WO2022222869A1 - 重组腺相关病毒及其应用 - Google Patents

重组腺相关病毒及其应用 Download PDF

Info

Publication number
WO2022222869A1
WO2022222869A1 PCT/CN2022/087162 CN2022087162W WO2022222869A1 WO 2022222869 A1 WO2022222869 A1 WO 2022222869A1 CN 2022087162 W CN2022087162 W CN 2022087162W WO 2022222869 A1 WO2022222869 A1 WO 2022222869A1
Authority
WO
WIPO (PCT)
Prior art keywords
aav
seq
disease
capsid protein
liver
Prior art date
Application number
PCT/CN2022/087162
Other languages
English (en)
French (fr)
Inventor
赵锴
陈晨
杨晨
刘强
袁龙辉
杜增民
蒋威
吴侠
郑静
肖啸
王利群
王慧
赵阳
Original Assignee
信念医药(香港)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110419578.0A external-priority patent/CN113121651B/zh
Priority claimed from CN202110420840.3A external-priority patent/CN113121653B/zh
Priority claimed from CN202110420908.8A external-priority patent/CN113121655B/zh
Priority claimed from CN202110420736.4A external-priority patent/CN113121652B/zh
Priority claimed from CN202110420886.5A external-priority patent/CN113121654B/zh
Priority claimed from CN202110420900.1A external-priority patent/CN112961220B/zh
Priority claimed from CN202210344551.4A external-priority patent/CN114591921A/zh
Priority claimed from CN202210331754.XA external-priority patent/CN114686448A/zh
Application filed by 信念医药(香港)有限公司 filed Critical 信念医药(香港)有限公司
Publication of WO2022222869A1 publication Critical patent/WO2022222869A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/01DNA viruses
    • C07K14/015Parvoviridae, e.g. feline panleukopenia virus, human parvovirus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/864Parvoviral vectors, e.g. parvovirus, densovirus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • C12N7/02Recovery or purification

