WO2024032372A1 - 一种定位方法以及相关装置 - Google Patents

一种定位方法以及相关装置 Download PDF

Info

Publication number
WO2024032372A1
WO2024032372A1 PCT/CN2023/109268 CN2023109268W WO2024032372A1 WO 2024032372 A1 WO2024032372 A1 WO 2024032372A1 CN 2023109268 W CN2023109268 W CN 2023109268W WO 2024032372 A1 WO2024032372 A1 WO 2024032372A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
terminal device
satellite
network device
time difference
Prior art date
Application number
PCT/CN2023/109268
Other languages
English (en)
French (fr)
Inventor
陈莹
铁晓磊
张经纬
Original Assignee
华为技术有限公司
鹏城实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 鹏城实验室 filed Critical 华为技术有限公司
Publication of WO2024032372A1 publication Critical patent/WO2024032372A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18545Arrangements for managing station mobility, i.e. for station registration or localisation
    • H04B7/18547Arrangements for managing station mobility, i.e. for station registration or localisation for geolocalisation of a station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • the present application relates to the field of communication technology, and in particular, to a positioning method and related devices.
  • satellites Compared with ground base stations, satellites (or satellite base stations) are located higher, are more flexible in deployment, can provide wider coverage, and can provide communication services in areas such as oceans, forests, and high altitudes that are difficult to cover with ground base stations. Therefore, if the satellite communication network is integrated with terrestrial communication networks such as 5th generation mobile networks new radio (5G NR) or long term evolution (LTE), it will greatly expand The coverage of ground communication network provides stable communication services for ships, trains, aircraft and remote areas.
  • 5G NR 5th generation mobile networks new radio
  • LTE long term evolution
  • Satellite communication as a communication scenario of 5G communication, is also called non-terrestrial network (NTN).
  • NTN can support various types of terminal equipment, including but not limited to 5G type terminal equipment, or the Internet of Things (IoT).
  • IoT Internet of Things
  • GNSS global navigation satellite system
  • GNSS global navigation satellite system
  • the first aspect of the embodiment of this application proposes a positioning method, including:
  • the network device receives a first reception time difference from the terminal device, the first reception time difference indicates a difference between the time when the terminal device receives the first reference signal and the time when the terminal device receives the second reference signal, said The first reference signal is sent to the terminal device by the satellite, and the second reference signal is sent to the terminal device by the satellite;
  • the network device acquires a first time interval, which indicates the time interval between the time when the satellite sends the first reference signal and the time when the satellite sends the second reference signal;
  • the network device obtains first coordinates and second coordinates, wherein the first coordinate indicates the position when the satellite transmits the first reference signal, and the second coordinate indicates the position when the satellite transmits the second reference signal. s position;
  • the network device determines first location information based on the first coordinates, the second coordinates, the first time interval, and the first reception time difference, and the first location information is measured by the network device.
  • the obtained location information of the terminal device is measured by the network device.
  • first reference signal and the second reference signal may be sent by the same satellite or may be sent by different satellites, and this is not limited in the embodiment of the present application.
  • the network device obtains the first coordinates and the second coordinates from the satellite.
  • the network device responsible for calculating the location information of the terminal device is a ground base station
  • the satellite sends the first reference signal to the terminal device the satellite sends the first coordinates to the ground base station
  • the satellite sends the second reference signal to the terminal device the satellite The ground base station sends the second coordinates.
  • the network device responsible for calculating the location information of the terminal device is a satellite
  • the satellite after the satellite sends the first reference signal to the terminal device, the satellite records the first coordinates; after the satellite sends the second reference signal to the terminal device, the satellite records the second coordinates.
  • the network device when the first reference signal and the second reference signal sent by the satellite come from the ground base station, the network device obtains the position information of the first reference signal sent by the ground base station to the satellite, and the network device obtains the position information of the first reference signal sent by the ground base station to the satellite.
  • the feeding delay of sending the first reference signal is then calculated by the network device from the satellite to the terminal device based on the position information of the first reference signal sent by the ground base station to the satellite and the feeding delay of the ground base station sending the first reference signal to the satellite.
  • the network device sends the location information (i.e., first coordinates) of the first reference signal; similarly, the network device obtains the location information of the ground base station when it sends the second reference signal to the satellite, and the network equipment obtains the feed when the ground base station sends the second reference signal to the satellite. delay, and then, the network device calculates the position information of the second reference signal sent by the satellite to the terminal device based on the position information of the second reference signal sent by the ground base station to the satellite and the feed delay of the second reference signal sent by the ground base station to the satellite ( That is, the second coordinate).
  • the satellite sends the first reference signal and the second reference signal to the terminal device, and the network device obtains the reception time difference between the terminal device receiving the first reference signal and the second reference signal.
  • the network equipment sends the first reference signal based on the position information of the satellite and the The location information of the terminal device is determined by sending the location information of the second reference signal, the transmission time interval between the first reference signal and the second reference signal sent by the satellite, and the reception time difference between the first reference signal and the second reference signal.
  • the network device when the network device calculates the location information of the terminal device, the network device may also obtain any one or more of the following:
  • the satellite sends the position information of the first reference signal and the second reference signal
  • the ground base station sends the satellite the position information of the first reference signal and the second reference signal to the satellite
  • the ground base station sends the first reference signal and the second reference signal to the satellite.
  • the second reference signal is the location information of the ground base station, etc.;
  • the time when the satellite sends the first reference signal and the second reference signal or the time when the satellite receives the first reference signal and the second reference signal from the ground base station, or the time when the ground base station sends the first reference signal and the second reference signal to the satellite time, or the time of the satellite when the ground base station sends the first reference signal and the second reference signal to the satellite, etc.
  • the time involving the satellite can be obtained by the satellite based on the satellite's local clock, or can be measured by other equipment (such as a satellite ground station).
  • the satellite ground station determines the time of the satellite based on the satellite's position information and ephemeris information. .
  • the embodiments of the present application do not limit this.
  • the time in the embodiment of this application may be absolute time, such as Universal Time Coordinated (UTC); it may also be relative time, such as time slot, frame, subframe, or system frame; the relative time It may also be a relative time for a certain point in time, such as time difference, time slot difference, subframe difference or system frame difference, etc., which is not limited in the embodiments of the present application.
  • UTC Universal Time Coordinated
  • relative time such as time slot, frame, subframe, or system frame
  • the relative time It may also be a relative time for a certain point in time, such as time difference, time slot difference, subframe difference or system frame difference, etc., which is not limited in the embodiments of the present application.
  • the network device includes: a ground base station, and the satellite; or, the network device includes: the satellite.
  • the satellite serves as a network device, that is, when the satellite has the processing function of the network device, the satellite generates the first reference signal and the second reference signal. Then, the satellite transmits the first reference signal and the second reference signal in a broadcast manner.
  • relay devices may also exist between the ground base station and the satellite.
  • information (signals or data, etc.) between the satellite and the ground base station is forwarded through the satellite ground station.
  • the specific calculation of the location information of the terminal device can be calculated by satellites; it can also be calculated by ground base stations; it can also be calculated by the core network.
  • the location management function in the core network function (LMF), or access and mobility management function (AMF) can also be calculated by the data network, such as a server or network function that provides positioning services in the data network, which is not limited by the embodiments of this application.
  • the network equipment involved in the embodiments of this application includes but is not limited to: satellites, ground base stations, core networks, and/or data networks.
  • the first reference signal and the second reference signal sent by the satellite to the terminal device come from the ground base station.
  • the satellite acts as a relay node between the ground base station and the terminal equipment, forwarding the information of the ground base station.
  • the satellite acquires the first reference signal and the second reference signal from the ground base station.
  • the satellite then sends the first reference signal and the second reference signal to the terminal device.
  • network equipment such as ground base stations
  • the first feed delay is used as the transmission delay of the first reference signal from the ground base station to the satellite.
  • the second feed delay is used as the transmission delay of the second reference signal from the ground base station to the satellite. Obtain the feed delay from the ground base station to the satellite to improve the accuracy of calculating the location information of the terminal device.
  • the method further includes: the network device obtains a first feed delay and a second feed delay, where the first feed delay is the first reference signal The transmission delay from the ground base station to the satellite, the second feed delay is the transmission delay of the second reference signal from the ground base station to the satellite; the network device is based on the Determining the first location information based on the first coordinates, the second coordinates, the first reception time difference and the first time interval includes: the network device based on the first coordinates, the second coordinates, the The first receiving time difference, the first time interval, the first feeding delay and the second feeding delay are used to determine the first position information.
  • the satellites that send the first reference signal and the second reference signal to the terminal device can also obtain the first reference signal from other network devices (such as ground base stations or other satellites). and a second reference signal.
  • the satellite that sends the first reference signal and the second reference signal also needs to obtain the feed delay corresponding to the reference signal (ie, the first reference signal and the second reference signal).
  • the method further includes: the network device receiving second location information from the terminal device, where the second location information is the terminal measured by the terminal device itself. Location information of the device; the network device uses the first location information to verify whether the second location information is accurate. The network device can also verify whether the location information reported by the terminal device (ie, the second location information) is accurate based on the first location information to improve communication security.
  • the network device obtaining the first time interval includes: the network device determines the first time interval corresponding to the first receiving time difference according to the first beam direction. reference signal and the second reference signal, the first beam direction is the beam direction in which the terminal device sends the first reception time difference to the satellite; the network device is based on the sending time of the first reference signal and the sending time of the second reference signal to determine the first time interval.
  • the network device determines the reference signal corresponding to the first reception time difference according to the beam direction corresponding to the first reception time difference. For example, according to the beam direction carrying the first reception time difference, the index of the reference signal corresponding to the beam (such as SSB index) is found.
  • the network device when the core network calculates the location information of the terminal device, the network device (satellite, or the ground base station that manages the satellite) sends the first time interval to the core network, or the network device sends the satellite to the core network and sends the first time interval to the terminal device.
  • the sending time of the reference signal, and the sending time of the second reference signal sent by the satellite to the terminal device are examples.
  • the method further includes: the network device receiving a second reception time difference from the terminal device, the second reception time difference indicating that the terminal device receives the second reference signal.
  • the network device obtaining the second time interval includes: the network device determines the second time interval corresponding to the second receiving time difference according to the second beam direction. reference signal and the third reference signal, the second beam direction is the beam direction in which the terminal device sends the second reception time difference to the satellite; the network device is based on the sending time of the second reference signal and the sending time of the third reference signal to determine the second time interval.
  • the network device determines the reference signal corresponding to the second reception time difference according to the beam direction corresponding to the second reception time difference. For example, according to the beam direction carrying the second reception time difference, the index of the reference signal corresponding to the beam (such as SSB index) is found.
  • the index of the first reference signal and the index of the third reference signal are different.
  • the broadcast beam of the satellite is a narrow beam
  • the terminal equipment switches the beam
  • the directions of the beams carrying the two reception time differences are different.
  • the beams corresponding to the first reference signal and the second reference signal are different.
  • the method further includes: the network device sending first indication information to the terminal device, the first indication information being used to indicate the first reference signal and the third Two reference signals are used for positioning measurements.
  • the network device instructs the terminal device which reference signals are used for positioning measurements, improving the implementation flexibility of the solution.
  • the network device determines the first reference signal and the second reference signal from a plurality of reference signals according to the first configuration information for positioning measurement.
  • the network device determines which reference signals are used for positioning measurement according to the first configuration information, thereby improving the implementation flexibility of the solution.
  • the method further includes: the network device sending second indication information to the terminal device, the second indication information being used to instruct the terminal device according to the first time
  • the first reference signal and the second reference signal are received at intervals.
  • the network device instructs the terminal device to receive and measure the reception time of the reference signal according to the first time interval.
  • the measured reference signal is used for positioning measurement, thereby improving the implementation flexibility of the solution.
  • the network device determines the first time interval for the satellite to send the first reference signal and the second reference signal according to the second configuration information. .
  • the network device determines the reception time of sending the reference signal according to the first time interval according to the second configuration information.
  • the sent reference signal is used for positioning measurement, thereby improving the implementation flexibility of the solution.
  • the method further includes: the network device receiving a third indication information from the terminal device.
  • the third indication information indicates that the first reception time difference corresponds to the first reference signal and the second reference signal.
  • the terminal device can notify the network device through the third indication information which reference signal the first reception time difference measured by the terminal device corresponds to, thereby improving the implementation flexibility of the solution.
  • the network device obtaining the first time interval includes: the network device determines that the first reception time difference corresponds to the first reference signal according to the third indication information. and the second reference signal; the network device determines the first time interval based on the transmission time when the satellite transmits the first reference signal and the transmission time when the satellite transmits the second reference signal. Specifically, the network device finds the first reference signal and the second reference signal corresponding to the first reception time difference according to the instruction of the terminal device (ie, the third instruction information). Furthermore, the transmission time when the satellite transmits the first reference signal and the transmission time when the satellite transmits the second reference signal are determined. Then, based on these two sending moments, the first time interval is determined for subsequent calculation of the location information of the terminal device.
  • the first reference signal carries the sending time of the first reference signal sent by the satellite
  • the second reference signal carries the second reference signal sent by the satellite. The time the signal was sent. Since the first reference signal and the second reference signal carry the transmission time of the reference signal sent by the satellite, the terminal device determines the transmission time of the first reference signal (satellite), the transmission time of the second reference signal (satellite), and the satellite's transmission time.
  • the ephemeris information determines the position information when the satellite sends the first reference signal (called the first coordinate), and determines the position information when the satellite sends the second reference signal (called the second coordinate).
  • the terminal device determines the transmission interval for the satellite to transmit the first reference signal and the second reference signal, that is, the first time interval, based on the transmission time of the first reference signal and the transmission time of the second reference signal. Then, the terminal device determines the first location information based on the first time interval, the first reception time difference, the first coordinate and the second coordinate. Through the above method, the terminal device can calculate its own position information based on the reference signal without relying on GNSS capabilities.
  • the first reference signal and/or the second reference signal is any one of the following reference signals: primary synchronization signal PSS, secondary synchronization signal SSS, synchronization signal/physical Broadcast channel block SSB, demodulation reference signal DMRS, channel state information reference signal CSI-RS, or phase tracking reference signal PTRS.
  • the embodiment of the present application proposes a positioning method, including:
  • the terminal equipment receives the first reference signal sent by the satellite;
  • the terminal device receives the second reference signal sent by the satellite
  • the terminal device determines a first reception time difference, the first reception time difference indicates a difference between the time when the terminal device receives the first reference signal and the time when the terminal device receives the second reference signal;
  • the terminal device sends the first reception time difference to the network device, so that the network device determines first location information based on the first reception time difference, and the first location information is the location information of the terminal device.
  • the terminal device may receive the first reference signal and the second reference signal from the satellite, and then determine the first reception time difference based on the reception time of the first reference signal and the reception time of the second reference signal. Then, the terminal device may send the first reception time difference to the network device, so that the network device calculates the location information of the terminal device based on the first reception time difference.
  • a possible implementation of the second aspect also includes:
  • the terminal device acquires second location information, where the second location information is the location information of the terminal device measured by the terminal device itself; the terminal device sends the second location information to the network device.
  • the terminal device can report the location information (second location information) measured by itself to the network device, so that the network device can verify the second location information based on the first location information to improve communication security.
  • the method further includes: the terminal device receiving a third reference signal sent by the satellite; the terminal device determining a second reception time difference, the second reception time difference indicating the The difference between the time when the terminal equipment receives the second reference signal and the time when the terminal equipment receives the third reference signal; the terminal equipment sends the second reception time difference to the network equipment, so that the network The device determines the first location information based on the first reception time difference and the second reception time difference. Calculating the first position information by combining more reception time differences and satellite position information can effectively improve the accuracy of the first position information.
  • the terminal device determines the first reference signal and the second reference signal from multiple reference signals according to the third configuration information for positioning measurement,
  • the third configuration information indicates that the terminal device measures The receiving time of the first reference signal and the receiving time of the second reference signal.
  • the terminal device determines which reference signals are used for positioning measurement based on the third configuration information, thereby improving the implementation flexibility of the solution.
  • the method further includes: the terminal device receiving first indication information sent by the network device, the first indication information being used to indicate the first reference signal and the The second reference signal is used for positioning measurement; the terminal device determines the first reference signal and the second reference signal at which the reception time needs to be measured based on the first indication information.
  • the network device instructs the terminal device which reference signals are used for positioning measurements, improving the implementation flexibility of the solution.
  • the terminal device determines the first time interval for receiving the first reference signal and the second reference signal according to the fourth configuration information, the The fourth configuration information indicates the first time interval; the terminal device waits for the first time interval to receive the second reference signal after receiving the first reference signal according to the fourth configuration information.
  • the terminal device receives and measures the reception time of the reference signal according to the first time interval according to the instructions of the fourth configuration information. The measured reference signal is used for positioning measurement, thereby improving the implementation flexibility of the solution.
  • the method further includes: the terminal device receiving second instruction information sent by the network device, the second instruction information being used to instruct the terminal device to send according to the first The first reference signal and the second reference signal are received at a time interval; the terminal device, according to the second instruction information, waits for the first time interval to receive the second reference signal after receiving the first reference signal. reference signal.
  • the network device instructs the terminal device to receive and measure the reception time of the reference signal according to the first time interval.
  • the measured reference signal is used for positioning measurement, thereby improving the implementation flexibility of the solution.
  • the method further includes: the terminal device sending third indication information to the network device, the third indication information instructing the terminal device to receive according to the first receiving time difference. the first reference signal and the second reference signal.
  • the terminal device can notify the network device through the third indication information which reference signal the first reception time difference measured by the terminal device corresponds to, thereby improving the implementation flexibility of the solution.
  • the first reference signal carries the transmission time of the satellite transmitting the first reference signal
  • the second reference signal carries the satellite transmitting the second reference signal.
  • the transmission time of the signal also includes: the terminal device determines the first coordinate when the satellite sends the first reference signal based on the first reference signal; the terminal device determines the first coordinate based on the second reference signal. The second coordinate when the satellite sends the second reference signal; the terminal device determines a first time interval based on the sending time of the first reference signal and the sending time of the second reference signal; the terminal The device determines the first location information based on the first time interval, the first reception time difference, the first coordinate and the second coordinate.
  • the terminal device can calculate its own position information based on the reference signal without relying on GNSS capabilities.
  • it further includes: the terminal device initiating random access to the network device according to the first location information. It can reduce the deviation when the terminal device initiates random access.
  • inventions of the present application provide a communication device, which is used as a network device.
  • the communication device includes: a transceiver module, and a processing module connected to the transceiver module.
  • the communication device is used to implement the method described in any one of the aforementioned first aspects.
  • inventions of the present application provide a communication device, which is used as a terminal device.
  • the communication device includes: a transceiver module, and a processing module connected to the transceiver module.
  • the communication device is used to implement the method described in any one of the aforementioned second aspects.
  • embodiments of the present application provide a communication device, which is used as a network device.
  • the communication device includes: a communication interface, and a processor connected to the communication interface.
  • the communication device is used to implement the method described in any one of the aforementioned first aspects.
  • embodiments of the present application provide a communication device, which is used as a terminal device.
  • the communication device includes: a communication interface, and a processor connected to the communication interface.
  • the communication device is used to implement the method described in any one of the aforementioned second aspects.
  • a communication system in a seventh aspect, includes the communication devices of the third aspect and the fourth aspect.
  • An eighth aspect provides a communication system, which includes the communication devices of the fifth and sixth aspects.
  • a ninth aspect of the present application provides a computer storage medium, which may be non-volatile; computer readable instructions are stored in the computer storage medium, and when the computer readable instructions are executed by a processor, the first aspect is implemented Or any method in the second aspect.
  • a tenth aspect of the present application provides a computer program product containing instructions that, when run on a computer, cause the computer to execute the method in any implementation of the first aspect or the second aspect.
  • the chip system includes a processor and an interface circuit, and is used to support a network device to implement the functions involved in the above aspects, for example, sending or processing data involved in the above methods and/or or information.
  • the chip system also includes a memory, which is used to store necessary program instructions and data for the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • a twelfth aspect of the present application provides a communication device, including: the communication device includes:
  • processor a communication interface when said processor executes said instructions
  • the communication device is caused to perform the method of any one of the foregoing first aspect and/or second aspect.
  • Figure 1 is a schematic diagram of a communication scenario involved in an embodiment of the present application
  • FIG. 2 is a schematic diagram of another communication scenario involved in the embodiment of the present application.
  • Figure 3 is a schematic diagram of another communication scenario proposed by the embodiment of the present application.
  • Figure 4 is a schematic diagram of a positioning method in an embodiment of the present application.
  • Figure 5 is a schematic diagram of SSB
  • Figure 6 is a schematic diagram of an application scenario in the embodiment of the present application.
  • Figure 7 is a schematic diagram of an application scenario in the embodiment of the present application.
  • Figure 8 is a schematic diagram of the hardware structure of the communication device in the embodiment of the present application.
  • Figure 9 is a schematic diagram of a communication device 900 in the embodiment of the present application.
  • FIG. 10 is a schematic diagram of a communication device 1000 in an embodiment of the present application.
  • the division of units presented in this application is a logical division. In actual applications, there may be other divisions. For example, multiple units may be combined or integrated into another system, or some features may be ignored. , or not executed.
  • the coupling or direct coupling or communication connection between the units shown or discussed may be through some interfaces, and the indirect coupling or communication connection between units may be electrical or other similar forms. There are no restrictions in the application.
  • the units or subunits described as separate components may or may not be physically separated, may or may not be physical units, or may be distributed into multiple circuit units, and some or all of them may be selected according to actual needs. unit to achieve the purpose of this application plan.
  • the methods provided by the embodiments of this application can be applied to long term evolution (long term evolution, LTE) systems, fifth generation (5th-generation, 5G) systems, new radio (new radio, NR) systems, wireless local area networks (wireless local area networks) , WLAN) systems and future evolution systems or multiple communication convergence systems.
  • the 5G system may be a non-standalone (NSA) 5G system or a standalone (SA) 5G system.
  • SA standalone
  • the method provided in the embodiment of the present application is exemplified by taking the method provided in the 5G system or the NR system as an example.
  • the devices, network elements, or functional entities on the network side are collectively referred to as network devices.
  • the network device at least includes: a positioning server and an access network device.
  • the positioning server provides positioning services for terminal devices.
  • Access network equipment provides terminal equipment with access to communication network services.
  • FIG. 1 is a schematic diagram of a communication scenario related to an embodiment of the present application.
  • satellites are used as relay nodes between ground base stations and terminal equipment to realize transparent transmission and forwarding between terminal equipment and ground base stations.
  • the satellite and the terminal equipment are connected through the air interface, and the satellite and the ground base station are connected through the air interface.
  • the ground base station has the processing function of network equipment, and the ground base station and the core network are connected through the NG interface.
  • Ground base stations are connected to the data network through the core network. In other words, ground base stations provide communication services to terminal devices through satellites.
  • FIG. 2 is a schematic diagram of another communication scenario related to the embodiment of the present application.
  • the satellite has the processing function of network equipment.
  • the ground base station serves as the relay node between the satellite and the core network, realizing transparent transmission and forwarding between the satellite and the core network.
  • the satellite and the terminal equipment are connected through the air interface, and the satellite and the ground base station are connected through the NG interface.
  • the ground base station and the core network are connected through the NG interface.
  • Ground base stations are connected to the data network through the core network.
  • satellites provide communication services to terminal devices.
  • Figure 3 is a schematic diagram of another communication scenario proposed by the embodiment of the present application.
  • the multiple satellites shown in Figure 3 have the processing function of network equipment, and multiple satellites are connected through the Xn interface. Multiple satellites are connected to terminal equipment through air interfaces.
  • the terminal devices in the embodiments of this application include but are not limited to: mobile phones, Internet of Things devices, smart home devices, industrial control equipment, vehicle equipment, drone equipment, and so on.
  • the terminal device is a variety of terminal devices or devices with line communication functions, such as: mobile phones (or "cellular" phones) and computers with mobile terminals. They can also be portable, pocket-sized, handheld A mobile device built into a computer or vehicle that exchanges voice and/or data with a wireless access network.
  • PCS personal communication service
  • SIP Session Initiation Protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • Terminal equipment can also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, Remote terminal, access terminal, user terminal, user agent, user device, or user equipment.
  • vehicles, vehicle-mounted equipment, vehicle-mounted modules or units, aircraft including but not limited to drones
  • airborne equipment, airborne modules or units road test infrastructure equipment, handheld devices, wearable devices, computing devices or connected to wireless
  • Other processing equipment of the modem such as vehicle user equipment (VUE) or air conditioning user equipment, etc.
  • the core network in the embodiment of this application supports user access control, mobility management, session management, user authentication, or accounting and other services.
  • the core network consists of multiple functional units, which can be divided into functional entities on the control plane and data plane.
  • the Access and Mobility Management Unit (AMF) is responsible for user access management, authentication, and mobility management.
  • the user plane unit (UPF) is responsible for managing user plane data transmission, traffic statistics, and other functions.
  • the ground base station in the embodiment of this application is responsible for forwarding signaling and service data between the satellite and the core network.
  • the air interface in the embodiment of this application refers to the wireless link between the terminal device and the network device.
  • the Xn interface in the embodiment of this application refers to the interface between network devices, and is mainly used for signaling interactions such as switching.
  • the NG interface in the embodiment of this application refers to the interface between the network device and the core network, and is used to exchange NAS and other signaling of the core network, as well as user service data.
  • the above interfaces may also change.
  • the Xn interface is called the X2 interface and the NG interface is called the S1 interface.
  • the specific calculation of the location information of the terminal device can be calculated by satellites; it can also be calculated by ground base stations; it can also be calculated by the core network.
  • the location management function in the core network function, LMF), or AMF can also be calculated by a data network, such as a server or network function that provides positioning services in the data network, which is not limited by the embodiments of this application.
  • the network equipment involved in the embodiments of this application includes but is not limited to: satellites, ground base stations, core networks, and/or data networks.
  • FIG. 4 is a schematic diagram of a positioning method in the embodiment of the present application.
  • a positioning method proposed in the embodiment of this application includes:
  • the satellite sends the first reference signal and the second reference signal to the terminal device.
  • the satellite sends the first reference signal and the second reference signal to the terminal device respectively.
  • the satellite when the satellite serves as a network device, that is, when the satellite has the processing function of the network device, the satellite generates the first reference signal and the second reference signal. Then, the satellite transmits the first reference signal and the second reference signal in a broadcast manner.
