WO2023125469A1 - 空余容量检测装置 - Google Patents
空余容量检测装置 Download PDFInfo
- Publication number
- WO2023125469A1 WO2023125469A1 PCT/CN2022/142145 CN2022142145W WO2023125469A1 WO 2023125469 A1 WO2023125469 A1 WO 2023125469A1 CN 2022142145 W CN2022142145 W CN 2022142145W WO 2023125469 A1 WO2023125469 A1 WO 2023125469A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pull
- depth
- free capacity
- containers
- distance
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 270
- 238000004364 calculation method Methods 0.000 claims description 19
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 230000007423 decrease Effects 0.000 claims description 2
- 239000003086 colorant Substances 0.000 claims 1
- 238000005259 measurement Methods 0.000 description 32
- 238000000034 method Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 230000010365 information processing Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000004313 glare Effects 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F22/00—Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
Definitions
- the present invention relates to a free capacity detection device for detecting the free capacity of a storage area.
- Patent Document 1 JP-A-2017-219270.
- the information processing device described in Patent Document 1 includes a plurality of imaging devices that capture images from different positions inside the storage compartment of the refrigerator, and can measure the free capacity of the storage compartment by comparing the images captured by each imaging device.
- the information processing device described in Patent Document 1 needs to include a plurality of imaging devices, and the control device needs to perform complex control processing including image processing, image analysis, and the like. Therefore, the manufacturing cost of the device increases, and it may take time until the measurement results are obtained for complicated control processing. In particular, in the case of measuring the free capacity of multiple storage areas, it is necessary to include multiple imaging devices for each divided storage area. In addition, in order to identify which storage area the measurement area is, control processing including image analysis is required. Therefore, the manufacturing cost of the device further increases, and it may take more time until the measurement result is obtained.
- an object of the present invention is to solve the above-mentioned problems and provide a low-cost and simple-structure vacancy detection device capable of specifying a storage area to be measured among a plurality of storage areas and detecting the vacancy of the specified storage area in a short time. capacity.
- At least one depth sensor which is a distance sensor, fixed at a position on the upper side of the plurality of pull-out containers arranged one above the other, configured to overlook the interior of the pull-out containers from the upper side, and
- control unit electrically connected to the depth detection sensor
- control unit determines based on the distance to the frontmost upper surface of the pull-out container detected by the depth detection sensor.
- depth data inside the pull-out container is obtained, and the depth data is used to calculate the Empty volume inside the pull-out container.
- the moving pull-out container can be accurately identified based on the distance to the upper surface of the frontmost portion of the pull-out container detected by the detection sensor.
- the empty capacity inside the pull-out container can be calculated. Thereby, the free capacity can be calculated in a short time with a small number of sensors.
- the free capacity detecting device of the present invention is characterized in that
- At least one position detection sensor which is a distance sensor electrically connected to the control part, fixed at the upper side of a plurality of pull-out containers arranged up and down,
- Each of the pull-out containers is formed with a position detecting rib whose upper surface has a height different according to a position in a moving direction,
- the position of the pull-out container in the moving direction is determined based on the distance detected by the position detection sensor to the upper surface of the position detection rib.
- the pull-out type container is formed with the position detection rib whose upper surface height differs depending on the position in the moving direction
- the pull-out type can be determined based on the distance from the position detection sensor to the upper surface of the position detection rib.
- the free capacity detecting device of the present invention it is characterized in that
- One said depth detection sensor is configured for a plurality of pull-out containers arranged one above the other,
- the depth data determined based on the measured value of the depth detection sensor at each detection position is D
- the individual free capacity at each said detection position is calculated by W ⁇ L/n ⁇ D,
- the free capacity inside the pull-out container is calculated by summing the individual free capacities.
- the free capacity inside the pull-out container can be accurately calculated in a short time by simple calculation using the measurement data of the depth detection sensor as the distance sensor.