Definitions

  • the present disclosure belongs to the technical field of gene therapy.
  • the present disclosure relates to recombinant adeno-associated viruses (AAVs) with organ or tissue targeting and/or high solid rate and/or the ability to circumvent neutralizing antibodies to a certain extent, and uses thereof.
  • AAVs adeno-associated viruses
  • the present disclosure also relates to methods of purification of AAV and purified AAV obtained therefrom.
  • AAV vectors that can deliver therapeutic genes consist of a protein capsid and a transgenic expression cassette carrying the gene of interest. Empty-capsid AAV vectors do not carry the gene of interest and consist only of serotype-specific AAV protein capsids. Therapeutic efficiency is known to be closely related to the genetic material content of AAV vectors, therefore, the presence of empty-capsid AAV vectors results in an increase in the required dose of AAV virus for medical applications and may elicit an immune response against the vector capsid, resulting in Unnecessary side effects.
  • AAV vector in order to achieve better therapeutic effect and improve the transduction ability and titer of AAV vector, it is expected to carry out appropriate transformation of AAV capsid protein to obtain a novel adeno-associated virus vector with high real heart rate.
  • Wild-type AAV has broad tissue targeting, resulting in gene delivery to off-target tissues, thereby exacerbating adverse reactions.
  • AAV vectors targeting different organs such as eye, skeletal muscle or liver have been developed.
  • Spark Therapeutics' AAV2-based gene therapy drug "Luxturna” was approved by the U.S. Food and Drug Administration (FDA) for the treatment of Leber Congenital Amaurosis (Leber Congenital Amaurosis) with RPE65 mutations Amaurosis, LCA).
  • FDA U.S. Food and Drug Administration
  • AAV9-based drug “Zolgensma” for the treatment of spinal muscular atrophy, a neuromuscular disease caused by mutations in the SMN gene.
  • Gene therapy using AAV as a vector has been used in many clinical trials.
  • some gene therapies use AAV targeting the eye or muscle as a vector to treat various eye and muscle diseases (such as age-related macular degeneration, X Linked Retinoschisis and Duchenne Muscular Dystrophy), and achieved good therapeutic effects; liver-targeted gene therapy using AAV vectors has been achieved in multiple clinical trials for hemophilia A and hemophilia B with impressive success (Reference 3).
  • various eye and muscle diseases such as age-related macular degeneration, X Linked Retinoschisis and Duchenne Muscular Dystrophy
  • tissue tropism and cell transformation efficiency of AAV vectors are mainly determined by their capsids. Different capsids determine that different AAVs have different tissue tropism and transformation efficiency.
  • methods such as DNA shuffling, error-prone PCR and site-directed mutagenesis can be used to engineer AAV capsids.
  • site-directed mutagenesis techniques can be used to insert polypeptides of 7-20 amino acids into the capsid protein of AAV.
  • AAVPHP.B obtained by inserting 7 amino acids after amino acid 588 of AAV9 can improve blood-brain barrier permeability (ref. 4).
  • targeting can be obtained by inserting the oligopeptides "PLPSPSRL”, “FAPTPGP” or “PGVTPAP” into the variable region (eg, after N573 or Q574) of AAV (eg, wild-type AAV5) capsid proteins.
  • AAV eg, wild-type AAV5 capsid proteins.
  • the novel AAV vector packaged by the novel AAV capsid has good targeting specificity for muscle and retinal tissues, lower toxic side effects and better safety potential, and can be applied to the prevention and diagnosis of muscle or eye-related diseases and treatment.
  • a novel AAV capsid protein can be obtained.
  • the novel AAV vector packaged by the novel AAV capsid protein has a high solid rate and/or can avoid neutralizing antibodies to a certain extent, so it has better transduction ability and can be applied to the prevention, diagnosis and treatment of various diseases.
  • the present disclosure provides an adeno-associated virus (AAV) capsid protein, wherein the AAV capsid protein is constructed by inserting an oligopeptide PLPSPSRL, FAPTPGP or PGVTPAP into the variable region of the AAV capsid protein constructed by replacing 1-10 amino acids of the variable region of the AAV capsid protein with the oligopeptides GIVADGNTAP or QTLGFSQGGPNT; or by replacing 1-10 amino acids of the variable region of the AAV capsid protein with the oligopeptide GIVADNLQQQ and It was constructed by introducing a point mutation of T711S.
  • AAV adeno-associated virus
  • the aforementioned adeno-associated virus may be selected from any AAV serotype.
  • AAV serotypes include native AAV (eg, native AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, AAV-DJ, AAV-DJ8, AAV-DJ9, AAVrh8, AAVrh8R, AAVrh10, avian AAV, bovine AAV, canine AAV, equine AAV, and ovine AAV) and other engineered AAVs (eg, engineered AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9 , AAV10, AAV11, AAV12, AAV-DJ, AAV-DJ8, AAV-DJ9, AAVrh8, AAVrh8R, AAVrh10, avian AAV, bovine AAV, canine AAV
  • variable regions are selected from the group consisting of VII, VRIII, VRIV, VRV, VRVI, VRVII and VRVIII, preferably VRVIII.
  • the oligopeptide PLPSPSRL, FAPTPGP or PGVTPAP is inserted after N573 or Q574 of the AAV capsid protein, preferably after Q574 of the AAV capsid protein, more preferably after Q574 of the AAV5 capsid protein.
  • the AAV capsid protein of the present disclosure is constructed by replacing aa574-579 of the variable region VRVIII of the AAV5 capsid protein with the oligopeptide GIVADGNTAP; by replacing the variable region of the AAV5 capsid protein with the oligopeptide GIVADNLQQQ Aa574-579 of region VRVIII and a point mutation of T711S were introduced; or by replacing aa573-579 of variable region VRVIII of AAV5 capsid protein with oligopeptide QTLGFSQGGPNT.
  • amino acid sequence of the AAV capsid protein of the present disclosure is the same as SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9 or SEQ ID
  • the amino acid sequence shown in NO: 11 is at least 80% identical, preferably at least 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical.
  • the present disclosure provides a nucleic acid molecule encoding the AAV capsid protein according to the first aspect.
  • nucleotide sequence of the nucleic acid molecule of the present disclosure is the same as SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10 or SEQ ID
  • the nucleotide sequence shown in NO: 12 is at least 50% identical, preferably at least 60%, 70%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identity.
  • the AAV vector of the present disclosure further comprises a heterologous polynucleotide comprising a nucleotide sequence encoding a therapeutic protein.
  • the AAV vector of the present disclosure further comprises a viral genome, which may be a native AAV genome or a recombinant viral genome comprising a heterologous nucleic acid, which may encode a reporter protein, a native protein, recombinant Proteins, antigens, antibodies and/or polymeric oligonucleotide elements (shRNA, miRNA) for nucleotide interference (RNAi) therapy, etc.
  • the heterologous nucleic acid encodes one or more mammalian proteins, or is a sequence of RNAi components (eg, shRNA, siRNA, antisense oligonucleotides). In another preferred embodiment, the heterologous nucleic acid encodes the protein sequence of certain antibodies, antigens, synthetic proteins or polypeptides.
  • the present disclosure provides use of the AAV vector according to the third aspect in the manufacture of a medicament for the treatment of ocular diseases or muscle diseases.
  • the present disclosure provides a medicament comprising the AAV vector according to the third aspect and an agent enabling the viral vector to be medicated, preferably the medicament is used for the treatment of an eye disease or a muscle disease.
  • the present disclosure provides a method of treating a muscle disease comprising administering to a subject in need thereof a therapeutically effective amount of a medicament according to the fifth aspect.
  • liver targeting of AAVz2 (SEQ ID NO: 3) could be improved by a specific purification method (ie, two-step iodixanol density gradient ultracentrifugation).
  • the present disclosure provides a purified adeno-associated virus (AAV), wherein the AAV is obtained by two-step iodixanol density gradient ultracentrifugation purification, and the AAV is AAVz2, the amino acid sequence of which is AAVz2. As shown in SEQ ID NO:3.
  • AAV adeno-associated virus
  • the purification of AAVz2 does not include an affinity column chromatography step.
  • AAVz2 is packaged in eukaryotic or prokaryotic cells.
  • AAVz2 is produced by three-plasmid transfection or baculovirus packaging.
  • the AAV is AAVz2.
  • the method of the present disclosure comprises: (i) loading the AAV-containing solution above the iodixanol density gradient and performing ultracentrifugation to obtain a primary purified solution; and (ii) subjecting the primary solution of step (i) to The purified solution was loaded above the iodixanol density gradient and ultracentrifuged to obtain purified AAV.
  • the method of the present disclosure does not include an affinity column chromatography step.
  • the purification method of the present disclosure improves the transduction efficiency of AAVz2 for liver cells in vivo and in vitro, but does not significantly improve the transduction efficiency for other tissues and organs, so that the transduction specificity of the liver is significantly improved.
  • the present disclosure provides use of the AAV according to the eighth aspect in the manufacture of a medicament for the treatment of a disease, wherein the disease is a liver disease or other disease that requires gene delivery to be expressed in the liver.
  • the present disclosure provides a medicament comprising: the AAV according to the eighth aspect and an excipient.
  • the excipients include salts, organics and/or surfactants.
  • the medicament is used for the prevention, diagnosis and treatment of liver disease or other diseases that require delivery of genes to expression in the liver.
  • the drug is administered by systemic or topical route, preferably intravenous, oral, intranasal, intramuscular, intramuscular, subcutaneous, intraperitoneal or intralesional; preferably by systemic route or topical route to the liver.
  • systemic or topical route preferably intravenous, oral, intranasal, intramuscular, intramuscular, subcutaneous, intraperitoneal or intralesional; preferably by systemic route or topical route to the liver.
  • the liver disease includes: primary or secondary liver cancer, cirrhosis, liver abscess, fatty liver, alcoholic liver disease, liver transplantation, hepatitis A, hepatitis B, hepatitis C, hepatitis D, Hepatitis E, autoimmune hepatitis, drug toxic hepatitis, and other hepatitis.
  • other diseases requiring gene delivery for expression in the liver include: hemophilia A and B, lysosomal storage disorders (eg, MPS II and III), Fabry's disease , glycogen storage disease, Batten disease, Gaucher's disease, Wolman's disease, Wilson's disease, autoimmune diseases such as multiple sclerosis, myasthenia gravis, rheumatism or rheumatoid arthritis, lupus erythematosus, autoimmune heart disease), cardiovascular disease or lung disease (e.g. hypertension, atherosclerosis, hypercholesterolemia, chronic obstructive pulmonary disease), hyperammonemia, diabetes mellitus, Safilippo syndrome, combined trauma, renal failure, anemia.
  • hemophilia A and B lysosomal storage disorders (eg, MPS II and III), Fabry's disease , glycogen storage disease, Batten disease, Gaucher's disease, Wolman's disease, Wilson's disease, autoimmune diseases such as multiple s
  • the present disclosure provides a method of treating a disease comprising administering to a subject in need thereof, a therapeutically effective amount of a medicament according to the eleventh aspect, the subject suffering from liver disease or in need Delivery of genes to other diseases expressed in the liver.
  • the inventors unexpectedly found that in the purification of AAV, adding a certain concentration of arginine and magnesium ions to the eluate of the affinity column can not only improve the yield of AAV, but also change the target organs of AAV. Delivery capability, improving liver targeting of AAV.
  • the present disclosure provides a method for purifying adeno-associated virus (AAV), comprising: (a) loading a solution containing AAV onto an affinity chromatography column; elution of AAV from the affinity chromatography column with a first eluate of amino acid and magnesium ions, collecting the AAV-containing eluate; and (c) ultracentrifuging the AAV-containing eluate obtained in step (b) .
  • AAV adeno-associated virus
  • the methods of the present disclosure increase the yield of AAV by about 10%, about 20%, about 30%, About 40%, or even about 50% or more.
  • the concentration of arginine is 200mM to 2000mM, preferably 400mM to 1000mM, more preferably 500mM to 800mM; and/or the concentration of magnesium ions is 0.5mM to 3mM, preferably 1mM to 3 mM, more preferably 1.5 mM to 2.5 mM.
  • magnesium ions are provided by MgCl 2 or MgSO 4 .
  • the pH of the first eluate is between 2.5 and 3.2.
  • the pH of the first eluent is within this range, the purification effect can be better achieved.
  • magnesium ions are provided by MgCl 2 or MgSO 4 .
  • the second eluent comprises 2-6M urea and 0.5-3mM MgCl
  • the ultracentrifugation is iodixanol density gradient ultracentrifugation or cesium chloride density gradient ultracentrifugation.
  • the AAV is an AAV produced by packaging in eukaryotic or prokaryotic cells.
  • the AAV is an AAV produced by three-plasmid transfection or baculovirus packaging.
  • the AAV is wild-type AAV.
  • the AAV is AAVz2.
  • the purification method of the present disclosure according to the thirteenth aspect not only improves the yield of AAV, but also improves the transduction efficiency of AAV to liver cells in vivo and in vitro, but the transduction efficiency of other tissues and organs is not significantly improved, so that the liver Transduction specificity was significantly improved.
  • the AAV is AAVz2.
  • AAV purified by the method according to the present disclosure of the thirteenth aspect has improved liver targeting compared to AAV obtained by performing the elution step with an eluent free of arginine and magnesium ions sex. Therefore, the AAV of the present disclosure according to the fourteenth aspect has excellent liver-specific targeting, can be applied to the prevention and treatment of liver-related diseases or other diseases that require drug delivery to the liver, and low off-target (non-target organ) effects and low immunogenicity enhance its safety potential.
  • the present disclosure provides a medicament comprising: the AAV of the fourteenth aspect and an excipient.
  • the medicament is used for the prevention, diagnosis and treatment of liver disease or other diseases that require delivery of genes to expression in the liver.
  • the drug is administered by systemic or topical route, preferably intravenous, oral, intranasal, intramuscular, intramuscular, subcutaneous, intraperitoneal or intralesional; preferably by systemic route or topical route to the liver.
  • systemic or topical route preferably intravenous, oral, intranasal, intramuscular, intramuscular, subcutaneous, intraperitoneal or intralesional; preferably by systemic route or topical route to the liver.
  • the present disclosure provides an affinity column eluate comprising: arginine and magnesium ions.
  • the affinity column eluate comprises 200 mM to 2000 mM, preferably 400 mM to 1000 mM, more preferably 500 mM to 800 mM arginine and 0.5 mM to 3 mM, preferably 1 mM to 3 mM, more preferably 1.5 mM to 2.5 mM arginine Magnesium ions.
  • the affinity column eluate comprises: 0.1-2M AcOH, 200-2000 mM arginine, 137-600 mM NaCl or Na2SO4 , 0.5-3 mM MgCl2 or MgSO4 , and 0.05% polox Sham 188.
  • Figure 1A shows the screening method for candidate AAV capsid proteins.
  • FIG. 1B is a schematic diagram of AAVz1, AAVz2, AAVz3, AAVz81, AAVz82, AAVz84.
  • AAVz1 was obtained by inserting the oligopeptide "PLPSPSRL” after Q574 of the AAV5 capsid protein;
  • AAVz2 was obtained by inserting the oligopeptide "FAPTPGP” after Q574 of the AAV5 capsid protein;
  • AAVz2 was obtained by inserting the oligopeptide "PGVTPAP” after Q574 of the AAV5 capsid protein "AAVz3 was obtained;
  • AAVz81 was obtained by replacing aa574-579 of the variable region VRVIII of the AAV5 capsid protein with the oligopeptide GIVADGNTAP;
  • AAVz81 was obtained by replacing aa574-579 of the variable region VRVIII of the AAV5 capsid protein with the oligopeptide GIVADNLQQQ and introducing the point of T
  • Figure 3A shows the transduction of AAV (AAVz1, AAVz2, AAVz3, AAV5, AAV8 and AAV9) in the liver, heart, lung and spleen of mice.
  • Scale bar 100 ⁇ m.
  • Figure 3C shows the quantitative results of the specific transduction of AAVs (AAVz1, AAVz2, AAVz3, AAV5, AAV8 and AAV9) in muscle cells to GFP-positive muscle cells (GA, TA and SO) based on the number of nuclei (DAPI) statistics
  • AAVz1, AAVz2, AAVz3, AAV5, AAV8 and AAV9 muscle cells to GFP-positive muscle cells
  • DAPI nuclei
  • Figure 3D shows the quantitative results of the specific transduction of AAVs (AAVz1, AAVz2, AAVz3, AAV5, AAV8 and AAV9) in muscle cells to GFP-positive muscle cells (GA, TA and SO) based on the number of nuclei (DAPI) statistics
  • AAVz1, AAVz2, AAVz3, AAV5, AAV8 and AAV9 muscle cells to GFP-positive muscle cells
  • DAPI nuclei
  • Figure 3F shows the quantitative results of the specific transduction of AAVs (AAVz1, AAVz2, AAVz3, AAV5, AAV8 and AAV9) in muscle cells to GFP-positive muscle cells (GA, TA and SO) based on the number of nuclei (DAPI) statistics
  • AAVz1, AAVz2, AAVz3, AAV5, AAV8 and AAV9 muscle cells to GFP-positive muscle cells
  • DAPI nuclei
  • Figure 4A shows retinal transduction of AAVs (AAVzl, AAVz2, AAVz3, AAV5, AAV8 and AAV9).
  • Figure 4B shows retinal sections from mice.
  • the GFP signal reaching the photoreceptor layer is indicated by white arrows.
  • GCL Ganglion cell layer.
  • IPL inner plexiform layer.
  • INL Inner layer.
  • OPL outer plexiform layer.
  • ONL outer nuclear layer.
  • RPE retinal pigment epithelium.
  • Figure 5A shows a PDB map of the 3D structure of the VP1 protein of AAVz2 constructed by Chimera 1.15 (UCSF). The inserted oligopeptide is shown enlarged in the rectangular box.
  • Figure 5B shows silver staining of each AAV particle producing the purified packaged GFP gene, with 3 parallel sets of lanes for each AAV serotype.
  • Figure 5C shows the yield of each AAV produced from 2 x 108 cells (medium + lysate) and obtained with the corresponding purification method.
  • AAVz2-0 and wild-type AAV purified by affinity column chromatography (the eluent does not contain arginine and magnesium ions) plus one-step iodixanol ultracentrifugation;
  • AAVz2-1 two-step iodixanol ultracentrifugation purification Obtained;
  • AAVz2-2 purified by affinity column chromatography (the eluent contains arginine and magnesium ions) plus one-step iodixanol ultracentrifugation.
  • n 3.
  • vg vector genome
  • vp number of virus particles.
  • Figure 6 shows the yield of wild-type AAV5 purified by affinity column chromatography using different eluents.
  • Elution peaks A and C1 AAV5 was purified by affinity column chromatography (eluent A+eluent C) plus one-step iodixanol ultracentrifugation, represented by UV absorption peaks at 260 and 280 nm.
  • Elution peaks B and C2 AAV5 was purified by affinity column chromatography (eluent B+eluent C) plus one-step iodixanol ultracentrifugation.
  • the viral genome (vg) was quantified by qPCR, and the number of viral particles (vp) was quantified by silver staining.
  • Eluent C (C1 or C2): 6M Urea, 2 mM MgCl2 .
  • Figure 7B shows the relative quantification of the liver infectivity of AAV compared to the heart, lung, spleen and kidney infectivity based on the ratio of the number of GFP-positive hepatocytes to the number of GFP-positive heart, lung, spleen and kidney cells based on DAPI spot count statistics .
  • n 5 mice/group (3 males and 2 females). ***p ⁇ 0.001, one-way ANOVA.
  • Figure 9A shows the infectivity of AAV obtained by different purification methods to various skeletal muscles.
  • GA gastrocnemius
  • LO longissimus pectoralis
  • QU quadriceps
  • TR triceps
  • ST sternocleidomastoid
  • SO soleus.
  • Scale bar 200 microns.
  • Top panel GFP signal; bottom panel: brightfield.
  • Scale bar 100 ⁇ m.
  • Figure 10B shows the expression levels of GFP protein delivered by each AAV.
  • Figure 11 shows the amino acid sequence of the AAVzl capsid protein (SEQ ID NO: 1).
  • Figure 12 shows the nucleic acid sequence (SEQ ID NO: 2) encoding the AAVz1 capsid protein.
  • Figure 14 shows the nucleic acid sequence (SEQ ID NO: 4) encoding the AAVz2 capsid protein.
  • Figure 15 shows the amino acid sequence of the AAVz3 capsid protein (SEQ ID NO: 5).
  • Figure 18 shows the nucleic acid sequence (SEQ ID NO: 8) encoding the AAVz81 capsid protein.
  • Figure 19 shows the amino acid sequence of the AAVz82 capsid protein (SEQ ID NO: 9).
  • Figure 20 shows the nucleic acid sequence (SEQ ID NO: 10) encoding the AAVz82 capsid protein.
  • Figure 21 shows the amino acid sequence of the AAVz84 capsid protein (SEQ ID NO: 11).
  • Figure 22 shows the nucleic acid sequence (SEQ ID NO: 12) encoding the AAVz84 capsid protein.
  • the terms "patient” and “subject” are used interchangeably and in their conventional sense to refer to an organism suffering from or susceptible to a condition that can be prevented or treated by administration of the medicaments of the present disclosure, and Including humans and non-human animals.
  • treating includes: (1) inhibiting a condition, disease or disorder, ie, preventing, reducing or delaying the development of the disease or its recurrence or the development of at least one clinical or subclinical symptom thereof; or (2) Alleviating disease, ie, causing regression of at least one of the condition, disease or disorder or clinical or subclinical symptoms thereof.
  • a therapeutically effective amount refers to a dose that produces the therapeutic effect to be achieved by its administration.
  • a therapeutically effective amount of a drug suitable for use in the treatment of an ocular disease can be an amount capable of preventing or ameliorating one or more symptoms associated with the ocular disease.
  • the term "improvement” refers to an improvement in a symptom associated with a disease, and can refer to an improvement in at least one parameter that measures or quantifies the symptom.
  • the term "preventing" a condition, disease or disorder includes: preventing, delaying or reducing the incidence and/or likelihood of at least one clinical or subclinical symptom of a condition, disease or disorder developing in a subject,
  • the subject may have or be susceptible to the condition, disease or disorder but has not experienced or exhibited clinical or subclinical symptoms of the condition, disease or disorder.
  • topical administration or “topical route” refers to administration with a local effect.
  • carrier refers to a macromolecule or series of macromolecules that encapsulate a polynucleotide, which facilitates delivery of the polynucleotide to target cells in vitro or in vivo.
  • categories of vectors include, but are not limited to, plasmids, viral vectors, liposomes, and other gene delivery vehicles.
  • the polynucleotides to be delivered are sometimes referred to as "transgenes" and include, but are not limited to, the encoding of certain proteins or synthetic polypeptides that can enhance, inhibit, impair, protect, trigger, or prevent certain biological and physiological functions Sequences, coding sequences of interest in vaccine development (eg, polynucleotides expressing proteins, polypeptides or peptides suitable for eliciting an immune response in mammals), coding sequences for RNAi components (eg, shRNA, siRNA, antisense oligonucleotides) nucleotides), or an optional label.
  • transgenes include, but are not limited to, the encoding of certain proteins or synthetic polypeptides that can enhance, inhibit, impair, protect, trigger, or prevent certain biological and physiological functions
  • Sequences eg, polynucleotides expressing proteins, polypeptides or peptides suitable for eliciting an immune response in mammals
  • RNAi components eg, sh
  • the term "immune response” refers to the processes involved in host tissues and cells after encountering immunogens such as AAV capsid proteins and transgenes. It involves the proliferation, migration and differentiation of immunocompetent cells (e.g. T lymphocytes, B cells, monocytes, macrophages) in the lymphoreticular tissue, blood, spleen or other related tissues, leading to the production of antibodies or cell-mediated responsive development.
  • immunocompetent cells e.g. T lymphocytes, B cells, monocytes, macrophages
  • the host induces an active immune response following exposure to an immunogen through infection or vaccination. Active immunity is obtained by "transferring preformed substances (eg, antibodies, transfer factors, thymic grafts, interleukin-2)" from an immunized or non-immunized host, whereas passive immunity is not.
  • mosaic AAV capsid nucleic acid coding sequence or capsid protein refers to artificially designed and engineered AAV capsid sequences by methods of DNA shuffling, error-prone PCR and site-directed mutagenesis.
  • transduction refers to the process by which a heterologous polynucleotide is delivered to a host cell for transcription and translation to produce a polypeptide product, including the use of recombinant viruses to convert the heterologous polynucleotide Introduced into host cells.
  • gene delivery refers to the introduction of a heterologous polynucleotide into a cell for gene delivery, including targeting, binding, uptake, transport, replicon integration and expression.
  • gene expression refers to the process of transcription, translation and post-translational modification of a gene to produce the RNA or protein product of the gene.
  • infection refers to the process by which a virus or viral particle comprising a polynucleotide component delivers the polynucleotide into a cell and produces its RNA and protein products, and can also refer to the process of replication of the virus in a host cell .
  • targeting refers to the preferential entry of the virus into some cells or tissues, followed by further expression in the cells of sequences carried by the viral genome or recombinant transgene.
  • transcription of heterologous nucleic acid sequences from the viral genome cannot begin without cis- and trans-acting factors such as inducible promoters or other regulatory nucleic acid sequences.
  • polypeptide and protein are used synonymously herein to refer to polymers consisting of more than 20 amino acids. These terms also cover synthetic or artificial amino acid polymers.
  • polynucleotide or “nucleic acid” refers to a polymeric form of nucleotides of any length, including deoxynucleotides, ribonucleotides, hybrid sequences thereof, and the like. Polynucleotides can include modified nucleotides, such as methylated or capped nucleotides or nucleotide analogs.
  • viral particle refers to a functional viral unit formed by packaging a natural or synthetic viral genome by the capsid protein of a virus, and its functions include infection or transduction of tissues, organs and cells, and delivery of viral genomes to tissues and organs. And cells and express the corresponding nucleic acid and protein products.
