WO2023125481A1 - 经过修饰的aav衣壳蛋白及其用途 - Google Patents

经过修饰的aav衣壳蛋白及其用途 Download PDF

Info

Publication number
WO2023125481A1
WO2023125481A1 PCT/CN2022/142185 CN2022142185W WO2023125481A1 WO 2023125481 A1 WO2023125481 A1 WO 2023125481A1 CN 2022142185 W CN2022142185 W CN 2022142185W WO 2023125481 A1 WO2023125481 A1 WO 2023125481A1
Authority
WO
WIPO (PCT)
Prior art keywords
capsid protein
seq
aav
amino acid
aav8
Prior art date
Application number
PCT/CN2022/142185
Other languages
English (en)
French (fr)
Inventor
柯潇
郑强
罗爽
蒋浩
Original Assignee
成都弘基生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都弘基生物科技有限公司 filed Critical 成都弘基生物科技有限公司
Publication of WO2023125481A1 publication Critical patent/WO2023125481A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/06Antigout agents, e.g. antihyperuricemic or uricosuric agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/01DNA viruses
    • C07K14/015Parvoviridae, e.g. feline panleukopenia virus, human parvovirus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/864Parvoviral vectors, e.g. parvovirus, densovirus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5256Virus expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14121Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • the invention relates to the field of biotechnology, in particular to a modified AAV capsid protein and its use.
  • Vectors used in gene therapy can be divided into viral vectors and non-viral vectors.
  • viral vectors the most commonly used ones are adenoviral vectors, lentiviral vectors, adeno-associated viral vectors, and herpes simplex virus vectors.
  • Adeno-associated virus belongs to the family Parvoviridae and the genus Dependovirus.
  • the virion consists of a 25 nm icosahedral capsid comprising a 4.7 kb single-stranded DNA genome with two open reading frames: Rep and Cap.
  • the nonstructural Rep gene encodes four regulatory proteins necessary for viral replication, while Cap encodes three structural proteins (VP1-3) that assemble into a 60-subunit capsid.
  • the viral capsid mediates the ability of AAV vectors to overcome many biological barriers to viral transduction, including cell surface receptor binding, endocytosis, intracellular trafficking, and unencapsulation in the nucleus.
  • AAV is widely used in many fields such as gene transduction, gene therapy, vaccination, and oncolytic therapy. It has many advantages such as low immunogenicity, long time for expressing foreign genes in vivo, and no host cell genome integration, and is widely used in experimental and clinical research.
  • the present invention relates to the delivery of viral vectors, such as AAV viral vectors, containing a gene of interest to desired cells or tissues.
  • viral vectors such as AAV viral vectors
  • the present invention encompasses modified capsid proteins having one or more modifications (such as substitutions, insertions, or mutations) in amino acid sequence relative to the parent AAV capsid protein, when present
  • a target tissue or target cell eg, retina, muscle, or joint cavity
  • One aspect of the present invention provides a modified adeno-associated virus (AAV) capsid protein, the capsid protein comprising about 5-14 amino acid polypeptide substitutions relative to the parent AAV capsid protein, and wherein The AAV virus comprising the modified capsid protein has enhanced retinal cell infectivity compared to the AAV virus of the AAV capsid protein.
  • AAV adeno-associated virus
  • the polypeptide comprises selected from RGNRQ (SEQ ID NO: 1), QQNTARGNRQ (SEQ ID NO: 2), RGNRQAAQQNTA (SEQ ID NO: 3), RGNRQQNTA (SEQ ID NO: 4), RGNRQQQNTA (SEQ ID NO:5), SGNTQ (SEQ ID NO:6), RGNQQNTARQ (SEQ ID NO:7), RGNQQPRPTSRQ (SEQ ID NO:8), RGNRQAAQQPTPTS (SEQ ID NO:9) or RGNRQQQPTTPTS (SEQ ID NO:9) :19) amino acid sequence; and the substitution is located at the 588th to 592nd amino acid of the parent AAV8 or the corresponding position of another serotype capsid protein.
  • the capsid protein polypeptide comprises selected from QQNTARGNRQ (SEQ ID NO: 2), RGNRQQNTA (SEQ ID NO: 4), SGNTQ (SEQ ID NO: 6), RGNQQNTARQ (SEQ ID NO: 7) or the amino acid sequence of RGNRQQQPTPTS (SEQ ID NO: 19).
  • the capsid protein further includes a mutation relative to amino acid positions 262-272 of the parental AAV8 capsid protein or the corresponding position of another serotype capsid protein, and the amino acid sequence after mutation is SQSGASNDNH (SEQ ID NO: 10).
  • the capsid protein comprises a polypeptide substitution at amino acid 588-592 of the parent AAV8 or the corresponding position of another serotype capsid protein, and the polypeptide is RGNRQ (SEQ ID NO: 1); and relative to the mutation at positions 262-272 of the parental AAV8 capsid protein or the corresponding position of another serotype capsid protein, the mutated amino acid sequence is SQSGASNDNH (SEQ ID NO: 10).
  • the AAV of the present invention can be derived from any serotype AAV, for example, the AAV serotype is selected from AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12 , AAV-DJ, AAV-DJ8, AAV-DJ9, AAVrh8, AAVrh8R, or AAVrh10.
  • the AAV of the present invention is selected from AAV8.
  • the capsid protein further comprises amino acid mutations at positions D80 and/or V125 relative to the parental AAV8 capsid protein.
  • said mutation is D80N and/or V125A.
  • said mutation is D80Q and/or V125G.
  • the capsid protein comprises a polypeptide substitution at amino acid positions 588-592 of the parental AAV8, and the polypeptide is RGNQQNTARQ (SEQ ID NO: 7); and relative to the parental AAV8 capsid protein D80 and Amino acid mutations at position V125, said mutations being D80N and V125A.
  • the capsid protein comprises a polypeptide substitution at amino acid positions 588-592 of the parent AAV8, and the polypeptide is RGNQQNTARQ (SEQ ID NO: 7); and relative to the parent AAV8 capsid Amino acid mutations at positions D80 and V125 of the protein, said mutations being D80Q and V125G.
  • Another aspect of the present invention provides another modified adeno-associated virus (AAV) capsid protein, said capsid protein comprising an amino acid located after amino acid 589 of the parental AAV8 or the corresponding position of another serotype capsid protein A polypeptide is inserted, and wherein the AAV virus comprising the modified capsid protein has enhanced retinal cell infectivity compared to the AAV virus comprising the corresponding parental AAV capsid protein.
  • AAV adeno-associated virus
  • the polypeptide comprises an amino acid sequence selected from RGDLTTPQQ (SEQ ID NO: 20), RGDLNTPQQ (SEQ ID NO: 21 ) or RGDVSSPQQ (SEQ ID NO: 22).
  • the AAV may be derived from any serotype of AAV, for example an AAV serotype selected from AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, AAV-DJ, AAV-DJ8, AAV - DJ9, AAVrh8, AAVrh8R or AAVrh10.
  • the AAV serotype is AAV8.
  • rAAV recombinant adeno-associated virus
  • ii. comprising a heterologous nucleic acid encoding a gene product.
  • the gene product is a VEGF antagonist or a TNF- ⁇ antagonist.
  • the VEGF antagonist is selected from aflibercept, conbercept, ranibizumab, brucetizumab, preferably aflibercept.
  • the TNF- ⁇ antagonist is selected from etanercept, infliximab, adalimumab, beselizumab or golimumab, preferably etanercept general.
  • Another aspect of the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising:
  • Another aspect of the present invention provides the recombinant adeno-associated virus according to the present invention for use as a medicine.
  • the recombinant adeno-associated virus or the pharmaceutical composition of the present invention is administered through vitreous, retinal, choroidal injection, intravenous, subcutaneous, intramuscular or joint cavity injection. In a preferred embodiment, the recombinant adeno-associated virus or the pharmaceutical composition of the present invention is administered through suprachoroidal injection. In another preferred embodiment, the recombinant adeno-associated virus or the pharmaceutical composition of the present invention is administered by intramuscular or joint cavity injection.
  • Another aspect of the present invention provides the recombinant adeno-associated virus or the pharmaceutical composition according to the present invention for use in therapy.
  • the recombinant adeno-associated virus or the pharmaceutical composition of the present invention is administered through vitreous, retinal or choroidal injection. In a preferred embodiment, the recombinant adeno-associated virus or the pharmaceutical composition of the present invention is administered through suprachoroidal injection.
  • Another aspect of the present invention provides the use of the recombinant adeno-associated virus in the preparation of medicines for preventing or treating eye diseases.
  • Another aspect of the present invention provides a method for preventing or treating eye diseases, the method comprising administering an effective amount of the recombinant adeno-associated virus or the pharmaceutical composition according to the present invention to an individual in need.
  • the recombinant adeno-associated virus or the pharmaceutical composition of the present invention is administered through vitreous, retinal or choroidal injection. In a preferred embodiment, the recombinant adeno-associated virus or the pharmaceutical composition of the present invention is administered through suprachoroidal injection.
  • the ocular disease of the present invention is selected from retinal neovascularization, choroidal neovascularization, iris neovascularization, corneal neovascularization ocular disease, non-infectious uveitis or glaucoma.
  • the eye disease of the present invention is selected from age-related macular degeneration, macular edema, diabetic macular edema, macular edema secondary to retinal vein occlusion, retinal vein occlusion, central retinal vein occlusion, Branch retinal vein occlusion, macular edema due to branch retinal vein occlusion, diabetic retinal edema, diabetic retinopathy, proliferative diabetic retinopathy, diabetic retinal ischemia, polypoid choroidal vasculopathy, choroid secondary to degenerative myopia Neovascular or retinopathy of prematurity.
  • Another aspect of the present invention provides the recombinant adeno-associated virus or the pharmaceutical composition according to the present invention for use in the treatment of eye diseases.
  • the recombinant adeno-associated virus or the pharmaceutical composition of the present invention is administered through vitreous, retinal or choroidal injection. In a preferred embodiment, the recombinant adeno-associated virus or the pharmaceutical composition of the present invention is administered through suprachoroidal injection.
  • the ocular disease of the present invention is selected from retinal neovascularization, choroidal neovascularization, iris neovascularization, corneal neovascularization ocular disease, non-infectious uveitis or glaucoma.
  • the eye disease of the present invention is selected from age-related macular degeneration, macular edema, diabetic macular edema, macular edema secondary to retinal vein occlusion, retinal vein occlusion, central retinal vein occlusion, Branch retinal vein occlusion, macular edema due to branch retinal vein occlusion, diabetic retinal edema, diabetic retinopathy, proliferative diabetic retinopathy, diabetic retinal ischemia, polypoid choroidal vasculopathy, choroid secondary to degenerative myopia Neovascular or retinopathy of prematurity.
  • Another aspect of the present invention provides the use of the recombinant adeno-associated virus in the preparation of medicaments for preventing or treating arthritis or related diseases.
  • Another aspect of the present invention provides a method for preventing or treating arthritic diseases or related conditions, the method comprising administering an effective amount of the recombinant adeno-associated virus or the pharmaceutical composition according to the present invention to an individual in need.
  • the recombinant adeno-associated virus or the pharmaceutical composition of the present invention is administered through intravenous, subcutaneous, intramuscular or joint cavity injection.
  • the recombinant adeno-associated virus or the pharmaceutical composition described in the present invention is administered by intramuscular or joint cavity injection.
  • the arthritic diseases or related diseases described in the present invention are selected from rheumatoid arthritis, juvenile rheumatoid arthritis, osteoarthritis, gout, pseudogout, spondylitis, Crohn's disease , Plaque psoriasis, psoriatic arthritis, ankylosing spondylitis, septic arthritis, arthritis, juvenile idiopathic arthritis, blunt trauma, joint replacement, or Still's disease.
  • Another aspect of the present invention provides the recombinant adeno-associated virus or pharmaceutical composition according to the present invention for use in the treatment of arthritis diseases or related conditions.
  • the recombinant adeno-associated virus or the pharmaceutical composition of the present invention is administered through intravenous, subcutaneous, intramuscular or joint cavity injection.
  • the recombinant adeno-associated virus or the pharmaceutical composition described in the present invention is administered by intramuscular or joint cavity injection.
  • the arthritic diseases or related diseases described in the present invention are selected from rheumatoid arthritis, juvenile rheumatoid arthritis, osteoarthritis, gout, pseudogout, spondylitis, Crohn's disease , Plaque psoriasis, psoriatic arthritis, ankylosing spondylitis, septic arthritis, arthritis, juvenile idiopathic arthritis, blunt trauma, joint replacement, or Still's disease.
  • Figure 1A shows the amino acid sequence alignment of AAV capsid protein GH loop partial regions
  • Figure 1B shows the amino acid sequence alignment of the AAV capsid protein GH loop partial region
  • Figure 2 is a schematic diagram of the construction of the AAV8 capsid protein mutant plasmid
  • Figure 3 shows the EGFP mRNA expression level of the mouse intravitreal injection of AAV8 mutant virus
  • Figure 4 shows the EGFP fluorescence signal of retinal slices of mice injected with AAV8 mutant virus in the vitreous
  • Figure 5 shows the retinal slice EGFP fluorescence signal of rat intravitreal injection of AAV8 mutant virus
  • Figure 6 shows the EGFP fluorescence signal and DAPI signal of rabbit suprachoroidal injection of AAV8 mutant virus
  • Fig. 7 is the EGFP fluorescence signal of ARPE19 cell culture AAV8 mutant virus
  • Figure 8A shows the counting of EGFP-positive cells after AAV8 mutant virus infection of ARPE19 cells by flow cytometry
  • Figure 8B shows flow cytometry counting of EGFP-positive cells after AAV8 mutant virus infected ARPE19 cells
  • Figure 9 shows the relative content of genomic DNA of AAV8 mutant virus mCherry injected into the suprachoroidal space of rabbits
  • Figure 10 shows the luciferase fluorescence intensity of the mouse intramuscularly injected AAV8 mutant virus
  • Figure 11 shows the clinical score of mice with intraarticular/muscular injection of AAV8 mutant virus
  • Figure 12 shows the paw thickness of mice injected with AAV8 mutant virus in the joint cavity/muscle.
  • the present invention relates to AAV viral vectors comprising an AAV viral vector having increased infectivity to a target tissue or target cell (e.g. retina, muscle or joint cavity) compared to an unmodified parent AAV capsid protein, comprising the capsid protein rAAV expressing a target gene (such as VEGF antagonist, TNF- ⁇ antagonist) and its pharmaceutical composition and application.
  • a target tissue or target cell e.g. retina, muscle or joint cavity
  • a target gene such as VEGF antagonist, TNF- ⁇ antagonist
  • the present invention provides a modified AAV capsid protein, wherein the modified AAV capsid protein comprises one or more amino acid modifications compared to a corresponding wild-type AAV or a parent AAV.
  • the modifications include one or more amino acid substitutions, deletions or insertions relative to the parental capsid protein or AAV capsid protein.
  • Such modifications confer increased infectivity to target tissues or cells (eg, retina, muscle, or joint cavity) compared to AAV viral vectors comprising the unmodified parent AAV capsid protein.
  • the modified AAV capsid protein comprises a heterologous polypeptide substitution within a capsid protein serotype, such as VP1, belonging to: AAV type 1, AAV type 2, AAV type 3, AAV type 4, AAV 5 AAV type, AAV type 6, AAV type 7, AAV type 8, AAV type 9, AAV type 10, AAVrh10, avian AAV, bovine AAV, canine AAV, equine AAV, primate AAV, non-primate AAV, Bovine AAV, AAV2.7m8, AAVShH10, AAV2.5T, AAV2.5T/7m8, AAV9/7m8, and AAV5/7m8.
  • the capsid variant may be a chimeric capsid variant.
  • the sequence of a chimeric capsid variant may comprise portions of two or more AAV capsid serotypes or variants thereof.
  • the chimeric capsid comprises portions of 2, 3, 4, 5, 6, 7, 8, 9, 10 or more different capsid protein serotypes.
  • the modified AAV capsid protein comprises a heterologous polypeptide substitution of about 5-14 amino acids.
  • the modified capsid protein of the invention comprises a heterologous polypeptide of about 5-14 amino acids at amino acid positions 588-592 of the parental AAV8 or the corresponding position of another serotype capsid protein replace.
  • the amino acid sequences of AAV1-AAV9 are as described in patents such as US8962330B and US10041090B.
  • the modified capsid protein of the present invention comprises a heterologous polypeptide substitution of about 5-14 amino acids at amino acids 588-592 of the parental AAV8.
  • the 588th to 592nd amino acids of the parent/wild type AAV8 capsid protein are "QQNTA". Therefore, a specific embodiment of the present invention is that the modified capsid protein replaces the 588-592 amino acid "QQNTA" of the parental/wild-type AAV8 capsid protein with a heterologous polypeptide of 5-14 amino acids.
  • the substitution sites corresponding to amino acids 588-592 of AAV8 are at the corresponding positions of other capsid proteins, for example as shown in FIG. 1A .
  • amino acid 586-590 of AAV1 at amino acid 585-589 of AAV2, at amino acid 586-590 of AAV3, at amino acid 584-588 of AAV4, at amino acid 575-579 of AAV5, at amino acid 586 of AAV6 ⁇ 590 amino acids, at 587 ⁇ 591 amino acids of AAV7, at 586 ⁇ 590 amino acids of AAV9, at 588 ⁇ 592 amino acids of AAV10.
  • the length is 5 amino acids, 6 amino acids, 7 amino acids, 8 amino acids, 9 amino acids, 10 amino acids or 11 amino acids.
  • the polypeptide of the present invention comprises a polypeptide selected from RGNRQ (SEQ ID NO: 1), QQNTARGNRQ (SEQ ID NO: 2), RGNRQAAQQNTA (SEQ ID NO: 3), RGNRQQNTA (SEQ ID NO: 4 ), RGNRQQQNTA (SEQ ID NO:5), SGNTQ (SEQ ID NO:6), RGNQQNTARQ (SEQ ID NO:7), RGNQQPRPTSRQ (SEQ ID NO:8), RGNRQAAQQPTTPTS (SEQ ID NO:9) or RGNRQQQPTPTS (SEQ ID NO:19) amino acid sequence.
  • the polypeptide of the present invention comprises a polypeptide selected from QQNTARGNRQ (SEQ ID NO: 2), RGNRQQNTA (SEQ ID NO: 4), SGNTQ (SEQ ID NO: 6) or RGNQQNTARQ (SEQ ID NO: 7 ) or the amino acid sequence of RGNRQQQPTPTS (SEQ ID NO: 19).
  • the modified AAV capsid protein further comprises a mutation at amino acid positions 262-272 relative to the parent AAV8 capsid protein or the corresponding position of another serotype capsid protein.
  • the amino acids 262-272 of the parental/wild-type AAV8 capsid protein are "SNGTSGGATND”. Therefore, a specific embodiment of the present invention is that the modified capsid protein is mutated in the 262-272 amino acid "SNGTSGGATND" of the parent/wild type AAV8 capsid protein.
  • the mutation sites corresponding to amino acids 262-272 of AAV8 are at the corresponding positions of other capsid proteins, such as amino acids 261-271 of AAV1, amino acids 261-271 of AAV2, and amino acids 261-271 of AAV3 at amino acid 255-265 of AAV4, at amino acid 251-261 of AAV5, at amino acid 261-271 of AAV6, at amino acid 262-272 of AAV7, at amino acid 261-271 of AAV9, at amino acid 261-271 of AAV10 262-272 amino acids.
  • the mutation sites corresponding to amino acids 262-272 of AAV8 are at the corresponding positions of other capsid proteins, for example as shown in FIG. 1B .
  • the mutated amino acid sequence of the present invention is SQSGASNDNH (SEQ ID NO: 10).
  • the modified capsid protein of the present invention includes a polypeptide substitution at the 588-592 amino acid position of the parent AAV8 or the corresponding position of another serotype capsid protein, and the polypeptide is RGNRQ (SEQ ID NO: 1); With respect to the mutation at the 262nd to 272nd positions of the parental AAV8 capsid protein or the corresponding position of another serotype capsid protein, the amino acid sequence after the mutation is SQSGASNDNH (SEQ ID NO: 10) .
