WO2023125583A1 - 一种参考信号的传输方法、装置、存储介质及芯片 - Google Patents

一种参考信号的传输方法、装置、存储介质及芯片 Download PDF

Info

Publication number
WO2023125583A1
WO2023125583A1 PCT/CN2022/142540 CN2022142540W WO2023125583A1 WO 2023125583 A1 WO2023125583 A1 WO 2023125583A1 CN 2022142540 W CN2022142540 W CN 2022142540W WO 2023125583 A1 WO2023125583 A1 WO 2023125583A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
communication device
reference signal
time domain
domain resources
Prior art date
Application number
PCT/CN2022/142540
Other languages
English (en)
French (fr)
Inventor
于莹洁
王艺
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023125583A1 publication Critical patent/WO2023125583A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment

Definitions

  • the present application relates to the technical field of communications, and in particular to a reference signal transmission method, device, storage medium and chip.
  • New Radio (NR) positioning scenarios mainly include: enhanced mobile broadband (eMBB) outdoors, eMBB indoors, ultra-reliable and low latency communications (URLLC) and massive machine-type communications (massive machine type of communication, mMTC)/Internet of Things (Internet of Things, IOT). It also requires features such as high security, scalability, high availability, and precision assurance in high-speed applications.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low latency communications
  • mMTC massive machine-type communications
  • IOT Internet of Things
  • terminal devices can be positioned based on angles used for positioning such as angle of departure (AOD) or angle of arrival (AOA).
  • AOD angle of departure
  • AOA angle of arrival
  • the terminal device can detect the positioning reference signal (positioning reference signal, PRS) sent by the access point (AP), and obtain the reference signal receiving power (reference signal receiving power) corresponding to multiple beams. , RSRP). Based on the value of the RSRP and the information of the beam sent by the base station, the angle of departure (Angle of departure, AOD) at which the wireless signal of the AP leaves the AP is calculated, and the AOD can be used to locate the terminal device.
  • PRS positioning reference signal
  • RSRP reference signal receiving power
  • the present application provides a reference signal transmission method, device, storage medium and chip, which are used to determine phase information based on a reference signal transmission scheme, and then determine an angle (such as AOD, etc.) scheme based on the phase information.
  • an embodiment of the present application provides a method for transmitting a reference signal, the method including: the first communication device acquires first configuration information of the first reference signal, and the first configuration information includes a plurality of time frames for determining phase information. Instructions for domain resources.
  • the first communication device receives the first reference signal, and determines multiple pieces of first phase information corresponding to the multiple time domain resources.
  • One first phase information among the plurality of first phase information is determined according to a signal received by one time domain resource among the plurality of time domain resources.
  • the first communication device sends the second phase information and/or the first angle of departure information.
  • the second phase information is determined according to a plurality of first phase information.
  • the first departure angle information is determined according to a plurality of first phase information.
  • the first communication device determines a plurality of time-domain resources for which phase information needs to be determined according to the first configuration information, and determines a plurality of phase information in the plurality of time-domain resources, and then can determine the departure of the reference signal according to the plurality of phase information horn. It can be seen that the present application can provide a solution for determining an angle (such as AOD) based on phase information, so that when it is necessary to determine an angle for positioning, there is an alternative solution.
  • an angle such as AOD
  • the multiple time domain resources include a first time domain resource and a second time domain resource.
  • the first communication device receives the first part of the first reference signal in the first time domain resource, and determines one first phase information among the plurality of first phase information according to the first part of the first reference signal.
  • the first communication device receives the second part of the first reference signal in the second time domain resource, and determines another first phase information among the plurality of first phase information according to the second part of the first reference signal.
  • the first communication device can determine multiple pieces of first phase information through one reference signal, the number of reference signals used for calculating the departure angle can be reduced, thereby saving network resources and reducing time delay.
  • the indication information of multiple time-domain resources used to determine the phase information includes at least one of the following: two time-domain resources among the S1 time-domain resources corresponding to the first reference signal Information about the number of time-domain resource units between intervals.
  • S1 is an integer greater than 1.
  • the S1 time domain resources are time domain resources used by the first reference signal sender to send the first reference signal.
  • the first communication device may determine its own law for determining the first phase information according to the law for sending the first reference signal by the transmitting end, and the two laws may match. Furthermore, when the second communication device intermittently sends the first reference signal on discontinuous time domain resources, since the first communication device knows the law of the second communication device sending the first reference signal, the first communication device can Each signal with better quality is determined according to the matching rule, and then the first communication device can determine the first phase information according to the determined signal with better quality, so that the accuracy of the first phase information can be improved.
  • the indication information of multiple time-domain resources used for determining the phase information includes: information of S1 time-domain resources corresponding to the first reference signal.
  • the first communication device can determine the multiple time domain resources for determining the first phase information by itself according to the S1 time domain resources for sending the first reference signal by the transmitting end.
  • the second communication device may have time to communicate between the adjacent time domain resources among the S1 time domain resources. Execute port switching action.
  • adjacent time domain resources are separated by Q1 time domain resource units, and Q1 is a positive integer.
  • Q1 is a positive integer.
  • one time-domain resource unit is one or more time-domain symbols. Therefore, the first communication device can obtain a plurality of first phase information at the symbol granularity, and then can determine the departure angle based on at least one phase information, thereby reducing the time delay of the scheme of calculating the departure angle based on the behavior information.
  • the first configuration information further includes: a correspondence between S1 time-domain resources corresponding to the first reference signal and multiple ports, where S1 is an integer greater than 1.
  • the multiple ports are ports used by the first reference signal sending end to send the first reference signal on the S1 time domain resources.
  • the first communication device can determine the corresponding relationship between a plurality of first phase information and the first port, and then the first communication device can also report the corresponding relationship between the first phase information and the first port, so that the second The second communication device determines the distance between ports corresponding to the first phase information according to the corresponding relationship.
  • two ports corresponding to two adjacent time domain resources among the S1 time domain resources are different.
  • the first communication device may obtain two different first phase information based on signals sent by two adjacent time domain resources among the S1 time domain resources.
  • a phase difference can be obtained from two different first phase information.
  • the ports corresponding to two adjacent time domain resources are different, the maximum phase difference can be obtained, thereby improving the accuracy of the departure angle.
  • one port among the multiple ports corresponds to one time domain resource among the S1 time domain resources.
  • the second communication device uses one port once in the process of sending the first reference signal through S1 time domain resources, so that the second communication device can send the first reference signal through as many different ports as possible, and then The first communication device can obtain first phase information corresponding to more different ports.
  • the first phase information corresponding to more different ports can obtain more phase differences. It can be seen that this solution can increase the number of phase differences, thereby improving the accuracy of the departure angle.
  • one port in the multiple ports corresponds to multiple time domain resources in the S1 time domain resources.
  • one port can be used multiple times.
  • one port can be set as a reference port to provide calibration for other ports.
  • the port is multiplexed multiple times, which can save the number of ports required by the solution, thereby reducing the hardware requirements of the second communication device, thereby reducing the cost of the second communication device.
  • the first configuration information further includes: information about the frequency domain resource corresponding to the first reference signal, so that the first communication device receives the first reference signal on the corresponding frequency domain resource according to the first configuration information. Signal.
  • the second phase information includes at least one of the following: at least two pieces of first phase information in a plurality of first phase information; at least one phase difference corresponding to a plurality of first phase information information; or, mean information of at least one phase difference information. In this way, the flexibility of the scheme can be improved.
  • the second phase information when the second phase information includes at least two pieces of first phase information: the sequence of the at least two first phase pieces of information in the second phase information corresponds to the at least two pieces of first phase information
  • the ordering of the time domain resource matches.
  • the second communication device can determine the port corresponding to each first phase information included in the second phase information according to the ports sequentially used to send the first reference signal, so that the second communication device can determine multiple first phases
  • the information corresponds to the distance between ports corresponding to the phase difference information, and the angle of departure is calculated according to the distance.
  • the second phase information when the second phase information includes at least two pieces of first phase information: the sequence of the at least two first phase pieces of information in the second phase information corresponds to the at least two pieces of first phase information
  • the ordering matches the identity of the port.
  • the second communication device can determine the port corresponding to each first phase information included in the second phase information according to the preset order of the port identification, so that the second communication device can determine that a plurality of first phase information corresponds to The distance between the ports corresponding to the phase difference information of , and the angle of departure is calculated according to the distance.
  • the sequence of the at least two phase difference pieces of information in the second phase information is related to the phase The sequence matching of the time domain resources corresponding to the difference information.
  • the second communication device can determine the port corresponding to each phase difference information included in the second phase information according to the ports sequentially used to send the first reference signal, so that the second communication device can determine the port corresponding to each phase difference information The spacing between ports from which to calculate the departure angle.
  • the sequence of the at least two phase difference pieces of information in the second phase information is related to the phase The order matching of the identifiers of the ports corresponding to the difference information.
  • the second communication device can determine the port corresponding to each phase difference information included in the second phase information according to the preset sequence of port identifiers, so that the second communication device can determine one of the ports corresponding to each phase difference information. The distance between them is used to calculate the departure angle.
  • the first communication device further includes: the first communication device sends the first Reliability information for biphasic information.
  • the first communication device sends the first Reliability information for biphasic information.
  • the reliability information of the second phase information includes standard deviation information and/or variance information corresponding to multiple pieces of first phase information.
  • the first communication device further includes: the first communication device sends the first 1. Instructions.
  • the first indication information indicates the corresponding relationship between the parameter in the second phase information and the identifier of the port used to send the first reference signal.
  • the second communication device can determine the ports corresponding to the parameters in the second phase information according to the first indication information, so that the second communication device can determine the distance between ports corresponding to the parameters in the second phase information, The angle of departure is calculated from this distance.
  • the first departure angle information includes: at least one departure angle information corresponding to a plurality of first phase information, and the at least one departure angle information is based on the plurality of first phase information and sending the first reference
  • the distance between the ports of the signal is determined;
  • the plurality of first phase information corresponds to at least one first angle of departure mean value information, and the at least one first angle of departure mean value information is determined according to at least two items of the at least one angle of departure information;
  • the at least one second departure angle mean value information corresponding to the plurality of first phase information, the at least one second departure angle mean value information is determined according to the mean value information of the phase difference information corresponding to the plurality of first phase information, and the port distance mean value information
  • the mean value of the distance between the ports is determined according to the mean value of the distances between the multiple ports sending the first reference signal.
  • the positioning server can directly locate the first communication device according to the information of the first departure angle reported by the first communication device, thereby saving the first
  • the step of the communication device reporting the second phase information to the second communication device through the positioning server can also save the step of the second communication device sending the determined departure angle to the positioning server, thereby reducing signaling interactions and saving network resources.
  • the ordering of information about multiple angles of departure in the first angle of departure information is related to The sequence of the time domain resources corresponding to the multiple first phase information matches; or, the sequence of the multiple angle of departure information in the first angle of departure information matches the sequence of the port identifiers corresponding to the multiple first phase information. In this way, the flexibility of the scheme can be improved.
  • the first communication device further includes: the first communication device sends the first - Reliability information of the departure angle information.
  • the first communication device sends the first - Reliability information of the departure angle information.
  • the reliability information of the first angle-of-off information includes standard deviation information and/or variance information of information about multiple angles of departure corresponding to multiple pieces of first phase information.
  • the first communication device further includes: the first communication device sends the first Two indication information; wherein, the second indication information indicates the corresponding relationship between the parameter in the first angle of departure information and the identifier of the port used to send the first reference signal.
  • a plurality of first phase information corresponds to a plurality of time domain resources used to determine the phase information; for one first phase information in the plurality of first phase information, the first phase information It is determined according to the normal path and/or the extra path that the signal received at the time domain resource corresponding to the first phase information reaches the first communication device. In this way, the flexibility of the scheme can be improved.
  • an embodiment of the present application provides a method for transmitting a reference signal, the method including: the second communication device generates a first reference signal; the second communication device sends the first reference signal to the first communication device in multiple time domain resources Signal; the two ports corresponding to the two time domain resources among the multiple time domain resources are different for sending the first reference signal.
  • the first communication device can determine multiple phase information in multiple time domain resources, and then determine the reference signal based on the multiple phase information The departure angle of the signal. It can be seen that the present application can provide a solution for determining an angle (such as AOD) based on phase information, so that when an angle for positioning needs to be determined, an alternative solution can be provided.
  • an angle such as AOD
  • the multiple time domain resources include a third time domain resource and a fourth time domain resource; and the multiple ports include a first port and a second port.
  • the second communication device sends the first reference signal to the first communication device in multiple time domain resources, including: the second communication device sends the first part of the first reference signal in the third time domain resource through the first port; the second communication device The second part of the first reference signal is sent on the fourth time domain resource through the second port.
  • the first communication device can combine the multiple phase information after measuring and obtaining multiple phase information based on signals sent by different ports The angle of departure is calculated from the phase difference information and the spacing between the ports.
  • the first communication device can determine a plurality of first phase information through one reference signal, thus reducing the time required for calculating the departure angle.
  • the number of reference signals can save network resources and reduce delay.
  • the second communication device sends the first part of the first reference signal in the third time domain resource through the first port, including: the second communication device connects to the first port through the first radio frequency channel at the Three time domain resources transmit the first part of the first reference signal.
  • the second communication device transmits the second part of the first reference signal in the fourth time domain resource through the second port, including: the second communication device transmits the first reference signal in the fourth time domain resource through the second port connected to the first radio frequency channel The second part of the signal.
  • positioning can also be performed based on the phase information corresponding to the first reference signal sent by the second communication device, thereby reducing the need for The positioning solution requires hardware of the second communication device, thereby reducing the cost of the second communication device.
  • the first part of the first reference signal is used to determine one first phase information in the multiple first phase information
  • the second part of the first reference signal is used to determine the multiple first phase information Another first phase information in .
  • the first communication device can determine multiple pieces of first phase information through one reference signal, the number of reference signals used for calculating the departure angle can be reduced, thereby saving network resources and reducing time delay.
  • the second communication device before the second communication device sends the first reference signal to the first communication device with multiple time domain resources, the second communication device further includes: the second communication device determines second configuration information of the first reference signal;
  • the second configuration information includes fourth indication information, where the fourth indication information indicates S1 time domain resources; S1 is an integer greater than 1; and the S1 time domain resources are multiple time domain resources for sending the first reference signal.
  • the second configuration information further includes at least one of the following contents: information on the number of time domain resource units spaced between two time domain resources among the S1 time domain resources; and/or, Information of S1 time domain resources. In this way, the flexibility of the scheme can be improved.
  • adjacent time domain resources are separated by Q1 time domain resource units, and Q1 is a positive integer.
  • one time-domain resource unit is one or more time-domain symbols.
  • the second configuration information further includes: correspondences between S1 time domain resources and multiple ports, where S1 is an integer greater than 1.
  • the second communication device sends the first reference signal to the first communication device in the S1 time domain resources, including: for the time domain resources in the S1 time domain resources, the second communication device corresponds to The port for sending the first reference signal to the first communication device.
  • two ports corresponding to two adjacent time domain resources among the S1 time domain resources are different.
  • one port in the multiple ports corresponds to one or more time domain resources in the S1 time domain resources.
  • the second configuration information further includes: information about frequency domain resources corresponding to the first reference signal.
  • an embodiment of the present application provides a method for transmitting a reference signal, the method including: the second communication device receives second phase information, and the second communication device determines an angle of departure of the first reference signal according to the second phase information.
  • the second phase information is determined according to a plurality of first phase information, and the plurality of first phase information is determined according to a first reference signal.
  • the present application provides yet another possible implementation manner, in which the second communication device can determine the departure angle of the first reference signal based on a plurality of first phase information of the first reference signal, so as to determine the In the case of different angles, there is one more option to choose from.
  • the second phase information includes at least one of the following: at least two pieces of first phase information in a plurality of first phase information; at least one phase difference corresponding to a plurality of first phase information information; or, mean information of at least one phase difference information.
  • the sequence of the at least two first phase pieces of information in the second phase information corresponds to the at least two pieces of first phase information
  • the ordering of the time-domain resources matches; or, the ordering of the at least two pieces of first phase information in the second phase information matches the ordering of identifications of ports corresponding to the at least two pieces of first phase information.
  • the sequence of the at least two phase difference pieces of information in the second phase information is related to the phase
  • the sequence of time domain resources corresponding to the difference information matches; or, the sequence of at least two phase difference information in the second phase information matches the sequence of port identifications corresponding to the phase difference information.
  • the second communication device after the second communication device sends the first reference signal to the first communication device in a plurality of time domain resources, further includes: reliability information of the second phase information received by the second communication device.
  • the reliability information of the second phase information includes standard deviation information and/or variance information corresponding to multiple pieces of first phase information.
  • the second communication device further includes: the second communication device receives first indication information; wherein, the first indication information Indicates the correspondence between the parameter in the second phase information and the identifier of the port used to send the first reference signal.
  • the second communication device can determine the ports corresponding to the parameters in the second phase information according to the first indication information, so that the second communication device can determine the distance between ports corresponding to the parameters in the second phase information, according to This distance calculates the departure angle.
  • the multiple pieces of first phase information correspond one-to-one to multiple time-domain resources used to send the first reference signal.
  • the first phase information is determined according to a normal path and/or an extra path that a signal sent in a time domain resource corresponding to the first phase information reaches the first communication device.
  • the embodiment of the present application provides a method for positioning based on an angle used for positioning, the method includes: the positioning server receives a plurality of first departure angle information, and one of the plurality of first departure angle information is a first departure angle The angle information is determined according to a plurality of first phase information determined by the first communication device, and the plurality of first phase information is determined according to a first reference signal. The positioning server determines the position information of the first communication device according to the pieces of first departure angle information.
  • the angle of departure of the reference signal can then be determined according to the plurality of phase information. It can be seen that the present application can provide a solution for determining the angle (such as AOD) based on phase information, and then positioning the first communication device, so that when the position information of the first communication device needs to be determined, there can be one more available Selected scheme.
  • the first departure angle information may also be received by the second communication device, and then sent to the positioning server by the second communication device.
  • the first departure angle information includes: at least one departure angle information corresponding to a plurality of first phase information, and the at least one departure angle information is based on the plurality of first phase information and sending the first reference
  • the distance between the ports of the signal is determined;
  • the plurality of first phase information corresponds to at least one first angle of departure mean value information, and the at least one first angle of departure mean value information is determined according to at least two items of the at least one angle of departure information;
  • the at least one second departure angle mean value information corresponding to the plurality of first phase information, the at least one second departure angle mean value information is determined according to the mean value information of the phase difference information corresponding to the plurality of first phase information, and the port distance mean value information
  • the mean value of the distance between the ports is determined according to the mean value of the distances between the multiple ports sending the first reference signal.
  • the ordering of information about multiple angles of departure in the first angle of departure information is related to The sequence of the time domain resources corresponding to the multiple first phase information matches; or, the sequence of the multiple angle of departure information in the first angle of departure information matches the sequence of the port identifiers corresponding to the multiple first phase information.
  • the positioning server before the positioning server determines the position information of the first communication device according to the pieces of first departure angle information, the positioning server further includes: receiving reliability information of the first departure angle information by the positioning server. In this way, when the positioning server determines the location information of the first communication device based on the information of multiple first departure angles, it can perform calculations in combination with the reliability information of the first departure angle information, thereby improving the positioning accuracy of the first communication device .
  • the reliability information of the first angle-of-off information includes standard deviation information and/or variance information of information about multiple angles of departure corresponding to multiple pieces of first phase information.
  • the positioning server before the positioning server determines the position information of the first communication device according to the pieces of first departure angle information, the positioning server further includes: the positioning server receives second indication information.
  • the second indication information indicates the corresponding relationship between the parameter in the first angle of departure information and the identifier of the port used to send the first reference signal.
  • the embodiment of the present application provides yet another method for transmitting a reference signal, and the method includes: the second communication device receives the second reference signal.
  • the second communication device determines multiple pieces of third phase information corresponding to the second reference signals received by the multiple time domain resources.
  • the second communication device determines the angle of arrival of the second reference signal according to the plurality of pieces of third phase information.
  • the angle of arrival of the reference signal can be determined according to the multiple pieces of third phase information. It can be seen that the present application can provide a solution for determining an angle (such as AOA) based on phase information, so that when an angle for positioning needs to be determined, an alternative solution can be provided.
  • an angle such as AOA
  • the second communication device determines the plurality of third phase information corresponding to the second reference signal received by the plurality of time domain resources, including: the second communication device receives the second reference signal in the fifth time domain resource The first part of the reference signal is used to determine one piece of third phase information among the plurality of third phase information according to the first part of the second reference signal. The second communication device receives the second part of the second reference signal in the sixth time domain resource, and determines another piece of third phase information in the plurality of third phase information according to the second part of the second reference signal.
  • the second communication device can determine multiple pieces of third phase information through one reference signal, the number of reference signals used for calculating the angle of arrival can be reduced, thereby saving network resources and reducing time delay.
  • the receiving the second reference signal by the second communication device includes: receiving, by the second communication device, the first part of the second reference signal in a fifth time domain resource through a third port.
  • the second communication device receives the second part of the second reference signal at the sixth time domain resource through the fourth port.
  • the second communication device Since the first part and the second part of the second reference signal are received through different ports of the second communication device, after the second communication device obtains a plurality of phase information according to signals received at different ports, it can combine the plurality of phase information The angle of arrival is calculated based on the phase difference information and the spacing between ports. On the other hand, since the second communication device receives different parts of the same reference signal through different ports, the second communication device can determine a plurality of third phase information through one reference signal, thereby reducing the time required for calculating the angle of arrival. The number of reference signals can save network resources and reduce delay.
  • the receiving the first part of the second reference signal by the second communication device at the fifth time domain resource through the third port includes: the second communication device is connected to the third port through the second radio frequency channel at the Five time domain resources receive the first portion of the second reference signal.
  • the second communication device receives the second part of the second reference signal at the sixth time domain resource through the fourth port, comprising: the second communication device receives the second reference signal at the sixth time domain resource through the fourth port connected to the second radio frequency channel The second part of the signal.
  • positioning can also be performed based on the phase information corresponding to the second reference signal sent by the first communication device, thereby reducing the need for phase information.
  • the positioning solution requires hardware of the second communication device, thereby reducing the cost of the second communication device.
  • the method before the second communication device receives the second reference signal, the method further includes: the second communication device acquires fourth configuration information of the second reference signal, where the fourth configuration information includes multiple Indication information of a time domain resource.
  • the fourth configuration information can be set for the second communication device more reasonably according to the application scenario, so that the solution executed by the second communication device side is more reasonable .
  • the flexibility of the solution can be improved by flexibly setting the fourth configuration information.
  • the indication information of the multiple time domain resources used to determine the phase information includes: a time domain resource unit used to determine the interval between two time domain resources among the multiple time domain resources used to determine the phase information quantity information.
  • the second communication device may determine multiple time domain resources for determining phase information according to information on the number of time domain resource units spaced between two time domain resources, and according to signals received by the multiple time domain resources Phase information is determined, and port switching can be performed at multiple time-domain resource intervals.
  • the indication information of multiple time domain resources used for determining phase information includes information of multiple time domain resources used for determining phase information.
  • At least one time domain resource unit is separated between multiple time domain resources used for determining phase information.
  • the second communication device may have time to switch between adjacent time domain resources among the multiple time domain resources. Execute port switching action.
  • the multiple time domain resources used to determine the phase information are separated by Q2 time domain resource units, and Q2 is a positive integer.
  • Q2 is a positive integer.
  • one time-domain resource unit is one or more time-domain symbols. Therefore, the second communication device can obtain a plurality of first phase information at the symbol granularity, and then can determine the departure angle based on at least one phase information, thereby reducing the time delay of the scheme of calculating the departure angle based on the behavior information.
  • the fourth configuration information further includes: a correspondence between multiple time-domain resources and multiple ports for determining the phase information.
  • the receiving the second reference signal by the second communication device includes: for a time domain resource among the multiple time domain resources used to determine the phase information, the second communication device receives the second reference signal through a port corresponding to the time domain resource. In this way, the second communication device can perform port switching according to the fourth configuration information. Since the fourth configuration information can be flexibly configured, the flexibility of the solution can be improved.
  • two ports corresponding to two adjacent time domain resources among the multiple time domain resources used to determine the phase information are different.
  • the second communication device can obtain two different pieces of third phase information based on signals received by two adjacent time domain resources among the plurality of time domain resources.
  • a phase difference can be obtained from two different third phase information, and when the ports corresponding to two adjacent time domain resources are different, the maximum phase difference can be obtained, thereby improving the accuracy of the angle of arrival.
  • one port in the multiple ports corresponds to one or more time domain resources in the multiple time domain resources used to determine the phase information.
  • the second communication device uses one port once during the process of receiving the second reference signal through the multiple time domain resources, so that the second communication device can receive the second reference signal through as many different ports as possible, Then the second communication device can obtain third phase information corresponding to more different ports.
  • the third phase information corresponding to more different ports can obtain more phase differences. It can be seen that this solution can increase the number of phase differences, thereby improving the accuracy of the angle of arrival.
  • the fourth configuration information further includes: information about frequency domain resources corresponding to the second reference signal.
  • the multiple pieces of third phase information correspond one-to-one to multiple time-domain resources used to determine the phase information.
  • the third phase information is determined according to the normal path and/or the extra path of the signal received at the time domain resource corresponding to the third phase information to the second communication device. In this way, the flexibility of the scheme can be improved.
  • a communication device which may be the above-mentioned first communication device, second communication device, or third communication device, and the communication device may include a communication unit and a processing unit to perform the above-mentioned first to Any implementation in any method of the fifth aspect.
  • the communication unit is used to perform functions related to transmission and reception.
  • the communication unit includes a receiving unit and a sending unit.
  • the communication device is a communication chip
  • the processing unit may be one or more processors or processor cores
  • the communication unit may be an input/output circuit or port of the communication chip.
  • the communication unit may be a transmitter and a receiver, or the communication unit may be a transmitter and a receiver.
  • the communication device further includes various modules that can be used to implement any implementation manner of any one of the methods from the first aspect to the fifth aspect.
  • a communication device in a seventh aspect, is provided, and the communication device may be the above-mentioned first communication device, second communication device, or third communication device, and the communication device may include a processor and a memory.
  • a transceiver is also included, the memory is used to store computer programs or instructions, the processor is used to call and run the computer programs or instructions from the memory, and when the processor executes the computer programs or instructions in the memory, the The communication device executes any implementation manner in any one of the methods from the first aspect to the fifth aspect above.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory may be separated from the processor.
  • the transceiver may include a transmitter (transmitter) and a receiver (receiver).
  • a communication device may be the first communication device, the second communication device, or the third communication device, and the communication device may include a processor.
  • the processor is coupled with the memory, and can be used to execute any one of the first aspect to the fifth aspect, and the method in any possible implementation manner of the first aspect to the fifth aspect.
  • the communication device further includes a memory.
  • the communication device further includes a communication interface, and the processor is coupled to the communication interface.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the communication interface may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip or the chip system, etc.
  • a processor may also be embodied as processing circuitry or logic circuitry.
  • a system in a ninth aspect, includes the above-mentioned first communication device and the second communication device, and may further include the above-mentioned third communication device.
  • a computer program product includes: a computer program (also referred to as code, or an instruction), when the computer program is executed, the computer executes any one of the possible implementations in the first aspect above.
  • the method in the manner, or causing the computer to execute the method in any one of the implementation manners from the first aspect to the fifth aspect above.
  • a computer-readable storage medium stores a computer program (also referred to as code, or an instruction) which, when run on a computer, enables the computer to perform any of the above-mentioned first aspects.
  • a computer program also referred to as code, or an instruction
  • a chip system may include a processor.
  • the processor is coupled with the memory, and may be used to execute any one of the first aspect to the fifth aspect, and the method in any possible implementation manner of any one of the first to fifth aspects.
  • the chip system further includes a memory.
  • Memory used to store computer programs (also called code, or instructions).
  • a processor configured to call and run a computer program from a memory, so that the device installed with the system-on-a-chip executes any one of the first to fifth aspects, and any possible one of any one of the first to fifth aspects method in the implementation.
  • a communication device may be the above-mentioned first communication device, second communication device, or third communication device, and the communication device may include: an interface circuit and a processing circuit.
  • Interface circuitry may include input circuitry and output circuitry.
  • the processing circuit is used to receive signals through the input circuit and transmit signals through the output circuit, so that any one of the first aspect to the fifth aspect, and the method in any possible implementation manner of the first aspect to the fifth aspect are realized.
  • the above-mentioned processing device may be a chip, the input circuit may be an input pin, the output circuit may be an output pin, and the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example but not limited to, the receiver, the output signal of the output circuit may be, for example but not limited to, output to the transmitter and transmitted by the transmitter, and the input circuit and the output
  • the circuit may be the same circuit, which is used as an input circuit and an output circuit respectively at different times.
  • the embodiment of the present application does not limit the specific implementation manners of the processor and various circuits.
  • the wireless communication device when the communication device is a wireless communication device, the wireless communication device may be a terminal such as a smart phone, or may be a radio access network device such as a base station.
  • the interface circuit may be a radio frequency processing chip in the wireless communication device, and the processing circuit may be a baseband processing chip in the wireless communication device.
  • the communication device may be a part of a wireless communication device, such as an integrated circuit product such as a system chip or a communication chip.
  • the interface circuit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processing circuitry may be logic circuitry on the chip.
  • Figure 1a is a schematic diagram of a possible network architecture applicable to the embodiment of the present application.
  • FIG. 1b is a schematic diagram of another possible network architecture applicable to the embodiment of the present application.
  • Figure 1c is a schematic diagram of a possible network architecture applicable to the embodiment of the present application.
  • FIG. 2 is a schematic diagram of a possible structure of a possible wireless communication device provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of the distance between two ports (port a and port b) deployed in the communication device;
  • FIG. 4 is a schematic flowchart of a possible method for determining AOD provided by an embodiment of the present application
  • FIG. 5a is a schematic structural diagram of a possible communication device provided by the embodiment of the present application.
  • Fig. 5b is a schematic structural diagram of a communication device after a switch is added to the communication device shown in Fig. 5a;
  • FIG. 6 is a schematic diagram of connecting the first radio frequency channel 43 to ports in the port array 44 through a switch 45 in FIG. 5b;
  • FIG. 7a is a schematic diagram of a possible pattern of S1 time-domain resources corresponding to the first reference signal according to the embodiment of the present application.
  • Fig. 7b is a schematic diagram of another possible pattern of S1 time-domain resources corresponding to the first reference signal according to the embodiment of the present application.
  • FIG. 7c provides an example of a possible correspondence between S1 time-domain resources and ports in the embodiment of the present application.
  • FIG. 7d provides an example of another possible correspondence between S1 time-domain resources and ports according to the embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another possible method for determining AOD provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of a possible determination of the departure angle of the first reference signal according to the phase difference information provided by the embodiment of the present application.
  • FIG. 10 is a schematic diagram of a possible positioning solution based on AOD provided by the embodiment of the present application.
  • FIG. 11 is a schematic flowchart of another possible method for determining AOD provided by the embodiment of the present application.
  • FIG. 12 is a schematic flowchart of another possible method for determining AOD provided by the embodiment of the present application.
  • FIG. 13 is a schematic flowchart of another possible method for determining AOD provided by the embodiment of the present application.
  • FIG. 14 is a schematic flowchart of a possible method for determining AOA provided by the embodiment of the present application.
  • FIG. 15 is a schematic diagram of the second radio frequency channel 53 connected to the ports in the port array 54 through the switch 55 in FIG. 5b;
  • FIG. 16 is a schematic flowchart of another possible method for determining AOA provided by the embodiment of the present application.
  • FIG. 17 is a schematic diagram of a possible determination of the angle of arrival of the second reference signal according to the phase difference information according to the embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the reference signal transmission method provided by the implementation of this application can be applied to various industries and services, so as to determine the angle used for positioning.
  • the angle used for positioning can be AOD or AOA.
  • the angle used for positioning can be combined with other parameters to locate people and objects to obtain the location information of personnel and materials, and then further application development can be carried out based on the location information.
  • Figure 1a and Figure 1b exemplarily show two possible system architecture diagrams applicable to the embodiment of the present application.
  • the received reference signal is measured to obtain a measurement result, and further the terminal device 104 determines the AOD of the signal sent by the terminal device 104 according to the measurement result.
  • the terminal device 105 sends a reference signal
  • the terminal device 103 measures the received reference signal to obtain a measurement result
  • the terminal device 105 determines the AOD of the signal sent by the terminal device 105 according to the measurement result.
  • the AODs corresponding to at least two other terminal devices may be used to locate the terminal device 103 .
  • the communication when two terminal devices need to communicate, the communication may be performed based on a sidelink direct link, and the sidelink is a link for data communication between two terminal devices through the PC5 interface.
  • the sidelink in this embodiment of the present application may also be called a direct link, or may also be called a sidelink.
  • the positioning solution When the terminal device is positioned based on the sidelink, the positioning solution may also be called sidelink positioning.
  • the terminal device 103 sends a reference signal
  • the terminal device 104 measures the received reference signal to obtain a measurement result
  • the terminal device 104 determines the AOA corresponding to the terminal device 103 according to the measurement result.
  • the terminal device 104 can obtain the relative direction of the terminal device 103 .
  • the terminal device 105 determines the AOA corresponding to the terminal device 105 according to the reference signal sent by the terminal device 103 .
  • the AOAs corresponding to other terminal devices with at least two known positions can be used to locate the terminal device 103.
  • the solution for determining the positioning angle provided in the embodiment of the present application can be applied between two terminal devices.
  • the solution provided by the embodiment of the present application can also be applied between the network device and the terminal device.
  • the base station 101 sends a reference signal
  • the terminal device 103 performs The measurement results are obtained from the measurement, and the base station 101 further determines the AOD of the signal sent by the base station 101 according to the measurement results.
  • the base station 102 sends a reference signal
  • the terminal device 103 measures the received reference signal to obtain a measurement result
  • the base station 102 determines the AOD of the signal sent by the base station 102 according to the measurement result.
  • the AODs corresponding to at least two base stations may be used to locate the terminal device 103 .
  • the terminal device 103 sends a reference signal
  • the base station 101 measures the received reference signal to obtain a measurement result
  • the base station 101 determines the AOA corresponding to the base station 101 according to the measurement result.
  • the base station 102 determines the AOA corresponding to the base station 102 according to the reference signal sent by the terminal device 103 .
  • the AOAs corresponding to at least two base stations may be used to locate the terminal device 103 .
  • the embodiment of the present application can also be applied to other scenarios, for example, the positioning of the base station is realized through the AOD or AOA corresponding to at least two terminal devices, etc. .
  • the technical solutions provided in the embodiments of the present application are mainly applicable to wireless communication systems.
  • the wireless communication system may comply with the wireless communication standard of the third generation partnership project (3GPP).
  • 3GPP third generation partnership project
  • the solution provided in the embodiment of the present application can be applied to a fourth generation (4th generation, 4G) communication system, such as a long term evolution (long term evolution, LTE) communication system, and can also be applied to a fifth generation (5th generation, 5G) A communication system, such as a 5G new radio (new radio, NR) communication system, or various communication systems applied in the future, such as a sixth generation (6th generation, 6G) communication system.
  • 4G fourth generation
  • LTE long term evolution
  • 5th generation, 5G 5th generation
  • a communication system such as a 5G new radio (new radio, NR) communication system
  • 6G sixth generation
  • the technical solutions provided in the embodiments of the present application may also comply with other wireless communication standards, such as the 802 series (such as 802.11, 802.15, or 802.20) wireless communication standards of the Institute of Electrical and Electronics Engineers (IEEE).
  • the method provided in the embodiment of the present application can also be applied to a Bluetooth system, a WiFi system, a LoRa system or a vehicle networking system.
  • the method provided in the embodiment of the present application may also be applied to a satellite communication system, where the satellite communication system may be integrated with the above-mentioned communication system.
  • the embodiment of the present application takes the 5G network architecture shown in FIG. 1c as an example to illustrate a schematic diagram of a possible network architecture applicable to the embodiment of the present application.
  • a possible network architecture applicable to this application may include terminal equipment, access network equipment (also referred to as next generation (next generation, NG) radio access network (radio access network, RAN) equipment) and core network (core network) three parts.
  • NG next generation
  • RAN radio access network
  • core network core network
  • the terminal device may include a device that provides voice and/or data connectivity to a user, for example, may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (radio access network, RAN), and exchange voice and/or data with the RAN.
  • radio access network radio access network
  • the terminal equipment may include user equipment (user equipment, UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle to everything (V2X) ) terminal equipment, machine-to-machine/machine-type communications (M2M/MTC) terminal equipment, Internet of things (IoT) terminal equipment, subscriber unit (subscriber unit), subscriber Station (subscriber station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), or user equipment (user device), etc.
  • IoT Internet of things
  • the terminal device may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket, hand-held, computer built-in mobile devices, and the like.
  • mobile phones or "cellular” phones
  • computers with mobile terminal equipment portable, pocket, hand-held, computer built-in mobile devices, and the like.
  • PCS personal communication service
  • cordless telephone cordless telephone
  • session initiation protocol session initiation protocol
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the terminal device can also be a tablet computer or a computer with a wireless transceiver function.
  • the terminal device can also be a virtual reality (virtual reality, VR) terminal device, an augmented reality (augmented reality, AR) terminal device, a wireless terminal in industrial control, a wireless terminal in unmanned driving, a wireless terminal in telemedicine, a smart Wireless terminals in power grids, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • VR virtual reality
  • AR augmented reality
  • constrained devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities, etc.
  • it includes barcodes, radio frequency identification (radio frequency identification, RFID), sensors, global positioning system (global positioning system, GPS), laser scanners and other information sensing devices.
  • Access network (access network, AN) equipment may refer to equipment in the access network that communicates with wireless terminal equipment through one or more cells over the air interface.
  • the access network equipment may include LTE system or advanced long-term Evolved base stations (NodeB or eNB or e-NodeB, evolutional Node B) in the evolution (long term evolution-advanced, LTE-A), or may also include the fifth generation mobile communication technology (the 5 th generation, 5G) new
  • the next generation node B (next generation node B, gNB) in the wireless (new radio, NR) system may also include the centralized unit (centralized unit, CU) in the cloud access network (cloud radio access network, Cloud RAN) system ) and a distributed unit (distributed unit, DU), which are not limited in this embodiment of the present application.
  • the access network including gNB and Ng-eNB is taken as an example in Fig. 1c.
  • Ng-eNB is a base station of LTE
  • gNB is a base station of NR.
  • the terminal device and the serving base station can communicate through the Uu link, for example, can communicate with the Ng-eNB through the LTE-Uu link, and can communicate with the gNB through the NR-Uu link.
  • the base stations can communicate through the Xn interface.
  • the network elements related to positioning in the core network mainly include: access and mobility management function (access and mobility management function, AMF) network elements, location management function (location management function, LMF) network elements, etc. It may also include an evolution service mobile location center (evolutional server mobile location center, E-SMLC) network element, a unified data management (unified data management, UDM) network element, and an application function (application function, AF) network element.
  • AMF access and mobility management function
  • LMF location management function
  • E-SMLC evolution service mobile location center
  • UDM unified data management
  • AF application function
  • the base station and the AMF network element can communicate through the NG-C interface, and the AMF network element can be equivalent to a router for communication between the gNB and the LMF.
  • the LMF network element can realize the position estimation of the terminal equipment, and the communication between the AMF and the LMF is carried out through the NLs interface.
  • the E-SMLC network element is mainly responsible for processing the positioning request of the positioning service, and selecting the appropriate AMF network element for the positioning service.
  • the service location protocol (service location protocol, SLP) network element can also communicate with the LMF network element, and can be responsible for processing the location request of the location service.
  • SLP service location protocol
  • the applicable application scenario of the embodiment of the present application may also include a location management component (location management component, LMC).
  • LMC location management component
  • the LMC may be a part of the functional components of the LMF, and may be integrated on the gNB measured by the NG-RAN.
  • the mobility management network element, location management network element, and service location protocol network element in the embodiment of the present application can be the AMF, LMF, E-SMLC, and SLP in Figure 1c, or they can be future communications such as the sixth generation (6th generation) generation, 6G) network elements that have the functions of the above-mentioned AMF, LMF, E-SMLC and SLP, which is not limited in this application.
  • 6G sixth generation
  • this application takes the above-mentioned AMF, LMF, E-SMLC and SLP as an example to describe the mobility management network element, the location management network element, and the service location protocol network element respectively.
  • FIG. 2 is a schematic diagram of a possible structure of a wireless communication device provided by an embodiment of the present application.
  • the wireless communication apparatus may be the terminal device in the embodiment of the present application, for example, the terminal device in FIG. 1a, FIG. 1b or FIG. 1c.
  • the wireless communication device may also be the network device in the embodiment of the present application.
  • the network device in the embodiment of the present application may be the access network device in the aforementioned FIG. 1b or FIG. 1c, such as the base station in FIG. 1b or FIG. 1c.
  • the wireless communication device may include a processing circuit and an interface circuit.
  • Interface circuitry may include input circuitry and output circuitry.
  • the processing circuitry is adapted to receive signals via the input circuitry and transmit signals via the output circuitry such that the methods described below are implemented.
  • the processing circuit may execute the following method steps that can be performed by the terminal device side through the control interface circuit.
  • the processing circuit may execute the following method steps that can be performed by the network device side through the control interface circuit.
  • the interface circuit may also be a radio frequency processing chip in the wireless communication device, and the processing circuit may be a baseband processing chip in the wireless communication device.
  • the wireless communication device may be a part of a wireless communication device, such as an integrated circuit product such as a system chip or a communication chip.
  • the interface circuit may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processing circuitry may be logic circuitry on the chip.
  • the processing circuit in the embodiment of the present application may also be a processor or a part of modules or units in the processor, and the interface circuit may also be a radio frequency channel or a part of devices in the radio frequency channel.
  • the processor is used to control the radio frequency channel, so that the following related methods are implemented.
  • the wireless communication device may include multiple components, for example: application subsystem, memory (memory), mass storage (massive storage), baseband subsystem, radio frequency integrated circuit (radio frequency integrated circuit, RFIC) , RF front end (radio frequency front end, RFFE) device, and antenna (antenna, ANT). These components can be coupled by various interconnecting buses or other electrical connections.
  • application subsystem memory (memory), mass storage (massive storage), baseband subsystem, radio frequency integrated circuit (radio frequency integrated circuit, RFIC) , RF front end (radio frequency front end, RFFE) device, and antenna (antenna, ANT).
  • RFIC radio frequency integrated circuit
  • RFFE radio frequency front end
  • antenna antenna
  • the application subsystem in FIG. 2 may be the processor configured in FIG. 2 , or a module in the processor.
  • ANT_1 represents the first antenna
  • ANT_N represents the Nth antenna
  • N is a positive integer greater than 1.
  • Tx represents the sending path
  • Rx represents the receiving path
  • different numbers represent different paths.
  • Each path can represent a signal processing channel.
  • FBRx represents a feedback receiving path
  • PRx represents a main receiving path
  • DRx represents a diversity receiving path.
  • HB means high frequency
  • LB means low frequency, both refer to the relative high and low frequencies.
  • BB means baseband.
  • the application subsystem can be used as the main control system or the main computing system of the communication device, used to run the main operating system and application programs, manage the software and hardware resources of the entire communication device, and provide the user with a user interface.
  • the application subsystem may also include driver software related to other subsystems (eg, baseband subsystem).
  • An application subsystem may include one or more processors.
  • radio frequency integrated circuits including RFIC 1, and one or more optional RFIC 2 and radio frequency front-end devices can together form a radio frequency subsystem.
  • the RF subsystem can also be divided into RF receive path (RF receive path) and RF transmit path (RF transmit path).
  • the radio frequency receiving channel can receive the radio frequency signal through the antenna, process the radio frequency signal (such as amplifying, filtering and down-converting) to obtain the baseband signal, and transmit it to the baseband subsystem.
  • the radio frequency transmission channel can receive the baseband signal from the baseband subsystem, process the baseband signal (such as up-conversion, amplification and filtering) to obtain a radio frequency signal, and finally radiate the radio frequency signal into space through the antenna.
  • Radio frequency integrated circuits may be referred to as radio frequency processing chips or radio frequency chips.
  • the radio frequency subsystem may include an antenna switch, an antenna tuner, a low noise amplifier (low noise amplifier, LNA), a power amplifier (power amplifier, PA), a mixer (mixer), a local oscillator (local oscillator, LO ), filters and other electronic devices, these electronic devices can be integrated into one or more chips as required.
  • Radio frequency integrated circuits may be referred to as radio frequency processing chips or radio frequency chips.
  • the RF front-end device can also be a stand-alone chip. RF chips are sometimes called receivers, transmitters, transceivers or transceivers. With the evolution of technology, the antenna can sometimes be considered as a part of the radio frequency subsystem and can be integrated into the chip of the radio frequency subsystem.
  • radio frequency subsystem can also use different devices or different integration methods based on power consumption and performance requirements. For example, if some devices belonging to the radio frequency front end are integrated into the radio frequency chip, even the antenna and the radio frequency front end devices are integrated into the radio frequency chip, the radio frequency chip may also be called a radio frequency antenna module or an antenna module.
  • the baseband subsystem mainly completes the processing of baseband signals.
  • the baseband subsystem can extract useful information or data bits from baseband signals, or convert information or data bits into baseband signals to be transmitted. These information or data bits may be data representing user data such as voice, text, video, or control information.
  • the baseband subsystem can implement signal processing operations such as modulation and demodulation, encoding and decoding.
  • signal processing operations are not exactly the same.
  • the radio frequency signal is usually an analog signal
  • the signal processed by the baseband subsystem is mainly a digital signal
  • an analog-to-digital conversion device is also required in the communication device.
  • the analog-to-digital conversion device may be set in the baseband subsystem, or may be set in the radio frequency subsystem.
  • Analog to digital conversion devices include an analog to digital converter (analog to digital converter, ADC) that converts an analog signal into a digital signal, and a digital to analog converter (digital to analog converter, DAC) that converts a digital signal to an analog signal.
  • ADC analog to digital converter
  • DAC digital to analog converter
  • the baseband subsystem may also include one or more processors.
  • the communication device also includes memory, such as memory and mass storage in FIG. 2 .
  • the application subsystem and the baseband subsystem may also include one or more buffers respectively.
  • the memory can be classified into a volatile memory (volatile memory) and a non-volatile memory (non-volatile memory, NVM).
  • Volatile memory refers to memory in which data stored inside will be lost when the power supply is interrupted.
  • volatile memory is mainly random access memory (random access memory, RAM), including static random access memory (static RAM, SRAM) and dynamic random access memory (dynamic RAM, DRAM).
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • Non-volatile memory refers to memory in which the data stored inside will not be lost even if the power supply is interrupted.
  • Non-volatile memories include read only memory (ROM), optical discs, magnetic disks, and various memories based on flash memory (flash memory) technology.
  • volatile memory can be used for memory and cache
  • non-volatile memory such as flash memory, can be used for large-capacity storage.
  • the second communication device may send a reference signal through a logical port, and the logical port may include multiple physical ports, and the multiple physical ports may be divided into multiple groups of ports, wherein each group of ports may include the One or more physical ports of multiple physical ports.
  • the second communication device may send the first reference signal through one logical port.
  • the second communication device may send the first reference signal by switching multiple groups of ports.
  • the second communication device may transmit the first part of the first reference signal through one group of ports in the plurality of groups of ports, and then transmit the second part of the first reference signal through another group of ports in the plurality of groups of ports .
  • the "first port” and “second port” used to send the first reference signal mentioned in the subsequent content of the embodiment of the present application may refer to two groups of ports in the multiple groups of ports, where the ports in the two groups of ports Each group of ports may include one or more physical ports, and the physical ports included in the two groups of ports may or may not have overlapping physical ports.
  • the second communication device may receive a reference signal through a logical port, and the logical port may include multiple physical ports, and the multiple physical ports may be divided into multiple groups of ports, wherein each group of ports One or more physical ports of the plurality of physical ports may be included.
  • the second communication device may receive the second reference signal through one logical port, for example, the second communication device may receive the second reference signal by switching multiple groups of ports. For example, the second communication device may use one of the multiple groups of ports to receive the first part of the second reference signal, and then use another group of the multiple groups of ports to receive the second part of the second reference signal.
  • the "third port” and “fourth port” mentioned in the subsequent content of the embodiment of the present application for receiving the second reference signal may refer to two groups of ports in the multiple groups of ports, where the ports in the two groups of ports Each group of ports may include one or more physical ports, and the physical ports included in the two groups of ports may or may not have overlapping physical ports.
  • the port of the second communication device mentioned in the embodiment of the present application is used to transmit (send or receive) a reference signal (such as the first reference signal or the second reference signal) (such as the port mentioned in the following content for The "first port” and “second port” for transmitting the first reference signal, and the “third port” and “fourth port” for receiving the second reference signal, etc.) may be logical ports, and the logical ports may include A physical port can also include multiple physical ports. When the port includes a physical port, it may also be understood that the port is a physical port.
  • the port used for transmitting (sending or receiving) the reference signal in the embodiment of the present application may also be referred to as an antenna, an antenna port, an antenna interface, an antenna transmitting port, an antenna receiving port, a phase measurement port or a phase measurement interface.
  • the physical port used for transmitting (sending or receiving) the reference signal on the second communication device side may also be referred to as a physical antenna, a physical antenna port, or a physical antenna interface.