  • ITR inverted terminal repeat
  • AAV inverted terminal repeat
  • AAV types 1-11 avian AAV, bovine AAV, canine AAV, equine AAV, and ovine AAV.
  • AAV terminal repeats it is not necessary for the AAV terminal repeats to have native terminal repeats as long as the terminal repeats are available for viral replication, packaging and integration.
  • nucleic acid sequences are in single-stranded form, in a 5'-3' orientation from left to right.
  • the nucleic acid sequences and amino acid sequences referred to herein are in the form recommended by the IUPACIUB Biochemical Nomenclature Committee. Amino acid sequences are given either one-letter or three-letter symbols.
  • the present disclosure provides an AAV mutant constructed by inserting the oligopeptide PLPSPSRL after Q574 of the AAV5 capsid protein.
  • an AAV mutant constructed by inserting the oligopeptide PLPSPSRL after Q574 of the AAV5 capsid protein.
  • the amino acid sequence of the AAVz1 capsid protein is shown in SEQ ID NO:1
  • the nucleotide sequence of the nucleic acid molecule encoding AAVz1 is shown in SEQ ID NO:2.
  • the present disclosure provides an AAV mutant constructed by inserting the oligopeptide FAPTPGP after Q574 of the AAV5 capsid protein.
  • the amino acid sequence of the AAVz2 capsid protein is shown in SEQ ID NO:3
  • the nucleotide sequence of the nucleic acid molecule encoding AAVz2 is shown in SEQ ID NO:4.
  • the present disclosure provides an AAV mutant constructed by inserting the oligopeptide PGVTPAP after Q574 of the AAV5 capsid protein.
  • the amino acid sequence of the AAVz3 capsid protein is shown in SEQ ID NO:5
  • the nucleotide sequence of the nucleic acid molecule encoding AAVz3 is shown in SEQ ID NO:6.
  • the present disclosure provides an AAV mutant constructed by replacing aa574-579 of the variable region VRVIII of the AAV5 capsid protein with the oligopeptide GIVADNLQQQ and introducing a point mutation of T711S.
  • an AAV mutant constructed by replacing aa574-579 of the variable region VRVIII of the AAV5 capsid protein with the oligopeptide GIVADNLQQQ and introducing a point mutation of T711S.
  • the amino acid sequence of the AAVz82 capsid protein is shown in SEQ ID NO:9
  • the nucleotide sequence of the nucleic acid molecule encoding AAVz82 is shown in SEQ ID NO:10.
  • the present disclosure provides an AAV mutant constructed by replacing aa573-579 of the variable region VRVIII of the AAV5 capsid protein with the oligopeptide QTLGFSQGGPNT.
  • an AAV mutant constructed by replacing aa573-579 of the variable region VRVIII of the AAV5 capsid protein with the oligopeptide QTLGFSQGGPNT.
  • the amino acid sequence of the AAVz84 capsid protein is shown in SEQ ID NO:11
  • the nucleotide sequence of the nucleic acid molecule encoding AAVz84 is shown in SEQ ID NO:12.
  • novel AAV mutants of the present disclosure can be specifically transduced in muscle cells and retinal cells in vivo or in vitro for related research or for disease treatment.
  • the present disclosure provides an AAV mutant having at least 95% (eg, at least 95%, 96%, 97%, 98%, 99% or 100%) by use with "GIVADGNTAP" or "QTLGFSQGGPNT” %) is constructed by replacing 1-10 amino acids of the variable region VRVIII of the AAV capsid with an oligopeptide of identity.
  • the present disclosure provides an AAV mutant having at least 95% (eg, at least 95%, 96%, 97%, 98%, 99%, or 100%) identity to "GIVANDNLQQQ" by using
  • the oligopeptide was constructed by replacing 1-10 amino acids of the variable region VRVIII of the AAV capsid and introducing a point mutation of T711S.
  • the AAV capsid proteins of the present disclosure may be conservatively substituted for amino acids in the same group of: a) glycine and alanine; b) valine, isoleucine, leucine and pro c) aspartic acid and glutamic acid; d) asparagine and glutamine; e) serine, threonine, lysine, arginine and histidine; f) phenylalanine, tryptophan and tyrosine; g) methionine and cysteine.
  • non-conservative substitutions between the various groups of amino acids described above are also permissible.
  • the amino acid sequence of the AAV mutant (capsid protein) of the present disclosure is the same as SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9 or the amino acid sequence shown in SEQ ID NO: 11 has at least 80% identity, for example at least 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90% , 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identity.
  • the inventors have surprisingly found that by using specific purification methods (two-step iodixanol or cesium chloride density gradient centrifugation) or specific chemical reagents (affinity column eluent containing arginine and magnesium ions) , can increase the production of AAV (such as AAVz2) and/or liver cell targeting, and change the distribution of AAV in the whole body tissue.
  • specific purification methods two-step iodixanol or cesium chloride density gradient centrifugation
  • specific chemical reagents affinity column eluent containing arginine and magnesium ions
  • the AAV vectors of the present disclosure can be loaded with heterologous polynucleotides for gene delivery into target cells.
  • the AAV vectors of the present disclosure can be used to deliver nucleic acids to cells in vitro or in vivo.
  • the heterologous polynucleotide delivered by the AAV vector encodes a polypeptide that acts as a reporter (ie, a reporter protein).
  • Reporter proteins were used to indicate cells successfully infected by AAV. These reporter proteins include, but are not limited to, green fluorescent protein, beta-galactosidase, alkaline phosphatase, luciferase, and chloramphenicol acetyltransferase.
  • the heterologous polynucleotide delivered by the AAV vector to the target cell encodes a native protein, codon-optimized or not, for therapeutic use.
  • native proteins include, but are not limited to, proteins useful in the treatment of various muscle diseases, such as cystic fibrosis transmembrane regulator protein (CFTR), dystrophin (including some truncated forms called mini-dystrophins) dystrophin or micro-dystrophin), mini-lectins, integrin- ⁇ 1, laminin- ⁇ 2, sarcoglycan- ⁇ , sarcoglycan- ⁇ , sarcomeric proteins, synuclein, gonadotropins , mini-lecithin, Lamin A/C, four half-LIM domain protein 1 (FHL1), follistatin, SOD1, SOD2, full-length or dominant negative myostatin; angiogenic factors such as VEGF, Angiopoietin 1 or 2) and angiogenesis inhibitors (e
  • the heterologous polynucleotide delivered by the AAV vector to the target cell encodes a synthetic polypeptide including, but not limited to, Aflibercept, various recombinant interleukins (eg, interleukin-1 and interleukin-18), TNF- ⁇ antagonist soluble Receptor, Activin II Type Soluble Receptor, Anti-VEGF Antibody, Anti-Sclerostin Antibody, Anti-RANKL Antibody, Anti-C5 Antibody, Anti-PD-1 Antibody, Anti-PD-L1 Antibody, Anti-CTLA-4 Antibody, Anti-CGRP Antibody, Anti-HER2 antibodies, anti-EGFR antibodies, antibodies against pro-inflammatory cytokines and their receptors.
  • Aflibercept various recombinant interleukins (eg, interleukin-1 and interleukin-18), TNF- ⁇ antagonist soluble Receptor, Activin II Type Soluble Receptor
  • Anti-VEGF Antibody Anti-Sclerostin Antibody
  • antibodies antibodies; antibodies or single-chain antibodies, including but not limited to anti-VEGF antibodies (eg, bevacizumab, ranibizumab, and Brolucizumab), anti-sclerostin antibodies (eg, Romosozumab and Blosozumab), anti-RANKL antibodies (eg, Denosumab), anti- Complement component C5 antibodies (such as Ravulizumab and Eculizumab), anti-PD-1 antibodies (such as Nivolumab, Pembrolizumab, and Cemiplimab), PD-L1 antibodies (such as Avelumab and Atezolizumab), anti-CTLA-4 antibodies (such as Ipilimumab), anti-CGRP antibodies (e.g.
  • anti-VEGF antibodies eg, bevacizumab, ranibizumab, and Brolucizumab
  • anti-sclerostin antibodies eg, Romosozumab and Blosozumab
  • anti-RANKL antibodies
  • Cethrin a neuroprotective drug available from BioAxone BioSciences Inc.
  • antigens or antigenic fragments that can produce vaccines (such as coronary Spike protein of viral disease 2019 (COVID 2019) or severe acute respiratory syndrome (SARS) coronavirus, envelope protein of hepatitis A, B, C and human immunodeficiency virus (HIV), various tumor cell immunogens , such as MAGE antigen, HER2, ErbB2, mucin antigen and estrogen receptor).
  • vaccines such as coronary Spike protein of viral disease 2019 (COVID 2019) or severe acute respiratory syndrome (SARS) coronavirus, envelope protein of hepatitis A, B, C and human immunodeficiency virus (HIV), various tumor cell immunogens , such as MAGE antigen, HER2, ErbB2, mucin antigen and estrogen receptor.
  • Vaccines can trigger a protective immune response to prevent the onset of certain diseases.
  • the heterologous polynucleotide delivered by the AAV vector may consist of RNAi components (eg, siRNA, shRNA, snRNA, microRNA, ribozymes, antisense oligonucleotides, and antisense polynucleotides) that are Any endogenous gene that is activated in an aberrant manner or a heterologous gene that invades the host cell can be knocked down, eg, viral or bacterial polynucleotides known in the art.
  • RNAi components typically have 60-100% sequence identity to their target genes and result in at least a 30% reduction in the corresponding protein product (eg, 30%, 40%, 50%, 60%, 70%, 80%, 90%) %, 100%).
  • the heterologous polynucleotide delivered by the AAV vector comprises regulatory sequences, such as transcription/translation control signals, origins of replication, polyadenylation signals, internal ribosome entry sites (IRES) or 2A signals (e.g. , P2A, T2A, F2A), promoters and enhancers (e.g. CMV promoter or other hetero-CMV promoters with vertebrate ⁇ -actin, ⁇ -globin or ⁇ -globin regulatory elements, EF1 promoter, ubiquitin promoter, T7 promoter, SV40 promoter, VP16 or VP64 promoter).
  • promoters and enhancers depends on their tissue-specific expression profiles.
  • Promoters/enhancers can also be induced by chemicals or hormones such as doxycycline or tamoxifen, depending on the need to trigger gene expression at the desired time point. Furthermore, promoters/enhancers can be natural or synthetic sequences, ie, prokaryotic or eukaryotic sequences.
  • the inducible regulatory element for gene expression may be a tissue-specific or tissue-tropic promoter/enhancer element, including but not limited to: skeletal muscle-specific promoters such as MCK, HSA, myogenesis and promoters specific for various types of eye cells, such as ganglion cell-specific promoters (such as the Tuj1 promoter), astrocyte and Müller cell-specific promoters (such as the GFAP promoter) promoter) and retinal pigment epithelium-specific promoters (eg, the RPE65 promoter).
  • skeletal muscle-specific promoters such as MCK, HSA, myogenesis and promoters specific for various types of eye cells, such as ganglion cell-specific promoters (such as the Tuj1 promoter), astrocyte and Müller cell-specific promoters (such as the GFAP promoter) promoter) and retinal pigment epithelium-specific promoters (eg, the RPE65 promoter).
  • skeletal muscle-specific promoters such as MCK, HSA,
  • the AAV vector of the present disclosure comprises an AAV capsid protein and a viral genome, which may be a native AAV genome or a recombinant vector of a heterologous polynucleotide for therapeutic purposes.
  • the heterologous polynucleotide encodes a mammalian protein or RNAi component (eg, shRNA, siRNA, antisense oligonucleotide).
  • the heterologous polynucleotide encodes the amino acid sequence of certain antibodies, antigens, synthetic proteins or polypeptides.
  • the translation product of the viral genome enhances, inhibits, impairs, protects, triggers or prevents one or more endogenous signaling pathways involved in metabolic regulation and health maintenance in mammals.
  • the AAV viral particles of the present disclosure can be administered to host cells in vitro, and the cells are then implanted into a subject.
  • the heterologous nucleic acid packaged in the virus is introduced into the subject through the cell for transcription and/or translation, resulting in a protein or RNA product that is secreted from the cell into the subject or modulates the biological activity of the host cell, thereby serving Therapeutic effect.
  • the AAV vectors of the present disclosure are formulated into pharmaceutical formulations (eg, injections, tablets, capsules, powders, eye drops) for administration to humans or other mammals.
  • the pharmaceutical preparation also contains other ingredients, such as pharmaceutical excipients, water-soluble or organic solvents (such as water, glycerol, ethanol, methanol, isopropanol, chloroform, phenol or polyethylene glycol), salts (such as sodium chloride, chloride Potassium, Phosphate, Acetate, Bicarbonate, Tris-HCl and Tris-Acetate), Dissolution Delaying Agents (e.g.
  • AAV is delivered in single or multiple doses.
  • the present disclosure provides a medicament comprising an AAV vector of the present disclosure and an agent (eg, salts, organics, and surfactants) that renders the AAV vector medicaable.
  • Drugs can be used to transduce cells in vitro or mammals (eg, rodents, primates, and humans) in vivo to treat various diseases, such as ocular and muscle diseases.
  • the ocular disease is selected from the group consisting of: hereditary dystrophy of the retina, glaucoma, glaucoma neuropathy, age-related macular degeneration, refractive error, dry eye, hereditary dystrophy of ocular inflammation, ocular inflammation, Uveitis, orbital inflammation, cataract, allergic conjunctivitis, diabetic retinopathy, macular edema, corneal edema, keratoconus, proliferative vitreoretinopathy (fibrosis), periretinal fibrosis, central serous chorioretinopathy, Vitreoretinopathy, vitreomacular traction, and vitreous hemorrhage.
  • the ocular disease involves degeneration of the eye and/or visual function.
  • treating an ocular disease refers to improving visual acuity, contrast vision, color vision, and visual field in a treated patient.
  • the muscle disease may be a muscle disease due to decreased muscle function, muscle wasting or muscle degeneration, and may be selected from: Duchenne Muscular Dystrophy (DMD), Emery-Dreifuss Muscular Dystrophy (EDMD), Limb-girdle Muscular Dystrophy Myasthenia gravis (LGMD), myasthenia gravis, congenital myasthenic syndrome, sarcopenia, cachexia, amyotrophic lateral sclerosis (ALS), myotonic dystrophy types I and II.
  • DMD Duchenne Muscular Dystrophy
  • EDMD Emery-Dreifuss Muscular Dystrophy
  • LGMD Limb-girdle Muscular Dystrophy Myasthenia gravis
  • myasthenia gravis congenital myasthenic syndrome
  • sarcopenia cachexia
  • amyotrophic lateral sclerosis (ALS) myotonic dystrophy types I and II.
  • treating a muscle disease refers to inhibiting or delaying the onset of muscle disease, increasing muscle mass, improving muscle strength, or improving muscle function.
  • the medicament of the present disclosure comprises the AAV viral particles of the present disclosure at a titer of 105-1014 vg/mL.
  • the medicaments of the present disclosure are used to prevent and/or treat diseases, such as liver diseases, including but not limited to primary or secondary liver cancer, liver cirrhosis, liver abscess, fatty liver, alcoholic liver disease, liver transplantation , Hepatitis A, Hepatitis B, Hepatitis C, Hepatitis D, Hepatitis E, Autoimmune Hepatitis, Drug Toxic Hepatitis, and Other Hepatitis; and other diseases that are indirectly related to the liver or require delivery of drugs to the liver, such as A Hemophilia type and B, lysosomal storage disorders (e.g.
  • liver diseases including but not limited to primary or secondary liver cancer, liver cirrhosis, liver abscess, fatty liver, alcoholic liver disease, liver transplantation , Hepatitis A, Hepatitis B, Hepatitis C, Hepatitis D, Hepatitis E, Autoimmune Hepatitis, Drug Toxic Hepatitis, and Other Hepatit
  • MPS II and III MPS II and III
  • Fabry's disease glycogen storage disease
  • Batten disease Gaucher's disease Gaucher's disease
  • Wolman's disease Wilson's disease
  • autoimmune diseases such as multiple sclerosis, myasthenia gravis, rheumatism or rheumatoid arthritis, lupus erythematosus, autoimmune heart disease
  • cardiovascular or pulmonary disease e.g. hypertension, atherosclerosis, hypercholesterolemia, chronic obstructive pulmonary disease
  • hyperammonemia diabetes, Safalippo syndrome, Comprehensive trauma, renal failure, anemia.
  • the AAV vectors of the present disclosure are used in situations where labeling of specific cells (eg, liver cells) is desired, such as in research experiments.
  • the present disclosure relates to a method of producing an AAV vector from a cell.
  • the cells support efficient transfection of plasmids encoding AAV Rep/Cap proteins, helper genes, and recombinant vectors encoding native viral genomes or heterologous proteins.
  • AAV vectors of the present disclosure can be produced from HEK293 cells using three-plasmid transfection methods well known to those skilled in the art.
  • the AAV vector of the present disclosure is produced by co-transfecting a cis plasmid encoding a recombinant protein such as GFP, an AAV Rep/Cap plasmid, and a pHelper plasmid into HEK293 cells.
  • Standard methods well known to those skilled in the art can be used to produce polypeptides, antibodies or antigen-binding fragments; alter nucleic acid sequences; produce transformed cells; construct recombinant AAV vectors; Transfected and stably transfected packaging cells.
  • FIG. 1A First, the engineered AAV library and helper plasmids were transfected into HEK293 cells. Next, HEK293 cell lysates containing AAV were added to the cultured C2C12 myoblasts along with Ad5 (adenovirus type 5). Cell lysates were enriched and C2C12 cells were re-infected 4-5 times. The viral genomic bands of candidate AAV capsids were enriched and sequenced by PCR on C2C12 cell lysates. Through screening, serotype sequences with high enrichment were selected to obtain serotype mutants AAVz1, AAVz2, AAVz3, AAVz81, AAVz82, and AAVz84 (Fig. 1B).
  • Each AAV particle was purified by AAVX (Thermo Scientific) affinity column chromatography plus iodixanol ultracentrifugation, as follows.
  • Pretreatment step 48 hours after the three plasmids were transfected, the cells and supernatant were collected, and 0.1% Triton X-100 was added, and the cells were lysed by standing for 30 minutes. 5mM domiphen bromide was then added and left to stand for 30 minutes to precipitate nucleic acids. Then, 300 mM NaCl was added to adjust the conductivity. Centrifuge at 9000 rpm for 30 minutes. The supernatant after centrifugation was taken and concentrated to 500 mL.
  • Iodixanol ultracentrifugation step load the solution obtained in the previous step above the 15%, 25%, 40%, 60% iodixanol density gradient and centrifuge at 65000 rpm for 2.5 h to collect 6 mL of virus solution.
  • AAV mutant (AAVz1, AAVz2, AAVz3, AAVz81, AAVz82, AAVz84) and wild-type AAV (AAV5, AAV8 and AAV9) viral particles produced in 5 x 107 cells were purified as described in Example 1. Then, viral particles were diluted 10,000-fold, digested with DNase I at 37°C for 1 hour, and placed at 100°C for 10 minutes to inactivate DNase I. Virus yield was quantified by qPCR and silver staining experiments.
  • FIG. 1C shows that the number of solid AAV mutant virus genomes produced by HEK293 cells quantified by qPCR was comparable to that of wild-type AAV5, 8, and 9, suggesting that oligopeptide insertions and substitutions had no apparent negative impact on virus production. Furthermore, Figure 1C shows that the solid rate of AAVz2, AAVz3, AAVz81, AAVz82 and AAVz84 virus particles was significantly higher than that of wild-type AAV5, 8, 9.
  • wild-type AAV8 or AAV9 was expressed in C2C12 myoblasts (myocyte progenitor cells), C28/I2 (human chondrocyte cell line) cells, and Huh7 (human hepatoma cell line in the hepatocyte lineage) cells.
  • C2C12 myoblasts myocyte progenitor cells
  • C28/I2 human chondrocyte cell line
  • Huh7 human hepatoma cell line in the hepatocyte lineage
  • C57BL/6 mice were injected via tail vein with 1 x 1013 vg/kg of each AAV virus particle carrying the GFP gene (purified by the method described in Example 1).
  • liver, heart, lung, and spleen were isolated for immunostaining (Fig. 3A).
  • Each AAV virus particle (5 ⁇ 10 10 vg/mouse) carrying the GFP gene was intramuscularly injected into the hindlimb of C57BL/6 mice.
  • the gastrocnemius (GA), tibialis anterior (TA) and soleus (SO) muscles were isolated for immunostaining (Figure 3B).
  • mutants AAVz1, AAVz2 and AAVz3 for muscle cells was further quantified by calculating the ratio of GFP-positive muscle cells (average of GA, TA and SO) to GFP-positive hepatocytes, heart cells, lung cells and splenocytes sex.
  • the results showed that the transduction specificity of muscle relative to other organs such as liver, heart, lung and spleen was significantly higher in the AAVz1, AAVz2 and AAVz3 groups than in the wild-type AAV (AAV5, 8, 9) group ( Figure 3C to Figure 3F).
  • mutants AAVz1, AAVz2 and AAVz3 have superior muscle targeting specificity over AAV5, 8, 9.
  • mice C57BL/6 mice were injected intravitreally with each AAV virus particle carrying GFP (purified by the method described in Example 1) at a dose of 3 x 109 vg/eye. Pictures of the GFP signal were taken 3 weeks after injection (Fig. 4A). Mouse retinas were stained for GFP, DAPI and the cone marker S-opsin after infection with each AAV virus particle.
  • Huh7 cells were seeded in 48-well plates at a density of 5x104 /well. Monkey sera of monkey numbers 1-10 were serially diluted 4-fold from 1:1 and mixed with 5x109 vg AAV, and the serum-virus mixture was left at 4°C for 1 hour. Then, the serum-virus mixture and Hochest were added to Huh7 cells and incubated at 37°C for 2 hours. Then, the 10% FBS+DMEM serum was replaced, and 48 hours later, the Luciferase activity expressed by the virus was detected by a microplate reader.
  • the corresponding serum dilution ratio when the Luciferase activity is reduced by half is the neutralizing antibody titer (as shown in Table 1 below), and the titer greater than or equal to 1:4 is the neutralizing antibody positive serum.
  • AAVz82 mutants obtained by aa574-579 of variable region VRVIII and introduced a point mutation of T711S and AAVz84 mutants obtained by replacing aa573-579 of variable region VRVIII of AAV5 capsid protein with the oligopeptide QTLGFSQGGPNT had significantly higher solid rates.
  • Wild-type AAV such as AAV2, AAV5, AAV8 and AAV9
  • Pretreatment step 48 hours after the three plasmids were transfected, the cells and supernatant were collected, and 0.1% Triton X-100 was added, and the cells were lysed by standing for 30 minutes. 5mM domiphen bromide was then added and left to stand for 30 minutes to precipitate nucleic acids. Then, 300 mM NaCl was added to adjust the conductivity. Centrifuge at 9000 rpm for 30 minutes. The supernatant after centrifugation was taken and concentrated to 500 mL.
  • Iodixanol ultracentrifugation step load the solution obtained in the previous step above the 15%, 25%, 40%, 60% iodixanol density gradient and centrifuge at 65000 rpm for 2.5 h to collect 6 mL of virus solution.
  • AAVz2 was purified by the same purification procedure as described above for wild-type AAV to give AAVz2-0.
  • AAVz2 was purified by the same purification steps as above for wild-type AAV to obtain AAVz2-1, except that 2) the affinity column chromatography step was replaced by the same steps as 3) the iodixanol ultracentrifugation step.
  • the viral yield of AAV obtained by different purification methods was quantified by qPCR and silver staining.
  • wild-type AAV5 was purified using the same steps as above using eluent A + eluent C and eluent B + eluent C, respectively. , to obtain AAV5-2.
  • the results showed that the addition of arginine and magnesium ions in the eluate increased the yield of virus ( Figure 6).
  • the inventors found that when the arginine concentration in eluent B was adjusted in the range of 200-2000 mM or the MgCl concentration in eluent B was adjusted in the range of 0.5-3 mM, the obtained AAVz2 had Basically the same features as AAVz2-2.
  • mice were injected with 1 ⁇ 10 13 vg/kg doses of various AAV serotype vectors packaged with GFP-encoding gene through the tail vein, and the Liver, heart, lung, spleen and kidney were subjected to GFP and DAPI immunofluorescence staining 3 weeks after virus injection.
  • the GFP signal was quantified and the liver transduction specificity of AAV was quantified by the ratio of GFP positive cells in the liver to other tissues/organs (heart, lung, spleen and kidney). As shown in Figure 7B, the relative specificity of the liver of AAVz2-1 and AAVz2-2 compared to heart, lung, spleen and kidney was about 4-11 fold higher than that of AAV5, AAV8, AAV9 and AAVz2-0. These results again demonstrate the high liver targeting ability of AAVz2-1 and AAVz2-2.
  • GFP gene expression in the tissues and organs of mice injected with each AAV by tail vein was tested.
  • C57BL/6 mice were injected via tail vein with the corresponding AAV serotypes encapsulating the GFP transgene at a dose of 1 x 1013 vg/kg.
  • RT-PCR was performed on liver, heart, lung, spleen, kidney, and brain tissue homogenates to detect the expression of GFP gene mRNA delivered by AAV5, AAV8, AAV9, and AAVz2 purified by various methods, and the results were presented as GFP mRNA for each group Relative values compared to the AAV5 group.
  • AAVz2-1 and AAVz2-2 delivered GFP mRNA levels in the liver 14.7 ⁇ 5.7 times higher than AAV5 and comparable to AAV8 and AAV9 ( Figure 8). Also, the GFP expression levels of AAVz2-1 and AAVz2-2 in the heart, lung, spleen, kidney and brain of mice were similar to or lower than that of AAV5, and significantly lower than that of AAV8 and AAV9. In addition, AAVz2-0 delivered GFP mRNA levels similar to AAV5 in liver, heart, lung, spleen, kidney and brain of mice.
  • Example 9 Transduction efficiency of purified AAV into mouse skeletal muscle
  • mice were tail vein injected with a relatively high dose (5 ⁇ 10 13 vg/kg) of each AAV (packaging the GFP gene) mice. Twenty-one days after virus injection, GFP was used to target muscles in multiple areas of the body, including hindlimbs (gastrocnemius, quadriceps, soleus), back (longissimus pectoralis), forelimbs (triceps), and neck (thoracic muscles) Clenomastoid muscle) for immunofluorescence staining.
  • hindlimbs gastrocnemius, quadriceps, soleus
  • back longissimus pectoralis
  • forelimbs triceps
  • neck thoracic muscles
  • Example 7 In order to further study the transduction efficiency of AAV obtained by different purification methods in Example 7 in human hepatocytes, the inventors selected the human hepatoma cell line Huh7 and the normal hepatocyte cell line L02, these cell lines are often used in liver drugs delivery research.
  • Pre-existing neutralizing antibodies (Nabs) in serum may lead to inactivation of AAV vectors used in gene therapy.
  • AAV5 has a significant advantage due to the lowest Nab levels in systemic circulation, with a Nab-positive rate of only 3% in some populations.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Virology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Neurology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明涉及重组腺相关病毒(AAV)及其应用。本发明还涉及AAV的纯化方法以及由此获得的纯化的AAV。本发明的AAV具有器官或组织靶向性和/或高实心率和/或能够一定程度上规避中和抗体,可作为治疗性基因的送递载体用于治疗相关疾病。本发明的纯化方法可改变AAV的靶器官递送能力,提高AAV的肝脏转导特异性。