  • the serotype of the parental capsid protein described in the present invention is AAV8.
  • the modified AAV capsid protein of the present invention further comprises an amino acid mutation at position D80 and/or V125 relative to the parent AAV8 capsid protein.
  • said mutation is D80N and/or V125A.
  • said mutation is D80Q and/or V125G.
  • the capsid protein comprises a polypeptide substitution at amino acid positions 588-592 of the parent AAV8, and the polypeptide is RGNQQNTARQ (SEQ ID NO: 7); and relative to the parent AAV8 capsid protein D80 and amino acid mutations at position V125, which are D80N and V125A.
  • the capsid protein comprises a polypeptide substitution at amino acid positions 588-592 of the parent AAV8, and the polypeptide is RGNQQNTARQ (SEQ ID NO: 7); and relative to the parent AAV8 capsid protein Amino acid mutations at positions D80 and V125, said mutations being D80Q and V125G.
  • the modified AAV capsid protein of the invention includes a polypeptide insertion after amino acid 589 relative to the parental AAV8 or the corresponding position of another serotype capsid protein.
  • the insertion site is located after amino acid 589 of AAV8 or the corresponding position of other capsid proteins, for example, at amino acid 589 of AAV1, at amino acid 586 of AAV2, at amino acid 587 of AAV3, at amino acid 585 of AAV4, at amino acid 585 of AAV5 After amino acid 576 of AAV6, amino acid 587 of AAV7, amino acid 587 of AAV9, and amino acid 589 of AAV10.
  • the inserted polypeptide comprises the amino acid sequence of RGDLTTPQQ (SEQ ID NO: 20), RGDLNTPQQ (SEQ ID NO: 21 ) or RGDVSSPQQ (SEQ ID NO: 22).
  • the modified AAV capsid protein of the present invention comprises a polypeptide insertion after the 589th amino acid relative to the parent AAV8, and the inserted polypeptide comprises RGDLTTPQQ (SEQ ID NO: 20), RGDLNTPQQ ( SEQ ID NO:21) or the amino acid sequence of RGDVSSPQQ (SEQ ID NO:22).
  • the modified capsid protein of the present invention also includes at least 85%, 90%, 95%, 98% of the amino acid sequence of the capsid protein undergoing amino acid substitution, mutation and/or insertion , 99% or 100% homologous sequences.
  • an AAV comprising a modified capsid protein is at least 1-fold, 2-fold, 5-fold, 10-fold more infective to retinal cells compared to an AAV virus comprising the corresponding parental/wild-type capsid protein. times, 20 times, 50 times, 100 times or even higher.
  • the retinal cells include RPE-19 cells (human retinal pigment epithelial cell line), retinal ganglion cells, amacrine cells, horizontal cells, bipolar cells, photoreceptor cells, cone cells, rod cells, Müller glia cells and retinal pigment epithelium.
  • the AAV comprising the modified capsid protein has at least 1-fold, 2-fold, 5-fold increased infectivity to RPE cells , 10 times, 20 times, 50 times, 100 times or even higher.
  • an AAV comprising a modified capsid protein is at least 1-fold more infective to retinal cells after suprachoroidal injection compared to an AAV virus comprising the corresponding parental/wild-type capsid protein , 2 times, 5 times, 10 times, 20 times, 50 times, 100 times or even higher.
  • an AAV comprising a modified capsid protein is at least 1-fold, 2-fold more infective to retinal cells after intravitreal injection compared to an AAV virus comprising the corresponding parental/wild-type capsid protein. times, 5 times, 10 times, 20 times, 50 times, 100 times or even higher.
  • rAAVs Recombinant adeno-associated viruses
  • the gene delivery vectors of the present invention are recombinant adeno-associated viruses (rAAVs).
  • rAAVs recombinant adeno-associated viruses
  • the rAAV described herein is a single-chain AAV (ssAAV).
  • ssAAV refers to rAAV having the coding sequence of the gene of interest and the complementary sequence on separate strands, and is packaged in a separate viral capsid.
  • the recombinant adeno-associated virus (rAAV) of the present invention comprises: i) the modified capsid protein according to the present invention; ii) a heterologous nucleic acid comprising a gene product encoding.
  • the rAAV described in the present invention comprises the aforementioned modified capsid protein of the present invention, so that the recombinant AAV (rAAV) described in the present invention has the same Enhanced cell or tissue (eg eye tissue or cells, muscle tissue or joint cavity, etc.) specific targeting ability or infectivity.
  • Enhanced cell or tissue eg eye tissue or cells, muscle tissue or joint cavity, etc.
  • the rAAV described herein comprises a heterologous nucleic acid encoding a gene product and a polynucleotide expression cassette of regulatory elements.
  • regulatory element refers to a nucleic acid sequence that regulates the expression of a gene product to which it is operably linked.
  • expression regulatory elements may include promoters, enhancers, internal ribosomal entry sites (IRES), transcription terminators, start codons preceding protein-encoding genes, intron splicing signals, and stop codons.
  • the term may also include nucleic acid sequence design in which unwanted possible initiation codons are removed from the sequence in or out of frame. It may also include nucleic acid sequence design to remove unwanted possible splice sites. It may also include sequences directing the addition of polyadenylation or polyA, etc.
  • the heterologous nucleic acid includes a nucleotide sequence encoding a gene product of a target gene, such as a therapeutic gene product.
  • the gene product is interfering RNA.
  • the gene product is an aptamer.
  • the gene product is a polypeptide.
  • the gene product is a site-specific nuclease provided for site-specific knockdown of gene function.
  • the gene product is a polypeptide, protein, fusion protein, antibody, or the like.
  • the gene product of the present invention is selected from VEGF antagonists, TNF- ⁇ antagonists, PD-1/PD-L1 inhibitors, Ang-2 inhibitors, plasma kallikrein inhibitors, endothelial inhibitors Oncostatin, Angiostatin, Pigment Epithelium-Derived Factor (PEDF), Soluble Tie-2 Receptor, Ang-2 Antagonist, CD Tissue Inhibitor of Metalloproteinase-3 (TIMP-3), Light Responsive Opsin (such as rhodopsin), anti-apoptotic polypeptides (such as Bcl-2, Bcl-Xl), glial-derived neurotrophic factor (GDNF), fibroblast growth factor 2, neural rank protein (neurturin, NTN), Ciliary neurotrophic factor (CNTF), nerve growth factor (NGF), neurotrophin-4 (NT4), brain-derived neurotrophic factor (BDNF), and functional variants and fragments thereof, contained in these proteins or polypeptides
  • the gene product of the invention is selected from a VEGF antagonist.
  • the VEGF antagonist is selected from any of the extracellular domains 1-7 of VEGF receptor 1 (VEGFR-1, or Flt) or receptor 2 (VEGFR-2, or Flk).
  • a domain such as VEGFR-1 extracellular domain 2 (Flt d2) and/or VEGFR-2 extracellular domain 3 or 4.
  • the VEGF antagonist comprises at least one item selected from the following group:
  • a) a fusion protein comprising the extracellular domain 2 of VEGFR-1 and the extracellular domain 3 of VEGFR-2;
  • the fusion protein has the amino acid sequence described in SEQ ID NO: 11 (Fltd2Flkd3);
  • fusion protein comprising extracellular domain 2 of VEGFR-1, extracellular domain 3 and domain 4 of VEGFR-2;
  • the fusion protein has SEQ ID NO: 12 (Fltd2 Flkd3, 4) said amino acid sequence;
  • d) has the antibody heavy chain variable region sequence described in SEQ ID NO:15 and the antibody light chain variable region sequence described in SEQ ID NO:16.
  • SEQ ID NO:12 is the sequence shown below:
  • SEQ ID NO: 13 is the sequence shown below:
  • SEQ ID NO: 14 is the sequence shown below:
  • SEQ ID NO:15 is the sequence shown below:
  • SEQ ID NO: 16 is the sequence shown below:
  • the VEGF antagonist has the amino acid sequence as set forth in SEQ ID NO: 11:
  • the nucleotide encoding the VEGF antagonist has a sequence as described in SEQ ID NO:23:
  • the protein or polypeptide is selected from a TNF-alpha antagonist.
  • the VEGF antagonist comprises etanercept, infliximab, adalimumab, becelitizumab, or golimumab.
  • the TNF- ⁇ antagonist has the heavy chain variable region sequence described in SEQ ID NO: 17 and the light chain variable region sequence described in SEQ ID NO: 18.
  • SEQ ID NO: 17 is the sequence shown below:
  • SEQ ID NO: 18 is the sequence shown below:
  • the TNF- ⁇ antagonist has the amino acid sequence described in SEQ ID NO:24:
  • the nucleotide encoding TNF- ⁇ antagonist has the sequence as described in SEQ ID NO:25:
  • the VEGF antagonist or TNF- ⁇ antagonist has at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, at least about Amino acid sequences that are 99% identical or 100% identical.
  • the VEGF antagonist or TNF- ⁇ antagonist has at least about 90%, at least about 95%, at least about 96%, at least about 97%, at least about 98%, Nucleotide sequences that are at least about 99% identical or 100% identical.
  • the protein or polypeptide is selected to have one or more distinct antigen binding sites.
  • the protein or polypeptide binds both VEGF and Ang-2.
  • the protein or polypeptide is a bispecific antibody that simultaneously binds to VEGF and Ang-2, such as the Faricimab double antibody.
  • codon optimization can be used to design the coding sequence for better expression of the gene of interest.
  • the present invention can optimize the nucleotide codons encoding polypeptides, fusion proteins, antibodies or functional fragments thereof, so as to improve the protein expression level of target genes in target cells, tissues or species.
  • the coding sequence is the portion of the mRNA sequence that encodes the amino acids used for transcription and translation. During transcription and translation, every three nucleotide codons in the 61 nucleotide codons are transcribed and translated into any one of the 20 amino acids. However, different cell types and different animal species have different frequencies of tRNAs encoding the same amino acid.
  • the ribosomal transcription machinery may slow down, preventing efficient transcription. Therefore, those skilled in the art can improve the expression level of the target gene by "codon optimization".
  • the nucleotide sequence encoding the product is modified with a synonymous codon sequence, for example, the codon that can be expressed at a higher frequency in the target cell is used to replace the codon that is expressed at a lower frequency, so as to increase the specificity of the target substance.
  • the expression level in a cell, tissue or substance is, for example, increased by 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% or more than 100%. Codon-optimized coding sequences can be designed by various methods.
  • Such optimization can be performed using methods available online, published methods, or companies that provide codon optimization services.
  • One method of codon optimization is described, for example, in International Patent Publication No. WO2015/012924, which is incorporated herein by reference.
  • the entire length of the open reading frame (ORF) of the product was appropriately modified. However, in some embodiments, only one segment of the ORF may be altered.
  • codon-optimized encoding nucleotides encoding polypeptides are generated.
  • one or more expression control elements in the polynucleotide expression cassette of the present invention comprises a constitutive promoter region, the nucleotide sequence encoding the gene product is operably linked to the constitutive promoter, and the promoter is a promoter that is active in a wide range of cells, tissues or species, so The above-mentioned promoter promotes the expression of the target gene in specific cells or tissues in vivo or in vitro.
  • examples of promoters include chicken ⁇ -actin promoter (CBA), cytomegalovirus promoter (CMV), CMV early enhancer/chicken ⁇ -actin (CBA) promoter/rabbit ⁇ -globin intron (CAG), elongation factor 1 ⁇ promoter (EF1 ⁇ ), human phosphoglycerate kinase promoter (PGK), MNT promoter, UB6 promoter, CAG promoter, RPE65 promoter, opsin promoter promoter, mitochondrial heavy chain promoter, ubiquitin promoter, etc.
  • CBA chicken ⁇ -actin promoter
  • CMV cytomegalovirus promoter
  • CBA CMV early enhancer/chicken ⁇ -actin
  • CAG CAG
  • EF1 ⁇ elongation factor 1 ⁇ promoter
  • PGK human phosphoglycerate kinase promoter
  • MNT promoter UB6 promoter
  • CAG promoter CAG promoter
  • RPE65 promoter opsin promote
  • the regulatory element comprises an inducible promoter region to which the nucleotide sequence encoding the gene product is operably linked.
  • the inducible promoter is a photoreceptor-specific promoter.
  • Suitable photoreceptor-specific promoters include, for example, rhodopsin promoter, rhodopsin kinase promoter, beta phosphodiesterase gene promoter, retinitis pigmentosa gene promoter, interphotoreceptor retinoic acid binding protein (IRBP) gene Enhancer, IRBP gene promoter, opsin gene promoter, retinoschisis protein gene promoter, CRX homeodomain protein gene promoter, guanine nucleotide binding protein alpha transduction activity polypeptide 1 (GNAT1) gene promoter , neural retina-specific leucine zipper protein (NRL) gene promoter, human cone arrester protein (hCAR) promoter, and PR2.1, PR1.7, PR1.5 and PR1.1 promoters, R
  • the expression control sequence in the polynucleotide expression cassette of the present invention may also contain a polyadenylation signal.
  • the polyadenylation signal is also known as polyadenylation site, polyadenylation tail, Poly(A) site, Poly(A) signal or Poly(A) tail.
  • a polyadenylation region refers to the covalent linkage of polyadenylic acid to a messenger RNA (mRNA) molecule. During protein biosynthesis, this is part of the way to produce mature mRNA ready for translation. In eukaryotes, polyadenylation is a mechanism by which mRNA molecules are interrupted at their 3' ends.
  • the polyadenylation signal protects mRNA from exonuclease attack and is important for transcription termination, export of mRNA from the nucleus, and translation.
  • the polyadenylation signal consists of multiple consecutive adenosine monophosphates, usually containing AAUAAA repeats.
  • Some exemplary polyadenylation signals include simian vacuolar virus 40 (SV40), human growth hormone (HGH), bovine growth hormone (BGH), or beta-globin.
  • the polynucleotide expression cassette of the present invention may further comprise an inverted terminal repeat (ITR).
  • ITR inverted terminal repeat
  • a functional adenoviral inverted terminal repeat (ITR) refers to, for example, the ITR sequence used for integration, replication and packaging of AAV virions.
  • the length of the ITR sequence is about 145 bp.
  • substantially the entire sequence encoding ITR is used in the molecule, and those skilled in the art modify these ITR sequences according to conventional technical means in the field.
  • An example of the use of ITR molecules in this application is a "cis" plasmid containing a gene of interest, where the gene sequence of interest and associated regulatory elements are flanked by 5' and 3' AAV ITR sequences.
  • AAV ITR sequences can be obtained from any known AAV, including currently identified mammalian AAV types.
  • the heterologous nucleotides encoding the gene of interest flank the AAV ITR (e.g., in the orientation 5'-ITR-gene of interest-ITR-3').
  • the AAV ITR is selected from the group consisting of AAV1 ITR, AAV2 ITR, AAV3 ITR, AAV4 ITV, AAV5 ITR, AAV6 ITR, AAV7 ITR, AAV8 ITR, AAV9 ITV, AAV10 ITR, AAV11 ITR, and AAV12 ITR.
  • RNA export signals are cis-acting post-transcriptional regulatory elements that enhance RNA export from the nucleus.
  • Exemplary RNA export sequences include, but are not limited to, sequences from the hepatitis B virus post-transcriptional regulatory element (HPRE) and woodchuck hepatitis virus post-transcriptional element (WPRE).
  • polynucleotide expression cassette of the present invention may optionally contain other elements, including but not limited to restriction sites for facilitating cloning, for operably linking each element, or for regulating Regulatory elements of gene expression.
  • restriction sites for facilitating cloning, for operably linking each element, or for regulating Regulatory elements of gene expression.
  • examples are bacterial sequences of plasmid vectors, attp sites, attB sites of phage integrase vectors, promoter linkers, polyadenylation sequence linkers, and the like.
  • the polynucleotide expression cassette described in the present invention comprises those skilled in the art according to the combination of two or more elements in the above-mentioned elements and the gene of interest, wherein the expression cassette of the polynucleotide
  • the gene-of-interest coding sequence and associated regulatory elements in the cassette are flanked by 5' and 3' AAV ITR sequences.
  • a polynucleotide expression cassette of the present invention may include, in 5' to 3' order, an N-terminal AAV ITR, an enhancer/promoter/intron, a Kozak sequence, a coding sequence for a gene product, WPRE or HPRE RNA output signal sequence, polyadenylation signal sequence, and C-terminal AAV ITR.
  • the recombinant adeno-associated virus of the present invention comprises a polynucleotide expression cassette encoding a gene product, and the sequence from the 5' to the 3' end of the polynucleotide expression cassette includes:
  • the gene product coding sequence is the nucleic acid sequence encoding the aforementioned gene product (such as the aforementioned VEGF antagonist or TNF- ⁇ antagonist).
  • Recombinant viral vectors comprising the modified capsid proteins described herein can be produced using standard methods.
  • the method comprises culturing a host cell containing an artificial genome comprising: a polynucleotide expression cassette in cis flanked by AAV ITRs, wherein the polynucleotide expression cassette in cis comprises a coding sequence for a gene product , the coding sequence is operably linked to an expression control element that will control the expression of the gene product in a human cell; a trans expression cassette lacking the AAV ITR, wherein the trans expression cassette encodes an AAV rep and a capsid protein, the The AAV rep and capsid proteins are operably linked to expression control elements that drive expression of the AAV rep and capsid proteins in the host cell in culture and supply the rep and cap proteins in trans; sufficient to permit passage of the AAV an adenoviral helper function for capsid protein replication and packaging of the artificial genome; and recovery of recombinant AAV packaging the artificial genome from the cell
  • “Host cell” refers to any cell that contains or is capable of containing a substance of interest.
  • the host cell is a mammalian cell.
  • the host cells are photoreceptor cells, retinal pigment epithelial cells, keratinocytes, keratinocytes and/or tumor cells.
  • Another aspect of the present invention is to provide a pharmaceutical composition
  • a pharmaceutical composition comprising rAAV, said composition comprising the aforementioned recombinant adeno-associated virus of the present invention and a pharmaceutically acceptable diluent, carrier or excipient.
  • a carrier or excipient includes any solvent, dispersion medium, vehicle, coating, diluent, antibacterial and antifungal agent, isotonic agent, absorption delaying agent, buffer, carrier solution, suspension, colloid, Preservatives or chemical stabilizers, etc.
  • Exemplary carriers or excipients include sterile saline, lactose, sucrose, calcium phosphate, gelatin, dextran, agar, pectin, peanut oil, sesame oil and water.
  • one suitable excipient or carrier includes saline, which can be formulated with various buffer solutions such as phosphate buffer.
  • saline which can be formulated with various buffer solutions such as phosphate buffer.
  • Prevention of the action of microorganisms can be prevented by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like.
  • isotonic agents such as sugars or sodium chloride.
  • Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents which delay absorption, for example, aluminum monostearate and gelatin.
  • buffer solutions may be suitably prepared as necessary, and the liquid diluent first rendered isotonic with sufficient saline or glucose.
  • aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration.