  • the physical port used to send the reference signal on the second communication device side may also be referred to as a physical antenna transmission port.
  • the physical port used to receive the reference signal on the second communication device side A port may also be called a physical antenna receiving port.
  • the port used to transmit the reference signal mentioned in the embodiment of the present application can be the antenna (antenna, ANT) mentioned in the aforementioned Figure 2, or it can be understood that the antenna (antenna, ANT) mentioned in Figure 2 is connected to the radio frequency front end port.
  • the concept of the distance between ports will be used.
  • the follow-up content needs to calculate the AOD corresponding to the second communication device, it is necessary to combine the first port and the second The spacing between ports is calculated.
  • the AOA corresponding to the second communication device needs to be calculated, it needs to be calculated in conjunction with the distance between the third port and the fourth port.
  • the calculation method of the distance between the ports is introduced below by taking the calculation of the distance between the first port and the second port as an example.
  • the first port includes only one physical port
  • the second port includes only one physical port
  • the second port is a physical port.
  • the distance between the first port and the second port may be the distance between two physical ports.
  • the first port When the first port includes multiple physical ports, the first port may be understood as a logical port.
  • the second port When the second port includes multiple physical ports, the second port may also be understood as a logical port.
  • the distance between the first port and the second port may be the distance between the preset positions of the two logical ports.
  • a logical port corresponds to a preset position, and the preset position of a logical port can be the geometric center point of multiple physical ports corresponding to the logical port, or a position within the area of multiple physical ports corresponding to the logical port , for example, may be the location of one physical port among the multiple physical ports corresponding to the logical port.
  • the distance between the first port and the second port can be the position of the physical port and Distance between preset positions of logical ports.
  • FIG. 3 exemplarily shows a schematic diagram of the distance between two ports (port a and port b) deployed in the communication device, which will be received in conjunction with FIG. 3 below.
  • FIG. 3 may be a schematic diagram of the deployment of port a and port b on the hardware structure of the communication device.
  • Port a may be the first port, and port b may be the second port; or, port a may be the third port, and port b may be the fourth port.
  • port a is a physical port (it can also be said that port a includes a physical port), and port b is a physical port (it can also be said that port b includes a physical port).
  • the distance between port a and port b may be the distance between port a and port b.
  • port a is a logical port and includes 4 physical ports (for example, port a is a 2 ⁇ 2 array).
  • Port b is a logical port and includes 4 physical ports (for example, port a includes a 2 ⁇ 2 port array).
  • the preset position of port a is the geometric center point of the 2 ⁇ 2 port array.
  • the preset position of port b is the geometric center point of the 2 ⁇ 2 port array.
  • the distance between port a and port b may be the distance between the geometric center point corresponding to port a and the geometric center point corresponding to port b.
  • port a is a logical port and includes 4 physical ports (for example, port a is a 2 ⁇ 2 port array).
  • Port b is a logical port and includes 4 physical ports (for example, port a includes a 2 ⁇ 2 port array).
  • the default position of port a is the position of the first port in the second row.
  • the default position of port b is the position of the first port in the second row.
  • the distance between port a and port b may be the distance between the first port in the second row corresponding to port a and the first port in the second row corresponding to port b.
  • port a is a logical port and includes 4 physical ports (for example, port a is a 2 ⁇ 2 port array).
  • Port b is a logical port and includes 4 physical ports (for example, port a includes a 2 ⁇ 2 port array).
  • the default position of port a is the position of the first port in the second row.
  • the default position of port b is the position of the second port in the second row.
  • the distance between port a and port b may be the distance between the first port in the second row corresponding to port a and the second port in the second row corresponding to port b.
  • the distance between the above ports is only an example, and in specific implementation, the distance between two ports may be determined according to actual conditions.
  • the reference signal involved in the embodiment of the present application may be a signal used to calculate an angle, such as a positioning reference signal (positioning reference signal, PRS), It can also be a sounding reference signal (SRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DMRS), a phase tracking reference signal (phase-tracking reference signals, PTRS), positioning reference signal (positioning reference signal, PRS), cell reference signal (cell reference signal, CRS), synchronization signal/physical layer broadcast channel block (Synchronization signal/physical broadcast channel block, SS /PBCH block).
  • SS/PBCH block can be referred to as SSB for short.
  • the first reference signal may be, for example, a PRS
  • the second reference signal may be, for example, an SRS.
  • the reference signal in the embodiment of the present application may include multiple parts, such as the first part of the first reference signal and the second part of the first reference signal just mentioned in the following content, and the first part of the second reference signal and the second reference The second part of the signal.
  • a part of each reference signal is data on some bits of the reference signal.
  • the first part of the first reference signal is the data on some of the bits in all the bits of the first reference signal
  • the second part of the first reference signal is the data on some of the bits in all the bits of the first reference signal.
  • the data can also be said that the first part of the first reference signal and the second part of the first reference signal are bits in the reference signal generated based on the same signal sequence.
  • the first part of the second reference signal is the data on some of the bits in all the bits of the second reference signal
  • the second part of the second reference signal is some of the bits in all the bits of the second reference signal on the data. It can also be said that the first part of the second reference signal and the second part of the second reference signal are bits in the reference signal generated based on the same signal sequence.
  • one reference signal in the embodiment of the present application may correspond to multiple time-domain symbols.
  • all time-domain resources occupied by the first reference signal may be divided into multiple time-domain symbols. Domain resources, wherein each segment of time domain resources includes one or more consecutive time domain symbols, and two adjacent segments of time domain resources are separated by at least one time domain symbol.
  • the second communication device sends the first reference signal on all the time domain resources occupied by the first reference signal, wherein the second communication device sends data on some bits of all the bits of the first reference signal on a period of time domain resources .
  • the data to be sent in the first reference signal corresponding to a segment of time domain resources among all the time domain resources occupied by the first reference signal may be referred to as: a part of the first reference signal.
  • the data to be sent in the first reference signal corresponding to the first segment of time domain resources among all the time domain resources occupied by the first reference signal is referred to as: the first part of the first reference signal.
  • the data to be sent in the first reference signal corresponding to the second segment of time domain resources among all the time domain resources occupied by the first reference signal is referred to as: the second part of the first reference signal. This example is also applicable to the second reference signal.
  • the data to be sent in the second reference signal corresponding to the third segment of time domain resources among all the time domain resources occupied by the second reference signal is called: the second reference signal of the second reference signal part.
  • the data to be sent in the second reference signal corresponding to the fourth segment of time domain resources among all the time domain resources occupied by the second reference signal is referred to as: the second part of the second reference signal.
  • the following uses the first reference signal as an example for introduction, and the related content of the second reference signal is similar and will not be repeated here.
  • the second communication device sends the first reference signal through at least two different ports, so that the first communication device can obtain at least two phase information based on the first reference signal, and then can combine multiple phase information corresponding to the first reference signal The information determines the angle of departure of the first reference signal.
  • One segment of time domain resources among the multiple segments of time domain resources corresponding to the first reference signal may correspond to one or more ports of the second communication device. Corresponding data on some of the bits in all the bits of the first reference signal.
  • One port of the second communication device may also correspond to one or more time domain resources in the multiple time domain resources, that is to say, in the process of sending the first reference signal by the second communication device, one port may be used once, or Use it multiple times.
  • the multiple time domain resources corresponding to the first reference signal may belong to the same time slot.
  • the multiple time domain resources corresponding to the first reference signal may also belong to multiple time slots.
  • the multi-segment time domain resources correspond to multiple time slots one by one.
  • the two time slots corresponding to the two time domain resources in the multi-segment time domain resources are different.
  • a segment of time domain resources in the multiple segments of time domain resources corresponds to one or more time slots.
  • one time slot in the multiple time slots corresponds to one or more time domain resources in the multiple time domain resources.
  • One time slot may correspond to one or more ports of the second communication device, and one port of the second communication device may correspond to one or more time slots in the multiple time slots corresponding to the multi-segment time domain resources.
  • the multiple time slots have a one-to-one correspondence relationship with the multiple ports of the second communication device.
  • the second communication device may send the first reference signal through multiple ports in multiple time slots, wherein Data on some bits of all bits of the first reference signal are sent in each time slot, and the two ports used for sending signals in two time slots are different.
  • a reference signal in this embodiment of the present application may refer to a reference signal corresponding to a resource identifier (resource ID).
  • resource ID resource identifier
  • the resource identifier (resource ID) of the first reference signal may be configured in SRS configuration information (SRS-Config).
  • SRS-Config SRS configuration information
  • the SRS configuration information (SRS-Config) also includes information such as time domain resources and frequency domain resources configured for reference signals with a resource ID (resource ID) of 1.
  • the time domain resources used by the second communication device to send the first reference signal may be some or all of the time domain resources configured for the reference signal whose resource ID (resource ID) is 1 in the configuration information (SRS-Config) .
  • the time-domain resource configured for a reference signal with a resource ID (resource ID) of 1 in the configuration information (SRS-Config) is: a series of consecutive time-domain symbols.
  • the second communication device sends the first part of the first reference signal on the third time domain resource through the first port, and sends the second part of the second reference signal on the fourth time domain resource through the second port the second part.
  • the third time domain resource is part of the time domain resources configured for the reference signal whose resource ID (resource ID) is 1 in the configuration information (SRS-Config), and the fourth time domain resource is the configuration information (SRS-Config).
  • the first part of the first reference signal is part of the data corresponding to the reference signal whose resource ID is 1, and the second part of the first reference signal is also part of the data corresponding to the reference signal whose resource ID is 1.
  • the resource identifier (resource ID) of the first reference signal can be configured in the PRS configuration information (PRS-Info).
  • the resource identifier (resource ID) of the first part of the first reference signal is the same as the resource identifier (resource ID) of the second part of the first reference signal.
  • the resource identifier (resource ID) of the first part of the second reference signal is the same as the resource identifier (resource ID) of the second part of the second reference signal.
  • resource ID resource identifier
  • a reference signal generated based on a signal sequence (the signal sequence may correspond to a sequence ID) may be referred to as a reference signal.
  • the first reference signal as an example, in the embodiment of the present application, the first part of the first reference signal and the second part of the first reference signal are two parts of the reference signal generated based on the same signal sequence. It can also be said that the first A signal sequence corresponding to the first part of a reference signal is the same as a signal sequence corresponding to the second part of the first reference signal.
  • the first reference signal is SRS
  • the first reference signal can be the root sequence and a combination of cyclic shift ⁇ .
  • the sequence of the first reference signal can be expressed by formula (1):
  • the first part of the first reference signal and the second part of the first reference signal are based on a root sequence Two parts of the resulting reference signal. It can also be said that the signal sequence (may be called root sequence) corresponding to the first part of the first reference signal is the same as the signal sequence (may be called root sequence) corresponding to the second part of the first reference signal.
  • a signal sequence (which may be referred to as a root sequence) identifier of the first reference signal may be configured in the configuration information of the first reference signal.
  • the signal sequence of the first part of the first reference signal and the second part of the first reference signal may both be the signal sequence of the first reference signal configured in the configuration information (may be referred to as a root sequence) logo.
  • the first reference signal is PRS
  • the sequence of a first reference signal can be expressed by formula (2):
  • the pseudo-random sequence c(i) consists of two m-sequences, expressed as:
  • x 1 (n+31) (x 1 (n+3)+x 1 (n)) mod 2
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n)) mod 2
  • N C 1600
  • the second m The sequence x 2 (n) is initialized by the factor Decide.
  • the initialization factor is:
  • the sequence ID can be configured through the configuration information of the first reference signal.
  • the first part of the first reference signal and the second part of the first reference signal are based on a signal sequence (the sequence ID is identified as ) in the two parts of the reference signal generated. It can also be said that the signal sequence corresponding to the first part of the first reference signal is the same as the signal sequence corresponding to the second part of the first reference signal.
  • a signal sequence identifier of the first reference signal may be configured in the configuration information of the first reference signal
  • the signal sequence identifiers of the first part of the first reference signal and the second part of the first reference signal may both be the signal sequence identifiers of the first reference signal configured in the configuration information
  • a time slot also called a slot, can be understood as a time slice, a time-domain resource.
  • a time-domain symbol may also be called a symbol, and may also be understood as a time slice or a time-domain resource.
  • a slot may consist of one or more time domain symbols.
  • FIG. 4 exemplarily shows a schematic flowchart of a method for determining AOD provided by the embodiment of the present application.
  • FIG. 4 introduces it from an interactive perspective. The method may be executed by the first communication device and the second communication device.
  • the first communication device can be a terminal device (such as the terminal device 103 in Figure 1a or Figure 1b, or the terminal device in Figure 1c), or a module, unit or chip inside the terminal device, or a network device (such as the The access network device in 1c), or a module, unit or chip inside the network device.
  • the second communication device can be a terminal device (such as the terminal device 104 or 105 in FIG. 1a, or the terminal device in FIG. 1c), or a module, unit or chip inside the terminal device, or a network device (such as The base station 101 or the base station 102 in FIG. 1b, or the access network device in FIG. 1c ), or a module, unit or chip inside the network device.
  • the first communication device and the second communication device can be flexibly selected.
  • the first communication device and the second communication device can both be terminal devices (such as the scene shown in Figure 1a); they can also be network devices; or, the first communication device and the second communication device are network equipment and terminal equipment respectively.
  • the first communication device is a network device
  • the second communication device is a terminal device; for another example, the first communication device is a terminal device, and the second communication device is a network device (such as the scenario shown in FIG. 1b ).
  • the first communication device is a terminal device (such as the terminal device in FIG. 1b )
  • the second communication device is a network device (such as a base station in FIG. 1b ) as an example.
  • the AOD determination method includes:
  • the second communication device generates a first reference signal.
  • the second communication device sends the first reference signal to the first communication device in multiple time domain resources, and the two time domain resources corresponding to the multiple time domain resources used to send the first reference signal are used for sending The ports of the first reference signal are different.
  • the first communication device acquires first configuration information of the first reference signal, where the first configuration information includes indication information of multiple time domain resources used to determine phase information.
  • the first communication device receives the first reference signal, and determines multiple pieces of first phase information corresponding to multiple time domain resources used to determine the phase information.
  • the multiple time domain resources used by the second communication device side for sending the first reference signal may be referred to as S1 time domain resources, where S1 is an integer greater than 1.
  • the multiple time-domain resources used by the first communication device side for determining phase information are referred to as S2 time-domain resources, where S2 is an integer greater than 1.
  • the first configuration information involved in S203 may include indication information of S2 time domain resources, and in S204, the first communication device may determine multiple first phases corresponding to the first reference signals received in the S2 time domain resources information.
  • the first communication device may determine a piece of first phase information on one or more time domain resources in the S2 time domain resources. For example, the first communication device may determine S2 pieces of first phase information corresponding to S2 time domain resources, and a plurality of pieces of first phase information are in one-to-one correspondence with the S2 time domain resources. For another example, the first communication device may determine multiple (possibly less than S2) first phase information corresponding to the time domain resources among the S2 time domain resources. For example, if S2 is 8, the first communication device may determine 8 time domain resources.
  • the six first phase information corresponding to the domain resources can be determined according to the signals received by the six time domain resources in the eight time domain resources; another example, can be based on the eight time domain resources Five pieces of first phase information are respectively determined from signals received by five time domain resources among the eight time domain resources, and one piece of first phase information is determined based on signals received by the remaining three time domain resources among the eight time domain resources.
  • the first communication device may receive all the first reference signals through one port.
  • the first communication device may also simultaneously receive the first reference signal through multiple ports, which is not limited in this embodiment of the present application. In this way, the hardware requirements of the AOD determination scheme on the first communication device can be reduced, thereby reducing the cost of the first communication device.
  • the first communication device sends second phase information.
  • the second phase information is determined according to a plurality of first phase information.
  • the first communication device can determine a plurality of time-domain resources for which phase information needs to be determined according to the first configuration information, and determine a plurality of phase information in the plurality of time-domain resources, and then can determine the reference signal according to the plurality of phase information AOD. It can be seen that the present application can provide a solution for determining AOD based on phase information, so that there is one more alternative solution when it is necessary to determine the angle used for positioning.
  • Fig. 5a exemplarily shows a schematic structural diagram of a possible communication device.
  • the communication device may include one or more radio frequency channels, and each radio frequency channel may include multiple ports.
  • the first radio frequency channel 43 and the second radio frequency channel 53 are used for illustration.
  • Each RF channel may be connected to one or more ports.
  • the port array 44 connected to the first radio frequency channel 43 includes multiple physical ports
  • the port array 54 connected to the second radio frequency channel 53 includes multiple physical ports for example.
  • the ports in the port array in FIG. 5a may include the antennas in FIG. 2 as described above.
  • the first radio frequency channel 43 in Fig. 5a can comprise the device and the module in the RFFE in Fig. 2 (for example can comprise filter etc.), can also comprise the device and module in the aforementioned RFIC in Fig. 2 (for example can comprise the mixer wait).
  • the second radio frequency channel 53 in Fig. 5 a can also comprise the device and module in the RFFE in Fig. 2 (for example can comprise filter etc.), can also comprise the device and module in the aforementioned RFIC in Fig. 2 (for example can comprise frequency mixing device, etc.).
  • the baseband subsystem 42 in FIG. 5a may be the aforementioned baseband subsystem in FIG. 2 .
  • the processor 41 in FIG. 5a may be the processor in the aforementioned baseband subsystem in FIG. 2 .
  • the second communication device may send multiple positioning reference signals (Positioning reference signals, PRS) corresponding to multiple beams to the first communication device.
  • the first communication device measures the PRSs of the multiple beams to obtain the RSRP corresponding to each beam.
  • the second communication device or the positioning server can calculate the AOD of the reference signal by combining the reference signal receiving power (Reference signal receiving power, RSRP) and the transmission beam pattern of the base station.
  • This solution calculates the AOD based on RSRP, and usually requires the second communication device to send 8 reference signals corresponding to at least 8 beams.
  • the second communication device is configured with fewer radio frequency channels, for example, only one radio frequency channel is configured, the second communication device needs to send reference signals 8 times successively. It can be seen that the time delay of this solution is relatively large. In order to improve efficiency, it may be necessary to require the second communication device to be configured with 8 radio frequency channels, and then the second communication device may simultaneously transmit 8 reference signals corresponding to 8 beams through the 8 radio frequency channels. Although this solution can improve efficiency, it requires a large number of radio frequency channels configured by the second communication device, and the cost is relatively high.
  • the number of radio frequency channels of the communication device is often configured with fewer, but more physical ports are often configured.
  • some high-frequency communication devices may only be configured with one radio frequency channel, but the radio frequency channel can be configured with as many as 4 to 8 physical ports.
  • the communication device shown in FIG. 5a it takes a long time for the communication device to send at least 8 reference signals corresponding to 8 beams, and the time delay is relatively large.
  • a switch can be set between the radio frequency channel and the port.
  • the radio frequency channel does not have to perform the data transmission through all the ports connected to the radio frequency channel, but One or more ports among all the ports corresponding to the radio frequency channel may be selected for data transmission through a switch.
  • FIG. 5b exemplarily shows a schematic diagram of a communication device after a switch is added to the communication device shown in FIG. 5a. As shown in FIG. for each port.
  • the second radio frequency channel 53 can be connected to each port in the port array 54 through a switch 55 .
  • any one of the switch 45 and the switch 55 may be a logic circuit switch, or other devices capable of controlling the selective connection or non-communication between the first radio frequency channel and the port.
  • the second communication device may select a port to be used through a switch during the transmission of the first reference signal. Therefore, the second communication device can successively send signals through multiple ports connected by one radio frequency channel.
  • the first communication device obtains a plurality of first phase information corresponding to at least two ports in the plurality of ports through measurement.
  • the second phase information (the second phase information is determined according to the plurality of first phase information) and the distance between the ports of the at least two ports may be combined by the second communication device or other devices (such as a positioning server) and other equipment Calculate the AOD.
  • the solution provided by the embodiment of the present application can calculate the corresponding phase information at the granularity of the port (the number of ports can affect the accuracy of the phase information), and obtain AOD, compared with the granularity of the radio frequency channel
  • the embodiment of the present application can reduce the requirement for the number of radio frequency channels on the side of the second communication device on the premise of ensuring the accuracy of AOD calculation, thereby reducing the second The cost of the communication device.
  • the second communication device may send a first reference signal to the first communication device in multiple time domain resources through multiple ports.
  • the following uses the first port and the second port among the multiple ports of the second communication device as an example to illustrate, but it does not mean that the multiple ports of the second communication device only include two ports. Ports other than the first port and the second port continue to send other parts of the first reference signal.
  • the second communication device transmits the first part of the first reference signal in the third time domain resource through the first port among the multiple ports.
  • the second communication device transmits the second part of the first reference signal in the fourth time domain resource through the second port of the plurality of ports.
  • the first part of the first reference signal is used to determine one first phase information in the plurality of first phase information
  • the second part of the first reference signal is used to determine another first phase information in the plurality of first phase information.
  • the first communication device may receive the first reference signal in multiple time domain resources, and determine multiple pieces of first phase information corresponding to the multiple time domain resources.
  • the following takes the first time domain resource and the second time domain resource among the multiple time domain resources as an example to illustrate, but it does not mean that the multiple time domain resources only include two time domain resources.
  • the first part of the first reference signal is received in the first time domain resource, and one first phase information among the plurality of first phase information is determined according to the first part of the first reference signal.
  • the first communication device receives the second part of the first reference signal in the second time domain resource, and determines another first phase information among the plurality of first phase information according to the second part of the first reference signal.
  • S202 and S204 do not have an absolute sequence relationship, and can be executed alternately, for example, S202 can be executed first, and then S204 can be executed. It is also possible to execute S204 during the execution of S202.
  • the step of the first communication device determining a first phase information according to the first part of the first reference signal occurs after receiving the first part of the first reference signal, and the first communication device receives the second part of the first reference signal Before.
  • the step of the first communication device determining a first phase information according to the first part of the first reference signal may also take place after receiving the second part of the first reference signal.
  • the time indicated by the first time domain resource and the time indicated by the fourth time domain resource have no absolute sequence relationship directly, and the time indicated by the first time domain resource can be earlier, later than or equal to the fourth time domain resource.
  • the time indicated by the resources is not limited in this embodiment of the application.
  • the first communication device can combine the multiple phase information after measuring and obtaining multiple phase information based on signals sent by different ports The angle of departure is calculated from the phase difference information and the spacing between the ports.
  • the first communication device can determine a plurality of first phase information through one reference signal, thus reducing the time required for calculating the departure angle.
  • the number of reference signals can save network resources and reduce delay.
  • the second communication device may send multiple reference signals to the first communication device in multiple time domain resources through multiple ports, where one port corresponds to one reference signal.
  • the first communication device measures each reference signal to obtain a piece of phase information corresponding to each reference signal.
  • the second communication device may send a first reference signal through one port, and send a third reference signal through another port.
  • the first communication device may determine one phase information according to the received first reference signal, and determine another phase information according to the other third reference signal received.
  • the positioning server (such as LMF) can determine the departure angle according to the two phase information corresponding to the two reference signals (the first reference signal and the third reference signal).
  • the physical ports included in the first port may or may not overlap with the physical ports included in the second port.
  • the first port and the second port may have a selective connection relationship with the same radio frequency channel.
  • both the first port and the second port are ports selectively connected to the first radio frequency channel.
  • the second communication device sends the first part of the first reference signal in the third time domain resource through the first port connected to the first radio frequency channel.
  • the second communication device sends the second part of the first reference signal in the fourth time domain resource through the second port connected to the first radio frequency channel.
  • the second communication device may also send the first reference signal through multiple ports of multiple radio frequency channels.
  • the second communication device may transmit the first reference signal through the first port of the first radio frequency channel and the second One or more ports of the two radio frequency channels transmit the first part of the first reference signal, and the second communication device may send the first part of the first reference signal through the second port of the first radio frequency channel and one or more ports of other radio frequency channels (such as the second radio frequency channel) The second part of the first reference signal.
  • the embodiment of the present application introduces the first radio frequency channel among the multiple radio frequency channels used to send the first reference signal.
  • FIG. 6 exemplarily shows a schematic diagram of the first radio frequency channel 43 in FIG. 5b connecting ports in the port array 44 through a switch 45.
  • the first radio frequency channel 43 is connected to 8 physical ports as an example.
  • the 8 The physical ports are: port 441, port 442, port 443, port 444, port 445, port 446, port 447 and port 448.
  • the first port may be, for example, port 441
  • the second port may be, for example, port 442 .
  • the first port may be, for example, port 441 and port 442
  • the second port may be, for example, port 442 and port 443 .
  • the first port may be, for example, port 441 and port 442
  • the second port may be, for example, port 447 and port 448 .
  • the first port and the second port can be two ports connected by two radio frequency channels respectively, for example, the first port is the port connected to the first radio frequency channel 43 in Figure 5b, and the second port is the port connected to the second radio frequency channel 53 in Fig. 5b.
  • implementation manner a1 for the correspondence between S1 time domain resources and ports, such as implementation manner a1, implementation manner a2, implementation manner a3, and implementation manner a4 shown in the following content.
  • Embodiment a1 the two ports used for sending the first reference signal corresponding to the two time domain resources among the S1 time domain resources used for sending the first reference signal are different.
  • Embodiment a1 can also be understood as that ports corresponding to at least two time domain resources among the S1 time domain resources are different.
  • the first communication device can measure the signals sent through the at least two different ports to obtain at least two first phase information .
  • the at least two pieces of first phase information may correspond to at least one phase difference, and then the departure angle may be determined based on the phase difference.
  • positioning can also be performed based on the phase information corresponding to the first reference signal sent by the second communication device, thereby reducing the need for The positioning solution requires hardware of the second communication device, thereby reducing the cost of the second communication device.
  • one port among the multiple ports corresponds to one time domain resource among the S1 time domain resources.
  • the second communication device uses one port once in the process of sending the first reference signal through S1 time domain resources, so that the second communication device can send the first reference signal through as many different ports as possible, and then The first communication device can obtain first phase information corresponding to more different ports.
  • the first phase information corresponding to more different ports can obtain more phase differences. It can be seen that this solution can increase the number of phase differences, thereby improving the accuracy of the departure angle.
  • one port among the multiple ports corresponds to multiple time domain resources among the S1 time domain resources.
  • one port can be used multiple times.
  • one port can be set as a reference port to provide calibration for other ports.
  • the port is multiplexed multiple times, which can save the number of ports required by the solution, thereby reducing the hardware requirements of the second communication device, thereby reducing the cost of the second communication device.
  • Embodiment a4 two ports corresponding to two adjacent time domain resources among the S1 time domain resources are different.
  • the second communication device needs to change the port after sending a signal in one time domain resource, so as to transmit the signal in the next time domain resource.
  • the first communication device can obtain two different pieces of first phase information based on signals sent by two adjacent time domain resources.
  • a phase difference can be obtained from two pieces of first phase information with differences.
  • the maximum phase difference can be obtained, thereby improving the accuracy of the departure angle.
  • the S1 time domain resources may also have multiple possible implementation manners.
  • the following implementation manner b1, implementation manner b2, implementation manner b3 and implementation manner b4 exemplarily show the implementation manners of the S1 time domain resources.
  • Embodiment b1 Among the S1 time domain resources, two time domain resources corresponding to different ports are separated by at least one time domain resource unit.
  • the S1 time domain resources correspond to different ports
  • Embodiment b2 There is at least one time domain resource unit between two adjacent time domain resources among the S1 time domain resources.
  • the second communication device may have time to communicate between the adjacent time domain resources among the S1 time domain resources. Execute port switching action.
  • Embodiment b3 among the S1 time domain resources, the interval between adjacent time domain resources is Q1 time domain resource units, and Q1 is a positive integer.
  • this scheme is relatively regular, it can also save the number of bits occupied by the information used to indicate the interval between the time domain resources in the S1 time domain resources.
  • one time-domain resource unit may be one or more time-domain symbols.
  • the time-domain resource unit may also be called a resource element (resource element, RE).
  • RE resource element
  • the first communication device Compared with the scheme in which the second communication device sends a plurality of first reference signals, and the first communication device measures and obtains a first phase information for each first reference signal, since the first communication device knows how to determine the first phase information information of time-domain resources, so the phenomenon of determining a first phase information based on data received on multiple similar time-domain symbols can be reduced (since the data received on multiple similar time-domain symbols may be The receiving end regards it as one signal and cannot distinguish it), so that the first communication device can obtain a plurality of first phase information at the symbol granularity, and then can determine the departure angle based on the phase information of at least one reference signal, thereby reducing the Latency for schemes that calculate angle-of-departure based on behavioral information.
  • the S1 time domain resources are S1 time domain resources in one time slot (slot).
  • the first reference signal can be sent together with the data, or can be sent separately.
  • Fig. 7a and Fig. 7b exemplarily show schematic diagrams of patterns of S1 time-domain resources corresponding to several possible first reference signals.
  • the first reference signal may be in the same data as data (for example, physical downlink control channel (physical downlink control channel, PDCCH) and/or demodulation reference signal (de-modulation reference signal, DMRS)) etc. sent in the time slot.
  • data for example, physical downlink control channel (physical downlink control channel, PDCCH) and/or demodulation reference signal (de-modulation reference signal, DMRS)
  • the first reference signal may be sent alone, that is, not sent together with data (such as PDCCH and/or DMRS), and the first reference signal may occupy S1 time domain resources in one time slot.
  • one time domain resource unit is separated between two adjacent time domain resources among the S1 time domain resources.
  • the second communication device can be separated by one time domain resource in each time slot.
  • the unit sends a signal once, and performs port switching on interval time-domain resource units.
  • Fig. 7c and Fig. 7d exemplarily show examples of several possible correspondences between S1 time domain resources and ports, these several examples take the port in the first radio frequency channel shown in Fig. 6 as an example exhibit.
  • the S1 time-domain resources are 8 time-domain symbols in a time slot, and every two adjacent time-domain symbols are separated by a time-domain symbol, and the ports corresponding to the 8 time-domain symbols are sequentially Can be: port 441, port 442, port 443, port 444, port 445, port 446, port 447, and port 448.
  • the ports have port identifiers, and there may be a preset ordering relationship between the port identifications, for example, the ordering relationship is: port 441, port 442, port 443, port 444, port 445, port 446 , port 447, and port 448.
  • the port switching rule is the same as the preset ordering relationship of the port identification, so that the complexity of the solution can be reduced.
  • the S1 time-domain resources are 8 time-domain symbols in a time slot, and every two adjacent time-domain symbols are separated by a time-domain symbol, and the ports corresponding to the 8 time-domain symbols are sequentially Can be: port441, port442, port441, port443, port441, port444, port441, and port445. It can be seen that port 441 has been used multiple times in the port switching rule shown in FIG. The first phase information corresponding to the following port is calibrated, thereby improving the accuracy of the departure angle.
  • the two first phase information corresponding to the port 442 and/or the port 443 are calibrated, so that the accuracy of the first phase information can be improved, thereby improving the accuracy of the departure angle.
  • the correspondence between the S1 time domain resources and ports may be preset, may be preset at the second communication device side, may also be determined by the second communication device itself, or may be determined by the second communication device.
  • the communication device negotiates with the first communication device, or it may be determined by a positioning server (such as LMF) and sent to the second communication device.
  • a positioning server such as LMF
  • FIG. 8 exemplarily shows a flowchart of another method for determining AOD.
  • the first communication device is a terminal device
  • the second communication device is a base station
  • the positioning server is an LMF.
  • the second communication device may also be a terminal device.
  • the second configuration information may be determined by the second communication device itself, or it may be sent by other devices (such as a base station) to the second communication device. of.
  • the method includes:
  • the second communication device determines second configuration information of a first reference signal.
  • the second configuration information may include at least one of the following parameters c1, c2, c3 or c4:
  • Parameter c1 information indicating S1 time domain resources used for sending the first reference signal.
  • the information included in the second configuration information for indicating the S1 time-domain resources used to send the first reference signal may be referred to as fourth indication information.
  • the fourth indication information may include: information on the number of time domain resource units spaced between two time domain resources among the S1 time domain resources; and/or, information on the S1 time domain resources.
  • the fourth indication information may include: indication information of the number of time domain resource units spaced between adjacent time domain resources among the S1 time domain resources.
  • the fourth indication information may be information indicating the following content: in a time slot, the transmission of the first reference signal is performed every interval of 1 time domain symbol, and the duration of the transmission of the first reference signal is 1 a time domain symbol.
  • the fourth indication information may be information indicating the following content: in a time slot, the transmission of the first reference signal is performed every two time domain symbols, and the duration of the transmission of the first reference signal is 2 time domain symbols.
  • the second communication device may determine the S1 time-domain resources used to send the first reference signal, Furthermore, the first reference signal may be sent in the S1 time domain resources.
  • the information of the S1 time-domain resources may include at least one of the following:
  • the starting frame or symbol of the S1 time-domain resources (indicating from which frame or symbol to start mapping in the time domain);
  • the offset corresponding to the S1 time domain resources (indicating how many symbols or time slots the S1 time domain resources are offset in the current sending period of the first reference signal).
  • Parameter c2 information about frequency domain resources corresponding to the first reference signal.
  • the first reference signal may occupy one or more subcarriers in the frequency domain.
  • Frequency domain resources corresponding to two time domain resources among the S1 time domain resources may be the same.
  • the frequency domain resources corresponding to all the time domain resources in the S1 time domain resources may be the same, and in this way, the solution may be simplified.
  • the information about the frequency domain resource corresponding to the first reference signal may include at least one of the following:
  • the sequence number of the subcarrier used to send the first reference signal (for example, it may include the sequence number of the subcarrier occupied by the first reference signal in a resource block (resource block, RB));
  • the density of the resource blocks occupied by the first reference signal in the frequency domain (for example, it may include indication information for indicating how many RBs are used to send the data on the bits in the first reference signal);
  • Bandwidth can indicate how many consecutive physical resource blocks (Physical resource block, PRB) or how many REs are occupied in the frequency domain);
  • the starting common resource block (Common resource block, CRB) (may indicate the number of RBs to start mapping in the frequency domain).
  • Parameter c3 information indicating the correspondence between S1 time domain resources and multiple ports.
  • the information indicating the correspondence between S1 time domain resources and multiple ports may include at least one of the following:
  • S1 time-domain resources and identifications of multiple ports (identifications of multiple ports may appear in the form of an array, wherein each number may indicate an identification of a port);
  • the identification of the target port switching policy used to send the reference signal is Alternatively, the identification of the target port switching policy used to send the reference signal.
  • one or more port switching strategies for sending reference signals can be preset on the second communication device side, and the target port switching strategy for sending reference signals is one of the preset port switching strategies for sending reference signals one of.
  • a port switching strategy for sending reference signals includes identification information of multiple ports corresponding to S1 time domain resources.
  • the second communication device may determine the target port switching strategy for sending the reference signal according to the identifier of the target port switching strategy for sending the reference signal, and then determine the identifiers of multiple ports corresponding to the S1 time domain resources.
  • Parameter c4 the sending period of the first reference signal.
  • the second communication device may periodically send the first reference signal, so that the first communication device periodically measures the first reference signal, and obtains the obtained result (each first reference signal corresponds to The second phase information and/or departure angle information) are reported, so that the purpose of periodically positioning the first communication device can be achieved.
  • the sending period of the first reference signal may indicate how often the second communication device sends the first reference signal.
  • a time interval may be one or more symbols, time slots, frames, seconds, minutes or hours and so on.
  • the sending cycle may not be configured in the second configuration information, or the value of the sending cycle configured in the second configuration information is used to indicate The second communication device sends the first reference signal once, and does not send the first reference signal periodically.
  • the second configuration information may be pre-configured on the second communication device side.
  • the second communication device may determine the second configuration information according to its own hardware conditions.
  • the second communication device may receive second configuration information sent by other devices.
  • the second communication device may negotiate with the first communication device to determine the second configuration information.
  • the positioning server may send a first transmission-reception point (Transmission-Reception Point, TRP) information request to the second communication device, where the first TRP information request is used to request acquisition of third configuration information.
  • TRP Transmission-Reception Point
  • a TRP information request may also be called a TRP information request.
  • the positioning server may send a TRP information request to the second communication device through an NR positioning protocol (NR positioning protocol a, NRPPa).
  • NR positioning protocol a NR positioning protocol a, NRPPa
  • the second communication device sends a first TRP information response to the positioning server, where the first TRP information response includes third configuration information.
  • the TRP information response may also be called TRP information response.
  • the third configuration information may include at least one of the above parameter c1, parameter c2, parameter c3, parameter c4 or the following parameter d.
  • the relevant content of the parameter c1, the parameter c2, the parameter c3 and the parameter c4 can be referred to the foregoing content, and will not be described in detail, and the parameter d will be introduced below.
  • Parameter d indicates port configuration information of the second communication device.
  • the port configuration information indicating the second communication device may include at least one of the following:
  • Quantity information of radio frequency channels of the second communication device (it may be the number of radio frequency channels configured by the second communication device, or it may be the number of radio frequency channels used to send the first reference signal);
  • the number information of the ports of the second communication device (it may be the number of ports corresponding to the radio frequency channels in the one or more radio frequency channels configured by the second communication device, or it may be the number of ports used to send the first reference signal);
  • the distance between the ports of the second communication device (can be the distance between two ports in the multiple ports corresponding to the radio frequency channels in one or more radio frequency channels configured by the second communication device, or the distance between two ports for sending the first
  • the distance between ports among the multiple ports of a reference signal may also be the distance between ports corresponding to adjacent time domain resources among the S1 time domain resources);
  • the port array shape corresponding to the port of the second communication device can be the port array shape corresponding to the radio frequency channel in one or more radio frequency channels configured by the second communication device, or the port corresponding to the port used to send the first reference signal ArrayShape);
  • information indicating the direction in which the ports of the second communication device are arranged may be, for example, a horizontal direction, a vertical direction, or an inclination at a certain angle, etc.).
  • the distance between the ports of the second communication device can be in the form of a series or an array, and can be indicated by a numerical value, and the unit can be meter, centimeter, decimeter, millimeter, micron or nanometer; it can also be expressed as a multiple of wavelength, which can be Integer multiples, fractional multiples, decimal multiples, etc.
  • the distance between the multiple ports of the second communication device may be expressed in the form of a number sequence. When the distance between the ports of the second communication device is unique, the distance between the ports of the second communication device may include only one value.
  • port identifiers may be carried in the port configuration information.
  • the port identifier and the distance between ports may be combined.
  • the port configuration information includes indication information indicating that the distance between port a and port b is half a wavelength.
  • the shape of the port array may be a linear array, a planar array, a circular array or a cylindrical array, and the like.
  • the second communication device estimates the angle-of-off information of the first reference signal according to the second phase information
  • calculation is also intentionally combined with the shape of the port array.
  • the shape of the port array is a linear array
  • each departure angle corresponding to the plurality of phase difference information can be understood as an angle on a plane
  • the second communication device may average the obtained pieces of phase difference information, and then estimate the departure angle of the first reference signal according to the averaged phase difference information.
  • each departure angle corresponding to the plurality of phase difference information may be a plurality of different angle
  • the second communication device can calculate each phase difference information to obtain multiple departure angle information, and then determine the departure angle of the first reference signal according to the obtained multiple departure angle information. horn.
  • the second communication device estimating the angle of departure of the first reference signal according to the second phase information.
  • the first communication device or the positioning server can also estimate the first reference signal The departure angle of the signal.
  • the positioning server can obtain the shape of the port array on the second communication device side through the third configuration information.
  • the positioning server sends the acquired shape of the port array on the second communication device side to the first communication device side.
  • the first communication device sends a message requesting assistance data to the positioning server (such as the LMF).
  • the Request Assistance Data message may include the identity of the target cell.
  • the request auxiliary data message is used to request to obtain the first configuration information.
  • the target cell may be an identifier of the primary cell corresponding to the first communication device.
  • the request assistance data message may also be called request assistance data.
  • the first communication device may send a request for assistance data message to a positioning server (such as LMF) through an LTE positioning protocol (LTE positioning protocol, LPP).
  • LMF positioning server
  • LPP LTE positioning protocol
  • the positioning server sends a message of providing auxiliary data to the first communication device.
  • the provide assistance data message includes first configuration information.
  • the provide assistance data message may also be referred to as provide assistance data.
  • the positioning server may send a providing assistance data message to the first communication device through the LPP.
  • the first configuration information may include at least one of the following parameter e1, parameter e2, parameter c2, parameter c3, parameter c4, or parameter d.
  • the parameter c2, parameter c3, parameter c4 and parameter d refer to the foregoing content, and will not be described in detail, and the parameter e1 and parameter e2 are respectively introduced below.
  • Parameter e1 information indicating S2 time-domain resources used to determine phase information.
  • the information indicating the S2 time-domain resources used for determining the phase information may include fourth indication information in the foregoing parameter c1.
  • the first communication device may determine the S2 time-domain resources that need to obtain the first phase information, and then A first phase information may be determined according to a signal received on a time domain resource among the S2 time domain resources.
  • the information indicating the S2 time-domain resources used to determine the phase information may be the information indicating the following content: in a time slot, the second communication device transmits a reference signal at intervals of 1 time-domain symbol, In addition, the duration of sending the reference signal is one time-domain symbol. In this way, in the process of receiving the first reference signal, the first communication device can estimate a first phase information every other time-domain symbol, and each first phase information is determined according to a signal received in a time-domain symbol , so as to obtain a plurality of pieces of first phase information corresponding to the first reference signal.
  • the fourth indication information may be information indicating the following content: in a time slot, a reference signal is sent every 2 time domain symbols, and the duration of the reference signal transmission is 2 time domains symbol.
  • the first communication device can estimate the first phase information every two time-domain symbols, and each first phase information is based on signals received by two time-domain symbols Certainly, in this way, multiple pieces of first phase information corresponding to the first reference signal can be obtained.
  • the S1 time domain resources are time domain resources used by the first reference signal sender to send the first reference signal.
  • the relevant content of the parameter e1 please refer to the relevant content of the aforementioned parameter c1, which will not be repeated here.
  • Parameter e2 the identifier of the second communication device.
  • the identifier of the second communication apparatus may be one or more of a physical cell index (physical cell index, PCI) and a cell global identity (cell global identity, CGI).
  • PCI physical cell index
  • CGI cell global identity
  • the first configuration information can be pre-configured The information is configured on the side of the second communication device.
  • the first communication device may negotiate with the second communication device to determine the first configuration information.
  • the first communication device may receive first configuration information sent by other devices.
  • the positioning server sends a first message requesting location information to the first communication device.
  • the first message requesting location information is used to instruct the first communication device to report the measurement value.
  • the first message requesting location information may be called request location information.
  • the Access and Mobility Management Function receives service requests about terminal equipment initiated by other network elements in the network, and AMF sends information about the terminal equipment to the LMF.
  • AMF Access and Mobility Management Function
  • the LMF receives the positioning request from the AMF, initiates the positioning of the terminal device, and determines the positioning information of the terminal device.
  • the LMF may instruct the second communication device to send the first reference signal, and instruct the terminal device to report the measurement value through S806.
  • the second communication device sends the first reference signal to the first communication device in multiple time domain resources according to the second configuration information. Two ports used for sending the first reference signal corresponding to the two time domain resources among the S1 time domain resources for sending the first reference signal are different.
  • the second communication device may perform channel calibration on multiple ports used for sending the first reference signal, so that initial phases of the multiple ports are consistent, and then transmit the first reference signal through the multiple ports. In this way, the accuracy of the phase difference obtained based on the first reference signals sent by the multiple ports can be improved, and further the accuracy of the departure angle can be improved.
  • the second communication device may determine the frequency domain resource corresponding to the first reference signal according to the second configuration information, and send the first reference signal.
  • the second communication device may determine the port corresponding to the time domain resource according to the second configuration information as : The port used when the time domain resource sends a signal, and then the time domain resource sends a signal through this port.
  • S807 For other relevant content of S807, refer to the relevant content of S202 above, and S807 may be a possible implementation manner of S202.
  • the first communication device receives the first reference signal, and determines multiple pieces of first phase information corresponding to the S2 time domain resources.
  • the first communication device sends a first message providing positioning information to the positioning server.
  • the first message providing positioning information includes the second phase information (parameter f1), and may also include at least one of parameter f2, parameter f3, or parameter f4. At least one of the parameter f2, the parameter f3, or the parameter f4 may be reported together with the parameter f1, or may be reported separately, which is not limited in this embodiment of the present application.
  • the message requesting location information may also instruct the first communication device to report the second phase information, so that the first communication device determines the second phase information after the subsequent S808 based on the message requesting location information. Two-phase information is reported.
  • Parameter f1 the second phase information.
  • the second phase information includes at least one of the following parameters f1-1, f1-2 or f1-3:
  • Parameter f1-1 at least two pieces of first phase information among the plurality of first phase information.
  • the first communication device may report the at least two first phase information in the form of a sequence (or array) information.
  • the sequence of the at least two pieces of first phase information in the second phase information matches the sequence of time domain resources corresponding to the at least two pieces of first phase information.
  • the first communication device may sort the pieces of first phase information according to the order in which the signals used to estimate the first phase information are received, and report the sorted pieces of first phase information.
  • the sequence of the at least two pieces of first phase information in the second phase information matches the sequence of identifiers of ports corresponding to the at least two pieces of first phase information.
  • there may be a preset sequence relationship between the multiple ports used to send the first reference signal on the second communication device side for example, there is a preset sequence for the port corresponding to the first radio frequency channel 43 in FIG. 6 relationship, the sequence is: port 441, port 442, port 443, port 444, port 445, port 446, port 447, port 448.
  • the first communication device can determine the corresponding relationship between the plurality of first phase information determined according to the received signal and the port, and then can send multiple first phase information.
  • the first communication device may also reorder the obtained multiple pieces of first phase information according to the sequence relationship of port identifiers, and report the reordered multiple pieces of first phase information.
  • the ports used by the second communication device to send the first reference signal are: port 441, port 442, port 441, port 443, port 441, port 444, port 441, port 445; in this case, the first A communication device can sequentially obtain the following content: first phase information corresponding to port 441, first phase information corresponding to port 442, first phase information corresponding to port 441, first phase information corresponding to port 443, first phase information corresponding to port 441 Phase information, first phase information corresponding to port 444 , first phase information corresponding to port 441 , first phase information corresponding to port 445 .
  • the first communication device may reorder the multiple pieces of first phase information obtained in sequence, and the sorted first phase information may be: one or more first phase information corresponding to port 441, and the first phase information corresponding to port 442. Phase information, first phase information corresponding to port 443 , first phase information corresponding to port 444 , and first phase information corresponding to port 445 .
  • the first communication device may report the at least two pieces of first phase information in multiple reports. , one or more pieces of first phase information may be reported each time.
  • the first communication device may determine a piece of first phase information in each of the S2 time domain resources. For one piece of first phase information in the plurality of first phase information, the first phase information is determined according to any propagation path of a signal received in the time domain resource corresponding to the first phase information to the first communication device, and the propagation path may be It can be a conventional trail, or it can be an extra trail, for example, it can be a head trail, a direct trail, a reflection trail, or the strongest trail. For example, the first communication device may estimate the first phase information according to the first path of the signal received in each of the S2 time domain resources.
  • Parameter f1-2 at least one piece of phase difference information corresponding to the multiple pieces of first phase information.
  • the phase difference information may be determined according to the two pieces of first phase information, for example, the phases indicated by the two pieces of first phase information may be subtracted to obtain one piece of phase difference information.
  • the first communication device may report the plurality of phase difference information in the form of a sequence (or array).
  • the sequence of at least two pieces of phase difference information in the second phase information matches the sequence of time domain resources corresponding to the phase difference information.
  • the first communication device may sort the plurality of first phase information according to the receiving order of the signals used to estimate the first phase information, and sequentially calculate the phase difference corresponding to two adjacent first phase information information, and then report the obtained multiple phase difference information with a sequence relationship.
  • the sequence of the at least two pieces of phase difference information in the second phase information matches the sequence of port identifiers corresponding to the phase difference information.
  • there may be a preset sequence relationship between the multiple ports used to send the first reference signal on the second communication device side for example, there is a preset sequence for the port corresponding to the first radio frequency channel 43 in FIG. 6 relationship, the sequence is: port 441, port 442, port 443, port 444, port 445, port 446, port 447, port 448.
  • the first communication device can determine the corresponding relationship between the plurality of first phase information determined according to the received signal and the port, and then can determine the multiple The first phase information is sorted, and the phase difference information corresponding to two adjacent first phase information is further sequentially calculated, and then the obtained multiple phase difference information with a sorting relationship is reported.
  • the ports used by the second communication device to send the first reference signal are: port 441 , port 442 , port 443 , port 444 , port 445 , port 446 , port 447 , and port 448 .
  • the first communication device can sequentially obtain the following content: the first phase information corresponding to port 441, the first phase information corresponding to port 442, the first phase information corresponding to port 443, and the first phase information corresponding to port 444 , the first phase information corresponding to port 445, the first phase information corresponding to port 446, the first phase information corresponding to port 447, and the first phase information corresponding to port 448.
  • the first communication device may sequentially obtain the following content: the phase difference information corresponding to port 442 and port 441, the phase difference information corresponding to port 444 and port 443, the phase difference information corresponding to port 446 and port 445, and the phase difference information corresponding to port 448 and port 448. Phase difference information corresponding to port 447. Further, the first communication device may report the phase difference information in a sequence (or array).
  • the ports used by the second communication device to send the first reference signal are: port 441, port 442, port 441, port 443, port 441, port 444, port 441, port 445; in this case,
  • the first communication device can sequentially obtain the following contents: first phase information (information a1) corresponding to port 441, first phase information (information a2) corresponding to port 442, first phase information (information a3) corresponding to port 441, port
  • the first phase information corresponding to 443 (information a4), the first phase information corresponding to port 441 (information a5), the first phase information corresponding to port 444 (information a6), the first phase information corresponding to port 441 (information a7) , the first phase information (information a8) corresponding to the port 445.
  • the first communication device may sequentially obtain the following content: phase difference information corresponding to port 442 and port 441 (according to information a1 and information a2), phase difference information corresponding to port 443 and port 441 (according to information a3 and information a4 obtained), the phase difference information corresponding to port 444 and port 441 (obtained according to information a5 and information a6), and the phase difference information corresponding to port 445 and port 441 (obtained according to information a7 and information a8). Further, the first communication device may report the phase difference information in a sequence (or array). It can be seen that in this solution, the port 441 can be used as a reference port, and the plurality of first phase information corresponding to the port 441 can be used for channel calibration, so that the accuracy of the departure angle can be further improved.
  • the first communication device may report the at least two phase difference information in multiple reports, each One or more phase difference information can be reported at a time.
  • Parameter f1-3 mean information of multiple phase difference information.
  • the mean value information of multiple phase difference information can be obtained by averaging multiple phase difference information, or can be obtained by weighting and averaging multiple phase difference information. There are many specific ways. Do limit.