- the free capacity detecting device of the present invention it is characterized in that
- control unit determines a distance range to be detected by the pull-out container, and selects the depth detection sensor corresponding to the distance range.
- the depth detection sensor corresponding to the distance range for detection is selected for each pull-out container, even when many pull-out containers are arranged up and down, the depth of each pull-out container can be accurately calculated. spare capacity.
- the free capacity detecting device of the present invention it is characterized in that
- a light emitting unit is disposed on a peripheral frame portion of the pull-out container to notify it of the calculation result of the free capacity of the pull-out container,
- the status of free capacity is indicated by color.
- the user can grasp the free capacity of each pull-out container based on the color of the light from the light emitting unit without opening the pull-out container.
- the user since the light is emitted from the light emitting portion in the width direction, the user can accurately grasp the free capacity of each pull-out container without feeling glare.
- an inexpensive and simple empty capacity detecting device capable of specifying a storage area to be measured among a plurality of storage areas and detecting the empty capacity of the identified storage area in a short time.
- FIG. 1 is a perspective view showing an overview of a refrigerator including a free capacity detection device according to an embodiment of the present invention.
- Fig. 2A is an enlarged perspective view showing an area of a pull-out container of the refrigerator shown in Fig. 1 .
- FIG. 2B is a front view of an area of the pull-out container shown in FIG. 2A viewed from the front side.
- Fig. 2C is a side view according to arrow A-A of Fig. 2B.
- Fig. 2D is a side view according to arrow B-B of Fig. 2B.
- FIG. 3 is a block diagram showing a system configuration of a free capacity detection device according to an embodiment of the present invention.
- Fig. 4A is a side view showing a state where a door is opened to be pulled out of a second-to-last pull-out container in a first row of pull-out containers.
- FIG. 4B is a side view showing when the pulled-out container is determined in the case where the door is opened and the second-to-last pull-out container is pulled out.
- Fig. 5 is a side view showing a pull-out container including a position detection rib according to an embodiment of the present invention.
- FIG. 6 is a plan view showing the pull-out container shown in FIG. 5 viewed from an arrow C, and is a plan view showing each Area(j) for calculating the free capacity.
- Fig. 7 is a side view schematically showing a pull-out container filled with storage items, for explaining calculation of free capacity.
- FIG. 8 is a diagram showing an example of a table for explaining calculation of free capacity.
- Fig. 9 is a side view showing a modified example of a pull-out container including a position detection rib.
- FIG. 10 is a flowchart showing an example of control processing performed by the control unit for calculating the free capacity.
- FIG. 1 is a perspective view showing an overview of a refrigerator including a free capacity detection device according to an embodiment of the present invention.
- Fig. 2A is an enlarged perspective view showing an area of a pull-out container of the refrigerator shown in Fig. 1 .
- FIG. 2B is a front view of an area of the pull-out container shown in FIG. 2A viewed from the front side.
- Fig. 2C is a side view according to arrow A-A of Fig. 2B.
- Fig. 2D is a side view according to arrow B-B of Fig. 2B.
- Refrigerator 2 includes casing 4 and doors 6A, 6B rotatably attached to the front side from casing 4 .
- the inside of the casing 4 whose front opening is covered by the doors 6A, 6B forms a freezer compartment.
- Above the doors 6A, 6B there are two doors rotatably attached to the housing 4, and the inside of the housing 4 whose front opening is covered by these two doors forms a refrigerating chamber.
- the freezer compartment whose front surface opening is covered by the door 6A, includes a first row of pull-out containers consisting of three pull-out containers 12A, 12B, 12C arranged one above the other (see FIGS. 2B, 2C).
- the freezer compartment whose front surface opening is covered by the door 6B, includes a second row of pull-out containers consisting of two pull-out containers 12D, 12E arranged one above the other (see FIGS. 2B, 2D).
- a first row based on pull-out containers 12A, 12B, 12C and a second row based on pull-out containers 12D, 12E are stored in the frame 10 with the middle of the frame 10 disposed between the first row and the second row.