  • Sterile injectable solutions are prepared by mixing the required amount of active rAAV with various other ingredients listed in the present invention in an appropriate solvent, followed by filter sterilization.
  • dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the dispersion medium and the required other ingredients.
  • the rAAV compositions of the invention can also be formulated in neutral or saline form.
  • Pharmaceutically acceptable salts include acid addition salts and salts formed with inorganic acids (such as hydrochloric acid or phosphoric acid) or organic acids (such as acetic acid, oxalic acid, tartaric acid, mandelic acid). Salts formed from the free carboxyl groups can also be derived from inorganic bases such as sodium, potassium, ammonium, calcium or ferric hydroxides, or organic bases such as isopropylamine, trimethylamine, histidine, procaine and the like.
  • the solutions will be administered in a manner compatible with the dosage form and in a therapeutically effective amount.
  • the formulations are readily administered in a variety of dosage forms, such as injectable solutions, drug release capsules, and the like.
  • compositions of the present invention can be delivered to suitable host cells via delivery vehicles such as liposomes, nanocapsules, microparticles, microspheres, lipid particles, vesicles and the like.
  • unit dosage form refers to physically discrete units suitable as unitary dosages for the subjects to be treated; each unit contains a predetermined quantity of a drug calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. active compound.
  • the specification for the unit dosage forms of the invention are dictated by the unique properties of the active compound and the particular therapeutic effect to be achieved as well as the limitations inherent in the art of compounding such active compounds for use in treating individuals.
  • a unit dose can be a certain amount of vector genome, or contain a certain amount of vector genome per milliliter, or contain a unit dose of a pharmaceutical composition measured using the multiplicity of infection (MOI), which means that the vector or viral genome and nucleic acid can be delivered Ratio or multiple of cells that arrive.
  • MOI multiplicity of infection
  • the pharmaceutical composition may be contained in a container, pack or dispenser, such as a syringe, together with instructions for administration.
  • rAAV recombinant adeno-associated virus
  • the present invention relates to a method for preventing or treating a disease or symptom, wherein the method comprises delivering a therapeutically effective amount of the rAAV virus or the pharmaceutical composition of the present invention to a subject.
  • the rAAV described herein can be delivered to a subject according to any suitable method known in the art.
  • rAAV suspended in a physiologically compatible carrier is preferably administered to a subject, i.e., a host animal, such as a human, mouse, rat, cat, dog, sheep, rabbit, horse , cattle, goats, pigs, guinea pigs, hamsters, chickens, turkeys, or non-human primates (eg, rhesus monkeys).
  • a host animal such as a human, mouse, rat, cat, dog, sheep, rabbit, horse , cattle, goats, pigs, guinea pigs, hamsters, chickens, turkeys, or non-human primates (eg, rhesus monkeys).
  • host animals do not include humans.
  • the subject is a human.
  • a “therapeutically effective amount” refers to an amount effective at dosages and for periods of time necessary to achieve the desired therapeutic effect.
  • a therapeutically effective amount of an rAAV virus or pharmaceutical composition can be determined based on factors such as the disease state, age, sex, and weight of the subject to be treated, and the ability of the rAAV virus or pharmaceutical composition to elicit a desired response in the subject. Variety. Dosage regimens may be adjusted to provide the optimum therapeutic response.
  • a therapeutically effective amount is generally also an amount in which any toxic or detrimental effects of the rAAV virus or pharmaceutical composition are outweighed by the therapeutically beneficial effects.
  • “Prophylactically effective amount” refers to an amount effective at the dose and time required to achieve the desired preventive effect, such as preventing or inhibiting various diseases.
  • a prophylactic dose can be used in a subject before or at an early stage of the disease, and in some cases, the prophylactically effective dose can be greater or less than the therapeutically effective dose.
  • the dosage to be administered depends largely on the condition and size of the subject being treated as well as the formulation of the treatment, frequency of treatment and route of administration.
  • the regimen for continued treatment, including dosage, formulation, and frequency, may be guided by initial response and clinical judgment.
  • the rAAV virus or pharmaceutical composition is administered to a subject once a day, once a week, once every two weeks, once a month, once every 2 months, once every 3 months, once every 6 months, Once a year or once every 2 years, once every 5 years, once in a lifetime.
  • Exemplary routes of administration and delivery include intravenous (I.V.), intraarticular, intraperitoneal (I.P.), intraarterial, intramuscular, parenteral, subcutaneous, intrapleural, dermal, transdermal, parenteral, e.g., transdermal Mucosal, intracranial, intraspinal, oral (digestive), mucosal, respiratory, intranasal, intubation, intrapulmonary, intrapulmonary instillation, buccal, sublingual, intravascular, intrathecal, intracavitary, iontophoresis , In the eye, in the gland, in the organ, in the fallopian tube.
  • I.V. intravenous
  • I.P. intraperitoneal
  • intraarterial intramuscular
  • parenteral subcutaneous, intrapleural, dermal
  • transdermal parenteral
  • transdermal Mucosal intracranial, intraspinal
  • mucosal respiratory, intranasal, intubation
  • rAAV can be delivered to a mammalian subject by, for example, intraocular injection, subretinal injection, choroidal injection (e.g., suprachoroidal injection), or topical administration (e.g., eye drops) or by injection into the recipient eye.
  • Internal tissues are used to affect the mammalian eye (eg intravitreal injection).
  • "Ocular tissue” refers to any tissue derived from or contained in the eye. Non-limiting examples of ocular tissues include neurons, retina (e.g., photoreceptor cells), sclera, choroid, retina, vitreous, macula, fovea, optic disc, lens, pupil, iris, aqueous fluid, cornea, conjunctival ciliary body, and optic nerve.
  • rAAV or compositions described herein are administered by intraocular injection. In some embodiments, rAAV or compositions described herein are administered by intravitreal injection. In some embodiments, rAAV or compositions described herein are administered by subretinal injection. In some embodiments, rAAV or compositions described herein are administered by intrachoroidal (eg, suprachoroidal) injection. In some embodiments, rAAV or compositions described herein are administered by intravenous injection.
  • delivery of rAAV to a mammalian subject can be by, for example, intramuscular injection into the mammalian subject.
  • delivery of rAAV to a mammalian subject can be by, for example, intravenous injection into the mammalian subject.
  • delivery of rAAV to a mammalian subject can be by, for example, intra-articular injection into the mammalian subject.
  • Intra-articular injection is defined herein as injection or injection into a joint. Intra-articular injections are commonly used to administer drugs into joints affected by inflammation.
  • the effect of administering a pharmaceutical composition comprising rAAV according to the present invention may be to prevent the progression of the disease, stop the progression of the disease, reverse the progression of the disease, and the like.
  • the disease or disease is related to the target gene loaded by rAAV and the gene product expressed.
  • the gene product is a VEGF antagonist
  • the disease or condition to be prevented or treated may be a VEGF-related disease.
  • VEGF-associated disease refers to a group of diseases associated with abnormal VEGF activity/signaling. Many studies have confirmed that if the excess of VEGF is abnormal, it can stimulate and induce pathological angiogenesis and cause eye diseases related to angiogenesis.
  • Non-limiting exemplary angiogenesis-related eye diseases include angiogenesis-dependent cancers, angiogenesis-related eye diseases, solid tumors (e.g., lung cancer, breast cancer, kidney cancer, liver cancer, pancreatic cancer, head and neck cancer, colon cancer, melanoma), hematogenous tumors (eg, leukemia, metastatic tumors), benign tumors (eg, hemangioma, acoustic neuroma, neurofibroma, tracheitis, and pyogenic granuloma), rheumatoid arthritis, psoriasis, erythema, Osier - Webber syndrome, myocardial angiogenesis, plaques, telangiectasia, hemophilic joints, or angiofibromas.
  • solid tumors e.g., lung cancer, breast cancer, kidney cancer, liver cancer, pancreatic cancer, head and neck cancer, colon cancer, melanoma
  • hematogenous tumors eg, leukemia
  • angiogenesis-related ocular diseases include, but are not limited to, diabetic retinopathy, retinopathy of prematurity, macular degeneration, corneal graft rejection, neovascular glaucoma and retrolentic fibroplasia, epidemic keratoconjunctivitis, Vitamin A deficiency, excessive contact lens wear, atopic keratitis, bacterial keratitis, ulcers, ulcers, bacterial keratitis, ulcers, primary keratosis, rheumatoid arthritis, systemic lupus, multiple Arteritis, trauma, Wegeners sarcoidosis, scleritis, Steven Johnson disease, pemphigoid radial keratotomy, corneal graft rejection, sickle cell anemia, sarcoidosis, pseudoxanthoma elasticum, pemphigoid Gietz disease, venous occlusion, arterial occlusion, carotid
  • the ocular disease is selected from retinal neovascularization, choroidal neovascularization, iris neovascularization, corneal neovascular eye disease, noninfectious uveitis, or glaucoma.
  • the eye disease is selected from age-related macular degeneration, macular edema, diabetic macular edema, macular edema secondary to retinal vein occlusion, retinal vein occlusion, central retinal vein occlusion, branch retinal vein occlusion, retinal vein occlusion, Macular edema due to branch vein occlusion, diabetic retinal edema, diabetic retinopathy, proliferative diabetic retinopathy, diabetic retinal ischemia, polypoid choroidal vasculopathy, choroidal neovascularization secondary to degenerative myopia, or retina of prematurity lesion.
  • macular degeneration can include acute macular degeneration, non-exudative age-related macular degeneration, and exudative age-related macular degeneration.
  • the disease or condition to be prevented or treated may be an arthritic disease or a related condition.
  • arthritic disease a condition in which inflammation of one or more joints is involved.
  • Arthritis is understood herein to mean “joint pain” or “joint disease”.
  • the arthritic disease is selected from adult-onset Still's disease, ankylosing spondylitis, arthritis, back pain, Behget's disease, blunt trauma, bursitis, calcium pyrophosphate deposition disease (CPPD), wrist Tube Syndrome, Chondromalacia Patellae, Chronic Fatigue Syndrome, Complex Regional Pain Syndrome, Cryobiline-Associated Periodic Syndrome (CAPS), Degenerative Disc Disease, Developmental Dysplasia of the Hip, Eller-Danlos, Familial Mediterranean fever, fibromyalgia, fifth disease, giant cell arteritis, gout, hemochromatosis, infectious arthritis, inflammatory arthritis, inflammatory bowel disease, joint replacement, juvenile arthritis, juvenile dermatomyositis ( JD), juvenile idiopathic arthritis (JIA), juvenile rheumatoid arthritis, juvenile scleroderma, Kawasaki disease, lupus, lupus in children and adolescents, Lyme disease, mixed connective tissue disease, myos
  • the arthritic disease is selected from rheumatoid arthritis, juvenile rheumatoid arthritis, osteoarthritis, gout, pseudogout, spondylitis, Crohn's disease, plaque psoriasis , Psoriatic Arthritis, Ankylosing Spondylitis, Septic Arthritis, Arthritis, Juvenile Idiopathic Arthritis, Blunt Trauma, Joint Replacement, or Still's Disease.
  • the arthritic disease is a joint disorder involving inflammation of one or more joints.
  • the arthritic disease is selected from the group consisting of rheumatoid arthritis (RA), juvenile rheumatoid arthritis, osteoarthritis (OA), gout, pseudogout, spondyloarthritis (SpA), psoriatic arthritis, Ankylosing spondylitis, septic arthritis, arthritis, juvenile idiopathic arthritis, and Still's disease.
  • Site-directed mutagenesis and recombinant DNA techniques are used to generate variants of AAV8 that contain a polypeptide substitution of 5-14 amino acids at positions Q588-A592 (QQNTA) of the parental AAV8, or further include a polypeptide located at the parental AAV8 coat
  • the mutation at the position corresponding to the N262-N272 amino acid of the shell protein, the amino acid sequence after the mutation is SQSGASNDNH (SEQ ID NO: 10); or further includes D80N, V125A, V125G mutations, as shown in Table 1.
  • An exemplary No.12 capsid mutant plasmid is shown in Figure 2.
  • capsid protein mutants inserts a polypeptide sequence after amino acid Q589 of the parent AAV8, as shown in Table 4.
  • the viral packaging of the AAV8 mutant is generated by co-transfecting cells with three plasmids: the first plasmid (pAAV-CAG-EGFP) comprising the expression cassette (GFP or luciferase) flanked by the ITR of the gene of interest; a mutant plasmid encoding the Rep/Cap gene (second plasmid); and a third plasmid containing the adenovirus helper function gene.
  • the cells were collected, lysed to release the virus, and the virus titer was determined by PCR, which was then used for later use.
  • the purified AAV8 mutant virus was injected into the mouse vitreous at 7E+8vg/eye. 21 days after the vitreous injection, the eyeballs of the mice were taken, and the eyeballs were ground using a frozen homogenizer, RNA was extracted using a total RNA extraction kit, and cDNA was synthesized using a reverse transcription kit, and the specific EGFP primer probe group was determined by qPCR (wherein, The sequence of the upstream primer EGFP-F is: 5'-CACATGAAGCAGCACGACTT-3' (SEQ ID NO:26); the sequence of the downstream primer EGFP-R is: 5'-TCGTCCTTGAAGAAGATGGT-3' (SEQ ID NO:27); For: 5'-AGTCCGCCATGCCCGAAGGCT-3'-TAMRA, the sequence contained in the probe is shown in SEQ ID NO: 28), calculate the EGFP mRNA level of the normalized AAV8 mutant, that is, compare the effect of different AAV8 mutants on vitre
  • the purified AAV8 mutant virus was injected into the vitreous of mice at 7E+8vg/eye; 21 days after the vitreous injection, the mouse eyeballs were taken, and the mouse eyeballs were fixed overnight with 4% paraformaldehyde.
  • the mouse retina was stripped under a microscope, the mouse retina was spread, and the EGFP fluorescence signal was photographed confocally. The results are shown in Figure 4.
  • the purified AAV8 mutant virus was injected into the rat vitreous at 1.92E+9vg/eye; 21 days after the vitreous injection, the rat eyeballs were taken; 4% paraformaldehyde was used to fix the rat eyeballs overnight; The rat retina was peeled off under a microscope; the rat retina was sliced, and the fluorescent signal of EGFP was captured by a fluorescent scanning microscope, and the results are shown in Figure 5.
  • the purified AAV8 mutant virus was injected into the suprachoroidal space of New Zealand rabbits at 5E+10vg/eye; 14 days after the suprachoroidal injection, the eyeballs of New Zealand rabbits were taken; the eyeballs of New Zealand rabbits were fixed overnight with 4% paraformaldehyde; The eyeballs were dehydrated and tissue-embedded; frozen sections were then stained with nuclei (DAPI); the whole image was scanned using a confocal microscope to capture EGFP fluorescence signals and DAPI signals, and the results are shown in Figure 6 (in Figure 5, EGFP : autofluorescence, DAPI: nucleus, RGC: ganglion cell, INL: retinal inner nucleus; ONL: retinal outer nuclear layer; RPE: retinal epithelial cells), from the fluorescence map, the wild type has the effect on photoreceptor cell layer and RPE layer The transduction efficiency is not high, but the transduction efficiency of the mutant to photoreceptor cells and RPE layer is greatly improved
  • the total amount of serum + medium is 1000 ⁇ L; after 16 hours of infection, the medium is changed every day, and the culture is continued until 72 hours, and the fluorescent signal of EGFP is confocally taken to observe the expression of fluorescent protein.
  • Figure 7 shows the 48-hour infection of ARPE19 cells.
  • AAV8-aflibercept virus and AAV No.12-aflibercept mutant virus were produced by co-transfection of the three plasmids described in Example 1, and the genome titer of each virus was measured by ddPCR; The genome titer of the virus in the body was diluted to 3.0E12vg/mL by buffer solution, and the number of cells was 3.0E5. Add 10 ⁇ L of virus to each well, change the medium after 16 hours of culture, and collect cells and cell supernatant after 72 hours; Freezing, repeated freezing and thawing 3 times, cell lysis, and ELISA method was used to measure the expression level of Trap protein. The results showed that the protein expression level of AAV8-aflibercept virus was 97ng/ml, and the protein expression level of AAV No.12-aflibercept virus was 1662ng/ml.
  • AAV No.128-aflibercept virus was produced by co-transfection of the three plasmids described in Example 1, and the genome titer of each virus was measured by ddPCR; the genome titer of the virus was diluted to 1.0E13vg/ mL, injecting 100 ⁇ L into the suprachoroidal space at 4 mm above the monkey eye temporally, injecting 1 monkey and 2 eyes; 56 days later, the rhesus monkeys were executed, the eyeballs were taken, and various tissues of the monkey eyes (including aqueous humor, Choroid, conjunctiva, iris ciliary body, retina, sclera, vitreous body), after adding protease inhibitors, perform low-temperature tissue homogenate, take the supernatant, and measure the expression level of aflibercept protein (ng/ml) by ELISA, the results are as follows Table 6 shows.
  • AAV8-luciferase and AAV No.128-luciferase viruses were produced by co-transfection of the three plasmids described in Example 1, and the genome titer of the virus was measured by ddPCR; the genome titer of the virus was diluted to 1.62E11vg/mL by buffer , injected into the gastrocnemius muscle of the right leg of the mouse, the volume is 50 ⁇ L, and 5 mice (Balb/c) were injected with each virus; 7 days, 14 days, 28 days, and 160 days after the virus injection, the mice were injected intraperitoneally A certain amount of fluorescein sodium salt substrate was used for in vivo imaging of mice, and fluorescence intensity analysis was performed on an in vivo imager. The results are shown in Table 7 and FIG. 10 .
  • AAV8-No.128-etanercept and AAV No.128-adalimumab plasmids were respectively constructed; 2 ⁇ g of the plasmids were selected to transfect 293F cells with a single plasmid, and after 72 hours, the protein expression level of the plasmids was detected by ELISA method. The results showed that the expression level of AAV No.128-adalimumab plasmid was 1010 ng/mL, while the expression level of AAV No.128-etanercept plasmid was 2020 ng/mL.
  • AAV No.128-etanercept virus was prepared according to the method described in Example 1 and the viral genome titer was determined, then diluted to 9.98E12vg/mL for later use.
  • Positive control substance take adalimumab antigen solution 40mg/400 ⁇ l, dilute to 1.6 ⁇ g/ ⁇ l.
  • Second modeling on the 21st day put 0.6ml bovine type II collagen (CII) (2mg/ml) and 0.6ml (4mg/ml) incomplete Freund's adjuvant into a film squeezer to prepare about 1ml milky white emulsion , each mouse was subcutaneously injected with 100 ⁇ l of the emulsion at the base of the tail.
  • CII bovine type II collagen
  • 4mg/ml incomplete Freund's adjuvant
  • the adalimumab group received 160 ⁇ g of adalimumab subcutaneously on the back (40 mg/400 ⁇ l of the stock solution was diluted to 1.6 ⁇ g/ ⁇ l, and 100 ⁇ l was injected subcutaneously with an insulin needle on the back), once every two weeks.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Rheumatology (AREA)
  • Wood Science & Technology (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pain & Pain Management (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Urology & Nephrology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Vascular Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)