  • the second communication device receives reliability information of the second phase information.
  • the reliability information of the second phase information includes standard deviation information and/or variance information corresponding to multiple pieces of first phase information.
  • the second communication device receives first indication information, where the first indication information indicates a correspondence between parameters in the second phase information and identifiers of ports used to send the first reference signal.
  • the second indication information may indicate an identifier of a port corresponding to each first phase information in the plurality of first phase information.
  • the second indication information may indicate an identifier of a port corresponding to each phase difference information in the plurality of phase difference information.
  • the port corresponding to one piece of phase difference information refers to the port corresponding to the two first phase information based on which the phase difference information is calculated.
  • the first indication information may include indication information indicating a measurement manner in which the first communication device measures the first reference signal.
  • the first communication device may sequentially obtain multiple first phase information in accordance with the order of port switching during the process of sending the first reference signal from the second communication device side, and then compare the obtained multiple first phase information.
  • the two adjacent first phase information in the information sequence are calculated to obtain a plurality of phase difference information having a sequence relationship.
  • the first communication device may sequentially obtain a plurality of first phase information according to the order in which ports are switched during the process of sending the first reference signal from the second communication device side, and then obtain the multiple first phase information according to the preset ordering relationship of port identifiers.
  • the first phase information is reordered, and then two adjacent first phase information in the sequence of the reordered plurality of first phase information are calculated to obtain a plurality of phase difference information having a sorted relationship.
  • Parameter f4 the identifier of the second communication device.
  • the identifier of the second communication device may be one or more of a physical cell index (physical cell index) PCI and a cell global identity (cell global identity, CGI).
  • the identifier of the second communication device may be used to indicate which device sends out the reference signal based on which the second phase information obtained by the first communication device is determined.
  • the positioning server sends a positioning information request message to the second communication device, where the positioning information request message includes second phase information (parameter f1), and may also include at least one of parameter f2, parameter f3, or parameter f4.
  • the second communication device receives the location information request message from the LMF.
  • the LMF may send a location information request message to the second communication device through NRPPa.
  • the location information request message may also be replaced by: TRP information request message, or location information request message, or measurement request message.
  • the first communication device can receive reference signals issued by multiple second communication devices.
  • a second communication device is described in detail in the embodiment of the present application.
  • other second communication device side solutions may also refer to the second communication device side solution described in the embodiment of the present application.
  • the LMF may also feed back positioning information request messages to each second communication device respectively, and for each second communication device, the second communication device may include measurement values obtained by measuring based on the reference signal of the second communication device.
  • the second communication device determines information about an angle of departure of the first reference signal according to the obtained second phase information.
  • the second communication device may also receive at least one of the above parameter f2, parameter f3 or parameter f4. If the second communication device also receives the parameter f2, the second communication device can know the reliability of the departure angle determined by itself, and then can feed back the reliability of the departure angle to the positioning server. If the second communication device also receives the parameter f3, the port corresponding to the parameter in the received second phase information can be determined according to the parameter f3, so that the departure angle can be determined according to the distance between ports and the second phase information. calculation, which can improve the accuracy of the angle of departure. If the second communication device also receives the parameter f4, the second communication device may check the received parameters based on the above parameter f4 to determine whether the received second phase information is determined based on the first reference signal sent by itself of.
  • the second communication device may calculate the plurality of first phase information to obtain phase difference information, and then determine the departure angle of the first reference signal according to the phase information. If the second phase information includes phase difference information or the mean value information of the phase difference information, the second communication device may calculate the departure angle of the first reference signal according to the phase difference information or the mean value information of the phase difference information. There are many ways to calculate the departure angle of the first reference signal according to the phase difference information. The embodiment of the present application provides an example of a possible way. The way to determine the departure angle of the first reference signal according to the mean value information of the phase difference information is similar to it. ,No longer.
  • FIG. 9 exemplarily shows a schematic diagram of determining the departure angle of the first reference signal according to the phase difference information.
  • the second communication device is taken as the base station 101 and the first communication device is taken as the terminal device 103 for example.
  • base station 101 sends signal 1 through port 441
  • base station 101 sends signal 2 through port 442 .
  • There is a certain distance between port 441 and port 442 and the distance is represented by d in FIG. 9 .
  • Signal 1 may be the first part of the first reference signal
  • signal 2 may be the second part of the first reference signal.
  • the terminal device 103 receives signal 1 and signal 2 .
  • the terminal device can receive signal 1 and signal 2 through one port, or can receive signal 1 and signal 2 through multiple ports.
  • the signal transmission between the base station and the terminal equipment can be viewed as It is a far-field scene, so the transmission paths of signal 1 and signal 2 are shown as parallel lines in FIG. 9 .
  • the relationship between the departure angle and the phase difference information, the departure angle of the first reference signal can be calculated by formula (3):
  • d is the distance between the port 441 and the port 442;
  • is the departure angle of the first reference signal
  • is the corresponding phase difference between signal 1 and signal 2 on the side of the first communication device
  • is the wavelength of the first reference signal
  • is a constant, referring to pi.
  • the second communication device sends a positioning information response message to the positioning server, where the positioning information response message includes information about the departure angle of the first reference signal sent by the second communication device.
  • the positioning server receives the positioning information response message from the second communication device.
  • the positioning server may receive information on multiple departure angles from multiple second communication devices.
  • the second communication device may send a positioning information response message to the LMF through NRPPa.
  • the location information response message may be replaced by: TRP information response message, or measurement response message, etc.
  • the positioning server determines the location information of the first communication device according to the received information about the departure angles of the plurality of second communication devices.
  • Fig. 10 exemplarily shows a schematic diagram of a positioning solution based on AOD provided by an embodiment of the present application.
  • the second communication device is used as a base station
  • the first communication device is a terminal device as an example, as shown in Fig. 10
  • at least two second communication devices can transmit reference signals to the first communication device (terminal device 103).
  • the first communication device may determine the second phase information corresponding to the reference signal sent by the second communication device. Further, the first communication device sends the second phase information.
  • the second communication device calculates the AOD corresponding to the reference signal based on the second phase information, such as AOD1 corresponding to the reference signal sent by the base station 101 to the terminal device 103, and AOD2 corresponding to the reference signal sent by the base station 102 to the terminal device 103.
  • the positioning server may combine the AODs (AOD1 and AOD2) corresponding to the at least two reference signals to calculate the position of the terminal device.
  • the positioning server may form multiple rays starting from each base station location and having an angular deflection amount of AOD according to each AOD, and the intersection point where the multiple rays intersect is the location of the terminal device.
  • FIG. 8 only exemplarily shows a possible implementation manner.
  • there may also be other possible implementation manners such as determining the corresponding phase information of each second communication device according to the second phase information of each second communication device.
  • the step of the departure angle information can also be performed by the positioning server, so that the number of signaling transmissions between the positioning server and each second communication device can also be reduced, the time delay can be reduced, and the speed of positioning the first communication device can be accelerated.
  • the positioning server is a network element that can be used to initiate positioning for the first communication device, such as a location management function (location management function, LMF) in the NR system, or other
  • LMF location management function
  • the network element of the system that can initiate the positioning of the first communication device, in this embodiment of the application, the positioning server is LMF as an example for example.
  • FIG. 11 exemplarily shows a flowchart of another method for determining AOD provided by the embodiment of the present application.
  • FIG. 11 also includes a third communication device, which may be a serving base station. It is basically similar to the scheme provided in the aforementioned FIG. 8 . The difference is that in the solution provided in Figure 11, S1101-S1105 can be executed after S808:
  • the first communication device sends a second message to a third communication device.
  • the second message may include second phase information corresponding to the second communication device.
  • the third communication device may receive the second phase information from the first communication device.
  • the first communication device may send the second message to the third communication device through radio resource control (radio resource control, RRC).
  • RRC radio resource control
  • the first communication device may further send at least one of the parameter f2, the parameter f3, or the parameter f4 to the third communication device.
  • the third communication device may receive a plurality of pieces of second phase information corresponding to a plurality of second communication devices from the first communication device.
  • the positioning server sends port configuration information of multiple second communication devices to the third communication device.
  • the port configuration information corresponding to a second communication device includes the distance between ports.
  • the positioning server may send a third message to the third communication device through NRPPa, where the third message includes port configuration information of multiple second communication devices.
  • the third message may be a TRP information request message, a location information request message, or a measurement request message.
  • the third communication device receives port configuration information of multiple second communication devices from the positioning server.
  • the port configuration information of the second communication device sent by the positioning server to the third communication device can refer to the description of the parameter d above, and will not be repeated here. .
  • the positioning server may also send at least one of the parameter c1, the parameter c2, the parameter c3, or the parameter c4 to the third communication device.
  • the relevant content of the parameter c1, the parameter c2, the parameter c3, and the parameter c4 refer to the foregoing description, and details are not repeated here.
  • the positioning server may also send at least one of the parameter e1, the parameter e2, the parameter c2, the parameter c3, or the parameter c4 to the third communication device.
  • the relevant content of the parameter e1, parameter e2, parameter c2, parameter c3 or parameter c4 please refer to the foregoing description, which will not be repeated here.
  • the step of S1102 may be before S1101, for example, it may be after S803 and before S804.
  • the third communication device determines departure angle information corresponding to the plurality of second communication devices according to the second phase information corresponding to the plurality of second communication devices and port configuration information of the plurality of second communication devices.
  • the third communication device sends a plurality of departure angle information corresponding to a plurality of second communication devices to the positioning server.
  • the positioning server receives multiple pieces of departure angle information corresponding to multiple second communication devices.
  • the third communication device may send a message to the positioning server through NRPPa, the message includes multiple departure angle information, and the message may be called a TRP information response message, a positioning information response message, or a measurement response message.
  • the positioning server determines the location information of the first communication device according to the information about the departure angles of the plurality of second communication devices.
  • the second phase information corresponding to each second communication device does not need to be distributed to each second communication device through the positioning server, but the first communication device distributes the second phase information corresponding to each second communication device.
  • the second phase information corresponding to the communication device is uniformly sent to the third communication device, and then the third communication device calculates the departure angle information of the multiple second communication devices in combination with the port configuration information of each second communication device, and then the multiple second communication devices The departure angle information of the two communication devices is sent to the positioning server.
  • the third communication device is the serving base station
  • the speed at which the first communication device reports the second phase information to the third communication device is faster than the speed at which it reports the second phase information to the positioning server.
  • the positioning server since the positioning server does not need to send each second phase information to each second communication device, the speed of positioning the first communication device can be accelerated.
  • each second communication device may be sent by the positioning server to the third communication device.
  • the device may also be sent by each second communication device to the third communication device, or may be sent by the first communication device to the third communication device, for example, it may be sent together with the second phase information in S1101.
  • FIG. 12 exemplarily shows a schematic flowchart of another method for determining AOD provided by the embodiment of the present application, which is basically similar to the solution provided in FIG. 4 above, except that in the solution provided in FIG. 12 , in S2052 can also be executed after S204:
  • S2052 The first communication device sends first departure angle information.
  • the first departure angle information includes at least one of the following parameters f5, f6 or f7:
  • the parameter f5 is at least one angle of departure information corresponding to the plurality of first phase information.
  • the information of at least one angle of departure is determined according to the plurality of first phase information and the distance between the ports sending the first reference signal.
  • the manner of determining the information of the departure angle according to the pieces of first phase information reference may be made to the foregoing content, and details are not repeated here.
  • the first communication device may report the multiple angles of departure in the form of a sequence (or array) Information.
  • the sequence of the information about the multiple angles of departure in the first angle of departure information matches the sequence of the time domain resources corresponding to the multiple pieces of first phase information.
  • the first communication device may sort the plurality of first phase information according to the receiving order of the signals used to estimate the first phase information, and sequentially calculate the phase difference corresponding to two adjacent first phase information Information, and then obtain the information of the departure angle according to each phase difference information in sequence, and then report the obtained information of multiple departure angles with a ranking relationship.
  • the sequence of the multiple departure angle information in the first departure angle information matches the sequence of port identifiers corresponding to the multiple first phase information.
  • there may be a preset sequence relationship between the multiple ports used to send the first reference signal on the second communication device side for example, there is a preset sequence for the port corresponding to the first radio frequency channel 43 in FIG. 6 relationship, the sequence is: port 441, port 442, port 443, port 444, port 445, port 446, port 447, port 448.
  • the first communication device can determine the corresponding relationship between the plurality of first phase information determined according to the received signal and the port, and then can determine the multiple The sorting of the first phase information, further calculate the phase difference information corresponding to the adjacent two first phase information in sequence, and then obtain the information of the departure angle according to each phase difference information in sequence, and then the obtained has a sorting relationship. Report the information of multiple departure angles.
  • the ports used by the second communication device to send the first reference signal are: port 441 , port 442 , port 443 , port 444 , port 445 , port 446 , port 447 , and port 448 .
  • the first communication device can sequentially obtain the following content: the first phase information corresponding to port 441, the first phase information corresponding to port 442, the first phase information corresponding to port 443, and the first phase information corresponding to port 444 , the first phase information corresponding to port 445, the first phase information corresponding to port 446, the first phase information corresponding to port 447, and the first phase information corresponding to port 448.
  • the first communication device may sequentially obtain the following content: the phase difference information corresponding to port 442 and port 441, the phase difference information corresponding to port 444 and port 443, the phase difference information corresponding to port 446 and port 445, and the phase difference information corresponding to port 448 and port 448. Phase difference information corresponding to port 447. Further, the first communication device sequentially obtains the information of the departure angles according to each phase difference information, and then reports the obtained information of the plurality of departure angles with a sorted relationship.
  • the ports used by the second communication device to send the first reference signal are: port 441, port 442, port 441, port 443, port 441, port 444, port 441, port 445; in this case,
  • the first communication device can sequentially obtain the following contents: first phase information (information a1) corresponding to port 441, first phase information (information a2) corresponding to port 442, first phase information (information a3) corresponding to port 441, port
  • the first phase information corresponding to 443 (information a4), the first phase information corresponding to port 441 (information a5), the first phase information corresponding to port 444 (information a6), the first phase information corresponding to port 441 (information a7) , the first phase information (information a8) corresponding to the port 445.
  • the first communication device may sequentially obtain the following content: phase difference information corresponding to port 442 and port 441 (according to information a1 and information a2), phase difference information corresponding to port 443 and port 441 (according to information a3 and information a4 obtained), the phase difference information corresponding to port 444 and port 441 (obtained according to information a5 and information a6), and the phase difference information corresponding to port 445 and port 441 (obtained according to information a7 and information a8). Further, the first communication device sequentially obtains the information of the departure angles according to each phase difference information, and then reports the obtained information of the plurality of departure angles with a sorted relationship. It can be seen that in this solution, the port 441 can be used as a reference port, and the plurality of first phase information corresponding to the port 441 can be used for channel calibration, so that the accuracy of the departure angle can be further improved.
  • the first communication device may report the information of the at least two departure angles through multiple reports. Information, one or more departure angle information can be reported each time.
  • Parameter f6 at least one first departure angle mean value information corresponding to the plurality of first phase information.
  • the at least one first angle of departure average value information is determined according to at least two items of the at least one angle of departure information.
  • the average value information of the first angle of departure can be obtained by averaging the information of multiple angles of departure, or by weighting and averaging the information of multiple angles of departure. There are many specific ways. Do limit.
  • Parameter f7 at least one second departure angle mean value information corresponding to the plurality of first phase information.
  • the at least one second departure angle mean value information is determined according to the mean value information of the phase difference information corresponding to the first phase information and the port distance mean value information.
  • the mean value of the distance between ports is determined according to the mean value of the distances between multiple ports sending the first reference signal.
  • the first communication device may calculate the first angle-of-departure information according to the distance between the ports used for sending the first reference signal on the second communication device side. It should be noted that the first communication device may obtain the distance between ports, if not obtained, it may also calculate according to a preset port distance value, for example, the preset port distance value may be half a wavelength.
  • both S2051 and S2052 may be performed in one scheme, for example, the measurement value reported by the first communication device includes the first departure angle information and also includes the second phase information.
  • one of S2051 and S2052 can be selected: for example, the measurement value reported by the first communication device includes the first departure angle information, but does not include the second phase information; The measured value does not include the first angle of departure information, but includes the second phase information.
  • FIG. 13 exemplarily shows a schematic flowchart of another method for determining AOD provided by the embodiment of the present application, which is basically similar to the solution provided in FIG. 8 above, except that in the solution provided in FIG. 13 , After S808, execute S1201 and S1202:
  • the first communication device sends a fourth message providing positioning information to the positioning server.
  • the fourth message providing positioning information includes the first departure angle information, and may also include at least one of the following parameters g1, g2 or g3.
  • Parameter g1 the reliability information of the first departure angle information.
  • the reliability information of the first angle of departure information includes standard deviation information and/or variance information of the information of the multiple angles of departure corresponding to the multiple pieces of first phase information.
  • Parameter g2 second indication information, the second indication information indicates the correspondence between the parameters in the first angle of departure information and the identifier of the port used to send the first reference signal.
  • the second indication information may indicate an identifier of a port corresponding to information on each angle of departure in the multiple angles of departure information.
  • the port corresponding to the information of the angle of departure refers to the port corresponding to the phase difference information on which the information of the angle of departure is calculated.
  • the second indication information may include indication information indicating a measurement manner in which the first communication device measures the first reference signal.
  • indication information indicating a measurement manner in which the first communication device measures the first reference signal.
  • Parameter g3 the identifier of the second communication device.
  • the positioning server determines the location information of the first communication device according to the received first departure angle information corresponding to the plurality of second communication devices.
  • the first communication device can calculate the first departure angle information according to the distance between the ports used for sending the first reference signal on the second communication device side, and the first communication device can obtain the information from The positioning server obtains the distance between the ports, and the positioning server can obtain the distance between the ports through the aforementioned S803.
  • the first communication device may also perform calculations based on a preset port distance value, such as , the preset port spacing value can be half a wavelength.
  • the message requesting location information may also instruct the first communication device to report the departure angle information. In this way, the first communication device calculates First departure angle information and report.
  • the fourth message providing positioning information may not include parameter f1 (second phase information), and may not include parameter f2, parameter f3, and parameter f4.
  • the fourth message providing positioning information may also include parameter f1 (second phase information), and may also include one or more of parameter f2, parameter f3, or parameter f4. Examples are not limited.
  • FIG. 14 exemplarily shows a schematic flowchart of a method for determining AOA provided by the embodiment of the present application.
  • FIG. 14 introduces it from the perspective of interaction.
  • the method may be executed by the first communication device and the second communication device.
  • the scheme for determining AOA provided in Figure 14 of the embodiment of the present application can be used in conjunction with the aforementioned schemes for determining AOD ( Figure 4, Figure 8, Figure 11, Figure 12, and Figure 13), or can be used alone, and this embodiment of the application does not limit.
  • the first communication device can be a terminal device (such as the terminal device 103 in Figure 1a or Figure 1b, or the terminal device in Figure 1c), or a module, unit or chip inside the terminal device, or a network device (such as the The access network device in 1c), or a module, unit or chip inside the network device.
  • the second communication device can be a terminal device (such as the terminal device 104 or 105 in FIG. 1a, or the terminal device in FIG. 1c), or a module, unit or chip inside the terminal device, or a network device (such as The base station 101 or the base station 102 in FIG. 1b, or the access network device in FIG. 1c ), or a module, unit or chip inside the network device.
  • the first communication device and the second communication device can be flexibly selected. For details, refer to the related description of FIG. 8 above, and details will not be repeated here.
  • the AOA determination method includes:
  • the first communications apparatus sends a second reference signal.
  • the first communication device may send all of the second reference signals through one port.
  • the first communication device may also simultaneously transmit the second reference signal through multiple ports. In this way, the hardware requirements of the AOA determination scheme on the first communication device can be reduced, thereby reducing the cost of the first communication device.
  • the second communications apparatus receives a second reference signal, and determines multiple pieces of third phase information corresponding to the second reference signals received by multiple time domain resources.
  • the second communication device determines the angle of arrival of the second reference signal according to the pieces of third phase information.
  • the multiple time domain resources used by the second communication device side for determining phase information may be referred to as S3 time domain resources, where S3 is an integer greater than 1.
  • the second communication device may determine one piece of third phase information in one or more time domain resources among the S3 time domain resources. For example, the second communication device may determine S3 pieces of third phase information corresponding to the S3 time domain resources, and a plurality of pieces of third phase information are in one-to-one correspondence with the S3 time domain resources. For another example, the second communication device may determine multiple (possibly less than S3) third phase information corresponding to the time domain resources among the S3 time domain resources. For example, if S3 is 8, the second communication device may determine 8 time domain resources.
  • the 6 third phase information corresponding to the domain resources can be respectively determined according to the signals received by 6 time domain resources in the 8 time domain resources; for another example, the 8 time domain resources can be Five pieces of third phase information are respectively determined from signals received by the five time domain resources among the eight time domain resources, and one piece of third phase information is determined according to signals received by the remaining three time domain resources among the eight time domain resources.
  • the second communication device may determine a piece of third phase information in one time domain resource among the S3 time domain resources.
  • the third phase information is determined according to any propagation path from the signal received in the time domain resource corresponding to the third phase information to the second communication device, and the propagation path may be Conventional trails and extra trails, such as head trails, direct trails, reflection trails or strongest trails, etc.
  • the second communication device may estimate the third phase information according to the first path of the signal received in each of the S3 time domain resources.
  • the AOA of the reference signal may be determined according to the plurality of third phase information. It can be seen that the present application can provide a solution for determining AOA based on phase information, so that when it is necessary to determine an angle for positioning, there is an alternative solution.
  • the first communication device may send a sounding reference signal (Sounding reference signal, SRS) to the second communication device.
  • the second communication device simultaneously receives the SRS through multiple radio frequency channels, and obtains phase information corresponding to the multiple radio frequency channels. Then the second communication device calculates the AOA of the reference signal based on the phase information and the port spacing corresponding to the radio frequency channel.
  • This solution usually requires the second communication device to be configured with multiple radio frequency channels. If the second communication device is configured with fewer radio frequency channels, for example, only one radio frequency channel is configured, this solution cannot be used.
  • the number of radio frequency channels of the communication device is often configured with fewer, but more physical ports are often configured.
  • a switch can be set between the radio frequency channel and the port.
  • the radio frequency channel does not necessarily perform the data transmission through all the ports connected to the radio frequency channel, but One or more ports among all the ports corresponding to the radio frequency channel can be selected by a switch for data transmission.
  • the structure of the second communication device can refer to FIG. 5b.
  • the second communication device receives the first part of the second reference signal in the fifth time domain resource, and determines the phase information among the plurality of third phase information according to the first part of the second reference signal.
  • a third phase information receives the second part of the second reference signal in the sixth time domain resource, and determines another piece of third phase information in the plurality of third phase information according to the second part of the second reference signal.
  • the second communication device may select a port to be used through a switch during the transmission process of the first reference signal. Therefore, the second communication device can successively receive signals through multiple ports connected by one radio frequency channel.
  • the second communication device obtains a plurality of pieces of third phase information corresponding to at least two ports in the multiple ports through measurement.
  • the AOA may be calculated by the second communication device or other devices (such as a positioning server) in combination with multiple pieces of third phase information and the distance between the ports of the at least two ports.
  • the solution provided by the embodiment of the present application can calculate the corresponding phase information at the granularity of the port (the number of ports can affect the accuracy of the phase information), and obtain AOA, compared with the granularity of the radio frequency channel
  • the embodiment of the present application can reduce the requirement for the number of radio frequency channels on the side of the second communication device under the premise of ensuring the calculation accuracy of AOA, thereby reducing the second The cost of the communication device.
  • the second communication device receives the first part of the second reference signal in the fifth time domain resource through the third port.
  • the second communication device receives the second part of the second reference signal at the sixth time domain resource through the fourth port.
  • the step of the second communication device determining a third phase information according to the first part of the second reference signal occurs after receiving the first part of the second reference signal, and the second communication device receives the second reference signal Before the second part; it may also occur after the second communication device receives the second part of the second reference signal.
  • the second communication device Since the first part and the second part of the second reference signal are received through different ports of the second communication device, after the second communication device obtains a plurality of phase information according to signals received at different ports, it can combine the plurality of phase information The angle of arrival is calculated based on the phase difference information and the spacing between ports. On the other hand, since the second communication device receives different parts of the same reference signal through different ports, the number of reference signals used to calculate the angle of arrival can be reduced, thereby saving network resources and reducing time delay.
  • the "third port” in this embodiment of the present application refers to a logical port, and the “third port” may include one or more physical ports.
  • the "fourth port” refers to a logical port, and the “fourth port” may include one or more physical ports. There is at least one physical port among the physical ports included in the third port, and this physical port is different from each of all the physical ports included in the fourth port; or, there is at least one physical port among the physical ports included in the fourth port, and the physical port includes at least one physical port.
  • the physical port is different from each of all physical ports included in the third port.
  • the physical ports included in the third port may or may not overlap with the physical ports included in the fourth port.
  • the third port and the fourth port may have a selective connection relationship with the same radio frequency channel.
  • both the third port and the fourth port are ports selectively connected to the second radio frequency channel.
  • the second communication device receives the second part of the second reference signal at the sixth time domain resource through the fourth port connected to the second radio frequency channel.
  • the second communication device may also receive the second reference signal through multiple ports of multiple radio frequency channels.
  • the second communication device may receive the second reference signal through the third port of the second radio frequency channel and the first One or more ports of the three radio frequency channels receive the first part of the first reference signal, and the second communication device can receive the first part through the fourth port of the second radio frequency channel and one or more ports of other radio frequency channels (such as the third radio frequency channel) The second part of the first reference signal.
  • the embodiment of the present application introduces the second radio frequency channel among the multiple radio frequency channels used to receive the second reference signal.
  • FIG. 15 exemplarily shows a schematic diagram of the second radio frequency channel 53 in FIG. 5b connecting ports in the port array 54 through a switch 55.
  • the second radio frequency channel 53 is connected to 8 physical ports as an example.
  • the 8 The physical ports are: port 541, port 542, port 543, port 544, port 545, port 546, port 547, and port 548.
  • the third port may be, for example, port 541
  • the fourth port may be, for example, port 542 .
  • the third port may be, for example, port 541 and port 542
  • the fourth port may be, for example, port 542 and port 543 .
  • the third port may be, for example, port 541 and port 542
  • the fourth port may be, for example, port 547 and port 548 in the port array 54 .
  • the third port and the fourth port can be two ports connected to two radio frequency channels, for example, the third port is the port connected to the first radio frequency channel, and the fourth port is the second radio frequency channel. The port to which the channel connects.
  • the second communication device may receive multiple second reference signals from the first communication device at multiple time domain resources through multiple ports. For example, the second communication device may receive a second reference signal through one port, and determine a third phase information according to the received second reference signal; the second communication device may receive another second reference signal through another port , and determine another third phase information according to the other received first reference signal. Then the second communication device can determine the departure angle at least according to the two pieces of third phase information.
  • implementation manner h1 for the correspondence between S3 time domain resources and ports, such as implementation manner h1, implementation manner h2, implementation manner h3, and implementation manner h4 shown in the following content.
  • Embodiment h1 two time domain resources among the plurality of time domain resources (also referred to as S3 time domain resources) used to receive the second reference signal correspond to two different ports for receiving the second reference signal.
  • Embodiment h1 can also be understood as that ports corresponding to at least two time domain resources among the S3 time domain resources are different.
  • the second communication device since the second communication device receives the second reference signal through at least two different ports, the second communication device can measure the signals received through the at least two different ports to obtain at least two third phase information .
  • the at least two pieces of third phase information may correspond to at least one phase difference, and then the angle of arrival may be determined based on the phase difference.
  • the radio frequency channel includes at least two ports
  • positioning can also be performed based on the phase information corresponding to the second reference signal received by the first communication device, thereby reducing the need for
  • the positioning solution requires hardware of the second communication device, thereby reducing the cost of the second communication device.
  • the solution provided in the embodiment of the present application can also improve the positioning accuracy of the first communication device.
  • Embodiment h2 one of the multiple ports corresponds to one of the S3 time domain resources.
  • one port among the multiple ports corresponds to multiple time domain resources among the S3 time domain resources.
  • one port can be used multiple times.
  • one port can be set as a reference port to provide calibration for other ports.
  • the port is multiplexed multiple times, which can save the number of ports required by the solution, thereby reducing the hardware requirements of the second communication device, thereby reducing the cost of the second communication device.
  • the two ports corresponding to two adjacent time domain resources among the S3 time domain resources are different.
  • the second communication device needs to change the port after receiving the signal in one time domain resource, so as to receive the signal in the next time domain resource.
  • the first communication device can obtain two different pieces of third phase information based on signals received by two adjacent time domain resources.
  • a phase difference can be obtained from two different third phase information.
  • the S3 time-domain resources may also have multiple possible implementation manners.
  • the following implementation manners i1, implementation manner i2, implementation manner i3, and implementation manner i4 exemplarily show the implementation manners of the S3 time-domain resources.
  • Embodiment i1 Among the S3 time domain resources, two time domain resources corresponding to different ports are separated by at least one time domain resource unit.
  • the S3 time domain resources correspond to different ports
  • Embodiment i2 There is at least one time domain resource unit between two adjacent time domain resources among the S3 time domain resources.
  • the second communication device may have time to communicate between the adjacent time domain resources among the S3 time domain resources. Execute port switching action.
  • Embodiment i3 among the S3 time domain resources, the interval between adjacent time domain resources is Q2 time domain resource units, and Q2 is a positive integer.
  • This scheme is relatively regular, it can also save the number of bits occupied by the information used to indicate the S3 time domain resources.
  • one time-domain resource unit may be one or more time-domain symbols.
  • the second communication device may switch ports at the time-domain symbol level, and the second communication device may obtain a plurality of third phase information at the time-domain symbol level.
  • the second communication device Compared with the scheme in which the second communication device receives multiple second reference signals, and the second communication device measures and obtains a third phase information for each second reference signal, in the embodiment of the present application, since the second communication device knows The time-domain resource information of the third phase information is determined, so the phenomenon of determining a third phase information based on data received on multiple similar time-domain symbols can be reduced (due to the fact that data received on multiple similar time-domain symbols The received data may be regarded as one signal by the receiving end and cannot be distinguished), so that the first communication device can obtain a plurality of third phase information at the symbol granularity, and then determine the arriving data based on the phase information of at least one reference signal angle, thereby reducing the technical difficulty of calculating the angle of arrival based on phase information, and also reducing the delay of the scheme for calculating the angle of arrival based on behavior information.
  • the S3 time domain resources are S1 time domain resources in one time slot (slot).
  • the second reference signal can be transmitted together with the data, or can be transmitted separately.
  • the relationship between the second reference signal and data transmission refer to the relationship between the aforementioned first reference signal and data transmission, such as the relationship between the first reference signal and data transmission shown in FIG. 7a and FIG. 7b, which will not be repeated here.
  • FIG. 16 exemplarily shows a flowchart of another method for determining AOA.
  • the first communication device is a terminal device
  • the second communication device is a base station
  • the positioning server is an LMF.
  • the method includes:
  • the second communications apparatus determines fourth configuration information of the second reference signal.
  • the fourth configuration information may include at least one of the following parameters j1, parameter j2, parameter j3 or parameter j4:
  • Parameter j1 indicates information of S3 time domain resources.
  • the information indicating the S3 time-domain resources may include: information about the number of time-domain resource units spaced between two time-domain resources among the S3 time-domain resources; and/or information about the S3 time-domain resources.
  • the S3 time-domain resources may also be referred to as multiple time-domain resources for determining multiple pieces of third phase information.
  • the information indicating the S3 time domain resources may include: indication information of the number of time domain resource units spaced between adjacent time domain resources among the S3 time domain resources.
  • the information indicating the S3 time-domain resources may be information indicating the following content: in a time slot, the second reference signal is received once at intervals of 1 (or more) time-domain symbols, and the second The duration of receiving the reference signal is one (or more) time-domain symbols.
  • the fourth configuration information includes information on the number of time domain resource units spaced between two time domain resources among the S3 time domain resources
  • the second communication device may determine the S3 time domain resources used to receive the second reference signal, Furthermore, the second reference signal may be received in the S3 time domain resources.
  • Parameter j2 information about frequency domain resources corresponding to the second reference signal.
  • the second reference signal may occupy one or more subcarriers in the frequency domain.
  • the frequency domain resources corresponding to the two time domain resources among the S3 time domain resources may be the same.
  • the frequency domain resources corresponding to all the time domain resources in the S3 time domain resources may be the same, and in this way, the solution may be simplified.
  • Parameter j3 information indicating the corresponding relationship between S3 time domain resources and multiple ports.
  • the information indicating the correspondence between S3 time domain resources and multiple ports may include at least one of the following:
  • one or more port switching strategies for receiving reference signals may be preset on the second communication device side, and the target port switching strategy for receiving reference signals is one of the preset port switching strategies for receiving reference signals one of.
  • a port switching strategy for receiving a reference signal includes identification information of multiple ports corresponding to the S3 time domain resources.
  • the second communication device may determine the target port switching strategy for receiving the reference signal according to the identifier of the target port switching strategy for receiving the reference signal, and then determine the identifiers of the ports corresponding to the S3 time domain resources.
  • Parameter j4 the sending period of the second reference signal.
  • the first communication device may periodically send the second reference signal, so that the second communication device periodically measures the second reference signal, so as to achieve the purpose of periodically positioning the first communication device .
  • the sending cycle of the second reference signal may indicate how often the first communication device sends the first reference signal.
  • a time interval may be one or more symbols, time slots, frames, seconds, minutes or hours and so on.
  • the sending cycle may not be configured in the fourth configuration information, or the value of the sending cycle configured in the fourth configuration information is used to indicate The first communication device sends the second reference signal once, and does not send the second reference signal periodically.
  • the second communication device determines the fourth configuration information, which may be specifically similar to the aforementioned manner for determining the second configuration information, which will not be repeated here.
  • the positioning server may send a second TRP information request to the second communication device, where the second TRP information request is used to request acquisition of fifth configuration information.
  • the positioning server may send a second TRP information request to the second communication device through an NR positioning protocol (NR positioning protocol a, NRPPa).
  • NR positioning protocol a NR positioning protocol a, NRPPa
  • the second communication device sends a second TRP information response to the positioning server, where the second TRP information response includes fifth configuration information.
  • the second TRP information response may also be called TRP information response.
  • the fifth configuration information may include at least one of the above parameter j1, parameter j2, parameter j3 or parameter d.
  • parameter j1, parameter j2, parameter j3 or parameter d For the relevant content of parameter j1, parameter j2, parameter j3 or parameter d, refer to the foregoing content, and details are not repeated here.
  • the positioning server sends a capability request message to the first communication device, where the capability request message is used to query whether the first communication device supports sending the second reference signal.
  • the positioning server may send a capability request message to the first communication through the LPP.
  • the first communication device sends a capability response message to the positioning server, where the capability response message is used to indicate that the first communication device supports sending the second reference signal.
  • the positioning server sends a reference signal configuration request to the third communication device, where the reference signal configuration request is used to request the third communication device to send reference signal configuration information to the first communication device.
  • the positioning server may send a reference signal configuration request to the third communication device after receiving a message from the first communication device indicating that the first communication device supports sending the second reference signal. If the positioning server receives a message from the first communication device indicating that the first communication device does not support sending the second reference signal, it may end the process, or use other positioning methods to locate the first communication device.
  • the configuration information of the reference signal may include time domain resources and/or frequency domain resources of the second reference signal.
  • the positioning server may give suggestions for the time-domain resources and/or frequency-domain resources of the second reference signal based on the configuration of the second communication device (such as information in the fifth configuration information), and send the suggestions to sent to the third communication device.
  • the third communication device sends sixth configuration information to the first communication device, where the sixth configuration information may include time domain resources and/or frequency domain resources of the second reference signal.
  • the third communication device may send sixth configuration information to the first communication device based on the suggestion of the positioning server.
  • the time domain resource of the second reference signal included in the sixth configuration information may include a parameter k1.
  • the sixth configuration information may also include the following parameter k2.
  • Parameter k1 indicates information of S4 time domain resources for sending the second reference signal by the first communication apparatus.
  • the information indicating the S4 time domain resources may include: information on the number of time domain resource units between two time domain resources in the S4 time domain resources, and/or, the S4 time domain resources resource information.
  • the first communication device may determine the S4 time domain resources that need to send the second reference signal.
  • the information indicating the S4 time-domain resources may be information indicating the following content: in a time slot, the first communication device transmits a reference signal at intervals of 1 time-domain symbol, and the transmission of the reference signal The duration is one (or more) time domain symbols. In this way, in the process of sending the first reference signal, the first communication device may send the first reference signal every other time domain symbol, and the duration is one symbol (or multiple).
  • the S4 time domain resources can be a continuous period of time domain resources, or S4 time domain resources with intervals, and the distribution law of the S4 time domain resources can be consistent with the distribution law of the S3 time domain resources , for example, two adjacent time domain resources among the S4 time domain resources are separated by 1 time domain symbol.
  • Parameter k2 the identifier of the second communication device.
  • the first communication device to acquire the sixth configuration information, for details, please refer to the above-mentioned way for acquiring the first configuration information, which will not be repeated here.
  • the positioning server sends a second message requesting location information to the second communication device, where the second message requesting location information is used to instruct the second communication device to report a measurement value.
  • the second message requesting location information sent by the positioning server to the second communication device may include indication information of a measurement mode, and the indication information of the measurement mode may indicate that the second communication device receives the second reference signal through port switching, and performs the measurement for the second communication device.
  • a plurality of parts of the two reference signals are respectively measured to obtain a plurality of third phase information.
  • the first communication device sends a second reference signal.
  • the first communication device may send the second reference signal on S4 time domain resources.
  • the first communication device may send the second reference signal on a period of continuous time domain resources, and the first communication device may also be separated by some time domain resources.
  • Resources to send the second reference signal for example, the first communication device may send the second reference signal every other time domain symbol, and the duration is one or more symbols.
  • the step of the first communication apparatus sending the second reference signal may be before S1608.
  • the second communication device receives the second reference signal, and determines a plurality of pieces of third phase information corresponding to the second reference signal received by the S3 time domain resources.
  • the second communication device may perform channel calibration on multiple ports for receiving the second reference signal, so that initial phases of the multiple ports are consistent, and then receive the second reference signal through the multiple ports. In this way, the accuracy of the determined angle of arrival can be increased.
  • the second communication device determines angle-of-arrival information according to multiple pieces of third phase information.
  • the second communication device may calculate a plurality of pieces of third phase information to obtain phase difference information, and then determine the angle of arrival of the second reference signal according to the phase information.
  • FIG. 17 exemplarily shows a schematic diagram of determining the angle of arrival of the second reference signal according to phase difference information.
  • the second communication device receives signal 3 through port 541, and receives signal 4 through port 542, and signal 3 may be The first part of the second reference signal, signal 4, may be the second part of the second reference signal.
  • the relationship between the angle of arrival and the phase difference information, the angle of arrival of the first reference signal can be calculated by formula (4):
  • d is the distance between the port 541 and the port 542;
  • is the angle of arrival of the second reference signal
  • is the corresponding phase difference between signal 3 and signal 4 on the second communication device side
  • is the wavelength of the second reference signal
  • is a constant, referring to pi.
  • the phase difference between signal 3 and signal 4 determined by the first communication device may include two parts, one part is that the second communication device sends signal 3 and signal 4 respectively through two ports Another part of the introduced phase difference between the two ports is the phase difference introduced by the time it takes for the second communication device to switch ports during the process of sending the signal 3 and the signal 4 .
  • a part of the phase difference introduced by the time length can be determined according to the time it takes for the second communication device to perform port switching during the process of sending the signal 3 and the signal 4 (for example, Calculate the phase difference corresponding to a period of time by (t*(2 ⁇ c/ ⁇ )), where * represents multiplication, t represents time length, c represents the speed of light, ⁇ is the wavelength of the signal, and ⁇ is a constant that refers to pi). Furthermore, the first communication device can remove the phase difference introduced by the port switching from the measured phase difference between the signal 3 and the signal 4, so that the obtained phase difference information can be more accurate.
  • the second communication device sends the arrival angle information to the positioning server.
  • the positioning server receives information of multiple angles of arrival from multiple second communication devices.
  • the second communication device may send the angle-of-arrival information to the LMF through NRPPa.
  • the positioning server determines the location information of the first communication device according to the received information on the angle of arrival of the plurality of second communication devices.
  • the manner in which the positioning server determines the position information of the first communication device according to the multiple angles of arrival information is similar to determining the position information of the first communication device according to the multiple angles of departure information, which will not be repeated here.
  • FIG. 8 only exemplarily shows a possible implementation manner. In specific implementation, there may also be other possible implementation manners, such as determining the corresponding phase information of each second communication device according to the third phase information of each second communication device. The step of obtaining the angle-of-arrival information may also be performed by the positioning server.
  • a certain network element for example: A network element
  • B network element receives information from another network element
  • a network element directly receives information from B network element
  • Receiving information may also mean that network element A receives information from network element B via other network elements (for example: network element C).
  • network element C can transparently transmit the information, or process the information, for example, carry the information in different messages for transmission or filter the information , and only send the filtered information to network element A.
  • sending information from network element A to network element B may mean that network element A directly sends information to network element B, or it may mean that network element A transmits information via other network elements (for example: network C). element) sends information to network element B.
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • “At least one” means one or more, and “plurality” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • ordinal numerals such as “first” and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority or importance of multiple objects degree.
  • Fig. 18 is a schematic structural diagram of a communication device provided in the embodiment of the present application.
  • the communication device can be a first communication device, a second communication device or a third communication device, or a chip or
  • the circuit is, for example, a chip or a circuit that can be set in the first communication device, another example is a chip or a circuit that can be set in the second communication device, and another example is a chip or a circuit that can be set in the third communication device.
  • the communication device 1801 includes a processor 1802 and a transceiver 1803 .
  • the communication device 1801 may include a memory 1804 .
  • the dotted line in the memory 1804 in the figure further indicates that the memory is optional.
  • the communication device 1801 may further include a bus system, wherein the processor 1802, the memory 1804, and the transceiver 1803 may be connected through the bus system.
  • the above processor 1802 may be a chip.
  • the processor 1802 may be a field programmable gate array (field programmable gate array, FPGA), may be an application specific integrated circuit (ASIC), may also be a system chip (system on chip, SoC), or It can be a central processor unit (CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller (micro controller) unit, MCU), it can also be a programmable controller (programmable logic device, PLD) or other integrated chips.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processor unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller micro controller
  • MCU microcontroller
  • PLD programmable logic device
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1802 or instructions in the form of software.
  • the steps of the methods disclosed in the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor 1802 .
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory 1804, and the processor 1802 reads the information in the memory 1804, and completes the steps of the above method in combination with its hardware.
  • the processor 1802 in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field-programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components .
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • Various methods, steps, and logic block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory 1804 in the embodiment of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the relevant description of the memory in the embodiment of the present application reference may be made to the foregoing content, and details are not repeated here.
  • the processor 1802 is configured to execute through the transceiver 1803: acquiring first configuration information of the first reference signal, the first configuration information including multiple time domains for determining phase information Instructions for the resource. receiving the first reference signal, and determining a plurality of first phase information corresponding to the plurality of time domain resources; one first phase information in the plurality of first phase information is based on the first phase information in the plurality of time domain resources The signal received by a time-domain resource is identified. Sending the second phase information and/or the first angle of departure information. The second phase information is determined according to the plurality of first phase information; the first departure angle information is determined according to the plurality of first phase information.
  • the processor 1802 is configured to execute through the transceiver 1803: generating a first reference signal, and sending the first reference signal to the first communication device in multiple time domain resources. Two ports used for sending the first reference signal corresponding to two time domain resources among the plurality of time domain resources are different.
  • the processor 1802 is configured to execute through the transceiver 1803: receiving a plurality of first departure angle information, one first departure angle information in the plurality of first departure angle information according to the first departure angle information A plurality of first phase information determined by a communication device is determined, the plurality of first phase information is determined according to a first reference signal; and position information of the first communication device is determined according to the plurality of first departure angle information.
  • the processor 1802 is configured to use the transceiver 1803 to perform: receiving a second reference signal, and determining the second reference received by multiple time domain resources A plurality of third phase information corresponding to the signal, and an angle of arrival of the second reference signal is determined according to the plurality of third phase information.
  • FIG. 19 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • a communication device 1901 may include a communication interface 1903 and a processor 1902 .
  • the communication device 1901 may include a memory 1904 .
  • the dotted line in the memory 1904 in the figure further indicates that the memory is optional.
  • the communication interface 1903 is used to input and/or output information; the processor 1902 is used to execute computer programs or instructions, so that the communication device 1901 realizes the above-mentioned FIG. 4, FIG. 8, FIG. 11, FIG. 12, FIG.
  • the communication interface 1903 can implement the solution implemented by the transceiver 1803 in FIG. 18, the processor 1902 can implement the solution implemented by the processor 1802 in FIG. 18, and the memory 1904 can implement the memory 1804 in FIG. 18.
  • the implemented solution will not be described in detail here.
  • FIG. 20 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • the communication device 2001 can be a first communication device, a second communication device or a third communication device, or It may be a chip or a circuit, such as a chip or a circuit that may be provided in the first communication device, the second communication device or the third communication device.
  • the communication device 2001 includes a processing unit 2002 and a communication unit 2003 . Further, the communication device 2001 may include the storage unit 2004, or may not include the storage unit 2004. The dotted line in the storage unit 2004 in the figure further indicates that the storage is optional.
  • the communication unit 2003 is used to input and/or output information; the processing unit 2002 is used to execute computer programs or instructions, so that the communication device 2001 implements the above-mentioned FIG. 4, FIG. 8, FIG. 11, FIG. 12, FIG. 13, The method on the side of the first communication device in any of the related solutions in Figure 14 or Figure 16, or make the communication device 2001 implement any of the above Figure 4, Figure 8, Figure 11, Figure 12, Figure 13, Figure 14 or Figure 16 A method on the side of the second communication device in a related solution, or enabling the communication device 2001 to implement the first step in any of the related solutions in Figure 4, Figure 8, Figure 11, Figure 12, Figure 13, Figure 14 or Figure 16 Three communication device side methods.
  • the communication unit 2003 can implement the solution implemented by the transceiver 1803 in FIG. 18, the processing unit 2002 can implement the solution implemented by the processor 1802 in FIG. 18, and the storage unit 2004 can implement the memory in FIG. 18.
  • the solution implemented in 1804 will not be repeated here.
  • the present application also provides a computer program product, the computer program product including: computer program code or instruction, when the computer program code or instruction is run on the computer, the computer is made to execute the , the method of any one of the embodiments shown in any one of FIG. 8 , FIG. 11 , FIG. 12 , FIG. 13 , FIG. 14 or FIG. 16 .
  • the present application also provides a computer-readable storage medium, the computer-readable medium stores program codes, and when the program codes are run on a computer, the computer is made to execute the steps shown in Figures 4 and 8. , the method of any one of the embodiments shown in any one of FIG. 11 , FIG. 12 , FIG. 13 , FIG. 14 or FIG. 16 .
  • the present application further provides a chip system, where the chip system may include a processor.
  • the processor is coupled with the memory, and may be used to execute the method of any one of the embodiments shown in any one of FIG. 4 , FIG. 8 , FIG. 11 , FIG. 12 , FIG. 13 , FIG. 14 or any one of FIG. 16 .
  • the chip system further includes a memory. Memory, used to store computer programs (also called code, or instructions).
  • a processor configured to call and run the computer program from the memory, so that the device installed with the system-on-a-chip executes any of the programs shown in FIG. 4, FIG. 8, FIG. 11, FIG. 12, FIG. 13, FIG. 14 or FIG. The method of any one of the embodiments is illustrated.
  • the present application further provides a system, which includes the foregoing one or more first communication devices and one or more second communication devices, and may further include a third communication device.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disc, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disc, SSD)
  • the second communication device in the above-mentioned various device embodiments corresponds to the second communication device or the first communication device in the first communication device and method embodiments, and corresponding steps are performed by corresponding modules or units, such as communication units (transceivers)
  • the steps of receiving or sending in the method embodiments are executed, and other steps except sending and receiving may be executed by a processing unit (processor).
  • processor processing unit
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more packets of data (e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems). Communicate through local and/or remote processes.
  • packets of data e.g., data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet via a signal interacting with other systems.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit. If the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种参考信号的传输方法、装置、存储介质及芯片,涉及通信技术领域,用于提供一种基于相位信息确定角度(比如AOD等)的方案。本申请中,第一通信装置获取第一参考信号的第一配置信息,第一配置信息包括用于确定相位信息的多个时域资源的指示信息。第一通信装置接收第一参考信号,确定该多个时域资源接收到的信号对应的多个第一相位信息,基于该多个第一相位信息得到:第二相位信息和/或第一离开角信息。由于第一通信装置在多个时域资源确定出多个相位信息,继而可以根据该多个相位信息确定参考信号的离开角,从而可以提供一种基于相位信息确定角度(比如AOD)的方案。