Description

重组腺相关病毒及其应用 技术领域
本公开属于基因治疗技术领域。本公开涉及具有器官或组织靶向性和/或高实心率和/或能够一定程度上规避中和抗体的重组腺相关病毒(AAV)及其应用。本公开还涉及AAV的纯化方法以及由此获得的纯化的AAV。
背景技术
近年来,基因治疗蓬勃发展。作为在治疗性基因送递方面非常有前景的载体,腺相关病毒(AAV,adeno-associated virus)在各种器官组织中具有高转导效率、长期治疗效果和低致病性,这些特性使AAV在基因治疗领域具有明显的优势(参考文献1)。
可送递治疗性基因的AAV载体由蛋白质衣壳和携带目的基因的转基因表达盒组成。空壳AAV载体不携带目的基因,仅由特定血清型的AAV蛋白质衣壳组成。已知治疗效率与AAV载体的遗传物质含量密切相关,因此,空壳AAV载体的存在会导致用于医学应用的AAV病毒的所需剂量增加,并且可能会引起针对载体衣壳的免疫反应,导致不必要的副作用。
另外,针对AAV病毒的预先存在的中和抗体(Nab)也是其应用在更广泛的人群中的最大障碍之一。针对AAV的免疫反应(例如中和抗体)会耗尽AAV衣壳和转基因产物,从而导致治疗效果不佳(参考文献2)。
因此,为了实现更好的治疗效果,提高AAV载体的转导能力和效价,期望对AAV衣壳蛋白进行合适的改造,获得高实心率的新型腺相关病毒载体。尤其期望获得既具有高实心率且能够一定程度上规避中和抗体的腺相关病毒载体。
此外,野生型AAV血清型通常广谱地感染哺乳动物的多个组织/器官。因此,目前AAV的应用仍存在以下问题:野生型AAV具有广泛的组织靶向性,导致基因传递到脱靶的组织,从而加剧了不良反应。
迄今为止,已经开发了靶向不同器官(例如眼睛、骨骼肌或肝脏)的AAV载体。例如,在2017年底,Spark Therapeutics生产的基于AAV2的基因治疗药物“Luxturna”已经被美国食品药品监督管理局(FDA)批准用于治疗患有RPE65突变的莱伯氏先天性黑蒙病(Leber Congenital Amaurosis,LCA)。在2019年5月,FDA批准了基于AAV9的药物“Zolgensma”用于治疗脊髓性肌萎缩,这是一种由SMN基因突变引起的神经肌肉疾病。 利用AAV作为载体的基因疗法已经在许多临床试验中得以运用,例如,一些基因疗法利用靶向眼睛或肌肉的AAV作为载体来治疗多种眼部和肌肉疾病(例如与年龄相关的黄斑变性、X连锁视网膜分裂症和杜氏肌肉营养不良),且取得了不错的治疗效果;利用AAV载体进行的肝脏靶向基因治疗,已在A型血友病和B型血友病的多项临床试验中取得了令人瞩目的成功(参考文献3)。
研究显示,AAV载体的组织亲嗜性及细胞转化效率主要由其衣壳决定。不同的衣壳决定了不同的AAV具有不同的组织亲嗜性及转化效率。为了改善AAV载体的组织特异性以及减轻免疫反应,可以采用例如DNA混编(DNA shuffling)、易错PCR和定点突变的方法来改造AAV衣壳。通常,可以采用定点突变技术在AAV的衣壳蛋白中插入7-20个氨基酸的多肽。例如,通过在AAV9的第588位氨基酸后插入7个氨基酸而获得的AAVPHP.B可改善血脑屏障通透性(参考文献4)。
因此,为了实现更好的治疗效果,期望对AAV衣壳蛋白进行合适的改造,获得具有器官特异性的新型腺相关病毒载体。
目前已开发了许多AAV的纯化方法,其中亲和层析、离子交换层析和分子排阻层析等层析技术已广泛应用于各种血清型AAV载体的分离纯化。在亲和层析中,洗脱条件如洗脱液的选择对于AAV的纯化至关重要。
参考文献:
1.Li et al.,Nat Rev Genet(2020)21:255-272
2.Zhang et al.,Hum Gene Ther(2020)31(7-8):448-458
3.Leebeek FWG,Miesbach W.Gene therapy for hemophilia:A review on clinical benefit,limitations,and remaining issues.Blood.2021;138:923-931
4.Deverman et al.,Nat Biotechnol(2016)34:204-209
发明内容
经过大量研究,发明人发现,通过在AAV(例如野生型AAV5)衣壳蛋白的可变区(例如N573或Q574后)插入寡肽“PLPSPSRL”、“FAPTPGP”或“PGVTPAP”,可以获得靶向视网膜和肌肉的新型AAV衣壳。由该新型AAV衣壳包装的新型AAV载体具有良好的肌肉和视网膜组织靶向特异性,有更低的毒副作用和更好的安全性潜力,可应用于肌肉或眼部相关疾病的预防、诊断和治疗。
此外,发明人还发现,通过用合成寡肽“GIVADGNTAP”或“QTLGFSQGGPNT”替换AAV(例如野生型AAV5)衣壳蛋白的可变区(例如VRVIII)的1-10个氨基酸(例如 aa574-579、aa573-579),或者用合成寡肽“GIVADNLQQQ”替换AAV(例如野生型AAV5)衣壳蛋白的可变区(例如VRVIII)的1-10个氨基酸(例如aa574-579)并引入T711S的点突变,可以获得新型AAV衣壳蛋白。由该新型AAV衣壳蛋白包装的新型AAV载体具有高实心率和/或一定程度上可规避中和抗体,因此具有更好的转导能力,可应用于各种疾病的预防、诊断和治疗。
因此,在第一方面,本公开提供一种腺相关病毒(AAV)衣壳蛋白,其中,所述AAV衣壳蛋白通过在AAV衣壳蛋白的可变区插入寡肽PLPSPSRL、FAPTPGP或PGVTPAP构建而成;通过用寡肽GIVADGNTAP或QTLGFSQGGPNT替换AAV衣壳蛋白的可变区的1-10个氨基酸构建而成;或者通过用寡肽GIVADNLQQQ替换AAV衣壳蛋白的可变区的1-10个氨基酸并引入T711S的点突变构建而成。
上述腺相关病毒(AAV)可以选自任何AAV血清型。AAV血清型的实例包括天然的AAV(例如,天然的AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11,AAV12、AAV-DJ、AAV-DJ8、AAV-DJ9、AAVrh8、AAVrh8R、AAVrh10、禽AAV、牛AAV、犬AAV、马AAV和绵羊AAV)和其他人工改造的AAV(例如,人工改造的AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11,AAV12、AAV-DJ、AAV-DJ8、AAV-DJ9、AAVrh8、AAVrh8R、AAVrh10、禽AAV、牛AAV、犬AAV、马AAV和绵羊AAV),优选AAV5。
在一个实施方式中,上述可变区选自VRII、VRIII、VRIV、VRV、VRVI、VRVII和VRVIII,优选VRVIII。
在一个优选实施方式中,寡肽PLPSPSRL、FAPTPGP或PGVTPAP插入至AAV衣壳蛋白的N573或Q574之后,优选插入至AAV衣壳蛋白的Q574之后,更优选插入至AAV5衣壳蛋白的Q574之后。
在一个优选实施方式中,本公开的AAV衣壳蛋白通过用寡肽GIVADGNTAP替换AAV5衣壳蛋白的可变区VRVIII的aa574-579构建而成;通过用寡肽GIVADNLQQQ替换AAV5衣壳蛋白的可变区VRVIII的aa574-579并引入T711S的点突变构建而成;或者通过用寡肽QTLGFSQGGPNT替换AAV5衣壳蛋白的可变区VRVIII的aa573-579构建而成。
在一个优选实施方式中,本公开的AAV衣壳蛋白的氨基酸序列与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9或SEQ ID NO:11所示的氨基酸序列具有至少80%的同一性,优选至少85%、90%、95%、96%、97%、98%、99%或100%的同一性。
在一个更优选实施方式中,本公开的AAV衣壳蛋白包含SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9或SEQ ID NO:11所示的氨基酸序列。在一个特别优选的实施方式中,本公开的AAV衣壳蛋白的氨基酸序列如SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9或SEQ ID NO:11所示。
在第二方面,本公开提供一种核酸分子,其编码根据第一方面所述的AAV衣壳蛋白。
在一个优选实施方式中,本公开的核酸分子的核苷酸序列与SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10或SEQ ID NO:12所示的核苷酸序列具有至少50%的同一性,优选至少60%、70%、80%、85%、90%、95%、96%、97%、98%、99%或100%的同一性。
在一个优选实施方式中,上述核酸分子包含SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10或SEQ ID NO:12所示的核苷酸序列。在一个更优选实施方式中,上述核酸分子的核苷酸序列如SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10或SEQ ID NO:12所示。
在第三方面,本公开提供一种AAV载体,其包含根据第一方面所述的AAV衣壳蛋白。
在一个优选实施方式中,本公开的AAV载体还包含异源多核苷酸,所述异源多核苷酸包含编码治疗性蛋白质的核苷酸序列。在一个优选实施方式中,本公开的AAV载体还包含病毒基因组,所述病毒基因组可以是天然的AAV基因组或包含异源核酸的重组病毒基因组,所述病毒基因组可编码报告蛋白、天然蛋白、重组蛋白、抗原、抗体和/或用于核苷酸干扰(RNAi)治疗的多聚寡聚核苷酸元件(shRNA、miRNA)等。
在一个优选实施方式中,异源核酸编码一种或多种哺乳动物蛋白,或者是RNAi组分的序列(例如shRNA、siRNA、反义寡核苷酸)。在另一个优选实施方式中,异源核酸编码某些抗体、抗原、合成蛋白或多肽的蛋白质序列。
在第四方面,本公开提供根据第三方面所述的AAV载体在制备用于治疗眼部疾病或肌肉疾病的药物中的应用。
在第五方面,本公开提供一种药物,其包含根据第三方面所述的AAV载体和可使病毒载体成药的试剂,优选所述药物用于治疗眼部疾病或肌肉疾病。
在一个实施方式中,可使病毒载体成药的试剂包括盐、有机物和表面活性剂。
在第六方面,本公开提供一种治疗眼部疾病的方法,包括向有需要的受试者施用治疗有效量的根据第五方面所述的药物。
在第七方面,本公开提供一种治疗肌肉疾病的方法,包括向有需要的受试者施用治疗 有效量的根据第五方面所述的药物。
在一个实施方式中,根据第五方面所述的药物通过全身途径或局部途径施用,例如静脉内施用、肌内施用、皮下施用、经口施用、局部接触、腹膜内施用和病灶内施用,优选局部施用于眼睛,特别是作为滴眼剂施用、眼内注射或玻璃体内注射到眼睛中。
此外,发明人出乎意料地发现,通过特定的纯化方法(即两步的碘克沙醇密度梯度超速离心),可以改善AAVz2(SEQ ID NO:3)的肝脏靶向性。
因此,在第八方面,本公开提供一种纯化的腺相关病毒(AAV),其中,所述AAV通过两步的碘克沙醇密度梯度超速离心纯化获得,所述AAV为AAVz2,其氨基酸序列如SEQ ID NO:3所示。
在一个实施方式中,碘克沙醇密度梯度包括:15w/v%、25w/v%、40w/v%、60w/v%的碘克沙醇。
在一个实施方式中,AAVz2的纯化不包括亲和柱层析步骤。
在一个实施方式中,AAVz2是真核细胞或原核细胞包装生产的。
在一个实施方式中,AAVz2是三质粒转染法或昆虫杆状病毒法包装生产的。
与用亲和柱层析加一步的碘克沙醇超速离心的纯化方法获得的AAVz2相比,根据第八方面的纯化的AAVz2具有改善的肝脏靶向性。
在第九方面,本公开提供一种纯化腺相关病毒(AAV)的方法,其包括:通过两步的碘克沙醇密度梯度超速离心纯化AAV。
在一个实施方式中,AAV是AAVz2。
在一个实施方式中,本公开的方法包括:(i)将含有AAV的溶液装载至碘克沙醇密度梯度上方,进行超速离心,得到一次纯化液;以及(ii)将步骤(i)的一次纯化液装载至碘克沙醇密度梯度上方,进行超速离心,得到纯化的AAV。
在一个实施方式中,本公开的方法不包括亲和柱层析步骤。
本公开的纯化方法提高了AAVz2在体内和体外对于肝脏细胞的转导效率,但对于其他组织器官的转导效率并无明显提高,使得肝脏转导特异性显著改善。
通过本公开的上述纯化方法纯化得到的AAVz2载体具有优异的肝脏特异靶向性,以及更低的中和抗体水平,体现了更低的免疫原性和更高的安全性。具有优异的肝脏特异靶向性的本公开的AAVz2载体可应用于肝脏相关疾病或需要递送药物至肝脏的其他疾病的预防和治疗,且低脱靶(非靶器官)效应和低免疫原性增强了其安全性潜力。
在第十方面,本公开提供根据第八方面所述的AAV在制备用于治疗疾病的药物中的 应用,其中,所述疾病为肝脏疾病或需要递送基因至肝脏中表达的其他疾病。
在第十一方面,本公开提供一种药物,其包含:根据第八方面所述的AAV和赋形剂。
在一个实施方式中,赋形剂包括盐、有机物和/或表面活性剂。
在一个实施方式中,药物用于肝脏疾病或需要递送基因至肝脏中表达的其他疾病的预防、诊断和治疗。
在一个实施方式中,药物通过全身途径或局部途径施用,优选静脉内施用、口服施用、鼻腔内施用、翘内施用、肌肉内施用、皮下施用、腹膜内施用或病灶内施用;优选通过全身途径或局部途径施用于肝脏。
在一个实施方式中,肝脏疾病包括:原发或继发性肝癌、肝硬化、肝脓肿、脂肪肝、酒精性肝病、肝移植、甲型肝炎、乙型肝炎、丙型肝炎、丁型肝炎、戊型肝炎、自身免疫性肝炎、药物毒性肝炎以及其他肝炎。
在一个实施方式中,需要递送基因至肝脏中表达的其他疾病包括:A型和B型血友病、溶酶体贮积症(例如MPS II和III)、法布里综合征(Fabry’s disease)、糖原贮积症、贝墩氏症(Batten disease)、高歇氏病(Gaucher’s disease)、沃尔曼氏症(Wolman’s disease)、威尔逊氏症(Wilson’s disease)、自身免疫性疾病(例如多发性硬化症、重症肌无力、风湿或类风湿性关节炎、红斑狼疮、自身免疫性心脏病)、心血管疾病或肺部疾病(例如高血压、动脉粥样硬化、高胆固醇血症、慢性阻塞性肺疾病)、高血氨症、糖尿病、沙费利波综合征、综合性创伤、肾衰竭、贫血。
在第十二方面,本公开提供一种治疗疾病的方法,包括向有需要的受试者施用治疗有效量的根据第十一方面所述的药物,所述受试者患有肝脏疾病或需要递送基因至肝脏中表达的其他疾病。
此外,发明人出乎意料地发现,在AAV的纯化中,通过在亲和柱洗脱液中添加一定浓度的精氨酸和镁离子,不仅可以提高AAV的产量,还可以改变AAV的靶器官递送能力,提高AAV的肝脏靶向性。
因此,在第十三方面,本公开提供一种纯化腺相关病毒(AAV)的方法,其包括:(a)将含有AAV的溶液加样到亲和层析柱上;(b)用包含精氨酸和镁离子的第一洗脱液从亲和层析柱上洗脱AAV,收集含AAV的洗脱液;以及(c)对步骤(b)获得的含AAV的洗脱液进行超速离心。
在一个实施方式中,与用不含精氨酸和镁离子的洗脱液进行洗脱步骤的方法相比,本公开的方法使AAV的产量提高约10%、约20%、约30%、约40%,甚至约50%或更高。
在一个实施方式中,在第一洗脱液中,精氨酸的浓度为200mM至2000mM,优选400mM至1000mM,更优选500mM至800mM;和/或镁离子的浓度为0.5mM至3mM,优选1mM至3mM,更优选1.5mM至2.5mM。
在一个实施方式中,镁离子由MgCl 2或MgSO 4提供。
在一个实施方式中,第一洗脱液包含:0.1-2M AcOH、200-2000mM精氨酸、137-600mM NaCl或Na 2SO 4、0.5-3mM MgCl 2或MgSO 4,以及0.05%泊洛沙姆188。
在一个实施方式中,第一洗脱液的pH为2.5~3.2。当第一洗脱液的pH在该范围内时,可以更好地实现纯化效果。
在一个实施方式中,步骤(b)中还使用包含尿素和镁离子的第二洗脱液进行AAV的洗脱。
在一个实施方式中,镁离子由MgCl 2或MgSO 4提供。
在一个实施方式中,第二洗脱液包含2-6M尿素和0.5-3mM MgCl 2
在一个实施方式中,超速离心为碘克沙醇密度梯度超速离心或氯化铯密度梯度超速离心。
在一个实施方式中,AAV是真核细胞或原核细胞包装生产的AAV。
在一个实施方式中,AAV是三质粒转染法或昆虫杆状病毒法包装生产的AAV。
在一个实施方式中,AAV是野生型AAV。
在一个实施方式中,AAV是AAVz2。
根据第十三方面的本公开的纯化方法不仅提高了AAV的产量,还提高了AAV在体内和体外对于肝脏细胞的转导效率,但对于其他组织器官的转导效率并无明显提高,使得肝脏转导特异性显著改善。
在第十四方面,本公开提供由根据第十三方面所述的方法获得的AAV。
在一个实施方式中,AAV是野生型AAV。
在一个实施方式中,AAV是AAVz2。
在一个实施方式中,与用不含精氨酸和镁离子的洗脱液进行洗脱步骤获得的AAV相比,通过根据第十三方面的本公开的方法纯化的AAV具有改善的肝脏靶向性。因此,根据第十四方面的本公开的AAV具有优异的肝脏特异靶向性,可应用于肝脏相关疾病或需要递送药物至肝脏的其他疾病的预防和治疗,且低脱靶(非靶器官)效应和低免疫原性增强了其安全性潜力。
在第十五方面,本公开提供根据第十四方面所述的AAV在制备用于治疗疾病的药物 中的应用,其中,所述疾病为肝脏疾病或需要递送基因至肝脏中表达的其他疾病。
在第十六方面,本公开提供一种药物,其包含:根据第十四方面所述的AAV和赋形剂。
在一个实施方式中,药物用于肝脏疾病或需要递送基因至肝脏中表达的其他疾病的预防、诊断和治疗。
在一个实施方式中,药物通过全身途径或局部途径施用,优选静脉内施用、口服施用、鼻腔内施用、翘内施用、肌肉内施用、皮下施用、腹膜内施用或病灶内施用;优选通过全身途径或局部途径施用于肝脏。
在一个实施方式中,肝脏疾病包括:原发或继发性肝癌、肝硬化、肝脓肿、脂肪肝、酒精性肝病、肝移植、甲型肝炎、乙型肝炎、丙型肝炎、丁型肝炎、戊型肝炎、自身免疫性肝炎、药物毒性肝炎以及其他肝炎。
在一个实施方式中,需要递送基因至肝脏中表达的其他疾病包括:A型和B型血友病、溶酶体贮积症(例如MPS II和III)、法布里综合征(Fabry’s disease)、糖原贮积症、贝墩氏症(Batten disease)、高歇氏病(Gaucher’s disease)、沃尔曼氏症(Wolman’s disease)、威尔逊氏症(Wilson’s disease)、自身免疫性疾病(例如多发性硬化症、重症肌无力、风湿或类风湿性关节炎、红斑狼疮、自身免疫性心脏病)、心血管疾病或肺部疾病(例如高血压、动脉粥样硬化、高胆固醇血症、慢性阻塞性肺疾病)、高血氨症、糖尿病、沙费利波综合征、综合性创伤、肾衰竭、贫血。
在第十七方面,本公开提供一种亲和柱洗脱液,其包含:精氨酸和镁离子。
在一个实施方式中,亲和柱洗脱液包含200mM至2000mM、优选400mM至1000mM、更优选500mM至800mM的精氨酸和0.5mM至3mM、优选1mM至3mM、更优选1.5mM至2.5mM的镁离子。
在一个实施方式中,亲和柱洗脱液包含:0.1-2M AcOH、200-2000mM精氨酸、137-600mM NaCl或Na 2SO 4、0.5-3mM MgCl 2或MgSO 4,以及0.05%泊洛沙姆188。
在一个实施方式中,亲和柱洗脱液的pH为2.5~3.2。当本公开的亲和柱洗脱液的pH在该范围内时,可以更好地实现纯化效果。
本公开的亲和柱洗脱液通过包含精氨酸和镁离子显著提高了AAV的洗脱产量,并且还改善了AAV在体内和体外对于肝脏细胞的特异性转导效率。
附图说明
图1A示出了候选AAV衣壳蛋白的筛选方法。
图1B为AAVz1、AAVz2、AAVz3、AAVz81、AAVz82、AAVz84的示意图。通过在AAV5衣壳蛋白的Q574后插入寡肽“PLPSPSRL”得到AAVz1;通过在AAV5衣壳蛋白的Q574后插入寡肽“FAPTPGP”得到AAVz2;通过在AAV5衣壳蛋白的Q574后插入寡肽“PGVTPAP”得到AAVz3;通过用寡肽GIVADGNTAP替换AAV5衣壳蛋白的可变区VRVIII的aa574-579得到AAVz81;通过用寡肽GIVADNLQQQ替换AAV5衣壳蛋白的可变区VRVIII的aa574-579并引入T711S的点突变(未示出),得到AAVz82;通过用寡肽QTLGFSQGGPNT替换AAV5衣壳蛋白的可变区VRVIII的aa573-579得到AAVz84。
图1C显示通过qPCR和银染定量的5×10 7个细胞(培养基+裂解物)生产的AAV颗粒的滴度,以及AAV病毒颗粒的实心率。数据显示为平均值±SD,n=3。
图2A示出了AAV(AAVz1、AAVz2、AAVz3、AAV5、AAV8和AAV9)感染C2C12成肌细胞和其他细胞(C28/I2、Huh7和HEK293细胞)的图片。上层:GFP荧光;下层:明场;比例尺=100μm。
图2B显示了AAV(AAVz1、AAVz2、AAVz3、AAV5、AAV8和AAV9)在C2C12成肌细胞中的特异性转导的定量结果,以GFP阳性C2C12细胞与GFP阳性C28/I2细胞的比值作为统计指标。***p<0.001,n=6孔细胞/组。单向方差分析。
图2C显示了AAV(AAVz1、AAVz2、AAVz3、AAV5、AAV8和AAV9)在C2C12成肌细胞中的特异性转导的定量结果,以GFP阳性C2C12细胞与GFP阳性Huh7细胞的比值作为统计指标。***p<0.001,n=6孔细胞/组。单向方差分析。
图2D显示了AAV(AAVz1、AAVz2、AAVz3、AAV5、AAV8和AAV9)在C2C12成肌细胞中的特异性转导的定量结果,以GFP阳性C2C12细胞与GFP阳性HEK293细胞的比值作为统计指标。***p<0.001,n=6孔细胞/组。单向方差分析。
图3A显示了AAV(AAVz1、AAVz2、AAVz3、AAV5、AAV8和AAV9)在小鼠的肝、心、肺、脾的转导情况。比例尺=100μm。
图3B显示了AAV(AAVz1、AAVz2、AAVz3、AAV5、AAV8和AAV9)在小鼠的腓肠肌(GA)、胫前肌(TA)和比目鱼肌(SO)的转导情况。比例尺=100μm。
图3C显示了AAV(AAVz1、AAVz2、AAVz3、AAV5、AAV8和AAV9)在肌肉细胞中的特异性转导的定量结果,以基于细胞核数量(DAPI)统计的GFP阳性肌肉细胞(GA、TA和SO的平均值)与GFP阳性肝细胞的比值作为统计指标。***p<0.001,n=5只小鼠/每组。单向方差分析。
图3D显示了AAV(AAVz1、AAVz2、AAVz3、AAV5、AAV8和AAV9)在肌肉细胞中的特异性转导的定量结果,以基于细胞核数量(DAPI)统计的GFP阳性肌肉细胞(GA、TA和SO的平均值)与GFP阳性心肌细胞的比值作为统计指标。***p<0.001,n=5只小鼠/每组。单向方差分析。
图3E显示了AAV(AAVz1、AAVz2、AAVz3、AAV5、AAV8和AAV9)在肌肉细胞中的特异性转导的定量结果,以基于细胞核数量(DAPI)统计的GFP阳性肌肉细胞(GA、TA和SO的平均值)与GFP阳性肺细胞的比值作为统计指标。***p<0.001,n=5只小鼠/每组。单向方差分析。
图3F显示了AAV(AAVz1、AAVz2、AAVz3、AAV5、AAV8和AAV9)在肌肉细胞中的特异性转导的定量结果,以基于细胞核数量(DAPI)统计的GFP阳性肌肉细胞(GA、TA和SO的平均值)与GFP阳性脾细胞的比值作为统计指标。***p<0.001,n=5只小鼠/每组。单向方差分析。
图4A显示了AAV(AAVz1、AAVz2、AAVz3、AAV5、AAV8和AAV9)的视网膜转导情况。