Abstract

本发明涉及经过修饰的腺相关病毒衣壳蛋白及其用途,所述衣壳蛋白相对于亲本AAV衣壳蛋白包含约5-14个氨基酸的取代,并且包含所述经过修饰的衣壳蛋白的AAV与包含未修饰的亲本AAV衣壳蛋白的AAV相比,对靶组织或靶细胞(例如视网膜细胞)具有增加的感染性。

Description

经过修饰的AAV衣壳蛋白及其用途 技术领域
本发明涉及生物技术领域,具体涉及经过修饰的AAV衣壳蛋白及其用途。
背景技术
用于基因治疗的载体可分为病毒载体与非病毒载体。病毒载体中,最为常用的有腺病毒载体、慢病毒载体、腺相关病毒载体、单纯疱疹病毒载体等。
腺相关病毒(AAV)属于细小病毒科(Parvoviridae)和伴随病毒(Dependovirus)属。病毒体由25nm二十面体衣壳组成,所述25nm二十面体衣壳包含具有以下两个开放阅读框的4.7kb单链DNA基因组:Rep和Cap。非结构性Rep基因编码病毒复制所必需的四种调节蛋白,而Cap编码装配成60亚基衣壳的三种结构蛋白(VP1-3)。该病毒衣壳介导AAV载体克服病毒转导的许多生物屏障,包括细胞表面受体结合、内吞作用、细胞内运输和细胞核中的解包封的能力。
AAV广泛用于基因转导、基因治疗、疫苗接种以及溶瘤治疗等多个领域,具有致病性低、感染组织广、宿主细胞范围广(可在增殖和非增殖细胞中感染和表达)、免疫源性低,在体内表达外源基因时间长、无宿主细胞基因组整合等诸多优点,在实验和临床研究中被广泛应用。美国FDA在2017年批准了首个AAV介导的基因治疗,其用于治疗罕见的遗传性眼病,患者通过单次视网膜下施用rAAV载体递送的治疗药物后,四年多时间里持续观察到治疗药物的表达。
但是,目前关于AAV的应用目前仍存在一些挑战,例如如何提高载体的组织及细胞靶向性及转导效率,以及如何提高特定载体的包装效率,以适应工业化生产等。
发明内容
本发明涉及将包含目的基因的病毒载体(如AAV病毒载体)递送至期望的细胞或组织。具体地,本发明包含经过修饰的衣壳蛋白,所述经过修饰的衣壳蛋白相对于亲本AAV衣壳蛋白具有在氨基酸序列上的一个或多个修饰(如取代、插入或突变),当存在于AAV病毒载体中时,与包含未修饰的亲本AAV衣壳蛋白的AAV病毒载体相比,对靶组织或靶细胞(例如视网膜、肌肉或关节腔)具有增加的感染性。
本发明一方面提供了一种经过修饰的腺相关病毒(AAV)衣壳蛋白,所述衣壳蛋白相对于亲本AAV衣壳蛋白包含约5-14个氨基酸的多肽取代,并且其中与包含相应亲本AAV衣壳蛋白的AAV病毒相比,包含所述经过修饰的衣壳蛋白的AAV病毒具有增强的视网膜细胞感染性。
在一些具体的实施方案中,所述多肽包括选自RGNRQ(SEQ ID NO:1),QQNTARGNRQ(SEQ ID NO:2)、RGNRQAAQQNTA(SEQ ID NO:3)、RGNRQQNTA(SEQ ID NO:4)、RGNRQQQNTA(SEQ ID NO:5)、SGNTQ(SEQ ID NO:6)、RGNQQNTARQ(SEQ ID NO:7)、RGNQQPRPTSRQ(SEQ ID NO:8)、RGNRQAAQQPTPTS(SEQ ID NO:9)或RGNRQQQPTPTS(SEQ ID NO:19)的氨基酸序列;并且所述取代位于亲本AAV8的第588~592位氨基酸或另一血清型衣壳蛋白的对应位置处。
在一些具体的实施方案中,所述衣壳蛋白多肽包括选自QQNTARGNRQ(SEQ ID NO:2)、RGNRQQNTA(SEQ ID NO:4)、SGNTQ(SEQ ID NO:6)、RGNQQNTARQ(SEQ ID NO:7)或RGNRQQQPTPTS(SEQ ID NO:19)的氨基酸序列。
在一些具体的实施方案中,所述衣壳蛋白进一步包括相对于亲本AAV8衣壳蛋白第262~272位氨基酸或另一血清型衣壳蛋白的对应位置处的突变,突变后的氨基酸序列为SQSGASNDNH(SEQ ID NO:10)。在一个优选的实施方案中,所述衣壳蛋白包括位于亲本AAV8的第588~592位氨基酸或另一血清型衣壳蛋白的对应位置处的多肽取代,所述多肽为 RGNRQ(SEQ ID NO:1);和相对于亲本AAV8衣壳蛋白第262~272位或另一血清型衣壳蛋白的对应位置处的突变,突变后的氨基酸序列为SQSGASNDNH(SEQ ID NO:10)。
在一些具体的实施方案中,本发明所述AAV可以源自任何血清型AAV,例如AAV血清型选自AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11,AAV12、AAV-DJ、AAV-DJ8、AAV-DJ9、AAVrh8、AAVrh8R或AAVrh10。在一个优选的实施方案中,本发明所述AAV选自AAV8。
在一些具体的实施方案中,所述衣壳蛋白进一步包括相对于亲本AAV8衣壳蛋白D80和/或V125位置处氨基酸的突变。在一个优选的实施方案中,所述突变为D80N和/或V125A。在另一个优选的实施方案中,所述突变为D80Q和/或V125G。在一个优选的具体实施方案中,衣壳蛋白包括位于亲本AAV8的第588~592位氨基酸的多肽取代,所述多肽为RGNQQNTARQ(SEQ ID NO:7);和相对于亲本AAV8衣壳蛋白D80和V125位置处的氨基酸突变,所述突变为D80N和V125A。在另一个优选的具体实施方案中,所述衣壳蛋白包括位于亲本AAV8的第588~592位氨基酸的多肽取代,所述多肽为RGNQQNTARQ(SEQ ID NO:7);和相对于亲本AAV8衣壳蛋白D80和V125位置处的氨基酸突变,所述突变为D80Q和V125G。
本发明的另一方面提供了另一种经过修饰的腺相关病毒(AAV)衣壳蛋白,所述衣壳蛋白包括位于亲本AAV8第589位氨基酸或另一血清型衣壳蛋白的对应位置后的多肽插入,并且其中与包含相应亲本AAV衣壳蛋白的AAV病毒相比,包含所述经过修饰的衣壳蛋白的AAV病毒具有增强的视网膜细胞感染性。
在一些具体的实施方案中,所述多肽包含选自RGDLTTPQQ(SEQ ID NO:20)、RGDLNTPQQ(SEQ ID NO:21)或RGDVSSPQQ(SEQ ID NO:22)的氨基酸序列。所述AAV可以源自任何血清型AAV,例如AAV血清型选自AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11,AAV12、AAV-DJ、AAV-DJ8、AAV-DJ9、AAVrh8、AAVrh8R或AAVrh10。在一个优选的实施方案中,所述AAV血清型为AAV8。
本发明另一方面提供了一种重组腺相关病毒(rAAV),包括:
i.本发明提供的所述经过修饰的衣壳蛋白;
ii.包含编码基因产物的异源核酸。
在一些具体的实施方案中,所述基因产物为VEGF拮抗剂或TNF-α拮抗剂。
在一些具体的实施方案中,所述VEGF拮抗剂选自阿柏西普、康柏西普、雷珠单抗、布洛赛珠单抗,优选阿柏西普。
在一些具体的实施方案中,所述TNF-α拮抗剂选自依那西普、英夫利昔单抗、阿达木单抗、培塞利珠单抗或戈利木单抗,优选依那西普。
本发明另一方面提供了一种药物组合物,其包括:
a)本发明提供的所述重组腺相关病毒;
b)药学上可接受的赋形剂。
本发明另一方面提供了用作药物的根据本发明所述的重组腺相关病毒。
在一些具体的实施方案中,本发明所述的重组腺相关病毒或药物组合物通过玻璃体、视网膜、脉络膜注射给药、静脉、皮下、肌肉或关节腔注射给药。在一个优选的实施方案中,本发明所述的重组腺相关病毒或药物组合物通过脉络膜上腔注射给药。在另一个优选的实施方案中,本发明所述的重组腺相关病毒或药物组合物通过肌肉或关节腔注射给药。
本发明另一方面提供了用于治疗的根据本发明所述的重组腺相关病毒或药物组合物。
在一些具体的实施方案中,本发明所述的重组腺相关病毒或药物组合物通过玻璃体、视网膜或脉络膜注射给药。在一个优选的实施方案中,本发明所述的重组腺相关病毒或药物组合物通过脉络膜上腔注射给药。
本发明另一方面提供了所述的重组腺相关病毒在制备用于预防或治疗眼部疾病的药物中的用途。
本发明另一方面提供了一种预防或治疗眼部疾病的方法,所述方法包括向有需要的个体施用有效量的根据本发明所述的重组腺相关病毒或药物组合物。
在一些具体的实施方案中,本发明所述的重组腺相关病毒或药物组合物通过玻璃体、视网膜或脉络膜注射给药。在一个优选的实施方案中,本发明所述的重组腺相关病毒或药物组合物通过脉络膜上腔注射给药。
在一些具体的实施方案中,本发明所述眼部疾病选自视网膜新生血管、脉络膜新生血管、虹膜新生血管、角膜新生血管性眼部疾病、非感染性葡萄膜炎或青光眼。在一些具体的实施方案中,本发明所述眼部疾病选自龄相关性黄斑变性、黄斑水肿、糖尿病性黄斑水肿、继发于视网膜静脉阻塞的黄斑水肿、视网膜静脉阻塞、视网膜中央静脉阻塞、视网膜分支静脉阻塞、视网膜分支静脉阻塞所致黄斑水肿、糖尿病性视网膜水肿、糖尿病性视网膜病变、增生性糖尿病视网膜病变、糖尿病性视网膜缺血、息肉状脉络膜血管病变、继发于退行性近视的脉络膜新生血管或早产儿视网膜病变。
本发明另一方面提供了用于眼部疾病治疗方法的根据本发明所述的重组腺相关病毒或药物组合物。
在一些具体的实施方案中,本发明所述的重组腺相关病毒或药物组合物通过玻璃体、视网膜或脉络膜注射给药。在一个优选的实施方案中,本发明所述的重组腺相关病毒或药物组合物通过脉络膜上腔注射给药。
在一些具体的实施方案中,本发明所述眼部疾病选自视网膜新生血管、脉络膜新生血管、虹膜新生血管、角膜新生血管性眼部疾病、非感染性葡萄膜炎或青光眼。在一些具体的实施方案中,本发明所述眼部疾病选自龄相关性黄斑变性、黄斑水肿、糖尿病性黄斑水肿、继发于视网膜静脉阻塞的黄斑水肿、视网膜静脉阻塞、视网膜中央静脉阻塞、视网膜分支静脉阻塞、视网膜分支静脉阻塞所致黄斑水肿、糖尿病性视网膜水肿、糖尿病性视网膜病变、增生性糖尿病视网膜病变、糖尿病性视网膜缺血、息肉状脉络膜血管病变、继发于退行性近视的脉络膜新生血管或早产儿视网膜病变。
本发明另一方面提供了所述重组腺相关病毒在制备用于预防或治疗关节炎疾病或相关病症的药物中的用途。
本发明另一方面提供了一种预防或治疗关节炎疾病或相关病症的方法,所述方法包括向有需要的个体施用有效量的根据本发明所述的重组腺相关病毒或药物组合物。
在一些具体的实施方案中,本发明所述的重组腺相关病毒或药物组合物通过静脉、皮下、肌肉或关节腔注射给药。
在一些具体的实施方案中,本发明所述的重组腺相关病毒或药物组合物通过肌肉或关节腔注射给药。
在一些具体的实施方案中,本发明所述关节炎疾病或相关病症选自类风湿性关节炎,青少年类风湿性关节炎,骨关节炎,痛风,假性痛风,脊椎炎,克罗恩病、斑块型银屑病,银屑病关节炎,强直性脊柱炎,脓毒性关节炎,关节炎,青少年特发性关节炎,钝性创伤,关节置换或Still’s疾病。
本发明另一方面提供了用于关节炎疾病或相关病症治疗方法的根据本发明所述的重组腺相关病毒或药物组合物。
在一些具体的实施方案中,本发明所述的重组腺相关病毒或药物组合物通过静脉、皮下、肌肉或关节腔注射给药。
在一些具体的实施方案中,本发明所述的重组腺相关病毒或药物组合物通过肌肉或关节腔注射给药。
在一些具体的实施方案中,本发明所述关节炎疾病或相关病症选自类风湿性关节炎,青少年类风湿性关节炎,骨关节炎,痛风,假性痛风,脊椎炎,克罗恩病、斑块型银屑病,银屑病关节炎,强直性脊柱炎,脓毒性关节炎,关节炎,青少年特发性关节炎,钝性创伤,关节置换或Still’s疾病。
附图说明
图1A显示了AAV衣壳蛋白GH环部分区域的氨基酸序列比对;
图1B显示了AAV衣壳蛋白GH环部分区域的氨基酸序列比对;
图2为AAV8衣壳蛋白突变体质粒的构建示意图;
图3显示了小鼠玻璃体内注射AAV8突变体病毒的EGFP mRNA表达水平;
图4显示了小鼠玻璃体内注射AAV8突变体病毒的视网膜铺片EGFP荧光信号;
图5显示了大鼠玻璃体内注射AAV8突变体病毒的视网膜铺片EGFP荧光信号;
图6显示了兔脉络膜上腔注射AAV8突变体病毒的EGFP荧光信号及DAPI信号;
图7为ARPE19细胞培养AAV8突变体病毒的EGFP荧光信号;
图8A显示了流式细胞术对AAV8突变体病毒感染ARPE19细胞后EGFP阳性细胞计数;
图8B显示了流式细胞术对AAV8突变体病毒感染ARPE19细胞后EGFP阳性细胞计数;
图9显示了兔脉络膜上腔注射AAV8突变体病毒mCherry基因组DNA相对含量;
图10显示了小鼠肌肉注射AAV8突变体病毒的luciferase荧光强度;
图11显示了小鼠关节腔/肌肉注射AAV8突变体病毒的临床评分;
图12显示了小鼠关节腔/肌肉注射AAV8突变体病毒的脚掌厚度。
具体实施方式
本发明涉及与包含未修饰的亲本AAV衣壳蛋白的AAV病毒载体相比,对靶组织或靶细胞(例如视网膜、肌肉或关节腔)具有增加的感染性的衣壳蛋白、包含该衣壳蛋白并表达目的基因(例如VEGF拮抗剂、TNF-α拮抗剂)的rAAV及其药物组合物和应用。
衣壳蛋白
本发明提供了一种经过修饰的AAV衣壳蛋白,其中经过修饰的AAV衣壳蛋白与对应的野生型AAV或亲本AAV相比包括一个或多个氨基酸修饰。所述修饰包括相对于亲本衣壳蛋白或AAV衣壳蛋白的一个或多个氨基酸取代、缺失或插入。所述修饰与包含未修饰的亲本AAV衣壳蛋白的AAV病毒载体相比,对靶组织或靶细胞(例如视网膜、肌肉或关节腔)具有增加的感染性。
在特定实施方案中,经过修饰的AAV衣壳蛋白包括在属于以下的衣壳蛋白血清型例如VP1内的异源多肽取代:AAV 1型、AAV 2型、AAV 3型、AAV 4型、AAV 5型、AAV 6型、AAV 7型、AAV 8型、AAV 9型、AAV 10型、AAVrh10、禽类AAV、牛类AAV、犬类AAV、马类AAV、灵长类AAV、非灵长类AAV、牛类AAV、AAV2.7m8、AAVShH10、AAV2.5T、AAV2.5T/7m8、AAV9/7m8、和AAV5/7m8。在一些实施方案中,衣壳变体可以是嵌合衣壳变体。嵌合衣壳变体的序列可包含两个或多个AAV衣壳血清型或其变体的部分。在一些实施例中,嵌合衣壳包含2、3、4、5、6、7、8、9、10或更多不同的衣壳蛋白血清型的部分。
在特定实施方案中,经过修饰的AAV衣壳蛋白包括约5-14个氨基酸的异源多肽取代。在一些特定实施方案中,本发明经过修饰的衣壳蛋白包括在位于亲本AAV8的第588~592位氨基酸或另一血清型衣壳蛋白的对应位置处的约5-14个氨基酸的异源多肽取代。AAV1~AAV9等的氨基酸序列如专利US8962330B、US10041090B等中所描述。在一个具体的实施方案中,本发明经过修饰的衣壳蛋白包括在位于亲本AAV8的第588~592位氨基酸处的约5-14个氨基酸的异源多肽取代。所述亲本/野生型AAV8衣壳蛋白的第588~592位氨基酸为“QQNTA”。因此本发明的一个具体实施方案为经过修饰的衣壳蛋白在亲本/野生型AAV8衣壳蛋白的第588~592位氨基酸“QQNTA”取代为5-14个氨基酸的异源多肽。与AAV8第588~592位氨基酸相对应的取代位点在其他衣壳蛋白的对应位置处,例如如图1A中所示。例如在AAV1的586~590氨基酸处,在AAV2的585~589氨基酸处,在AAV3的586~590氨基酸处,在AAV4的584~588氨基酸处,在AAV5的575~579氨基酸处,在AAV6的586~590氨基酸处,在AAV7的587~591氨基酸处,在AAV9的586~590氨基酸处,在AAV10的588~592氨基酸处。
对于上述的取代异源多肽,长度为5个氨基酸、6个氨基酸、7个氨基酸、8个氨基酸、9个氨基酸、10个氨基酸或11个氨基酸。在一些具体的实施方案中,本发明所述多肽包括选自 RGNRQ(SEQ ID NO:1),QQNTARGNRQ(SEQ ID NO:2)、RGNRQAAQQNTA(SEQ ID NO:3)、RGNRQQNTA(SEQ ID NO:4)、RGNRQQQNTA(SEQ ID NO:5)、SGNTQ(SEQ ID NO:6)、RGNQQNTARQ(SEQ ID NO:7)、RGNQQPRPTSRQ(SEQ ID NO:8)、RGNRQAAQQPTPTS(SEQ ID NO:9)或RGNRQQQPTPTS(SEQ ID NO:19)的氨基酸序列。在一些优选的实施方案中,本发明所述多肽包括选自QQNTARGNRQ(SEQ ID NO:2)、RGNRQQNTA(SEQ ID NO:4)、SGNTQ(SEQ ID NO:6)或RGNQQNTARQ(SEQ ID NO:7)或RGNRQQQPTPTS(SEQ ID NO:19)的氨基酸序列。
在特定实施方案中,经过修饰的AAV衣壳蛋白进一步包括在相对于亲本AAV8衣壳蛋白第262~272位氨基酸或另一血清型衣壳蛋白的对应位置处的突变。所述亲本/野生型AAV8衣壳蛋白的第262~272位氨基酸为“SNGTSGGATND”。因此本发明的一个具体实施方案为,经过修饰的衣壳蛋白在亲本/野生型AAV8衣壳蛋白的第262~272位氨基酸“SNGTSGGATND”进行突变。与AAV8第262~272位氨基酸相对应的突变位点在其他衣壳蛋白的对应位置处,例如在AAV1的261~271氨基酸处,在AAV2的261~271氨基酸处,在AAV3的261~271氨基酸处,在AAV4的255~265氨基酸处,在AAV5的251~261氨基酸处,在AAV6的261~271氨基酸处,在AAV7的262~272氨基酸处,在AAV9的261~271氨基酸处,在AAV10的262~272氨基酸处。与AAV8第262~272位氨基酸相对应的突变位点在其他衣壳蛋白的对应位置处,例如如图1B中所示。在一些具体的实施方案中,本发明突变后的氨基酸序列为SQSGASNDNH(SEQ ID NO:10)。
在一些具体的实施方案中,本发明所述经过修饰的衣壳蛋白包括位于亲本AAV8的第588~592位氨基酸或另一血清型衣壳蛋白的对应位置处的多肽取代,所述多肽为RGNRQ(SEQ ID NO:1);和相对于亲本AAV8衣壳蛋白第262~272位或另一血清型衣壳蛋白的对应位置处的突变,突变后的氨基酸序列为SQSGASNDNH(SEQ ID NO:10)。在一些优选的实施方案中,本发明所述的亲本衣壳蛋白血清型为AAV8。
在另一些实施方案中,本发明经过修饰的AAV衣壳蛋白进一步包括在相对于亲本AAV8衣壳蛋白第D80和/或V125位置处氨基酸的突变。在一些具体的实施方案中,所述突变为D80N和/或V125A。在一些具体的实施方案中,所述突变为D80Q和/或V125G。在一些优选的实施方案中,所述衣壳蛋白包括位于亲本AAV8的第588~592位氨基酸的多肽取代,所述多肽为RGNQQNTARQ(SEQ ID NO:7);和相对于亲本AAV8衣壳蛋白D80和V125位置处的氨基酸突变,所述突变为D80N和V125A。在另一些优选的实施方案中,所述衣壳蛋白包括位于亲本AAV8的第588~592位氨基酸的多肽取代,所述多肽为RGNQQNTARQ(SEQ ID NO:7);和相对于亲本AAV8衣壳蛋白D80和V125位置处的氨基酸突变,所述突变为D80Q和V125G。