  • the satellite when the satellite acts as a relay node between the ground base station and the terminal device, forwarding the information of the ground base station.
  • the satellite acquires the first reference signal and the second reference signal from the ground base station.
  • the satellite then sends the first reference signal and the second reference signal to the terminal device.
  • network equipment such as ground base stations
  • the first feed delay is used as the transmission delay of the first reference signal from the ground base station to the satellite.
  • the second feed delay is used as the transmission delay of the second reference signal from the ground base station to the satellite.
  • the satellites that send the first reference signal and the second reference signal to the terminal device can also obtain the first reference signal from other network devices (such as ground base stations or other satellites). and a second reference signal.
  • the satellite that sends the first reference signal and the second reference signal also needs to obtain the feed delay corresponding to the reference signal (ie, the first reference signal and the second reference signal).
  • first reference signal and the second reference signal there are many possible ways to implement the first reference signal and the second reference signal in the embodiment of the present application, including but not limited to: primary synchronization signal (Primary synchronization signal, PSS), secondary synchronization signal (Secondary synchronization signal, SSS), Synchronization signal/physical broadcast channel block ((synchronization signal, SS)/(physical broadcast channel, PBCH) block, SSB), demodulation reference signal (demodulationreference signal, DMRS), channel state information reference signal (Channel State Information Reference Signal, CSI-RS), or phase tracking reference signal (PTRS), etc.
  • PSS Primary synchronization signal
  • SSS secondary synchronization signal
  • Synchronization signal/physical broadcast channel block ((synchronization signal, SS)/(physical broadcast channel, PBCH) block, SSB)
  • demodulation reference signal demodulationreference signal
  • CSI-RS Channel State Information Reference Signal
  • PTRS phase tracking reference signal
  • the SSB period is 80 milliseconds (ms). Every 20ms, one or more SSBs are sent in a half-frame of 5ms.
  • the half-frame carrying SSB may also be called a burst signal (burst) or burst signal of SSB.
  • Each burst includes one or more SSBs.
  • the SSB indexes (SSB indexes) included in each burst are inconsistent with each other and generally increase in sequence, for example, starting from 0.
  • Each SSB includes: PSS, PBCH, SSS and PBCH.
  • the network device sends SSB, specifically through broadcast beams.
  • the broadcast beam may be a scanning beam (also called a narrow beam), and the broadcast beam may also be a wide beam, which will be described separately below.
  • the broadcast beam is a narrow beam.
  • Different SSB indexes correspond to different beam directions.
  • Terminal equipment usually can only receive SSBs with the same SSB index in the same beam direction. In other words, when the terminal device is within the coverage of one beam, the SSB index of the received SSB is the same.
  • the first reference signal and the second reference signal may be all reference signals sent by satellites.
  • the terminal device needs to measure the reception time of all reference signals sent by satellites and report two adjacent reference signals. receiving time difference. For example: the terminal device measures the reception time difference for all SSBs sent by the satellite.
  • the first reference signal and the second reference signal may also be any number of reference signals sent by satellites.
  • the configuration resources of the network device indicate that a total of Y reference signals are sent in any transmission period, and the network device selects X reference signals among them for positioning measurement, and the X reference signals are used as the first reference signal and the second reference signal.
  • which reference signals are selected as the first reference signal and the second reference signal may be determined based on preconfiguration information or protocol agreement in the network device; or may be determined based on instruction information from the terminal device.
  • the terminal device can also determine the first reference signal and the second reference signal according to the preconfiguration information or protocol agreement; the terminal device can also determine the first reference signal and the second reference signal based on the information from the network device. Indication information to determine which reference signals are used as the first reference signal and the second reference signal.
  • the terminal device may also select the first reference signal and the second reference signal, and then report the selected first reference signal and the second reference signal to the network device. For example, the terminal device selects any multiple SSB measurement reception times among all SSBs sent by the satellite, and then reports the reception time difference of the SSB to the satellite.
  • the network device selects the first reference signal and the second reference signal for positioning measurement according to the protocol agreement or configuration information.
  • the network device determines the first reference signal and the second reference signal from multiple reference signals according to the first configuration information for positioning measurement, for example, whether to select SSB as the first reference signal and the second reference signal or to select PSS as the third reference signal. a reference signal and a second reference signal. Another example is selecting which PSSs serve as the first reference signal and the second reference signal.
  • the network device selects the first X SSBs among the Y SSBs included in each transmission cycle for positioning measurement according to the first configuration information, and the first X SSBs serve as the first reference signal and the second reference signal, and Y is positive Integer, X is a positive integer.
  • the network device selects the first SSB (for example, SSB index 0) among the Y SSBs sent in each cycle (for example, the cycle is 20 ms) for positioning measurement according to the first configuration information, and the first SSB of cycle A (for example, the cycle is 20 ms) SSB index 0) is used as the first reference signal, and the first SSB of period A+1 is used as the second reference signal.
  • the first SSB for example, SSB index 0
  • the first SSB of cycle A for example, the cycle is 20 ms
  • the first SSB of period A+1 is used as the second reference signal.
  • the network device selects a reference signal every H frames from a certain frame as a starting point in a period H as a reference signal for positioning measurement. That is, there is an interval of H frames between the first reference signal and the second reference signal.
  • the network device selects reference signals corresponding to multiple frame numbers or multiple subframe numbers as reference signals for positioning measurement according to the first configuration information. That is, the first configuration information includes multiple frame numbers or multiple subframe numbers, and reference signals corresponding to these multiple frame numbers or multiple subframe numbers are used for positioning measurement.
  • the network device can also determine the time interval for the satellite to send the first reference signal and the second reference signal according to the protocol agreement or configuration information.
  • the time interval between the first reference signal and the second reference signal is called First time interval.
  • the network device determines the first time interval for the satellite to send the first reference signal and the second reference signal according to the second configuration information.
  • the second configuration information indicates that the first time interval is 20 ms, then the network device sends a reference signal for positioning measurement every 20 ms according to the second configuration information.
  • the network device determines the reference signal used for positioning measurement by receiving the instruction information from the terminal device.
  • the terminal equipment selects some reference signals for positioning measurement, and then determines the reception time difference of these reference signals.
  • the network device receives third indication information from the terminal device.
  • the third indication information indicates that the first reception time difference (ie, the difference between the reception time of the first reference signal and the reception time of the second reference signal in the terminal device) corresponds to the first reference signal and a second reference signal. This allows subsequent network devices to determine the location information of the terminal device.
  • the terminal device selects the first reference signal and the second reference signal for positioning measurement according to the protocol agreement or configuration information.
  • the terminal device determines the first reference signal and the second reference signal from multiple reference signals according to the third configuration information for positioning measurement, for example, whether to select SSB as the first reference signal and the second reference signal or to select PSS as the third reference signal. a reference signal and a second reference signal. Another example is selecting which PSSs serve as the first reference signal and the second reference signal.
  • the terminal device selects the first X SSBs among the Y SSBs received in each period (for example, the period is 80 ms) for positioning measurement according to the third configuration information, and the first X SSBs serve as the first reference signal and the second reference signal.
  • the terminal device measures the reception time difference between two adjacent SSBs among the first X SSBs based on the third configuration information.
  • the terminal device selects the first SSB among Y SSBs received in each cycle (for example, the cycle is 20 ms) for positioning measurement according to the third configuration information, and the first SSB in cycle A is used as the first reference signal, and the cycle The first SSB of A+1 serves as the second reference signal.
  • the terminal device measures the reception time difference between the first reference signal and the second reference signal according to the third configuration information.
  • the terminal device selects a reference signal every H frames in a period H from a certain frame as the starting point as the reference signal for positioning measurement. That is, there is an interval of H frames between the first reference signal and the second reference signal.
  • the terminal device then periodically determines the reception time difference (ie, the first reception time difference) used as a reference signal for positioning measurement.
  • the terminal device selects reference signals corresponding to multiple frame numbers or multiple subframe numbers as reference signals for positioning measurement according to the third configuration information. That is, the third configuration information includes multiple frame numbers or multiple subframe numbers, and reference signals corresponding to these multiple frame numbers or multiple subframe numbers are used for positioning measurement.
  • the terminal equipment determines the reception time of these reference signals. Further determine the reception time difference between two adjacent reference signals.
  • the terminal device determines the first time interval for receiving the first reference signal and the second reference signal according to fourth configuration information, where the fourth configuration information indicates the first time interval;
  • the terminal device waits for the first time interval to receive the second reference signal after receiving the first reference signal according to the fourth configuration information.
  • the terminal device can determine the time interval between measuring the first reference signal and measuring the second reference signal by itself. In other words, the terminal device receives multiple reference signals from satellites, and according to the instructions of the fourth configuration information, the terminal device can determine one received reference signal to be used for positioning measurement every 20 ms or 40 ms. The time of this interval is the first time interval.
  • the terminal device determines the first reference signal and the second reference signal used for positioning measurement according to the instruction information of the network device.
  • the terminal device receives first indication information from the network device, the first indication information instructs the terminal device to use the first reference signal and the second reference signal for positioning measurement, for example, indicates SSB as the first reference signal and the second reference signal. , still indicates PSS as the first reference signal and the second reference signal. For another example, it indicates which PSS to select as the first reference signal and the second reference signal.
  • the terminal device selects the first X SSBs among the Y SSBs received in each period (for example, the period is 80 ms) for positioning measurement according to the first indication information, and the first X SSBs serve as the first reference signal and the second reference signal.
  • the terminal device measures the reception time difference between two adjacent SSBs among the first X SSBs according to the first indication information.
  • the terminal device selects the first SSB among Y SSBs received in each period (for example, the period is 20 ms) for positioning measurement according to the first instruction information, and the first SSB in period A is used as the first reference signal, and the period The first SSB of A+1 serves as the second reference signal.
  • the terminal device measures the reception time difference between the first reference signal and the second reference signal according to the first indication information.
  • the terminal device selects a reference signal every H frames from a certain frame as a starting point according to the period H as the reference signal for positioning measurement. That is, there is an interval of H frames between the first reference signal and the second reference signal.
  • the terminal device then periodically determines the reception time difference (ie, the first reception time difference) used as a reference signal for positioning measurement.
  • the terminal device selects reference signals corresponding to multiple frame numbers or multiple subframe numbers as reference signals for positioning measurement according to the first indication information. That is, the first indication information includes multiple frame numbers or multiple subframe numbers, and reference signals corresponding to these multiple frame numbers or multiple subframe numbers are used for positioning measurement.
  • the terminal equipment determines the reception time of these reference signals. Further determine the reception time difference between two adjacent reference signals.
  • the terminal device After receiving the first indication information, the terminal device turns on the positioning measurement function. Then, according to the first indication information or the third configuration information, the first reference signal and the second reference signal used for positioning measurement are determined, and then the first reception time difference is determined and the first reception time difference is reported to the network device.
  • the first indication information may carry an identification field, and the terminal device is instructed to turn on or off the positioning measurement function according to the identification field.
  • the terminal device determines the time interval between measuring the first reference signal and measuring the second reference signal according to the second instruction information from the network device.
  • the terminal device may receive multiple reference signals from satellites, and then determine, according to the second indication information, one received reference signal to be used for positioning measurement every 20 ms or 40 ms.
  • the interval time is the first time interval, the time interval between the first reference signal and the second reference signal.
  • the above-mentioned first indication information, second indication information, and/or third indication information can be carried in a variety of signaling (messages, information, packets or channels), including but not limited to: downlink control information (Downlink control information, DCI), Media Access control element (MAC CE), or Radio resource control (RRC), etc.
  • DCI Downlink control information
  • MAC CE Media Access control element
  • RRC Radio resource control
  • the first reference signal and the second reference signal belong to CSI-RS
  • the indication information can be carried on DCI or MAC CE.
  • the network device can also send the third reference signal, the fourth reference signal, and more reference signals used for positioning measurement to the terminal device to improve the accuracy of positioning measurement.
  • the specific configuration method and transmission method are similar to the first reference signal and the second reference signal mentioned above, and will not be described again here.
  • first reference signal and the second reference signal may be sent by the same satellite or may be sent by different satellites, and this is not limited in the embodiment of the present application.
  • the terminal device determines the first receiving time difference.
  • the terminal device after receiving the first reference signal and the second reference signal from the satellite, the terminal device first determines the reception time of the first reference signal and the reception time of the second reference signal. Then, a first reception time difference is determined based on the reception time of the first reference signal and the reception time of the second reference signal.
  • the terminal device can also determine the reception time of the third reference signal and the second reference signal.
  • the difference is the second receiving time difference.
  • the terminal device may also determine the difference in reception time between the third reference signal and the fourth reference signal, that is, the third reception time difference, and so on.
  • the terminal device can determine which reference signals are used for positioning measurement according to the instruction information of the network device. The terminal device then calculates the reception time difference.
  • the terminal device can determine which reference signals are used for positioning measurement according to the instruction information of the network device. Then the terminal device selects some of the reference signals and calculates the reception time difference. For example: the network device configures K SSBs to the terminal device for positioning measurement, and the terminal device selects X SSBs among them and calculates the reception time difference between two adjacent SSBs among the X SSBs.
  • the terminal device may calculate the location information of the terminal device locally based on the first reference signal and the second reference signal.
  • the first reference signal carries the transmission time when the satellite transmits the first reference signal
  • the second reference signal carries the transmission time when the satellite transmits the second reference signal.
  • the terminal device determines the position information (called the first coordinate) when the satellite sends the first reference signal based on the sending time of the first reference signal (satellite), the sending time of the second reference signal (satellite) and the ephemeris information of the satellite, Determine the position information (called the second coordinate) when the satellite sends the second reference signal.
  • the terminal device determines the transmission interval for the satellite to transmit the first reference signal and the second reference signal, that is, the first time interval, based on the transmission time of the first reference signal and the transmission time of the second reference signal. Then, the terminal device determines the first location information based on the first time interval, the first reception time difference, the first coordinate and the second coordinate.
  • the terminal device after determining the first location information, the terminal device initiates random access to the network device based on the first location information. For example: Compensating timing advance (Timing Advance, TA) according to the first position information. It can reduce the deviation when the terminal device initiates random access.
  • Timing Advance Timing Advance
  • the terminal device sends the first receiving time difference to the network device.
  • the terminal device sends the first reception time difference, or the second reception time difference, or other reception time difference used as a reference signal for positioning measurement, to the network device (ie, satellite).
  • the network device ie, satellite
  • the first reference signal and the second reference signal are SSB (or PSS or SSS) as an example for description.
  • AA when the satellite's broadcast beam uses a narrow beam (also called a scanning beam).
  • the following scenarios may occur.
  • the satellite transmits the first reference signal and the second reference signal to the terminal device in the first beam direction.
  • the terminal device sends the first reception time difference to the satellite in the first beam direction. Since the beam direction corresponding to each SSB index may be inconsistent, that is, the terminal device can usually only receive SSBs with the same SSB index in the same beam. Therefore, the network device can determine the first reference signal and the second reference signal corresponding to the first reception time difference according to the first beam direction.
  • the terminal device selects the PSS (or SSS, or SSB) with the same SSB index for positioning measurement. For example: select PSS (or SSS, or SSB) with SSB index 0 for positioning measurement.
  • the terminal device determines the reception time difference of the PSS (or SSS, or SSB) of two adjacent SSB index 0 in the time domain. And send the reception time difference (that is, the first reception time difference) to the satellite in the beam direction of the PSS (or SSS, or SSB) of SSB index 0.
  • the satellite determines that the reference signal corresponding to the reception time difference is PSS (or SSS, or SSB) with SSB index 0.
  • the sending interval ie, the first time interval for the satellite to send the PSS (or SSS, or SSB) with SSB index 0 is determined.
  • the terminal device may receive the third reference signal sent by the satellite in the second beam direction. Then the terminal device sends the second reception time difference (corresponding to the third reference signal) to the satellite in the second beam direction. The difference between the reception time and the reception time of the second reference signal).
  • the second beam direction is inconsistent with the first beam direction, so the network device determines that the relative position of the terminal device and the satellite has changed based on the first beam direction and the second beam direction. Furthermore, the network device determines the third reference signal corresponding to the second reception time difference according to the second beam direction.
  • the terminal device does not limit the reference signal used for positioning measurement.
  • the terminal device receives multiple SSBs with SSB index 0 (also called SSB0) in beam 1 of the satellite, the terminal device records the reception time of these SSB0 (such as SSB0' and SSB0"), and then determines the time of the adjacent SSB0 Receiving time difference (such as the receiving time difference between SSB0' and SSB0").
  • the terminal equipment sends the reception time difference between SSB0’ and SSB0” to the satellite on beam 1. And determines the transmission time of SSB0’ and the transmission time of SSB0”.
  • the terminal device records the SSB1 reception time.
  • the terminal device determines the reception time difference between SSB0" and SSB1 based on the reception time of SSB0" and the reception time of SSB1.
  • the terminal device sends the reception time difference between SSB0" and SSB1 to the satellite on beam 2.
  • the network device determines that the terminal device has beam switching based on beam 2. Then it is determined that the reception time difference between SSB0" and SSB1 corresponds to SSB0" and SSB1. Then it is determined SSB0” sending time and SSB1 sending time.
  • the terminal device can send an interval for measuring the reception time difference to the satellite. For example, the terminal device determines the reception time of the received SSB every 20 ms and calculates the reception time difference of two adjacent SSBs. Then the terminal device sends the first reception time difference to the network device (such as a satellite), and the terminal device may also send the first time interval (20 ms) to the network device. The network device determines the SSB corresponding to the first time interval based on the difference between the first time interval and the first receiving time, and then determines the sending time of the SSB.
  • the network device such as a satellite
  • the terminal device reports the first reception time difference, the second reception time difference, and other reception time differences used as reference signals for positioning measurement to the network device. Multiple implementation methods can be used, which will be described separately below.
  • Each time the terminal device determines a receiving time difference it sends a receiving time difference to the network device. For example: after the terminal device determines the first receiving time difference, the terminal device sends the first receiving time difference to the network device. After the terminal device determines the second reception time difference, the terminal device sends the second reception time difference to the network device. And so on.
  • the terminal device After the terminal device determines multiple receiving time differences, it then sends multiple receiving time differences to the network device. For example: after the terminal device determines the first receiving time difference, it waits for a period of time. After the terminal device determines the second receiving time difference, the terminal device sends the first receiving time difference and the second receiving time difference to the network device. And so on.
  • the terminal device determines the receiving time difference, it sends the receiving time difference to the network device according to the instructions of the network device.
  • the first reception time difference and the second reception time difference may be reported independently of each other. For example, if the first reception time difference is 5ms and the second reception time difference is 8ms, then the first reception time difference sent by the terminal device to the network device is 5ms and the second reception time difference is 5ms. is 8ms.
  • the second reception time difference may be a relative value to the first reception time difference. For example, if the first reception time difference is 5 ms and the second reception time difference is 8 ms, then the first reception time difference sent by the terminal device to the network device is 5 ms. The difference between the two receiving times is +3ms.
  • the network device in step 403 includes a satellite
  • the satellite can perform subsequent steps 404-406 locally; the satellite can also send the first reception time difference to the ground base station or core network.
  • the ground base station or core network performs subsequent steps 404-406.
  • the network device obtains the first time interval.
  • the network device determines the reference signal (ie, the first reference signal and the second reference signal) corresponding to the first reception time difference based on the first reception time difference. Then, the network device determines the sending time of the first reference signal and the sending time of the second reference signal, and further determines the time interval between the sending times of the two reference signals, that is, obtains the first time interval.
  • the reference signal ie, the first reference signal and the second reference signal
  • the network device can determine the reference corresponding to the first reception time difference based on the beam direction corresponding to the first reception time difference. Signal.
  • the network device may also determine the first reference signal and the second reference signal corresponding to the first reception time difference according to the third indication information sent by the terminal device.
  • the third indication information clearly indicates the reference signal corresponding to the first reception time difference.
  • the network device determines the first reference signal and the second reference signal corresponding to the first reception time difference, it further searches for the sending time of the first reference signal and the sending time of the second reference signal.
  • the first time interval is calculated based on the sending time of the first reference signal and the sending time of the second reference signal.
  • the network device may also determine, based on the second indication information sent by the terminal device, that the terminal device receives the first reference signal and the second reference signal according to the first time interval.
  • the network device After the network device receives the second reception time difference from the terminal device, the second reference signal and the third reference signal corresponding to the second reception time difference are obtained through the above method. Further, the network device obtains the second time interval (ie, the difference between the transmission time of the second reference signal sent by the satellite and the transmission time of the third reference signal sent by the satellite) based on the second reference signal and the third reference signal.
  • the second time interval ie, the difference between the transmission time of the second reference signal sent by the satellite and the transmission time of the third reference signal sent by the satellite
  • the network device obtains the first coordinates and the second coordinates.
  • step 404 and step 405 The execution order of step 404 and step 405 is not limited.
  • the network device determines the reference signal (ie, the first reference signal and the second reference signal) corresponding to the first reception time difference based on the first reception time difference. Furthermore, the position information (ie, the first coordinates) when the satellite transmits the first reference signal is determined, and the position information (ie, the second coordinate) when the satellite transmits the second reference signal is determined.
  • the network device After receiving the second reception time difference from the terminal device, the network device can obtain third coordinates, where the third coordinates indicate the position of the satellite when it sends the third reference signal.
  • the third coordinates indicate the position of the satellite when it sends the third reference signal.
  • the network device determines the first location information based on the first coordinates, the second coordinates, the first time interval and the first reception time difference, and the first location information is the location information of the terminal device.
  • the network device that calculates the first location information in step 406 may be a satellite, a ground base station, a core network, etc. This embodiment of the present application does not limit this.
  • the first coordinate be (X1, Y1, Z1)
  • the second coordinate be (X2, Y2, Z2)
  • the first time interval be T1
  • the first receiving time difference be ⁇ T1
  • c be the speed of light
  • the first position information be ( X, Y, Z), where X in (X, Y, Z) can be longitude, Y can be dimension, and Z can be height.
  • the first reference signal and the second reference signal sent by the satellite come from the ground base station
  • calculating the location information of the terminal device also needs to consider the feed delay from the satellite to the ground base station.
  • the first feed delay be D1
  • the second feed delay be D2.
  • the first position information can also be calculated by combining more reception time differences and satellite position information.
  • the network device receives a second reception time difference from the terminal device, and the second reception time difference indicates the difference between the time when the terminal device receives the second reference signal and the time when the terminal device receives the third reference signal. Difference; the network device obtains a second time interval, the second time interval indicates the time interval between the time when the satellite sends the second reference signal and the time when the satellite sends the third reference signal; so The network device obtains third coordinates, wherein the third coordinates indicate the position when the satellite transmits the third reference signal.
  • the third reference signal sent by the satellite comes from the ground base station, the network equipment also needs to obtain the third feed delay.
  • the third feed delay is the transmission delay of the third reference signal from the ground base station to the satellite.
  • the network device receives a third reception time difference from the terminal device, the third reception time difference indicating a difference between the time when the terminal device receives the third reference signal and the time when the terminal device receives the fourth reference signal;
  • the network device obtains a third time interval, the third time interval indicates the time interval between the time when the satellite sends the third reference signal and the time when the satellite sends the fourth reference signal;
  • the network device Fourth coordinates are obtained, wherein the fourth coordinates indicate the position when the satellite transmits the fourth reference signal.
  • the fourth feed delay is the transmission delay of the fourth reference signal from the ground base station to the satellite.
  • the third feed delay be D3, the second receiving time difference be ⁇ T2, the second time interval be T2, the third coordinate be (X3, Y3, Z3), the fourth feeding delay be D4, and the third receiving time difference be ⁇ T3, the third time interval is T3, and the fourth coordinate is (X4, Y4, Z4).
  • the network device can also verify whether the location information reported by the terminal device is accurate based on the first location information to improve communication security. Specifically: the network device receives second location information from the terminal device, where the second location information is the location information of the terminal device measured by the terminal device itself; the network device uses the third location information. One location information verifies whether the second location information is accurate.
  • the satellite sends the first reference signal and the second reference signal to the terminal device
  • the network device obtains the reception time difference between the terminal device receiving the first reference signal and the second reference signal.
  • the network device uses the location information of the first reference signal sent by the satellite and the location information of the second reference signal sent by the satellite, the sending time interval of the first reference signal and the second reference signal sent by the satellite, and the reception of the first reference signal and the second reference signal.
  • the time difference determines the location information of the terminal device.
  • the first reference signal and the second reference signal may be a primary synchronization signal PSS, a secondary synchronization signal SSS, a synchronization signal/physical broadcast channel block SSB, a demodulation reference signal DMRS, a channel state information reference signal CSI-RS, or a phase tracking reference signal. Any of the PTRS. Therefore, communication resources can be saved and positioning measurement of terminal equipment can be achieved.
  • an application scenario proposed by the embodiments of the present application will be introduced below, taking the first reference signal and the second reference signal as SSB, PSS or SSS as an example.
  • Figure 6 is a schematic diagram of an application scenario in an embodiment of the present application.
  • An application scenario proposed by the embodiment of this application includes:
  • the ground base station sends the first reference signal and the second reference signal to the satellite.
  • the satellite sends the first reference signal and the second reference signal.
  • the terminal device sends the first reception time difference to the satellite.
  • the satellite can calculate the location information of the terminal device based on the first reception time difference and other information.
  • the satellite may also send the first reception time difference to the ground base station or core network, and the ground base station or core network calculates the location information of the terminal device. This is not limited in the embodiments of the present application.
  • the scenario illustrated in Figure 6 may be a scenario in which beam switching does not occur in the terminal equipment, or may be a scenario in which the broadcast beam of the satellite is a wide beam.
  • FIG. 7 is a schematic diagram of an application scenario in an embodiment of the present application.
  • An application scenario proposed by the embodiment of this application includes:
  • the ground base station sends the first reference signal and the second reference signal to the satellite.
  • the satellite sends the first reference signal.
  • step K3 is entered, and the satellite sends a second reference signal in the second beam direction.
  • the second beam direction is inconsistent with the first beam direction.
  • the terminal device sends the first reception time difference to the satellite.
  • the satellite can calculate the location information of the terminal device based on the first reception time difference and other information.
  • the satellite may also send the first reception time difference to the ground base station or core network, and the ground base station or core network calculates the location information of the terminal device. This is not limited in the embodiments of the present application.
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Skilled artisans may implement the described functionality using different methods for each specific application, but such implementations should not be considered beyond the scope of this application.
  • FIG 8 is a schematic diagram of the hardware structure of the communication device in the embodiment of the present application.
  • the communication device may include:
  • the communication device includes at least one processor 801, communication line 807, memory 803 and at least one communication interface 804.
  • the processor 801 can be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (server IC), or one or more programs for controlling the solution of this application. implemented integrated circuit.
  • CPU central processing unit
  • microprocessor microprocessor
  • server IC application-specific integrated circuit
  • Communication line 807 may include a path to carry information between the above-mentioned components.
  • the communication interface 804 uses any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet.
  • Memory 803 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory (RAM)) or other type that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • the memory may exist independently and be connected to the processor through the communication line 807. Memory can also be integrated with the processor.
  • the memory 803 is used to store computer execution instructions for executing the solution of the present application, and is controlled by the processor 801 for execution.