Description

一种参考信号的传输方法、装置、存储介质及芯片
相关申请的交叉引用
本申请要求在2021年12月30日提交中国专利局、申请号为202111646420.3、申请名称为“一种参考信号的传输方法、装置、存储介质及芯片”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种参考信号的传输方法、装置、存储介质及芯片。
背景技术
随着通讯技术快速发展,高精度定位也逐步被确定为第三代合作伙伴计划(3rd generation partnership project,3GPP)第五代移动通信系统(5th generation mobile networks or 5th generation wireless systems,5G)中重要研究项目。新广播(New Radio,NR)定位的场景主要包括:增强移动宽带(enhanced mobile broadband,eMBB)室外、eMBB室内、高可靠低时延(ultra-reliable and low latency communications,URLLC)和海量机器类通信(massive machine type of communication,mMTC)/物联网(internet of things,IOT)。还要求具有高安全性、可扩展性、高可用性以及高速应用中精度保证等特点。
目前可以基于离开角(Angle of departure,AOD)或到达角(angle of arrival,AOA)等用于定位的角度对终端设备进行定位。目前一种定位方法中,终端设备可以对接入点(access point,AP)发送的定位参考信号(positioning reference signal,PRS)进行检测,得到多个波束对应的参考信号接收功率(reference signal receiving power,RSRP)。基于该RSRP的值以及基站发送的波束的信息计算出AP的无线信号离开AP的离开角(Angle of departure,AOD),AOD可被用于定位终端设备。
然而随着定位需求和应用场景越来越广泛,提供更多的确定角度(比如AOD等)的方案成为亟需解决的问题。
发明内容
本申请提供一种参考信号的传输方法、装置、存储介质及芯片,用于基于参考信号的传输方案确定相位信息,进而基于相位信息确定角度(比如AOD等)的方案。
第一方面,本申请实施例提供一种参考信号的传输方法,该方法包括:第一通信装置获取第一参考信号的第一配置信息,第一配置信息包括用于确定相位信息的多个时域资源的指示信息。第一通信装置接收第一参考信号,确定该多个时域资源对应的多个第一相位信息。多个第一相位信息中的一个第一相位信息根据多个时域资源中的一个时域资源接收到的信号确定。第一通信装置发送第二相位信息和/或第一离开角信息。第二相位信息根据多个第一相位信息确定。第一离开角信息根据多个第一相位信息确定。
由于第一通信装置根据第一配置信息确定出需确定相位信息的多个时域资源,并在多个时域资源确定出多个相位信息,继而可以根据该多个相位信息确定参考信号的离开角。可以看出,本申请可以提供一种基于相位信息确定角度(比如AOD)的方案,从而当需确 定用于定位的角度的情况下,可以多一种可供选择的方案。
在一种可能的实施方式中,多个时域资源包括第一时域资源和第二时域资源。第一通信装置在第一时域资源接收第一参考信号的第一部分,根据第一参考信号的第一部分确定多个第一相位信息中的一个第一相位信息。第一通信装置在第二时域资源接收到第一参考信号的第二部分,根据第一参考信号的第二部分确定多个第一相位信息中的又一个第一相位信息。
由于第一通信装置通过一个参考信号即可确定出多个第一相位信息,因而可以减少用于计算离开角的参考信号的数量,从而可以节约网络资源,减少时延。
在一种可能的实施方式中,该用于确定相位信息的多个时域资源的指示信息包括以下内容中的至少一项:第一参考信号对应的S1个时域资源中两个时域资源之间间隔的时域资源单元数量的信息。S1为大于1的整数。S1个时域资源为第一参考信号发送端发送第一参考信号所使用的时域资源。
如此,第一通信装置可以根据发送端发送第一参考信号的规律确定自身确定第一相位信息的规律,该两个规律可以匹配。进而,当第二通信装置在不连续的时域资源上间断的发送第一参考信号的情况下,由于第一通信装置知道第二通信装置发送第一参考信号的规律,因此第一通信装置可以依据相匹配的规律确定出各个质量较优的信号,进而第一通信装置可以依据确定出的质量较优的信号确定第一相位信息,从而可以提高第一相位信息的精度。
在一种可能的实施方式中,该用于确定相位信息的多个时域资源的指示信息包括:第一参考信号对应的S1个时域资源的信息。如此,第一通信装置可以根据发送端发送第一参考信号的S1个时域资源确定出自身确定第一相位信息的多个时域资源。
在一种可能的实施方式中,S1个时域资源中相邻的两个时域资源之间间隔至少一个时域资源单元。如此,当S1个时域资源中相邻的两个时域资源对应的两个端口不同的情况下,第二通信装置可以有时间在S1个时域资源中的相邻的时域资源之间执行端口切换动作。
在一种可能的实施方式中,S1个时域资源中的相邻时域资源之间间隔Q1个时域资源单元,Q1为正整数。如此可以使该方案较有规律,而且还可以节省用于指示S1个时域资源中时域资源之间的间隔的信息所占用的比特位数量。
在一种可能的实施方式中,一个时域资源单元为一个或多个时域符号。从而可以使第一通信装置在符号粒度上得到多个第一相位信息,继而可以基于至少一个相位信息确定出离开角,从而可以减少了基于行为信息计算离开角的方案的时延。
在一种可能的实施方式中,第一配置信息还包括:第一参考信号对应的S1个时域资源与多个端口的对应关系,S1为大于1的整数。其中,多个端口为第一参考信号发送端在S1个时域资源上发送第一参考信号所使用的端口。如此,第一通信装置可以确定出多个第一相位信息与第一端口之间的对应关系,进而第一通信装置还可以上报第一相位信息和第一端口之间的对应关系,从而使第二通信装置根据该对应关系确定第一相位信息对应的端口之间的间距。
在一种可能的实施方式中,S1个时域资源中相邻的两个时域资源对应的两个端口不同。如此,第一通信装置可以基于S1个时域资源中相邻的两个时域资源发送的信号得到两个有差异的第一相位信息。有差异的两个第一相位信息可以得到一个相位差,当每相邻两个 时域资源对应的端口均不同的情况下,可以得到最多的相位差,进而可以提高离开角的精度。
在一种可能的实施方式中,多个端口中的一个端口对应S1个时域资源中的一个时域资源。如此,第二通信装置在通过S1个时域资源发送第一参考信号的过程中,一个端口使用一次,如此,第二通信装置可以尽可能通过较多的不同的端口发送第一参考信号,继而第一通信装置可以得到较多的不同的端口对应的第一相位信息。较多的不同的端口对应的第一相位信息可以得到较多的相位差,可以看出,该方案可以增加相位差的数量,进而可以提高离开角的精度。
在一种可能的实施方式中,多个端口中的一个端口对应S1个时域资源中的多个时域资源。如此,在第二通信装置通过S1个时域资源发送第一参考信号的过程中,一个端口可以使用多次,这种情况下,一方面可以设置一个端口作为参考端口,从而为其他端口提供校准。另一方面,端口复用多次,可以节省该方案所需的端口的数量,从而可以降低对第二通信装置的硬件的要求,从而可以降低第二通信装置的成本。
在一种可能的实施方式中,第一配置信息还包括:第一参考信号对应的频域资源的信息,以使第一通信装置根据第一配置信息在相应的频域资源上接收第一参考信号。
在一种可能的实施方式中,第二相位信息包括以下内容中的至少一项:多个第一相位信息中的至少两个第一相位信息;多个第一相位信息对应的至少一个相位差信息;或,至少一个相位差信息的均值信息。如此,可以提高方案的灵活性。
在一种可能的实施方式中,第二相位信息包括至少两个第一相位信息的情况下:至少两个第一相位信息在第二相位信息中的排序,与至少两个第一相位信息对应的时域资源的排序匹配。如此,可以使第二通信装置根据发送第一参考信号所依次使用的端口确定出第二相位信息中包括的各个第一相位信息对应的端口,从而使第二通信装置确定出多个第一相位信息对应的相位差信息对应的端口之间的间距,依据该间距计算出离开角。
在一种可能的实施方式中,第二相位信息包括至少两个第一相位信息的情况下:至少两个第一相位信息在第二相位信息中的排序,与至少两个第一相位信息对应的端口的标识的排序匹配。如此,可以使第二通信装置根据预设的端口的标识的排序确定出第二相位信息中包括的各个第一相位信息对应的端口,从而使第二通信装置确定出多个第一相位信息对应的相位差信息对应的端口之间的间距,依据该间距计算出离开角。
在一种可能的实施方式中,在第二相位信息包括多个第一相位信息对应的至少两个相位差信息的情况下:至少两个相位差信息在第二相位信息中的排序,与相位差信息对应的时域资源的排序匹配。如此,可以使第二通信装置根据发送第一参考信号所依次使用的端口确定出第二相位信息中包括的各个相位差信息对应的端口,从而使第二通信装置确定出各个相位差信息对应的端口之间的间距,依据该间距计算出离开角。
在一种可能的实施方式中,在第二相位信息包括多个第一相位信息对应的至少两个相位差信息的情况下:至少两个相位差信息在第二相位信息中的排序,与相位差信息对应的端口的标识的排序匹配。如此,可以使第二通信装置根据预设的端口的标识的排序确定出第二相位信息中包括的各个相位差信息对应的端口,从而使第二通信装置确定出各个相位差信息对应的端口之间的间距,依据该间距计算出离开角。
在一种可能的实施方式中,第一通信装置确定用于确定相位信息的多个时域资源接收的第一参考信号对应的多个第一相位信息之后,还包括:第一通信装置发送第二相位信息 的可靠性信息。如此,在依据该第二相位信息对应的离开角确定第一通信装置的位置信息时,可以结合该第二相位信息的可靠性信息进行计算,从而可以提高对第一通信装置定位的准确度。
在一种可能的实施方式中,第二相位信息的可靠性信息包括多个第一相位信息对应的标准差信息和/或方差信息。
在一种可能的实施方式中,第一通信装置确定用于确定相位信息的多个时域资源接收的第一参考信号对应的多个第一相位信息之后,还包括:第一通信装置发送第一指示信息。其中,第一指示信息指示第二相位信息中的参数与用于发送第一参考信号的端口的标识的对应关系。如此,可以使第二通信装置根据第一指示信息确定出第二相位信息中的参数对应的端口,从而使第二通信装置确定出第二相位信息中的各个参数对应的端口之间的间距,依据该间距计算出离开角。
在一种可能的实施方式中,第一离开角信息包括:多个第一相位信息对应的至少一个离开角的信息,至少一个离开角的信息是根据多个第一相位信息和发送第一参考信号的端口间的间距确定的;多个第一相位信息对应的至少一个第一离开角均值信息,至少一个第一离开角均值信息是根据至少一个离开角的信息中的至少两项确定的;或,多个第一相位信息对应的至少一个第二离开角均值信息,至少一个第二离开角均值信息是根据多个第一相位信息对应的相位差信息的均值信息,以及端口间距均值信息确定的,端口间距均值是根据发送第一参考信号的多个端口间的间距的均值确定的。
如此,可以提高方案的灵活性。另一方面,当第一通信装置上报第一离开角的信息的情况下,定位服务器可以直接根据第一通信装置上报的第一离开角的信息对第一通信装置进行定位,从而可以节省第一通信装置通过定位服务器向第二通信装置上报第二相位信息的步骤,还可以节省第二通信装置向定位服务器发送确定出的离开角的步骤,从而可以减少信令交互,节省网络资源。
在一种可能的实施方式中,第一离开角信息包括多个第一相位信息对应的多个离开角的信息的情况下:多个离开角的信息在第一离开角信息中的排序,与多个第一相位信息对应的时域资源的排序匹配;或,多个离开角的信息在第一离开角信息中的排序,与多个第一相位信息对应的端口的标识的排序匹配。如此,可以提高方案的灵活性。
在一种可能的实施方式中,第一通信装置确定用于确定相位信息的多个时域资源接收的第一参考信号对应的多个第一相位信息之后,还包括:第一通信装置发送第一离开角信息的可靠性信息。如此,在其他装置依据多个第一离开角的信息确定第一通信装置的位置信息时,可以结合该第一离开角信息的可靠性信息进行计算,从而可以提高对第一通信装置定位的准确度。
在一种可能的实施方式中,第一离开角信息的可靠性信息包括多个第一相位信息对应的多个离开角的信息的标准差信息和/或方差信息。
在一种可能的实施方式中,第一通信装置确定用于确定相位信息的多个时域资源接收的第一参考信号对应的多个第一相位信息之后,还包括:第一通信装置发送第二指示信息;其中,第二指示信息指示第一离开角信息中的参数与用于发送第一参考信号的端口的标识的对应关系。
在一种可能的实施方式中,多个第一相位信息与用于确定相位信息的多个时域资源一一对应;针对多个第一相位信息中的一个第一相位信息,第一相位信息根据在第一相位信 息对应的时域资源接收到的信号到达第一通信装置的常规径和/或额外径确定的。如此,可以提高方案的灵活性。
第二方面,本申请实施例提供一种参考信号的传输方法,该方法包括:第二通信装置生成第一参考信号;第二通信装置在多个时域资源向第一通信装置发送第一参考信号;多个时域资源中的两个时域资源对应的两个用于发送第一参考信号的端口不同。
由于第二通信装置通过多个端口在多个时域资源发送第一参考信号,因此第一通信装置可以在多个时域资源确定出多个相位信息,继而可以根据该多个相位信息确定参考信号的离开角。可以看出,本申请可以提供一种基于相位信息确定角度(比如AOD)的方案,从而当需确定用于定位的角度的情况下,可以多一种可供选择的方案。
在一种可能的实施方式中,多个时域资源包括第三时域资源和第四时域资源;多个端口包括第一端口和第二端口。第二通信装置在多个时域资源向第一通信装置发送第一参考信号,包括:第二通信装置通过第一端口在第三时域资源发送第一参考信号的第一部分;第二通信装置通过第二端口在第四时域资源发送第一参考信号的第二部分。
由于第一参考信号的第一部分和第二部分是通过第二通信装置的不同的端口发送的,因此第一通信装置根据不同端口发送的信号测量得到多个相位信息后,可以结合多个相位信息的相位差信息以及端口之间的间距计算出离开角。另一方面,由于第二通信装置通过不同的端口发送同一个参考信号的不同部分,第一通信装置通过一个参考信号即可确定出多个第一相位信息,因而可以减少用于计算离开角的参考信号的数量,从而可以节约网络资源,减少时延。
在一种可能的实施方式中,第二通信装置通过第一端口在第三时域资源发送第一参考信号的第一部分,包括:第二通信装置通过第一射频通道连接的第一端口在第三时域资源发送第一参考信号的第一部分。第二通信装置通过第二端口在第四时域资源发送第一参考信号的第二部分,包括:第二通信装置通过第一射频通道连接的第二端口在第四时域资源发送第一参考信号的第二部分。
从而针对仅包括一个射频通道,且该射频通道包括至少两个端口的第二通信装置,也可以基于第二通信装置发送的第一参考信号对应的相位信息进行定位,从而降低了基于相位信息进行定位的方案对第二通信装置的硬件要求,从而可以降低第二通信装置的成本。
在一种可能的实施方式中,第一参考信号的第一部分用于确定多个第一相位信息中的一个第一相位信息,第一参考信号的第二部分用于确定多个第一相位信息中的又一个第一相位信息。
由于第一通信装置通过一个参考信号即可确定出多个第一相位信息,因而可以减少用于计算离开角的参考信号的数量,从而可以节约网络资源,减少时延。
在一种可能的实施方式中,第二通信装置在多个时域资源向第一通信装置发送第一参考信号之前,还包括:第二通信装置确定第一参考信号的第二配置信息;第二配置信息包括第四指示信息,第四指示信息指示S1个时域资源;S1为大于1的整数;S1个时域资源为用于发送第一参考信号的多个时域资源。
在一种可能的实施方式中,第二配置信息还包括以下内容中的至少一项:S1个时域资源中两个时域资源之间间隔的时域资源单元数量的信息;和/或,S1个时域资源的信息。如此,可以提高方案的灵活性。
在一种可能的实施方式中,S1个时域资源中相邻的两个时域资源之间间隔至少一个时域资源单元。有益效果参见前述内容,在此不再赘述。
在一种可能的实施方式中,S1个时域资源中的相邻时域资源之间间隔Q1个时域资源单元,Q1为正整数。有益效果参见前述内容,在此不再赘述。
在一种可能的实施方式中,一个时域资源单元为一个或多个时域符号。有益效果参见前述内容,在此不再赘述。
在一种可能的实施方式中,第二配置信息还包括:S1个时域资源与多个端口的对应关系,S1为大于1的整数。第二通信装置根据第二配置信息,在S1个时域资源向第一通信装置发送第一参考信号,包括:针对S1个时域资源中的时域资源,第二通信装置通过时域资源对应的端口向第一通信装置发送第一参考信号。
在一种可能的实施方式中,S1个时域资源中相邻的两个时域资源对应的两个端口不同。有益效果参见前述内容,在此不再赘述。
在一种可能的实施方式中,多个端口中的一个端口对应S1个时域资源中的一个或多个时域资源。有益效果参见前述内容,在此不再赘述。
在一种可能的实施方式中,第二配置信息还包括:第一参考信号对应的频域资源的信息。有益效果参见前述内容,在此不再赘述。
第三方面,本申请实施例提供一种参考信号的传输方法,该方法包括:第二通信装置接收第二相位信息,第二通信装置根据第二相位信息,确定第一参考信号的离开角。第二相位信息根据多个第一相位信息确定,多个第一相位信息是根据第一参考信号确定的。
本申请提供又一种可能的实施方式中,该实施方式中第二通信装置可以基于第一参考信号的多个第一相位信息确定出第一参考信号的离开角,从而当需确定用于定位的角度的情况下,可以多一种可供选择的方案。
在一种可能的实施方式中,第二相位信息包括以下内容中的至少一项:多个第一相位信息中的至少两个第一相位信息;多个第一相位信息对应的至少一个相位差信息;或,至少一个相位差信息的均值信息。有益效果参见前述内容,在此不再赘述。
在一种可能的实施方式中,第二相位信息包括至少两个第一相位信息的情况下:至少两个第一相位信息在第二相位信息中的排序,与至少两个第一相位信息对应的时域资源的排序匹配;或,至少两个第一相位信息在第二相位信息中的排序,与至少两个第一相位信息对应的端口的标识的排序匹配。有益效果参见前述内容,在此不再赘述。
在一种可能的实施方式中,在第二相位信息包括多个第一相位信息对应的至少两个相位差信息的情况下:至少两个相位差信息在第二相位信息中的排序,与相位差信息对应的时域资源的排序匹配;或,至少两个相位差信息在第二相位信息中的排序,与相位差信息对应的端口的标识的排序匹配。有益效果参见前述内容,在此不再赘述。
在一种可能的实施方式中,第二通信装置在多个时域资源向第一通信装置发送第一参考信号之后,还包括:第二通信装置接收第二相位信息的可靠性信息。有益效果参见前述内容,在此不再赘述。
在一种可能的实施方式中,第二相位信息的可靠性信息包括多个第一相位信息对应的标准差信息和/或方差信息。有益效果参见前述内容,在此不再赘述。
在一种可能的实施方式中,第二通信装置在多个时域资源向第一通信装置发送第一参 考信号之后,还包括:第二通信装置接收第一指示信息;其中,第一指示信息指示第二相位信息中的参数与用于发送第一参考信号的端口的标识的对应关系。
如此,第二通信装置可以根据第一指示信息确定出第二相位信息中的参数对应的端口,从而使第二通信装置确定出第二相位信息中的各个参数对应的端口之间的间距,依据该间距计算出离开角。
在一种可能的实施方式中,多个第一相位信息与用于发送第一参考信号的多个时域资源一一对应。针对多个第一相位信息中的一个第一相位信息,第一相位信息根据在第一相位信息对应的时域资源发送的信号到达第一通信装置的常规径和/或额外径确定的。有益效果参见前述内容,在此不再赘述。
第四方面,本申请实施例提供一种基于用于定位的角度进行定位的方法,该方法包括:定位服务器接收多个第一离开角信息,多个第一离开角信息中的一个第一离开角信息根据第一通信装置确定的多个第一相位信息确定,多个第一相位信息根据第一参考信号确定。定位服务器根据多个第一离开角信息,确定第一通信装置的位置信息。
由于第一通信装置根据第一参考信号确定出多个相位信息,继而可以根据该多个相位信息确定参考信号的离开角。可以看出,本申请可以提供一种基于相位信息确定角度(比如AOD),继而对第一通信装置进行定位的方案,从而当需确定第一通信装置的位置信息时,可以多一种可供选择的方案。
又一种可能的实施方式中,也可以由第二通信装置接收第一离开角信息,继而再由第二通信装置发送至定位服务器。
在一种可能的实施方式中,第一离开角信息包括:多个第一相位信息对应的至少一个离开角的信息,至少一个离开角的信息是根据多个第一相位信息和发送第一参考信号的端口间的间距确定的;多个第一相位信息对应的至少一个第一离开角均值信息,至少一个第一离开角均值信息是根据至少一个离开角的信息中的至少两项确定的;或,多个第一相位信息对应的至少一个第二离开角均值信息,至少一个第二离开角均值信息是根据多个第一相位信息对应的相位差信息的均值信息,以及端口间距均值信息确定的,端口间距均值是根据发送第一参考信号的多个端口间的间距的均值确定的。
有益效果参见前述内容,在此不再赘述。
在一种可能的实施方式中,第一离开角信息包括多个第一相位信息对应的多个离开角的信息的情况下:多个离开角的信息在第一离开角信息中的排序,与多个第一相位信息对应的时域资源的排序匹配;或,多个离开角的信息在第一离开角信息中的排序,与多个第一相位信息对应的端口的标识的排序匹配。有益效果参见前述内容,在此不再赘述。
在一种可能的实施方式中,定位服务器根据多个第一离开角信息,确定第一通信装置的位置信息之前,还包括:定位服务器接收第一离开角信息的可靠性信息。如此,定位服务器依据多个第一离开角的信息确定第一通信装置的位置信息时,可以结合该第一离开角信息的可靠性信息进行计算,从而可以提高对第一通信装置定位的准确度。
在一种可能的实施方式中,第一离开角信息的可靠性信息包括多个第一相位信息对应的多个离开角的信息的标准差信息和/或方差信息。
在一种可能的实施方式中,定位服务器根据多个第一离开角信息,确定第一通信装置的位置信息之前,还包括:定位服务器接收第二指示信息。其中,第二指示信息指示第一 离开角信息中的参数与用于发送第一参考信号的端口的标识的对应关系。
第五方面,本申请实施例提供又一种参考信号的传输方法,该方法包括:第二通信装置接收第二参考信号。第二通信装置确定多个时域资源接收的第二参考信号对应的多个第三相位信息。第二通信装置根据多个第三相位信息确定第二参考信号的到达角。
由于第二通信装置在多个时域资源确定出第二参考信号对应的多个第三相位信息,继而可以根据该多个第三相位信息确定参考信号的到达角。可以看出,本申请可以提供一种基于相位信息确定角度(比如AOA)的方案,从而当需确定用于定位的角度的情况下,可以多一种可供选择的方案。
在一种可能地实施方式中,第二通信装置确定多个时域资源接收的第二参考信号对应的多个第三相位信息,包括:第二通信装置在第五时域资源接收到第二参考信号的第一部分,根据第二参考信号的第一部分确定多个第三相位信息中的一个第三相位信息。第二通信装置在第六时域资源接收到第二参考信号的第二部分,根据第二参考信号的第二部分确定多个第三相位信息中的又一个第三相位信息。
由于第二通信装置通过一个参考信号即可确定出多个第三相位信息,因而可以减少用于计算到达角的参考信号的数量,从而可以节约网络资源,减少时延。
在一种可能地实施方式中,第二通信装置接收第二参考信号,包括:第二通信装置通过第三端口在第五时域资源接收第二参考信号的第一部分。第二通信装置通过第四端口在第六时域资源接收第二参考信号的第二部分。
由于第二参考信号的第一部分和第二部分是通过第二通信装置的不同的端口接收的,因此第二通信装置根据不同端口接收的信号测量得到多个相位信息后,可以结合多个相位信息的相位差信息以及端口之间的间距计算出到达角。另一方面,由于第二通信装置通过不同的端口接收同一个参考信号的不同部分,第二通信装置通过一个参考信号即可确定出多个第三相位信息,因而可以减少用于计算到达角的参考信号的数量,从而可以节约网络资源,减少时延。
在一种可能地实施方式中,第二通信装置通过第三端口在第五时域资源接收第二参考信号的第一部分,包括:第二通信装置通过第二射频通道连接的第三端口在第五时域资源接收第二参考信号的第一部分。第二通信装置通过第四端口在第六时域资源接收第二参考信号的第二部分,包括:第二通信装置通过第二射频通道连接的第四端口在第六时域资源接收第二参考信号的第二部分。
从而针对仅包括一个射频通道,且该射频通道包括至少两个端口的第二通信装置,也可以基于第一通信装置发送的第二参考信号对应的相位信息进行定位,从而降低了基于相位信息进行定位的方案对第二通信装置的硬件要求,从而可以降低第二通信装置的成本。
在一种可能地实施方式中,第二通信装置接收第二参考信号之前,还包括:第二通信装置获取第二参考信号的第四配置信息,第四配置信息包括用于确定相位信息的多个时域资源的指示信息。
由于第二通信装置可以根据第四配置信息执行第二参考信号的接收,因此可以根据应用场景更加合理的为第二通信装置设置第四配置信息,以使第二通信装置侧执行的方案更加合理。另一方面,可以通过灵活的设置第四配置信息的方式提高方案的灵活性。
在一种可能地实施方式中,用于确定相位信息的多个时域资源的指示信息包括:用于 确定相位信息的多个时域资源中两个时域资源之间间隔的时域资源单元数量的信息。如此,第二通信装置可以根据两个时域资源之间间隔的时域资源单元数量的信息确定出用于确定相位信息的多个时域资源,并且根据该多个时域资源接收到的信号确定相位信息,且在多个时域资源间隔的位置可以执行端口的切换。
在一种可能地实施方式中,用于确定相位信息的多个时域资源的指示信息包括用于确定相位信息的多个时域资源的信息。
在一种可能地实施方式中,用于确定相位信息的多个时域资源之间间隔至少一个时域资源单元。如此,当多个时域资源中相邻的两个时域资源对应的两个端口不同的情况下,第二通信装置可以有时间在多个时域资源中的相邻的时域资源之间执行端口切换动作。
在一种可能地实施方式中,用于确定相位信息的多个时域资源之间间隔Q2个时域资源单元,Q2为正整数。如此可以使该方案较有规律,而且还可以节省用于指示该多个时域资源中时域资源之间的间隔的信息所占用的比特位数量。
在一种可能地实施方式中,一个时域资源单元为一个或多个时域符号。从而可以使第二通信装置在符号粒度上得到多个第一相位信息,继而可以基于至少一个相位信息确定出离开角,从而可以减少了基于行为信息计算离开角的方案的时延。
在一种可能地实施方式中,第四配置信息还包括:用于确定相位信息的多个时域资源与多个端口的对应关系。第二通信装置接收第二参考信号,包括:针对用于确定相位信息的多个时域资源中的时域资源,第二通信装置通过时域资源对应的端口接收第二参考信号。如此,第二通信装置可以根据第四配置信息执行端口的切换,由于第四配置信息可以灵活配置,因此可以提高方案的灵活性。
在一种可能地实施方式中,用于确定相位信息的多个时域资源中相邻的两个时域资源对应的两个端口不同。如此,第二通信装置可以基于该多个时域资源中相邻的两个时域资源接收的信号得到两个有差异的第三相位信息。有差异的两个第三相位信息可以得到一个相位差,当每相邻两个时域资源对应的端口均不同的情况下,可以得到最多的相位差,进而可以提高到达角的精度。
在一种可能地实施方式中,多个端口中的一个端口对应用于确定相位信息的多个时域资源中的一个或多个时域资源。如此,第二通信装置在通过该多个时域资源接收第二参考信号的过程中,一个端口使用一次,如此,第二通信装置可以尽可能通过较多的不同的端口接收第二参考信号,继而第二通信装置可以得到较多的不同的端口对应的第三相位信息。较多的不同的端口对应的第三相位信息可以得到较多的相位差,可以看出,该方案可以增加相位差的数量,进而可以提高到达角的精度。
在一种可能地实施方式中,第四配置信息还包括:第二参考信号对应的频域资源的信息。
在一种可能地实施方式中,多个第三相位信息与用于确定相位信息的多个时域资源一一对应。针对多个第三相位信息中的第三相位信息,第三相位信息根据在第三相位信息对应的时域资源接收到的信号到达第二通信装置的常规径和/或额外径确定的。如此,可以提高方案的灵活性。
第六方面,提供了一种通信装置,该通信装置可以为上述第一通信装置、第二通信装置或第三通信装置,该通信装置可以包括通信单元和处理单元,以执行上述第一方面至第 五方面任一种方法中的任一种实施方式。通信单元用于执行与发送和接收相关的功能。可选地,通信单元包括接收单元和发送单元。在一种设计中,通信装置为通信芯片,处理单元可以时一个或多个处理器或处理器核心,通信单元可以为通信芯片的输入输出电路或者端口。
在另一种设计中,通信单元可以为发射器和接收器,或者通信单元为发射机和接收机。
可选的,通信装置还包括可用于执行上述第一方面至第五方面任一种方法中的任一种实施方式的各个模块。
第七方面,提供了一种通信装置,该通信装置可以为上述第一通信装置、第二通信装置或第三通信装置,该通信装置可以包括处理器和存储器。可选的,还包括收发器,该存储器用于存储计算机程序或指令,该处理器用于从存储器中调用并运行该计算机程序或指令,当处理器执行存储器中的计算机程序或指令时,使得该通信装置执行上述第一方面至第五方面任一种方法中的任一种实施方式。
可选的,处理器为一个或多个,存储器为一个或多个。
可选的,存储器可以与处理器集成在一起,或者存储器与处理器分离设置。
可选的,收发器中可以包括,发射机(发射器)和接收机(接收器)。
第八方面,提供了一种通信装置,该通信装置可以为上述第一通信装置、第二通信装置或第三通信装置,该通信装置可以包括处理器。该处理器与存储器耦合,可用于执行第一方面至第五方面任一方面,以及第一方面至第五方面中任一种可能实现方式中的方法。可选地,该通信装置还包括存储器。可选地,该通信装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该通信装置为无线通信设备时,通信接口可以是收发器,或,输入/输出接口。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在又一种实现方式中,当该通信装置为芯片或芯片系统时,通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理器也可以体现为处理电路或逻辑电路。
第九方面,提供了一种系统,系统包括上述第一通信装置和第二通信装置,还可以包括上述第三通信装置。
第十方面,提供了一种计算机程序产品,计算机程序产品包括:计算机程序(也可以称为代码,或指令),当计算机程序被运行时,使得计算机执行上述第一方面中任一种可能实现方式中的方法,或者使得计算机执行上述第一方面至第五方面任一种实现方式中的方法。
第十一方面,提供了一种计算机可读存储介质,计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面中任一种可能实现方式中的方法,或者使得计算机执行上述第一方面至第五方面任一种实现方式中 的方法。
第十二方面,提供了一种芯片系统,该芯片系统可以包括处理器。该处理器与存储器耦合,可用于执行第一方面至第五方面中任一方面,以及第一方面至第五方面中任一方面中任一种可能实现方式中的方法。可选地,该芯片系统还包括存储器。存储器,用于存储计算机程序(也可以称为代码,或指令)。处理器,用于从存储器调用并运行计算机程序,使得安装有芯片系统的设备执行第一方面至第五方面中任一方面,以及第一方面至第五方面中任一方面中任一种可能实现方式中的方法。
第十三方面,提供了一种通信装置,该通信装置可以为上述第一通信装置、第二通信装置或第三通信装置,该通信装置可以包括:接口电路和处理电路。接口电路可以包括输入电路和输出电路。处理电路用于通过输入电路接收信号,并通过输出电路发射信号,使得第一方面至第五方面任一方面,以及第一方面至第五方面中任一种可能实现方式中的方法被实现。
在具体实现过程中,上述处理装置可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请实施例对处理器及各种电路的具体实现方式不做限定。
在一种实现方式中,当通信装置是无线通信设备,其中,无线通信设备可以是诸如智能手机这样的终端,也可以是诸如基站这样的无线接入网设备。接口电路可以为无线通信设备中的射频处理芯片,处理电路可以为无线通信设备中的基带处理芯片。
在又一种实现方式中,通信装置可以是无线通信设备中的部分器件,如系统芯片或通信芯片等集成电路产品。接口电路可以为该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理电路可以为该芯片上的逻辑电路。
附图说明
图1a为本申请实施例适用的一种可能的网络架构示意图;
图1b为本申请实施例适用的又一种可能的网络架构示意图;
图1c为本申请实施例适用的一种可能的网络架构示意图;
图2为本申请实施例提供的一种可能的无线通信装置的可能的结构示意图;
图3为通信装置中部署的两个端口(端口a和端口b)之间的间距的示意图;
图4为本申请实施例提供一种可能的确定AOD的方法流程示意图;
图5a为本申请实施例提供一种可能的通信装置的结构示意图;
图5b为在图5a所示的通信装置中添加开关后的通信装置的结构示意图;
图6为图5b中第一射频通道43通过开关45连接端口阵列44中的端口的示意图;
图7a为本申请实施例提供一种可能的第一参考信号对应的S1个时域资源的图案示意图;
图7b为本申请实施例提供又一种可能的第一参考信号对应的S1个时域资源的图案示 意图;
图7c为本申请实施例提供一种可能的S1个时域资源与端口的对应关系的示例;
图7d为本申请实施例提供又一种可能的S1个时域资源与端口的对应关系的示例;
图8为本申请实施例提供的又一种可能的确定AOD的方法流程示意图;
图9为本申请实施例提供的一种可能的根据相位差信息确定第一参考信号的离开角的示意图;
图10为本申请实施例提供的一种可能的基于AOD进行定位方案的示意图;
图11为本申请实施例提供又一种可能的确定AOD的方法流程示意图;
图12为本申请实施例提供又一种可能的确定AOD的方法流程示意图;
图13为本申请实施例提供又一种可能的确定AOD的方法流程示意图;
图14为本申请实施例提供一种可能的确定AOA的方法流程示意图;
图15为图5b中第二射频通道53通过开关55连接端口阵列54中的端口的示意图;
图16为本申请实施例提供又一种可能的确定AOA的方法流程示意图;
图17为本申请实施例提供一种可能的根据相位差信息确定第二参考信号的到达角的示意图;
图18为本申请实施例提供的另一种通信装置的结构示意图;
图19为本申请实施例提供的另一种通信装置的结构示意图;
图20为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施提供的参考信号的传输方法可以应用于多种行业和业务中,以便确定用于定位的角度。用于定位的角度可以为AOD,也可以为AOA。用于定位的角度可以结合其他参数对人和对物进行定位,以获取人员和物资的位置信息,进而可以基于位置信息开展进一步的应用开发。
图1a和图1b示例性示出了本申请实施例适用的两种可能的系统架构示意图,如图1a所示,一种可能的实施方式中,终端设备104发送参考信号,终端设备103对接收到的该参考信号进行测量得到测量结果,进一步终端设备104根据该测量结果确定终端设备104发送的信号的AOD。类似的,终端设备105发送参考信号,终端设备103对接收到的该参考信号进行测量得到测量结果,进一步终端设备105根据该测量结果确定终端设备105发送的信号的AOD。至少两个其他终端设备对应的AOD可以用于实现对终端设备103的定位。
本申请实施例中当两个终端设备之间需要进行通信时,可以基于sidelink直连链路进行通信,sidelink是两个终端设备之间通过PC5接口进行数据通信的链路。本申请实施例中的sidelink还可以称为直连链路,或者也可以称为侧行链路。当基于sidelink对终端设备进行定位时,该定位方案也可以称为sidelink定位。
又一种可能的实施方式中,终端设备103发送参考信号,终端设备104对接收到的该参考信号进行测量得到测量结果,进一步终端设备104根据该测量结果确定终端设备103对应的AOA。终端设备104可得到终端设备103的相对方向。类似的,终端设备105根据终端设备103发送的参考信号确定终端设备105对应的AOA。至少两个已知位置的其他终 端设备对应的AOA可以用于实现对终端设备103的定位。
通过图1a所示的系统架构可以看出,本申请实施例中提供的用于定位的角度的确定方案可以适用于两个终端设备之间。本申请实施例提供的方案也可以适用于网络设备和终端设备之间,如图1b所示,一种可能的实施方式中,基站101发送参考信号,终端设备103对接收到的该参考信号进行测量得到测量结果,进一步基站101根据该测量结果确定基站101发送的信号的AOD。类似的,基站102发送参考信号,终端设备103对接收到的该参考信号进行测量得到测量结果,进一步基站102根据该测量结果确定基站102发送的信号的AOD。至少两个基站对应的AOD可以用于实现对终端设备103的定位。
又一种可能的实施方式中,终端设备103发送参考信号,基站101对接收到的该参考信号进行测量得到测量结果,进一步基站101根据该测量结果确定基站101对应的AOA。类似的,基站102根据终端设备103发送的参考信号确定基站102对应的AOA。至少两个基站对应的AOA可以用于实现对终端设备103的定位。
除了上述图1a和图1b所示的两种可能的应用场景之外,本申请实施例还可以适用于其他场景,再比如,通过至少两个终端设备对应的AOD或AOA实现对基站的定位等。
本申请实施例提供的技术方案主要适用于无线通信系统。该无线通信系统可以遵从第三代合作伙伴计划(third generation partnership project,3GPP)的无线通信标准。比如,本申请实施例提供的方案可以应用于第四代(4th generation,4G)通信系统,例如长期演进(long term evolution,LTE)通信系统,也可以应用于第五代(5th generation,5G)通信系统,例如5G新空口(new radio,NR)通信系统,或应用于未来的各种通信系统,例如第六代(6th generation,6G)通信系统。本申请实施例提供的技术方案也可以遵从其他无线通信标准,例如电气电子工程师学会(Institute of Electrical and Electronics Engineers,IEEE)的802系列(如802.11,802.15,或者802.20)的无线通信标准。本申请实施例提供的方法还可以应用于蓝牙系统、WiFi系统、LoRa系统或车联网系统中。本申请实施例提供的方法还可以应用于卫星通信系统其中,卫星通信系统可以与上述通信系统相融合。
为便于说明,本申请实施例以图1c所示的5G网络架构为例,示例性示出了本申请实施例适用的一种可能的网络架构示意图。本申请适用的一种可能的网络架构中可以包括终端设备、接入网设备(也称为下一代(next generation,NG)无线接入网(radio access network,RAN)设备)和核心网(core network)三部分。
其中,终端设备可以包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车辆与其他装置的通讯(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、 袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。终端设备还可以是平板电脑或带无线收发功能的电脑。终端设备还可以是虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程医疗中的无线终端、智能电网中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
接入网(access network,AN)设备(例如基站)可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备,例如,接入网设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5 th generation,5G)新无线(new radio,NR)系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
如图1c所示,图1c中以接入网包括gNB和Ng-eNB为例进行展示。Ng-eNB是LTE的基站,gNB是NR的基站。终端设备与服务基站可以通过Uu链路进行通信,比如可以通过LTE-Uu链路与Ng-eNB进行通信,可以通过NR-Uu链路与gNB进行通信。基站间可以通过Xn接口进行通信。
核心网内与定位相关的网元主要包括:接入和移动管理功能(access and mobility management function,AMF)网元、位置管理功能(location management function,LMF)网元等。还可以包括演进服务移动定位中心(evolutional server mobile location center,E-SMLC)网元、统一数据管理(unified data management,UDM)网元、应用功能(application function,AF)网元。
基站与AMF网元之间可以通过NG-C接口进行通信,AMF网元可以相当于gNB与LMF通信的路由器。
LMF网元可以实现对终端设备的位置估计,AMF与LMF间通过NLs接口进行通信。
E-SMLC网元主要负责定位业务的定位请求处理,并为定位业务选择合适的AMF网元。
服务定位协议(service location protocol,SLP)网元也可以与LMF网元通信,可以负责定位业务的定位请求处理。
本申请实施例适用的应用场景中还可以包括定位管理组件(location management component,LMC),LMC可以为LMF的部分功能组件,可以集成在NG-RAN测的gNB上。
本申请实施例中的移动性管理网元、位置管理网元、服务定位协议网元分别可以是图1c中的AMF、LMF、E-SMLC和SLP,也可以是未来通信如第六代(6th generation,6G)网络中具有上述AMF、LMF、E-SMLC和SLP的功能的网元,本申请对此不限定。为方便说明,本申请以移动性管理网元、位置管理网元、服务定位协议网元分别为上述AMF、 LMF、E-SMLC和SLP为例进行说明。
基于上述内容,图2为本申请实施例提供的一种无线通信装置的可能的结构示意图。该无线通信装置可以是本申请实施例中的终端设备,比如可以图1a、图1b或图1c中的终端设备。该无线通信装置还可以是本申请实施例中的网络设备。本申请实施例中的网络设备可以为前述图1b或图1c中的接入网设备,比如可以图1b或图1c中的基站。