在另一些实施方案中,本发明经过修饰的AAV衣壳蛋白包括在相对于亲本AAV8第589位氨基酸或另一血清型衣壳蛋白的对应位置后的多肽插入。插入位点位于AAV8第589位氨基酸或其他衣壳蛋白的对应位置之后,例如在AAV1的589氨基酸处,在AAV2的586氨基酸处,在AAV3的587氨基酸处,在AAV4的585氨基酸处,在AAV5的576氨基酸处,在AAV6的587氨基酸处,在AAV7的588氨基酸处,在AAV9的587氨基酸处,在AAV10的589氨基酸处之后。在一些具体的实施方案中,所述插入的多肽包含RGDLTTPQQ(SEQ ID NO:20)、RGDLNTPQQ(SEQ ID NO:21)或RGDVSSPQQ(SEQ ID NO:22)的氨基酸序列。在一个优选的实施方案中,本发明所述经过修饰的AAV衣壳蛋白包括在相对于亲本AAV8第589位氨基酸后的多肽插入,所述插入多肽包含RGDLTTPQQ(SEQ ID NO:20)、RGDLNTPQQ(SEQ ID NO:21)或RGDVSSPQQ(SEQ ID NO:22)的氨基酸序列。
在一些实施方案中,本发明所述经过修饰的衣壳蛋白还包括与上述经过氨基酸的取代、突变和/或插入的衣壳蛋白的氨基酸序列具有至少85%、90%、95%、98%、99%或100%同源性的序列。
在一些实施方案中,与包含相应于亲本/野生型衣壳蛋白的AAV病毒相比,包含经过修饰的衣壳蛋白的AAV对视网膜细胞的感染性增强至少1倍、2倍、5倍、10倍、20倍、50倍、100倍甚至更高。所述视网膜细胞包括RPE-19细胞(人视网膜色素上皮细胞系)、视网膜神经节 细胞、无长突细胞、水平细胞、双极细胞、感光细胞、视锥细胞、视杆细胞、Müller神经胶质细胞和视网膜色素上皮细胞等。
在一些具体的实施方案中,与包含相应于亲本/野生型衣壳蛋白的AAV病毒相比,包含经过修饰的衣壳蛋白的AAV对RPE细胞的感染性增强至少1倍、2倍、5倍、10倍、20倍、50倍、100倍甚至更高。
在一些具体的实施方案中,与包含相应于亲本/野生型衣壳蛋白的AAV病毒相比,包含经过修饰的衣壳蛋白的AAV经过脉络膜上腔注射后对视网膜细胞的感染性增强至少1倍、2倍、5倍、10倍、20倍、50倍、100倍甚至更高。
在一些具体的实施方案中,与包含相应于亲本/野生型衣壳蛋白的AAV病毒相比,包含经过修饰的衣壳蛋白的AAV经过玻璃体注射后对视网膜细胞的感染性增强至少1倍、2倍、5倍、10倍、20倍、50倍、100倍甚至更高。
重组腺相关病毒(rAAVs)
本发明的基因递送载体为重组腺相关病毒(rAAVs)。在一些实施方案中,本发明所述的rAAV是单链AAV(ssAAV)。其中ssAAV是指在分开的链上具有目的基因的编码序列和互补序列的rAAV,并且被包装在分开的病毒衣壳中。
在一些实施方案中,本发明所述重组腺相关病毒(rAAV)包括:i)根据本发明所述的经过修饰的衣壳蛋白;ii)包含编码基因产物的异源核酸。
在某些实施例中,本发明所述的rAAV包括本发明前述的经过修饰的衣壳蛋白,使得本发明所述的重组AAV(rAAV)相对于包含亲本或野生型的衣壳蛋白的rAAV具有增强的细胞或组织(例如眼组织或细胞、肌肉组织或关节腔等)特异性靶向能力或感染性。
在某些实施例中,本发明所述的rAAV包含编码基因产物的异源核酸以及调节元件的多核苷酸表达盒。术语“调节元件”是指调节与之可操作地相连的基因产物的表达的一段核酸序列。因此,表达调节元件可包括启动子、增强子、内部核糖体进入位点(IRES)、转录终止子、蛋白编码基因前的起始密码子、内含子剪接信号和终止密码子。该术语还可包括将框内外不想要的可能的起始密码子从所述序列中除去的核酸序列设计。其还可包括将不想要的可能的剪接位点除去的核酸序列设计。其还可包括指引添加多聚腺苷酸化或polyA的序列等。
本发明所述多核苷酸表达盒中,异源核酸包括对目的基因的基因产物例如治疗性基因产物进行编码的核苷酸序列。在一些实施例中,基因产物是干扰RNA。在一些实施例中,基因产物是适配体。在一些实施例中,基因产物是多肽。在一些实施例中,基因产物是提供用于对基因功能进行位点特异性敲低的位点特异性核酸酶。在一些优选的实施例中,基因产物是多肽、蛋白、融合蛋白、抗体等。
在一些实施方案中,本发明所述基因产物选自VEGF拮抗剂、TNF-α拮抗剂、PD-1/PD-L1抑制剂、Ang-2抑制剂、血浆激肽释放酶抑制剂、内皮抑素、肿瘤抑素、血管抑素、色素上皮衍生因子(PEDF)、可溶性Tie-2受体、Ang-2拮抗剂、CD组织金属蛋白酶抑制剂-3(TIMP-3)、光响应性视蛋白(例如视紫红质)、抗凋亡多肽(例如Bcl-2、Bcl-Xl)、神经胶质源性神经营养因子(GDNF)、成纤维细胞生长因子2、神经秩蛋白(neurturin,NTN)、睫状神经营养因子(CNTF)、神经生长因子(NGF)、神经营养蛋白-4(NT4)、脑源性神经营养因子(BDNF)以及其功能性变体和片段,包含与这些蛋白或多肽中的任何蛋白或多肽具有至少80%、至少85%、至少90%或至少95%的序列同一性的变体、以及包括这些蛋白、多肽或其变体中至少20%、至少30%、至少50%、至少60%、至少70%、至少80%或至少90%的片段。
在一个实施方案中,本发明所述基因产物选自VEGF拮抗剂。在一个具体的实施方案中,所述VEGF拮抗剂选自VEGF受体1(VEGFR-1,或Flt)或受体2(VEGFR-2,或Flk)的细胞外结构域1-7中的任一个结构域,例如VEGFR-1细胞外结构域2(Flt d2)和/或VEGFR-2细胞外结构域3或4。
在一个具体的实施方案中,所述VEGF拮抗剂包括选自下列组中的至少1项:
a)包含VEGFR-1的细胞外结构域2和VEGFR-2的细胞外结构域3的融合蛋白;示例性的,所述融合蛋白具有SEQ ID NO:11(Fltd2Flkd3)所述的氨基酸序列;
b)包含VEGFR-1的细胞外结构域2、VEGFR-2的细胞外结构域3和结构域4的融合蛋白;示例性的,所述融合蛋白具有SEQ ID NO:12(Fltd2 Flkd3,4)所述的氨基酸序列;
c)具有SEQ ID NO:13所述的抗体重链可变区序列和SEQ ID NO:14所述的抗体轻链可变区序列;
d)具有SEQ ID NO:15所述的抗体重链可变区序列和SEQ ID NO:16所述的抗体轻链可变区序列。
其中,SEQ ID NO:12为如下所示的序列:
Figure PCTCN2022142185-appb-000001
SEQ ID NO:13为如下所示的序列:
Figure PCTCN2022142185-appb-000002
SEQ ID NO:14为如下所示的序列:
Figure PCTCN2022142185-appb-000003
SEQ ID NO:15为如下所示的序列:
Figure PCTCN2022142185-appb-000004
SEQ ID NO:16为如下所示的序列:
Figure PCTCN2022142185-appb-000005
在一个具体的实施方案中,所述VEGF拮抗剂具有如SEQ ID NO:11所述的氨基酸序列:
Figure PCTCN2022142185-appb-000006
在一个具体的实施方案中,所述编码VEGF拮抗剂的核苷酸具有如SEQ ID NO:23所述的序列:
Figure PCTCN2022142185-appb-000007
Figure PCTCN2022142185-appb-000008
在一些实施方案中,所述蛋白或多肽选自TNF-α拮抗剂。在一些具体实施方案中,所述VEGF拮抗剂包括选自依那西普、英夫利昔单抗、阿达木单抗、培塞利珠单抗或戈利木单抗。
在一个具体的实施方案中,所述TNF-α拮抗剂具有SEQ ID NO:17所述的重链可变区序列和SEQ ID NO:18所述的轻链可变区序列。
SEQ ID NO:17为如下所示的序列:
Figure PCTCN2022142185-appb-000009
SEQ ID NO:18为如下所示的序列:
Figure PCTCN2022142185-appb-000010
在一个具体的实施方案中,所述TNF-α拮抗剂具有SEQ ID NO:24所述的氨基酸序列:
Figure PCTCN2022142185-appb-000011
在一个具体的实施方案中,所述编码TNF-α拮抗剂的核苷酸具有如SEQ ID NO:25所述的序列:
Figure PCTCN2022142185-appb-000012
Figure PCTCN2022142185-appb-000013
在一些实施方案中,所述VEGF拮抗剂或TNF-α拮抗剂具有与上述氨基酸序列具有至少约90%、至少约95%、至少约96%、至少约97%、至少约98%、至少约99%同一性或100%同一性的氨基酸序列。
在一些实施方案中,所述VEGF拮抗剂或TNF-α拮抗剂具有与上述核苷酸序列具有至少约90%、至少约95%、至少约96%、至少约97%、至少约98%、至少约99%同一性或100%同一性的核苷酸序列。
在一些实施方案中,所述蛋白或多肽选自具有一个或多个不同的抗原结合位点。例如在一些实施方案中,所述蛋白或多肽同时结合VEGF和Ang-2。在一个具体的实施方案中,所述蛋白或多肽为同时结合VEGF和Ang-2的双特异性抗体,例如Faricimab双抗。
在本发明的一些实施例中,可以使用密码子优化将编码序列设计用于更好地表达目的基因。本发明可以对编码多肽、融合蛋白、抗体或其功能性片段的核苷酸密码子进行优化,以提高目的基因在靶细胞、组织或物种中的蛋白表达水平。编码序列是对用于转录和翻译的氨基酸进行编码的mRNA序列的一部分。在转录和翻译过程中,61个核苷酸密码子中的每三个核苷酸密码子被转录和翻译成20个氨基酸中的任一个氨基酸。然而,不同的细胞类型和不同的动物物种对相同氨基酸进行编码的tRNA频率不同。当基因序列含有不频繁表达的密码子时,核糖体转录机制可能会减慢,从而阻碍有效转录。因此本领域技术人员可以通过“密码子优化”来改善目的基因的表达水平。简言之,编码产物的核苷酸序列用同义密码子序列修饰,例如采用在靶细胞中能够更高频率表达的密码子来替换低频率表达的密码子,以此来提高目标物质在特定细胞、组织或物质中的表达水平,例如提高10%、20%、30%,40%,50%,60%,70%,80%,90%、100%或超过100%。密码子优化的编码序列可以通过各种不同的方法来设计。这种优化可以使用在线提供的方法、公开的方法或提供密码子优化服务的公司来进行。例如在国际专利公开号WO2015/012924中描述了一种密码子优化方法,其通过引用并入本文。产物的开放阅读框(ORF)的整个长度适当地被修改。然而,在一些实施方案中,只有ORF的一个片段可以被改变。通过使用这些方法之一,产生编码多肽的密码子优化的编码核苷酸。
在一些实施方案中,本发明所述多核苷酸表达盒中一种或多种表达调控元件。例如,调控元件包含组成型启动子区,编码基因产物的核苷酸序列与组成型启动子可操作地连接,所述启动子是广泛存在与细胞、组织或物种中具有活性的启动子,所述启动子促进体内或体外特定细胞或组织中目的基因的表达。在一些实施方式中,启动子的实例包含鸡β-肌动蛋白启动子(CBA)、巨细胞病毒启动子(CMV)、CMV早期增强子/鸡β-肌动蛋白(CBA)启动子/兔β-珠蛋白内含子(CAG)、延伸因子1α启动子(EF1α)、人类磷酸甘油酸激酶启动子(PGK)、 MNT启动子、UB6启动子、CAG启动子、RPE65启动子、视蛋白启动子、线粒体重链启动子、泛素启动子等。
在一些实施方案中,调控元件包含诱导性启动子区,编码基因产物的核苷酸序列与诱导性启动子可操作地连接。在一些实施方案中,所述诱导性启动子为光感受器特异性启动子。合适的光感受器特异性启动子包含例如视紫红质启动子、视紫红质激酶启动子、β磷酸二酯酶基因启动子、视网膜色素变性基因启动子、光感受器间维甲酸结合蛋白(IRBP)基因增强子、IRBP基因启动子、视蛋白基因启动子、视网膜劈裂蛋白基因启动子、CRX同源域蛋白基因启动子、鸟嘌呤核苷酸结合蛋白α转导活性多肽1(GNAT1)基因启动子、神经视网膜特异性亮氨酸拉链蛋白(NRL)基因启动子、人类视锥抑制蛋白(hCAR)启动子、以及PR2.1、PR1.7、PR1.5和PR1.1启动子、RPE特异性启动子(如RPE65基因启动子)、细胞视黄醛结合蛋白(CRALBP)基因启动子、色素上皮源性因子(PEDF aka serpin F1)基因启动子、卵黄样黄斑营养不良(VMD2)启动子、穆勒神经胶质细胞特异性启动子(如神经胶质原纤维酸性蛋白(GFAP)启动子)、双极特异性启动子(如GRM6启动子)等。
本发明所述多核苷酸表达盒中的表达调控序列还可以包含多腺苷酸化信号。所述多腺苷酸化信号也被称为多腺苷酸化位点、多腺苷酸尾、Poly(A)位点、Poly(A)信号或Poly(A)尾。多腺苷酸化区是指多聚腺苷酸与信使RNA(mRNA)分子的共价链结。在蛋白质生物合成的过程中,这是产生准备作翻译的成熟mRNA的方式的一部分。在真核生物中,多聚腺苷酸化是一种机制,令mRNA分子于它们的3'端中断。多腺苷酸化信号保护mRNA,免受核酸外切酶攻击,并且对转录终结、将mRNA从细胞核输出及进行翻译都十分重要。多腺苷酸化信号包含多个连续的腺苷一磷酸,通常含有AAUAAA重复序列。一些示例性的多腺苷酸化信号包含猴空泡病毒40(SV40)、人生长激素(HGH)、牛生长激素(BGH)或β-珠蛋白。
本发明所述的多核苷酸表达盒还可以包含反向末端重复序列(ITR)。功能性的腺病毒反向末端重复序列(ITR)是指如用于整合、复制和包装AAV病毒粒子的ITR序列。通常,ITR序列的长度约为145bp。优选地,分子中基本上使用了编码ITR的整个序列,以及本领域技术人员根据本领域的常规技术手段对这些ITR序列的修饰。在本申请中使用ITR分子的一个实例是包含目的基因的“顺式”质粒,其中目的基因序列和相关的调控元件侧接5'和3'AAV ITR序列。AAV ITR序列可以从任何已知的AAV获得,包括目前鉴定的哺乳动物AAV类型。在一些实施方案中,编码目的基因的异源核苷酸在AAV ITR的侧面(例如,在方向5’-ITR-目的基因-ITR-3’)。在一些实施例中,AAV ITR选自由AAV1 ITR,AAV2 ITR,AAV3 ITR,AAV4 ITV,AAV5 ITR、AAV6 ITR,AAV7 ITR,AAV8 ITR,AAV9 ITV,AAV10 ITR,AAV11 ITR和AAV12 ITR组成的组。
本发明所述的多核苷酸表达盒进一步包括位于编码序列下游和聚腺苷酸化位点上游的RNA输出信号。RNA输出信号是顺式作用的转录后调控元件,可增强RNA从细胞核中的输出。示例性的RNA输出序列包括但不限于来自乙型肝炎病毒转录后调控元件(HPRE)和土拨鼠肝炎病毒转录后元件(WPRE)序列。
本领域技术人员可以理解的是,本发明所述的多核苷酸表达盒可以任选包含其他元件,包括但不限于促进克隆的限制性位点,用于可操作性地连接各元件,或调节基因表达的调节元件。实例如质粒载体的细菌序列、噬菌体整合酶载体的attp位点、attB位点、启动子接头、多腺苷酸化序列接头等。
在某些实施方案中,本发明所述的多核苷酸表达盒包含本领域技术人员根据对上述所提到的元件中的两个或多个元件以及目的基因的组合产生,其中多核苷酸表达盒中目的基因编码序列和相关的调控元件的侧面是5'和3'AAV ITR序列。
例如,本发明的多核苷酸表达盒,按照5'到3'的顺序可以包括N端AAV ITR、增强子/启动子/内含子、Kozak序列,基因产物的编码序列,WPRE或HPRE RNA输出信号序列,多腺苷酸化信号序列、以及C端AAV ITR。
在一个具体的实施方案中,本发明所述的重组腺相关病毒包含编码基因产物的多核苷酸表达盒,所述多核苷酸表达盒从5'到3'端顺序包括:
(a)5'AAV ITR;
(b)CMV增强子;
(c)CBA启动子;
(d)鸡β-肌动蛋白内含子;
(e)基因产物编码序列;
(f)兔β-珠蛋白多聚腺苷酸话信号序列;
(g)3'AAV ITR。
所述基因产物编码序列为编码前述基因产物(例如前述的VEGF拮抗剂或TNF-α拮抗剂)的核酸序列。
可以使用标准方法生产包含本发明所述的经过修饰的衣壳蛋白的重组病毒载体。例如,所述方法包括培养含有人工基因组的宿主细胞,所述人工基因组包含:由AAV ITR侧接的顺式多核苷酸表达盒,其中所述顺式多核苷酸表达盒包含基因产物的编码序列,所述编码序列可操作地连接至将控制基因产物在人类细胞中的表达的表达控制元件;缺乏AAV ITR的反式表达盒,其中所述反式表达盒编码AAV rep和衣壳蛋白,所述AAV rep和衣壳蛋白可操作地连接至驱动所述AAV rep和衣壳蛋白在培养物中的所述宿主细胞中的表达并且反式供应rep和cap蛋白的表达控制元件;足以准许通过AAV衣壳蛋白复制和包装所述人工基因组的腺病毒辅助功能;以及从所述细胞培养物回收包裹所述人工基因组的重组AAV。
“宿主细胞”是指包含或能够包含目标物质的任何细胞。通常,宿主细胞是哺乳动物细胞。在一些实施方案中,宿主细胞是感光细胞,视网膜色素上皮细胞,角质形成细胞,角膜细胞和/或肿瘤细胞。
药物组合物
本发明的另一方面在于提供包含rAAV的药物组合物,所述组合物包含本发明前述的重组腺相关病毒和药学上可接受的稀释剂、载体或赋形剂。
本领域技术人员可以容易地选择合适的稀释剂、载体或赋形剂。如本文所用,载体或赋形剂包括任何的溶剂、分散介质、载体、涂料、稀释剂、抗菌剂和抗真菌剂、等渗剂、吸收延迟剂、缓冲剂、载体溶液、悬浮液、胶体、防腐剂或化学稳定剂等。
示例性的载体或赋形剂包括无菌生理盐水、乳糖、蔗糖、磷酸钙、明胶、葡聚糖、琼脂、果胶、花生油、芝麻油和水。例如,一种合适的赋形剂或载体包括盐水,其可与多种缓冲溶液(例如磷酸盐缓冲液)调配。可通过各种抗菌和抗真菌剂来防止微生物的作用,例如,对羟基苯甲酸酯、氯丁醇、苯酚、山梨酸、硫柳汞等。在许多情况下,最好包括等渗剂,例如糖或氯化钠。通过在组合物中使用延迟吸收的试剂,例如单硬脂酸铝和明胶,可以使可注射组合物的吸收延长。
为了给予可注射水溶液,可以根据需要适当地配制缓冲溶液,并且首先用足够的盐水或葡萄糖使液体稀释剂等渗。这些特定的水溶液特别适合于静脉内,肌内,皮下和腹膜内给药。
无菌注射溶液的制备方法是将所需量的活性rAAV与本发明所列举的各种其他成分混合在适当的溶剂中,然后过滤灭菌。通常,通过将各种已灭菌活性成分并入无菌载体中制备分散体,该载体包含分散介质和所需的其他成分。
本发明的rAAV组合物也可以以中性或盐形式配制。药学上可接受的盐,包括酸加成盐及由无机酸(例如盐酸或磷酸)或有机酸(如乙酸、草酸、酒石酸、扁桃酸)形成。由自由羧基形成的盐也可来自无机碱,例如钠、钾、铵、钙或氢氧化铁,或者有机碱,例如异丙胺、三甲胺、组氨酸、普鲁卡因等。配制完成后,溶液将以与剂型相容的方式给药,并且以治疗有效量施用。所述制剂易于以各种剂型施用,例如可注射溶液、药物释放胶囊等。
可以通过例如脂质体,纳米胶囊,微粒,微球,脂质颗粒,囊泡等递送载体将本发明的组合物递送至合适的宿主细胞中。
以单位剂型配制注射、口服或肠胃外组合物以易于施用是有利的。如本文所使用的,单位剂型是指适于作为单一剂量用于待治疗的受试者的物理离散单位;每个单位含有经计算与所需药物载剂关联产生期望的治疗效果的预定量的活性化合物。本发明的单位剂型的规格由 活性化合物的独特特性和待实现的特定治疗效果以及本领域中在混配这种活性化合物以用于治疗个体时固有的局限性决定。例如单位剂量的可以是一定量的载体基因组,或者每毫升中含有一定量的载体基因组,或者含有使用感染复数(MOI)测量药物组合物的单位剂量,MOI意指载体或病毒基因组与核酸可以递送到的细胞的比率或倍数。