  • the processor 801 is configured to execute computer execution instructions stored in the memory 803, thereby implementing the communication method based on the application layer service optimization ALTO protocol provided by the above embodiments of the present application.
  • the computer-executed instructions in the embodiments of the present application may also be called application codes, which are not specifically limited in the embodiments of the present application.
  • the communication device may include multiple processors, such as processor 801 and processor 802 in Figure 8 .
  • processors may be a single-CPU processor or a multi-CPU processor.
  • a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the communication device may also include an output device 805 and an input device 806.
  • the output device 805 communicates with the processor 801 and can display information in a variety of ways.
  • the input device 806 communicates with the processor 801 and can receive user input in a variety of ways.
  • the input device 806 may be a mouse, a touch screen device, a sensing device, or the like.
  • the processor 802 may include one or more processing units.
  • the processor 802 may include an application processor (application processor, AP), a modem processor, a graphics processor.
  • Application processor application processor, AP
  • modem processor a graphics processor.
  • processor graphics processing unit, GPU
  • image signal processor image signal processor, ISP
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • Neural network processor Neural-network processing unit, NPU
  • different processing units can be independent devices or integrated in one or more processors.
  • the controller may be the nerve center and command center of the communication device 800 .
  • the controller can generate operation control signals based on the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • the processor 802 may also be provided with a memory for storing instructions and data.
  • the memory in processor 802 is cache memory. This memory may hold instructions or data that have been recently used or recycled by the processor 802 . If the processor 802 needs to use the instruction or data again, it can be called directly from the memory. Repeated access is avoided and the waiting time of the processor 802 is reduced, thus improving the efficiency of the system.
  • processor 802 may include one or more interfaces.
  • Interfaces may include integrated circuit (inter-integrated circuit, I1C) interface, integrated circuit built-in audio (inter-integrated circuit sound, I1S) interface, pulse code modulation (pulse code modulation, PCM) interface, universal asynchronous receiver and transmitter (universal asynchronous receiver/transmitter (UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and /or universal serial bus (USB) interface, etc.
  • I1C integrated circuit
  • I1S integrated circuit built-in audio
  • PCM pulse code modulation
  • UART universal asynchronous receiver and transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the interface connection relationships between the modules illustrated in the embodiments of the present application are only schematic illustrations and do not constitute a structural limitation on the communication device 800 .
  • the communication device 800 may also adopt different interface connection methods in the above embodiments, or a combination of multiple interface connection methods.
  • the wireless communication function of the communication device 800 can be implemented through the antenna 1, the antenna 2, the mobile communication module, the wireless communication module, the modem processor and the baseband processor, etc.
  • the communication device 800 can communicate with other devices using wireless communication functions.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in communication device 800 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization. For example: Antenna 1 can be reused as a diversity antenna for a wireless LAN. In other embodiments, antennas may be used in conjunction with tuning switches.
  • the mobile communication module can provide wireless communication solutions including 1G/3G/4G/5G applied on the communication device 800 .
  • the mobile communication module may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module can receive electromagnetic waves through the antenna 1, perform filtering, amplification and other processing on the received electromagnetic waves, and transmit them to the modem processor for demodulation.
  • the mobile communication module can also amplify the signal modulated by the modem processor and convert it into electromagnetic waves through the antenna 2 for radiation.
  • at least part of the functional modules of the mobile communication module may be disposed in the processor 802.
  • at least part of the functional modules of the mobile communication module may be provided in the same device as at least part of the modules of the processor 802 .
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low-frequency baseband signal to be sent into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the application processor outputs sound signals through audio devices (not limited to speakers, receivers, etc.), or displays images or videos through the display screen.
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent of the processor 802 and may be provided in the same device as the mobile communication module or other functional modules.
  • the communication device 800 implements display functions through a GPU, a display screen, an application processor, and the like.
  • GPU is an image processing microprocessor that connects the display and application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 802 may include one or more GPUs that execute program instructions to generate or alter display information.
  • the external memory interface can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the communication device 800.
  • the external memory card communicates with the processor 802 through the external memory interface to implement the data storage function. Such as saving music, videos, etc. files in external memory card.
  • Internal memory may be used to store computer executable program code, which includes instructions.
  • the processor 802 executes instructions stored in the internal memory to execute various functional applications and data processing of the communication device 800 .
  • Internal memory may include a program storage area and a data storage area.
  • the stored program area can store an operating system, at least one application program required for a function (such as a sound playback function, an image playback function, etc.).
  • the storage data area may store data created during use of the communication device 800 (such as audio data, phone book, etc.).
  • the internal memory may include high-speed random access memory, and may also include non-volatile memory, such as at least one disk storage device, flash memory device, universal flash storage (UFS), etc.
  • the above-mentioned communication device may be a general-purpose device or a special-purpose device.
  • the communication device may be a desktop computer, a portable computer, a network server, a wireless terminal device, an embedded device, or a device with a similar structure as shown in FIG. 8 .
  • the embodiments of the present application do not limit the type of communication device.
  • the communication device can be either a cloud server or a terminal device, and is not limited here.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the communication device 800.
  • the communication device 800 may include more or fewer components than shown in the figures, or some components may be combined, or some components may be separated, or may be arranged differently.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • Embodiments of the present application can divide the communication device (including the server and the terminal device) into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into in a processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • FIG. 9 is a schematic diagram of a communication device 900 in an embodiment of the present application.
  • the communication device 900 includes a communication interface 901, and a processor 902 connected to the communication interface 901, where the processor is configured to execute any of the implementations shown in the foregoing method embodiments.
  • the communication device 900 is used as a network device, and the communication device 900 includes:
  • Communication interface 901 configured to receive a first reception time difference from the terminal device, the first reception time difference indicating the difference between the time when the terminal device receives the first reference signal and the time when the terminal device receives the second reference signal. value, the first reference signal is sent to the terminal device by the satellite, and the second reference signal is sent to the terminal device by the satellite;
  • the communication interface 901 is also used to obtain a first time interval, which indicates the time interval between the time when the satellite sends the first reference signal and the time when the satellite sends the second reference signal. ;
  • the communication interface 901 is also used to obtain first coordinates and second coordinates, wherein the first coordinate indicates the position when the satellite sends the first reference signal, and the second coordinate indicates the satellite sends the The position of the second reference signal;
  • the processor 902 is configured to determine first location information based on the first coordinate, the second coordinate, the first time interval, and the first receiving time difference, and the first location information is the The location information of the terminal device measured by the network device.
  • the network device includes: a ground base station, and the satellite;
  • the network device includes: the satellite.
  • the first reference signal and the second reference signal sent by the satellite to the terminal device come from the ground base station.
  • the communication interface 901 is also used to obtain the first feed delay and the second feed delay.
  • the first feed delay is the transmission of the first reference signal from the ground base station to the satellite.
  • Delay is the transmission delay of the second reference signal from the ground base station to the satellite;
  • the processor 902 is also configured to determine the first location information according to the first coordinate, the second coordinate, the first receiving time difference and the first time interval, including:
  • the processor 902 is further configured to perform the processing according to the first coordinate, the second coordinate, the first receiving time difference, the first time interval, the first feeding delay and the second feeding time. Determine the first location information.
  • the communication interface 901 is also used to receive second location information from the terminal device, where the second location information is the location information of the terminal device measured by the terminal device itself;
  • the processor 902 is also configured to use the first location information to verify whether the second location information is accurate.
  • the processor 902 is further configured to determine the first reference signal and the second reference signal corresponding to the first reception time difference according to the first beam direction, which is the direction of the terminal device.
  • the satellite sends the beam direction of the first reception time difference;
  • the processor 902 is further configured to determine the first time interval based on the sending time of the first reference signal and the sending time of the second reference signal.
  • the communication interface 901 is also used to receive a second reception time difference from the terminal device.
  • the second reception time difference indicates the time when the terminal device receives the second reference signal and the time when the terminal device receives the third reference signal.
  • the communication interface 901 is also used to obtain a second time interval, which indicates the time interval between the time when the satellite sends the second reference signal and the time when the satellite sends the third reference signal. ;
  • the communication interface 901 is also used to obtain third coordinates, where the third coordinates indicate the position of the satellite when it sends the third reference signal;
  • the processor 902 is further configured to perform the processing according to the first coordinate, the second coordinate, the third coordinate, the first time interval, the second time interval, the first receiving time difference and the The second reception time difference is used to determine the first location information.
  • the processor 902 is further configured to determine the second reference signal and the third reference signal corresponding to the second reception time difference according to a second beam direction, where the second beam direction is the direction of the terminal device.
  • the satellite sends the beam direction of the second reception time difference;
  • the processor 902 is further configured to determine the second time interval based on the sending time of the second reference signal and the sending time of the third reference signal.
  • the index of the first reference signal and the index of the third reference signal are different.
  • the communication interface 901 is also configured to send first indication information to the terminal device, where the first indication information is used to instruct the first reference signal and the second reference signal to be used for positioning measurement.
  • the processor 902 is further configured to determine the first reference signal and the second reference signal from multiple reference signals according to the first configuration information for positioning measurement.
  • the communication interface 901 is also used to send second instruction information to the terminal device.
  • the second instruction information is used to instruct the terminal device to receive the first reference signal and the first reference signal according to the first time interval. second reference signal.
  • the processor 902 is further configured to determine the first time interval for the satellite to transmit the first reference signal and the second reference signal according to the second configuration information.
  • the communication interface 901 is further configured to receive third indication information from the terminal device, where the third indication information indicates that the first reception time difference corresponds to the first reference signal and the second reference signal.
  • the processor 902 is further configured to determine, according to the third indication information, that the first reception time difference corresponds to the first reference signal and the second reference signal;
  • the processor 902 is further configured to determine the first time interval based on the transmission time when the satellite transmits the first reference signal and the transmission time when the satellite transmits the second reference signal.
  • the first reference signal carries the sending time of the satellite sending the first reference signal
  • the second reference signal carries the sending time of the satellite sending the second reference signal.
  • the first reference signal and/or the second reference signal is any one of the following reference signals:
  • Primary synchronization signal PSS Secondary synchronization signal SSS, synchronization signal/physical broadcast channel block SSB, demodulation reference signal DMRS, channel state information reference signal CSI-RS, or phase tracking reference signal PTRS.
  • the communication device 900 is used as a terminal device, and the communication device 900 includes:
  • Communication interface 901 used to receive the first reference signal sent by the satellite
  • the communication interface 901 is also used to receive the second reference signal sent by the satellite;
  • the terminal device determines a first reception time difference, the first reception time difference indicates a difference between the time when the terminal device receives the first reference signal and the time when the terminal device receives the second reference signal;
  • the communication interface 901 is also used to send the first reception time difference to a network device, so that the network device determines first location information based on the first reception time difference, and the first location information is the terminal device. location information.
  • the communication interface 901 is also used to obtain second location information, where the second location information is the location information of the terminal device measured by the terminal device itself;
  • the communication interface 901 is also used to send the second location information to the network device.
  • the communication interface 901 is also used to receive the third reference signal sent by the satellite;
  • the processor 902 is configured to determine a second reception time difference.
  • the second reception time difference indicates the difference between the time when the terminal device receives the second reference signal and the time when the terminal device receives the third reference signal. value;
  • the communication interface 901 is also configured to send the second reception time difference to the network device, so that the network device determines the first location information based on the first reception time difference and the second reception time difference.
  • the processor 902 is further configured to determine the first reference signal and the second reference signal from a plurality of reference signals for positioning measurement according to third configuration information, the third configuration information indicating that the terminal device The reception time of the first reference signal and the reception time of the second reference signal are measured.
  • the communication interface 901 is also configured to receive first indication information sent by the network device, where the first indication information is used to indicate that the first reference signal and the second reference signal are used for positioning measurement;
  • the processor 902 is further configured to determine, according to the first indication information, the first reference signal and the second reference signal at which the reception time needs to be measured.
  • the processor 902 is further configured to determine the first time interval for receiving the first reference signal and the second reference signal according to fourth configuration information, where the fourth configuration information indicates the first time interval. ;
  • the communication interface 901 is further configured to wait for the first time interval to receive the second reference signal after receiving the first reference signal according to the fourth configuration information.
  • the communication interface 901 is also used to receive second instruction information sent by the network device.
  • the second instruction information is used to instruct the terminal device to receive the first reference signal and the first reference signal according to the first time interval. the second reference signal;
  • the communication interface 901 is further configured to wait for the first time interval to receive the second reference signal after receiving the first reference signal according to the second instruction information.
  • the communication interface 901 is further configured to send third instruction information to the network device, where the third instruction information instructs the terminal device to receive the first reference signal and the second second reference signal according to the first reception time difference. reference signal.
  • the first reference signal carries the sending time of the satellite sending the first reference signal
  • the second reference signal carries the sending time of the satellite sending the second reference signal
  • the processor 902 is further configured to determine the first coordinate when the satellite sends the first reference signal according to the first reference signal;
  • the processor 902 is further configured to determine the second coordinate when the satellite sends the second reference signal according to the second reference signal;
  • the processor 902 is further configured to determine a first time interval based on the sending time of the first reference signal and the sending time of the second reference signal;
  • the processor 902 is further configured to determine the first location information according to the first time interval, the first reception time difference, the first coordinate and the second coordinate.
  • the processor 902 is also configured to initiate random access to the network device according to the first location information.
  • FIG. 10 is a schematic diagram of a communication device 1000 in the embodiment of the present application.
  • the communication device 1000 is used as a network device, and the communication device 1000 includes:
  • Transceiver module 1001 a processing module 1002 connected to the transceiver module 1001;
  • Transceiver module 1001 configured to receive a first reception time difference from the terminal device.
  • the first reception time difference indicates the difference between the time when the terminal device receives the first reference signal and the time when the terminal device receives the second reference signal. value, the first reference signal is sent to the terminal device by the satellite, and the second reference signal is sent to the terminal device by the satellite;
  • the transceiver module 1001 is also configured to obtain a first time interval, which indicates the time interval between the time when the satellite sends the first reference signal and the time when the satellite sends the second reference signal. ;
  • the transceiver module 1001 is also used to obtain first coordinates and second coordinates, wherein the first coordinate indicates the position when the satellite sends the first reference signal, and the second coordinate indicates the satellite sends the The position of the second reference signal;
  • the processing module 1002 is configured to determine first location information based on the first coordinates, the second coordinates, the first time interval, and the first receiving time difference, and the first location information is the The location information of the terminal device measured by the network device.
  • the network device includes: a ground base station, and the satellite;
  • the network device includes: the satellite.
  • the first reference signal and the second reference signal sent by the satellite to the terminal device come from the ground base station.
  • the transceiver module 1001 is also used to obtain the first feed delay and the second feed delay.
  • the first feed delay is the transmission of the first reference signal from the ground base station to the satellite.
  • Delay is the transmission delay of the second reference signal from the ground base station to the satellite;
  • the processing module 1002 is also configured to determine the first location information based on the first coordinate, the second coordinate, the first receiving time difference and the first time interval, including:
  • the processing module 1002 is further configured to calculate the time difference according to the first coordinate, the second coordinate, the first receiving time difference, the first time interval, the first feeding delay and the second feeding time. Determine the first location information.
  • the transceiver module 1001 is also configured to receive second location information from the terminal device, where the second location information is the location information of the terminal device measured by the terminal device itself;
  • the processing module 1002 is also configured to use the first location information to verify whether the second location information is accurate.
  • the processing module 1002 is further configured to determine the first reference signal and the second reference signal corresponding to the first reception time difference according to the first beam direction, where the first beam direction is the direction of the terminal device.
  • the satellite sends the beam direction of the first reception time difference;
  • the processing module 1002 is further configured to determine the first time interval based on the sending time of the first reference signal and the sending time of the second reference signal.
  • the transceiver module 1001 is also configured to receive a second reception time difference from the terminal device.
  • the second reception time difference indicates the time when the terminal device receives the second reference signal and the time when the terminal device receives the third reference signal. The difference in signal time;
  • the transceiver module 1001 is also configured to obtain a second time interval, which indicates the time interval between the time when the satellite sends the second reference signal and the time when the satellite sends the third reference signal. ;
  • the transceiver module 1001 is also used to obtain third coordinates, where the third coordinates indicate the position of the satellite when it sends the third reference signal;
  • the processing module 1002 is further configured to perform the processing according to the first coordinate, the second coordinate, the third coordinate, the first time interval, the second time interval, the first receiving time difference and the The second reception time difference is used to determine the first location information.
  • the processing module 1002 is further configured to determine the second reference signal and the third reference signal corresponding to the second reception time difference according to a second beam direction, where the second beam direction is the direction of the terminal device.
  • the satellite sends the beam direction of the second reception time difference;
  • the processing module 1002 is further configured to determine the second time interval based on the sending time of the second reference signal and the sending time of the third reference signal.
  • the index of the first reference signal and the index of the third reference signal are different.
  • the transceiver module 1001 is further configured to send first indication information to the terminal device, where the first indication information is used to instruct the first reference signal and the second reference signal to be used for positioning measurement.
  • the processing module 1002 is further configured to determine the first reference signal and the second reference signal from multiple reference signals according to the first configuration information for positioning measurement.
  • the transceiver module 1001 is further configured to send second indication information to the terminal device.
  • the second indication information is used to instruct the terminal device to receive the first reference signal and the first reference signal according to the first time interval. second reference signal.
  • the processing module 1002 is further configured to determine the first time interval for the satellite to transmit the first reference signal and the second reference signal according to the second configuration information.
  • the transceiver module 1001 is further configured to receive third indication information from the terminal device, where the third indication information indicates that the first reception time difference corresponds to the first reference signal and the second reference signal.
  • the processing module 1002 is further configured to determine, according to the third indication information, that the first reception time difference corresponds to the first reference signal and the second reference signal;
  • the processing module 1002 is further configured to determine the first time interval based on the transmission time when the satellite transmits the first reference signal and the transmission time when the satellite transmits the second reference signal.
  • the first reference signal carries the sending time of the satellite sending the first reference signal
  • the second reference signal carries the sending time of the satellite sending the second reference signal.
  • the first reference signal and/or the second reference signal is any one of the following reference signals:
  • Primary synchronization signal PSS Secondary synchronization signal SSS, synchronization signal/physical broadcast channel block SSB, demodulation reference signal DMRS, channel state information reference signal CSI-RS, or phase tracking reference signal PTRS.
  • the communication device 1000 is used as a terminal device, and the communication device 1000 includes:
  • Transceiver module 1001 used to receive the first reference signal sent by the satellite
  • the transceiver module 1001 is also used to receive the second reference signal sent by the satellite;
  • the terminal device determines a first reception time difference, the first reception time difference indicates a difference between the time when the terminal device receives the first reference signal and the time when the terminal device receives the second reference signal;
  • the transceiver module 1001 is also configured to send the first reception time difference to a network device, so that the network device determines first location information based on the first reception time difference, and the first location information is the terminal device. location information.
  • the transceiver module 1001 is also used to obtain second location information, where the second location information is the location information of the terminal device measured by the terminal device itself;
  • the transceiver module 1001 is also configured to send the second location information to the network device.
  • the transceiver module 1001 is also used to receive the third reference signal sent by the satellite;
  • the processing module 1002 is configured to determine a second reception time difference.
  • the second reception time difference indicates the difference between the time when the terminal device receives the second reference signal and the time when the terminal device receives the third reference signal. value;
  • the transceiver module 1001 is also configured to send the second reception time difference to the network device, so that the network device determines the first location information based on the first reception time difference and the second reception time difference.
  • the processing module 1002 is further configured to determine the first reference signal and the second reference signal from a plurality of reference signals for positioning measurement according to third configuration information, the third configuration information indicating that the terminal device The reception time of the first reference signal and the reception time of the second reference signal are measured.
  • the transceiver module 1001 is also configured to receive first indication information sent by the network device, where the first indication information is used to indicate that the first reference signal and the second reference signal are used for positioning measurement;
  • the processing module 1002 is further configured to determine the first reference signal and the second reference signal at which the reception time needs to be measured according to the first indication information.
  • the processing module 1002 is further configured to determine the first time interval for receiving the first reference signal and the second reference signal according to fourth configuration information, where the fourth configuration information indicates the first time interval. ;
  • the transceiver module 1001 is further configured to wait for the first time interval to receive the second reference signal after receiving the first reference signal according to the fourth configuration information.
  • the transceiver module 1001 is also configured to receive second sending instruction information sent by the network device.
  • the second instruction information is used to instruct the terminal device to receive the first reference signal and the first reference signal according to the first time interval. the second reference signal;
  • the transceiver module 1001 is further configured to wait for the first time interval to receive the second reference signal after receiving the first reference signal according to the second instruction information.
  • the transceiver module 1001 is further configured to send third indication information to the network device, where the third indication information instructs the terminal device to receive the first reference signal and the second reference signal according to the first reception time difference. reference signal.
  • the first reference signal carries the sending time of the satellite sending the first reference signal
  • the second reference signal carries the sending time of the satellite sending the second reference signal
  • the processing module 1002 is also configured to determine the first coordinate when the satellite sends the first reference signal according to the first reference signal;
  • the processing module 1002 is further configured to determine the second coordinate when the satellite sends the second reference signal according to the second reference signal;
  • the processing module 1002 is further configured to determine a first time interval based on the sending time of the first reference signal and the sending time of the second reference signal;
  • the processing module 1002 is further configured to determine the first location information according to the first time interval, the first reception time difference, the first coordinate and the second coordinate.
  • the processing module 1002 is also configured to initiate random access to the network device according to the first location information.
  • the communication devices mentioned in the embodiments of the present application may be, for example, network equipment such as satellites and ground base stations or terminal equipment. It can also be a part of the components on the network equipment or terminal equipment, such as a single board or line card on the network equipment. It can also be a functional module on the network equipment or terminal equipment, or it can be a chip used to implement the method of the present application. , there is no specific limitation in the embodiments of this application.
  • the transceiver module 1001 for implementing the method may be, for example, an interface circuit of the chip, and the processing module 1002 may be a processing circuit with a processing function in the chip.
  • the communication devices may be directly connected through, but are not limited to, air interfaces, Ethernet cables, or optical cables.
  • An embodiment of the present application also provides a communication device.
  • the communication device includes: a memory, and a processor connected to the memory, wherein the processor is used to execute instructions stored in the memory, so that the communication device executes the aforementioned Any of the embodiments shown in the method examples.
  • the communication device is used in a terminal device, so that the communication device executes the method in the embodiment illustrated in FIG. 4 .
  • the communication device is used in network equipment, so that the communication device performs the method in the embodiment illustrated in FIG. 4 .
  • An embodiment of the present application also provides a communication system, which includes the network device and terminal device in the foregoing embodiment.
  • the communication system is used to perform any of the implementations shown in the foregoing method embodiments.
  • An embodiment of the present application also provides a communication system, which includes the network equipment and terminal equipment in the aforementioned embodiments.
  • the communication system is used to perform any of the implementations shown in the foregoing method embodiments.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute any of the implementation methods shown in the foregoing method embodiments.
  • Embodiments of the present application also provide a chip system, including a memory and a processor.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the chip executes any one of the implementations shown in the foregoing method embodiments. Way.
  • Embodiments of the present application also provide a chip system, including a processor.
  • the processor is configured to call and run a computer program, so that the chip executes any of the implementation methods shown in the foregoing method embodiments.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units. , that is, it can be located in one place, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the connection relationship between modules indicates that there are communication connections between them, which can be specifically implemented as one or more communication buses or signal lines.
  • the present application can be implemented by software plus necessary general hardware. Of course, it can also be implemented by dedicated hardware including dedicated integrated circuits, dedicated CPUs, dedicated memories, Special components, etc. to achieve. In general, all functions performed by computer programs can be easily implemented with corresponding hardware. Moreover, the specific hardware structures used to implement the same function can also be diverse, such as analog circuits, digital circuits or special-purpose circuits. circuit etc. However, for this application, software program implementation is a better implementation in most cases. Based on this understanding, the technical solution of the present application can be embodied in the form of a software product in essence or that contributes to the existing technology.
  • the computer software product is stored in a readable storage medium, such as a computer floppy disk. , U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk, etc., including a number of instructions to cause a computer device to execute the methods of various embodiments of the present application.
  • a readable storage medium such as a computer floppy disk. , U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk, etc., including a number of instructions to cause a computer device to execute the methods of various embodiments of the present application.
  • a computer program product includes one or more computer instructions. When computer program instructions are loaded and executed on a computer, processes or functions according to embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, computer instructions may be transferred from a website, computer, network device, computing device, or data center Transmission to another website, computer, network device, computing equipment or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that a computer can store, or a data storage device such as a network device or a data center integrated with one or more available media.
  • Available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), etc.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between the shown or discussed may be through Some interfaces, indirect couplings or communication connections of devices or units may be electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separate.
  • a component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • Integrated units may be stored in a computer-readable storage medium if they are implemented in the form of software functional units and sold or used as independent products. Based on this understanding, the technical solution of the present application is essentially or part of the contribution or all or part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes a number of instructions. It is used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods of various embodiments of the present application.
  • “at least one” refers to one or more, and “plurality” refers to two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects before and after are an “or” relationship; in the formula of this application, the character “/” indicates that the related objects before and after are a kind of "division” Relationship.
  • “Including at least one of A, B and C” may mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开一种定位方法,该方法包括:卫星向终端设备发送第一参考信号和第二参考信号,网络设备获取终端设备接收第一参考信号和第二参考信号的接收时间差。网络设备根据卫星发送第一参考信号的位置信息和卫星发送第二参考信号的位置信息,卫星发送第一参考信号和第二参考信号的发送时间间隔,第一参考信号和第二参考信号的接收时间差,确定终端设备的位置信息。通过上述方法,可以不依赖于终端设备的全球导航卫星系统GNSS能力实现终端设备在卫星通信场景下的定位测量。