一种可能的实施方式中,该无线通信装置可以包括处理电路和接口电路。接口电路可以包括输入电路和输出电路。处理电路用于通过输入电路接收信号,并通过输出电路发射信号,使得下述方法被实现。比如当该无线通信装置为终端设备,则处理电路可以通过控制接口电路执行下述终端设备侧可以执行的方法步骤。再比如当该无线通信装置为网络设备,则处理电路可以通过控制接口电路执行下述网络设备侧可以执行的方法步骤等。
在一种实现方式中,接口电路还可以为无线通信装置中的射频处理芯片,处理电路可以为无线通信装置中的基带处理芯片。
在又一种实现方式中,无线通信装置可以是无线通信设备中的部分器件,如系统芯片或通信芯片等集成电路产品。接口电路可以为该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理电路可以为该芯片上的逻辑电路。
在又一种实现方式中,本申请实施例中的处理电路还可以为处理器或处理器中的部分模块或单元,接口电路还可以为射频通道或射频通道中的部分器件。处理器用于控制射频通道,使得下述相关方法被实现。
如图2所示,该无线通信装置可包括多个组件,例如:应用子系统,内存(memory),大容量存储器(massive storage),基带子系统,射频集成电路(radio frequency integrated circuit,RFIC),射频前端(radio frequency front end,RFFE)器件,以及天线(antenna,ANT)。这些组件可以通过各种互联总线或其他电连接方式耦合。
图2中的应用子系统可以为设置于图2的处理器,或者为处理器中的一个模块。
图2中,ANT_1表示第一天线,ANT_N表示第N天线,N为大于1的正整数。Tx表示发送路径,Rx表示接收路径,不同的数字表示不同的路径。每条路径均可以表示一个信号处理通道。其中,FBRx表示反馈接收路径,PRx表示主接收路径,DRx表示分集接收路径。HB表示高频,LB表示低频,两者是指频率的相对高低。BB表示基带。应理解,图2中的标记和组件仅为示意目的,仅作为一种可能的实现方式,本申请实施例还包括其他的实现方式。例如,通信装置可以包括更多或更少的路径,包括更多或更少的组件。
其中,应用子系统可作为通信装置的主控制系统或主计算系统,用于运行主操作系统和应用程序,管理整个通信装置的软硬件资源,并可为用户提供用户操作界面。此外,应用子系统中也可包括与其他子系统(例如基带子系统)相关的驱动软件。应用子系统可包括一个或多个处理器。
图2中,射频集成电路(包括RFIC 1,以及一个或多个可选的RFIC 2)和射频前端器件可以共同组成射频子系统。根据信号的接收或发送路径的不同,射频子系统也可以分为射频接收通道(RF receive path)和射频发射通道(RF transmit path)。其中,射频接收通道可通过天线接收射频信号,对该射频信号进行处理(如放大、滤波和下变频)以得到基带信号,并传递给基带子系统。射频发送通道可接收来自基带子系统的基带信号,对基带信号进行处理(如上变频、放大和滤波)以得到射频信号,并最终通过天线将该射频信号 辐射到空间中。射频集成电路可以被称为射频处理芯片或射频芯片。
具体地,射频子系统可包括天线开关,天线调谐器,低噪声放大器(low noise amplifier,LNA),功率放大器(power amplifier,PA),混频器(mixer),本地振荡器(local oscillator,LO)、滤波器(filter)等电子器件,这些电子器件可以根据需要集成到一个或多个芯片中。射频集成电路可以被称为射频处理芯片或射频芯片。射频前端器件也可以是独立的芯片。射频芯片有时也被称为接收机(receiver)、发射机(transmitter)、收发机(transceiver)或收发信机。随着技术的演进,天线有时也可以认为是射频子系统的一部分,并可集成到射频子系统的芯片中。天线、射频前端器件和射频芯片都可以单独制造和销售。当然,射频子系统也可以基于功耗和性能的需求,采用不同的器件或者不同的集成方式。例如,将属于射频前端的部分器件集成在射频芯片中,甚至将天线和射频前端器件都集成射频芯片中,该射频芯片也可以称为射频天线模组或天线模组。
与射频子系统主要完成射频信号处理类似,顾名思义,基带子系统主要完成对基带信号的处理。基带子系统可以从基带信号中提取有用的信息或数据比特,或者将信息或数据比特转换为待发送的基带信号。这些信息或数据比特可以是表示语音、文本、视频等用户数据或控制信息的数据。例如,基带子系统可以实现诸如调制和解调,编码和解码等信号处理操作。对于不同的无线接入技术,例如5G NR和4G LTE,基带信号处理操作也不完全相同。
此外,由于射频信号通常是模拟信号,基带子系统处理的信号主要是数字信号,通信装置中还需要有模数转换器件。本申请实施例中,模数转换器件可以设置在基带子系统中,也可以设置在射频子系统中。模数转换器件包括将模拟信号转换为数字信号的模数转换器(analog to digital converter,ADC),以及将数字信号转换为模拟信号的数模转换器(digital to analog converter,DAC)。与应用子系统类似,基带子系统也可包括一个或多个处理器。
此外,该通信装置中还包括存储器,例如图2中的内存和大容量存储器。此外,在应用子系统和基带子系统中,还可以分别包括一个或多个缓存。本申请实施例中,存储器可分为易失性存储器(volatile memory)和非易失性存储器(non-volatile memory,NVM)。易失性存储器是指当电源供应中断后,内部存放的数据便会丢失的存储器。目前,易失性存储器主要是随机存取存储器(random access memory,RAM),包括静态随机存取存储器(static RAM,SRAM)和动态随机存取存储器(dynamic RAM,DRAM)。非易失性存储器是指即使电源供应中断,内部存放的数据也不会因此丢失的存储器。常见的非易失性存储器包括只读存储器(read only memory,ROM)、光盘、磁盘以及基于闪存(flash memory)技术的各种存储器0等。通常来说,内存和缓存可以选用易失性存储器,大容量存储器可以选用非易失性存储器,例如闪存。
在介绍本申请实施提供的方案之前,先对本申请实施例涉及到的名词和术语进行介绍。
(1)端口。
本申请实施例中第二通信装置可以通过一个逻辑的端口发送一个参考信号,该逻辑的端口可以包括多个物理端口,该多个物理端口可以划分为多组端口,其中每组端口可以包括该多个物理端口中的一个或多个物理端口。本申请实施例中第二通信装置可以通过一个逻辑的端口发送第一参考信号,比如,第二通信装置可以通过对多组端口的切换来发送第一参考信号。举个例子,第二通信装置可以使用该多组端口中的一组端口发送第一参考信 号的第一部分,再通过该多组端口中的另一组端口发送该第一参考信号的第二部分。本申请实施例中后续内容提到的用于发送第一参考信号的“第一端口”和“第二端口”可以是指该多组端口中的两组端口,其中,该两组端口中的每组端口可以包括一个或多个物理端口,且该两组端口分别包括的物理端口中可以有重叠的物理端口,也可以没有重叠的物理端口。
类似的,本申请实施例中第二通信装置可以通过一个逻辑的端口接收一个参考信号,该逻辑的端口可以包括多个物理端口,该多个物理端口可以划分为多组端口,其中每组端口可以包括该多个物理端口中的一个或多个物理端口。本申请实施例中第二通信装置可以通过一个逻辑的端口接收第二参考信号,比如,第二通信装置可以通过对多组端口的切换来接收第二参考信号。举个例子,第二通信装置可以使用该多组端口中的一组端口接收第二参考信号的第一部分,再通过该多组端口中的另一组端口接收第二参考信号的第二部分。本申请实施例中后续内容提到的用于接收第二参考信号的“第三端口”和“第四端口”可以是指该多组端口中的两组端口,其中,该两组端口中的每组端口可以包括一个或多个物理端口,且该两组端口分别包括的物理端口中可以有重叠的物理端口,也可以没有重叠的物理端口。
也就是说,本申请实施例中提到的第二通信装置侧用于传输(发送或者接收)参考信号(比如第一参考信号或第二参考信号)的端口(比如后续内容提到的用于发送第一参考信号的“第一端口”和“第二端口”,以及用于接收第二参考信号的“第三端口”和“第四端口”等)可以为逻辑端口,该逻辑端口可以包括一个物理端口,也可以包括多个物理端口。当该端口包括一个物理端口的情况下,也可以理解为该端口为物理端口。
本申请实施例中的用于传输(发送或者接收)参考信号的端口还可以称为天线、天线端口、天线接口、天线发射口、天线接收口、测相位端口或测相位接口。除此之外,本申请实施例中第二通信装置侧的用于传输(发送或者接收)参考信号的物理的端口还可以称为物理天线、物理天线端口或物理天线接口。另外,本申请实施例中第二通信装置侧的用于发送参考信号的物理的端口还可以称为物理天线发射口,本申请实施例中第二通信装置侧的用于接收参考信号的物理的端口还可以称为物理天线接收口。
本申请实施例中提到的用于传输参考信号的端口可以为前述图2中提到的天线(antenna,ANT),或者理解为图2中提到的天线(antenna,ANT)与射频前端连接的端口。
(2)端口之间的间距。
本申请实施例中在确定AOA或AOD的过程中,会使用到端口之间的间距的概念,比如当后续内容需要计算第二通信装置对应的AOD的情况下,需要结合第一端口和第二端口之间的间距进行计算。当需要计算第二通信装置对应的AOA的情况下,需要结合第三端口和第四端口之间的间距进行计算。下面以第一端口和第二端口之间的间距计算为例介绍端口之间的间距的计算方法。
当第一端口仅包括一个物理端口,则也可以理解为该第一端口为物理端口。当第二端口仅包括一个物理端口,则也可以理解为该第二端口为物理端口,这种情况下,第一端口和第二端口之间的间距可以是两个物理端口之间的距离。
当第一端口包括多个物理端口,第一端口可以理解为逻辑端口。当第二端口包括多个物理端口,第二端口也可以理解为逻辑端口。这种情况下,第一端口和第二端口之间的间距可以是两个逻辑端口的预设位置之间的距离。一个逻辑端口对应一个预设位置,一个逻 辑端口的预设位置可以为该逻辑端口对应的多个物理端口的几何中心点,还可以为该逻辑端口对应的多个物理端口的区域内的一个位置,比如可以为该逻辑端口对应的多个物理端口中的一个物理端口所在的位置。
当第一端口为物理端口,第二端口为逻辑端口;或者,第一端口为逻辑端口,第二端口为物理端口,则第一端口和第二端口之间的间距可以为物理端口的位置与逻辑端口的预设位置之间的距离。
图3示例性示出了通信装置中部署的两个端口(端口a和端口b)之间的间距的示意图,下面结合图3进行接收。图3示出的可以是端口a和端口b在通信装置的硬件结构上的部署示意图。端口a可以为第一端口,端口b可以为第二端口;或者,端口a可以为第三端口,端口b可以为第四端口。
如图3中的(a)所示,端口a为物理端口(也可以说端口a包括一个物理端口),端口b为物理端口(也可以说端口b包括一个物理端口)。端口a和端口b之间的间距可以为端口a与端口b之间的间距。
如图3中的(b)所示,端口a为逻辑端口,包括4个物理端口(比如端口a为2×2的阵列)。端口b为逻辑端口,包括4个物理端口(比如端口a包括2×2的端口阵列)。端口a的预设位置为2×2的端口阵列的几何中心点。端口b的预设位置为2×2的端口阵列的几何中心点。端口a和端口b之间的间距可以为端口a对应的几何中心点与端口b对应的几何中心点之间的间距。
如图3中的(c)所示,端口a为逻辑端口,包括4个物理端口(比如端口a为2×2的端口阵列)。端口b为逻辑端口,包括4个物理端口(比如端口a包括2×2的端口阵列)。端口a的预设位置为第二行第一个端口的所在位置。端口b的预设位置为第二行第一个端口的所在位置。端口a和端口b之间的间距可以为端口a对应的第二行第一个端口与端口b对应的第二行第一个端口之间的间距。
如图3中的(d)所示,端口a为逻辑端口,包括4个物理端口(比如端口a为2×2的端口阵列)。端口b为逻辑端口,包括4个物理端口(比如端口a包括2×2的端口阵列)。端口a的预设位置为第二行第一个端口的所在位置。端口b的预设位置为第二行第二个端口的所在位置。端口a和端口b之间的间距可以为端口a对应的第二行第一个端口与端口b对应的第二行第二个端口之间的间距。
上述端口之间的间距仅仅是示例,具体实施中,可以根据实际情况确定两个端口之间的间距。
(3)参考信号。
本申请实施例中涉及到的参考信号(比如后续内容提到的第一参考信号和第二参考信号)可以为用于计算角度的信号,比如可以为定位参考信号(positioning reference signal,PRS),也可以为探测参考信号(sounding reference signal,SRS),还可以是信道状态信息参考信号(channel state information reference signal,CSI-RS)、解调参考信号(demodulation reference signal,DMRS)、相位跟踪参考信号(phase-tracking reference signals,PTRS)、定位参考信号(positioning reference signal,PRS)、小区参考信号(cell reference signal,CRS)、同步信号/物理层广播信道块(Synchronization signal/physical broadcast channel block,SS/PBCH block)。SS/PBCH block可以简称为SSB。举个例子,第一参考信号比如可以为PRS,第二参考信号比如可以为SRS。
本申请实施例中的参考信号可以包括多个部分,比如后续内容刚提到的第一参考信号的第一部分和第一参考信号的第二部分,以及第二参考信号的第一部分和第二参考信号的第二部分。其中,每个参考信号的一个部分为该参考信号的部分比特位上的数据。
比如,第一参考信号的第一部分为第一参考信号的全部比特位中的部分比特位上的数据,第一参考信号的第二部分为第一参考信号的全部比特位中的部分比特位上的数据。也可以说,第一参考信号的第一部分和第一参考信号的第二部分是基于同一个信号序列产生的参考信号中的比特位。
再比如,第二参考信号的第一部分为第二参考信号的全部比特位中的部分比特位上的数据,第二参考信号的第二部分为第二参考信号的全部比特位中的部分比特位上的数据。也可以说,第二参考信号的第一部分和第二参考信号的第二部分是基于同一个信号序列产生的参考信号中的比特位。
又一种可能的实施方式中,本申请实施例中的一个参考信号可以对应多段时域符号,以第一参考信号为例进行介绍,第一参考信号占用的所有时域资源可以划分为多段时域资源,其中,每段时域资源包括一个或多个连续的时域符号,相邻的两段时域资源之间间隔至少一个时域符号。第二通信装置在第一参考信号占用的所有时域资源上发送第一参考信号,其中第二通信装置在一段时域资源上发送第一参考信号的全部比特位中的部分比特位上的数据。
本申请实施例中可以将第一参考信号占用的所有时域资源中的一段时域资源对应的第一参考信号中的待发送数据称为:第一参考信号的一个部分。比如第一参考信号占用的所有时域资源中的第一段时域资源对应的第一参考信号中的待发送数据称为:第一参考信号的第一部分。第一参考信号占用的所有时域资源中的第二段时域资源对应的第一参考信号中的待发送数据称为:第一参考信号的第二部分。该示例也适用于第二参考信号,比如,第二参考信号占用的所有时域资源中的第三段时域资源对应的第二参考信号中的待发送数据称为:第二参考信号的第一部分。第二参考信号占用的所有时域资源中的第四段时域资源对应的第二参考信号中的待发送数据称为:第二参考信号的第二部分。下面以第一参考信号为例进行介绍,第二参考信号的相关内容与之类似,不再赘述。
本申请实施例中第一参考信号的多段时域资源与第二通信装置的多个端口之间具有对应关系,针对一段时域资源,第二通信装置采用该段时域资源对应的端口在该段时域资源上发送第一参考信号中的部分数据。第一参考信号对应的多段时域资源中的第一段时域资源对应的端口1和第一参考信号对应的多段时域资源中的第二段时域资源对应的端口2为第二通信装置的两个不同的端口。如此,第二通信装置通过至少两个不同的端口发送第一参考信号,进而可以使第一通信装置基于第一参考信号得到至少两个相位信息,继而可以结合第一参考信号对应的多个相位信息确定出第一参考信号的离开角。
该第一参考信号对应的多段时域资源中的一段时域资源可以对应第二通信装置的一个或多个端口,可以理解为第二通信装置通过一个或多个端口发送该段时域资源上对应的第一参考信号的全部比特位中的部分比特位上的数据。第二通信装置的一个端口也可以对应该多段时域资源中的一段或多段时域资源,也就是说,第二通信装置在发送第一参考信号的过程中,一个端口可以使用一次,也可以使用多次。
一种可能的实施方式中,该第一参考信号对应的多段时域资源可以属于同一个时隙。
又一种可能的实施方式中,该第一参考信号对应的多段时域资源也可以属于多个时隙。 比如该多段时域资源与多个时隙一一对应,这种情况下,该多段时域资源中两段时域资源对应的两个时隙不同。再比如,该多段时域资源中的一段时域资源对应一个或多个时隙。再比如,该多个时隙中的一个时隙对应该多段时域资源中的一段或多段时域资源。一个时隙可以对应第二通信装置的一个或多个端口,第二通信装置的一个端口可以对应该多段时域资源对应的多个时隙中的一个或多个时隙。举个例子,该多个时隙与第二通信装置的多个端口为一一对应关系,这种情况下,第二通信装置可以在多个时隙通过多个端口发送第一参考信号,其中每个时隙发送第一参考信号的全部比特位的部分比特位上的数据,且在两个时隙发送信号所使用的两个端口不同。
(3.1)一个参考信号的概念。
一种可能的实施方式中,本申请实施例中一个参考信号可以是指一个资源标识(resource ID)对应的参考信号。下面以第一参考信号为例进行介绍,第二参考信号的内容与之类似,不再赘述。
举个例子,当第一参考信号为SRS,在SRS的配置信息(SRS-Config)中可以配置第一参考信号的资源标识(resource ID)。举个例子,比如SRS的配置信息(SRS-Config)中配置的资源标识(resource ID)为1。该SRS的配置信息(SRS-Config)中还包括为资源标识(resource ID)为1的参考信号配置的时域资源和频域资源等信息。第二通信装置发送第一参考信号所使用的时域资源可以为配置信息(SRS-Config)中为资源标识(resource ID)为1的参考信号配置的时域资源中的部分或全部时域资源。
举个例子,配置信息(SRS-Config)中为资源标识(resource ID)为1的参考信号配置的时域资源为:一串连续的时域符号。在实际发送第一参考信号的过程中,第二通信装置通过第一端口在第三时域资源发送第一参考信号的第一部分,通过第二端口在第四时域资源发送第二参考信号的第二部分。第三时域资源为该配置信息(SRS-Config)中为资源标识(resource ID)为1的参考信号配置的时域资源中的部分时域资源,第四时域资源为该配置信息(SRS-Config)中为资源标识(resource ID)为1的参考信号配置的时域资源中的部分时域资源。第一参考信号的第一部分为资源标识(resource ID)为1的参考信号对应的部分数据,第一参考信号的第二部分也为资源标识(resource ID)为1的参考信号对应的部分数据。
类似的,当第一参考信号为PRS,在PRS的配置信息(PRS-Info)中可以配置第一参考信号的资源标识(resource ID)。第一参考信号的第一部分的资源标识(resource ID)与第一参考信号的第二部分的资源标识(resource ID)相同。相关内容可以参见第一参考信号为SRS时的描述,不再赘述。
类似的,第二参考信号的第一部分的资源标识(resource ID)与第二参考信号的第二部分的资源标识(resource ID)相同。相关内容可以参见第一参考信号的相关描述,不再赘述。
又一种可能的实施方式中,本申请实施例中可以将基于一个信号序列(信号序列可以对应一个序列ID)产生的参考信号称为一个参考信号。以第一参考信号为例,本申请实施例中第一参考信号的第一部分和第一参考信号的第二部分是基于同一个信号序列产生的参考信号中的两个部分,也可以说,第一参考信号的第一部分对应的信号序列和第一参考信号的第二部分对应的信号序列相同。
举个例子,第一参考信号为SRS,第一参考信号可以是根序列
Figure PCTCN2022142540-appb-000001
和循环移位α的组合。第一参考信号的序列可以通过公式(1)表示:
Figure PCTCN2022142540-appb-000002
在公式(1)中,
Figure PCTCN2022142540-appb-000003
为序列长度,根序列的生成与序列长度和序列ID有关。
本申请实施例中,可以理解为第一参考信号的第一部分和第一参考信号的第二部分是基于一个根序列
Figure PCTCN2022142540-appb-000004
产生的参考信号中的两个部分。也可以说第一参考信号的第一部分对应的信号序列(可以称为根序列)和第一参考信号的第二部分对应的信号序列(可以称为根序列)相同。在第一参考信号的配置信息中可以配置一个第一参考信号的信号序列(可以称为根序列)标识。第一参考信号的第一部分和第一参考信号的第二部分的信号序列(可以称为根序列)标识可以均为该配置信息中配置的第一参考信号的信号序列(可以称为根序列)标识。
再举个例子,第一参考信号为PRS,一个第一参考信号的序列可以通过公式(2)表示:
Figure PCTCN2022142540-appb-000005
在公式(2)中,伪随机序列c(i)由两个m序列组成,表示为:
c(n)=(x 1(n+N C)+x 2(n+N C))mod 2
x 1(n+31)=(x 1(n+3)+x 1(n))mod 2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod 2
其中,N C=1600,第一个m序列x 1(n)为x 1(0)=1,x 1(n)=0,n=1,2,...,30,第二个m序列x 2(n)由初始化因子
Figure PCTCN2022142540-appb-000006
决定。例如,初始化因子为:
Figure PCTCN2022142540-appb-000007
其中,
Figure PCTCN2022142540-appb-000008
为时隙个数,
Figure PCTCN2022142540-appb-000009
为一个时隙中符号数,
Figure PCTCN2022142540-appb-000010
为序列ID。序列ID可以通过第一参考信号的配置信息进行配置。
本申请实施例中,可以理解为第一参考信号的第一部分和第一参考信号的第二部分是基于一个信号序列(序列ID标识为
Figure PCTCN2022142540-appb-000011
)产生的参考信号中的两个部分。也可以说第一参考信号的第一部分对应的信号序列和第一参考信号的第二部分对应的信号序列相同。在第一参考信号的配置信息中可以配置一个第一参考信号的信号序列标识
Figure PCTCN2022142540-appb-000012
第一参考信号的第一部分和第一参考信号的第二部分的信号序列标识可以均为该配置信息中配置的第一参考信号的信号序列标识
Figure PCTCN2022142540-appb-000013
(4)时隙与时域符号。
时隙,也可以称为slot,可以理解为一个时间片,一个时域资源。时域符号也可以称为符号,也可以理解为一个时间片或一个时域资源。一个时隙可以包括一个或多个时域符号。
基于上述内容,图4示例性示出了本申请实施例提供一种确定AOD的方法流程示意图,为了更清楚的介绍本申请实施例提供的方案,图4从交互的角度进行介绍。该方法的执行主体可以为第一通信装置和第二通信装置。
第一通信装置可以为终端设备(比如图1a或图1b中的终端设备103,或图1c中的终端设备),或者为终端设备内部的模块、单元或芯片,也可以为网络设备(比如图1c中的接入网设备),或者为网络设备内部的模块、单元或芯片。第二通信装置可以为终端设备(比如图1a中的终端设备104或终端设备105,或图1c中的终端设备),或者为终端设备内部的模块、单元或芯片,也可以为网络设备(比如图1b中的基站101或基站102,或图1c中的接入网设备),或者为网络设备内部的模块、单元或芯片。第一通信装置和第二通信装置可以灵活选择,比如第一通信装置和第二通信装置可以均为终端设备(比如图1a所示场景);也可以均为网络设备;或者,第一通信装置和第二通信装置分别为网络设备和终端设备。比如第一通信装置为网络设备,第二通信装置为终端设备;再比如第一通信装置为终端设备,第二通信装置为网络设备(比如图1b所示场景)。后续内容为了更清楚的介绍,以第一通信装置为终端设备(比如图1b中的终端设备),第二通信装置为网络设备(比如图1b中的基站)为例进行介绍。
如图4所示,该AOD确定方法包括:
S201,第二通信装置生成第一参考信号。
S202,第二通信装置在多个时域资源向第一通信装置发送第一参考信号,用于发送第一参考信号的多个时域资源中的两个时域资源对应的两个用于发送第一参考信号的端口不同。
S203,第一通信装置获取第一参考信号的第一配置信息,第一配置信息包括用于确定相位信息的多个时域资源的指示信息。
S204,第一通信装置接收第一参考信号,确定用于确定相位信息的多个时域资源对应的多个第一相位信息。
为了方便区分,本申请实施例中可以将第二通信装置侧用于发送第一参考信号的多个时域资源称为S1个时域资源,S1为大于1的整数。将第一通信装置侧用于确定相位信息的多个时域资源称为S2个时域资源,S2为大于1的整数。
在S203涉及到的第一配置信息中可以包括S2个时域资源的指示信息,在S204中,第一通信装置可以确定S2个时域资源中接收的第一参考信号对应的多个第一相位信息。
S2个时域资源与多个第一相位信息之间可以有多种可能地对应关系。一种可能的实施方式中,第一通信装置可以在S2个时域资源中的一个或多个时域资源确定出一个第一相位信息。比如,第一通信装置可以确定出S2个时域资源对应的S2个第一相位信息,多个第一相位信息与S2个时域资源一一对应。再比如,第一通信装置可以确定出S2个时域资源中时域资源对应的多个(可能少于S2个)第一相位信息,比如S2为8,第一通信装置可以确定出8个时域资源对应的6个第一相位信息,比如可以根据8个时域资源中的6个时域资源接收到的信号分别确定出6个第一相位信息;再比如,可以根据8个时域资源中的5个时域资源接收到的信号分别确定出5个第一相位信息,根据该8个时域资源中剩余的3个时域资源接收到的信号确定出1个第一相位信息。
S204中,第一通信装置可以通过一个端口接收第一参考信号的全部。第一通信装置也可以通过多个端口同时执行对第一参考信号的接收,本申请实施例不做限制。如此,可以 降低AOD确定方案对第一通信装置的硬件要求,从而可以降低第一通信装置的成本。
S2051,第一通信装置发送第二相位信息。第二相位信息根据多个第一相位信息确定。
由于第一通信装置可以根据第一配置信息确定出需确定相位信息的多个时域资源,并在多个时域资源确定出多个相位信息,继而可以根据该多个相位信息确定参考信号的AOD。可以看出,本申请可以提供一种基于相位信息确定AOD的方案,从而当需确定用于定位的角度的情况下,可以多一种可供选择的方案。
下面结合图5a和图5b进行进一步的介绍。
图5a示例性示出了一种可能的通信装置的结构示意图。如图5a所示,该通信装置可以包括一个或多个射频通道,且每个射频通道可以包括多个端口。图5a中是以第一射频通道43和第二射频通道53进行示意的。每个射频通道可能连接一个或多个端口。图5a中以第一射频通道43连接的端口阵列44包括多个物理的端口,第二射频通道53连接的端口阵列54包括多个物理的端口为例进行展示。
图5a中端口阵列中的端口可以包括前述图2中的天线。图5a中的第一射频通道43可以包括图2中的RFFE中的器件和模块(比如可以包括滤波器等),还可以包括前述图2中RFIC中的器件和模块(比如可以包括混频器等)。图5a中的第二射频通道53也可以包括图2中的RFFE中的器件和模块(比如可以包括滤波器等),还可以包括前述图2中RFIC中的器件和模块(比如可以包括混频器等)。图5a中的基带子系统42可以为前述图2中的基带子系统。图5a中的处理器41可以为前述图2中的基带子系统中的处理器。
请参阅图5a,一种可能的用于确定AOD的方案中,第二通信装置可以向第一通信装置发送多个波束对应的多个定位参考信号(Positioning reference signal,PRS)。第一通信装置对该多个波束的PRS进行测量,得到每个波束对应的RSRP。继而第二通信装置或者定位服务器(比如LMF)可以结合参考信号接收功率(Reference signal receiving power,RSRP)以及基站的发送波束方向图计算出参考信号的AOD。该方案基于RSRP计算AOD,通常需要第二通信装置发送至少8个波束对应的8个参考信号。第二通信装置若配置较少的射频通道,比如仅配置1个射频通道,则第二通信装置需要先后发送8次参考信号,可见该方案的时延较大。若为了提高效率,则可能需要要求第二通信装置配置8个射频通道,继而第二通信装置可以通过该8个射频通道同时发送8个波束对应的8个参考信号。该方案虽然可以提高效率,但是要求第二通信装置配置的射频通道数量较多,成本较高。
实际应用中,为了降低成本,通信装置的射频通道的数量往往配置的较少,但是往往会配置较多的物理的端口。比如某些高频的通信装置,可能只配置一个射频通道,但是该射频通道可以配置的物理的端口可达4至8个。针对射频通道数量较少的通信装置,如图5a所示的通信装置,则需要通信装置花费较长的时间发送至少8个波束对应的8个参考信号,时延较大。
本申请实施例提供的一种可能的方案中,可以在射频通道和端口之间设置开关,针对一次数据传输,射频通道并不是必须通过该射频通道连接的所有端口进行该次数据传输,而是可以通过开关选择该射频通道对应的所有端口中的一个或多个端口进行数据传输。请参阅图5b,图5b示例性示出了在图5a所示的通信装置中添加开关后的通信装置的示意图,如图5b所示,第一射频通道43可以通过开关45连接端口阵列44中的每个端口。第二射频通道53可以通过开关55连接端口阵列54中的每个端口。需要说明的是,开关45和开 关55中的任一项可以为逻辑电路开关,或者其他能够控制第一射频通道与端口之间选择性连通或不连通的器件。
基于图5b所示的第二通信装置的架构,在上述S202中,第二通信装置在第一参考信号的传输过程中可以通过开关选择所需采用的端口。从而,第二通信装置可以先后通过一个射频通道连接的多个端口发送信号。第一通信装置通过测量得到该多个端口中至少两个端口对应的多个第一相位信息。进而,可以由第二通信装置或者其他装置(比如定位服务器)等设备结合第二相位信息(第二相位信息根据该多个第一相位信息确定)以及该至少两个端口中端口之间的间距计算出AOD。
通过上述内容可以看出,本申请实施例提供的方案可以在端口的粒度上计算对应的相位信息(端口的数量的多少可以影响相位信息的精度),并得到AOD,相比在射频通道的粒度上计算AOD(AOD的精度取决于射频通道的数量)的方案,本申请实施例可以在保证AOD计算精度的前提下,降低对第二通信装置侧射频通道的数量的要求,从而可以降低第二通信装置的成本。
一种可能的实施方式中,上述S202中,第二通信装置可以通过多个端口在多个时域资源向第一通信装置发送一个第一参考信号。下面以第二通信装置的多个端口中的第一端口和第二端口为例进行示意,但不表示第二通信装置的多个端口中仅包括两个端口,第二通信装置还可以通过除第一端口和第二端口之外的其他端口继续发送第一参考信号的其他部分。比如,在上述S202中,第二通信装置通过多个端口中的第一端口在第三时域资源发送第一参考信号的第一部分。第二通信装置通过多个端口中的第二端口在第四时域资源发送第一参考信号的第二部分。第一参考信号的第一部分用于确定多个第一相位信息中的一个第一相位信息,第一参考信号的第二部分用于确定多个第一相位信息中的又一个第一相位信息。
在上述S204中,第一通信装置可以在多个时域资源接收第一参考信号,且确定出多个时域资源对应的多个第一相位信息。下面以多个时域资源中的第一时域资源和第二时域资源为例进行示意,但不表示多个时域资源中仅包括两个时域资源。在第一时域资源接收到第一参考信号的第一部分,根据第一参考信号的第一部分确定多个第一相位信息中的一个第一相位信息。第一通信装置在第二时域资源接收到第一参考信号的第二部分,根据第一参考信号的第二部分确定多个第一相位信息中的又一个第一相位信息。
需要注意的是,上述S202和S204没有绝对的先后关系,可以交叉执行,比如可以先执行S202,在执行S204。也可以在S202的执行过程中,S204也随之执行。比如,第一通信装置根据第一参考信号的第一部分确定出一个第一相位信息的步骤发生在接收到第一参考信号的第一部分之后,第一通信装置接收到第一参考信号的第二部分之前。第一通信装置根据第一参考信号的第一部分确定出一个第一相位信息的步骤也可以发生在接收到第一参考信号的第二部分之后。也就是说,第一时域资源指示的时间与第四时域资源所指示的时间直接并无绝对的先后关系,第一时域资源指示的时间可以早于、晚于或等于第四时域资源所指示的时间,本申请实施例不做限制。
由于第一参考信号的第一部分和第二部分是通过第二通信装置的不同的端口发送的,因此第一通信装置根据不同端口发送的信号测量得到多个相位信息后,可以结合多个相位信息的相位差信息以及端口之间的间距计算出离开角。另一方面,由于第二通信装置通过 不同的端口发送同一个参考信号的不同部分,第一通信装置通过一个参考信号即可确定出多个第一相位信息,因而可以减少用于计算离开角的参考信号的数量,从而可以节约网络资源,减少时延。
又一种可能的实施方式中,上述S202中,第二通信装置可以通过多个端口在多个时域资源向第一通信装置发送多个参考信号,其中,一个端口对应一个参考信号。第一通信装置针对每个参考信号进行测量,得到每个参考信号对应的一个相位信息。比如,第二通信装置可以通过一个端口发送一个第一参考信号,通过另一个端口发送一个第三参考信号。第一通信装置可以根据接收到的第一参考信号确定出一个相位信息,根据接收到的该另一个第三参考信号确定出另一个相位信息。继而定位服务器(比如LMF)可以根据该两个参考信号(第一参考信号和第三参考信号)对应的两个相位信息确定出离开角。
需要说明的是,本申请实施例中的第一端口包括的物理端口中存在至少一个物理端口,该物理端口与第二端口包括的所有物理端口中的每个都不同。或者,第二端口包括的物理端口中存在至少一个物理端口,该物理端口与第一端口包括的所有物理端口中的每个都不同。另外,第一端口包括的物理端口与第二端口包括的物理端口可以有重叠,也可以没有重叠。
在一种可能的实施方式中,第一端口和第二端口可以与同一个射频通道具有选择性连接关系。比如第一端口和第二端口均为与第一射频通道具有选择性连接关系的端口。第二通信装置通过第一射频通道连接的第一端口在第三时域资源发送第一参考信号的第一部分。第二通信装置通过第一射频通道连接的第二端口在第四时域资源发送第一参考信号的第二部分。
又一种可能的实施方式中,第二通信装置还可以通过多个射频通道的多个端口发送第一参考信号,举个例子,第二通信装置可以通过第一射频通道的第一端口以及第二射频通道的一个或多个端口发送第一参考信号的第一部分,第二通信装置可以通过第一射频通道的第二端口以及其他射频通道(比如第二射频通道)的一个或多个端口发送第一参考信号的第二部分。为了更清楚的介绍本申请实施例提供的方案,本申请实施例中对于用于发送第一参考信号的多个射频通道中的第一射频通道进行介绍。
图6示例性示出了图5b中第一射频通道43通过开关45连接端口阵列44中的端口的示意图,图6中以第一射频通道43连接8个物理的端口为例进行展示,该8个物理的端口分别为:端口441、端口442、端口443、端口444、端口445、端口446、端口447和端口448。结合图6举个例子,第一端口比如可以为端口441,第二端口比如可以为端口442。再比如,第一端口比如可以为端口441和端口442,第二端口比如可以为端口442和端口443。再比如,第一端口比如可以为端口441和端口442,第二端口比如可以为端口447和端口448。
在又一种可能的实施方式中,第一端口和第二端口可以分别为两个射频通道连接的两个端口,比如第一端口为图5b中第一射频通道43连接的端口,第二端口为图5b中第二射频通道53连接的端口。
本申请实施例中,S1个时域资源与端口的对应关系可以有多种可能的实施方式,比如下述内容示出的实施方式a1、实施方式a2、实施方式a3和实施方式a4。
实施方式a1,用于发送第一参考信号的S1个时域资源中的两个时域资源对应的两个用于发送第一参考信号的端口不同。
实施方式a1也可以理解为S1个时域资源中的至少两个时域资源对应的端口不同。如此,由于第二通信装置至少通过两个不同的端口发送第一参考信号,因此,第一通信装置可以对通过该至少两个不同的端口发送的信号进行测量,得到至少两个第一相位信息。该至少两个第一相位信息可以对应至少一个相位差,继而可以基于该相位差确定出离开角。从而针对仅包括一个射频通道,且该射频通道包括至少两个端口的第二通信装置,也可以基于第二通信装置发送的第一参考信号对应的相位信息进行定位,从而降低了基于相位信息进行定位的方案对第二通信装置的硬件要求,从而可以降低第二通信装置的成本。
实施方式a2,多个端口中的一个端口对应S1个时域资源中的一个时域资源。
如此,第二通信装置在通过S1个时域资源发送第一参考信号的过程中,一个端口使用一次,如此,第二通信装置可以尽可能通过较多的不同的端口发送第一参考信号,继而第一通信装置可以得到较多的不同的端口对应的第一相位信息。较多的不同的端口对应的第一相位信息可以得到较多的相位差,可以看出,该方案可以增加相位差的数量,进而可以提高离开角的精度。
实施方式a3,多个端口中的一个端口对应S1个时域资源中的多个时域资源。
如此,在第二通信装置通过S1个时域资源发送第一参考信号的过程中,一个端口可以使用多次,这种情况下,一方面可以设置一个端口作为参考端口,从而为其他端口提供校准。另一方面,端口复用多次,可以节省该方案所需的端口的数量,从而可以降低对第二通信装置的硬件的要求,从而可以降低第二通信装置的成本。
实施方式a4,S1个时域资源中相邻的两个时域资源对应的两个端口不同。
如此,上述S202中第二通信装置在通过S1个时域资源发送第一参考信号的过程中在一个时域资源发送信号之后需更换端口,以便在下一个时域资源进行信号的发送。如此,第一通信装置可以基于相邻的两个时域资源发送的信号得到两个有差异的第一相位信息。有差异的两个第一相位信息可以得到一个相位差,当每相邻两个时域资源对应的端口均不同的情况下,可以得到最多的相位差,进而可以提高离开角的精度。
本申请实施例中,S1个时域资源也可以有多种可能的实施方式,比如下述实施方式b1、实施方式b2、实施方式b3和实施方式b4示例性示出了S1个时域资源的几种可能的实施方式。
实施方式b1:S1个时域资源中对应不同端口的两个时域资源之间间隔至少一个时域资源单元。
由于第二通信装置通过至少两个不同的端口发送第一参考信号,因此为了给第二通信装置在发送第一参考信号的过程中执行端口切换留出时间,S1个时域资源中对应不同端口的两个时域资源之间间隔至少一个时域资源单元,如此,第二通信装置可以有时间执行端口切换动作。
实施方式b2:S1个时域资源中相邻的两个时域资源之间间隔至少一个时域资源单元。
如此,当S1个时域资源中相邻的两个时域资源对应的两个端口不同的情况下,第二通信装置可以有时间在S1个时域资源中的相邻的时域资源之间执行端口切换动作。
实施方式b3:S1个时域资源中的相邻时域资源之间间隔Q1个时域资源单元,Q1为 正整数。
由于该方案较有规律,而且还可以节省用于指示S1个时域资源中时域资源之间的间隔的信息所占用的比特位数量。
实施方式b4:一个时域资源单元可以为一个或多个时域符号。
时域资源单元也可以称为资源元素(resource element,RE)。如此,第二通信装置发送第一参考信号的过程中,可以在时域符号级进行端口的切换,且第一通信装置可以在时域符号级得到多个第一相位信息。相比第二通信装置发送多个第一参考信号,且第一通信装置针对每一个第一参考信号测量得到一个第一相位信息的方案来看,由于第一通信装置知道确定第一相位信息的时域资源的信息,因此可以减少依据多个相近的时域符号上接收到的数据确定出一个第一相位信息的现象的发生(由于多个相近的时域符号上接收到的数据可能会被接收端视为一个信号而无法区分开),从而可以使第一通信装置在符号粒度上得到多个第一相位信息,继而可以基于至少一个参考信号的相位信息确定出离开角,从而可以减少了基于行为信息计算离开角的方案的时延。
在一种可能的实施方式中,S1个时域资源为一个时隙(slot)内的S1个时域资源。第一参考信号可以和数据一起发送,也可以单独发送。图7a和图7b示例性示出了几种可能的第一参考信号对应的S1个时域资源的图案示意图。
如图7a所示,第一参考信号可以和数据(比如,物理下行控制信道(physical downlink control channel,PDCCH)和/或解调参考信号(de-modulation reference signal,DMRS))等数据在同一个时隙中发送。如图7b所示,第一参考信号可以单独发送,即不与数据(比如PDCCH和/或DMRS)一起发送,第一参考信号可以占用一个时隙中的S1个时域资源。
如图7a和图7b所示,S1个时域资源中的相邻的两个时域资源中间间隔一个时域资源单元,如此,第二通信装置可以在一个时隙中每间隔一个时域资源单元进行一次信号的发送,且在间隔的时域资源单元上执行端口的切换。
基于上述内容,图7c和图7d示例性示出了几种可能的S1个时域资源与端口的对应关系的示例,这几种示例以图6所示的第一射频通道中端口为例进行展示。
如图7c所示,S1个时域资源为一个时隙中的8个时域符号,且每相邻两个时域符号之间间隔一个时域符号,该8个时域符号对应的端口依次可以为:端口441、端口442、端口443、端口444、端口445、端口446、端口447和端口448。在一种可能的实施方式中,端口具有端口标识,端口标识之间可以有一个预设的排序关系,比如该排序关系为:端口441、端口442、端口443、端口444、端口445、端口446、端口447和端口448。一种可能的实施方式中,端口切换规则与端口的标识的预设的排序关系相同,如此,可以降低该方案的复杂度。