图4B显示了小鼠的视网膜切片。到达感光层的GFP信号由白色箭头指示。GCL:神经节细胞层。IPL:内部丛状层。INL:内核层。OPL:外丛状层。ONL:外核层。RPE:视网膜色素上皮。
图4C显示了不同AAV组相对于AAV5(标准化到1)的平均GFP荧光强度的定量结果。n=4只眼睛/组,***p<0.001,**p=0.0081(AAV5 vs AAVz2)和0.0021(AAV8 vs AAVz2),单向方差分析。
图5A显示了通过Chimera 1.15(UCSF)构建AAVz2的VP1蛋白的3D结构的PDB图。插入的寡肽在矩形框中放大显示。
图5B显示了生产纯化后的包装GFP基因的各AAV颗粒的银染显色,每个AAV血清型有3个平行组泳道。
图5C显示了从2×10 8个细胞(培养基+裂解物)中生产并用相应纯化方法得到的各AAV产量。AAVz2-0和野生型AAV:亲和柱层析(洗脱液不含精氨酸和镁离子)加一步碘克沙醇超速离心纯化得到;AAVz2-1:两步碘克沙醇超速离心纯化得到;AAVz2-2:亲和柱层析(洗脱液包含精氨酸和镁离子)加一步碘克沙醇超速离心纯化得到。n=3。vg:载体基因组;vp:病毒颗粒数。
图6显示了使用不同洗脱液的亲和柱层析纯化的野生型AAV5产量。洗脱峰A和C1: 亲和柱层析(洗脱液A+洗脱液C)加一步碘克沙醇超速离心纯化AAV5,以260和280nm紫外吸收峰为代表。洗脱峰B和C2:亲和柱层析(洗脱液B+洗脱液C)加一步碘克沙醇超速离心纯化AAV5。qPCR定量病毒基因组(vg),银染定量病毒颗粒数(vp)。洗脱液A:1M AcOH、500mM NaCl、0.05%泊洛沙姆188,pH=2.5。洗脱液B:1M AcOH,500mM精氨酸,2mM MgCl 2、500mM NaCl、0.05%泊洛沙姆188,pH=2.5;洗脱液C(C1或C2):6M尿素,2mM MgCl 2
图7A显示了不同纯化方法的AAV对小鼠肝脏的感染能力。比例尺=200微米。
图7B显示了基于DAPI斑点数统计的GFP阳性肝细胞数与GFP阳性心脏、肺、脾和肾细胞数的比值,AAV的肝脏感染能力相比于心脏、肺、脾和肾脏感染能力的相对定量。n=5只小鼠/组(3雄2雌)。***p<0.001,单向方差分析。
图8显示了尾静脉注射各AAV的小鼠在肝脏、心脏、肺、脾、肾脏和大脑中的GFP基因的mRNA表达。n=4只小鼠/组。*p<0.05,**p<0.01,***p<0.001,单向方差分析。
图9A显示了不同纯化方法获得的AAV对各种骨骼肌的感染能力。GA:腓肠肌;LO:胸最长肌;QU:股四头肌;TR:肱三头肌;ST:胸锁乳突肌;SO:比目鱼肌。比例尺=200微米。
图9B显示了基于GFP阳性肌肉细胞面积与总肌肉横截面积的百分比,对AAV的肌肉转导效率进行定量的结果。n=5只小鼠/组(3雄2雌),*p<0.05,**p<0.01,***p<0.001。单向方差分析。
图10A显示了人肝癌细胞Huh7和正常肝细胞L02被相应的包装GFP基因的AAV载体感染(MOI=1×10 5vg/细胞)后48小时的拍摄图像。上图:GFP信号;下图:明场。比例尺:100微米。
图10B显示了由各AAV递送的GFP蛋白的表达水平。
图10C显示了图10A中GFP阳性Huh7和L02细胞百分比的统计结果。以Huh7细胞和L02细胞的GFP阳性信号面积与整个明场面积的比值进行计算。*p<0.05,**p<0.01,***p<0.001,n=6孔细胞,单向方差分析。
图10D显示了图10B中各AAV处理的Huh7和L02细胞中GFP蛋白表达量的统计结果。*p<0.05,***p<0.001,n=4孔细胞,单向方差分析。
图11显示AAVz1衣壳蛋白的氨基酸序列(SEQ ID NO:1)。
图12显示编码AAVz1衣壳蛋白的核酸序列(SEQ ID NO:2)。
图13显示AAVz2衣壳蛋白的氨基酸序列(SEQ ID NO:3)。
图14显示编码AAVz2衣壳蛋白的核酸序列(SEQ ID NO:4)。
图15显示AAVz3衣壳蛋白的氨基酸序列(SEQ ID NO:5)。
图16显示编码AAVz3衣壳蛋白的核酸序列(SEQ ID NO:6)。
图17显示AAVz81衣壳蛋白的氨基酸序列(SEQ ID NO:7)。
图18显示编码AAVz81衣壳蛋白的核酸序列(SEQ ID NO:8)。
图19显示AAVz82衣壳蛋白的氨基酸序列(SEQ ID NO:9)。
图20显示编码AAVz82衣壳蛋白的核酸序列(SEQ ID NO:10)。
图21显示AAVz84衣壳蛋白的氨基酸序列(SEQ ID NO:11)。
图22显示编码AAVz84衣壳蛋白的核酸序列(SEQ ID NO:12)。
具体实施方式
除非另有定义,否则本文使用的所有技术和科学术语具有与本发明所属领域的普通技术人员的通常理解相同的含义。
在本文中,术语“包含”、“具有”、“包括”和“含有”应被解释为开放式术语(即意味着“包括但不限于”)。
在本文中,术语“患者”和“受试者”可互换使用并且以其常规意义使用,指患有或容易患有可通过施用本公开的药物进行预防或治疗的病症的生物体,并且包括人和非人动物。
在一个实施方式中,受试者是非人动物(例如,黑猩猩和其他猿和猴物种;农场动物,如牛、绵羊、猪、山羊和马;家养哺乳动物,例如狗和猫;实验动物包括啮齿类动物,如小鼠、大鼠和豚鼠;禽类,包括家禽、野禽和猎禽,如鸡、火鸡和其他鸡类、鸭、鹅等)。在一个实施方式中,受试者是哺乳动物。在一个实施方式中,受试者是人。
在本文中,术语“治疗”包括:(1)抑制病状、疾病或者病症,即,阻止、减少或者延迟疾病的发展或其复发或者其至少一种临床或者亚临床症状的发展;或者(2)缓解疾病,即,引起病状、疾病或者病症或者其临床或者亚临床症状中的至少一种消退。
在本文中,术语“治疗有效量”指产生施用它要达到的治疗效果的剂量。例如,适用于治疗眼部疾病的药物的治疗有效量可为能够预防或改善与该眼部疾病相关的一种或多种症状的量。
在本文中,术语“改善”指与疾病有关的症状的改善,并且可以指至少一种衡量或定量该症状的参数的改善。
在本文中,术语“预防”病状、疾病或者病症包括:预防、延迟或者减少受试者中发展的病状、疾病或者病症的至少一种临床或者亚临床症状出现的发生率和/或可能性,该受试者可能患有或易患该病状、疾病或者病症但尚未经历或者表现出该病状、疾病或者病症的临床或亚临床症状。
在本文中,术语“局部施用”或“局部途径”是指具有局部作用的给药。
在本文中,术语“载体”是指包裹多核苷酸的一个或一系列大分子,其促进多核苷酸在体外或体内递送到靶细胞中。载体的分类包括但不限于质粒、病毒载体、脂质体和其他基因递送载体。待递送的多核苷酸有时被称为“转基因(transgene)”,包含但不限于可以增强、抑制、削弱、保护、触发或预防某些生物学功能和生理机能的某些蛋白质或合成多肽的编码序列、疫苗开发中感兴趣的编码序列(例如表达适于在哺乳动物中引发免疫应答的蛋白、多肽或肽的多核苷酸)、RNAi组分的编码序列(例如,shRNA、siRNA、反义寡核苷酸),或可选的标记。
在本文中,术语“免疫应答”是指宿主组织和细胞遭遇免疫原如AAV衣壳蛋白和转基因后参与的过程。它涉及淋巴网状组织、血液、脾脏或其他相关组织中免疫活性细胞(例如T淋巴细胞、B细胞、单核细胞、巨噬细胞)的增殖、迁移和分化,从而导致抗体的产生或细胞介导的反应性的发展。换言之,宿主通过感染或疫苗接种而暴露于免疫原后诱导主动免疫应答。主动免疫是通过从免疫或非免疫宿主中“转移预先形成的物质(例如抗体、转移因子、胸腺移植物、白介素-2)”而获得的,而被动免疫则不是。
在本文中,术语“镶嵌(mosaic)”AAV衣壳核酸编码序列或衣壳蛋白指通过DNA混编、易错PCR和定点突变的方法人工设计和改造的AAV衣壳序列。
在本文中,术语“转导”、“转染”和“转化”是指异源多核苷酸被递送至宿主细胞发生转录和翻译产生多肽产物的过程,包括利用重组病毒将异源多核苷酸引入宿主细胞。
在本文中,术语“基因送递”指的是将异源多核苷酸引入细胞来进行基因传递,包括靶向、结合、摄取、转运、复制子整合和表达。
在本文中,术语“基因表达”或“表达”是指基因转录、翻译和翻译后修饰产生基因的RNA或蛋白产物的过程。
在本文中,术语“感染”是指包含多核苷酸组分的病毒或病毒颗粒将多核苷酸递送至细胞中并产生其RNA和蛋白质产物的过程,也可指病毒在宿主细胞中的复制过程。
在本文中,术语“靶向”是指病毒优先进入一些细胞或组织,然后进一步在细胞中表达病毒基因组或重组转基因携带的序列。本领域技术人员已知,如果没有顺式和反式作用 因子(例如诱导型启动子或其他调节性核酸序列),从病毒基因组转录异源核酸序列就不能开始。
在本文中,术语“多肽”和“蛋白质”在本文中同义地是指由20个以上的氨基酸组成的聚合物。这些术语还涵盖合成或人工氨基酸聚合物。
在本文中,术语“多核苷酸”或“核酸”是指任意长度的核苷酸的聚合形式,包括脱氧核苷酸、核糖核苷酸、其杂合序列和类似物。多核苷酸可包括修饰的核苷酸,比如甲基化或加帽的核苷酸或核苷酸类似物。
在本文中,“病毒颗粒”是指病毒的衣壳蛋白包装天然的或人工合成的病毒基因组形成的功能性病毒单位,其功能包括感染或转导组织器官及细胞、将病毒基因组递送至组织器官及细胞内并表达出相应的核酸及蛋白产物。
在本文中,术语“反向末端重复(ITR)”包括形成发夹结构并用作顺式元件以介导病毒复制、包装和整合的任何AAV病毒末端重复或合成序列。本文的ITR包括但不限于来自1-11型AAV(禽类AAV、牛AAV、犬AAV、马AAV和绵羊AAV的末端重复序列)。此外,AAV末端重复序列不必具有天然末端重复序列,只要该末端重复序列可用于病毒复制、包装和整合即可。
在本文中,核酸序列为单链形式,从左到右为5’-3’的方向。本文中涉及的核酸序列和氨基酸序列参考IUPACIUB生化命名委员会推荐的形式。氨基酸序列采用单字母符号或三字母符号。
在一个实施方式中,本公开提供一种AAV突变体,其通过在AAV5衣壳蛋白的Q574后插入寡肽PLPSPSRL构建而成。作为这种AAV突变体的一个示例,AAVz1衣壳蛋白的氨基酸序列如SEQ ID NO:1所示,编码AAVz1的核酸分子的核苷酸序列如SEQ ID NO:2所示。
在一个实施方式中,本公开提供一种AAV突变体,其通过在AAV5衣壳蛋白的Q574后插入寡肽FAPTPGP构建而成。作为这种AAV突变体的一个示例,AAVz2衣壳蛋白的氨基酸序列如SEQ ID NO:3所示,编码AAVz2的核酸分子的核苷酸序列如SEQ ID NO:4所示。
在一个实施方式中,本公开提供一种AAV突变体,其通过在AAV5衣壳蛋白的Q574后插入寡肽PGVTPAP构建而成。作为这种AAV突变体的一个示例,AAVz3衣壳蛋白的氨基酸序列如SEQ ID NO:5所示,编码AAVz3的核酸分子的核苷酸序列如SEQ ID NO:6所示。
在一个实施方式中,本公开提供一种AAV突变体,其通过用寡肽GIVADGNTAP替换AAV5衣壳蛋白的可变区VRVIII的aa574-579构建而成。作为这种AAV突变体的一个示例,AAVz81衣壳蛋白的氨基酸序列如SEQ ID NO:7所示,编码AAVz81的核酸分子的核苷酸序列如SEQ ID NO:8所示。
在一个实施方式中,本公开提供一种AAV突变体,其通过用寡肽GIVADNLQQQ替换AAV5衣壳蛋白的可变区VRVIII的aa574-579并引入T711S的点突变构建而成。作为这种AAV突变体的一个示例,AAVz82衣壳蛋白的氨基酸序列如SEQ ID NO:9所示,编码AAVz82的核酸分子的核苷酸序列如SEQ ID NO:10所示。
在一个实施方式中,本公开提供一种AAV突变体,其通过用寡肽QTLGFSQGGPNT替换AAV5衣壳蛋白的可变区VRVIII的aa573-579构建而成。作为这种AAV突变体的一个示例,AAVz84衣壳蛋白的氨基酸序列如SEQ ID NO:11所示,编码AAVz84的核酸分子的核苷酸序列如SEQ ID NO:12所示。
本公开的新型AAV突变体可在体内或体外在肌肉细胞和视网膜细胞特异性转导,从而开展相关研究或用于疾病治疗。
本领域技术人员已知,AAV衣壳蛋白含有VP1、VP2和VP3蛋白,VP2和VP3蛋白在VP1蛋白内部的起始密码子处经历转录和翻译过程,即,VP1序列包含VP2和VP3序列。本公开提供了各AAV衣壳的VP1蛋白的氨基酸序列(如SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9、SEQ ID NO:11)。
在一个实施方式中,本公开提供一种AAV突变体,其通过在AAV衣壳蛋白中插入与“PLPSPSRL”、“FAPTPGP”或“PGVTPAP”具有至少95%(例如,至少95%、96%、97%、98%、99%或100%)同一性的寡肽构建而成。
在一个实施方式中,本公开提供一种AAV突变体,其通过用与“GIVADGNTAP”或“QTLGFSQGGPNT”具有至少95%(例如,至少95%、96%、97%、98%、99%或100%)同一性的寡肽替换AAV衣壳的可变区VRVIII的1-10个氨基酸构建而成。
在一个实施方式中,本公开提供一种AAV突变体,其通过用与“GIVADNLQQQ”具有至少95%(例如,至少95%、96%、97%、98%、99%或100%)同一性的寡肽替换AAV衣壳的可变区VRVIII的1-10个氨基酸并引入T711S的点突变构建而成。
在本文中,术语“腺相关病毒(AAV)”或“腺相关病毒(AAV)血清型”包括天然的AAV(例如,天然的1-11型AAV、禽AAV、牛AAV、犬AAV、马AAV和绵羊AAV的衣壳蛋白)和其他人工改造的AAV。不同AAV血清型的基因组序列、ITR序列、Rep 和Cap蛋白在本领域内是已知的。这些序列可以在文献或在公共数据库查找,例如GenBank数据库,如GenBank(R)登录号NC 002077、NC 001401、NC 001729、NC 001863、NC 001829、NC 001862、NC 000883、NC 001701、NC 001510、AF063497、U89790、AF043303、AF028705、AF028704、J02275、JO1901、J02275、XO1457、AF288061、AHO09962、AY028226、AY028223、NC 001358、NC 001540、AF513851、AF513852、AY530579、AY631965、AY631966;其内容通过引用整体并入本文;以及例如Srivistava等,J.Virol(1983)45:555;Chiorini等,J.Virol(1998)71:6823;Chiorini等,J.Virol(1999)73:1309;Bantel-Schaal等,J.Virol(1999)73:939;Xiao等,J.Virol(1999)73:3994;Muramatsu等,Virology(1996)221:208;WO00/28061;WO 99/61601;WO 98/11244;US 6156303。
氨基酸的保守性替换是本领域已知的。在一个实施方式中,本公开的AAV衣壳蛋白在以下同一组中的氨基酸可进行保守性替换:a)甘氨酸和丙氨酸;b)缬氨酸、异亮氨酸、亮氨酸和脯氨酸;c)天冬氨酸和谷氨酸;d)天冬酰胺和谷氨酰胺;e)丝氨酸、苏氨酸赖氨酸、精氨酸和组氨酸;f)苯丙氨酸、色氨酸和酪氨酸;g)蛋氨酸和半胱氨酸。在一些实施方式中,上述不同组的氨基酸之间的非保守性替换也是允许的。
在一个实施方式中,本公开的AAV突变体(衣壳蛋白)的氨基酸序列与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9或SEQ ID NO:11所示的氨基酸序列具有至少80%的同一性,例如至少81%、82%、83%、84%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%的同一性。
在一个实施方式中,编码本公开的AAV突变体(衣壳蛋白)的核酸分子的核苷酸序列与SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10或SEQ ID NO:12所示的核苷酸序列具有至少50%的同一性,例如至少55%、60%、65%、70%、75%、80%、85%、90%、95%、96%、97%、98%、99%或100%的同一性。
本发明人出人意料地发现,通过使用特定的纯化方法(两步的碘克沙醇或氯化铯密度梯度离心)或特定的化学试剂(含精氨酸和镁离子的亲和柱洗脱液),可以提高AAV(如AAVz2)的产量和/或肝脏细胞靶向性,改变AAV在全身组织的分布。
在一个实施方式中,本公开的AAV载体可以装载异源多核苷酸用于将基因递送到靶细胞中。因此,本公开的AAV载体可用于在体外或体内将核酸递送至细胞。
在一个实施方式中,由AAV载体递送的异源多核苷酸编码充当报告子的多肽(即报告蛋白)。报告蛋白用于指示被AAV成功感染的细胞。这些报告蛋白包括但不限于绿色 荧光蛋白、β-半乳糖苷酶、碱性磷酸酶、荧光素酶和氯霉素乙酰转移酶。
在一个实施方式中,由AAV载体递送到靶细胞的异源多核苷酸编码用于治疗用途的天然蛋白质,所述天然蛋白质经密码子优化或未经密码子优化。此类天然蛋白质包括但不限于:可用于治疗各种肌肉疾病的蛋白,例如,囊性纤维化跨膜调节蛋白(CFTR)、肌营养不良蛋白(包括一些截短的形式,称为微型肌营养不良蛋白或微肌营养不良蛋白)、微型凝集素、整联蛋白-β1、层粘连蛋白-β2、肌聚糖-α、肌聚糖-β、肌节蛋白、突触核蛋白、促性腺激素、微型促卵磷脂、Lamin A/C、四个半LIM结构域蛋白1(FHL1)、卵泡抑素、SOD1、SOD2、全长或显性负性肌生长抑制素;血管生成因子(例如VEGF,血管生成素1或2)和血管生成抑制剂(例如内皮抑素和血管抑制素);抗炎多肽(例如,抗炎白细胞介素4、10、11和13,全长和显性突变体Ikappa B、Pinch和ILK基因);凝血因子(例如凝血因子VIII、凝血因子IX、凝血因子X);血影蛋白、酪氨酸羟化酶、芳香族L-氨基酸脱羧酶、瘦素和瘦素受体;神经营养因子(例如BDNF、GDNF、NGF、信号素、SLIT1、SLIT2、SLIT3、FGF7、FGF10和FGF22)以及相应的神经营养蛋白受体;LDL受体、脂蛋白脂肪酶、肾上腺素能受体-α和β、B-球蛋白、C-球蛋白;胰岛素样生长因子,例如IGF-1和IGF-2;腺苷脱氨酶和骨形态发生蛋白超家族(例如BMP1、BMP2、BMP4、BMP6、BMP7、TGF-β、RANKL);以及,与维持视力、视网膜层结构、视网膜细胞(例如感光细胞和视网膜色素上皮)功能有关的分子,例如RPE65、RPGR、Bestrophin-1、CNGA3、CNGB3、Retinoschisin、ABCA4和视网膜特异性ABC转运蛋白。
在一个实施方式中,由AAV载体递送到靶细胞的异源多核苷酸编码合成多肽,包括但不限于,Aflibercept、各种重组白介素(例如白介素-1和白介素-18)、TNF-α拮抗可溶性受体、激活素II型可溶性受体、抗VEGF抗体、抗硬化蛋白抗体、抗RANKL抗体、抗C5抗体、抗PD-1抗体、抗PD-L1抗体、抗CTLA-4抗体、抗CGRP抗体、抗HER2抗体、抗EGFR抗体、针对促炎细胞因子的抗体及其受体。
在一些实施方式中,包装在AAV病毒颗粒中的多核苷酸可以编码人工合成的多肽或蛋白质并将其递送于肝脏细胞中表达、分泌并随血液循环作用于全身。这类多肽或蛋白包括但不限于:Aflibercept(由Rengeron Pharmaceuticals生产的具有抗血管生成作用的重组VEGF可溶性受体);重组白介素1、18和TNF-α拮抗可溶性受体;激活素II型可溶性受体;抗体或单链抗体,包括但不限于抗VEGF抗体(例如贝伐单抗,雷珠单抗和Brolucizumab)、抗硬化蛋白抗体(例如Romosozumab和Blosozumab)、抗RANKL抗体(例如Denosumab)、抗补体成分C5抗体(例如Ravulizumab和Eculizumab)、抗PD-1 抗体(例如Nivolumab、Pembrolizumab和Cemiplimab)、PD-L1抗体(例如Avelumab和Atezolizumab)、抗CTLA-4抗体(例如Ipilimumab)、抗CGRP抗体(例如Fremanezumab、Galcanezumab和Erenumab)、抗HER2抗体(例如Trastuzumab和Pertuzumab)、抗EGFR抗体(例如Cetuximab、Panitumumab和Necitumumab)、针对促炎细胞因子的抗体及其受体(例如Sarilumab、Siltuximab、Tocilizumab、Canakinumab、Golimumab、Certolizumab、Adalimumab、Infliximab、Daclizumab和Basiliximab);修饰的酶,例如Cethrin(可从BioAxone BioSciences Inc.获得的神经保护药物用于治疗脊髓损伤);可产生疫苗的抗原或抗原片段(例如冠状病毒病2019(COVID 2019)或严重急性呼吸系统综合症(SARS)冠状病毒的刺突蛋白,甲、乙、丙型肝炎和人免疫缺陷病毒(HIV)的包膜蛋白,多种肿瘤细胞免疫原,例如MAGE抗原,HER2,ErbB2,粘蛋白抗原和雌激素受体)。疫苗可以引发保护性免疫反应预防某些疾病的发作。以肌内注射为代表的将抗体或疫苗递送到受试者体内的方法是本领域技术人员已知的。
在一个实施方式中,由AAV载体递送的异源多核苷酸可由RNAi组分(例如,siRNA、shRNA、snRNA、microRNA、核酶、反义寡核苷酸和反义多核苷酸)组成,它们可以敲低以异常方式激活的任何内源基因或侵入宿主细胞的异源基因,例如,本领域已知的病毒或细菌的多核苷酸。RNAi组分通常与其靶基因在序列上具有60-100%的同一性,并导致相应的蛋白质产物减少至少30%(例如30%、40%、50%、60%、70%、80%、90%、100%)。
在一个实施方式中,由AAV载体递送的异源多核苷酸包含调节序列,例如转录/翻译控制信号、复制起点、聚腺苷酸化信号、内部核糖体进入位点(IRES)或2A信号(例如,P2A、T2A、F2A)、启动子和增强子(例如CMV启动子或具有脊椎动物β-肌动蛋白、β-球蛋白或β-球蛋白调节元件的其他杂CMV启动子、EF1启动子、泛素启动子、T7启动子、SV40启动子、VP16或VP64启动子)。启动子和增强子的使用取决于它们的组织特异性表达谱。启动子/增强子也可以被化学药品或激素(如强力霉素或他莫昔芬)诱导,具体取决于在所需时间点触发基因表达的需要。此外,启动子/增强子可以是天然序列或合成序列,即原核或真核序列。
在一个实施方式中,用于基因表达的诱导型调控元件可以是组织特异性或组织嗜性启动子/增强子元件,包括但不限于:骨骼肌特异性启动子,例如MCK、HSA、肌生成素启动子;以及对各种类型的眼细胞具有特异性的启动子,例如神经节细胞特异性启动子(例如Tuj1启动子)、星形胶质细胞和Müller细胞特异性启动子(例如GFAP启动子)和视网膜色素上皮特异性启动子(例如RPE65启动子)。
在一个实施方式中,本公开的AAV载体包含AAV衣壳蛋白和病毒基因组,病毒基因组可以是天然的AAV基因组或者是用于治疗目的的异源多核苷酸的重组载体。在一个实施方式中,异源多核苷酸编码哺乳动物蛋白或RNAi组分(例如,shRNA、siRNA、反义寡核苷酸)。在一个实施方式中,异源多核苷酸编码某些抗体、抗原、合成蛋白质或多肽的氨基酸序列。
在一个实施方式中,病毒基因组的翻译产物会增强、抑制、削弱、保护、触发或预防哺乳动物中参与代谢调节和健康维持的一种或多种内源信号通路。