Description

一种定位方法以及相关装置
本申请要求于2022年08月10日提交中国国家知识产权局、申请号为202210957694.2、发明名称为“一种定位方法以及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种定位方法以及相关装置。
背景技术
与地面基站相比,卫星(或称为卫星基站)的位置更高,部署更灵活,能够提供更广的覆盖范围,并可以为地面基站难以覆盖的海洋、森林和高空等区域提供通信服务。因此,如果将卫星通信网络与第五代移动通信系统新空口技术(5th generation mobile networks new radio,5G NR)、或长期演进技术(long term evolution,LTE)等地面通信网络融合,将极大地扩展地面通信网络的覆盖范围,为船舶、火车、飞机和偏远地区提供稳定的通信服务。
卫星通信作为5G通信的一种通信场景,又称为非地面网络(Non-terrestrial network,NTN)。NTN可以支持各类终端设备,包括但不限于5G类型的终端设备,或者物联网(internet of things,IoT)。对于某些终端设备,可能无法支持全球导航卫星系统(global navigation satellite system,GNSS)。因此,需要一种不依赖GNSS能力的定位方法。
发明内容
本申请实施例第一方面提出一种定位方法,包括:
网络设备接收来自所述终端设备的第一接收时间差,所述第一接收时间差指示所述终端设备接收第一参考信号的时间与所述终端设备接收第二参考信号的时间的差值,所述第一参考信号由卫星发送至所述终端设备,所述第二参考信号由所述卫星发送至所述终端设备;
所述网络设备获取第一时间间隔,所述第一时间间隔指示所述卫星发送所述第一参考信号的时刻与所述卫星发送所述第二参考信号的时刻的时间间隔;
所述网络设备获取第一坐标和第二坐标,其中,所述第一坐标指示卫星发送所述第一参考信号时的位置,所述第二坐标指示所述卫星发送所述第二参考信号时的位置;
所述网络设备根据所述第一坐标、所述第二坐标、所述第一时间间隔,和所述第一接收时间差,确定第一位置信息,所述第一位置信息为所述网络设备测量得到的所述终端设备的位置信息。
可以理解的是,第一参考信号和第二参考信号,可以由同一个卫星发送,也可以由不同的卫星发送,本申请实施例对此不作限制。
一种可能的实现方式中,网络设备从卫星获取第一坐标和第二坐标。例如,负责计算终端设备的位置信息的网络设备是地面基站时,卫星向终端设备发送第一参考信号后,卫星向地面基站发送第一坐标;卫星向终端设备发送第二参考信号后,卫星向地面基站发送第二坐标。又例如,负责计算终端设备的位置信息的网络设备是卫星时,卫星向终端设备发送第一参考信号后,卫星记录第一坐标;卫星向终端设备发送第二参考信号后,卫星记录第二坐标。
另一种可能的实现方式中,当卫星发送的第一参考信号和第二参考信号来自地面基站时,网络设备获取地面基站向卫星发送第一参考信号的位置信息,网络设备获取地面基站向卫星发送第一参考信号的馈电时延,然后,网络设备根据上述地面基站向卫星发送第一参考信号的位置信息以及地面基站向卫星发送第一参考信号的馈电时延,计算卫星向终端设备发送第一参考信号的位置信息(即第一坐标);类似的,网络设备获取地面基站向卫星发送第二参考信号的位置信息,网络设备获取地面基站向卫星发送第二参考信号的馈电时延,然后,网络设备根据上述地面基站向卫星发送第二参考信号的位置信息以及地面基站向卫星发送第二参考信号的馈电时延,计算卫星向终端设备发送第二参考信号的位置信息(即第二坐标)。
本申请实施例中,卫星向终端设备发送第一参考信号和第二参考信号,网络设备获取终端设备接收第一参考信号和第二参考信号的接收时间差。网络设备根据卫星发送第一参考信号的位置信息和卫星发 送第二参考信号的位置信息,卫星发送第一参考信号和第二参考信号的发送时间间隔,第一参考信号和第二参考信号的接收时间差,确定终端设备的位置信息。通过上述方法,可以不依赖于终端设备的GNSS能力实现终端设备在卫星通信场景下的定位测量。
在第一方面的一种可能的实现方式中,网络设备计算终端设备的位置信息时,网络设备还可以获取以下任意一项或多项:
卫星发送第一参考信号和第二参考信号的位置信息,或者,地面基站向卫星发送第一参考信号和第二参考信号时该卫星的位置信息,或者,地面基站向卫星发送第一参考信号和第二参考信号时地面基站的位置信息等;
卫星发送第一参考信号和第二参考信号的时间,或者,卫星接收来自地面基站的第一参考信号和第二参考信号的时间,或者,地面基站向卫星发送第一参考信号和第二参考信号的时间,或者,地面基站向卫星发送第一参考信号和第二参考信号时卫星的时间等。
其中,涉及卫星的时间,可以是卫星根据卫星本地的时钟得到,也可以是其他设备(例如卫星地面站)测量得到,例如:卫星地面站根据卫星的位置信息以及星历信息确定该卫星的时间。本申请实施例对此不作限制。
本申请实施例中的时间,可以是绝对时间,例如:协调世界时(Universal Time Coordinated,UTC);也可以是相对时间,例如:时隙、帧、子帧,或者系统帧等;该相对时间还可以是针对某个时间点的相对时间,例如:时间差、时隙差、子帧差或者系统帧差等,本申请实施例对此不作限制。
在第一方面的一种可能的实现方式中,所述网络设备包括:地面基站,和,所述卫星;或者,所述网络设备包括:所述卫星。具体的,当卫星作为网络设备时,即卫星具有网络设备的处理功能时,卫星生成第一参考信号和第二参考信号。然后,卫星以广播的方式发送第一参考信号和第二参考信号。本方案适用于多种通信场景,提升实现灵活性。
可以理解的是,本申请实施例中地面基站与卫星之间还可以存在其他中继设备,例如:卫星与地面基站之间的信息(信号或者数据等)通过卫星地面站转发。
需要说明的是,本申请实施例中,具体计算终端设备的位置信息,可以由卫星计算;也可以由地面基站计算;还可以由核心网计算,例如核心网中的是定位管理功能(location management function,LMF),或者接入与移动管理功能(acess and mobility management function,AMF);还可以由数据网络计算,例如数据网络中提供定位服务的服务器或者网络功能,本申请实施例不作限制。换言之,本申请实施例涉及的网络设备,包括但不限于:卫星、地面基站、核心网、和/或数据网络。
在第一方面的一种可能的实现方式中,所述卫星向所述终端设备发送的所述第一参考信号和所述第二参考信号来自所述地面基站。具体的,当卫星作为地面基站与终端设备之间的中继节点,转发地面基站的信息时。卫星从地面基站获取第一参考信号和第二参考信号。然后卫星向终端设备发送该第一参考信号和第二参考信号。在这种实现方式中,网络设备(例如地面基站)还需要第一馈电时延和第二馈电时延,第一馈电时延作为第一参考信号从地面基站到卫星的传输时延,第二馈电时延作为第二参考信号从地面基站到卫星的传输时延。获取地面基站至卫星的馈电时延,以提升计算终端设备的位置信息的精确度。
在第一方面的一种可能的实现方式中,还包括:所述网络设备获取第一馈电时延和第二馈电时延,所述第一馈电时延为所述第一参考信号从所述地面基站到所述卫星的传输时延,所述第二馈电时延为所述第二参考信号从所述地面基站到所述卫星的传输时延;所述网络设备根据所述第一坐标、所述第二坐标、所述第一接收时间差和第一时间间隔,确定所述第一位置信息,包括:所述网络设备根据所述第一坐标、所述第二坐标、所述第一接收时间差、第一时间间隔、所述第一馈电时延和所述第二馈电时延,确定所述第一位置信息。
另一种可能的实现方式中,卫星作为网络设备时,向终端设备发送第一参考信号和第二参考信号的卫星也可以从其他网络设备(例如地面基站或者其他的卫星)获取第一参考信号和第二参考信号。这种实现方式中,发送第一参考信号和第二参考信号的卫星也需要获取参考信号(即第一参考信号和第二参考信号)对应的馈电时延。
在第一方面的一种可能的实现方式中,还包括:所述网络设备接收来自所述终端设备的第二位置信息,所述第二位置信息为所述终端设备自身测量得到的所述终端设备的位置信息;所述网络设备使用所述第一位置信息校验所述第二位置信息是否准确。网络设备还可以根据第一位置信息校验终端设备上报的位置信息(即第二位置信息)是否准确,以提升通信安全。
在第一方面的一种可能的实现方式中,所述网络设备获取所述第一时间间隔,包括:所述网络设备根据第一波束方向,确定所述第一接收时间差对应的所述第一参考信号和所述第二参考信号,所述第一波束方向为所述终端设备向所述卫星发送所述第一接收时间差的波束方向;所述网络设备根据所述第一参考信号的发送时间和所述第二参考信号的发送时间,确定所述第一时间间隔。网络设备根据第一接收时间差对应的波束方向,确定第一接收时间差对应的参考信号。例如,根据承载第一接收时间差的波束方向,找到该波束对应的参考信号的索引(例如SSB index)。又例如,当核心网计算终端设备的位置信息时,网络设备(卫星,或者管理该卫星的地面基站)向核心网发送第一时间间隔,或者网络设备向核心网发送卫星向终端设备发送第一参考信号的发送时间,以及,卫星向终端设备发送第二参考信号的发送时间。
在第一方面的一种可能的实现方式中,还包括:所述网络设备接收来自所述终端设备的第二接收时间差,所述第二接收时间差指示所述终端设备接收所述第二参考信号的时间与所述终端设备接收第三参考信号的时间的差值;所述网络设备获取第二时间间隔,所述第二时间间隔指示所述卫星发送所述第二参考信号的时刻与所述卫星发送所述第三参考信号的时刻的时间间隔;所述网络设备获取第三坐标,其中,所述第三坐标指示所述卫星发送所述第三参考信号时的位置;所述网络设备根据所述第一坐标、所述第二坐标、所述第三坐标、所述第一时间间隔、所述第二时间间隔、所述第一接收时间差和所述第二接收时间差,确定所述第一位置信息。结合更多的接收时间差和卫星的位置信息计算第一位置信息,可有效提升第一位置信息的准确度。
在第一方面的一种可能的实现方式中,所述网络设备获取所述第二时间间隔,包括:所述网络设备根据第二波束方向,确定所述第二接收时间差对应的所述第二参考信号和所述第三参考信号,所述第二波束方向为所述终端设备向所述卫星发送所述第二接收时间差的波束方向;所述网络设备根据所述第二参考信号的发送时间和所述第三参考信号的发送时间,确定所述第二时间间隔。网络设备根据第二接收时间差对应的波束方向,确定第二接收时间差对应的参考信号。例如,根据承载第二接收时间差的波束方向,找到该波束对应的参考信号的索引(例如SSB index)。
在第一方面的一种可能的实现方式中,当所述第二波束方向与所述第一波束方向不一致时,所述第一参考信号的索引和所述第三参考信号的索引不相同。当卫星的广播波束为窄波束情况下,当终端设备发生波束切换时,承载两个接收时间差(第一接收时间差和第二接收时间差)的波束方向不同。进而,第一参考信号和第二参考信号对应的波束不同。
在第一方面的一种可能的实现方式中,还包括:所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一参考信号和所述第二参考信号用于定位测量。网络设备指示终端设备哪些参考信号用于定位测量,提升方案的实现灵活性。
在第一方面的一种可能的实现方式中,还包括:所述网络设备根据第一配置信息从多个参考信号中确定所述第一参考信号和所述第二参考信号用于定位测量。网络设备根据第一配置信息确定哪些参考信号用于定位测量,提升方案的实现灵活性。
在第一方面的一种可能的实现方式中,还包括:所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述终端设备根据所述第一时间间隔接收所述第一参考信号和所述第二参考信号。网络设备指示终端设备按照第一时间间隔接收并测量参考信号的接收时间,该所测量的参考信号用于定位测量,提升方案的实现灵活性。
在第一方面的一种可能的实现方式中,还包括:所述网络设备根据第二配置信息确定所述卫星发送所述第一参考信号和所述第二参考信号的所述第一时间间隔。网络设备根据第二配置信息,确定按照第一时间间隔发送参考信号的接收时间,该发送的参考信号用于定位测量,提升方案的实现灵活性。
在第一方面的一种可能的实现方式中,还包括:所述网络设备接收来自所述终端设备的第三指示信 息,所述第三指示信息指示所述第一接收时间差对应所述第一参考信号和所述第二参考信号。终端设备可以通过第三指示信息通知网络设备,终端设备测量得到的第一接收时间差对应于哪些参考信号,提升方案的实现灵活性。
在第一方面的一种可能的实现方式中,所述网络设备获取第一时间间隔,包括:所述网络设备根据所述第三指示信息确定所述第一接收时间差对应所述第一参考信号和所述第二参考信号;所述网络设备根据所述卫星发送所述第一参考信号的发送时刻和所述卫星发送所述第二参考信号的发送时刻,确定所述第一时间间隔。具体的,网络设备根据终端设备的指示(即第三指示信息)找到第一接收时间差对应的第一参考信号和第二参考信号。进而,确定卫星发送所述第一参考信号的发送时刻和所述卫星发送所述第二参考信号的发送时刻。然后根据这两个发送时刻,确定第一时间间隔,以便后续计算终端设备的位置信息。
在第一方面的一种可能的实现方式中,所述第一参考信号携带所述卫星发送所述第一参考信号的发送时间,所述第二参考信号携带所述卫星发送所述第二参考信号的发送时间。由于第一参考信号和第二参考信号中携带卫星发送的该参考信号的发送时间,因此终端设备根据第一参考信号的发送时间(卫星)、第二参考信号的发送时间(卫星)以及卫星的星历信息,确定卫星发送第一参考信号时的位置信息(称为第一坐标),确定卫星发送第二参考信号时的位置信息(称为第二坐标)。终端设备根据第一参考信号的发送时间和第二参考信号的发送时间,确定卫星发送第一参考信号和第二参考信号的发送间隔,即第一时间间隔。然后,所述终端设备根据所述第一时间间隔、所述第一接收时间差、所述第一坐标和所述第二坐标,确定所述第一位置信息。通过上述方法,终端设备可以在不依赖GNSS能力的情况下,根据参考信号计算自身的位置信息。
在第一方面的一种可能的实现方式中,所述第一参考信号和/或所述第二参考信号为以下任意一项参考信号:主同步信号PSS、辅同步信号SSS、同步信号/物理广播信道块SSB、解调参考信号DMRS、信道状态信息参考信号CSI-RS,或者相位跟踪参考信号PTRS。
第二方面,本申请实施例提出一种定位方法,包括:
终端设备接收卫星发送的第一参考信号;
所述终端设备接收所述卫星发送的第二参考信号;
所述终端设备确定第一接收时间差,所述第一接收时间差指示所述终端设备接收第一参考信号的时间与所述终端设备接收第二参考信号的时间的差值;
所述终端设备向网络设备发送所述第一接收时间差,使得所述网络设备根据所述第一接收时间差确定第一位置信息,所述第一位置信息为所述终端设备的位置信息。
本申请实施例中,终端设备可以接收来自卫星的第一参考信号和第二参考信号,然后根据该第一参考信号的接收时间和第二参考信号的接收时间,确定第一接收时间差。然后,终端设备可以向网络设备发送该第一接收时间差,以便网络设备根据该第一接收时间差计算终端设备的位置信息。
在第二方面的一种可能的实现方式中,还包括:
所述终端设备获取第二位置信息,所述第二位置信息为所述终端设备自身测量得到的所述终端设备的位置信息;所述终端设备向所述网络设备发送所述第二位置信息。终端设备可以将自身测量得到的位置信息(第二位置信息)上报至网络设备,以便网络设备根据第一位置信息校验第二位置信息,提升通信安全。
在第二方面的一种可能的实现方式中,还包括:所述终端设备接收所述卫星发送的第三参考信号;所述终端设备确定第二接收时间差,所述第二接收时间差指示所述终端设备接收所述第二参考信号的时间与所述终端设备接收所述第三参考信号的时间的差值;所述终端设备向所述网络设备发送所述第二接收时间差,使得所述网络设备根据所述第一接收时间差和所述第二接收时间差确定所述第一位置信息。结合更多的接收时间差和卫星的位置信息计算第一位置信息,可有效提升第一位置信息的准确度。
在第二方面的一种可能的实现方式中,还包括:所述终端设备根据第三配置信息从多个参考信号中确定所述第一参考信号和所述第二参考信号用于定位测量,所述第三配置信息指示所述终端设备测量所 述第一参考信号的接收时刻和所述第二参考信号的接收时刻。终端设备根据第三配置信息确定哪些参考信号用于定位测量,提升方案的实现灵活性。
在第二方面的一种可能的实现方式中,还包括:所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一参考信号和所述第二参考信号用于定位测量;所述终端设备根据所述第一指示信息确定需要测量接收时刻的所述第一参考信号和所述第二参考信号。网络设备指示终端设备哪些参考信号用于定位测量,提升方案的实现灵活性。
在第二方面的一种可能的实现方式中,还包括:所述终端设备根据第四配置信息确定接收所述第一参考信号和所述第二参考信号的所述第一时间间隔,所述第四配置信息指示所述第一时间间隔;所述终端设备根据所述第四配置信息,接收所述第一参考信号后等待所述第一时间间隔接收所述第二参考信号。终端设备根据第四配置信息的指示,按照第一时间间隔接收并测量参考信号的接收时间,该所测量的参考信号用于定位测量,提升方案的实现灵活性。
在第二方面的一种可能的实现方式中,还包括:所述终端设备接收所述网络设备发送的发送第二指示信息,所述第二指示信息用于指示所述终端设备根据所述第一时间间隔接收所述第一参考信号和所述第二参考信号;所述终端设备根据所述第二指示信息,接收所述第一参考信号后等待所述第一时间间隔接收所述第二参考信号。
网络设备指示终端设备按照第一时间间隔接收并测量参考信号的接收时间,该所测量的参考信号用于定位测量,提升方案的实现灵活性。
在第二方面的一种可能的实现方式中,还包括:所述终端设备向所述网络设备发送第三指示信息,所述第三指示信息指示所述终端设备按照所述第一接收时间差接收所述第一参考信号和所述第二参考信号。终端设备可以通过第三指示信息通知网络设备,终端设备测量得到的第一接收时间差对应于哪些参考信号,提升方案的实现灵活性。
在第二方面的一种可能的实现方式中,所述第一参考信号携带所述卫星发送所述第一参考信号的发送时间,所述第二参考信号携带所述卫星发送所述第二参考信号的发送时间,还包括:所述终端设备根据所述第一参考信号,确定所述卫星发送所述第一参考信号时的第一坐标;所述终端设备根据所述第二参考信号,确定所述卫星发送所述第二参考信号时的第二坐标;所述终端设备根据所述第一参考信号的发送时间和所述第二参考信号的发送时间,确定第一时间间隔;所述终端设备根据所述第一时间间隔、所述第一接收时间差、所述第一坐标和所述第二坐标,确定所述第一位置信息。通过上述方法,终端设备可以在不依赖GNSS能力的情况下,根据参考信号计算自身的位置信息。
在第二方面的一种可能的实现方式中,还包括:所述终端设备根据所述第一位置信息向所述网络设备发起随机接入。可以降低终端设备发起随机接入时的偏差。
第三方面,本申请实施例提出一种通信装置,该通信装置用作网络设备,通信装置包括:收发模块,与所述收发模块连接的处理模块。所述通信装置用于实现前述第一方面中任一项所述的方法。
第四方面,本申请实施例提出一种通信装置,该通信装置用作终端设备,通信装置包括:收发模块,与所述收发模块连接的处理模块。所述通信装置用于实现前述第二方面中任一项所述的方法。
第五方面,本申请实施例提出一种通信装置,该通信装置用作网络设备,通信装置包括:通信接口,与所述通信接口连接的处理器。所述通信装置用于实现前述第一方面中任一项所述的方法。
第六方面,本申请实施例提出一种通信装置,该通信装置用作终端设备,通信装置包括:通信接口,与所述通信接口连接的处理器。所述通信装置用于实现前述第二方面中任一项所述的方法。
第七方面,提供了一种通信系统,通信系统包括如第三方面和第四方面的通信装置。
第八方面,提供了一种通信系统,通信系统包括如第五方面和第六方面的通信装置。
本申请第九方面提供一种计算机存储介质,该计算机存储介质可以是非易失性的;该计算机存储介质中存储有计算机可读指令,当该计算机可读指令被处理器执行时实现第一方面或者第二方面中任意一种实现方式中的方法。
本申请第十方面提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行第一方面或者第二方面中任意一种实现方式中的方法。
本申请第十一方面提供一种芯片系统,该芯片系统包括处理器和接口电路,用于支持网络设备实现上述方面中所涉及的功能,例如,发送或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,芯片系统还包括存储器,存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
本申请第十二方面提供一种通信装置,包括:所述通信装置包括:
存储器,包括指令;
处理器,当所述处理器执行所述指令时通信接口;
使得通信装置执行如前述第一方面和/或第二方面中任一项的方法。
附图说明
图1为本申请实施例涉及的一种通信场景示意图;
图2为本申请实施例涉及的又一种通信场景示意图;
图3为本申请实施例提出的又一种通信场景示意图;
图4为本申请实施例中一种定位方法的实施例示意图;
图5为SSB的一种示意图;
图6为本申请实施例中一种应用场景示意图;
图7为本申请实施例中一种应用场景示意图;
图8为本申请实施例中的通信装置的硬件结构一个示意图;
图9为本申请实施例中通信装置900的一种实施例示意图;
图10为本申请实施例中通信装置1000的一种实施例示意图。
具体实施方式
下面对本申请实施例进行描述。显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。在本申请中出现的对步骤进行的命名或者编号,并不意味着必须按照命名或者编号所指示的时间/逻辑先后顺序执行方法流程中的步骤,已经命名或者编号的流程步骤可以根据要实现的技术目的变更执行顺序,只要能达到相同或者相类似的技术效果即可。本申请中所出现的单元的划分,是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个单元可以结合成或集成在另一个系统中,或一些特征可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元之间的间接耦合或通信连接可以是电性或其他类似的形式,本申请中均不作限定。并且,作为分离部件说明的单元或子单元可以是也可以不是物理上的分离,可以是也可以不是物理单元,或者可以分布到多个电路单元中,可以根据实际的需要选择其中的部分或全部单元来实现本申请方案的目的。
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例提供的方法可以应用于长期演进(long term evolution,LTE)系统、第五代(5th-generation,5G)系统、新无线(new radio,NR)系统,无线局域网(wireless local area networks,WLAN)系统以及未来演进系统或者多种通信融合系统。其中,5G系统可以为非独立组网(non-standalone,NSA)的5G系统或独立组网(standalone,SA)的5G系统。为了方便描述,本申请实施例中以提供的方法应用于5G系统或NR系统中为例对本申请实施例提供的方法作示例性说明。当本申请实施例提供的方法应用于其他系统中时,将本申请实施例中的网元替换为相应系统中的具备相同或相似功能的网元理解即可。
本申请实施例中,网络侧的设备或者网元或者功能实体,统称为网络设备。在本申请实施例中,网络设备至少包括:定位服务器和接入网设备。定位服务器为终端设备提供定位服务。接入网设备为终端设备提供接入通信网络的服务。首先,介绍本申请实施例所适用的通信场景。本申请实施例提出的一种通信场景包括:终端设备、卫星、地面基站、核心网以及数据网络。
一种可能的通信场景如图1所示,图1为本申请实施例涉及的一种通信场景示意图。图1示意的通信场景中,卫星用作地面基站与终端设备的中继节点,实现终端设备与地面基站之间的透传转发。卫星与终端设备之间通过空口连接,卫星与地面基站之间通过空口连接。地面基站具有网络设备的处理功能,地面基站与核心网通过NG接口连接。地面基站通过核心网与数据网络连接。换言之,地面基站通过卫星向终端设备提供通信服务。
又一种可能的通信场景如图2所示,图2为本申请实施例涉及的又一种通信场景示意图。图2示意的通信场景中,卫星具有网络设备的处理功能。地面基站作为卫星与核心网的中继节点,实现卫星与核心网之间的透传转发。卫星与终端设备之间通过空口连接,卫星与地面基站之间通过NG接口连接。地面基站与核心网通过NG接口连接。地面基站通过核心网与数据网络连接。换言之,卫星向终端设备提供通信服务。
在图2示意的通信场景的基础上,多个卫星可以联合为终端设备提供通信服务,请参阅图3。图3为本申请实施例提出的又一种通信场景示意图。图3示意的多个卫星具有网络设备的处理功能,多个卫星之间通过Xn接口连接。多个卫星通过空口与终端设备连接。
本申请实施例中终端设备,包括但不限于:手机、物联网设备、智能家居设备、工业控制设备、车辆设备、无人机设备等等。本申请实施例中,终端设备为各种具有线通信功能的终端设备或装置,例如:移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、用户设备(user device)、或用户装备。例如车辆、车载设备、车载模块或单元、飞行器(包括但不限于无人机)、机载设备、机载模块或单元、路测基础设备、手持设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,例如车辆用户设备(vehicle user equipment,VUE)或空调用户设备等等。
本申请实施例中的核心网,支持用户接入控制,移动性管理,会话管理,用户认证,或者计费等业务。核心网包括多个功能单元组成,可以分为控制面和数据面的功能实体。接入与移动管理单元(AMF),负责用户接入管理,认证,还有移动性管理。用户面单元(UPF)负责管理用户面数据的传输,流量统计,等功能。
本申请实施例中的地面基站,负责转发卫星和核心网之间的信令和业务数据。
本申请实施例中的空口,指的是终端设备和网络设备之间的无线链路。
本申请实施例中的Xn接口,指的是网络设备之间的接口,主要用于切换等信令交互。
本申请实施例中的NG接口指的是网络设备与核心网之间的接口,用于交互核心网的NAS等信令,以及用户的业务数据。
随着通信系统的变化,上述接口也可能随之发生变化。例如4G通信系统中,Xn接口称为X2接口,NG接口称为S1接口。
需要说明的是,本申请实施例中,具体计算终端设备的位置信息,可以由卫星计算;也可以由地面基站计算;还可以由核心网计算,例如核心网中的是定位管理功能(location management function,LMF),或者AMF;还可以由数据网络计算,例如数据网络中提供定位服务的服务器或者网络功能,本申请实施例不作限制。换言之,本申请实施例涉及的网络设备,包括但不限于:卫星、地面基站、核心网、和/或数据网络。
下面,结合附图介绍本申请实施例,请参阅图4,图4为本申请实施例中一种定位方法的实施例示意图。本申请实施例提出的一种定位方法,包括:
401、卫星向终端设备发送第一参考信号和第二参考信号。
本实施例中,卫星向终端设备分别发送第一参考信号和第二参考信号。
一种可能的实现方式中,当卫星作为网络设备时,即卫星具有网络设备的处理功能时,卫星生成第一参考信号和第二参考信号。然后,卫星以广播的方式发送第一参考信号和第二参考信号。
另一种可能的实现方式中,当卫星作为地面基站与终端设备之间的中继节点,转发地面基站的信息时。卫星从地面基站获取第一参考信号和第二参考信号。然后卫星向终端设备发送该第一参考信号和第二参考信号。在这种实现方式中,网络设备(例如地面基站)还需要第一馈电时延和第二馈电时延,第一馈电时延作为第一参考信号从地面基站到卫星的传输时延,第二馈电时延作为第二参考信号从地面基站到卫星的传输时延。