- Partition 10B The peripheral frame portion 10A of the frame body 10 is disposed on the right side of the first row and on the left side of the second row.
- FIGS. 1 , 2A to 2D A state in which the pull-out containers 12A to 12E are pushed into the rearmost side is shown in FIGS. 1 , 2A to 2D.
- This location is referred to as the "storage location".
- the doors 6A, 6B of the refrigerator 2 can be fully closed when the pull-out containers 12A to 12E are in the storage position.
- an example in which the pull-out containers 12A to 12E are stored in the freezer is shown, but not limited thereto, and the pull-out containers 12A to 12E may be stored in the refrigerator.
- Depth detection sensors 30A, 30B as distance sensors are fixed at positions above the uppermost pull-out container 12A of the first row of pull-out containers 12A to 12C.
- the depth detection sensors 30A, 30B are arranged so as to overlook the insides of the pull-out containers 12A to 12C from the upper side.
- the depth detection sensors 30A, 30B are arranged at substantially the centers of the pull-out containers 12A to 12C in the width direction (X-axis direction). Although one sensor is shown in the figure, two depth detection sensors 30A, 30B are disposed above the first row of pull-out containers.
- the two depth detection sensors 30A, 30B differ in the distance ranges to be measured.
- the measurement range of the depth detection sensor 30B reaches a position farther from the sensor than the measurement range of the depth detection sensor 30A.
- the depth detection sensor 30A is caused to measure the uppermost pull-out container 12A
- the depth detection sensor 30B is caused to measure the two pull-out containers 12B, 12C below the pull-out container 12A.
- Position detection sensors 32A and 32B serving as distance sensors are also fixed to the position above the uppermost pull-out container 12A among the pull-out containers 12A to 12C in the first row.
- the position detection sensors 32A, 32B are arranged on the right side of the pull-out containers 12A to 12C in the width direction (X-axis direction). Although shown as one sensor, two position detection sensors 32A, 32B are fixed above the first row of pull-out containers 12A to 12C.
- the two position detection sensors 32A and 32B differ in the distance ranges to be measured.
- the measurement range of the position detection sensor 32B reaches a position farther from the sensor than the measurement range of the position detection sensor 32A.
- the position detection sensor 32A is caused to measure the uppermost pull-out container 12A
- the position detection sensor 32B is caused to measure the two pull-out containers 12B, 12C below the pull-out container 12A.
- the position on the upper side of the upper pull-out container 12D in the second row of pull-out containers 12D, 12E is provided with a depth detection sensor 30C as a distance sensor, which is arranged to overlook the pull-out containers 12D, 12D, The interior of the 12E.
- the depth detection sensor 30C is arranged approximately at the center of the pull-out containers 12D and 12E in the width direction (X-axis direction). Two pull-out containers 12D, 12E, upper and lower, can be measured with one depth detection sensor 30C.
- a position detection sensor 32C serving as a distance sensor is also arranged at the upper side of the upper side pull-out container 12D in the second row of pull-out containers.
- the position detection sensor 32C is arranged on the left side of the pull-out containers 12D and 12E in the width direction (X-axis direction).
- the upper and lower pull-out containers 12D, 12E can be detected by one position detection sensor 32C.
- the distance sensors constituting the depth detection sensors 30A to 30C and the position detection sensors 32A to 32C include a light source and a light receiving element formed of LEDs or laser diodes.
- the element receives its reflected light.
- the received reflected light can be evaluated, converted into distance by calculation and output.
- a distance sensor is used which measures a distance by a triangulation method based on a light-receiving position at a light-receiving element.
- a distance sensor that measures the distance based on the time from light emission to light reception may be used, or a distance sensor that uses pulse propagation from laser light having a pulse width may be used.