在一个实施方式中,可以将本公开的AAV病毒颗粒在体外施用给宿主细胞,然后将细胞植入受试者中。由此,包装在病毒中的异源核酸通过细胞被引入受试者体内进行转录和/或翻译,产生从细胞分泌到受试者体内或调节宿主细胞生物活性的蛋白质或RNA产物,从而起到治疗作用。
在一个实施方式中,本公开的AAV载体被制成药物制剂(例如,注射剂、片剂、胶囊剂、散剂、滴眼剂)施用于人或其他哺乳动物。该药物制剂还包含其他成分,例如药物辅料、水溶性或有机溶剂(例如水、甘油、乙醇、甲醇、异丙醇、氯仿、苯酚或聚乙二醇)、盐(例如氯化钠、氯化钾、磷酸盐、乙酸盐、碳酸氢盐、Tris-HCl和Tris-乙酸盐)、延缓溶解试剂(例如石蜡)、表面活性剂、抗微生物剂、脂质体、脂质复合物、免疫抑制剂(例如可的松、泼尼松、环孢霉素)、非甾体抗炎药(NSAID,例如阿司匹林、布洛芬、对乙酰氨基酚)微球、硬质基质、半固体载体、纳米球或纳米颗粒。药物制剂中AAV颗粒的滴度可以为10 5-10 14vg/mL。此外,可以通过吸入、全身或局部(例如,静脉内、皮下、眼内、玻璃体内、视网膜下、脉络膜上、肠胃外、肌内、脑室内、口服、腹膜内和鞘内)给药方式以单剂量或多剂量递送AAV。
在一个实施方式中,本公开提供了一种药物,其包含本公开的AAV载体和可使AAV载体成药的试剂(例如,盐、有机物和表面活性剂)。药物可用于体外转导细胞或体内转导哺乳动物(例如啮齿动物、灵长类动物和人类),从而治疗各种疾病,例如眼部疾病和肌肉疾病。
在本文中,眼部疾病选自:视网膜的遗传性营养不良、青光眼、青光眼神经病变、年龄相关性黄斑变性、屈光不正、干眼症、眼部炎症的遗传性营养不良、眼部炎症、葡萄膜炎、眼眶炎症、白内障、过敏性结膜炎、糖尿病视网膜病变、黄斑水肿、角膜水肿、圆锥角膜、增生性玻璃体视网膜病变(纤维化)、视网膜周围纤维化、中心性浆液性脉络膜视网膜病变、玻璃体视网膜病变、玻璃体黄斑牵引和玻璃体出血。在一个实施方式中,眼部 疾病涉及眼睛和/或视觉功能的退化。
在一个实施方式中,治疗眼部疾病是指改善接受治疗的患者的视敏度、对比度视力、色觉以及视野。
在本文中,肌肉疾病可以是由于肌肉功能下降、肌肉消耗或肌肉退化而引起的肌肉疾病,可以选自:Duchenne肌营养不良(DMD)、Emery-Dreifuss肌营养不良(EDMD)、肢带肌营养不良(LGMD)、重症肌无力、先天性肌无力综合症、肌少症、恶病质、肌萎缩性侧索硬化症(ALS)、I型和II型肌强直性营养不良。
在一个实施方式中,治疗肌肉疾病是指抑制或延迟肌肉疾病的发生、增进肌肉量、改善肌肉强度或改善肌肉功能。
在一个实施方式中,本公开的药物以10 5-10 14vg/mL的滴度包含本公开的AAV病毒颗粒。
在一个实施方式中,本公开的药物用于预防和/或治疗疾病,如肝脏疾病,包括但不限于原发或继发性肝癌、肝硬化、肝脓肿、脂肪肝、酒精性肝病、肝移植、甲型肝炎、乙型肝炎、丙型肝炎、丁型肝炎、戊型肝炎、自身免疫性肝炎、药物毒性肝炎以及其他肝炎;以及其他与肝脏间接相关或需要递送药物至肝脏的疾病,例如A型和B型血友病、溶酶体贮积症(例如MPS II和III)、法布里综合征(Fabry’s disease)、糖原贮积症、贝墩氏症(Batten disease)、高歇氏病(Gaucher’s disease)、沃尔曼氏症(Wolman’s disease)、威尔逊氏症(Wilson’s disease)、自身免疫性疾病(例如多发性硬化症、重症肌无力、风湿或类风湿性关节炎、红斑狼疮、自身免疫性心脏病)、心血管疾病或肺部疾病(例如高血压、动脉粥样硬化、高胆固醇血症、慢性阻塞性肺疾病)、高血氨症、糖尿病、沙费利波综合征、综合性创伤、肾衰竭、贫血。
在一些实施方式中,本公开的AAV载体应用于需要标记特定细胞(如肝脏细胞)的情况,例如研究实验。
在一个实施方式中,本公开涉及由细胞生产AAV载体的方法。所述细胞支持高效转染编码AAV Rep/Cap蛋白的质粒、辅助基因和编码天然病毒基因组或异源蛋白的重组载体。可以采用本领域技术人员熟知的三质粒转染法,由HEK293细胞生产本公开的AAV载体。例如,通过将编码GFP等重组蛋白的顺向质粒、AAV Rep/Cap质粒、pHelper质粒共转染至HEK293细胞中,来生产本公开的AAV载体。
可以采用本领域技术人员熟知的标准方法来生产多肽、抗体或抗原结合片段;改变核酸序列;生产转化细胞;构建重组AAV载体;改造衣壳蛋白;包装表达AAV Rep和Cap 序列的载体;瞬时转染和稳定转染包装细胞。
下面结合附图和实施例对本公开作进一步详细的说明。以下实施例仅用于说明本公开而不用于限制本公开的范围。实施例中未注明具体条件的实验方法,系按照本领域已知的常规条件,或按照制造厂商所建议的条件进行操作。
实施例
实施例1:改造和筛选AAV
如图1A所示:首先,将改造的AAV库和辅助质粒转染至HEK293细胞中。接着,将包含AAV的HEK293细胞裂解物和Ad5(腺病毒5型)一起加入到培养的C2C12成肌细胞中。富集细胞裂解物并重复感染C2C12细胞4-5次。通过对C2C12细胞裂解物进行PCR来富集候选AAV衣壳的病毒基因组带并进行测序。通过筛选,挑选出富集度高的血清型序列,得到血清型突变体AAVz1、AAVz2、AAVz3、AAVz81、AAVz82、AAVz84(图1B)。
各AAV颗粒通过AAVX(Thermo Scientific)亲和柱层析加碘克沙醇超速离心的方法进行纯化,具体如下。
1)预处理步骤:在三质粒转染48小时后,收取细胞和上清液,加入0.1%的Triton X-100后,静置30分钟裂解细胞。然后加入5mM杜灭芬(domiphen bromide),静置30分钟沉淀核酸。然后,加入300mM NaCl调节电导率。在9000rpm离心30分钟。取离心后的上清液,浓缩至500mL。
2)亲和柱层析步骤:将浓缩的上清液装载至亲和层析柱上(AAVX树脂,Thermo Scientific),用平衡液(20mM Tris-HCl、500mM NaCl、0.05%泊洛沙姆188,pH=7.2)润洗。平衡亲和层析10个柱体积后,进行病毒样品的上样。病毒样品全部上样完成后,用平衡液进行后平衡。平衡10个柱体积后,用洗脱液A(1M AcOH、500mM NaCl、0.05%泊洛沙姆188,pH=2.5)洗脱病毒,收集洗脱液并调节pH至约7。
3)碘克沙醇超速离心步骤:将前一步骤所得溶液装载至15%、25%、40%、60%碘克沙醇密度梯度上方并在65000rpm离心2.5h,收集6mL病毒溶液。
4)浓缩步骤:将前一步骤所得溶液用病毒稀释液(PBS+300mM NaCl+0.05%泊洛沙姆188)浓缩至200-500μl,用于下一步实验以确定载体的实心率、组织靶向性和中和抗体阳性血清比。
实施例2:各AAV颗粒的产量和实心率
用如实施例1所述的方法纯化5×10 7个细胞中生产的AAV突变体(AAVz1、AAVz2、 AAVz3、AAVz81、AAVz82、AAVz84)和野生型AAV(AAV5、AAV8和AAV9)病毒颗粒。然后,将病毒颗粒稀释10000倍,用DNase I在37℃消化1小时,在100℃放置10分钟灭活DNase I。通过qPCR和银染实验对病毒产量进行定量。接着,用已知滴度的AAV8病毒标准品以10倍梯度稀释的6个滴度梯度(1x10 10、1x10 9、1x10 8、1x10 7、1x10 6、1x10 5vg/ml)作为标准品,计算qPCR定量结果与银染定量结果的比值,得到AAV的实心率。
如图1C所示,qPCR定量的由HEK293细胞产生的实心AAV突变体病毒基因组数目与野生型AAV5、8、9相当,这表明寡肽的插入和替换对病毒的生产没有明显负面影响。此外,图1C显示,AAVz2、AAVz3、AAVz81、AAVz82和AAVz84病毒颗粒的实心率显著高于野生型AAV5、8、9。
实施例3:突变体AAV的C2C12转导特异性
为了研究转导特异性,用携带GFP基因的各AAV(其通过如实施例1所述的方法纯化)感染细胞,感染复数(MOI)为1×10 5vg/细胞。AAV处理72h后获取图片。
如图2A所示,野生型AAV8或AAV9在C2C12成肌细胞(肌细胞祖细胞)、C28/I2(人软骨细胞系)细胞和Huh7(肝细胞谱系中的人肝癌细胞系)细胞中表现出明显的转导,且野生型AAV5几乎对所有细胞均不感染。与此相对,AAVz1、AAVz2和AAVz3在C2C12成肌细胞中显示出稳定高效的GFP表达,并且仅较少地转导了C28/I2、Huh7和HEK293细胞。
此外,通过计算GFP阳性C2C12细胞与GFP阳性C28/I2、Huh7和HEK293细胞的比值,进一步量化了突变体AAVz1、AAVz2和AAVz3对C2C12的感染特异性。结果显示,AAVz1、AAVz2和AAVz3的C2C12转导特异性比AAV5、8和9高3-4倍(图2B至图2D)。
实施例4:突变体AAV的肌肉靶向性
向C57BL/6小鼠通过尾静脉注射1×10 13vg/kg的携带GFP基因的各AAV病毒颗粒(其通过如实施例1所述的方法纯化)。病毒静脉注射4周后,分离出肝、心脏、肺、脾进行免疫染色(图3A)。向C57BL/6小鼠的后肢肌肉注射携带GFP基因的各AAV病毒颗粒(5×10 10vg/鼠)。病毒注射4周后,分离出腓肠肌(GA)、胫前肌(TA)和比目鱼肌(SO)进行免疫染色(图3B)。
此外,通过计算GFP阳性肌肉细胞(GA、TA和SO的平均值)与GFP阳性肝细胞、心细胞、肺细胞和脾细胞的比值,进一步量化了突变体AAVz1、AAVz2和AAVz3对肌肉 细胞的特异性。结果显示,在AAVz1、AAVz2和AAVz3组中,肌肉相对于其他器官(如肝脏、心脏、肺和脾脏)的转导特异性明显高于野生型AAV(AAV5、8、9)组(图3C至图3F)。
上述结果证明了突变体AAVz1、AAVz2和AAVz3具有优于AAV5、8、9的优异的肌肉靶向特异性。
实施例5:突变体AAV的视网膜靶向性
以3×10 9vg/眼的剂量向C57BL/6小鼠的玻璃体内注射携带GFP的各AAV病毒颗粒(其通过如实施例1所述的方法纯化)。注射3周后获取GFP信号的图片(图4A)。小鼠的视网膜用各AAV病毒颗粒感染后,进行GFP、DAPI和视锥细胞标记物S-视蛋白染色。
结果显示,尽管采用玻璃体内给药,但突变体AAVz1、AAVz2和AAVz3仍能够扩散到视网膜中的感光层,而AAV5、8、9则几乎没有(图4B)。此外,如图4C所示,AAVz1和AAVz3的视网膜GFP荧光水平显著高于AAV5、8、9(约4倍),AAVz2的视网膜GFP荧光水平也优于AAV5、8、9,表明突变体AAVz1、AAVz2和AAVz3相比野生型AAV5、8、9有更好的视网膜靶向性。
实施例6:AAVz84的中和抗体阳性血清比
测定中和抗体滴度:将Huh7细胞以5x10 4个/孔的密度接种于48孔板上。将猴子编号1-10的猴血清从1:1开始依次按4倍梯度稀释并与5x10 9vg AAV混合,将血清-病毒混合物在4℃放置1小时。然后,将血清-病毒混合物和Hochest添加到Huh7细胞中,置于37℃培养2小时。然后,更换10%FBS+DMEM血清,48小时后,用酶标仪检测病毒表达的Luciferase活性。与阴性对照血清组相比Luciferase活性降低一半时对应的血清稀释倍数即为中和抗体滴度(如下表1所示),滴度大于或等于1:4即为中和抗体阳性血清。
表1.中和抗体滴度
猴子编号 AAV2 AAV9 AAVz84
1 1:4 <1:1 <1:1
2 1:8 <1:1 <1:1
3 <1:1 <1:1 <1:1
4 1:4 <1:1 <1:1
5 1:32 1:16 1:2
6 1:4 1:4 <1:1
7 1:16 1:16 1:4
8 1:32 1:4 1:8
9 1:16 1:8 1:2
10 1:8 1:16 <1:1
由表1可以看出,AAVz84病毒颗粒的中和抗体阳性猴子数量(2/10)要明显低于AAV2(9/10)和AAV9(6/10)。由此可见,AAVz84血清型在一定程度上规避了中和抗体。
以上实验结果表明,与野生型AAV5、AAV8和AAV9相比,在AAV5衣壳蛋白的Q574之后插入了合成寡肽“PLPSPSRL”、“FAPTPGP”或“PGVTPAP”的本公开的AAV突变体在小鼠的视网膜和肌肉的转导得到改善。本公开的AAV突变体在其他组织(比如心、肺、脾)中的转导效率明显低于野生型AAV(AAV5、AAV8和AAV9),表明本公开的AAV突变体具有更好的肌肉和视网膜组织靶向性。因此,与野生型AAV5、8、9相比,当本公开的AAV突变体在临床上用作治疗载体时,脱靶组织的感染率和潜在不良反应的发生率均降低。
此外,与野生型AAV5、AAV8和AAV9相比,用寡肽“GIVADGNTAP”替换AAV5衣壳蛋白的可变区VRVIII的aa574-579得到的AAVz81突变体、用寡肽GIVADNLQQQ替换AAV5衣壳蛋白的可变区VRVIII的aa574-579并引入T711S的点突变所得到的AAVz82突变体以及用寡肽QTLGFSQGGPNT替换AAV5衣壳蛋白的可变区VRVIII的aa573-579得到的AAVz84突变体的实心率显著升高。因此,与野生型AAV5、8、9相比,当本公开的AAV突变体在临床上用作治疗载体时,潜在不良反应的发生率降低,可以取得更好的治疗效果。另外,本公开的AAVz84突变体可以在一定程度上规避中和抗体,给由于高滴度的中和抗体而不能接受野生型AAV的患者提供了更好的选择。
实施例7.AAV的纯化
通过如实施例1所述的方法,对野生型AAV(例如AAV2、AAV5、AAV8和AAV9)进行纯化(野生型AAV如无特殊说明均采用此纯化方法),具体如下:
1)预处理步骤:在三质粒转染48小时后,收取细胞和上清液,加入0.1%的Triton X-100后,静置30分钟裂解细胞。然后加入5mM杜灭芬(domiphen bromide),静置30分钟沉淀核酸。然后,加入300mM NaCl调节电导率。在9000rpm离心30分钟。取离心后的上清液,浓缩至500mL。
2)亲和柱层析步骤:将浓缩的上清液装载至亲和层析柱上(AAVX树脂,Thermo Scientific),用平衡液(20mM Tris-HCl、500mM NaCl、0.05%泊洛沙姆188,pH=7.2)润洗。平衡亲和层析10个柱体积后,进行病毒样品的上样。病毒样品全部上样完成后,用平衡液进行后平衡。平衡10个柱体积后,用洗脱液A(1M AcOH、500mM NaCl、0.05%泊洛沙姆188,pH=2.5)洗脱病毒,收集洗脱液并调节pH至约7。
3)碘克沙醇超速离心步骤:将前一步骤所得溶液装载至15%、25%、40%、60%碘克沙醇密度梯度上方并在65000rpm离心2.5h,收集6mL病毒溶液。
4)浓缩步骤:将前一步骤所得溶液用病毒稀释液(PBS+300mM NaCl+0.05%泊洛沙姆188)浓缩至3mL。
通过与上述野生型AAV相同的纯化步骤,对AAVz2进行纯化,得到AAVz2-0。
通过与上述野生型AAV相同的纯化步骤,对AAVz2进行纯化,得到AAVz2-1,不同之处在于将2)亲和柱层析步骤替换为与3)碘克沙醇超速离心步骤相同的步骤。
通过与上述野生型AAV相同的纯化步骤,对AAVz2进行纯化,得到AAVz2-2,不同之处在于将2)亲和柱层析步骤中使用的洗脱液A替换为洗脱液B(1M AcOH、500mM精氨酸、2mM MgCl 2、500mM NaCl、0.05%泊洛沙姆188,pH=2.5)+洗脱液C(6M尿素,2mM MgCl 2)。
接着,通过qPCR和银染,对采用不同纯化方法获得的AAV的病毒产量进行定量。
结果显示,用非亲和层析的两步碘克沙醇超速离心方法得到的AAVz2-1的病毒基因组数目和病毒颗粒数与野生型AAV5、8、9以及AAVz2-0相当,且远高于野生型AAV2。出人意料的是,采用了特定洗脱液的AAVz2-2的产量与其他AAV相比显著增加(提高了约50%)(图5B和图5C)。
为了验证洗脱液中精氨酸和镁离子的添加对病毒纯化的影响,分别使用洗脱液A+洗脱液C以及洗脱液B+洗脱液C,采用上述相同步骤对野生型AAV5进行纯化,获得AAV5-2。结果显示,洗脱液中精氨酸和镁离子的添加提高了病毒的产量(图6)。
此外,发明人发现,在200-2000mM的范围内调整洗脱液B中的精氨酸浓度或在0.5-3mM的范围内调整洗脱液B中的MgCl 2浓度时,所获得的AAVz2均具有与AAVz2-2基本相同的特性。
实施例8.纯化的AAV对小鼠肝脏的转导效率
为了研究实施例7中不同纯化方法获得的AAV的体内转导趋向,C57BL/6小鼠通过尾静脉注射1×10 13vg/kg剂量的包装有GFP编码基因的各种AAV血清型载体,在病毒注 射后3周后对肝脏、心脏、肺、脾和肾脏进行GFP和DAPI免疫荧光染色。
结果显示,AAVz2-1和AAVz2-2注射组中分别有高达92.25%和91.8%的肝细胞呈GFP阳性,显著优于AAV5注射组(仅22.64%),也优于AAV8(85.37%)和AAV9(88.11%)注射组(图7A)。并且,与AAV8和AAV9在心脏中也表现出较高转导效率以及对肺、脾和肾的轻度至中度感染性不同,AAVz2-1和AAVz2-2几乎不感染这些组织器官。上述结果表明,AAVz2-1和AAVz2-2具有特异性转导肝脏的能力。
对GFP信号进行定量,通过肝脏中GFP阳性细胞与其他组织/器官(心脏、肺、脾和肾脏)的比值来量化AAV的肝脏转导特异性。如图7B所示,AAVz2-1和AAVz2-2的肝脏相比于心脏、肺、脾和肾脏的相对特异性比AAV5、AAV8、AAV9和AAVz2-0高约4-11倍。这些结果再次证明了AAVz2-1和AAVz2-2的高肝脏靶向能力。
接着,测试了尾静脉注射各AAV的小鼠组织和器官中的GFP基因表达。C57BL/6小鼠通过尾静脉注射包装了GFP转基因的相应AAV血清型,剂量为1×10 13vg/kg。对肝脏、心脏、肺、脾、肾脏和大脑组织匀浆进行RT-PCR以检测AAV5、AAV8、AAV9和各种方法纯化的AAVz2所递送的GFP基因mRNA的表达,结果呈现为各组GFP的mRNA相比于AAV5组的相对值。
结果显示,AAVz2-1和AAVz2-2在肝脏中递送GFP的mRNA水平是AAV5的14.7±5.7倍,与AAV8和AAV9相当(图8)。并且,AAVz2-1和AAVz2-2在小鼠的心脏、肺、脾、肾脏和脑中的GFP表达水平与AAV5相似或低于AAV5,且显著低于AAV8和AAV9。此外,AAVz2-0在小鼠的肝脏、心脏、肺、脾、肾和脑中递送GFP的mRNA水平和AAV5接近。
上述结果表明,本公开的纯化方法可提高AAV对肝脏的转导特异性。
实施例9.纯化的AAV对小鼠骨骼肌的转导效率
为了研究实施例7中不同纯化方法获得的AAV对骨骼肌的感染能力,用相对高剂量(5×10 13vg/kg)的各AAV(包装GFP基因)尾静脉注射两种性别的C57BL/6小鼠。病毒注射后21天,用GFP对身体多个区域的肌肉,包括后肢(腓肠肌、股四头肌、比目鱼肌)、背部(胸最长肌)、前肢(肱三头肌)和颈部(胸锁乳突肌)进行免疫荧光染色。
如图9A和图9B所示,AAV9显示出对骨骼肌的最高转导效率:约60%的腓肠肌、股四头肌和三头肌细胞,30-40%的比目鱼肌和胸最长肌细胞成功表达GFP;AAV8排在第二位,约15-40%的腓肠肌、股四头肌和最长肌细胞被有效转导;在AAV5注射组中,GFP阳性的股四头肌细胞也达到了19.19%。相比之下,AAVz2-1和AAVz2-2所感染的肌纤维 数量可忽略不计,表明它们在体内几乎不转导骨骼肌细胞。这些结果进一步确认了AAVz2-1和AAVz2-2在静脉注射全身给药条件下的肝脏转导特异性。
实施例10.纯化的AAV对人源肝脏细胞系的转导效率
为了进一步研究实施例7中不同纯化方法获得的AAV在人源肝细胞中的转导效率,发明人选择了人类肝细胞癌细胞系Huh7和正常肝细胞系L02,这些细胞系经常应用于肝脏药物递送的研究。
结果显示,在感染复数(MOI)为1×10 5vg/细胞的情况下,AAVz2-1和AAVz2-2的GFP阳性细胞比例(即GFP信号面积与总细胞面积之比)显著高于AAVz2-0和AAV5(Huh7细胞为21.51倍,L02细胞为20.83倍),且略高于AAV8和AAV9(图10A和图10C)。
用Western blot检测Huh7和L02细胞裂解液中由AAV递送的GFP蛋白的表达,以微管蛋白作为内参。Western blot实验显示,AAVz2-1和AAVz2-2的GFP蛋白表达量显著高于AAVz2-0和AAV5(图10B和图10D)。
上述结果表明,本公开的纯化方法可有效改善AAV对人源肝脏细胞系的感染效率。
实施例11.AAV的中和抗体水平
血清中预先存在的中和抗体(Nab)可能导致用于基因治疗的AAV载体失活。在野生型AAV中,AAV5由于体循环Nab水平最低而具有显著优势,其在某些人群中的Nab阳性率仅为3%。
血友病是一种需要通过AAV载体将凝血因子IX基因递送至肝脏进行治疗的代表性疾病。发明人收集了10名B型血友病患者的血清样本,以1:2的比例梯度稀释,并与指定的编码荧光素酶的AAV载体混合,然后用病毒-血清混合物处理Huh7细胞。将荧光素酶活性抑制至少50%的最高血清稀释比定义为Nab滴度。
如表2所示,4/10的患者针对AAV8和AAV9的Nab滴度高于1:4,这被定义为Nab阳性。然而,没有一个患者对AAV5和AAVz2-1的Nab呈阳性。
表2.血友病B病人血清中各种AAV血清型的中和抗体水平
患者ID 抗AAV5 抗AAV8 抗AAV9 抗AAVz2-1
1 <1:1 1:16 1:16 1:2
2 <1:1 <1:1 <1:1 <1:1
3 <1:1 <1:1 <1:1 <1:1
4 <1:1 1:2 <1:1 <1:1
5 <1:1 <1:1 <1:1 <1:1
6 <1:1 1:8 1:16 <1:1
7 <1:1 <1:1 <1:1 <1:1
8 1:1 1:32 1:32 1:4
9 <1:1 1:32 1:32 1:1
10 <1:1 <1:1 <1:1 <1:1
此外,还检查了21只健康恒河猴的Nab阳性率。结果显示,3/21只猴子对AAV5的Nab呈阳性,4/21只猴子对AAV8的Nab呈阳性,9/21只猴子对AAV9的Nab呈阳性,1/21只猴子对AAVz2-1的Nab呈阳性(表3)。
表3.恒河猴血清中各种AAV血清型的中和抗体水平
猴ID 抗AAV5 抗AAV8 抗AAV9 抗AAVz2-1
1 1:2 1:4 1:8 1:1
2 1:1 1:1 1:16 1:2
3 1:8 1:32 1:32 1:8
4 <1:1 1:1 1:1 1:1
5 <1:1 <1:1 <1:1 <1:1
6 <1:1 <1:1 1:2 <1:1
7 1:4 1:16 1:32 1:4
8 1:8 1:4 1:8 1:4
9 1:16 1:2 1:8 1:4
10 <1:1 1:1 1:2 <1:1
11 1:1 1:2 1:1 <1:1
12 <1:1 <1:1 1:1 <1:1
13 1:2 <1:1 <1:1 <1:1
14 <1:1 <1:1 1:1 <1:1
15 <1:1 1:1 1:1 <1:1
16 1:4 1:1 1:2 1:1
17 1:2 1:8 1:8 1:1
18 1:2 1:8 1:16 1:2
19 1:1 1:1 1:8 <1:1
20 1:4 <1:1 1:2 <1:1
21 1:1 <1:1 1:1 <1:1
上述结果表明AAVz2-1具有低的Nab阳性率。
本公开中提及的所有出版物、专利申请、专利、核酸和氨基酸序列以及其他参考文献均通过引用全文的方式并入本文。
虽然通过参照本公开的某些优选实施方式,已经对本公开进行了图示和描述,但本领域的普通技术人员应该明白,以上内容是结合具体的实施方式对本公开所作的进一步详细说明,不能认定本公开的具体实施只局限于这些说明。本领域技术人员可以在形式上和细节上对其作各种改变,包括做出若干简单推演或替换,而不偏离本公开的精神和范围。