另一种可能的实现方式中,卫星作为网络设备时,向终端设备发送第一参考信号和第二参考信号的卫星也可以从其他网络设备(例如地面基站或者其他的卫星)获取第一参考信号和第二参考信号。这种实现方式中,发送第一参考信号和第二参考信号的卫星也需要获取参考信号(即第一参考信号和第二参考信号)对应的馈电时延。
接下来介绍第一参考信号和第二参考信号:
第一参考信号和第二参考信号在本申请实施例中存在多种可能的实现方式,包括但不限于:主同步信号(Primary synchronization signal,PSS)、辅同步信号(Secondary synchronization signal,SSS)、同步信号/物理广播信道块((synchronization signal,SS)/(physical broadcast channel,PBCH)block,SSB)、解调参考信号(demodulationreference signal,DMRS)、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),或者相位跟踪参考信号(phase tracking reference signal,PTRS)等。下面以第一参考信号和第二参考信号为SSB(或者PSS,或者SSS)为例进行说明。
请参阅图5,图5为SSB的一种示意图。一种可能的实现方式中,SSB的周期为80毫秒(ms)。每间隔20ms会有一个或多个SSB在一个时长为5ms的半帧内发送。该承载SSB的半帧也可以称为SSB的突发信号(burst)或者突发信号。每个burst中包括一个或多个SSB,每个burst中包括的SSB的索引(SSB index)相互不一致,一般是依次递增,例如从0开始依次递增。每个SSB包括:PSS、PBCH、SSS和PBCH。
网络设备发送SSB,具体是通过广播波束的方式发送。广播波束具体可以是扫描波束(也称为窄波束),广播波束还可以是宽波束,下面分别进行说明。
(1)、当广播波束为窄波束时。不同SSB index对应的波束方向不同。终端设备在同一个波束方向内通常只能收到相同SSB index的SSB。换言之,终端设备在一个波束的覆盖范围内,收到的SSB的SSB index相同。
(2)、当广播波束为宽波束时。对于网络设备可以轮流发送不同SSB index的SSB。相应的,终端设备在同一个波束方向内(即同一个波束的覆盖范围内),收到不同的SSB index的SSB;网络设备可以发送相同SSB index的SSB,相应的,终端设备在同一个波束方向内(即同一个波束的覆盖范围内),收到相同的SSB index的SSB。
一种可能的实现方式中,第一参考信号和第二参考信号可以是卫星发送的所有参考信号,换言之,终端设备需要对卫星发送的所有参考信号测量接收时刻,并上报相邻两个参考信号之间的接收时间差。例如:终端设备对卫星发送的所有SSB测量接收时间差。
在又一种可能的实现方式中,第一参考信号和第二参考信号也可以是卫星发送的任意多个参考信号。具体的,网络设备的配置资源指示任意发送周期一共发送Y个参考信号,网络设备选取其中的X个参考信号用作定位测量,该X个参考信号作为第一参考信号和第二参考信号。对于网络设备,选取哪些参考信号作为第一参考信号和第二参考信号,可以根据网络设备中的预配置信息或者协议约定;也可以根据来自终端设备的指示信息确定。相应的,由于终端设备需要确定哪些参考信号用作定位测量,因此,终端设备也可以根据预配置信息或者协议约定,确定第一参考信号和第二参考信号;终端设备还可以根据来自网络设备的指示信息,确定哪些参考信号作为第一参考信号和第二参考信号。终端设备还可以选择第一参考信号和第二参考信号后,将所选择的第一参考信号和第二参考信号上报至网络设备。示例性的,终端设备选取卫星发送的所有SSB中任意多个SSB测量接收时刻,然后向卫星上报该SSB的接收时间差。
下面分别进行说明:
(A)、网络设备(即卫星)按照协议约定或者配置信息,选择用于定位测量的第一参考信号和第二参考信号。
具体的,网络设备根据第一配置信息从多个参考信号中确定第一参考信号和第二参考信号用于定位测量,例如选择SSB作为第一参考信号和第二参考信号,还是选择PSS作为第一参考信号和第二参考信号。又例如选择哪些PSS作为第一参考信号和第二参考信号。
示例性的,网络设备根据第一配置信息选择每个发送周期包括的Y个SSB中前X个SSB用于定位测量,该前X个SSB作为第一参考信号和第二参考信号,Y为正整数,X为正整数。
又例如,网络设备根据第一配置信息选择每个周期(例如周期为20ms)发送的Y个SSB中第一个SSB(例如SSB index 0)用于定位测量,周期A的第一个SSB(例如SSB index 0)作为第一参考信号,周期A+1的第一个SSB作为第二参考信号。
又例如,网络设备根据第一配置信息,从某个帧作为起始点,按照周期H的方式每间隔H个帧选择一个参考信号作为定位测量的参考信号。即第一参考信号和第二参考信号之间间隔H个帧。
又例如,网络设备根据第一配置信息,选择多个帧号或者多个子帧号对应的参考信号作为定位测量的参考信号。即第一配置信息包括多个帧号或者多个子帧号,这些多个帧号或者多个子帧号对应的参考信号用作定位测量。
进一步的,网络设备还可以根据协议约定或者配置信息,确定卫星发送第一参考信号和第二参考信号的时间间隔,本申请实施例中将第一参考信号和第二参考信号的时间间隔称为第一时间间隔。例如:网络设备根据第二配置信息确定卫星发送第一参考信号和第二参考信号的第一时间间隔。例如:第二配置信息指示第一时间间隔为20ms,则网络设备根据第二配置信息每间隔20ms发送一个用于定位测量的参考信号。
(B)、网络设备通过接收来自终端设备的指示信息,确定用作定位测量的参考信号。
具体的,终端设备自己选择部分参考信号用作定位测量,然后确定这些参考信号的接收时间差。网络设备接收来自终端设备的第三指示信息,该第三指示信息指示第一接收时间差(即终端设备中第一参考信号的接收时间与第二参考信号的接收时间的差值)对应第一参考信号和第二参考信号。以便后续网络设备确定终端设备的位置信息。
(C)、终端设备根据协议约定或者配置信息,选择用作定位测量的第一参考信号和第二参考信号。
具体的,终端设备根据第三配置信息从多个参考信号中确定第一参考信号和第二参考信号用于定位测量,例如选择SSB作为第一参考信号和第二参考信号,还是选择PSS作为第一参考信号和第二参考信号。又例如选择哪些PSS作为第一参考信号和第二参考信号。
示例性的,终端设备根据第三配置信息选择每个周期(例如周期为80ms)接收到的Y个SSB中前X个SSB用于定位测量,该前X个SSB作为第一参考信号和第二参考信号。终端设备根据第三配置信息,测量该前X个SSB中临近的两个SSB的接收时间差。
又例如,终端设备根据第三配置信息选择每个周期(例如周期为20ms)接收到的Y个SSB中第一个SSB用于定位测量,周期A的第一个SSB作为第一参考信号,周期A+1的第一个SSB作为第二参考信号。终端设备根据第三配置信息,测量第一参考信号和第二参考信号的接收时间差。
又例如,终端设备根据第三配置信息,从某个帧作为起始点,按照周期H的方式每间隔H个帧选择一个参考信号作为定位测量的参考信号。即第一参考信号和第二参考信号之间间隔H个帧。然后终端设备周期性的确定用作定位测量的参考信号的接收时间差(即第一接收时间差)。
又例如,终端设备根据第三配置信息,选择多个帧号或者多个子帧号对应的参考信号作为定位测量的参考信号。即第三配置信息包括多个帧号或者多个子帧号,这些多个帧号或者多个子帧号对应的参考信号用作定位测量。当终端设备收到参考信号所属的帧号或子帧号属于第三配置信息所指示的帧号或子帧号时,终端设备确定这些参考信号的接收时间。进一步确定临近两个参考信号的接收时间差。
进一步的,所述终端设备根据第四配置信息确定接收所述第一参考信号和所述第二参考信号的所述第一时间间隔,所述第四配置信息指示所述第一时间间隔;所述终端设备根据所述第四配置信息,接收所述第一参考信号后等待所述第一时间间隔接收所述第二参考信号。具体如下:终端设备可以自行确定测量第一参考信号和测量第二参考信号的时间间隔。换言之,终端设备接收来自卫星的多个参考信号,根据第四配置信息的指示,终端设备可以每间隔20ms、或者40ms确定一个接收到的参考信号用作定位测量。该间隔的时间即第一时间间隔。
(D)、终端设备根据网络设备的指示信息,确定用作定位测量的第一参考信号和第二参考信号。
具体的,终端设备接收来自网络设备的第一指示信息,该第一指示信息指示终端设备第一参考信号和第二参考信号用于定位测量,例如指示SSB作为第一参考信号和第二参考信号,还是指示PSS作为第一参考信号和第二参考信号。又例如指示择哪些PSS作为第一参考信号和第二参考信号。
示例性的,终端设备根据第一指示信息选择每个周期(例如周期为80ms)接收到的Y个SSB中前X个SSB用于定位测量,该前X个SSB作为第一参考信号和第二参考信号。终端设备根据第一指示信息,测量该前X个SSB中临近的两个SSB的接收时间差。
又例如,终端设备根据第一指示信息选择每个周期(例如周期为20ms)接收到的Y个SSB中第一个SSB用于定位测量,周期A的第一个SSB作为第一参考信号,周期A+1的第一个SSB作为第二参考信号。终端设备根据第一指示信息,测量第一参考信号和第二参考信号的接收时间差。
又例如,终端设备根据第一指示信息,从某个帧作为起始点,按照周期H的方式每间隔H个帧选择一个参考信号作为定位测量的参考信号。即第一参考信号和第二参考信号之间间隔H个帧。然后终端设备周期性的确定用作定位测量的参考信号的接收时间差(即第一接收时间差)。
又例如,终端设备根据第一指示信息,选择多个帧号或者多个子帧号对应的参考信号作为定位测量的参考信号。即第一指示信息包括多个帧号或者多个子帧号,这些多个帧号或者多个子帧号对应的参考信号用作定位测量。当终端设备收到参考信号所属的帧号或子帧号属于第一指示信息所指示的帧号或子帧号时,终端设备确定这些参考信号的接收时间。进一步确定临近两个参考信号的接收时间差。
又例如,终端设备接收到第一指示信息后,开启定位测量功能。则根据第一指示信息或者第三配置信息,确定用于定位测量的第一参考信号和第二参考信号,然后确定第一接收时间差并向网络设备上报该第一接收时间差。第一指示信息可以携带标识字段,根据该标识字段指示终端设备开启或者关闭定位测量功能。
进一步的,终端设备根据来自网络设备的第二指示信息,确定测量第一参考信号和测量第二参考信号的时间间隔。换言之,终端设备可以接收来自卫星的多个参考信号,然后终端设备根据第二指示信息,确定每间隔20ms、或者40ms确定一个接收到的参考信号用作定位测量。该间隔时间即第一时间间隔,第一参考信号和第二参考信号的时间间隔。
上述第一指示信息、第二指示信息,和/或第三指示信息可以承载于多种信令(消息、信息、报文或者信道)中,包括但不限于:下行控制信息(Downlink control information,DCI)、媒体接入控制层控制单元(Media Access control element,MAC CE),或者无线资源控制(Radio resource control,RRC)等。示例性的,当第一参考信号和第二参考信号属于CSI-RS时,网络设备向终端设备发送的第一 指示信息可以承载于DCI或者MAC CE。
可选的,网络设备(卫星)还可以向终端设备发送第三参考信号、第四参考信号等更多的用作定位测量的参考信号,以提升定位测量的准确性。具体的配置方式和发送方式与前文第一参考信号和第二参考信号类似,此处不作赘述。
可以理解的是,第一参考信号和第二参考信号,可以由同一个卫星发送,也可以由不同的卫星发送,本申请实施例对此不作限制。
402、终端设备确定第一接收时间差。
本实施例中,终端设备接收来自卫星的第一参考信号和第二参考信号后,首先确定第一参考信号的接收时间和第二参考信号的接收时间。然后根据第一参考信号的接收时间和第二参考信号的接收时间,确定第一接收时间差。
进一步的,当用作定位测量的参考信号还包括:第三参考信号(或者第四参考信号等更多的参考信号)时,终端设备还可以确定第三参考信号与第二参考信号的接收时间的差值,即第二接收时间差。以此类推,终端设备还可以确定第三参考信号与第四参考信号的接收时间的差值,即第三接收时间差等。
可选的,终端设备可以根据网络设备的指示信息,确定哪一些参考信号用作定位测量。然后终端设备计算接收时间差。
可选的,终端设备可以根据网络设备的指示信息,确定哪一些参考信号用作定位测量。然后终端设备自行选择其中的部分参考信号,计算接收时间差。例如:网络设备向终端设备配置K个SSB用作定位测量,终端设备选择其中的X个SSB并计算X个SSB中相邻两个SSB的接收时间差。
可选的,终端设备可以根据第一参考信号和第二参考信号,在终端设备本地计算终端设备的位置信息。具体的,第一参考信号携带卫星发送所述第一参考信号的发送时间,第二参考信号携带所述卫星发送所述第二参考信号的发送时间。终端设备根据第一参考信号的发送时间(卫星)、第二参考信号的发送时间(卫星)以及卫星的星历信息,确定卫星发送第一参考信号时的位置信息(称为第一坐标),确定卫星发送第二参考信号时的位置信息(称为第二坐标)。终端设备根据第一参考信号的发送时间和第二参考信号的发送时间,确定卫星发送第一参考信号和第二参考信号的发送间隔,即第一时间间隔。然后,所述终端设备根据所述第一时间间隔、所述第一接收时间差、所述第一坐标和所述第二坐标,确定所述第一位置信息。
可选的,终端设备确定第一位置信息后,根据第一位置信息向网络设备发起随机接入。例如:根据第一位置信息补偿定时提前(Timing Advance,TA)。可以降低终端设备发起随机接入时的偏差。
403、终端设备向网络设备发送第一接收时间差。
本实施例中,终端设备向网络设备(即卫星)发送第一接收时间差,或者第二接收时间差等用作定位测量的参考信号的接收时间差。
对于不同的波束场景,以第一参考信号和第二参考信号为SSB(或者PSS或者SSS)为例进行说明。
(AA)、当卫星的广播波束采用窄波束(又称为扫描波束)。可能出现以下场景。卫星在第一波束方向上向终端设备发送第一参考信号和第二参考信号。则终端设备在第一波束方向上向卫星发送第一接收时间差。由于每个SSB index对应的波束方向可能不一致,即终端设备在同一个波束内通常只能收到相同SSB index的SSB。因此,网络设备根据第一波束方向可以确定第一接收时间差对应的第一参考信号和第二参考信号。
示例性的,终端设备选择相同SSB index的PSS(或者SSS,或者SSB)用作定位测量。例如:选择SSB index 0的PSS(或者SSS,或者SSB)用作定位测量。终端设备确定时域上相邻的两个SSB index 0的PSS(或者SSS,或者SSB)的接收时间差。并在SSB index 0的PSS(或者SSS,或者SSB)的波束方向上向卫星发送该接收时间差(即第一接收时间差)。卫星根据该波束方向,确定接收时间差对应的参考信号为SSB index 0的PSS(或者SSS,或者SSB)。进而,确定卫星发送SSB index 0的PSS(或者SSS,或者SSB)的发送间隔(即第一时间间隔)。
由于终端设备与卫星之间的相对位置可能发生变化,因此终端设备可能在第二波束方向上接收卫星发送的第三参考信号。则终端设备在第二波束方向上向卫星发送第二接收时间差(对应第三参考信号的 接收时间与第二参考信号的接收时间的差值)。第二波束方向与第一波束方向不一致,因此网络设备根据第一波束方向和第二波束方向,确定终端设备与卫星的相对位置发生变化。进而,网络设备根据第二波束方向确定第二接收时间差对应的第三参考信号。
示例性的,终端设备不限制用作定位测量的参考信号。当终端设备在卫星的波束1接收到多个SSB index 0的SSB(又称为SSB0)时,终端设备记录这些SSB0的接收时间(例如SSB0’和SSB0”),然后确定以及相邻的SSB0的接收时间差(例如SSB0’和SSB0”的接收时间差)。终端设备在波束1上向卫星发送SSB0’和SSB0”的接收时间差。并确定SSB0’的发送时间和SSB0”的发送时间。
然后,随着终端设备与卫星的相对位置发生变化,例如卫星的移动或者终端设备的移动,终端设备在卫星的波束2接收到SSB index 1的SSB(又称为SSB1)时,终端设备记录该SSB1的接收时间。终端设备根据SSB0”的接收时间和SSB1的接收时间,确定SSB0”与SSB1的接收时间差。然后,终端设备在波束2上向卫星发送SSB0”与SSB1的接收时间差。网络设备根据波束2,确定终端设备发生波束切换。然后确定SSB0”与SSB1的接收时间差对应于SSB0”和SSB1。进而确定SSB0”的发送时间和SSB1的发送时间。
(BB)、当卫星的广播波束采用宽波束。由于SSB index用于区分SSB所对应的波束方向。当卫星的广播波束采用宽波束时,用作定位测量的参考信号可以是相同的SSB index,也可以是不同的SSB index,本申请实施例不作限制。这种情况下,终端设备可以向卫星发送测量接收时间差的间隔,例如:终端设备每间隔20ms确定接收的SSB的接收时间,并计算相邻两个SSB的接收时间差。则终端设备向网络设备(例如卫星)发送第一接收时间差,终端设备还可以向网络设备发送第一时间间隔(20ms)。网络设备根据第一时间间隔和第一接收时间差,确定第一时间间隔所对应的SSB,进而确定该SSB的发送时间。
需要说明的是,终端设备向网络设备上报第一接收时间差、第二接收时间差等多个用作定位测量的参考信号的接收时间差,可以采用多种实现方式,下面分别进行说明。
(1)、终端设备每确定一个接收时间差,则向网络设备发送一个接收时间差。例如:终端设备确定第一接收时间差后,终端设备向网络设备发送第一接收时间差。终端设备确定第二接收时间差后,终端设备向网络设备发送第二接收时间差。依次类推。
(2)、终端设备确定多个接收时间差后,再向网络设备发送多个接收时间差。例如:终端设备确定第一接收时间差后,等待一段时间。等到终端设备确定第二接收时间差后,终端设备向网络设备发送第一接收时间差和第二接收时间差。依次类推。
(3)、终端设备确定接收时间差后,根据网络设备的指示向网络设备发送接收时间差。
第一接收时间差与第二接收时间差可以是相互独立上报,例如:第一接收时间差为5ms,第二接收时间差为8ms,则终端设备向网络设备发送的第一接收时间差为5ms,第二接收时间差为8ms。
或者,第二接收时间差可以是相对于第一接收时间差的相对值,例如:第一接收时间差为5ms,第二接收时间差为8ms,则终端设备向网络设备发送的第一接收时间差为5ms,第二接收时间差为+3ms。
需要说明的是,当步骤403的网络设备包括卫星时,卫星获取第一接收时间差后,卫星可以在本地执行后续步骤404-406;卫星也可以将第一接收时间差发送至地面基站或者核心网。由地面基站或者核心网执行后续步骤404-406。
404、网络设备获取第一时间间隔。
本实施例中,网络设备接收来自终端设备的第一接收时间差后,网络设备根据第一接收时间差,确定第一接收时间差对应的参考信号(即第一参考信号和第二参考信号)。然后,网络设备确定第一参考信号的发送时间和第二参考信号的发送时间,进一步确定两个参考信号的发送时间的时间间隔,即获取第一时间间隔。
一种可能的实现方式中,以第一参考信号和第二参考信号为SSB(或者PSS或者SSS)为例,网络设备可以根据第一接收时间差对应的波束方向确定第一接收时间差所对应的参考信号。
又一种可能的实现方式中,网络设备也可以根据终端设备发送的第三指示信息,确定第一接收时间差所对应的第一参考信号和第二参考信号。第三指示信息中明确指示了第一接收时间差所对应的参考信号。
当网络设备确定第一接收时间差所对应的第一参考信号和第二参考信号,进一步查找第一参考信号的发送时间和第二参考信号的发送时间。根据第一参考信号的发送时间和第二参考信号的发送时间,计算得到第一时间间隔。
又一种可能的实现方式中,网络设备也可以根据终端设备发送的第二指示信息,确定终端设备根据第一时间间隔接收第一参考信号和第二参考信号。
类似的,当网络设备接收来自终端设备的第二接收时间差后,通过上述方法获取第二接收时间差对应的第二参考信号和第三参考信号。进一步,网络设备根据第二参考信号和第三参考信号,获取第二时间间隔(即卫星发送第二参考信号的发送时间和卫星发送第三参考信号的发送时间的差值)。
405、网络设备获取第一坐标和第二坐标。
步骤404与步骤405的执行顺序不作限制。
本实施例中,网络设备接收来自终端设备的第一接收时间差后,网络设备根据第一接收时间差,确定第一接收时间差对应的参考信号(即第一参考信号和第二参考信号)。进而,确定卫星发送第一参考信号时的位置信息(即第一坐标),确定卫星发送第二参考信号时的位置信息(即第二坐标)。
网络设备接收来自终端设备的第二接收时间差后,可以获取第三坐标,其中,所述第三坐标指示所述卫星发送所述第三参考信号时的位置。依次类推,此处不作赘述。
406、网络设备根据第一坐标、第二坐标、第一时间间隔和第一接收时间差,确定第一位置信息,第一位置信息为终端设备的位置信息。
本实施例中,具体的,步骤406中计算第一位置信息的网络设备,可以是卫星,也可以是地面基站,还可以是核心网等,本申请实施例对此不作限制。
令第一坐标为(X1,Y1,Z1),第二坐标为(X2,Y2,Z2),第一时间间隔为T1,第一接收时间差为ΔT1,c为光速,第一位置信息设为(X,Y,Z),其中,(X,Y,Z)中的X可以是经度,Y可以是维度,Z可以是高度。通过以下方式计算得到第一位置信息:
(sqrt((X-X1)^2+(Y-Y1)^2+(Z-Z1)^2))/c-
(sqrt((X-X2)^2+(Y-Y2)^2+(Z-Z2)^2))/c=ΔT1-T1。
当卫星发送的第一参考信号和第二参考信号来自地面基站时,计算终端设备的位置信息还需要考虑卫星到地面基站的馈电时延。令第一馈电时延为D1,第二馈电时延为D2,具体计算方法如下:
(sqrt((X-X1)^2+(Y-Y1)^2+(Z-Z1)^2)+D1)/c-
(sqrt((X-X2)^2+(Y-Y2)^2+(Z-Z2)^2)+D2)/c=ΔT1-T1。
为了提升第一位置信息的准确度,还可以结合更多的接收时间差和卫星的位置信息计算第一位置信息。
具体的,网络设备接收来自所述终端设备的第二接收时间差,所述第二接收时间差指示所述终端设备接收所述第二参考信号的时间与所述终端设备接收第三参考信号的时间的差值;所述网络设备获取第二时间间隔,所述第二时间间隔指示所述卫星发送所述第二参考信号的时刻与所述卫星发送所述第三参考信号的时刻的时间间隔;所述网络设备获取第三坐标,其中,所述第三坐标指示所述卫星发送所述第三参考信号时的位置。卫星发送的第三参考信号来自地面基站时,网络设备还需要获取第三馈电时延,第三馈电时延为第三参考信号从地面基站到卫星的传输时延。
网络设备接收来自所述终端设备的第三接收时间差,所述第三接收时间差指示所述终端设备接收所述第三参考信号的时间与所述终端设备接收第四参考信号的时间的差值;所述网络设备获取第三时间间隔,所述第三时间间隔指示所述卫星发送所述第三参考信号的时刻与所述卫星发送所述第四参考信号的时刻的时间间隔;所述网络设备获取第四坐标,其中,所述第四坐标指示所述卫星发送所述第四参考信号时的位置。卫星发送的第四参考信号来自地面基站时,网络设备还需要获取第四馈电时延,第四馈电时延为第四参考信号从地面基站到卫星的传输时延。
令第三馈电时延为D3,第二接收时间差为ΔT2,第二时间间隔为T2,第三坐标为(X3,Y3,Z3),第四馈电时延为D4,第三接收时间差为ΔT3,第三时间间隔为T3,第四坐标为(X4,Y4,Z4),具体计算方法如下:
(sqrt((X-X1)^2+(Y-Y1)^2+(Z-Z1)^2)+D1)/c-
(sqrt((X-X2)^2+(Y-Y2)^2+(Z-Z2)^2)+D2)/c=ΔT1-T1;
(sqrt((X-X2)^2+(Y-Y2)^2+(Z-Z2)^2)+D2)/c-
(sqrt((X-X3)^2+(Y-Y3)^2+(Z-Z3)^2)+D3)/c=ΔT2-T2;
(sqrt((X-X3)^2+(Y-Y3)^2+(Z-Z3)^2)+D3)/c-
(sqrt((X-X4)^2+(Y-Y4)^2+(Z-Z4)^2)+D4)/c=ΔT3-T3。通过上述三个方程,可解得第一位置信息(X,Y,Z)。
步骤406后,网络设备还可以根据第一位置信息校验终端设备上报的位置信息是否准确,以提升通信安全。具体的:所述网络设备接收来自所述终端设备的第二位置信息,所述第二位置信息为所述终端设备自身测量得到的所述终端设备的位置信息;所述网络设备使用所述第一位置信息校验所述第二位置信息是否准确。
本申请实施例中,卫星向终端设备发送第一参考信号和第二参考信号,网络设备获取终端设备接收第一参考信号和第二参考信号的接收时间差。网络设备根据卫星发送第一参考信号的位置信息和卫星发送第二参考信号的位置信息,卫星发送第一参考信号和第二参考信号的发送时间间隔,第一参考信号和第二参考信号的接收时间差,确定终端设备的位置信息。通过上述方法,可以不依赖于终端设备的GNSS能力实现终端设备在卫星通信场景下的定位测量。第一参考信号和第二参考信号可以是主同步信号PSS、辅同步信号SSS、同步信号/物理广播信道块SSB、解调参考信号DMRS、信道状态信息参考信号CSI-RS,或者相位跟踪参考信号PTRS中的任意一种。因此可以节省通信资源,实现终端设备的定位测量。
结合前述实施例,下面以第一参考信号和第二参考信号是SSB、PSS或者SSS为例,介绍本申请实施例提出的一种应用场景。请参阅图6,图6为本申请实施例中一种应用场景示意图。本申请实施例提出的一种应用场景包括:
S1、地面基站向卫星发送第一参考信号和第二参考信号。
S2、卫星发送第一参考信号和第二参考信号。
S3、终端设备向卫星发送第一接收时间差。
步骤S3后,卫星可以根据第一接收时间差以及其他信息,计算得到终端设备的位置信息。卫星也可以将第一接收时间差发送至地面基站或者核心网,由地面基站或者核心网计算得到终端设备的位置信息,本申请实施例对此不作限制。
图6示意的场景,可以是终端设备未发生波束切换的场景,也可以是卫星的广播波束为宽波束的场景。
请参阅图7,图7为本申请实施例中一种应用场景示意图。本申请实施例提出的一种应用场景包括:
K1、地面基站向卫星发送第一参考信号和第二参考信号。
K2、在第一波束方向上,卫星发送第一参考信号。
当终端设备与卫星的相对位置发生变化,进入步骤K3、在第二波束方向上,卫星发送第二参考信号。第二波束方向与第一波束方向不一致。
K4、终端设备向卫星发送第一接收时间差。
步骤K4后,卫星可以根据第一接收时间差以及其他信息,计算得到终端设备的位置信息。卫星也可以将第一接收时间差发送至地面基站或者核心网,由地面基站或者核心网计算得到终端设备的位置信息,本申请实施例对此不作限制。
上述主要以方法的角度对本申请实施例提供的方案进行了介绍。可以理解的是,通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的模块及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
图8为本申请实施例中的通信装置的硬件结构一个示意图。如图8所示,该通信装置可以包括:
该通信装置包括至少一个处理器801,通信线路807,存储器803以及至少一个通信接口804。
处理器801可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,服务端IC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路807可包括一通路,在上述组件之间传送信息。