如图7d所示,S1个时域资源为一个时隙中的8个时域符号,且每相邻两个时域符号之间间隔一个时域符号,该8个时域符号对应的端口依次可以为:端口441、端口442、端口441、端口443、端口441、端口444、端口441和端口445。可以看出,图7d所示的端口切换规则中端口441使用了多次,如此可以视端口441为一个校准端口,结合多个端口441对应的多个第一相位信息,对多个端口441后续跟随的端口对应的第一相位信息进行校准,从而提高离开角的精度。举个例子,该8个时域符号中第一时域符号的端口441对应的第一相位信息和第三个时域符号的端口441对应的第一相位信息出现了较大的差异, 则可以基于端口441对应的两个第一相位信息,对端口442和/或端口443对应的两个第一相位信息进行校准,从而可以提高第一相位信息的准确度,进而可以提高离开角的精度。
需要说明的是,S1个时域资源与端口的对应关系可以是预先设定的,可以预先设置于第二通信装置侧,也可以是由第二通信装置自行确定的,也可以是由第二通信装置与第一通信装置协商确定的,也可以是由定位服务器(比如LMF)确定的并发送给第二通信装置的,具体实施方式较多,本申请实施例不做限制。
基于上述内容,图8示例性示出又一种确定AOD的方法流程示意图,该方法中以第一通信装置为终端设备,第二通信装置为基站,定位服务器为LMF为例进行示例。第二通信装置也可以为终端设备,当第二通信装置为终端设备的情况下,第二配置信息可以是第二通信装置自己确定的,也可是其他装置(比如基站)向第二通信装置发送的。如图8所示,该方法包括:
S801,第二通信装置确定第一参考信号的第二配置信息。
本申请实施例中,第二配置信息可以包括以下参数c1、参数c2、参数c3或参数c4中的至少一项:
参数c1:指示用于发送第一参考信号的S1个时域资源的信息。
本申请实施例中为了区分,可以将第二配置信息中包括的用于指示用于发送第一参考信号的S1个时域资源的信息称为第四指示信息。
第四指示信息可以包括:S1个时域资源中两个时域资源之间间隔的时域资源单元数量的信息;和/或,S1个时域资源的信息。
比如,第四指示信息可以包括:S1个时域资源中相邻时域资源之间间隔的时域资源单元的数量的指示信息。举个例子,第四指示信息可以为指示以下内容的信息:在一个时隙中,每间隔1个时域符号执行一次第一参考信号的发送,且第一参考信号的发送的持续时长为1个时域符号。再举个例子,第四指示信息可以为指示以下内容的信息:在一个时隙中,每间隔2个时域符号执行一次第一参考信号的发送,且第一参考信号的发送的持续时长为2个时域符号。当第二配置信息包括S1个时域资源中两个时域资源之间间隔的时域资源单元数量的信息,第二通信装置可以确定出用于发送第一参考信号的S1个时域资源,进而可以在该S1个时域资源发送第一参考信号。
S1个时域资源的信息可以包括如下内容中的至少一项:
该S1个时域资源的起始帧或符号(表示时域上从第几个帧或符号上开始映射);
该S1个时域资源占用符号或时隙的数量;
或者,该S1个时域资源对应的偏移(指示S1个时域资源在当前第一参考信号的发送周期内偏移多少个符号或时隙)。
参数c2:第一参考信号对应的频域资源的信息。
第一参考信号在频域上可以占用一个或多个子载波。S1个时域资源中的两个时域资源对应的频域资源可以相同。又一种可能的实施方式中,S1个时域资源中的所有的时域资源对应的频域资源可以相同,如此,可以使方案较为简单。
一种可能的实施方式中,第一参考信号对应的频域资源的信息可以包括以下内容中的至少一项:
发送第一参考信号所使用的子载波的序号(比如可以包括第一参考信号在一个资源块(resource block,RB)内占用的子载波的序号);
第一参考信号在频域上占用的资源块的密度(比如可以包括用于指示每隔多少个RB发送第一参考信号中的比特位上的数据的指示信息);
带宽(可以表示频域上占用连续多少个物理资源块(Physical resource block,PRB)或多少个RE);
或者,起始常规资源块(Common resource block,CRB)(可以表示频域上从第几个RB开始映射)。
参数c3:指示S1个时域资源与多个端口的对应关系的信息。
S1个时域资源对应的多个端口的对应关系可以参见前述描述,比如可以为前述图7c或图7d中的对应关系。
指示S1个时域资源与多个端口的对应关系的信息可以包括如下内容中的至少一项:
S1个时域资源与多个端口的标识(多个端口的标识可以以数组的形式出现,其中每个数可以指示一个端口的标识);
或者,用于发送参考信号的目标端口切换策略的标识。
其中,可以在第二通信装置侧预设一个或多个用于发送参考信号的端口切换策略,该用于发送参考信号的目标端口切换策略为预设的用于发送参考信号的端口切换策略中的一个。一个用于发送参考信号的端口切换策略包括S1个时域资源对应的多个端口的标识的信息。第二通信装置可以根据用于发送参考信号的目标端口切换策略的标识确定出用于发送参考信号的目标端口切换策略,继而确定出S1个时域资源对应的多个端口的标识。
参数c4:第一参考信号的发送周期。
一种可能的实施方式中,第二通信装置可以周期性发送第一参考信号,以使第一通信装置周期性对第一参考信号进行测量,并将得到的结果(每个第一参考信号对应的第二相位信息和/或离开角信息)进行上报,如此,可以实现周期性对第一通信装置进行定位的目的。
第一参考信号的发送周期可以指示出第二通信装置每隔多长时间间隔执行一次第一参考信号的发送。其中,一个时间间隔可以是一个或多个符号、时隙、帧、秒、分钟或小时等。
又一种可能的实施方式中,如果不需要周期性对第一通信装置进行定位,则第二配置信息中可以不配置该发送周期,或者第二配置信息中配置的发送周期的值用于指示第二通信装置发送一次第一参考信号,不会周期性发送第一参考信号。
另外,在S801中,第二通信装置确定第二配置信息的方式有多种,比如可以预先将第二配置信息配置在第二通信装置侧。再比如,第二通信装置可以根据自身的硬件条件确定出第二配置信息。再比如,第二通信装置可以接收其他装置发送的第二配置信息。再比如,第二通信装置可以跟第一通信装置协商,确定出第二配置信息。
S802,定位服务器可以向第二通信装置发送第一发送-接收点(Transmission-Reception Point,TRP)信息请求,第一TRP信息请求用于请求获取第三配置信息。
TRP信息请求也可以称为TRP information request。定位服务器可以通过NR定位协议(NR positioning protocol a,NRPPa)向第二通信装置发送TRP信息请求。
S803,第二通信装置向定位服务器发送第一TRP信息响应,第一TRP信息响应中包括第三配置信息。
TRP信息响应也可以称为TRP information response。
第三配置信息可以包括上述参数c1、参数c2、参数c3、参数c4或以下参数d中的至少一项。其中,参数c1、参数c2、参数c3和参数c4的相关内容参见前述内容,不再赘述,下面对参数d进行介绍。
参数d,指示第二通信装置的端口配置信息。
指示第二通信装置的端口配置信息可以包括以下内容中的至少一项:
第二通信装置的射频通道的数量信息(可以是第二通信装置配置的射频通道的数量,也可以是用于发送第一参考信号的射频通道的数量);
第二通信装置的端口的数量信息(可以是第二通信装置配置的一个或多个射频通道中的射频通道对应的端口的数量,也可以是用于发送第一参考信号的端口的数量);
第二通信装置的端口的标识;
第二通信装置的端口之间的间距(可以是第二通信装置配置的一个或多个射频通道中的射频通道对应的多个端口中两个端口之间的间距,也可以是用于发送第一参考信号的多个端口中端口之间的间距,也可以是S1个时域资源中相邻时域资源对应的端口之间的间距);
第二通信装置的端口对应的端口阵列形状(可以是第二通信装置配置的一个或多个射频通道中的射频通道对应的端口阵列形状,也可以是用于发送第一参考信号的端口对应端口阵列形状);
或者,指示第二通信装置的端口排列的方向的信息(端口排列的方向比如可以是水平方向、垂直方向、以某个角度倾斜等)。
其中,第二通信装置的端口之间的间距可以是数列或数组的形式,可以由数值指示,单位可以是米、厘米、分米、毫米、微米或纳米;也可以表示为波长的倍数,可以是整数倍、分数倍、小数倍等。第二通信装置的多个端口之间的间距可以通过数列的形式表示。当第二通信装置的端口之间的间距唯一的情况下,第二通信装置的端口之间的间距可以仅包括一个值。
当第二通信装置的端口之间的间距不唯一的情况下,可以在端口配置信息中携带端口的标识。端口的标识和端口之间的间距两个参数可以结合,举个例子,比如端口配置信息中包括指示端口a和端口b之间的间距为半波长的指示信息。
其中,端口阵列形状可以是直线阵列、平面阵列、圆形阵列或圆柱形阵列等。
一种可能的实施方式中,当第二通信装置根据第二相位信息估计第一参考信号的离开角信息时,还刻意结合端口阵列形状进行计算。举个例子,当端口阵列形状为直线阵列,当第二通信装置收到的第二相位信息包括多个相位差信息,该多个相位差信息对应的各个离开角可以理解为一个平面上的角度,则一种可能的实施方式中,第二通信装置可以将得到的多个相位差信息进行平均,之后根据平均后的相位差信息估计第一参考信号的离开角。
再举个例子,当端口阵列形状为圆形阵列,当第二通信装置收到的第二相位信息包括多个相位差信息,该多个相位差信息对应的各个离开角可能为多个不同的角度,则一种可 能的实施方式中,第二通信装置可以分别针对各个相位差信息进行计算,得到多个离开角信息,之后可以根据得到的多个离开角信息确定出第一参考信号的离开角。
上述示例是以第二通信装置根据第二相位信息估计第一参考信号的离开角为例进行介绍的,实际应用中,还可以由第一通信装置或定位服务器根据第二相位信息估计第一参考信号的离开角,这种情况下,定位服务器可以通过上述第三配置信息获取到第二通信装置侧的端口阵列形状。或者,由定位服务器将获取到的第二通信装置侧的端口阵列形状发送给第一通信装置侧。
S804,第一通信装置向定位服务器(比如LMF)发送请求辅助数据消息。请求辅助数据消息可以包括目标小区的标识。请求辅助数据消息用于请求获取第一配置信息。
目标小区可以为第一通信装置对应的主小区的标识。请求辅助数据消息还可以称为request assistance data。第一通信装置可以通过LTE定位协议(LTE positioning protocol,LPP)向定位服务器(比如LMF)发送请求辅助数据消息。
S805,定位服务器向第一通信装置发送提供辅助数据消息。提供辅助数据消息包括第一配置信息。
提供辅助数据消息还可以称为provide assistance data。定位服务器可以通过LPP向第一通信装置发送提供辅助数据消息。
一种可能的实施方式中,第一配置信息可以包括以下参数e1、参数e2、参数c2、参数c3和参数c4或参数d中的至少一项。其中,参数c2、参数c3和参数c4和参数d参考前述内容,不再赘述,下面对参数e1和参数e2分别进行介绍。
参数e1:指示用于确定相位信息的S2个时域资源的信息。
一种可能的实施方式中,指示用于确定相位信息的S2个时域资源的信息可以包括前述参数c1中的第四指示信息。
当第一配置信息包括S1个时域资源中两个时域资源之间间隔的时域资源单元数量的信息,第一通信装置可以确定出需要得到第一相位信息的S2个时域资源,进而可以根据该S2个时域资源中的一个时域资源上接收到的信号确定出一个第一相位信息。
举个例子,指示用于确定相位信息的S2个时域资源的信息可以为指示以下内容的信息:在一个时隙中,第二通信装置每间隔1个时域符号执行一次参考信号的发送,且参考信号的发送的持续时长为1个时域符号。如此,第一通信装置在接收到第一参考信号的过程中,可以每隔一个时域符号估计一个第一相位信息,且每个第一相位信息是根据一个时域符号接收到的信号确定的,从而得到第一参考信号对应的多个第一相位信息。
再举个例子,第四指示信息可以为指示以下内容的信息:在一个时隙中,每间隔2个时域符号执行一次参考信号的发送,且参考信号的发送的持续时长为2个时域符号。如此,第一通信装置在接收到第一参考信号的过程中,可以每隔两个时域符号估计一次第一相位信息,且每个第一相位信息是根据两个时域符号接收到的信号确定的,如此,可以得到第一参考信号对应的多个第一相位信息。
该S1个时域资源为第一参考信号发送端发送第一参考信号所使用的时域资源。参数e1的相关内容还可以参见前述参数c1的相关内容,在此不再赘述。
参数e2:第二通信装置的标识。
第二通信装置的标识可以为物理小区索引(physical cell index,PCI)、小区全局标识(cell  global identity,CGI)中的一个或多个。
值得注意的是,第一通信装置可以通过S805获取第一配置信息之外,在上述在S203中,第一通信装置获取第一配置信息的方式还有多种,比如,可以预先将第一配置信息配置在第二通信装置侧。再比如,第一通信装置可以跟第二通信装置协商,确定出第一配置信息。再比如,第一通信装置可以接收其他装置发送的第一配置信息。
S806,定位服务器向第一通信装置发送第一请求位置信息的消息。第一请求位置信息的消息用于指示第一通信装置上报测量值。
第一请求位置信息的消息可以称为request location information。
例如,一种可能的定位架构下,接入和移动性管理功能(Access and Mobility Management Function,AMF)接收网络中其它网元发起的关于终端设备的服务请求,AMF向LMF发送关于该终端设备的定位请求,LMF接收来自AMF的定位请求,发起对终端设备的定位,确定该终端设备的定位信息。LMF发起对终端设备的定位后,可以指示第二通信装置发送第一参考信号,并通过S806指示终端设备上报测量值。
S807,第二通信装置根据第二配置信息,在多个时域资源向第一通信装置发送第一参考信号。用于发送第一参考信号的S1个时域资源中的两个时域资源对应的两个用于发送第一参考信号的端口不同。
在S807中,第二通信装置可以对用于发送第一参考信号的多个端口进行通道校准,使得该多个端口的初相一致,之后,再通过该多个端口发送第一参考信号。如此,可以提高基于该多个端口发送的第一参考信号得到的相位差的准确性,进而可以提高离开角的精度。
另外,当第二配置信息包括有参数c2,一种可能的实施方式中,第二通信装置可以根据第二配置信息确定出第一参考信号对应的频域资源,并在该频域资源上发送第一参考信号。
当第二配置信息包括有参数c3,一种可能的实施方式中,针对S1个时域资源中的时域资源,第二通信装置可以根据第二配置信息将该时域资源对应的端口确定为:在该时域资源发送信号时所采用的端口,继而在该时域资源通过该端口发送信号。
S807的其他相关内容可以参见前述S202的相关内容,S807可以为S202的一种可能的实施方式。
S808,第一通信装置接收第一参考信号,确定S2个时域资源对应的多个第一相位信息。
S809,第一通信装置向定位服务器发送提供定位信息的第一消息。
提供定位信息的第一消息包括第二相位信息(参数f1),还可以包括参数f2、参数f3或参数f4中的至少一项。参数f2、参数f3或参数f4中的至少一项可以随参数f1一起上报,也可以单独上报,本申请实施例不做限制。
一种可能的实施方式中,前述S806中,请求位置信息的消息还可以指示第一通信装置上报第二相位信息,如此,第一通信装置基于该请求位置信息的消息在后续S808之后确定出第二相位信息进行上报。
参数f1,第二相位信息。
本申请实施例中,第二相位信息包括以下参数f1-1、参数f1-2或参数f1-3中的至少一项:
参数f1-1,多个第一相位信息中的至少两个第一相位信息。
一种可能的实施方式中,当第一通信装置上报的第二相位信息包括至少两个第一相位信息时,第一通信装置可以以数列(或数组)的形式上报该至少两个第一相位信息。
比如,至少两个第一相位信息在第二相位信息中的排序,与至少两个第一相位信息对应的时域资源的排序匹配。这种情况下,第一通信装置可以依据用于估计第一相位信息的信号的接收顺序对多个第一相位信息进行排序,并将排序后的多个第一相位信息进行上报。
再比如,至少两个第一相位信息在第二相位信息中的排序,与至少两个第一相位信息对应的端口的标识的排序匹配。该示例中,第二通信装置侧用于发送第一参考信号的多个端口之间可以存在一个预设的排序关系,比如上述图6中第一射频通道43对应的端口存在一个预设的序列关系,该序列依次为:端口441、端口442、端口443、端口444、端口445、端口446、端口447、端口448。第一通信装置可以根据接收到的信号对应的端口,确定出根据接收到的信号确定的多个第一相位信息与端口之间的对应关系,进而可以根据端口的标识的序列关系,发送多个第一相位信息。
再比如,第一通信装置还可以根据端口的标识的序列关系,对得到的多个第一相位信息重新排序,并将重新排序后的多个第一相位信息上报。举个例子,第二通信装置发送第一参考信号所采用的端口依次为:端口441、端口442、端口441、端口443、端口441、端口444、端口441、端口445;这种情况下,第一通信装置可以依次得到以下内容:端口441对应的第一相位信息、端口442对应的第一相位信息、端口441对应的第一相位信息、端口443对应的第一相位信息、端口441对应的第一相位信息、端口444对应的第一相位信息、端口441对应的第一相位信息、端口445对应的第一相位信息。进一步,第一通信装置可以对依次得到的多个第一相位信息进行重新排序,排序后的第一相位信息可以为:端口441对应的一个或多个第一相位信息、端口442对应的第一相位信息、端口443对应的第一相位信息、端口444对应的第一相位信息和端口445对应的第一相位信息。
又一种可能的实施方式中,当第一通信装置上报的第二相位信息包括至少两个第一相位信息时,第一通信装置可以通过多次上报的方式上报该至少两个第一相位信息,每次可以上报一个或多个第一相位信息。
一种可能的实施方式中,第一通信装置可以在S2个时域资源中的每个时域资源确定出一个第一相位信息。针对多个第一相位信息中的一个第一相位信息,第一相位信息根据在第一相位信息对应的时域资源接收到的信号到达第一通信装置的任意传播路径确定的,该传播路径可以为常规径,也可以为额外径,比如可以为首径、直达径、反射径或最强径等。比如,第一通信装置可以根据S2个时域资源中每个时域资源中接收到的信号的首径估计第一相位信息。
参数f1-2,多个第一相位信息对应的至少一个相位差信息。
相位差信息可以根据两个第一相位信息确定,比如可以将两个第一相位信息指示的相位相减,从而得到一个相位差信息。
一种可能的实施方式中,当第一通信装置上报的第二相位信息包括多个相位差信息的情况下,第一通信装置可以以数列(或数组)的形式上报该多个相位差信息。
比如,至少两个相位差信息在第二相位信息中的排序,与相位差信息对应的时域资源的排序匹配。这种情况下,第一通信装置可以依据用于估计第一相位信息的信号的接收顺序对多个第一相位信息进行排序,并依序计算相邻的两个第一相位信息对应的相位差信息, 之后将得到的具有排序关系的多个相位差信息进行上报。
再比如,至少两个相位差信息在第二相位信息中的排序,与相位差信息对应的端口的标识的排序匹配。该示例中,第二通信装置侧用于发送第一参考信号的多个端口之间可以存在一个预设的排序关系,比如上述图6中第一射频通道43对应的端口存在一个预设的序列关系,该序列依次为:端口441、端口442、端口443、端口444、端口445、端口446、端口447、端口448。第一通信装置可以根据接收到的信号对应的端口,确定出根据接收到的信号确定的多个第一相位信息与端口之间的对应关系,进而可以根据端口的标识的序列关系,确定出多个第一相位信息的排序,进一步依序计算相邻的两个第一相位信息对应的相位差信息,之后将得到的具有排序关系的多个相位差信息进行上报。
举个例子,第二通信装置发送第一参考信号所采用的端口依次为:端口441、端口442、端口443、端口444、端口445、端口446、端口447、端口448。这种情况下,第一通信装置可以依次得到以下内容:端口441对应的第一相位信息、端口442对应的第一相位信息、端口443对应的第一相位信息、端口444对应的第一相位信息、端口445对应的第一相位信息、端口446对应的第一相位信息、端口447对应的第一相位信息、端口448对应的第一相位信息。进一步,第一通信装置可以依序得到如下内容:端口442和端口441对应的相位差信息、端口444和端口443对应的相位差信息、端口446和端口445对应的相位差信息,以及端口448和端口447对应的相位差信息。进一步,第一通信装置可以将这些相位差信息以数列(或数组)的方式上报。
再举个例子,第二通信装置发送第一参考信号所采用的端口依次为:端口441、端口442、端口441、端口443、端口441、端口444、端口441、端口445;这种情况下,第一通信装置可以依次得到以下内容:端口441对应的第一相位信息(信息a1)、端口442对应的第一相位信息(信息a2)、端口441对应的第一相位信息(信息a3)、端口443对应的第一相位信息(信息a4)、端口441对应的第一相位信息(信息a5)、端口444对应的第一相位信息(信息a6)、端口441对应的第一相位信息(信息a7)、端口445对应的第一相位信息(信息a8)。进一步,第一通信装置可以依序得到如下内容:端口442和端口441对应的相位差信息(根据信息a1和信息a2得到)、端口443和端口441对应的相位差信息(根据信息a3和信息a4得到)、端口444和端口441对应的相位差信息(根据信息a5和信息a6得到),以及端口445和端口441对应的相位差信息(根据信息a7和信息a8得到)。进一步,第一通信装置可以将这些相位差信息以数列(或数组)的方式上报。可以看出,该方案中,端口441可以作为参考端口,端口441对应的多个第一相位信息可以用于进行通道校准,从而可以进一步提高离开角的精度。
又一种可能的实施方式中,当第一通信装置上报的第二相位信息包括至少两个相位差信息时,第一通信装置可以通过多次上报的方式上报该至少两个相位差信息,每次可以上报一个或多个相位差信息。
参数f1-3,多个相位差信息的均值信息。
多个相位差信息的均值信息可以通过对多个相位差信息求平均的方式得到,也可以通过对多个相位差信息进行加权求平均的方式得到,具体方式有多种,本申请实施例不做限制。
参数f2,第二通信装置接收第二相位信息的可靠性信息。
第二相位信息的可靠性信息包括多个第一相位信息对应的标准差信息和/或方差信息。
参数f3,第二通信装置接收第一指示信息,其中,第一指示信息指示第二相位信息中的参数与用于发送第一参考信号的端口的标识的对应关系。
当第一离开角信息中包括多个第一相位信息,第二指示信息可以指示该多个第一相位信息中的每个第一相位信息对应的端口的标识。当第一离开角信息中包括多个相位差信息,第二指示信息可以指示该多个相位差信息中的每个相位差信息对应的端口的标识。一个相位差信息对应的端口是指计算该相位差的信息所依据的两个第一相位信息对应的端口。
第一指示信息可以包括指示出第一通信装置对第一参考信号进行测量的测量方式的指示信息。测量方式有多种,比如第一通信装置可以是按照第二通信装置侧发送第一参考信号的过程中切换端口的顺序依序得到多个第一相位信息,继而对得到的多个第一相位信息的序列中的相邻两个第一相位信息进行计算,得到多个具有排序关系相位差信息。
再比如,第一通信装置可以是按照第二通信装置侧发送第一参考信号的过程中切换端口的顺序依序得到多个第一相位信息,之后依据端口标识的预设的排序关系对得到的第一相位信息进行重排序,继而对重排序后的多个第一相位信息的序列中的相邻两个第一相位信息进行计算,得到多个具有排序关系相位差信息。
参数f4,第二通信装置的标识。
第二通信装置的标识可以为物理小区索引(physical cell index)PCI、小区全局标识(cell global identity,CGI)中的一个或多个。第二通信装置的标识可以用于指示第一通信装置得到的第二相位信息是基于哪个装置发出的参考信号所确定的。
S810,定位服务器向第二通信装置发送定位信息请求消息,定位信息请求消息包括第二相位信息(参数f1),还可以包括参数f2、参数f3或参数f4中的至少一项。
相对应的,第二通信装置接收来自LMF的定位信息请求消息。
LMF可以通过NRPPa向第二通信装置发送定位信息请求消息。定位信息请求消息也可以替换为:TRP信息请求信息、或定位信息请求消息、或测量请求消息。
需要说明的是,第一通信装置可以接收多个第二通信装置下发的参考信号,为了更清楚的描述本申请实施例提供的方案,本申请实施例中对一个第二通信装置进行了详细描述,当存在多个第二通信装置时,其他第二通信装置侧的方案也可以参见本申请实施例描述的第二通信装置侧的方案。进一步,LMF也可以向各个第二通信装置分别反馈定位信息请求消息,针对各个第二通信装置,该第二通信装置中可以包括有基于该第二通信装置的参考信号进行测量得到的测量值。
S811,第二通信装置根据得到的第二相位信息,确定第一参考信号的离开角的信息。
第二通信装置还可以接收上述参数f2、参数f3或参数f4中的至少一项。若第二通信装置还接收到参数f2,则第二通信装置可以了解自身确定出的离开角的可靠性,进而可以向定位服务器反馈该离开角的可靠性。若第二通信装置还接收到参数f3,则可以根据参数f3确定出接收到的第二相位信息中的参数对应的端口,从而可以依据端口之间的间距以及第二相位信息确定离开角。进行计算,从而可以提高离开角的精度。若第二通信装置还接收到参数f4,则第二通信装置可以基于上述参数f4对接收到的参数进行校验,以确定接收到的第二相位信息是否是依据自身发送的第一参考信号确定的。
当第二相位信息包括多个第一相位信息,第二通信装置可以对多个第一相位信息进行计算,从而得到相位差信息,进而根据相位信息确定第一参考信号的离开角。若第二相位信息包括相位差信息或相位差信息的均值信息,则第二通信装置可以根据相位差信息或相 位差信息的均值信息计算第一参考信号的离开角。根据相位差信息计算第一参考信号的离开角有多种方式,本申请实施例示例性提供一种可能的方式,根据相位差信息的均值信息确定第一参考信号的离开角的方式与之类似,不再赘述。
图9示例性示出了一种根据相位差信息确定第一参考信号的离开角的示意图,图9中以第二通信装置为基站101,以第一通信装置为终端设备103为例进行展示。如图9所示,基站101通过端口441发出信号1,基站101通过端口442发出信号2,端口441和端口442之间间隔一定的距离,该距离在图9中用d表示。信号1可以为第一参考信号的第一部分,信号2可以为第一参考信号的第二部分。相对应的,终端设备103接收信号1和信号2。终端设备可以通过一个端口接收信号1和信号2,也可以通过多个端口接收信号1和信号2。为了更好的展示离开角与其他参数之间的关系,且由于基站和终端设备之间的距离远远大于端口441和端口442之间的距离,因此基站和终端设备之间的信号传输可以视为远场的场景,因此图9中将信号1和信号2的传输路径以平行线为例进行展示。结合图9可以看出离开角与相位差信息的关系,可以通过公式(3)计算第一参考信号的离开角:
Figure PCTCN2022142540-appb-000014
在公式(3)中,d为端口441和端口442之间的间距;
θ为第一参考信号的离开角;
ψ为信号1和信号2在第一通信装置侧对应的相位差;
λ为第一参考信号的波长;
π为常数,指圆周率。
S812,第二通信装置向定位服务器发送定位信息响应消息,定位信息响应消息包括第二通信装置发送的第一参考信号的离开角的信息。
相对应的,定位服务器接收来自第二通信装置的定位信息响应消息。一种可能的实施方式中,定位服务器可以接收来自多个第二通信装置的多个离开角的信息。
第二通信装置可以通过NRPPa向LMF发送定位信息响应消息。定位信息响应消息可以替换为:TRP信息响应信息、或测量响应消息等。
S813,定位服务器根据接收到的多个第二通信装置的离开角的信息确定第一通信装置的位置信息。
图10示例性示出了本申请实施例提供的一种基于AOD进行定位方案的示意图,图10中以第二通信装置为基站,第一通信装置为终端设备为例进行展示,如图10所示,至少两个第二通信装置(基站)可以向第一通信装置(终端设备103)发送参考信号。针对每个第二通信装置,第一通信装置可以确定出该第二通信装置发出的参考信号对应的第二相位信息。进一步,第一通信装置发送第二相位信息。
进一步,第二通信装置基于第二相位信息计算出该参考信号对应的AOD,比如基站101向终端设备103发送的参考信号对应的AOD1,以及基站102向终端设备103发送的参考信号对应的AOD2。
进一步,定位服务器可以结合该至少两个参考信号对应的AOD(AOD1和AOD2)计算终端设备的位置。比如,定位服务器可以根据各个AOD形成以各个基站位置为起点且角度偏转量为AOD的多条射线,多条射线相交的交点就是终端设备所在的位置。
上述图8中仅仅示例性示出了一种可能的实施方案,在具体实施中,还可以存在其他 可能的实施方式,比如根据各个第二通信装置的第二相位信息确定各个第二通信装置对应的离开角信息的步骤也可以由定位服务器执行,如此,也可以减少定位服务器与各个第二通信装置之间传输信令的数量,降低时延,加快对第一通信装置定位的速度。
值得说明的是,本申请实施例中,定位服务器是可以用于对第一通信装置发起定位的网元,例如可以是NR系统中的定位管理功能(location management function,LMF),还可以是其他系统的可以发起对第一通信装置进行定位的网元,本申请实施例中以定位服务器为LMF为例进行示例。
基于上述内容,图11示例性示出了本申请实施例提供又一种确定AOD的方法流程示意图,图11中还包括第三通信装置,第三通信装置可以为服务基站。与前述图8提供的方案基本类似。不同之处在于:图11所提供的方案中,在S808之后可以执行S1101-S1105:
S1101,第一通信装置向第三通信装置发送第二消息。第二消息可以包括第二通信装置对应的第二相位信息。
相对应的,第三通信装置可以接收来自第一通信装置的第二相位信息。
一种可能的实施方式中,第一通信装置可以通过无线资源控制(radio resource control,RRC)向第三通信装置发送第二消息。
一种可能的实施方式中,第一通信装置还可以向第三通信装置发送参数f2、参数f3或参数f4中的至少一项。相关内容参见前述描述,在此不再赘述。
又一种可能的实施方式中,第三通信装置可以接收来自第一通信装置的多个第二通信装置对应的多个第二相位信息。
S1102,定位服务器向第三通信装置发送多个第二通信装置的端口配置信息。一个第二通信装置对应的端口配置信息包括端口之间的间距。
定位服务器可以通过NRPPa向第三通信装置发送第三消息,第三消息包括多个第二通信装置的端口配置信息。第三消息可以为TRP信息请求消息、定位信息请求消息或测量请求消息等。
相对应的,第三通信装置接收来自定位服务器的多个第二通信装置的端口配置信息。
针对S1102中涉及到的多个第二通信装置中的第二通信装置,定位服务器向第三通信装置发送的该第二通信装置的端口配置信息可以参见前述参数d的描述,在此不再赘述。
又一种可能的实施方式中,在S1102中,定位服务器还可以向第三通信装置发送参数c1、参数c2、参数c3或参数c4中的至少一项。参数c1、参数c2、参数c3和参数c4的相关内容参见前述描述,在此不再赘述。
又一种可能的实施方式中,在S1102中,定位服务器还可以向第三通信装置发送参数e1、参数e2、参数c2、参数c3或参数c4中的至少一项。参数e1、参数e2、参数c2、参数c3或参数c4的相关内容参见前述描述,在此不再赘述。
S1102的步骤可以在S1101之前,比如可以在S803之后且在S804之前。
S1103,第三通信装置根据多个第二通信装置对应的第二相位信息,以及多个第二通信装置的端口配置信息,确定出多个第二通信装置对应的离开角信息。
S1104,第三通信装置向定位服务器发送多个第二通信装置对应的多个离开角信息。
相对应的,定位服务器接收多个第二通信装置对应的多个离开角信息。
S1104中,第三通信装置可以通过NRPPa向定位服务器发送一条消息,该消息包括多 个离开角信息,该消息可以称为TRP信息响应信息、或定位信息响应消息、或测量响应消息。
S1105,定位服务器根据多个第二通信装置的离开角的信息确定第一通信装置的位置信息。
S1105的内容可以参见前述S813的相关内容,在此不再赘述。
通过上述内容可以看出,图11提供的方案中,不需要通过定位服务器将各个第二通信装置对应的第二相位信息分发给各个第二通信装置,而是由第一通信装置将各个第二通信装置对应的第二相位信息统一发送给第三通信装置,进而由第三通信装置结合各个第二通信装置的端口配置信息计算出多个第二通信装置的离开角信息,进而将多个第二通信装置的离开角信息发送给定位服务器。一方面,当第三通信装置为服务基站,第一通信装置向第三通信装置上报第二相位信息的速度,相比向定位服务器上报第二相位信息的速度更快。另一方面,由于定位服务器可以不必分别向各个第二通信装置发送各个第二相位信息,因此可以加快对第一通信装置进行定位的速度。
上述图11中仅仅示例性示出了一种可能的实施方案,在具体实施中,还可以存在其他可能的实施方式,比如各个第二通信装置的端口配置信息可以由定位服务器发送给第三通信装置,也可以由各个第二通信装置发送给第三通信装置,也可以由第一通信装置发送给第三通信装置,比如可以在S1101中随着第二相位信息一起发送。
基于上述内容,图12示例性示出了本申请实施例提供又一种确定AOD的方法流程示意图,与前述图4提供的方案基本类似,不同之处在于:图12所提供的方案中,在S204之后还可以执行S2052:
S2052:第一通信装置发送第一离开角信息。
本申请实施例中,第一离开角信息包括以下参数f5、参数f6或参数f7中的至少一项:
参数f5,多个第一相位信息对应的至少一个离开角的信息。
至少一个离开角的信息是根据多个第一相位信息和发送第一参考信号的端口间的间距确定的。根据多个第一相位信息确定离开角的信息的方式可以参见前述内容,在此不再赘述。
一种可能的实施方式中,当第一通信装置上报的第一离开角信息包括多个离开角的信息的情况下,第一通信装置可以以数列(或数组)的形式上报该多个离开角的信息。
比如,多个离开角的信息在第一离开角信息中的排序,与多个第一相位信息对应的时域资源的排序匹配。这种情况下,第一通信装置可以依据用于估计第一相位信息的信号的接收顺序对多个第一相位信息进行排序,并依序计算相邻的两个第一相位信息对应的相位差信息,进而再依序根据每个相位差信息得到离开角的信息,之后将得到的具有排序关系的多个离开角的信息,进行上报。
再比如,多个离开角的信息在第一离开角信息中的排序,与多个第一相位信息对应的端口的标识的排序匹配。该示例中,第二通信装置侧用于发送第一参考信号的多个端口之间可以存在一个预设的排序关系,比如上述图6中第一射频通道43对应的端口存在一个预设的序列关系,该序列依次为:端口441、端口442、端口443、端口444、端口445、端口446、端口447、端口448。第一通信装置可以根据接收到的信号对应的端口,确定出根据接收到的信号确定的多个第一相位信息与端口之间的对应关系,进而可以根据端口的 标识的序列关系,确定出多个第一相位信息的排序,进一步依序计算相邻的两个第一相位信息对应的相位差信息,进而再依序根据每个相位差信息得到离开角的信息,之后将得到的具有排序关系的多个离开角的信息,进行上报。
举个例子,第二通信装置发送第一参考信号所采用的端口依次为:端口441、端口442、端口443、端口444、端口445、端口446、端口447、端口448。这种情况下,第一通信装置可以依次得到以下内容:端口441对应的第一相位信息、端口442对应的第一相位信息、端口443对应的第一相位信息、端口444对应的第一相位信息、端口445对应的第一相位信息、端口446对应的第一相位信息、端口447对应的第一相位信息、端口448对应的第一相位信息。进一步,第一通信装置可以依序得到如下内容:端口442和端口441对应的相位差信息、端口444和端口443对应的相位差信息、端口446和端口445对应的相位差信息,以及端口448和端口447对应的相位差信息。进一步,第一通信装置依序根据每个相位差信息得到离开角的信息,之后将得到的具有排序关系的多个离开角的信息,进行上报。
再举个例子,第二通信装置发送第一参考信号所采用的端口依次为:端口441、端口442、端口441、端口443、端口441、端口444、端口441、端口445;这种情况下,第一通信装置可以依次得到以下内容:端口441对应的第一相位信息(信息a1)、端口442对应的第一相位信息(信息a2)、端口441对应的第一相位信息(信息a3)、端口443对应的第一相位信息(信息a4)、端口441对应的第一相位信息(信息a5)、端口444对应的第一相位信息(信息a6)、端口441对应的第一相位信息(信息a7)、端口445对应的第一相位信息(信息a8)。进一步,第一通信装置可以依序得到如下内容:端口442和端口441对应的相位差信息(根据信息a1和信息a2得到)、端口443和端口441对应的相位差信息(根据信息a3和信息a4得到)、端口444和端口441对应的相位差信息(根据信息a5和信息a6得到),以及端口445和端口441对应的相位差信息(根据信息a7和信息a8得到)。进一步,第一通信装置依序根据每个相位差信息得到离开角的信息,之后将得到的具有排序关系的多个离开角的信息,进行上报。可以看出,该方案中,端口441可以作为参考端口,端口441对应的多个第一相位信息可以用于进行通道校准,从而可以进一步提高离开角的精度。
又一种可能的实施方式中,当第一通信装置上报的第一离开角信息包括至少两个离开角的信息时,第一通信装置可以通过多次上报的方式上报该至少两个离开角的信息,每次可以上报一个或多个离开角的信息。
参数f6,多个第一相位信息对应的至少一个第一离开角均值信息。
至少一个第一离开角均值信息是根据至少一个离开角的信息中的至少两项确定的。
第一离开角均值信息可以通过对多个离开角的信息求平均的方式得到,也可以通过对多个离开角的信息进行加权求平均的方式得到,具体方式有多种,本申请实施例不做限制。
参数f7,多个第一相位信息对应的至少一个第二离开角均值信息。
至少一个第二离开角均值信息是根据多个第一相位信息对应的相位差信息的均值信息,以及端口间距均值信息确定的。
多个相位差信息的均值信息的获取方式可以参考前述内容,在此不再赘述。端口间距均值是根据发送第一参考信号的多个端口间的间距的均值确定的。
可以看出,在图12所示的方案中,第一通信装置可以根据第二通信装置侧用于发送 第一参考信号的端口之间的间距计算出第一离开角信息。值得注意的是,第一通信装置可以获取端口之间的间距,若未获取,也可以根据预设端口间距值进行计算,比如,预设的端口间距值可以为半波长。
需要说明的是S2051和S2052可以在一个方案中均执行,比如,第一通信装置上报的测量值包括第一离开角信息,也包括第二相位信息。又一种可能的实施方式中,S2051和S2052可以择一选用:比如第一通信装置上报的测量值包括第一离开角信息,而不包括第二相位信息,再比如,第一通信装置上报的测量值不包括第一离开角信息,而包括第二相位信息。
基于上述内容,图13示例性示出了本申请实施例提供又一种确定AOD的方法流程示意图,与前述图8提供的方案基本类似,不同之处在于:图13所提供的方案中,在S808之后,执行S1201和S1202:
S1201,第一通信装置向定位服务器发送提供定位信息的第四消息。提供定位信息的第四消息包括第一离开角信息,还可以包括以下参数g1、参数g2或参数g3中的至少一项。
参数g1,第一离开角信息的可靠性信息。
第一离开角信息的可靠性信息包括多个第一相位信息对应的多个离开角的信息的标准差信息和/或方差信息。
参数g2,第二指示信息,第二指示信息指示第一离开角信息中的参数与用于发送第一参考信号的端口的标识的对应关系。
当第一离开角信息中包括多个离开角的信息,第二指示信息可以指示该多个离开角的信息中的每个离开角的信息对应的端口的标识。一个离开角的信息对应的端口是指计算该离开角的信息所依据的相位差信息对应的端口。
第二指示信息可以包括指示出第一通信装置对第一参考信号进行测量的测量方式的指示信息。测量方式有多种,具体可以参见前述参数f3的相关介绍,在此不再阐述。
参数g3,第二通信装置的标识。
参数g3可以参见前述参数f4的相关内容,在此不再赘述。
S1202,定位服务器根据接收到的多个第二通信装置对应的第一离开角信息确定第一通信装置的位置信息。
在图13所示的方案中,第一通信装置可以根据第二通信装置侧用于发送第一参考信号的端口之间的间距计算出第一离开角信息,第一通信装置可以通过前述S805从定位服务器获取端口之间的间距,而定位服务器可以通过前述S803获取端口之间的间距。另一种可能的实施方式中,若第一通信装置未从其他装置侧获取到第二通信装置中用于发送第一参考信号的端口的间距,也可以根据预设端口间距值进行计算,比如,预设的端口间距值可以为半波长。
在图13所示的实施方式中,前述S806中,请求位置信息的消息还可以指示第一通信装置上报离开角信息,如此,第一通信装置基于该请求位置信息的消息在后续S808之后计算出第一离开角信息并进行上报。
需要说明的是,在图13提供的方案中,提供定位信息的第四消息可以不包括参数f1(第二相位信息),也可以不包括参数f2、参数f3和参数f4。又一种可能的实施方式中,提供定位信息的第四消息也可以包括参数f1(第二相位信息),也可以包括参数f2、参数 f3或参数f4中的一项或多项,本申请实施例不做限制。
基于上述内容,图14示例性示出了本申请实施例提供一种确定AOA的方法流程示意图,为了更清楚的介绍本申请实施例提供的方案,图14从交互的角度进行介绍。该方法的执行主体可以为第一通信装置和第二通信装置。
本申请实施例图14提供的确定AOA的方案可以与前述确定的AOD的方案(图4、图8、图11、图12和图13)联合使用,也可以单独使用,本申请实施例不做限制。
第一通信装置可以为终端设备(比如图1a或图1b中的终端设备103,或图1c中的终端设备),或者为终端设备内部的模块、单元或芯片,也可以为网络设备(比如图1c中的接入网设备),或者为网络设备内部的模块、单元或芯片。第二通信装置可以为终端设备(比如图1a中的终端设备104或终端设备105,或图1c中的终端设备),或者为终端设备内部的模块、单元或芯片,也可以为网络设备(比如图1b中的基站101或基站102,或图1c中的接入网设备),或者为网络设备内部的模块、单元或芯片。第一通信装置和第二通信装置可以灵活选择,具体可以参见前述图8的相关描述,不再赘述。
如图14所示,该AOA确定方法包括:
S1401,第一通信装置发送第二参考信号。
S1401中,第一通信装置可以通过一个端口发送第二参考信号的全部。第一通信装置也可以通过多个端口同时执行第二参考信号的发送。如此,可以降低AOA确定方案对第一通信装置的硬件要求,从而可以降低第一通信装置的成本。
S1402,第二通信装置接收第二参考信号,确定多个时域资源接收的第二参考信号对应的多个第三相位信息。
S1403,第二通信装置根据多个第三相位信息确定第二参考信号的到达角。
为了方便区分,本申请实施例中可以将第二通信装置侧用于确定相位信息的多个时域资源称为S3个时域资源,S3为大于1的整数。