Claims (41)

  1. 腺相关病毒(AAV)衣壳蛋白,其中,所述AAV衣壳蛋白通过在AAV衣壳蛋白的可变区插入寡肽PLPSPSRL、FAPTPGP或PGVTPAP构建而成;通过用寡肽GIVADGNTAP或QTLGFSQGGPNT替换AAV衣壳蛋白的可变区的1-10个氨基酸构建而成;或者通过用寡肽GIVADNLQQQ替换AAV衣壳蛋白的可变区的1-10个氨基酸并引入T711S的点突变构建而成。
  2. 根据权利要求1所述的AAV衣壳蛋白,其中,所述AAV衣壳蛋白包括天然AAV衣壳蛋白和其他人工改造的AAV衣壳蛋白。
  3. 根据权利要求2所述的AAV衣壳蛋白,其中,所述天然AAV选自天然的AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11,AAV12、AAV-DJ、AAV-DJ8、AAV-DJ9、AAVrh8、AAVrh8R和AAVrh10,优选为天然的AAV5;所述其他人工改造的AAV选自人工改造的AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11,AAV12、AAV-DJ、AAV-DJ8、AAV-DJ9、AAVrh8、AAVrh8R和AAVrh10,优选为人工改造的AAV5。
  4. 根据权利要求1所述的AAV衣壳蛋白,其中,所述可变区选自VRII、VRIII、VRIV、VRV、VRVI、VRVII和VRVIII,优选VRVIII。
  5. 根据权利要求1所述的AAV衣壳蛋白,其中,所述寡肽PLPSPSRL、FAPTPGP或PGVTPAP插入至AAV衣壳蛋白的N573或Q574之后,优选插入至AAV衣壳蛋白的Q574之后,更优选插入至AAV5衣壳蛋白的Q574之后。
  6. 根据权利要求1所述的AAV衣壳蛋白,其中,所述AAV衣壳蛋白通过用寡肽GIVADGNTAP替换AAV5衣壳蛋白的可变区VRVIII的aa574-579构建而成;通过用寡肽GIVADNLQQQ替换AAV5衣壳蛋白的可变区VRVIII的aa574-579并引入T711S的点突变构建而成;或者通过用寡肽QTLGFSQGGPNT替换AAV5衣壳蛋白的可变区VRVIII的aa573-579构建而成。
  7. 根据权利要求1至6中任一项所述的AAV衣壳蛋白,其中,所述AAV衣壳蛋白的氨基酸序列与SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9或SEQ ID NO:11所示的氨基酸序列具有至少80%的同一性,优选至少85%、90%、95%、96%、97%、98%、99%或100%的同一性。
  8. 根据权利要求1至6中任一项所述的AAV衣壳蛋白,其中,所述AAV衣壳蛋白包含SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9或SEQ ID NO:11所示的氨基酸序列,优选所述AAV衣壳蛋白的氨基酸序列如SEQ ID NO:1、SEQ ID NO:3、SEQ ID NO:5、SEQ ID NO:7、SEQ ID NO:9或SEQ ID NO:11所示。
  9. 核酸分子,其中,所述核酸分子编码权利要求1至8中任一项所述的AAV衣壳蛋白。
  10. 根据权利要求9所述的核酸分子,其中,所述核酸分子的核苷酸序列与SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10或SEQ ID NO:12所示的核苷酸序列具有至少50%的同一性,优选至少60%、70%、80%、85%、90%、95%、96%、97%、98%、99%或100%的同一性。
  11. 根据权利要求9或10所述的核酸分子,其中,所述核酸分子包含SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10或SEQ ID NO:12所示的核苷酸序列,优选所述核酸分子的核苷酸序列如SEQ ID NO:2、SEQ ID NO:4、SEQ ID NO:6、SEQ ID NO:8、SEQ ID NO:10或SEQ ID NO:12所示。
  12. AAV载体,其中,所述AAV载体包含权利要求1至8中任一项所述的AAV衣壳蛋白。
  13. 根据权利要求12所述的AAV载体,其中,所述AAV载体还包含异源多核苷酸,所述异源多核苷酸包含编码治疗性蛋白质的核苷酸序列。
  14. 权利要求12或13所述的AAV载体在制备用于治疗眼部疾病或肌肉疾病的药物中 的应用。
  15. 药物,其包含权利要求12或13所述的AAV载体和可使病毒载体成药的试剂,优选所述药物用于治疗眼部疾病或肌肉疾病。
  16. 根据权利要求15所述的药物,其中,所述药物通过全身途径或局部途径施用,例如静脉内施用、肌内施用、皮下施用、经口施用、局部接触、腹膜内施用和病灶内施用,优选局部施用于眼睛,特别是作为滴眼剂施用、眼内注射或玻璃体内注射到眼睛中。
  17. 根据权利要求15或16所述的药物,其中,可使病毒载体成药的试剂包括盐、有机物和表面活性剂。
  18. 一种纯化腺相关病毒(AAV)的方法,其中,所述方法包括:
    (a)将含有AAV的溶液加样到亲和层析柱上;
    (b)用包含精氨酸和镁离子的第一洗脱液从亲和层析柱上洗脱AAV,收集含AAV的洗脱液;
    (c)对步骤(b)获得的含AAV的洗脱液进行超速离心。
  19. 根据权利要求18所述的方法,其中,所述精氨酸的浓度为200mM至2000mM,优选400mM至1000mM,更优选500mM至800mM;和/或所述镁离子的浓度为0.5mM至3mM,优选1mM至3mM,更优选1.5mM至2.5mM。
  20. 根据权利要求18或19所述的方法,其中,所述第一洗脱液包含:0.1-2M AcOH、200-2000mM精氨酸、137-600mM NaCl或Na 2SO 4、0.5-3mM MgCl 2或MgSO 4,以及0.05%泊洛沙姆188;优选地,所述第一洗脱液的pH为2.5~3.2。
  21. 根据权利要求18至20中任一项所述的方法,其中,步骤(b)中还使用包含尿素和镁离子的第二洗脱液进行AAV的洗脱。
  22. 根据权利要求21所述的方法,其中,所述第二洗脱液包含2-6M尿素和0.5-3mM MgCl 2
  23. 根据权利要求18至22中任一项所述的方法,其中,所述超速离心为碘克沙醇密度梯度超速离心或氯化铯密度梯度超速离心。
  24. 根据权利要求18至23中任一项所述的方法,其中,所述AAV为AAVz2。
  25. 由权利要求1至24中任一项所述的方法获得的AAV。
  26. 根据权利要求25所述的AAV,其中,所述AAV是AAVz2。
  27. 权利要求25或26所述的AAV在制备用于治疗疾病的药物中的应用,其中,所述疾病为肝脏疾病或需要递送基因至肝脏中表达的其他疾病。
  28. 根据权利要求27所述的应用,其中,肝脏疾病包括:原发或继发性肝癌、肝硬化、肝脓肿、脂肪肝、酒精性肝病、肝移植、甲型肝炎、乙型肝炎、丙型肝炎、丁型肝炎、戊型肝炎、自身免疫性肝炎、药物毒性肝炎以及其他肝炎。
  29. 根据权利要求27或28所述的应用,其中,需要递送基因至肝脏中表达的其他疾病包括:A型和B型血友病、溶酶体贮积症(例如MPS II和III)、法布里综合征、糖原贮积症、贝墩氏症、高歇氏病、沃尔曼氏症、威尔逊氏症、自身免疫性疾病(例如多发性硬化症、重症肌无力、风湿或类风湿性关节炎、红斑狼疮、自身免疫性心脏病)、心血管疾病或肺部疾病(例如高血压、动脉粥样硬化、高胆固醇血症、慢性阻塞性肺疾病)、高血氨症、糖尿病、沙费利波综合征、综合性创伤、肾衰竭、贫血。
  30. 亲和柱洗脱液,其包含:精氨酸和镁离子;优选200-2000mM精氨酸和0.5-3mM镁离子。
  31. 根据权利要求30所述的亲和柱洗脱液,其中,所述亲和柱洗脱液包含:0.1-2M AcOH、200-2000mM精氨酸、137-600mM NaCl或Na 2SO 4、0.5-3mM MgCl 2或MgSO 4,以及0.05%泊洛沙姆188;优选地,所述亲和柱洗脱液的pH为2.5~3.2。
  32. 一种纯化的腺相关病毒(AAV),其中,所述AAV通过两步的碘克沙醇密度梯度超速离心纯化获得,所述AAV为AAVz2,其氨基酸序列如SEQ ID NO:3所示。
  33. 根据权利要求32所述的AAV,其中,所述碘克沙醇密度梯度包括:15w/v%、25w/v%、40w/v%、60w/v%的碘克沙醇。
  34. 根据权利要求32或33所述的AAV,其中,所述AAV是真核细胞或原核细胞包装生产的AAV。
  35. 根据权利要求32或33所述的AAV,其中,所述AAV的纯化不包括亲和柱层析步骤。
  36. 权利要求32至35中任一项所述的AAV在制备用于治疗疾病的药物中的应用,其中,所述疾病为肝脏疾病或需要递送基因至肝脏中表达的其他疾病。
  37. 根据权利要求36所述的应用,其中,肝脏疾病包括:原发或继发性肝癌、肝硬化、肝脓肿、脂肪肝、酒精性肝病、肝移植、甲型肝炎、乙型肝炎、丙型肝炎、丁型肝炎、戊型肝炎、自身免疫性肝炎、药物毒性肝炎以及其他肝炎。
  38. 根据权利要求36或37所述的应用,其中,需要递送基因至肝脏中表达的其他疾病包括:A型和B型血友病、溶酶体贮积症(例如MPS II和III)、法布里综合征、糖原贮积症、贝墩氏症、高歇氏病、沃尔曼氏症、威尔逊氏症、自身免疫性疾病(例如多发性硬化症、重症肌无力、风湿或类风湿性关节炎、红斑狼疮、自身免疫性心脏病)、心血管疾病或肺部疾病(例如高血压、动脉粥样硬化、高胆固醇血症、慢性阻塞性肺疾病)、高血氨症、糖尿病、沙费利波综合征、综合性创伤、肾衰竭、贫血。
  39. 药物,其包含:权利要求32至35中任一项所述的AAV和赋形剂。
  40. 根据权利要求39所述的药物,其中,所述药物通过全身途径或局部途径施用,优选静脉内施用、口服施用、鼻腔内施用、翘内施用、肌肉内施用、皮下施用、腹膜内施用或病灶内施用;优选通过全身途径或局部途径施用于肝脏。
  41. 根据权利要求39或40所述的药物,其中,所述赋形剂包括:盐、有机物和/或表面活性剂。
PCT/CN2022/087162 2021-04-19 2022-04-15 重组腺相关病毒及其应用 WO2022222869A1 (zh)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN202110419578.0A CN113121651B (zh) 2021-04-19 2021-04-19 低中和抗体腺相关病毒衣壳蛋白
CN202110420886.5 2021-04-19
CN202110420840.3 2021-04-19
CN202110420840.3A CN113121653B (zh) 2021-04-19 2021-04-19 肌肉和视网膜特异性的新型腺相关病毒衣壳蛋白
CN202110420908.8A CN113121655B (zh) 2021-04-19 2021-04-19 眼部和肌肉特异靶向型腺相关病毒载体及其应用
CN202110419578.0 2021-04-19
CN202110420736.4 2021-04-19
CN202110420908.8 2021-04-19
CN202110420736.4A CN113121652B (zh) 2021-04-19 2021-04-19 视网膜和肌肉高亲和性腺相关病毒衣壳蛋白及相关应用
CN202110420886.5A CN113121654B (zh) 2021-04-19 2021-04-19 腺相关病毒衣壳蛋白及包含其的腺相关病毒载体
CN202110420900.1 2021-04-19
CN202110420900.1A CN112961220B (zh) 2021-04-19 2021-04-19 腺相关病毒衣壳蛋白及包含其的腺相关病毒载体
CN202210344551.4 2022-03-31
CN202210331754.X 2022-03-31
CN202210344551.4A CN114591921A (zh) 2022-03-31 2022-03-31 腺相关病毒的纯化方法和洗脱液
CN202210331754.XA CN114686448A (zh) 2022-03-31 2022-03-31 具有肝脏特异靶向性的纯化的腺相关病毒及其应用