通信接口804,使用任何收发器一类的装置,用于与其他装置或通信网络通信,如以太网等。
存储器803可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储装置,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储装置,存储器可以是独立存在,通过通信线路807与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器803用于存储执行本申请方案的计算机执行指令,并由处理器801来控制执行。处理器801用于执行存储器803中存储的计算机执行指令,从而实现本申请上述实施例提供的基于应用层业务优化ALTO协议的通信方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,通信装置可以包括多个处理器,例如图8中的处理器801和处理器802。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个装置、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置还可以包括输出装置805和输入装置806。输出装置805和处理器801通信,可以以多种方式来显示信息。输入装置806和处理器801通信,可以以多种方式接收用户的输入。例如,输入装置806可以是鼠标、触摸屏装置或传感装置等。
当该通信装置为终端设备时,该通信装置中,处理器802可以包括一个或多个处理单元,例如:处理器802可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphicsprocessing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是通信装置800的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器802中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器802中的存储器为高速缓冲存储器。该存储器可以保存处理器802刚用过或循环使用的指令或数据。如果处理器802需要再次使用该指令或数据,可从存储器中直接调用。避免了重复存取,减少了处理器802的等待时间,因而提高了系统的效率。
在一些实施例中,处理器802可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I1C)接口,集成电路内置音频(inter-integrated circuit sound,I1S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对通信装置800的结构限定。在本申请另一些实施例中,通信装置800也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
通信装置800的无线通信功能可以通过天线1,天线2,移动通信模块,无线通信模块,调制解调处理器以及基带处理器等实现。
在一些可行的实施方式中,通信装置800可以使用无线通信功能和其他设备通信。
天线1和天线2用于发射和接收电磁波信号。通信装置800中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块可以提供应用在通信装置800上的包括1G/3G/4G/5G等无线通信的解决方案。移动通信模块可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块还可以对经调制解调处理器调制后的信号放大,经天线2转为电磁波辐射出去。在一些实施例中,移动通信模块的至少部分功能模块可以被设置于处理器802中。在一些实施例中,移动通信模块的至少部分功能模块可以与处理器802的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器,受话器等)输出声音信号,或通过显示屏显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器802,与移动通信模块或其他功能模块设置在同一个器件中。
通信装置800通过GPU,显示屏,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器802可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
外部存储器接口可以用于连接外部存储卡,例如Micro SD卡,实现扩展通信装置800的存储能力。外部存储卡通过外部存储器接口与处理器802通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器可以用于存储计算机可执行程序代码,可执行程序代码包括指令。处理器802通过运行存储在内部存储器的指令,从而执行通信装置800的各种功能应用以及数据处理。内部存储器可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储通信装置800使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。
上述的通信装置可以是一个通用装置或者是一个专用装置。在具体实现中,通信装置可以是台式机、便携式电脑、网络服务端、无线终端装置、嵌入式装置或有图8中类似结构的装置。本申请实施例不限定通信装置的类型。该通信装置,既可以是云端的服务端,也可以是终端设备,此处不作限制。
可以理解的是,本申请实施例示意的结构并不构成对通信装置800的具体限定。在本申请另一些实施例中,通信装置800可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
本申请实施例可以根据上述方法示例对通信装置(包括服务端和终端设备)进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
请参阅图9,图9为本申请实施例中通信装置900的一种实施例示意图。通信装置900包括通信接口901,与所述通信接口901连接的处理器902,其中,处理器用于执行前述方法实施例所示任一项实现方式。
一种可能的实现方式中,通信装置900用作网络设备,通信装置900包括:
通信接口901,用于接收来自所述终端设备的第一接收时间差,所述第一接收时间差指示所述终端设备接收第一参考信号的时间与所述终端设备接收第二参考信号的时间的差值,所述第一参考信号由卫星发送至所述终端设备,所述第二参考信号由所述卫星发送至所述终端设备;
所述通信接口901,还用于获取第一时间间隔,所述第一时间间隔指示所述卫星发送所述第一参考信号的时刻与所述卫星发送所述第二参考信号的时刻的时间间隔;
所述通信接口901,还用于获取第一坐标和第二坐标,其中,所述第一坐标指示卫星发送所述第一参考信号时的位置,所述第二坐标指示所述卫星发送所述第二参考信号时的位置;
所述处理器902,用于根据所述第一坐标、所述第二坐标、所述第一时间间隔,和所述第一接收时间差,确定第一位置信息,所述第一位置信息为所述网络设备测量得到的所述终端设备的位置信息。
在一种可能的实现方式中,所述网络设备包括:地面基站,和,所述卫星;
或者,所述网络设备包括:所述卫星。
在一种可能的实现方式中,所述卫星向所述终端设备发送的所述第一参考信号和所述第二参考信号来自所述地面基站。
在一种可能的实现方式中,
所述通信接口901,还用于获取第一馈电时延和第二馈电时延,所述第一馈电时延为所述第一参考信号从所述地面基站到所述卫星的传输时延,所述第二馈电时延为所述第二参考信号从所述地面基站到所述卫星的传输时延;
所述处理器902,还用于根据所述第一坐标、所述第二坐标、所述第一接收时间差和第一时间间隔,确定所述第一位置信息,包括:
所述处理器902,还用于根据所述第一坐标、所述第二坐标、所述第一接收时间差、第一时间间隔、所述第一馈电时延和所述第二馈电时延,确定所述第一位置信息。
在一种可能的实现方式中,
所述通信接口901,还用于接收来自所述终端设备的第二位置信息,所述第二位置信息为所述终端设备自身测量得到的所述终端设备的位置信息;
所述处理器902,还用于使用所述第一位置信息校验所述第二位置信息是否准确。
在一种可能的实现方式中,
所述处理器902,还用于根据第一波束方向,确定所述第一接收时间差对应的所述第一参考信号和所述第二参考信号,所述第一波束方向为所述终端设备向所述卫星发送所述第一接收时间差的波束方向;
所述处理器902,还用于根据所述第一参考信号的发送时间和所述第二参考信号的发送时间,确定所述第一时间间隔。
在一种可能的实现方式中,
所述通信接口901,还用于接收来自所述终端设备的第二接收时间差,所述第二接收时间差指示所述终端设备接收所述第二参考信号的时间与所述终端设备接收第三参考信号的时间的差值;
所述通信接口901,还用于获取第二时间间隔,所述第二时间间隔指示所述卫星发送所述第二参考信号的时刻与所述卫星发送所述第三参考信号的时刻的时间间隔;
所述通信接口901,还用于获取第三坐标,其中,所述第三坐标指示所述卫星发送所述第三参考信号时的位置;
所述处理器902,还用于根据所述第一坐标、所述第二坐标、所述第三坐标、所述第一时间间隔、所述第二时间间隔、所述第一接收时间差和所述第二接收时间差,确定所述第一位置信息。
在一种可能的实现方式中,
所述处理器902,还用于根据第二波束方向,确定所述第二接收时间差对应的所述第二参考信号和所述第三参考信号,所述第二波束方向为所述终端设备向所述卫星发送所述第二接收时间差的波束方向;
所述处理器902,还用于根据所述第二参考信号的发送时间和所述第三参考信号的发送时间,确定所述第二时间间隔。
在一种可能的实现方式中,
当所述第二波束方向与所述第一波束方向不一致时,所述第一参考信号的索引和所述第三参考信号的索引不相同。
在一种可能的实现方式中,
所述通信接口901,还用于向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一参考信号和所述第二参考信号用于定位测量。
在一种可能的实现方式中,
所述处理器902,还用于根据第一配置信息从多个参考信号中确定所述第一参考信号和所述第二参考信号用于定位测量。
在一种可能的实现方式中,
所述通信接口901,还用于向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述终端设备根据所述第一时间间隔接收所述第一参考信号和所述第二参考信号。
在一种可能的实现方式中,
所述处理器902,还用于根据第二配置信息确定所述卫星发送所述第一参考信号和所述第二参考信号的所述第一时间间隔。
在一种可能的实现方式中,
所述通信接口901,还用于接收来自所述终端设备的第三指示信息,所述第三指示信息指示所述第一接收时间差对应所述第一参考信号和所述第二参考信号。
在一种可能的实现方式中,
所述处理器902,还用于根据所述第三指示信息确定所述第一接收时间差对应所述第一参考信号和所述第二参考信号;
所述处理器902,还用于根据所述卫星发送所述第一参考信号的发送时刻和所述卫星发送所述第二参考信号的发送时刻,确定所述第一时间间隔。
在一种可能的实现方式中,所述第一参考信号携带所述卫星发送所述第一参考信号的发送时间,所述第二参考信号携带所述卫星发送所述第二参考信号的发送时间。
在一种可能的实现方式中,所述第一参考信号和/或所述第二参考信号为以下任意一项参考信号:
主同步信号PSS、辅同步信号SSS、同步信号/物理广播信道块SSB、解调参考信号DMRS、信道状态信息参考信号CSI-RS,或者相位跟踪参考信号PTRS。
另一种可能的实现方式中,通信装置900用作终端设备,通信装置900包括:
通信接口901,用于接收卫星发送的第一参考信号;
所述通信接口901,还用于接收所述卫星发送的第二参考信号;
所述终端设备确定第一接收时间差,所述第一接收时间差指示所述终端设备接收第一参考信号的时间与所述终端设备接收第二参考信号的时间的差值;
所述通信接口901,还用于向网络设备发送所述第一接收时间差,使得所述网络设备根据所述第一接收时间差确定第一位置信息,所述第一位置信息为所述终端设备的位置信息。
在一种可能的实现方式中,
所述通信接口901,还用于获取第二位置信息,所述第二位置信息为所述终端设备自身测量得到的所述终端设备的位置信息;
所述通信接口901,还用于向所述网络设备发送所述第二位置信息。
在一种可能的实现方式中,
所述通信接口901,还用于接收所述卫星发送的第三参考信号;
所述处理器902,用于确定第二接收时间差,所述第二接收时间差指示所述终端设备接收所述第二参考信号的时间与所述终端设备接收所述第三参考信号的时间的差值;
所述通信接口901,还用于向所述网络设备发送所述第二接收时间差,使得所述网络设备根据所述第一接收时间差和所述第二接收时间差确定所述第一位置信息。
在一种可能的实现方式中,
所述处理器902,还用于根据第三配置信息从多个参考信号中确定所述第一参考信号和所述第二参考信号用于定位测量,所述第三配置信息指示所述终端设备测量所述第一参考信号的接收时刻和所述第二参考信号的接收时刻。
在一种可能的实现方式中,
所述通信接口901,还用于接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一参考信号和所述第二参考信号用于定位测量;
所述处理器902,还用于根据所述第一指示信息确定需要测量接收时刻的所述第一参考信号和所述第二参考信号。
在一种可能的实现方式中,
所述处理器902,还用于根据第四配置信息确定接收所述第一参考信号和所述第二参考信号的所述第一时间间隔,所述第四配置信息指示所述第一时间间隔;
所述通信接口901,还用于根据所述第四配置信息,接收所述第一参考信号后等待所述第一时间间隔接收所述第二参考信号。
在一种可能的实现方式中,
所述通信接口901,还用于接收所述网络设备发送的发送第二指示信息,所述第二指示信息用于指示所述终端设备根据所述第一时间间隔接收所述第一参考信号和所述第二参考信号;
所述通信接口901,还用于根据所述第二指示信息,接收所述第一参考信号后等待所述第一时间间隔接收所述第二参考信号。
在一种可能的实现方式中,
所述通信接口901,还用于向所述网络设备发送第三指示信息,所述第三指示信息指示所述终端设备按照所述第一接收时间差接收所述第一参考信号和所述第二参考信号。
在一种可能的实现方式中,所述第一参考信号携带所述卫星发送所述第一参考信号的发送时间,所述第二参考信号携带所述卫星发送所述第二参考信号的发送时间,
所述处理器902,还用于根据所述第一参考信号,确定所述卫星发送所述第一参考信号时的第一坐标;
所述处理器902,还用于根据所述第二参考信号,确定所述卫星发送所述第二参考信号时的第二坐标;
所述处理器902,还用于根据所述第一参考信号的发送时间和所述第二参考信号的发送时间,确定第一时间间隔;
所述处理器902,还用于根据所述第一时间间隔、所述第一接收时间差、所述第一坐标和所述第二坐标,确定所述第一位置信息。
在一种可能的实现方式中,
所述处理器902,还用于根据所述第一位置信息向所述网络设备发起随机接入。
下面对本申请中的通信装置进行详细描述,请参阅图10,图10为本申请实施例中通信装置1000的一种实施例示意图。
一种可能的实现方式中,通信装置1000用作网络设备,通信装置1000包括:
收发模块1001,与所述收发模块1001连接的处理模块1002;
收发模块1001,用于接收来自所述终端设备的第一接收时间差,所述第一接收时间差指示所述终端设备接收第一参考信号的时间与所述终端设备接收第二参考信号的时间的差值,所述第一参考信号由卫星发送至所述终端设备,所述第二参考信号由所述卫星发送至所述终端设备;
所述收发模块1001,还用于获取第一时间间隔,所述第一时间间隔指示所述卫星发送所述第一参考信号的时刻与所述卫星发送所述第二参考信号的时刻的时间间隔;
所述收发模块1001,还用于获取第一坐标和第二坐标,其中,所述第一坐标指示卫星发送所述第一参考信号时的位置,所述第二坐标指示所述卫星发送所述第二参考信号时的位置;
所述处理模块1002,用于根据所述第一坐标、所述第二坐标、所述第一时间间隔,和所述第一接收时间差,确定第一位置信息,所述第一位置信息为所述网络设备测量得到的所述终端设备的位置信息。
在一种可能的实现方式中,所述网络设备包括:地面基站,和,所述卫星;
或者,所述网络设备包括:所述卫星。
在一种可能的实现方式中,所述卫星向所述终端设备发送的所述第一参考信号和所述第二参考信号来自所述地面基站。
在一种可能的实现方式中,
所述收发模块1001,还用于获取第一馈电时延和第二馈电时延,所述第一馈电时延为所述第一参考信号从所述地面基站到所述卫星的传输时延,所述第二馈电时延为所述第二参考信号从所述地面基站到所述卫星的传输时延;
所述处理模块1002,还用于根据所述第一坐标、所述第二坐标、所述第一接收时间差和第一时间间隔,确定所述第一位置信息,包括:
所述处理模块1002,还用于根据所述第一坐标、所述第二坐标、所述第一接收时间差、第一时间间隔、所述第一馈电时延和所述第二馈电时延,确定所述第一位置信息。
在一种可能的实现方式中,
所述收发模块1001,还用于接收来自所述终端设备的第二位置信息,所述第二位置信息为所述终端设备自身测量得到的所述终端设备的位置信息;
所述处理模块1002,还用于使用所述第一位置信息校验所述第二位置信息是否准确。
在一种可能的实现方式中,
所述处理模块1002,还用于根据第一波束方向,确定所述第一接收时间差对应的所述第一参考信号和所述第二参考信号,所述第一波束方向为所述终端设备向所述卫星发送所述第一接收时间差的波束方向;
所述处理模块1002,还用于根据所述第一参考信号的发送时间和所述第二参考信号的发送时间,确定所述第一时间间隔。
在一种可能的实现方式中,
所述收发模块1001,还用于接收来自所述终端设备的第二接收时间差,所述第二接收时间差指示所述终端设备接收所述第二参考信号的时间与所述终端设备接收第三参考信号的时间的差值;
所述收发模块1001,还用于获取第二时间间隔,所述第二时间间隔指示所述卫星发送所述第二参考信号的时刻与所述卫星发送所述第三参考信号的时刻的时间间隔;
所述收发模块1001,还用于获取第三坐标,其中,所述第三坐标指示所述卫星发送所述第三参考信号时的位置;
所述处理模块1002,还用于根据所述第一坐标、所述第二坐标、所述第三坐标、所述第一时间间隔、所述第二时间间隔、所述第一接收时间差和所述第二接收时间差,确定所述第一位置信息。
在一种可能的实现方式中,
所述处理模块1002,还用于根据第二波束方向,确定所述第二接收时间差对应的所述第二参考信号和所述第三参考信号,所述第二波束方向为所述终端设备向所述卫星发送所述第二接收时间差的波束方向;
所述处理模块1002,还用于根据所述第二参考信号的发送时间和所述第三参考信号的发送时间,确定所述第二时间间隔。
在一种可能的实现方式中,
当所述第二波束方向与所述第一波束方向不一致时,所述第一参考信号的索引和所述第三参考信号的索引不相同。
在一种可能的实现方式中,
所述收发模块1001,还用于向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一参考信号和所述第二参考信号用于定位测量。
在一种可能的实现方式中,
所述处理模块1002,还用于根据第一配置信息从多个参考信号中确定所述第一参考信号和所述第二参考信号用于定位测量。
在一种可能的实现方式中,
所述收发模块1001,还用于向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述终端设备根据所述第一时间间隔接收所述第一参考信号和所述第二参考信号。
在一种可能的实现方式中,
所述处理模块1002,还用于根据第二配置信息确定所述卫星发送所述第一参考信号和所述第二参考信号的所述第一时间间隔。
在一种可能的实现方式中,
所述收发模块1001,还用于接收来自所述终端设备的第三指示信息,所述第三指示信息指示所述第一接收时间差对应所述第一参考信号和所述第二参考信号。
在一种可能的实现方式中,
所述处理模块1002,还用于根据所述第三指示信息确定所述第一接收时间差对应所述第一参考信号和所述第二参考信号;
所述处理模块1002,还用于根据所述卫星发送所述第一参考信号的发送时刻和所述卫星发送所述第二参考信号的发送时刻,确定所述第一时间间隔。
在一种可能的实现方式中,所述第一参考信号携带所述卫星发送所述第一参考信号的发送时间,所述第二参考信号携带所述卫星发送所述第二参考信号的发送时间。
在一种可能的实现方式中,所述第一参考信号和/或所述第二参考信号为以下任意一项参考信号:
主同步信号PSS、辅同步信号SSS、同步信号/物理广播信道块SSB、解调参考信号DMRS、信道状态信息参考信号CSI-RS,或者相位跟踪参考信号PTRS。
另一种可能的实现方式中,通信装置1000用作终端设备,通信装置1000包括:
收发模块1001,用于接收卫星发送的第一参考信号;
所述收发模块1001,还用于接收所述卫星发送的第二参考信号;
所述终端设备确定第一接收时间差,所述第一接收时间差指示所述终端设备接收第一参考信号的时间与所述终端设备接收第二参考信号的时间的差值;
所述收发模块1001,还用于向网络设备发送所述第一接收时间差,使得所述网络设备根据所述第一接收时间差确定第一位置信息,所述第一位置信息为所述终端设备的位置信息。
在一种可能的实现方式中,
所述收发模块1001,还用于获取第二位置信息,所述第二位置信息为所述终端设备自身测量得到的所述终端设备的位置信息;
所述收发模块1001,还用于向所述网络设备发送所述第二位置信息。
在一种可能的实现方式中,
所述收发模块1001,还用于接收所述卫星发送的第三参考信号;
所述处理模块1002,用于确定第二接收时间差,所述第二接收时间差指示所述终端设备接收所述第二参考信号的时间与所述终端设备接收所述第三参考信号的时间的差值;
所述收发模块1001,还用于向所述网络设备发送所述第二接收时间差,使得所述网络设备根据所述第一接收时间差和所述第二接收时间差确定所述第一位置信息。
在一种可能的实现方式中,
所述处理模块1002,还用于根据第三配置信息从多个参考信号中确定所述第一参考信号和所述第二参考信号用于定位测量,所述第三配置信息指示所述终端设备测量所述第一参考信号的接收时刻和所述第二参考信号的接收时刻。
在一种可能的实现方式中,
所述收发模块1001,还用于接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一参考信号和所述第二参考信号用于定位测量;
所述处理模块1002,还用于根据所述第一指示信息确定需要测量接收时刻的所述第一参考信号和所述第二参考信号。
在一种可能的实现方式中,
所述处理模块1002,还用于根据第四配置信息确定接收所述第一参考信号和所述第二参考信号的所述第一时间间隔,所述第四配置信息指示所述第一时间间隔;
所述收发模块1001,还用于根据所述第四配置信息,接收所述第一参考信号后等待所述第一时间间隔接收所述第二参考信号。
在一种可能的实现方式中,
所述收发模块1001,还用于接收所述网络设备发送的发送第二指示信息,所述第二指示信息用于指示所述终端设备根据所述第一时间间隔接收所述第一参考信号和所述第二参考信号;
所述收发模块1001,还用于根据所述第二指示信息,接收所述第一参考信号后等待所述第一时间间隔接收所述第二参考信号。
在一种可能的实现方式中,
所述收发模块1001,还用于向所述网络设备发送第三指示信息,所述第三指示信息指示所述终端设备按照所述第一接收时间差接收所述第一参考信号和所述第二参考信号。
在一种可能的实现方式中,所述第一参考信号携带所述卫星发送所述第一参考信号的发送时间,所述第二参考信号携带所述卫星发送所述第二参考信号的发送时间,
所述处理模块1002,还用于根据所述第一参考信号,确定所述卫星发送所述第一参考信号时的第一坐标;
所述处理模块1002,还用于根据所述第二参考信号,确定所述卫星发送所述第二参考信号时的第二坐标;
所述处理模块1002,还用于根据所述第一参考信号的发送时间和所述第二参考信号的发送时间,确定第一时间间隔;
所述处理模块1002,还用于根据所述第一时间间隔、所述第一接收时间差、所述第一坐标和所述第二坐标,确定所述第一位置信息。
在一种可能的实现方式中,
所述处理模块1002,还用于根据所述第一位置信息向所述网络设备发起随机接入。
需要说明的是,本申请实施例中提及的通信装置,例如可以是卫星、地面基站等网络设备或者终端设备。也可以是网络设备或者终端设备上的一部分组件,例如是网络设备上的单板,线卡,还可以是网络设备或者终端设备上的一个功能模块,还可以是用于实现本申请方法的芯片,本申请实施例不做具体限定。当通信装置是芯片时,用于实现方法的收发模块1001例如可以是芯片的接口电路,处理模块1002可以是芯片中具有处理功能的处理电路。通信装置之间例如可以但不限于通过空口、以太网线或光缆直接连接。
应理解,上述各种产品形态的通信装置,分别具有上述方法实施例中终端设备、网络设备的任意功能,此处不再赘述。
本申请实施例还提供一种通信装置,所述通信装置包括:存储器,和与存储器连接的处理器,其中,所述处理器用于执行所述存储器中存储的指令,使得所述通信装置执行前述方法实施例中所示的任一项实施方式。
一种可能的实现方式中,该通信装置用于终端设备,使得所述通信装置执行如前述图4示意的实施例中的方法。
另一种可能的实现方式中,该通信装置用于网络设备,使得所述通信装置执行如前述图4示意的实施例中的方法。
本申请实施例还提供一种通信系统,该通信系统包括前述实施例中的网络设备和终端设备。该通信系统用于执行前述方法实施例所示任一项实现方式。
本申请实施例还提供一种通信系统,该通信系统包括前述实施例中的网络设备、终端设备。该通信系统用于执行前述方法实施例所示任一项实现方式。
本申请实施例还提供的一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行如前述方法实施例所示任一项实现方式。
本申请实施例还提供一种芯片系统,包括存储器和处理器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行计算机程序,使得芯片执行如前述方法实施例所示任一项实现方式。
本申请实施例还提供一种芯片系统,包括处理器,处理器用于调用并运行计算机程序,使得芯片执行如前述方法实施例所示任一项实现方式。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、ROM、RAM、磁碟或者光盘等,包括若干指令用以使得一台计算机设备执行本申请各个实施例的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、网络装置、计算设备或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、网络装置、计算设备或数据中心进行传输。计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的网络装置、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的一个或多个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过 一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (32)