- the depth detection sensors 30A to 30C and the position detection sensors 32A to 32C may be installed, for example, on the lower surface in front of a shallow tray disposed on the upper side of the pull-out containers 12A to 12E, and installed so that the sides that transmit and receive light face toward Down. Also, it may be installed at the lower part of the door arranged on the upper side of the pull-out containers 12A to 12E, and installed so that the light-emitting and receiving surfaces face downward.
- the right sides of the pull-out containers 12A to 12C in the first row are formed with position detection ribs 18 whose upper surfaces have heights (positions in the Z-axis direction) that differ depending on positions in the moving direction (Y-axis direction) (refer to FIG. 2C).
- the left sides of the second row of pull-out containers 12D, 12E are formed with position detection ribs 18 whose upper surfaces have different heights (positions in the Z-axis direction) depending on positions in the moving direction (Y-axis direction) ( See Figure 2D).
- the position detection rib 18 according to the present embodiment has a step-like shape in which the height of the upper surface 18A changes stepwise.
- Depth detection sensors 30A to 30C as distance sensors are located substantially at the centers of the pull-out containers 12A to 12E, and are disposed so as to overlook the insides of the pull-out containers 12A to 12E from the upper side.
- the depth detection sensors 30A to 30C first measure the distance to the upper surface 16A of the handle portion 16, and the upper surface 16A of the handle portion 16 is pulled out.
- the upper surfaces of the frontmost parts of the type containers 12A to 12E Furthermore, when the drawer containers 12A to 12E move forward, the depth detection sensors 30A to 30C measure the distance to the object to be measured inside the drawer containers 12A to 12E.
- the depth detection sensors 30A to 30C can measure the distance in the height direction (Z-axis direction) from the depth detection sensors 30A to 30C (specifically, the light receiving surface) to the object to be measured inside the pull-out containers 12A to 12E. By subtracting the distance between the depth detection sensors 30A to 30C and the upper surfaces of the pull-out containers 12A to 12E from the measurement data, the depth data in the pull-out containers can be obtained.
- the depth data is the distance between the upper surface and the bottom surface of the pull-out containers 12A-12E if there is room in the pull-out containers 12A-12E.
- the depth data is the distance from the upper surface of the pull-out containers to the upper surface (reflective surface) of the stored objects. Through such measurement, the depth data of the free area above the reflective surface of the storage can be grasped. As will be described later, the control unit 50 uses the depth data to calculate the free capacity inside the pull-out containers 12A to 12E.
- the position detection sensors 32A, 32B are arranged above the position detection rib 18 formed on the right side of the first row of pull-out containers 12A to 12C.
- the positions of the pull-out containers 12A to 12C in the movement direction (Y-axis direction) can be determined based on the distance to the upper surface 18A of the position detection rib 18 detected by the position detection sensors 32A, 32B.
- the position detection sensor 32C is disposed above the position detection rib 18 formed on the left side of the second row of pull-out containers 12D, 12E.
- the positions of the pull-out containers 12D, 12E in the movement direction (Y-axis direction) can be determined based on the distance to the upper surface 18A of the position detection rib 18 detected by the position detection sensor 32C.
- light emitting portions 34A to 34E are arranged to show It notifies the calculation result of the free capacity of the pull-out containers 12A to 12E.
- LEDs may be used as the light sources of the light emitting sections 34A to 34 .
- the light source is not limited to LEDs, and other arbitrary kinds of light sources may be used.
- the light emitting sections 34A to 34E can indicate the state of the free capacity by color.
- light from the light emitting portions 34A to 34E is caused to be emitted in the width direction (X-axis direction).
- FIG. 3 is a block diagram showing a system configuration of a free capacity detection device 20 according to an embodiment of the present invention. Next, the system configuration of the free capacity detection device 20 according to the present embodiment will be described with reference to FIG. 3 .
- the free capacity detection device 20 includes a control unit 50 .
- the depth detection sensors 30A, 30B and the position detection sensors 32A, 32B corresponding to the first row of pull-out containers 12A to 12C as described above, and the second row
- the depth detection sensor 30C and the position detection sensor 32C correspond to the pull-out containers 12D and 12E.