药物组合物可以与施用说明书一起包含在容器、包装或分配器中,分配器例如注射器。
重组腺相关病毒(rAAV)的递送
本发明涉及一种用于预防或治疗疾病或症状的方法,其中所述方法包括将治疗有效量的本发明所述rAAV病毒或药物组合物递送至受试者。本发明所述的rAAV可以根据本领域已知的任何合适方法递送至受试者。例如,优选将悬浮于生理相容性载体中(例如,在组合物中)的rAAV施用于受试者,即宿主动物,例如人、小鼠、大鼠、猫、狗、绵羊、兔子、马、牛、山羊、猪、豚鼠、仓鼠、鸡、火鸡或非人类灵长类动物(例如,猕猴)。在一些实施例中,宿主动物不包括人类。在一些实施例中,受试者是人类。
“治疗有效量”是指以达到所需治疗效果所需的剂量和时间有效的量。治疗有效量的rAAV病毒或药物组合物可根据诸如待治疗受试者的疾病状态,年龄,性别和体重以及rAAV病毒或药物组合物在受试者中引发所需反应的能力之类的因素而变化。可以调节给药方案以提供最佳的治疗反应。治疗有效量通常也是其中rAAV病毒或药物组合物的任何毒性或有害作用被治疗有益作用所超过的量。“预防有效量”是指以达到所需预防效果所需的剂量和时间有效的量,例如预防或抑制各种病症。预防剂量可用于疾病发生前或早期的受试者,在某些情况下,预防有效量可大于或小于治疗有效量。给药剂量在很大程度上取决于被治疗对象的状况和大小以及治疗配方,治疗频率和给药途径。用于持续治疗的方案,包括剂量,制剂和频率,可以由初始反应和临床判断指导。
在一些实施方案中,rAAV病毒或药物组合物给予受试者每天一次、每周一次、每两周一次、每月一次、每2个月一次、每3个月一次、每6个月一次、每年一次或每2年一次、每5年一次、一生一次。
示例性的给药和递送途径包括静脉内(I.V.),关节内,腹膜内(I.P.),动脉内,肌肉内,胃肠外,皮下,胸膜内,真皮,透皮,胃肠外,例如透粘膜,颅内,脊柱内,口服(消化性),粘膜,呼吸,鼻内,插管,肺内,肺内滴注,颊,舌下,血管内,鞘内,腔内,离子电渗疗法,眼内,腺内,器官内,输卵管内。
在一些实施方案中,rAAV递送至哺乳动物受试者可通过例如眼内注射、视网膜下注射、脉络膜注射(例如脉络膜上腔注射)或局部施用(例如滴眼液)或藉由注射至受眼部组织以此来影响哺乳动物的眼睛(例如玻璃体内注射)。“眼组织”是指源自或包含在眼睛中的任何组织。眼组织的非限制性实例包括神经元、视网膜(例如,感光细胞)、巩膜、脉络膜、视网膜、玻璃体、黄斑、中央凹、视盘、晶状体、瞳孔、虹膜、水液、角膜、结膜睫状体和视神经。视网膜位于眼睛的后部,由感光细胞组成。这些光感受器细胞(如视杆、视锥)通过辨别颜色和视野中的对比度赋予视力。在一些实施例中,通过眼内注射施用本发明中所述的rAAV或组合物。在一些实施例中,通过玻璃体内注射施用本发明中所述的rAAV或组合物。在一些实施例中,通过视网膜下注射施用本发明中所述的rAAV或组合物。在一些实施例中,通过脉络膜内(例如,脉络膜上腔)注射施用本发明中所述的rAAV或组合物。在一些实施例中,通过静脉注射施用本发明中所述的rAAV或组合物。
在一些实施方案中,rAAV递送至哺乳动物受试者可通过例如肌肉注射进入哺乳动物受试者。
在一些实施方案中,rAAV递送至哺乳动物受试者可通过例如静脉注射进入哺乳动物受试者。
在一些实施方案中,rAAV递送至哺乳动物受试者可通过例如关节内注射进入哺乳动物受试者。“关节内注射”这里定义为注射或注入到关节中。关节内注射通常用于将药物施用到受炎症影响的关节中。
施用包含本发明所述的rAAV或药物组合物的作用可以是预防病症发展、停止病症进展、逆转病症进展等。疾病或病症与rAAV所装载的目的基因及表达的基因产物有关。例如当基因产物为VEGF拮抗剂,预防或治疗的疾病或病症可以是VEGF相关的疾病。例如“VEGF有关的疾病”是指与异常VEGF活性/信号相关的一组疾病。许多研究已证实如果VEGF异常过量就可以刺激及诱导病理性血管新生,引起血管新生相关眼部疾病。非限制性示例性血管新生相关眼部疾病包括血管生成依赖性癌症,血管生成相关的眼部疾病,实体瘤(例如,肺癌,乳腺癌,肾癌,肝癌,胰腺癌,头颈癌,结肠癌,黑色素瘤),血液源性肿瘤(例如白血病,转移性肿瘤),良性肿瘤(例如血管瘤,听神经瘤,神经纤维瘤,气管炎和化脓性肉芽肿),类风湿关节炎,牛皮癣,红肿,Osier-Webber综合征,心肌血管生成,斑块,毛细血管扩张,血友病关节或血管纤维瘤。
在一些实施例中,血管生成相关眼部疾病包括但不限于糖尿病视网膜病变、早产儿视网膜病变、黄斑变性、角膜移植物排斥反应、新生血管性青光眼和晶状体后纤维增生、流行性角膜结膜炎、维生素A缺乏症、接触镜过度磨损、特应性角膜炎,细菌性角膜炎,溃疡,溃疡,细菌性角膜炎,溃疡,原发性角化病、类风湿性关节炎、系统性狼疮、多动脉炎、创伤、韦格纳斯结节病、巩膜炎、史蒂芬约翰逊病、类天疱疮放射状角膜切开术、角膜移植排斥反应、镰状细胞贫血、结节病、弹性假黄瘤、佩吉茨病、静脉阻塞、动脉闭塞、颈动脉阻塞性疾病,慢性葡萄膜炎/玻璃炎、分枝杆菌感染、莱姆病、系统性红斑狼疮、早产儿视网膜病变、Eales病、白塞病、视网膜炎或脉络膜炎感染、假定的眼部组织胞浆菌病、Bests病、近视、视凹、Stargardt病、扁平部炎、慢性视网膜脱离,高粘血症综合征、弓形虫病、创伤或激光后并发症。
在一些实施例中,眼部疾病选自视网膜新生血管、脉络膜新生血管、虹膜新生血管、角膜新生血管性眼部疾病、非感染性葡萄膜炎或青光眼。
在一些实施例中,眼部疾病选自年龄相关性黄斑变性、黄斑水肿、糖尿病性黄斑水肿、继发于视网膜静脉阻塞的黄斑水肿、视网膜静脉阻塞、视网膜中央静脉阻塞、视网膜分支静脉阻塞、视网膜分支静脉阻塞所致黄斑水肿、糖尿病性视网膜水肿、糖尿病性视网膜病变、增生性糖尿病视网膜病变、糖尿病性视网膜缺血、息肉状脉络膜血管病变、继发于退行性近视的脉络膜新生血管或早产儿视网膜病变。黄斑变性的具体形式可以包含急性黄斑变性、非渗出性年龄相关黄斑变性和渗出性年龄相关黄斑变性。
例如当基因产物为TNF-α拮抗剂,预防或治疗的疾病或病症可以是关节炎疾病或相关病症。目前,估计有超过100种不同形式的关节炎。通常,关节紊乱被称为关节病,当涉及一个或多个关节的炎症时,这种紊乱被称之为关节炎。关节炎在本文中被理解为指“关节疼痛”或“关节疾病”。在一个优选实施方案中,关节炎疾病选自成人发作的Still病、强直性脊柱炎、关节炎、背痛、Behget病、钝性创伤、滑囊炎、焦磷酸钙沉积病(CPPD)、腕管综合征、髌骨软骨软化症、慢性疲劳综合征、复杂局部疼痛综合征、冷冻比林相关周期性综合征(CAPS)、退行性椎间盘疾病、发育性髋关节发育不良、埃勒-丹洛斯、家族性地中海热、纤维肌痛、第五疾病、巨细胞动脉炎、痛风、血色病、感染性关节炎、炎性关节炎,炎性肠病、关节置换、幼年关节炎、幼年皮肌炎(JD)、青少年特发性关节炎(JIA)、青少年类风湿性关节炎、青少年硬皮病、川崎病、狼疮、儿童和青少年狼疮、莱姆病、混合性结缔组织病、肌炎(包括多发性肌炎、皮肌炎)、骨关节炎(OA)、骨质疏松症、pagets、回旋风湿症、髌股痛综合征、儿童风湿性疾病、儿童SLE、风湿性多肌痛、假性痛风、银屑病关节炎、雷诺氏现象、反应性关节炎、反射性交感神经营养不良、赖特综合征、风湿热、风湿病、类风湿关节炎、硬皮病、脓毒性关节炎,干燥症、椎管狭窄、脊椎关节炎、斯蒂尔氏病、系统性青少年特发性关节炎和系统性红斑狼疮,儿童和青少年系统性红斑狼疮、系统性硬化、颞动脉炎、腱炎、血管炎和韦格纳肉芽肿。
在另一优选实施方案中,关节炎疾病选自类风湿性关节炎,青少年类风湿性关节炎,骨关节炎,痛风,假性痛风,脊椎炎,克罗恩病、斑块型银屑病,银屑病关节炎,强直性脊柱炎,脓毒性关节炎,关节炎,青少年特发性关节炎,钝性创伤,关节置换或Still’s疾病。
在更优选的实施方案中,关节炎疾病是涉及一个或多个关节炎症的关节紊乱。优选地,所述关节炎疾病选自类风湿关节炎(RA)、幼年类风湿性关节炎、骨关节炎(OA)、痛风、假痛风、脊椎关节炎(SpA)、银屑病关节炎、强直性脊柱炎、脓毒性关节炎,关节炎、幼年特发性关节炎和Still氏病。
下面将结合实施例对本发明作进一步阐述,但这些实施例不对本发明构成任何限制。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1突变体构建
使用定点诱变和重组DNA技术来生成AAV8的变体,所述变体包含位于亲本AAV8的第Q588~A592位氨基酸(QQNTA)5-14个氨基酸的一段多肽取代,或者进一步包括位于亲本AAV8衣壳蛋白第N262~N272位氨基酸对应位置处的突变,突变后的氨基酸序列为SQSGASNDNH(SEQ ID NO:10);或者进一步包括D80N、V125A、V125G位突变,如表1。示例性的No.12衣壳突变体质粒示意如图2。
表1
突变体 Q588~A592氨基酸取代
No.12 RGNRQ(SEQ ID NO:1)
No.121 QQNTARGNRQ(SEQ ID NO:2)
No.122 RGNRQAAQQNTA(SEQ ID NO:3)
No.123 RGNRQQNTA(SEQ ID NO:4)
No.124 RGNRQQQNTA(SEQ ID NO:5)
No.125 SGNTQ(SEQ ID NO:6)
No.128 RGNQQNTARQ(SEQ ID NO:7)
No.129 RGNQQPRPTSRQ(SEQ ID NO:8)
No.1213 RGNRQAAQQPTPTS(SEQ ID NO:9)
No.1214 RGNRQQQPTPTS(SEQ ID NO:19)
表2
突变体 Q588~A592氨基酸取代 D80突变 V125突变
No.1281 RGNQQNTARQ(SEQ ID NO:7) D80N V125A
No.1282 RGNQQNTARQ(SEQ ID NO:7) D80Q V125G
表3
突变体 Q588~A592氨基酸取代 N262~N272突变
No.1312 RGNRQ(SEQ ID NO:1) SQSGASNDNH(SEQ ID NO:10)
另一组衣壳蛋白突变体则是在亲本AAV8的第Q589位氨基酸后插入一段多肽序列,如表4。
表4
突变体 589位氨基酸后插入多肽序列
No.15 RGDLTTPQQ(SEQ ID NO:20)
No.151 RGDLNTPQQ(SEQ ID NO:21)
No.152 RGDVSSPQQ(SEQ ID NO:22)
AAV8突变体的病毒包装通过三质粒共转染细胞生成:包括ITR侧接目的基因的表达盒(GFP或荧光素酶)的第一质粒(pAAV-CAG-EGFP);本实施例1中构建的对Rep/Cap基因进行编码的突变体质粒(第二质粒);以及含有腺病毒辅助功能基因的第三质粒。转染后收集细胞,裂解释放病毒,并通过PCR测定病毒滴度,后续备用。
实施例2小鼠玻璃体注射转染实验
2.1突变体的EGFP mRNA表达水平
将纯化后的AAV8突变体病毒,按7E+8vg/每眼进行小鼠玻璃体注射。玻璃体注射21d后,取小鼠眼球,使用冰冻匀浆机磨碎眼球,使用总RNA提取试剂盒提取RNA,并使用逆转录试剂盒合成cDNA,通过qPCR测定特异性EGFP引物探针组(其中,上游引物EGFP-F的序列为:5'-CACATGAAGCAGCACGACTT-3'(SEQ ID NO:26);下游引物EGFP-R的序列为:5'-TCGTCCTTGAAGAAGATGGT-3'(SEQ ID NO:27);探针为:5'-AGTCCGCCATGCCCGAAGGCT-3'-TAMRA,探针中所含序列如SEQ ID NO:28所示),计算归一化AAV8突变体的EGFP mRNA水平,即比较不同AAV8突变体对玻璃体转染效果,结果如图3。
2.2视网膜铺片
将纯化后的AAV8突变体病毒,按7E+8vg/每眼进行小鼠玻璃体注射;玻璃体注射21d后,取小鼠眼球,4%多聚甲醛过夜固定小鼠眼球,使用手术显微镜剪在正置显微镜下剥离小鼠视网膜,对小鼠视网膜进行铺片,共聚焦拍摄EGFP荧光信号,结果如图4所示。
实施例3大鼠玻璃体注射转染实验
将纯化后的AAV8突变体病毒,按1.92E+9vg/每眼进行大鼠玻璃体注射;玻璃体注射21d后,取大鼠眼球;4%多聚甲醛过夜固定大鼠眼球;使用手术显微镜剪在正置显微镜下剥离大鼠视网膜;对大鼠视网膜进行铺片,荧光扫描显微镜拍摄EGFP荧光信号,结果如图5所示。
实施例4兔脉络膜上腔注射转染实验
将纯化后的AAV8突变体病毒,按5E+10vg/每眼进行新西兰兔的脉络膜上腔注射;脉络膜上腔注射14d后,取新西兰兔眼球;4%多聚甲醛过夜固定新西兰兔眼球;对固定的眼球进行脱水及组织包埋处理;进行冰冻切片,然后细胞核染色(DAPI);使用共聚焦显微镜进行全图扫描,捕获EGFP荧光信号及DAPI信号,结果如图6所示(图5中,EGFP:自发荧光,DAPI:细胞核,RGC:神经节细胞,INL:视网膜内核层;ONL:视网膜外核层;RPE:视网膜上皮细胞),从荧光图来看,野生型对感光细胞层及RPE层的转导效率不高,而突变体对感光细胞及RPE层的转导效率大幅度提高。
实施例5 ARPE19细胞感染实验
将ARPE19细胞种于12孔板中,培养至细胞融合度70-80%(一般细胞个数为1.0E+5个);按所需比例加入病毒上清(4.5E+9Vg),使得病毒上清量+培养基总量为1000μL;感染16h 后,每日更换培养基,继续培养至72小时,共聚焦拍摄EGFP荧光信号,观测荧光蛋白表达情况。ARPE19细胞48小时感染情况如图7所示。
同时,采用流式细胞术方法对EGFP阳性细胞数进行计数。以2E+5细胞数于6孔板细胞皿培养,加入1E+10vg已包装的突变体病毒,37℃培养48h;使用胰蛋白酶消化细胞,收集细胞,并用300μL无菌PBS重悬细胞;使用罗氏流式细胞术选用FITC(488nm)通道测量,设定测量总细胞数为10万,计数EGFP阳性细胞数。结果如图8A、8B所示。
实施例6兔脉络膜上腔注射转染实验
按照实施例1中所述三质粒共转染方法制备包括不同突变体病毒AAV-mCherry(mCherry是一种珊瑚中分离出来的蛋白,此处用作一种红色荧光染料示踪剂),并通过ddPCR测量每种病毒的基因组滴度;将每种突变体的病毒的基因组滴度通过缓冲液稀释至1.0E12vg/mL,在兔眼颞上方4mm处进行脉络膜上腔注射,每眼100μL,每种病毒注射2只兔,4只眼;5天后,处死新西兰兔,取眼球,分离视网膜/脉络膜组织后,进行低温组织匀浆,取上清,通过病毒基因组DNA提取试剂盒提取病毒基因组DNA,通过qPCR测定每种病毒转导视网膜/脉络膜病毒基因组DNA相对含量,结果如表5及图9所示。
表5
Figure PCTCN2022142185-appb-000014
实施例7感染APRE细胞蛋白表达实验
按照实施例1中所述三质粒共转染生产AAV8-阿柏西普病毒和AAV No.12-阿柏西普突变体病毒,并通过ddPCR测量每种病毒的基因组滴度;将每种突变体的病毒的基因组滴度通过缓冲液稀释至3.0E12vg/mL,细胞数为3.0E5,每孔加入10μL病毒,培养16h后进行换液,72h后进行收集细胞及细胞上清液;通过液氮冷冻,反复冻融3次,进行细胞裂解,选用ELISA方法测定Trap蛋白表达水平。结果表明AAV8-阿柏西普病毒的蛋白表达量为97ng/ml,AAV No.12-阿柏西普病毒的蛋白表达量为1662ng/ml。
实施例8恒河猴脉络膜上腔注射蛋白表达实验
按照实施例1中所述三质粒共转染生产AAV No.128-阿柏西普病毒,并通过ddPCR测量每种病毒的基因组滴度;将病毒的基因组滴度通过缓冲液稀释至1.0E13vg/mL,在猴眼颞上方4mm处进行脉络膜上腔注射,每眼100μL,注射1只猴,2只眼;56天后,处死恒河猴,取眼球,分离猴眼各个组织(包括,房水,脉络膜,结膜,虹膜睫状体,视网膜,巩膜,玻璃体),加入蛋白酶抑制剂后,进行低温组织匀浆,取上清,通过ELISA测定阿柏西普蛋白表达水平(ng/ml),结果如表6所示。
表6
Figure PCTCN2022142185-appb-000015
BLQ*:未检测到。
实施例9小鼠肌肉注射转染实验
按照实施例1中所述三质粒共转染生产AAV8-luciferase和AAV No.128-luciferase病毒,并通过ddPCR测量病毒的基因组滴度;将病毒的基因组滴度通过缓冲液稀释至1.62E11vg/mL,在小鼠右腿腓肠肌进行注射,体积为50μL,每种病毒注射5只鼠(Balb/c);在病毒注射后的7天、14天、28天、160天,分别于小鼠腹腔注射一定量的荧光素钠盐底物,进行小鼠活体成像,于活体成像仪进行荧光强度分析,结果如表7及图10所示。
表7
Figure PCTCN2022142185-appb-000016
实施例10转染293F细胞蛋白表达实验
分别构建AAV8-No.128-依那西普、AAV No.128-阿达木单抗质粒;选取2μg质粒,进行单质粒转染293F细胞,待72h后,通过ELISA方法检测质粒的蛋白表达水平。结果表明,AAV No.128-阿达木单抗质粒的表达水平为1010ng/mL,而AAV No.128-依那西普质粒的表达水平为2020ng/mL。
实施例11小鼠关节腔/肌肉注射有效性实验
1)样品溶液制备
供试品制备:AAV No.128-依那西普病毒按照实施例1中所述方法进行制备并测定病毒基因组滴度,然后稀释至9.98E12vg/mL,备用。
阳性对照品:取阿达木单抗原液40mg/400μl,稀释至1.6μg/μl。
2)造模
第0天初次造模:选用6周龄的DBA/1雄性小鼠,先将0.6ml牛II型胶原(CII)溶液(2mg/ml)与0.6ml(4mg/ml)完全弗氏佐剂装入挤膜器中,制备得到1ml左右乳白色乳剂。小鼠每只尾根部皮下注射100μl乳剂,观察尾根部肿胀且乳剂未漏出,小鼠未死亡,即说明给药基本成功。
第21天二次造模:将0.6ml牛II型胶原(CII)(2mg/ml)与0.6ml(4mg/ml)不完全弗氏佐剂装入挤膜器中,制备得到1ml左右乳白色乳剂,小鼠每只尾根部皮下注射100μl乳剂。
3)给药
第22天给药,给药第0天,关节腔内注射AAV No.128-依那西普病毒样品溶液10μl/ankle(双腿均注射)。
第22天给药,给药第0天,临近关节腔肌肉注射AAV No.128-依那西普病毒样品溶液100μl/ankle(双腿均注射)。
第22天,阿达木单抗组背部皮下给阿达木单抗160μg(原液40mg/400μl稀释至1.6μg/μl,背部皮下使用胰岛素针注射100μl),每两周给药一次。
4)结果观察
从第23天起,给药第2天,使用电子游标卡尺监控测量脚掌厚度,同时对关节炎症情况进行临床评分,每两天一测。评分标准如下表8:
表8
Figure PCTCN2022142185-appb-000017
Figure PCTCN2022142185-appb-000018
5)结果
脚掌厚度测量及对关节炎症情况进行临床评分的结果如图11及图12所示。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (34)