  1. 一种定位方法,其特征在于,包括:
    网络设备接收来自所述终端设备的第一接收时间差,所述第一接收时间差指示所述终端设备接收第一参考信号的时间与所述终端设备接收第二参考信号的时间的差值,所述第一参考信号由卫星发送至所述终端设备,所述第二参考信号由所述卫星发送至所述终端设备;
    所述网络设备获取第一时间间隔,所述第一时间间隔指示所述卫星发送所述第一参考信号的时刻与所述卫星发送所述第二参考信号的时刻的时间间隔;
    所述网络设备获取第一坐标和第二坐标,其中,所述第一坐标指示卫星发送所述第一参考信号时的位置,所述第二坐标指示所述卫星发送所述第二参考信号时的位置;
    所述网络设备根据所述第一坐标、所述第二坐标、所述第一时间间隔,和所述第一接收时间差,确定第一位置信息,所述第一位置信息为所述网络设备测量得到的所述终端设备的位置信息。
  2. 根据权利要求1所述的方法,其特征在于,
    所述网络设备包括:地面基站,和,所述卫星;
    或者,所述网络设备包括:所述卫星。
  3. 根据权利要求2所述的方法,其特征在于,所述卫星向所述终端设备发送的所述第一参考信号和所述第二参考信号来自所述地面基站。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述网络设备获取第一馈电时延和第二馈电时延,所述第一馈电时延为所述第一参考信号从所述地面基站到所述卫星的传输时延,所述第二馈电时延为所述第二参考信号从所述地面基站到所述卫星的传输时延;
    所述网络设备根据所述第一坐标、所述第二坐标、所述第一接收时间差和第一时间间隔,确定所述第一位置信息,包括:
    所述网络设备根据所述第一坐标、所述第二坐标、所述第一接收时间差、第一时间间隔、所述第一馈电时延和所述第二馈电时延,确定所述第一位置信息。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的第二位置信息,所述第二位置信息为所述终端设备自身测量得到的所述终端设备的位置信息;
    所述网络设备使用所述第一位置信息校验所述第二位置信息是否准确。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述网络设备获取所述第一时间间隔,包括:
    所述网络设备根据第一波束方向,确定所述第一接收时间差对应的所述第一参考信号和所述第二参考信号,所述第一波束方向为所述终端设备向所述卫星发送所述第一接收时间差的波束方向;
    所述网络设备根据所述第一参考信号的发送时间和所述第二参考信号的发送时间,确定所述第一时间间隔。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的第二接收时间差,所述第二接收时间差指示所述终端设备接收所述第二参考信号的时间与所述终端设备接收第三参考信号的时间的差值;
    所述网络设备获取第二时间间隔,所述第二时间间隔指示所述卫星发送所述第二参考信号的时刻与所述卫星发送所述第三参考信号的时刻的时间间隔;
    所述网络设备获取第三坐标,其中,所述第三坐标指示所述卫星发送所述第三参考信号时的位置;
    所述网络设备根据所述第一坐标、所述第二坐标、所述第三坐标、所述第一时间间隔、所述第二时间间隔、所述第一接收时间差和所述第二接收时间差,确定所述第一位置信息。
  8. 根据权利要求7所述的方法,其特征在于,所述网络设备获取所述第二时间间隔,包括:
    所述网络设备根据第二波束方向,确定所述第二接收时间差对应的所述第二参考信号和所述第三参考信号,所述第二波束方向为所述终端设备向所述卫星发送所述第二接收时间差的波束方向;
    所述网络设备根据所述第二参考信号的发送时间和所述第三参考信号的发送时间,确定所述第二时间间隔。
  9. 根据权利要求8所述的方法,其特征在于,当所述第二波束方向与所述第一波束方向不一致时,所述第一参考信号的索引和所述第三参考信号的索引不相同。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述第一参考信号和所述第二参考信号用于定位测量。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据第一配置信息从多个参考信号中确定所述第一参考信号和所述第二参考信号用于定位测量。
  12. 根据权利要求1-11中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述终端设备根据所述第一时间间隔接收所述第一参考信号和所述第二参考信号。
  13. 根据权利要求1-12中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备根据第二配置信息确定所述卫星发送所述第一参考信号和所述第二参考信号的所述第一时间间隔。
  14. 根据权利要求1-13中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述终端设备的第三指示信息,所述第三指示信息指示所述第一接收时间差对应所述第一参考信号和所述第二参考信号。
  15. 根据权利要求14所述的方法,其特征在于,所述网络设备获取第一时间间隔,包括:
    所述网络设备根据所述第三指示信息确定所述第一接收时间差对应所述第一参考信号和所述第二参考信号;
    所述网络设备根据所述卫星发送所述第一参考信号的发送时刻和所述卫星发送所述第二参考信号的发送时刻,确定所述第一时间间隔。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,
    所述第一参考信号携带所述卫星发送所述第一参考信号的发送时间,
    所述第二参考信号携带所述卫星发送所述第二参考信号的发送时间。
  17. 根据权利要求1-16中任一项所述的方法,其特征在于,所述第一参考信号和/或所述第二参考信号为以下任意一项参考信号:
    主同步信号PSS、辅同步信号SSS、同步信号/物理广播信道块SSB、解调参考信号DMRS、信道状态信息参考信号CSI-RS,或者相位跟踪参考信号PTRS。
  18. 一种定位方法,其特征在于,包括:
    终端设备接收卫星发送的第一参考信号;
    所述终端设备接收所述卫星发送的第二参考信号;
    所述终端设备确定第一接收时间差,所述第一接收时间差指示所述终端设备接收第一参考信号的时间与所述终端设备接收第二参考信号的时间的差值;
    所述终端设备向网络设备发送所述第一接收时间差,使得所述网络设备根据所述第一接收时间差确定第一位置信息,所述第一位置信息为所述终端设备的位置信息。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    所述终端设备获取第二位置信息,所述第二位置信息为所述终端设备自身测量得到的所述终端设备的位置信息;
    所述终端设备向所述网络设备发送所述第二位置信息。
  20. 根据权利要求18-19中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述卫星发送的第三参考信号;
    所述终端设备确定第二接收时间差,所述第二接收时间差指示所述终端设备接收所述第二参考信号的时间与所述终端设备接收所述第三参考信号的时间的差值;
    所述终端设备向所述网络设备发送所述第二接收时间差,使得所述网络设备根据所述第一接收时间差和所述第二接收时间差确定所述第一位置信息。
  21. 根据权利要求18-20中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据第三配置信息从多个参考信号中确定所述第一参考信号和所述第二参考信号用于定位测量,所述第三配置信息指示所述终端设备测量所述第一参考信号的接收时刻和所述第二参考信号的接收时刻。
  22. 根据权利要求18-20中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的第一指示信息,所述第一指示信息用于指示所述第一参考信号和所述第二参考信号用于定位测量;
    所述终端设备根据所述第一指示信息确定需要测量接收时刻的所述第一参考信号和所述第二参考信号。
  23. 根据权利要求18-22中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据第四配置信息确定接收所述第一参考信号和所述第二参考信号的所述第一时间间隔,所述第四配置信息指示所述第一时间间隔;
    所述终端设备根据所述第四配置信息,接收所述第一参考信号后等待所述第一时间间隔接收所述第二参考信号。
  24. 根据权利要求18-22中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的发送第二指示信息,所述第二指示信息用于指示所述终端设备根据所述第一时间间隔接收所述第一参考信号和所述第二参考信号;
    所述终端设备根据所述第二指示信息,接收所述第一参考信号后等待所述第一时间间隔接收所述第二参考信号。
  25. 根据权利要求18-22中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备向所述网络设备发送第三指示信息,所述第三指示信息指示所述终端设备按照所述第一接收时间差接收所述第一参考信号和所述第二参考信号。
  26. 根据权利要求18-25中任一项所述的方法,其特征在于,所述第一参考信号携带所述卫星发送所述第一参考信号的发送时间,所述第二参考信号携带所述卫星发送所述第二参考信号的发送时间,
    所述方法还包括:
    所述终端设备根据所述第一参考信号,确定所述卫星发送所述第一参考信号时的第一坐标;
    所述终端设备根据所述第二参考信号,确定所述卫星发送所述第二参考信号时的第二坐标;
    所述终端设备根据所述第一参考信号的发送时间和所述第二参考信号的发送时间,确定第一时间间隔;
    所述终端设备根据所述第一时间间隔、所述第一接收时间差、所述第一坐标和所述第二坐标,确定所述第一位置信息。
  27. 根据权利要求26所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第一位置信息向所述网络设备发起随机接入。
  28. 一种通信装置,其特征在于,所述通信装置包括收发模块和与所述收发模块连接的处理模块;
    所述收发模块和所述处理模块用于执行如权利要求1-17,或者权利要求18-27中任一项所述方法的步骤。
  29. 一种通信装置,其特征在于,所述通信装置包括通信接口和与所述通信接口连接的处理器;
    所述通信接口和所述处理器用于执行如权利要求1-17,或者权利要求18-27中任一项所述方法的步骤。
  30. 一种计算机可读存储介质,其特征在于,包括程序,当其被处理单元所执行时,执行如权利要求1-17,或者权利要求18-27中任一项所述的方法。
  31. 一种计算机程序产品,包括计算机程序/指令,其特征在于,所述计算机程序/指令被处理器执行时实现如权利要求1-17,或者权利要求18-27中任一项所述方法的步骤。
  32. 一种芯片,其特征在于,所述芯片包括处理单元和通信接口,所述处理单元通过所述通信接口获取程序指令,程序指令被所述处理单元执行,所述处理单元用于执行如权利要求1-17,或者权利要求18-27中任一项所述方法的步骤。
PCT/CN2023/109268 2022-08-10 2023-07-26 一种定位方法以及相关装置 WO2024032372A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210957694.2 2022-08-10
CN202210957694.2A CN117639882A (zh) 2022-08-10 2022-08-10 一种定位方法以及相关装置