Publications (1)

Publication Number Publication Date
WO2022222869A1 true WO2022222869A1 (zh) 2022-10-27

Family

ID=83721956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087162 WO2022222869A1 (zh) 2021-04-19 2022-04-15 重组腺相关病毒及其应用

Country Status (1)

Country Link
WO (1) WO2022222869A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113121651A (zh) * 2021-04-19 2021-07-16 信念医药科技(上海)有限公司 新型低中和抗体腺相关病毒衣壳蛋白
CN113121654A (zh) * 2021-04-19 2021-07-16 信念医药科技(上海)有限公司 新型腺相关病毒衣壳蛋白及包含其的新型腺相关病毒载体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111655285A (zh) * 2017-12-29 2020-09-11 百深公司 腺相关病毒的纯化方法
CN112961220A (zh) * 2021-04-19 2021-06-15 信念医药科技(上海)有限公司 新型腺相关病毒衣壳蛋白及包含其的新型腺相关病毒载体
CN113121655A (zh) * 2021-04-19 2021-07-16 上海信致医药科技有限公司 眼部和肌肉特异靶向型腺相关病毒载体及其应用
CN113121654A (zh) * 2021-04-19 2021-07-16 信念医药科技(上海)有限公司 新型腺相关病毒衣壳蛋白及包含其的新型腺相关病毒载体
CN113121652A (zh) * 2021-04-19 2021-07-16 上海信致医药科技有限公司 视网膜和肌肉高亲和性腺相关病毒衣壳蛋白及相关应用
CN113121651A (zh) * 2021-04-19 2021-07-16 信念医药科技(上海)有限公司 新型低中和抗体腺相关病毒衣壳蛋白
CN113121653A (zh) * 2021-04-19 2021-07-16 上海信致医药科技有限公司 肌肉和视网膜特异性的新型腺相关病毒衣壳蛋白

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111655285A (zh) * 2017-12-29 2020-09-11 百深公司 腺相关病毒的纯化方法
CN112961220A (zh) * 2021-04-19 2021-06-15 信念医药科技(上海)有限公司 新型腺相关病毒衣壳蛋白及包含其的新型腺相关病毒载体
CN113121655A (zh) * 2021-04-19 2021-07-16 上海信致医药科技有限公司 眼部和肌肉特异靶向型腺相关病毒载体及其应用
CN113121654A (zh) * 2021-04-19 2021-07-16 信念医药科技(上海)有限公司 新型腺相关病毒衣壳蛋白及包含其的新型腺相关病毒载体
CN113121652A (zh) * 2021-04-19 2021-07-16 上海信致医药科技有限公司 视网膜和肌肉高亲和性腺相关病毒衣壳蛋白及相关应用
CN113121651A (zh) * 2021-04-19 2021-07-16 信念医药科技(上海)有限公司 新型低中和抗体腺相关病毒衣壳蛋白
CN113121653A (zh) * 2021-04-19 2021-07-16 上海信致医药科技有限公司 肌肉和视网膜特异性的新型腺相关病毒衣壳蛋白

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
.: "Scalable production and purification of adeno-associated virus (AAV) vector using the ExpiSf Expression System", APPLICATION NOTE - GIBCO, THERMO FISHER SCIENTIFIC, 31 December 2020 (2020-12-31), pages 1 - 5, XP055980999, Retrieved from the Internet <URL:http:// www.thermofisher.com> [retrieved on 20221114] *
K VARADI, S MICHELFELDER, T KORFF, M HECKER, M TREPEL, H A KATUS, J A KLEINSCHMIDT, O J MÜLLER: "Novel random peptide libraries displayed on AAV serotype 9 for selection of endothelial cell-directed gene transfer vectors", GENE THERAPY, MACMILLAN PRESS LTD., vol. 19, no. 8, 1 August 2012 (2012-08-01), pages 800 - 809, XP055129104, ISSN: 09697128, DOI: 10.1038/gt.2011.143 *
WANG YUQIU, YANG CHEN, HU HANYANG, CHEN CHEN, YAN MENGDI, LING FEIXIANG, WANG KATHY CHENG, WANG XINTAO, DENG ZHE, ZHOU XINYUE, ZHA: "Directed evolution of adeno-associated virus 5 capsid enables specific liver tropism", MOLECULAR THERAPY-NUCLEIC ACIDS, CELL PRESS, US, vol. 28, 1 June 2022 (2022-06-01), US , pages 293 - 306, XP055980992, ISSN: 2162-2531, DOI: 10.1016/j.omtn.2022.03.017 *
YAN JINGHUI, ZOU YUEQI, LIU YUCUI: "RESEARCH ON SCREENING THE OPTIMAL ELUENT IN MONOCLONAL ANTIBODY AFFINITY CHROMATOGRAPHY", CHINESE MASTER’S THESES FULL-TEXT DATABASE, AGRICULTURAL SCIENCE AND TECHNOLOGY, vol. 4, 31 December 1991 (1991-12-31), pages 47 - 51, XP055981001, ISSN: 1001-9383, DOI: 10.16191/j.cnki.hbkx.1991.04.009 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113121651A (zh) * 2021-04-19 2021-07-16 信念医药科技(上海)有限公司 新型低中和抗体腺相关病毒衣壳蛋白
CN113121654A (zh) * 2021-04-19 2021-07-16 信念医药科技(上海)有限公司 新型腺相关病毒衣壳蛋白及包含其的新型腺相关病毒载体
CN113121654B (zh) * 2021-04-19 2023-11-17 信念医药科技(上海)有限公司 腺相关病毒衣壳蛋白及包含其的腺相关病毒载体
CN113121651B (zh) * 2021-04-19 2023-11-17 信念医药科技(上海)有限公司 低中和抗体腺相关病毒衣壳蛋白

Similar Documents

Publication Publication Date Title
JP6991095B2 (ja) ウイルスベクター精製における拡張可能な製造プラットフォームおよび遺伝子治療における使用のための高純度ウイルスベクター
CN113121652B (zh) 视网膜和肌肉高亲和性腺相关病毒衣壳蛋白及相关应用
JP6072772B2 (ja) 変異体キャプシドを有するアデノ関連ウイルスビリオンおよびその使用方法
JP2019518458A (ja) アデノ関連ウイルス変異キャプシドおよびその使用方法
WO2022222869A1 (zh) 重组腺相关病毒及其应用
CN113121655B (zh) 眼部和肌肉特异靶向型腺相关病毒载体及其应用
JP2023545722A (ja) 遺伝子治療剤の眼送達のためのアデノ随伴ウイルス
CN111876432B (zh) 一组肝靶向新型腺相关病毒的获得及其应用
EP4349852A1 (en) Recombinant adeno-associated virus having variant capsid, and application thereof
CN113121651A (zh) 新型低中和抗体腺相关病毒衣壳蛋白
CN113121653B (zh) 肌肉和视网膜特异性的新型腺相关病毒衣壳蛋白
CN114516901A (zh) 一种神经系统高亲和性的aav载体及其应用
TW202229315A (zh) 改良的腺相關病毒(aav)載體及其用途
Chen Adeno-associated virus vectors for human gene therapy
WO2023124740A1 (zh) 肌肉高亲和性的新型腺相关病毒衣壳蛋白及其应用
WO2023005906A1 (zh) 新型腺相关病毒血清型介导的血管生成抑制剂及其应用
CN114686448A (zh) 具有肝脏特异靶向性的纯化的腺相关病毒及其应用
CN114591921A (zh) 腺相关病毒的纯化方法和洗脱液
WO2024098035A2 (en) Methods and compositions for preparing recombinant adeno associated viruses and uses thereof
CN115160410A (zh) 新型肌肉高效亲和腺相关病毒血清型及相关应用
EP4314021A1 (en) Compositions comprising adeno-associated virus chimera capsid proteins and methods of using the same
WO2023230657A1 (en) Modified adeno-associated virus capsid proteins and methods thereof
EP3914229A1 (en) Highly efficient transduction and lateral spread in the retina by a novel aav virus enhanced by rational design
CN116568815A (zh) 用于基因疗法的眼部递送的腺相关病毒
CN117003833A (zh) 肝脏特异性的腺相关病毒血清型及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22790977

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22790977

Country of ref document: EP

Kind code of ref document: A1