  1. 一种经过修饰的腺相关病毒(AAV)衣壳蛋白,其特征在于,所述衣壳蛋白相对于亲本AAV衣壳蛋白包含约5-14个氨基酸的多肽取代,并且其中与包含相应亲本AAV衣壳蛋白的AAV相比,包含所述经过修饰的衣壳蛋白的AAV具有增强的视网膜细胞感染性。
  2. 根据权利要求1所述的衣壳蛋白,其特征在于,所述多肽包括选自RGNRQ(SEQ ID NO:1),QQNTARGNRQ(SEQ ID NO:2)、RGNRQAAQQNTA(SEQ ID NO:3)、RGNRQQNTA(SEQ ID NO:4)、RGNRQQQNTA(SEQ ID NO:5)、SGNTQ(SEQ ID NO:6)、RGNQQNTARQ(SEQ ID NO:7)、RGNQQPRPTSRQ(SEQ ID NO:8)、RGNRQAAQQPTPTS(SEQ ID NO:9)或RGNRQQQPTPTS(SEQ ID NO:19)的氨基酸序列;并且所述取代位于亲本AAV8的第588~592位氨基酸或另一血清型衣壳蛋白的对应位置处。
  3. 根据权利要求2所述的衣壳蛋白,其特征在于,所述多肽包括选自RGNRQ(SEQ ID NO:1)、QQNTARGNRQ(SEQ ID NO:2)、RGNRQAAQQNTA(SEQ ID NO:3)、RGNRQQNTA(SEQ ID NO:4)、SGNTQ(SEQ ID NO:6)、RGNQQNTARQ(SEQ ID NO:7)或RGNRQQQPTPTS(SEQ ID NO:19)的氨基酸序列。
  4. 根据权利要求2或3所述的衣壳蛋白,其特征在于,所述衣壳蛋白进一步包括相对于亲本AAV8衣壳蛋白第262~272位氨基酸或另一血清型衣壳蛋白的对应位置处的突变,突变后的氨基酸序列为SQSGASNDNH(SEQ ID NO:10)。
  5. 根据权利要求1-4任一项所述的衣壳蛋白,其特征在于,所述衣壳蛋白包括位于亲本AAV8的第588~592位氨基酸或另一血清型衣壳蛋白的对应位置处的多肽取代,所述多肽为RGNRQ(SEQ ID NO:1);和相对于亲本AAV8衣壳蛋白第262~272位或另一血清型衣壳蛋白的对应位置处的突变,突变后的氨基酸序列为SQSGASNDNH(SEQ ID NO:10)。
  6. 根据权利要求1-5任一项所述的衣壳蛋白,其特征在于,所述AAV血清型选自AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11,AAV12、AAV-DJ、AAV-DJ8、AAV-DJ9、AAVrh8、AAVrh8R和AAVrh10。
  7. 根据权利要求6所述的衣壳蛋白,其特征在于,所述AAV血清型为AAV8。
  8. 根据权利要求1-7任一项所述的衣壳蛋白,其特征在于,所述衣壳蛋白进一步包括相对于亲本AAV8衣壳蛋白D80和/或V125位置处氨基酸的突变。
  9. 根据权利要求8所述的衣壳蛋白,其特征在于,所述突变为D80N和/或V125A。
  10. 根据权利要求8所述的衣壳蛋白,其特征在于,所述突变为D80Q和/或V125G。
  11. 根据权利要求8或9所述的衣壳蛋白,其特征在于,所述衣壳蛋白包括位于亲本AAV8的第588~592位氨基酸的多肽取代,所述多肽为RGNQQNTARQ(SEQ ID NO:7);和相对于亲本AAV8衣壳蛋白D80和V125位置处的氨基酸突变,所述突变为D80N和V125A。
  12. 根据权利要求8或10所述的衣壳蛋白,其特征在于,所述衣壳蛋白包括位于亲本AAV8的第588~592位氨基酸的多肽取代,所述多肽为RGNQQNTARQ(SEQ ID NO:7);和相对于亲本AAV8衣壳蛋白D80和V125位置处的氨基酸突变,所述突变为D80Q和V125G。
  13. 一种经过修饰的腺相关病毒(AAV)衣壳蛋白,其特征在于,所述衣壳蛋白包括位于亲本AAV8第589位氨基酸或另一血清型衣壳蛋白的对应位置后的多肽插入,并且其中与包含相应亲本AAV衣壳蛋白的AAV病毒相比,包含所述经过修饰的衣壳蛋白的AAV病毒具有增强的视网膜细胞感染性。
  14. 根据权利要求13所述的衣壳蛋白,其特征在于,所述多肽包含选自RGDLTTPQQ(SEQ ID NO:20)、RGDLNTPQQ(SEQ ID NO:21)和RGDVSSPQQ(SEQ ID NO:22)的氨基酸序列。
  15. 根据权利要求13或14所述的衣壳蛋白,其特征在于,所述AAV血清型选自AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11,AAV12、AAV-DJ、AAV-DJ8、AAV-DJ9、AAVrh8、AAVrh8R和AAVrh10。
  16. 根据权利要求15所述的衣壳蛋白,其特征在于,所述AAV血清型为AAV8。
  17. 一种重组腺相关病毒(rAAV),其包括:
    i.前述权利要求1-16中任一项所述的经过修饰的衣壳蛋白;
    ii.包含编码基因产物的异源核酸。
  18. 根据权利要求17所述的重组腺相关病毒,其特征在于,所述基因产物为VEGF拮抗剂或TNF-α拮抗剂。
  19. 根据权利要求18所述的重组腺相关病毒,其特征在于,所述VEGF拮抗剂选自阿柏西普、康柏西普、雷珠单抗、布洛赛珠单抗。
  20. 根据权利要求19所述的重组腺相关病毒,其特征在于,所述VEGF拮抗剂选自阿柏西普。
  21. 根据权利要求18所述的重组腺相关病毒,其特征在于,所述TNF-α拮抗剂选自:依那西普、英夫利昔单抗、阿达木单抗、培塞利珠单抗、戈利木单抗。
  22. 根据权利要求21所述的重组腺相关病毒,其特征在于,所述TNF-α拮抗剂选自依那西普。
  23. 一种药物组合物,其包括:
    a)权利要求17-22任一项所述的重组腺相关病毒;
    b)药学上可接受的赋形剂。
  24. 权利要求17-22任一项所述的重组腺相关病毒在制备用于预防或治疗眼部疾病的药物中的用途。
  25. 一种预防或治疗眼部疾病的方法,所述方法包括向有需要的个体施用有效量的权利要求17-22任一项所述的重组腺相关病毒或权利要求23所述的药物组合物。
  26. 根据权利要求25所述的方法,其特征在于,通过玻璃体、视网膜或脉络膜注射给药。
  27. 根据权利要求26所述的方法,其特征在于,通过脉络膜上腔注射给药。
  28. 根据权利要求24所述的用途或权利要求25-27任一项所述的方法,其特征在于,所述眼部疾病选自视网膜新生血管、脉络膜新生血管、虹膜新生血管、角膜新生血管性眼部疾病、非感染性葡萄膜炎或青光眼。
  29. 根据权利要求24所述的用途或权利要求25-27任一项所述的方法,其特征在于,所述眼部疾病选自年龄相关性黄斑变性、黄斑水肿、糖尿病性黄斑水肿、继发于视网膜静脉阻塞的黄斑水肿、视网膜静脉阻塞、视网膜中央静脉阻塞、视网膜分支静脉阻塞、视网膜分支静脉阻塞所致黄斑水肿、糖尿病性视网膜水肿、糖尿病性视网膜病变、增生性糖尿病视网膜病变、糖尿病性视网膜缺血、息肉状脉络膜血管病变、继发于退行性近视的脉络膜新生血管或早产儿视网膜病变。
  30. 权利要求17-22任一项所述的重组腺相关病毒在制备用于预防或治疗关节炎疾病或相关病症的药物中的用途。
  31. 一种治疗关节炎疾病或相关病症的方法,所述方法包括向有需要的个体施用有效量的权利要求17-22任一项所述的重组腺相关病毒或权利要求23所述的药物组合物。
  32. 根据权利要求31所述的方法,其特征在于,通过静脉、皮下、肌肉或关节注射给药。
  33. 根据权利要求32所述的方法,其特征在于,通过肌肉或关节内注射给药。
  34. 根据权利要求30所述的用途或权利要求31-33任一项所述的方法,所述关节炎疾病或相关病症选自类风湿性关节炎,青少年类风湿性关节炎,骨关节炎,痛风,假性痛风,脊椎炎,克罗恩病、斑块型银屑病,银屑病关节炎,强直性脊柱炎,脓毒性关节炎,关节炎,青少年特发性关节炎,钝性创伤,关节置换或Still’s疾病。
PCT/CN2022/142185 2021-12-28 2022-12-27 经过修饰的aav衣壳蛋白及其用途 WO2023125481A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111628667.2 2021-12-28
CN202111628667 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023125481A1 true WO2023125481A1 (zh) 2023-07-06