Publications (1)

Publication Number Publication Date
WO2024032372A1 true WO2024032372A1 (zh) 2024-02-15

Family

ID=89850717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109268 WO2024032372A1 (zh) 2022-08-10 2023-07-26 一种定位方法以及相关装置

Country Status (2)

Country Link
CN (1) CN117639882A (zh)
WO (1) WO2024032372A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134215A (ja) * 2003-10-29 2005-05-26 Furuno Electric Co Ltd 信号到来時間差測定システム
US20120105282A1 (en) * 2009-05-04 2012-05-03 Risto Juhani Mononen Method And Apparatus For Determination Of The Positioning Of An Apparatus Or An User From Satellite Signaling
NZ580039A (en) * 2007-04-13 2012-07-27 Glowlink Communications Technology Inc Determining a geolocation solution of an emitter on earth using satellite signals
WO2019098898A1 (en) * 2017-11-20 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Nodes and methods for determining and enabling a synchronized time reference in a wireless communications network
CN113703005A (zh) * 2020-05-21 2021-11-26 华为技术有限公司 卫星网络中定位的方法和通信装置
CN113765578A (zh) * 2021-08-31 2021-12-07 中科航宇(广州)科技有限公司 一种通信卫星地面干扰源定位方法、装置、设备及存储介质
WO2022152000A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 应用于非地面通信网络中的定位的方法和通信装置
US20220244402A1 (en) * 2021-02-04 2022-08-04 Qualcomm Incorporated Methods and apparatus for improving carrier phase detection in satellite positioning system signals

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134215A (ja) * 2003-10-29 2005-05-26 Furuno Electric Co Ltd 信号到来時間差測定システム
NZ580039A (en) * 2007-04-13 2012-07-27 Glowlink Communications Technology Inc Determining a geolocation solution of an emitter on earth using satellite signals
US20120105282A1 (en) * 2009-05-04 2012-05-03 Risto Juhani Mononen Method And Apparatus For Determination Of The Positioning Of An Apparatus Or An User From Satellite Signaling
WO2019098898A1 (en) * 2017-11-20 2019-05-23 Telefonaktiebolaget Lm Ericsson (Publ) Nodes and methods for determining and enabling a synchronized time reference in a wireless communications network
CN113703005A (zh) * 2020-05-21 2021-11-26 华为技术有限公司 卫星网络中定位的方法和通信装置
WO2022152000A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 应用于非地面通信网络中的定位的方法和通信装置
US20220244402A1 (en) * 2021-02-04 2022-08-04 Qualcomm Incorporated Methods and apparatus for improving carrier phase detection in satellite positioning system signals
CN113765578A (zh) * 2021-08-31 2021-12-07 中科航宇(广州)科技有限公司 一种通信卫星地面干扰源定位方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN117639882A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
CN108271187B (zh) 执行飞行时间(ToF)测量的装置、系统和方法
JP7147790B2 (ja) 電子機器、無線通信装置、及び無線通信方法
US9907042B2 (en) Apparatus, system and method of determining a time synchronization function (TSF) based on fine time measurement (FTM) messages
US20170013412A1 (en) Apparatus, system and method of performing a fine time measurement (FTM) procedure with a responder station
US10609543B2 (en) Flexible BTLE TDS frame format for bi-directional service discovery
CN104770025A (zh) 估计移动设备的位置的装置、系统及方法
JP7306407B2 (ja) 無線通信システムにおけるユーザー機器、電子機器、方法及び記憶媒体
WO2022077387A1 (zh) 一种通信方法及通信装置
US20180027494A1 (en) Apparatus, system and method of neighbor awareness networking (nan) data link (ndl) power save
US20190132864A1 (en) Apparatus, system and method of communicating over a data path
EP3905813A1 (en) Electronic device and method used for wireless communication, and computer-readable storage medium
WO2023125223A1 (zh) 下行传输的方法及装置
US20230345533A1 (en) Electronic device, wireless communication method, and non-transitory computer-readable storage medium
WO2022165825A1 (zh) 一种基于参考信号的通信方法及相关装置
WO2022141184A1 (zh) 一种上行参考信号资源的配置方法及相关装置
WO2024051660A1 (zh) 通信方法和通信装置
CN110661587B (zh) 发送信号的方法及装置
WO2024032372A1 (zh) 一种定位方法以及相关装置
EP4366404A1 (en) Spatial relationship indicating method and device
WO2022160298A1 (zh) 时间同步方法、装置和系统
WO2024093939A1 (zh) 信号配置方法、系统以及通信装置
WO2024197886A1 (zh) 一种感知方法及装置
WO2024198973A1 (zh) 一种定位方法及装置
WO2024217081A1 (zh) 一种融合脉冲载波的定位方法及移动通信系统
WO2024168511A1 (en) Device, method and computer readable medium for integrated sensing and communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851594

Country of ref document: EP

Kind code of ref document: A1