- Distance sensors such as the depth detection sensors 30A to 30C and the position detection sensors 32A to 32C output analog signals and thus are susceptible to noise. Therefore, analog-to-digital conversion is performed by the sensor processing unit 40 disposed near the depth detection sensors 30A to 30C and the position detection sensors 32A to 32C, so that digital signals are sent from the sensor processing unit 40 to the control unit 50 .
- the control unit 50 is electrically connected to the sending unit 60, the result of the control process from the control unit 50 is sent to the sending unit 60, and the result of the control process can be sent from the sending unit 60 wirelessly or wiredly to the user's mobile terminal or display device. Further, the control section 50 is electrically connected to the light emitting sections 34A to 34E as described above. In this way, the control section 50 may transmit a control signal corresponding to the calculated free capacity to cause the light emitting parts 34A to 34E to emit light in a color corresponding to the free capacity of each of the pull-out containers 12A to 12E. For example, blue light is emitted when the free capacity is large, and red light is emitted when the free capacity is small, so that the user can intuitively know the free capacity.
- the free capacity detection device 20 is a separate device from the refrigerator 2 . Therefore, control unit 50 exists as a control device separate from the control device of refrigerator 2 . However, it is not limited thereto, and the empty capacity detection device 20 may also be configured as a part of the refrigerator 2 . In this case, the control section 50 of the free capacity detection device 20 may also be configured as a part of the control device of the refrigerator 2 .
- FIG. 4A is a side view showing a state in which the door 6A is opened and the second pull-out container 12B from the top among the first row of pull-out containers 12A to 12C is about to be pulled out.
- FIG. 4B is a side view showing when the pulled-out pull-out container 12B is determined in a case where the door 6A is opened and the second-to-last pull-out container 12B is pulled out.
- FIGS. 4A and 4B a method of determining the pull-out containers 12A to 12E moved forward from the storage position will be described with reference to FIGS. 4A and 4B .
- a case where the second pull-out container 12B from the top among the first row of pull-out containers 12A to 12C is pulled out to the front side from the storage position will be described as an example.
- the depth detection sensors 30A, 30B and the position detection sensors 32A, 32B are turned on (ON), and light from the light source of the sensors is emitted.
- the pull-out container 12B is pulled out to the front side from the storage position, the light emitted from the light sources of the depth detection sensors 30A, 30B first hits the upper surface of the handle portion 16 which is the frontmost upper surface of the pull-out container 12B. 16A, and the reflected light enters the light receiving surfaces of the depth detection sensors 30A, 30B.
- the distance PB to the upper surface 16A of the handle portion 16 of the pull-out container 12B can also be measured by both the depth detection sensors 30A and 30B, the depth detection sensor 30B detects a more accurate distance according to the measurement range of the sensors.
- the distance PA from the depth detection sensor 30A to the upper surface 16A of the handle portion 16 of the pull-out container 12A and the measurement range of the pull-out container 12A are The distance PB from the depth detection sensor 30B to the upper surface 16A of the handle portion 16 of the pull-out container 12B and the measurement range of the pull-out container 12B And the distance PC from the depth detection sensor 30B to the upper surface 16A of the handle portion 16 of the pull-out container 12C and the measurement range of the pull-out container 12C It is stored in the storage unit of the control unit 50 .
- the control unit 50 determines that it is the pull-out container 12B that has moved to the front side. Then, determine the distance range for detection according to the determined pull-out container 12B and select the range with the distance Corresponding depth detection sensor 30B and position detection sensor 32B.
- the control unit 50 can determine that the pull-out container 12A is moving. Then, determine the distance range for detection according to the determined pull-out container 12A and select the range with the distance Corresponding depth detection sensor 30A and position detection sensor 32A. In addition, when the depth detection sensors 30A, 30B detect the distance PC, the control unit 50 can determine that it is the pull-out container 12C that is moving. Then, the distance range for detection is determined according to the determined pull-out container 12C and select the range with the distance Corresponding depth detection sensor 30B and position detection sensor 32B.
