A (zh) 一种充放电控制系统和控制方法
CN203871888U (zh) 变电站一体化电源通信用电装置
CN103928964B (zh) 变电站一体化电源通信用电装置
CN104485706B (zh) 一种锂电池组放电电路
CN103248015A (zh) 储能变流器直流母线短路快速保护系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945529

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502589

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020945529

Country of ref document: EP

Effective date: 20230116

NENP Non-entry into the national phase

Ref country code: DE