S3个时域资源与多个第三相位信息之间可以有多种可能地对应关系。一种可能的实施方式中,第二通信装置可以在S3个时域资源中的一个或多个时域资源确定出一个第三相位信息。比如,第二通信装置可以确定出S3个时域资源对应的S3个第三相位信息,多个第三相位信息与S3个时域资源一一对应。再比如,第二通信装置可以确定出S3个时域资源中时域资源对应的多个(可能少于S3个)第三相位信息,比如S3为8,第二通信装置可以确定出8个时域资源对应的6个第三相位信息,比如可以根据8个时域资源中的6个时域资源接收到的信号分别确定出6个第三相位信息;再比如,可以根据8个时域资源中的5个时域资源接收到的信号分别确定出5个第三相位信息,根据该8个时域资源中剩余的3个时域资源接收到的信号确定出1个第三相位信息。
一种可能的实施方式中,第二通信装置可以在S3个时域资源中的一个时域资源确定出一个第三相位信息。针对多个第三相位信息中的第三相位信息,第三相位信息根据在第三相位信息对应的时域资源接收到的信号到达第二通信装置的任意传播路径确定的,该传播路径可以为常规径和额外径,比如可以为首径、直达径、反射径或最强径等。比如,第二通信装置可以根据S3个时域资源中每个时域资源中接收到的信号的首径估计第三相位信息。
由于第二通信装置在多个时域资源确定出多个第三相位信息,继而可以根据该多个第 三相位信息确定参考信号的AOA。可以看出,本申请可以提供一种基于相位信息确定AOA的方案从而当需确定用于定位的角度的情况下,可以多一种可供选择的方案。
为了进一步说明本申请实施例可以带来的有益效果,下面结合前述图5a和图5b进行进一步的介绍。
请参阅图5a,一种可能的用于确定AOA的方案中,第一通信装置可以向第二通信装置发送探测参考信号(Sounding reference signal,SRS)。第二通信装置通过多个射频通道同时接收该SRS,并得到多个射频通道对应的相位信息。继而第二通信装置基于相位信息以及射频通道对应的端口间距计算出参考信号的AOA。该方案通常需要第二通信装置配置多个射频通道。第二通信装置若配置较少的射频通道,比如仅配置1个射频通道,则该方案无法使用。而且实际应用中,为了降低成本,通信装置的射频通道的数量往往配置的较少,但是往往会配置较多的物理的端口。
而本申请实施例提供的一种可能的方案中,可以在射频通道和端口之间设置开关,针对一次数据传输,射频通道并不是必须通过该射频通道连接的所有端口进行该次数据传输,而是可以通过开关选择该射频通道对应的所有端口中的一个或多个端口进行数据传输。第二通信装置的结构可以参阅图5b。
在上述S1402中,一种可能的实施方式中,第二通信装置在第五时域资源接收到第二参考信号的第一部分,根据第二参考信号的第一部分确定多个第三相位信息中的一个第三相位信息。第二通信装置在第六时域资源接收到第二参考信号的第二部分,根据第二参考信号的第二部分确定多个第三相位信息中的又一个第三相位信息。
也就是说,在上述S1402中,第二通信装置在第一参考信号的传输过程中可以通过开关选择所需采用的端口。从而,第二通信装置可以先后通过一个射频通道连接的多个端口接收信号。第二通信装置通过测量得到该多个端口中至少两个端口对应的多个第三相位信息。进而,可以由第二通信装置或者其他装置(比如定位服务器)等设备结合多个第三相位信息以及该至少两个端口中端口之间的间距计算出AOA。
通过上述内容可以看出,本申请实施例提供的方案可以在端口的粒度上计算对应的相位信息(端口的数量的多少可以影响相位信息的精度),并得到AOA,相比在射频通道的粒度上计算AOA(AOA的精度取决于射频通道的数量)的方案,本申请实施例可以在保证AOA计算精度的前提下,降低对第二通信装置侧射频通道的数量的要求,从而可以降低第二通信装置的成本。
在上述S1402中,第二通信装置通过第三端口在第五时域资源接收第二参考信号的第一部分。第二通信装置通过第四端口在第六时域资源接收第二参考信号的第二部分。
需要注意的是,第二通信装置根据第二参考信号的第一部分确定出一个第三相位信息的步骤发生在接收到第二参考信号的第一部分之后,第二通信装置接收到第二参考信号的第二部分之前;也可以发生在第二通信装置接收到第二参考信号的第二部分之后。
由于第二参考信号的第一部分和第二部分是通过第二通信装置的不同的端口接收的,因此第二通信装置根据不同端口接收的信号测量得到多个相位信息后,可以结合多个相位信息的相位差信息以及端口之间的间距计算出到达角。另一方面,由于第二通信装置通过不同的端口接收同一个参考信号的不同部分,因而可以减少用于计算到达角的参考信号的 数量,从而可以节约网络资源,减少时延。
需要说明的是,本申请实施例中的“第三端口”是指逻辑端口,“第三端口”可以包括一个或多个物理端口。“第四端口”是指逻辑端口,“第四端口”可以包括一个或多个物理端口。第三端口包括的物理端口中存在至少一个物理端口,该物理端口与第四端口包括的所有物理端口中的每个都不同;或者,第四端口包括的物理端口中存在至少一个物理端口,该物理端口与第三端口包括的所有物理端口中的每个都不同。第三端口包括的物理端口与第四端口包括的物理端口可以有重叠,也可以没有重叠。“第三端口”和“第四端口”涉及到的相关内容可以参见“第一端口”和“第二端口”的相关描述,在此不再赘述。
在一种可能的实施方式中,第三端口和第四端口可以与同一个射频通道具有选择性连接关系。比如第三端口和第四端口均为与第二射频通道具有选择性连接关系的端口。第三端口和第四端口。第二通信装置通过第二射频通道连接的第四端口在第六时域资源接收第二参考信号的第二部分。
又一种可能的实施方式中,第二通信装置还可以通过多个射频通道的多个端口接收第二参考信号,举个例子,第二通信装置可以通过第二射频通道的第三端口以及第三射频通道的一个或多个端口接收第一参考信号的第一部分,第二通信装置可以通过第二射频通道的第四端口以及其他射频通道(比如第三射频通道)的一个或多个端口接收第一参考信号的第二部分。为了更清楚的介绍本申请实施例提供的方案,本申请实施例中对于用于接收第二参考信号的多个射频通道中的第二射频通道进行介绍。
图15示例性示出了图5b中第二射频通道53通过开关55连接端口阵列54中的端口的示意图,图15中以第二射频通道53连接8个物理的端口为例进行展示,该8个物理的端口分别为:端口541、端口542、端口543、端口544、端口545、端口546、端口547和端口548。结合图15举个例子,第三端口比如可以为端口541,第四端口比如可以为端口542。再比如,第三端口比如可以为端口541和端口542,第四端口比如可以为端口542和端口543。再比如,第三端口比如可以为端口541和端口542,第四端口比如可以为端口阵列54中的端口547和端口548。
在又一种可能的实施方式中,第三端口和第四端口可以分别为两个射频通道连接的两个端口,比如第三端口为第一射频通道连接的端口,第四端口为第二射频通道连接的端口。
又一种可能的实施方式中,第二通信装置可以通过多个端口在多个时域资源接收来自第一通信装置的多个第二参考信号。比如,第二通信装置可以通过一个端口接收一个第二参考信号,并根据接收到的一个第二参考信号确定出一个第三相位信息;第二通信装置通过另一个端口接收另一个第二参考信号,并根据接收到的该另一个第一参考信号确定出另一个第三相位信息。继而第二通信装置可以至少根据该两个第三相位信息确定出离开角。
本申请实施例中,S3个时域资源与端口的对应关系可以有多种可能的实施方式,比如下述内容示出的实施方式h1、实施方式h2、实施方式h3和实施方式h4。
实施方式h1,用于接收第二参考信号的多个时域资源(也可以称为S3个时域资源)中的两个时域资源对应的两个用于接收第二参考信号的端口不同。
实施方式h1也可以理解为S3个时域资源中的至少两个时域资源对应的端口不同。如此,由于第二通信装置至少通过两个不同的端口接收第二参考信号,因此,第二通信装置可以对通过该至少两个不同的端口接收的信号进行测量,得到至少两个第三相位信息。该 至少两个第三相位信息可以对应至少一个相位差,继而可以基于该相位差确定出到达角。从而针对仅包括一个射频通道,且该射频通道包括至少两个端口的第二通信装置,也可以基于第一通信装置接收的第二参考信号对应的相位信息进行定位,从而降低了基于相位信息进行定位的方案对第二通信装置的硬件要求,从而可以降低第二通信装置的成本。而且,针对射频通道数量较少的第二通信装置,本申请实施例提供的方案还可以提高其对第一通信装置进行定位的精度。
实施方式h2,多个端口中的一个端口对应S3个时域资源中的一个时域资源。
如此,在通过S3个时域资源接收第二参考信号的过程中,一个端口使用一次,如此,第二通信装置可以尽可能通过较多的不同的端口接收第二参考信号,继而第二通信装置可以得到较多的不同的端口对应的第三相位信息。较多的不同的端口对应的第三相位信息可以得到较多的相位差,可以看出,该方案可以增加相位差的数量,进而可以提高到达角的精度。
实施方式h3,多个端口中的一个端口对应S3个时域资源中的多个时域资源。
如此,第二通信装置通过S3个时域资源接收第二参考信号的过程中,一个端口可以使用多次,这种情况下,一方面可以设置一个端口作为参考端口,从而为其他端口提供校准。另一方面,端口复用多次,可以节省该方案所需的端口的数量,从而可以降低对第二通信装置的硬件的要求,从而可以降低第二通信装置的成本。
实施方式h4,S3个时域资源中相邻的两个时域资源对应的两个端口不同。
如此,上述S1402中第二通信装置在通过S3个时域资源接收第二参考信号的过程中在一个时域资源接收信号之后需更换端口,以便在下一个时域资源进行信号的接收。如此,第一通信装置可以基于相邻的两个时域资源接收的信号得到两个有差异的第三相位信息。有差异的两个第三相位信息可以得到一个相位差,当每相邻两个时域资源对应的端口均不同的情况下,可以得到最多的相位差,进而可以提高相位差得到的离开角的精度。
本申请实施例中,S3个时域资源也可以有多种可能的实施方式,比如下述实施方式i1、实施方式i2、实施方式i3和实施方式i4示例性示出了S3个时域资源的几种可能的实施方式。
实施方式i1:S3个时域资源中对应不同端口的两个时域资源之间间隔至少一个时域资源单元。
由于第二通信装置通过至少两个不同的端口接收第二参考信号,因此为了给第二通信装置在接收第二参考信号的过程中执行端口切换留出时间,S3个时域资源中对应不同端口的两个时域资源之间间隔至少一个时域资源单元,如此,第二通信装置可以有时间执行端口切换动作。
实施方式i2:S3个时域资源中相邻的两个时域资源之间间隔至少一个时域资源单元。
如此,当S3个时域资源中相邻的两个时域资源对应的两个端口不同的情况下,第二通信装置可以有时间在S3个时域资源中的相邻的时域资源之间执行端口切换动作。
实施方式i3:S3个时域资源中的相邻时域资源之间间隔Q2个时域资源单元,Q2为正整数。
由于该方案较有规律,而且还可以节省用于指示S3个时域资源的信息所占用的比特位数量。
实施方式i4:一个时域资源单元可以为一个或多个时域符号。
时域资源单元的相关描述可以参见前述内容。实施方式i4中,第二通信装置接收第二参考信号的过程中,可以在时域符号级进行端口的切换,且第二通信装置可以在时域符号级得到多个第三相位信息。相比第二通信装置接收多个第二参考信号,且第二通信装置针对每一个第二参考信号测量得到一个第三相位信息的方案来看,本申请实施例中,由于第二通信装置知道确定第三相位信息的时域资源的信息,因此可以减少依据多个相近的时域符号上接收到的数据确定出一个第三相位信息的现象的发生(由于多个相近的时域符号上接收到的数据可能会被接收端视为一个信号而无法区分开),从而可以使第一通信装置在符号粒度上得到多个第三相位信息,继而可以基于至少一个参考信号的相位信息确定出到达角,从而降低了基于相位信息计算到达角的技术难度,而且也减少了基于行为信息计算到达角的方案的时延。
在一种可能的实施方式中,S3个时域资源为一个时隙(slot)内的S1个时域资源。第二参考信号可以和数据一起传输,也可以单独传输。第二参考信号和数据传输的关系可以参见前述第一参考信号和数据传输的关系,比如前述图7a和图7b示出的第一参考信号和数据传输的关系,在此不再赘述。
S3个时域资源与端口的对应关系可以参见前述S1个时域资源与端口的对应关系,比如前述图7c和图7d示例性示出的S1个时域资源与端口的对应关系的示例,在此不再赘述。
基于上述内容,图16示例性示出又一种确定AOA的方法流程示意图,该方法中以第一通信装置为终端设备,第二通信装置为基站,定位服务器为LMF为例进行示例。如图8所示,该方法包括:
S1601,第二通信装置确定第二参考信号的第四配置信息。
本申请实施例中,第四配置信息可以包括以下参数j1、参数j2、参数j3或参数j4中的至少一项:
参数j1:指示S3个时域资源的信息。
指示S3个时域资源的信息可以包括:S3个时域资源中两个时域资源之间间隔的时域资源单元数量的信息;和/或,S3个时域资源的信息。S3个时域资源也可以称为用于确定多个第三相位信息的多个时域资源。
比如,指示S3个时域资源的信息可以包括:S3个时域资源中相邻时域资源之间间隔的时域资源单元的数量的指示信息。举个例子,指示S3个时域资源的信息可以为指示以下内容的信息:在一个时隙中,每间隔1个(或多个)时域符号执行一次第二参考信号的接收,且第二参考信号的接收的持续时长为1个(或多个)时域符号。当第四配置信息包括S3个时域资源中两个时域资源之间间隔的时域资源单元数量的信息,第二通信装置可以确定出用于接收第二参考信号的S3个时域资源,进而可以在该S3个时域资源接收第二参考信号。
参数j2:第二参考信号对应的频域资源的信息。
第二参考信号在频域上可以占用一个或多个子载波。S3个时域资源中的两个时域资源 对应的频域资源可以相同。又一种可能的实施方式中,S3个时域资源中的所有的时域资源对应的频域资源可以相同,如此,可以使方案较为简单。
第二参考信号对应的频域资源的信息可以参见前述第一参考信号对应的频域资源的信息,在此不再赘述。
参数j3:指示S3个时域资源与多个端口的对应关系的信息。
指示S3个时域资源与多个端口的对应关系的信息可以包括如下内容中的至少一项:
S3个时域资源与多个端口的标识(多个端口的标识可以以数组的形式出现,其中每个数可以指示一个端口的标识);
或者,用于接收参考信号的目标端口切换策略的标识。
其中,可以在第二通信装置侧预设一个或多个用于接收参考信号的端口切换策略,该用于接收参考信号的目标端口切换策略为预设的用于接收参考信号的端口切换策略中的一个。一个用于接收参考信号的端口切换策略包括S3个时域资源对应的多个端口的标识的信息。第二通信装置可以根据用于接收参考信号的目标端口切换策略的标识确定出用于接收参考信号的目标端口切换策略,继而确定出S3个时域资源对应的多个端口的标识。
参数j4:第二参考信号的发送周期。
一种可能的实施方式中,第一通信装置可以周期性发送第二参考信号,以使第二通信装置周期性对第二参考信号进行测量,以实现周期性对第一通信装置进行定位的目的。
第二参考信号的发送周期可以指示出第一通信装置每隔多长时间间隔执行一次第一参考信号的发送。其中,一个时间间隔可以是一个或多个符号、时隙、帧、秒、分钟或小时等。
又一种可能的实施方式中,如果不需要周期性对第一通信装置进行定位,则第四配置信息中可以不配置该发送周期,或者第四配置信息中配置的发送周期的值用于指示第一通信装置发送一次第二参考信号,不会周期性发送第二参考信号。
另外,第二通信装置确定第四配置信息的方式有多种,具体可以与前述确定第二配置信息的方式类似,在此不再赘述。
S1602,定位服务器可以向第二通信装置发送第二TRP信息请求,第二TRP信息请求用于请求获取第五配置信息。
定位服务器可以通过NR定位协议(NR positioning protocol a,NRPPa)向第二通信装置发送第二TRP信息请求。
S1603,第二通信装置向定位服务器发送第二TRP信息响应,第二TRP信息响应中包括第五配置信息。
第二TRP信息响应也可以称为TRP information response。
第五配置信息可以包括上述参数j1、参数j2、参数j3或参数d中的至少一项。参数j1、参数j2、参数j3或参数d的相关内容参见前述内容,不再赘述。
S1604,定位服务器向第一通信发送能力请求消息,能力请求消息用于查询第一通信装置是否支持发送第二参考信号。
一种可能的实施方式中,定位服务器可以通过LPP向第一通信发送能力请求消息。
S1605,第一通信装置向定位服务器发送能力响应消息,能力响应消息用于指示第一 通信装置支持发送第二参考信号。
S1606,定位服务器向第三通信装置发送参考信号配置请求,参考信号配置请求用于请求第三通信装置向第一通信装置发送参考信号的配置信息。
定位服务器可以在接收到来自第一通信装置的指示第一通信装置支持发送第二参考信号的消息后,向第三通信装置发送参考信号配置请求。若定位服务器接收到来自第一通信装置的指示第一通信装置不支持发送第二参考信号的消息,则可以结束该流程,或采用其他定位方式对第一通信装置进行定位。
参考信号的配置信息可以包括第二参考信号的时域资源和/或频域资源。一种可能的实方式中,定位服务器可以基于第二通信装置的配置(比如第五配置信息中的信息)对第二参考信号的时域资源和/或频域资源给出建议,并且把建议发送给第三通信装置。
S1607,第三通信装置向第一通信装置发送第六配置信息,第六配置信息可以包括第二参考信号的时域资源和/或频域资源。
第三通信装置可以基于定位服务器的建议向第一通信装置发送第六配置信息。
一种可能的实施方式中,第六配置信息中的包括的第二参考信号的时域资源可以包括参数k1。第六配置信息还可以包括以下参数k2。
参数k1:指示第一通信装置发送第二参考信号的S4个时域资源的信息。
一种可能的实施方式中,指示S4个时域资源的信息可以包括:S4个时域资源中两个时域资源之间间隔的时域资源单元数量的信息,和/或,S4个时域资源的信息。
当第六配置信息包括S4个时域资源中两个时域资源之间间隔的时域资源单元数量的信息,第一通信装置可以确定出需要发送第二参考信号的S4个时域资源。
举个例子,指示S4个时域资源的信息可以为指示以下内容的信息:在一个时隙中,第一通信装置每间隔1个时域符号执行一次参考信号的发送,且参考信号的发送的持续时长为1个(或多个)时域符号。如此,第一通信装置在发送第一参考信号的过程中,可以每隔一个时域符号执行一次第一参考信号的发送,且持续时长为一个符号(或多个)。
需要注意的是,S4个时域资源可以为连续的一段时域资源,也可以为具有间隔的S4个时域资源,S4个时域资源的分布规律可以与S3个时域资源的分布规律一致,比如S4个时域资源中的相邻两个时域资源间隔1个时域符号。
参数k2:第二通信装置的标识。
第二通信装置的标识可以参考前述内容,在此不再赘述。
值得注意的是,第一通信装置获取第六配置信息的方式有多种,具体可以参见前述获取第一配置信息的方式,在此不再赘述。
S1608,定位服务器向第二通信装置发送第二请求位置信息的消息,第二请求位置信息的消息用于指示第二通信装置上报测量值。
定位服务器向第二通信装置发送的第二请求位置信息的消息可以包括测量方式的指示信息,该测量方式的指示信息可以指示第二通信装置通过端口切换的方式接收第二参考信号,并针对第二参考信号的多个部分分别进行测量,以得到多个第三相位信息。
S1609,第一通信装置发送第二参考信号。
第一通信装置可以在S4个时域资源发送第二参考信号,在S807中,第一通信装置可以在一段连续的时域资源上发送第二参考信号,第一通信装置也可以间隔一些时域资源发送第二参考信号,比如第一通信装置可以每隔一个时域符号执行一次第二参考信号的发送, 且持续时间为一个或多个符号。
S1609第一通信装置发送第二参考信号的步骤可以在S1608之前。
S1610,第二通信装置接收第二参考信号,确定出S3个时域资源接收的第二参考信号对应的多个第三相位信息。
在S808中,第二通信装置可以对用于接收第二参考信号的多个端口进行通道校准,使得该多个端口的初相一致,之后,再通过该多个端口接收第二参考信号。如此,可以提高确定的到达角的精度。
S1611,第二通信装置根据多个第三相位信息确定到达角信息。
第二通信装置可以对多个第三相位信息进行计算,从而得到相位差信息,进而根据相位信息确定第二参考信号的到达角。根据相位差信息计算第二参考信号的到达角有多种方式,本申请实施例示例性提供一种可能的方式。
图17示例性示出了一种根据相位差信息确定第二参考信号的到达角的示意图,如图17,第二通信装置通过端口541接收信号3,通过端口542接收信号4,信号3可以为第二参考信号的第一部分,信号4可以为第二参考信号的第二部分。结合图17可以看出到达角与相位差信息的关系,可以通过公式(4)计算第一参考信号的到达角:
Figure PCTCN2022142540-appb-000015
在公式(4)中,d为端口541和端口542之间的间距;
θ为第二参考信号的到达角;
ψ为信号3和信号4在第二通信装置侧对应的相位差;
λ为第二参考信号的波长;
π为常数,指圆周率。
在一种可能的实施方式中,第一通信装置确定出的信号3和信号4之间的相位差可以包含两部分,一个部分为第二通信装置上通过两个端口分别发送信号3和信号4所引入的两个端口之间的相位差,另一个部分为第二通信装置在发送信号3和信号4的过程中切换端口耗费的时间所引入的相位差。由于相位是随着时间的变化而变化的,因此可以根据第二通信装置在发送信号3和信号4的过程中执行端口切换所耗费的时长,确定出该时长所引入的一部分相位差(比如可以通过(t*(2πc/λ))计算一段时长对应的相位差,其中*表示乘法,t表示时长,c表示光速,λ为信号的波长,π为常数指圆周率)。进而第一通信装置可以从测得的信号3和信号4之间的相位差中将由于端口切换所引入的相位差去除,从而可以使得到的相位差信息更准确。
S1612,第二通信装置向定位服务器发送到达角信息。
相对应的,定位服务器接收来自多个第二通信装置的多个到达角的信息。
第二通信装置可以通过NRPPa向LMF发送到达角的信息。
S1613,定位服务器根据接收到的多个第二通信装置的到达角的信息确定第一通信装置的位置信息。
定位服务器根据多个到达角信息确定第一通信装置的位置信息的方式与根据多个离开角的信息确定第一通信装置的位置信息类似,不再赘述。
上述图8中仅仅示例性示出了一种可能的实施方案,在具体实施中,还可以存在其他可能的实施方式,比如根据各个第二通信装置的第三相位信息确定各个第二通信装置对应的到达角信息的步骤也可以由定位服务器执行。
需要说明的是,在本申请的实施例中,某一网元(例如:A网元)接收来自另一网元(例如:B网元)的信息,可以指A网元直接从B网元接收信息,也可以指A网元经其他网元(例如:C网元)从B网元接收信息。当A网元经C网元从B网元接收信息时,C网元可以对信息进行透传,也可以将信息进行处理,例如:将信息携带在不同的消息中进行传输或者对信息进行筛选,只发送筛选后的信息给A网元。类似的,在本申请的各实施例中,A网元向B网元发送信息,可以指A网元直接向B网元发送信息,也可以指A网元经其他网元(例如:C网元)向B网元发送信息。
本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
需要说明的是,上述各个消息的名称仅仅是作为示例,随着通信技术的演变,上述任意消息均可能改变其名称,但不管其名称如何发生变化,只要其含义与本申请上述消息的含义相同,则均落入本申请的保护范围之内。
根据前述方法,图18为本申请实施例提供的通信装置的结构示意图,如图18所示,该通信装置可以为第一通信装置、第二通信装置或第三通信装置,也可以为芯片或电路,比如可设置于第一通信装置的芯片或电路,再比如可设置于第二通信装置内的芯片或电路,再比如可设置于第三通信装置内的芯片或电路。
该通信装置1801包括处理器1802和收发器1803。
进一步的,该通信装置1801可以包括有存储器1804。图中存储器1804为虚线是进一步标识存储器为可选地意思。
进一步的,该通信装置1801还可以进一步包括总线系统,其中,处理器1802、存储器1804、收发器1803可以通过总线系统相连。
应理解,上述处理器1802可以是一个芯片。例如,该处理器1802可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器1802中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器1802中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1804,处理器1802读取存储器1804 中的信息,结合其硬件完成上述方法的步骤。
应注意,本申请实施例中的处理器1802可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器1804可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。本申请实施例中的存储器的相关描述可以参见前述内容,在此不再赘述。
当通信装置1801为上述第一通信装置,处理器1802用于通过收发器1803执行:获取第一参考信号的第一配置信息,所述第一配置信息包括用于确定相位信息的多个时域资源的指示信息。接收所述第一参考信号,确定所述多个时域资源对应的多个第一相位信息;所述多个第一相位信息中的一个第一相位信息根据所述多个时域资源中的一个时域资源接收到的信号确定。发送第二相位信息和/或第一离开角信息。所述第二相位信息根据所述多个第一相位信息确定;所述第一离开角信息根据所述多个第一相位信息确定。
当通信装置1801为上述第二通信装置,处理器1802用于通过收发器1803执行:生成第一参考信号,在多个时域资源向第一通信装置发送所述第一参考信号。所述多个时域资源中的两个时域资源对应的两个用于发送所述第一参考信号的端口不同。
当通信装置1801为上述第三通信装置,处理器1802用于通过收发器1803执行:接收多个第一离开角信息,所述多个第一离开角信息中的一个第一离开角信息根据第一通信装置确定的多个第一相位信息确定,所述多个第一相位信息根据第一参考信号确定;根据所述多个第一离开角信息,确定所述第一通信装置的位置信息。
当通信装置1801为上述第二通信装置,又一种可能的实施方式中,处理器1802用于通过收发器1803执行:接收第二参考信号,确定多个时域资源接收的所述第二参考信号对应的多个第三相位信息,根据所述多个第三相位信息确定所述第二参考信号的到达角。
该通信装置所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
根据前述方法,图19为本申请实施例提供的通信装置的结构示意图,如图19所示,通信装置1901可以包括通信接口1903和处理器1902。进一步的,该通信装置1901可以包括有存储器1904。图中存储器1904为虚线是进一步标识存储器为可选地意思。所述通信接口1903,用于输入和/或输出信息;所述处理器1902,用于执行计算机程序或指令,使得通信装置1901实现上述图4、图8、图11、图12、图13、图14或图16中任一项的相关方案中第一通信装置侧的方法,或使得通信装置1901实现上述图4、图8、图11、图 12、图13、图14或图16中任一项的相关方案中第二通信装置侧的方法,或使得通信装置1901实现上述图4、图8、图11、图12、图13、图14或图16中任一项的相关方案中第三通信装置侧的方法。本申请实施例中,通信接口1903可以实现上述图18的收发器1803所实现的方案,处理器1902可以实现上述图18的处理器1802所实现的方案,存储器1904可以实现上述图18的存储器1804所实现的方案,在此不再赘述。
基于以上实施例以及相同构思,图20为本申请实施例提供的通信装置的示意图,如图20所示,该通信装置2001可以为第一通信装置、第二通信装置或第三通信装置,也可以为芯片或电路,比如可设置于第一通信装置、第二通信装置或第三通信装置的芯片或电路。
该通信装置2001包括处理单元2002和通信单元2003。进一步的,该通信装置2001可以包括有存储单元2004,也可以不包括存储单元2004。图中存储单元2004为虚线是进一步标识存储器为可选地意思。
所述通信单元2003,用于输入和/或输出信息;所述处理单元2002,用于执行计算机程序或指令,使得通信装置2001实现上述图4、图8、图11、图12、图13、图14或图16中任一项的相关方案中第一通信装置侧的方法,或使得通信装置2001实现上述图4、图8、图11、图12、图13、图14或图16中任一项的相关方案中第二通信装置侧的方法,或使得通信装置2001实现上述图4、图8、图11、图12、图13、图14或图16中任一项的相关方案中第三通信装置侧的方法。本申请实施例中,通信单元2003可以实现上述图18的收发器1803所实现的方案,处理单元2002可以实现上述图18的处理器1802所实现的方案,存储单元2004可以实现上述图18的存储器1804所实现的方案,在此不再赘述。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码或指令,当该计算机程序代码或指令在计算机上运行时,使得该计算机执行图4、图8、图11、图12、图13、图14或图16中任一项所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图4、图8、图11、图12、图13、图14或图16中任一项所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种芯片系统,该芯片系统可以包括处理器。该处理器与存储器耦合,可用于执行图4、图8、图11、图12、图13、图14或图16中任一项所示实施例中任意一个实施例的方法。可选地,该芯片系统还包括存储器。存储器,用于存储计算机程序(也可以称为代码,或指令)。处理器,用于从存储器调用并运行所述计算机程序,使得安装有所述芯片系统的设备执行图4、图8、图11、图12、图13、图14或图16中任一项所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个第一通信装置以及一个或多个第二通信装置,还可以包括第三通信装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地 产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disc,SSD))等。
需要指出的是,本专利申请文件的一部分包含受著作权保护的内容。除了对专利局的专利文件或记录的专利文档内容制作副本以外,著作权人保留著作权。
上述各个装置实施例中第二通信装置与第一通信装置和方法实施例中的第二通信装置或第一通信装置对应,由相应的模块或单元执行相应的步骤,例如通信单元(收发器)执行方法实施例中接收或发送的步骤,除发送、接收外的其它步骤可以由处理单元(处理器)执行。具体单元的功能可以参考相应的方法实施例。其中,处理器可以为一个或多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络 单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种参考信号的接收方法,其特征在于,包括:
    第一通信装置获取第一参考信号的第一配置信息,所述第一配置信息包括用于确定相位信息的多个时域资源的指示信息;
    所述第一通信装置接收所述第一参考信号,确定所述多个时域资源对应的多个第一相位信息;所述多个第一相位信息中的一个第一相位信息根据所述多个时域资源中的一个时域资源接收到的信号确定;
    所述第一通信装置发送第二相位信息和/或第一离开角信息;所述第二相位信息根据所述多个第一相位信息确定;所述第一离开角信息根据所述多个第一相位信息确定。
  2. 如权利要求1所述的方法,其特征在于,所述多个时域资源包括第一时域资源和第二时域资源;
    所述第一通信装置接收所述第一参考信号,确定所述多个时域资源对应的多个第一相位信息,包括:
    所述第一通信装置在所述第一时域资源接收所述第一参考信号的第一部分,根据所述第一参考信号的第一部分确定所述多个第一相位信息中的一个第一相位信息;
    所述第一通信装置在所述第二时域资源接收到所述第一参考信号的第二部分,根据所述第一参考信号的第二部分确定所述多个第一相位信息中的又一个第一相位信息。
  3. 如权利要求1或2所述的方法,其特征在于,所述多个时域资源的指示信息包括以下内容中的至少一项:
    所述第一参考信号对应的S1个时域资源中两个时域资源之间间隔的时域资源单元数量的信息;所述S1为大于1的整数;所述S1个时域资源为所述第一参考信号发送端发送所述第一参考信号所使用的时域资源;和/或,
    所述第一参考信号对应的所述S1个时域资源的信息。
  4. 如权利要求3所述的方法,其特征在于,所述S1个时域资源中相邻的两个时域资源之间间隔至少一个时域资源单元。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述第一配置信息还包括:
    所述第一参考信号对应的S1个时域资源与多个端口的对应关系,所述S1为大于1的整数;
    其中,所述多个端口为所述第一参考信号发送端在所述S1个时域资源上发送所述第一参考信号所使用的端口。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述第二相位信息包括以下内容中的至少一项:
    所述多个第一相位信息中的至少两个所述第一相位信息;
    所述多个第一相位信息对应的至少一个相位差信息;或,
    所述至少一个相位差信息的均值信息。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述第一通信装置确定所述用于确定相位信息的多个时域资源接收的所述第一参考信号对应的多个第一相位信息之后,还包括:
    所述第一通信装置发送第一指示信息;
    其中,所述第一指示信息指示所述第二相位信息中的参数与用于发送第一参考信号的端口的标识的对应关系。
  8. 一种参考信号的发送方法,其特征在于,包括:
    第二通信装置生成第一参考信号;
    所述第二通信装置在多个时域资源发送所述第一参考信号;所述多个时域资源中的两个时域资源对应的两个用于发送所述第一参考信号的端口不同。
  9. 如权利要求8所述的方法,其特征在于,所述第二通信装置在多个时域资源发送所述第一参考信号,包括:
    所述第二通信装置通过第一射频通道连接的第一端口在第三时域资源发送所述第一参考信号的第一部分;
    所述第二通信装置通过所述第一射频通道连接的第二端口在第四时域资源发送所述第一参考信号的第二部分。
  10. 如权利要求8或9所述的方法,其特征在于,所述第二通信装置在多个时域资源发送所述第一参考信号之前,还包括:
    所述第二通信装置确定第一参考信号的第二配置信息;所述第二配置信息包括第四指示信息,所述第四指示信息指示S1个时域资源;所述S1为大于1的整数;所述S1个时域资源为所述用于发送所述第一参考信号的所述多个时域资源。
  11. 如权利要求10所述的方法,其特征在于,所述第二配置信息还包括以下内容中的至少一项:
    所述S1个时域资源中两个时域资源之间间隔的时域资源单元数量的信息;和/或,
    所述S1个时域资源的信息。
  12. 如权利要求10或11所述的方法,其特征在于,所述第二配置信息还包括:
    所述S1个时域资源与多个端口的对应关系,所述S1为大于1的整数;
    所述第二通信装置根据所述第二配置信息,在所述S1个时域资源发送所述第一参考信号,包括:
    针对所述S1个时域资源中的时域资源,所述第二通信装置通过所述时域资源对应的端口发送所述第一参考信号。
  13. 如权利要求8-12任一项所述的方法,其特征在于,所述第二通信装置在多个时域资源发送所述第一参考信号之后,还包括:
    所述第二通信装置接收第二相位信息,所述第二相位信息根据多个第一相位信息确定,所述多个第一相位信息是根据所述第一参考信号确定的;
    所述第二通信装置根据所述第二相位信息,确定所述第一参考信号的离开角。
  14. 如权利要求13所述的方法,其特征在于,所述第二相位信息包括以下内容中的至少一项:
    所述多个第一相位信息中的至少两个所述第一相位信息;
    所述多个第一相位信息对应的至少一个相位差信息;或,
    所述至少一个相位差信息的均值信息。
  15. 一种通信装置,其特征在于,包括处理器和通信接口,所述处理器通过所述通信接 口用于执行以下内容:
    获取第一参考信号的第一配置信息,所述第一配置信息包括用于确定相位信息的多个时域资源的指示信息;
    接收所述第一参考信号,确定所述多个时域资源对应的多个第一相位信息;所述多个第一相位信息中的一个第一相位信息根据所述多个时域资源中的一个时域资源接收到的信号确定;
    发送第二相位信息和/或第一离开角信息;所述第二相位信息根据所述多个第一相位信息确定;所述第一离开角信息根据所述多个第一相位信息确定。
  16. 如权利要求15所述的通信装置,其特征在于,所述多个时域资源包括第一时域资源和第二时域资源;
    所述处理器通过所述通信接口具体用于:
    在所述第一时域资源接收所述第一参考信号的第一部分,根据所述第一参考信号的第一部分确定所述多个第一相位信息中的一个第一相位信息;
    在所述第二时域资源接收到所述第一参考信号的第二部分,根据所述第一参考信号的第二部分确定所述多个第一相位信息中的又一个第一相位信息。
  17. 如权利要求15或16所述的通信装置,其特征在于,所述多个时域资源的指示信息包括以下内容中的至少一项:
    所述第一参考信号对应的S1个时域资源中两个时域资源之间间隔的时域资源单元数量的信息;所述S1为大于1的整数;所述S1个时域资源为所述第一参考信号发送端发送所述第一参考信号所使用的时域资源;和/或,
    所述第一参考信号对应的所述S1个时域资源的信息。
  18. 如权利要求17所述的通信装置,其特征在于,所述S1个时域资源中相邻的两个时域资源之间间隔至少一个时域资源单元。
  19. 如权利要求15-18任一项所述的通信装置,其特征在于,所述第一配置信息还包括:
    所述第一参考信号对应的S1个时域资源与多个端口的对应关系,所述S1为大于1的整数;
    其中,所述多个端口为所述第一参考信号发送端在所述S1个时域资源上发送所述第一参考信号所使用的端口。
  20. 如权利要求15-19任一项所述的通信装置,其特征在于,所述第二相位信息包括以下内容中的至少一项:
    所述多个第一相位信息中的至少两个所述第一相位信息;
    所述多个第一相位信息对应的至少一个相位差信息;或,
    所述至少一个相位差信息的均值信息。
  21. 如权利要求15-20任一项所述的通信装置,其特征在于,所述处理器通过所述通信接口还用于:
    发送第一指示信息;
    其中,所述第一指示信息指示所述第二相位信息中的参数与用于发送第一参考信号的端口的标识的对应关系。
  22. 一种通信装置,其特征在于,包括处理器和通信接口,所述处理器通过所述通信接 口用于执行以下内容:
    生成第一参考信号;
    在多个时域资源发送所述第一参考信号;所述多个时域资源中的两个时域资源对应的两个用于发送所述第一参考信号的端口不同。
  23. 如权利要求22所述的通信装置,其特征在于,所述处理器通过所述通信接口具体用于:
    通过第一射频通道连接的第一端口在第三时域资源发送所述第一参考信号的第一部分;
    所述第二通信装置通过所述第一射频通道连接的第二端口在第四时域资源发送所述第一参考信号的第二部分。
  24. 如权利要求22或23所述的通信装置,其特征在于,所述处理器通过所述通信接口还用于:
    确定第一参考信号的第二配置信息;所述第二配置信息包括第四指示信息,所述第四指示信息指示S1个时域资源;所述S1为大于1的整数;所述S1个时域资源为所述用于发送所述第一参考信号的所述多个时域资源。
  25. 如权利要求24所述的通信装置,其特征在于,所述第二配置信息还包括以下内容中的至少一项:
    所述S1个时域资源中两个时域资源之间间隔的时域资源单元数量的信息;和/或,
    所述S1个时域资源的信息。
  26. 如权利要求24或25所述的通信装置,其特征在于,所述第二配置信息还包括:
    所述S1个时域资源与多个端口的对应关系,所述S1为大于1的整数;
    所述处理器通过所述通信接口具体用于:
    针对所述S1个时域资源中的时域资源,通过所述时域资源对应的端口发送所述第一参考信号。
  27. 如权利要求22-26任一项所述的通信装置,其特征在于,所述处理器通过所述通信接口还用于:
    接收第二相位信息,所述第二相位信息根据多个第一相位信息确定,所述多个第一相位信息是根据所述第一参考信号确定的;
    根据所述第二相位信息,确定所述第一参考信号的离开角。
  28. 如权利要求27所述的通信装置,其特征在于,所述第二相位信息包括以下内容中的至少一项:
    所述多个第一相位信息中的至少两个所述第一相位信息;
    所述多个第一相位信息对应的至少一个相位差信息;或,
    所述至少一个相位差信息的均值信息。
  29. 一种通信装置,其特征在于,包括处理器和存储器,
    所述存储器,用于存储计算机程序或指令;
    所述处理器,用于执行存储器中的计算机程序或指令,使得权利要求1-7中任一项所述的方法被执行,或使得权利要求8-14任一项所述的方法被执行。
  30. 一种通信装置,其特征在于,包括处理模块和通信模块,所述处理模块用于通过所 述通信模块执行如权利要求1-7中任一项所述的方法,或执行如权利要求8-14任一项所述的方法。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令在被计算机调用时,使得利要求1-7任一项所述的方法被执行,或使得权利要求8-14任一项所述的方法被执行。
  32. 一种芯片系统,其特征在于,包括通信接口和处理器:
    所述通信接口,用于输入和/或输出信令或数据;
    所述处理器,用于执行计算机可执行程序,使得安装有所述芯片系统的设备执行如利要求1-7任一项所述的方法,或执行如权利要求8-14任一项所述的方法。
PCT/CN2022/142540 2021-12-30 2022-12-27 一种参考信号的传输方法、装置、存储介质及芯片 WO2023125583A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111646420.3 2021-12-30
CN202111646420.3A CN116419156A (zh) 2021-12-30 2021-12-30 一种参考信号的传输方法、装置、存储介质及芯片