Family

ID=86997846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142185 WO2023125481A1 (zh) 2021-12-28 2022-12-27 经过修饰的aav衣壳蛋白及其用途

Country Status (2)

Country Link
CN (1) CN116444626A (zh)
WO (1) WO2023125481A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2912525A1 (en) * 2013-05-16 2014-11-20 Applied Genetic Technologies Corporation Promoters, expression cassettes, vectors, kits, and methods for the treatment of achromatopsia and other diseases

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106062200A (zh) * 2014-02-17 2016-10-26 伦敦国王学院 腺相关病毒载体
US20170049910A1 (en) * 2013-02-08 2017-02-23 The Trustees Of The University Of Pennsylvania Enhanced aav-mediated gene transfer for retinal therapies
CN107405507A (zh) * 2015-03-02 2017-11-28 阿德夫拉姆生物技术股份有限公司 用于将多核苷酸玻璃体内递送到视网膜视锥的组合物和方法
WO2018075798A1 (en) * 2016-10-19 2018-04-26 Adverum Biotechnologies, Inc. Modified aav capsids and uses thereof
CN110461368A (zh) * 2017-06-30 2019-11-15 加利福尼亚大学董事会 具有变异衣壳的腺相关病毒病毒体及其使用方法
CN111770999A (zh) * 2017-11-27 2020-10-13 4D分子治疗有限公司 腺相关病毒变体衣壳和用于抑制血管生成的应用
WO2021009684A1 (en) * 2019-07-15 2021-01-21 Meiragtx Uk Ii Limited Modified aav capsid proteins for treatment of arthritic disease
CN112352050A (zh) * 2018-02-27 2021-02-09 宾夕法尼亚州大学信托人 新颖腺相关病毒(aav)载体、具有降低的衣壳脱酰胺化的aav载体及其用途
WO2021168509A1 (en) * 2020-02-25 2021-09-02 Children's Medical Research Institute Adeno-associated virus capsid polypeptides and vectors
CN113518824A (zh) * 2019-10-16 2021-10-19 上海药明康德新药开发有限公司 新的aav变体

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170049910A1 (en) * 2013-02-08 2017-02-23 The Trustees Of The University Of Pennsylvania Enhanced aav-mediated gene transfer for retinal therapies
CN106062200A (zh) * 2014-02-17 2016-10-26 伦敦国王学院 腺相关病毒载体
CN107405507A (zh) * 2015-03-02 2017-11-28 阿德夫拉姆生物技术股份有限公司 用于将多核苷酸玻璃体内递送到视网膜视锥的组合物和方法
WO2018075798A1 (en) * 2016-10-19 2018-04-26 Adverum Biotechnologies, Inc. Modified aav capsids and uses thereof
CN110461368A (zh) * 2017-06-30 2019-11-15 加利福尼亚大学董事会 具有变异衣壳的腺相关病毒病毒体及其使用方法
CN111770999A (zh) * 2017-11-27 2020-10-13 4D分子治疗有限公司 腺相关病毒变体衣壳和用于抑制血管生成的应用
CN112352050A (zh) * 2018-02-27 2021-02-09 宾夕法尼亚州大学信托人 新颖腺相关病毒(aav)载体、具有降低的衣壳脱酰胺化的aav载体及其用途
WO2021009684A1 (en) * 2019-07-15 2021-01-21 Meiragtx Uk Ii Limited Modified aav capsid proteins for treatment of arthritic disease
CN113518824A (zh) * 2019-10-16 2021-10-19 上海药明康德新药开发有限公司 新的aav变体
WO2021168509A1 (en) * 2020-02-25 2021-09-02 Children's Medical Research Institute Adeno-associated virus capsid polypeptides and vectors

Also Published As

Publication number Publication date
CN116444626A (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
JP7416443B2 (ja) 高形質導入効率rAAVベクター、組成物、および使用方法
US20210269487A1 (en) Recombinant aav1, aav5, and aav6 capsid mutants and uses thereof
US20230381341A1 (en) Adeno-associated viruses for ocular delivery of gene therapy
JP6072772B2 (ja) 変異体キャプシドを有するアデノ関連ウイルスビリオンおよびその使用方法
JP2024015194A (ja) アデノ随伴ウイルス変異キャプシドおよび血管新生の阻害のための使用
JP2020510424A (ja) 改変aavカプシドおよびその使用
CN113121652A (zh) 视网膜和肌肉高亲和性腺相关病毒衣壳蛋白及相关应用
US20170348387A1 (en) Aav-mediated gene therapy for nphp5 lca-ciliopathy
CN113121655B (zh) 眼部和肌肉特异靶向型腺相关病毒载体及其应用
WO2023125481A1 (zh) 经过修饰的aav衣壳蛋白及其用途
US20230321280A1 (en) Compositions and methods for the treatment of ocular diseases
CN111876432A (zh) 一组肝靶向新型腺相关病毒的获得及其应用
CA3088079A1 (en) Compositions and methods for treating retinal disorders
WO2022222869A1 (zh) 重组腺相关病毒及其应用
CA3186830A1 (en) Composition and method for treating eye diseases
CN113121653A (zh) 肌肉和视网膜特异性的新型腺相关病毒衣壳蛋白
US20190330308A1 (en) Modified soluble vegf receptor-1 genes and vectors for gene therapy
EP4368203A1 (en) Construction and use of anti-vegf antibody in-vivo expression system
JP2022547158A (ja) Tfebの活性化により網膜色素上皮細胞のリソソーム機能を回復する方法
JP7495756B2 (ja) 医薬の製造におけるCYP4V2およびRdCVFの使用
WO2024067776A1 (zh) 核酸构建体及其用途
WO2023207792A1 (zh) 新型aav衣壳改造株及其用途
WO2021114662A1 (zh) CYP4V2和RdCVF在制备药物中的用途
CN116568815A (zh) 用于基因疗法的眼部递送的腺相关病毒
JP2022523050A (ja) 合理的設計により増強された新規なaavウイルスによる網膜における高効率の形質導入および側方への広がり

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914735

Country of ref document: EP

Kind code of ref document: A1