Publications (1)

Publication Number Publication Date
WO2023125583A1 true WO2023125583A1 (zh) 2023-07-06

Family

ID=86997962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142540 WO2023125583A1 (zh) 2021-12-30 2022-12-27 一种参考信号的传输方法、装置、存储介质及芯片

Country Status (2)

Country Link
CN (1) CN116419156A (zh)
WO (1) WO2023125583A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200150216A1 (en) * 2016-09-20 2020-05-14 Deeyook Location Technologies Ltd. Interferometric location sensing
CN111866938A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 测量上报的方法与装置
WO2021062858A1 (en) * 2019-10-01 2021-04-08 Nokia Shanghai Bell Co., Ltd. Multi-stage positioning reference signal (prs) mechanism for downlink angle of departure (dl-aod) positioning

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200150216A1 (en) * 2016-09-20 2020-05-14 Deeyook Location Technologies Ltd. Interferometric location sensing
CN111866938A (zh) * 2019-04-30 2020-10-30 华为技术有限公司 测量上报的方法与装置
WO2021062858A1 (en) * 2019-10-01 2021-04-08 Nokia Shanghai Bell Co., Ltd. Multi-stage positioning reference signal (prs) mechanism for downlink angle of departure (dl-aod) positioning

Also Published As

Publication number Publication date
CN116419156A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
US11353542B2 (en) Positioning method and positioning device
WO2020125310A1 (zh) 定位方法和相关设备
WO2020164334A1 (zh) 信号传输的方法与装置
CN108271187B (zh) 执行飞行时间(ToF)测量的装置、系统和方法
JP2021528022A (ja) Nrシステムの測位基準信号の設定方法、受信方法及び機器
US20210345285A1 (en) Method and Device for User Equipment Positioning
EP3364672B1 (en) Positioning methods and devices
JP7241865B2 (ja) 情報処理方法、通信デバイス、システム、および記憶媒体
WO2019029426A1 (zh) 用于传输参考信号的方法及装置
CN110933741B (zh) 用户设备的定位方法及装置
WO2022141219A1 (zh) 一种定位方法及相关装置
CN116076096A (zh) 用于多定位频率层处理的接收信号路径分配
WO2023143093A1 (zh) 侧行链路定位参考信号sl prs参数配置方法和装置
WO2023125583A1 (zh) 一种参考信号的传输方法、装置、存储介质及芯片
CN111372308B (zh) 一种通信方法及装置
CN114095855A (zh) 一种定位方法及装置
WO2023174131A1 (zh) 通信方法和通信装置
WO2024088052A1 (zh) 定位方法、装置、存储介质、芯片系统及计算机程序产品
WO2023206565A1 (zh) 探测参考信号srs的传输方法、srs资源配置方法及其装置
WO2023216791A1 (zh) 一种定位方法、装置、存储介质及芯片
WO2023226749A1 (zh) 资源配置方法及通信装置
WO2023226746A1 (zh) 资源配置方法及通信装置
WO2024017301A1 (zh) 通信方法及装置
WO2022205142A1 (zh) 配置上行定位参考信号资源的方法及装置
WO2024032372A1 (zh) 一种定位方法以及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914835

Country of ref document: EP

Kind code of ref document: A1