- the same control process can also be performed on the second row of pull-out containers 12D and 12E.
- the control unit 50 can determine that the pull-out container 12D is moved. Then, determine the distance range for detection according to the determined pull-out container 12D
- the control section 50 may determine that it is the pull-out container 12E that is moving. Then, determine the distance range for detection according to the determined pull-out container 12E In the second row, the measurement of the two pull-out containers 12D, 12E is performed by the detection sensor 30C and the position detection sensor 32C.
- the distances PA to PE for determining the pull-out containers 12A to 12E may also be referred to as "pull-out determination values”.
- FIG. 5 is a side view showing pull-out containers 12A to 12E including position detection ribs 18 according to one embodiment of the present invention. Next, a method of detecting the positions of the pull-out containers 12A to 12E in the moving direction (Y-axis direction) will be described with reference to FIG. 5 .
- the position detection rib 18 is formed in a stepped shape.
- the upper surface 18A of the position detection rib 18 is formed in a stepped shape so that the height (position in the Z-axis direction) of the upper surface 18A decreases as it moves away from the front surface side in the moving direction (Y-axis direction).
- the distances to the position detection rib 18 detected by the position detection sensors 32A to 32C are in one-to-one correspondence with the positions (stepped regions) in the moving direction (Y-axis direction).
- FIG. 5 A case where n steps from 1 to n are formed is shown in FIG. 5 .
- Each step is equally divided into n parts in the moving direction (Y-axis direction) and height direction (Z-axis direction). If the length in the moving direction (Y-axis direction) of the position detection rib 18 is L, the length of each step in the moving direction (Y-axis direction) is L/n. If the height dimension (length in the Z-axis direction) of the position detection rib 18 is U, the difference in height (position in the Y-axis direction) of each step is U/n.
- the moving direction (Y-axis direction) of the pull-out containers 12A to 12E can be divided into n regions having a length L/n.
- the frontmost area in the moving direction (Y-axis direction) is represented by Pos(1), and the last area is represented by Pos(n).
- each region can be represented by Pos(j) (j is an integer from 1 to n).
- the distance from the position detection sensors 32A to 32C to the upper surface 18A of Pos(j) of the position detection rib 18 can be represented by Q(j).
- the control section 50 judges that Pos(j) is located directly below the position detection sensors 32A to 32C .
- the depth detection sensors 30A to 30C and the position detection sensors 32A to 32C are arranged at the same position in the moving direction (Y-axis direction).
- the free capacity corresponding to Pos(j) can be calculated using the measurement data of the depth detection sensors 30A to 30C when the position detection sensors 32A to 32C detect Q(j).
- the pull-out containers 12A to 12E are in the maximum drawn state, and the pull-out containers 12A to 12E cannot move further to the front side than this position.
- the user accesses the storage in this state.
- the position where Pos(n) is directly below the position detection sensors 32A to 32C can be referred to as an "access position”.
- the depth detection sensors 30A to 30C and the position detection sensors 32A to 32C are not limited to being arranged at the same position in the moving direction (Y-axis direction), and they may be arranged at different positions. Even in this case, since the distances in the moving direction (Y-axis direction) of the depth detection sensors 30A to 30C and the position detection sensors 32A to 32C are determined, the data detected by the depth detection sensors 30A to 30C can be used To accurately calculate the free capacity corresponding to the position of Pos(j).
- each of the pull-out containers 12A to 12E is formed with the position detection rib 18 whose upper surface 18A has a different height depending on the position in the moving direction (Y-axis direction) and can be detected based on the position detection sensors 32A to 32C.
- the distance Q(j) to the upper surface 18A of the position detection rib 18 is used to accurately determine the positions (stepped areas) of the pull-out containers 12A to 12E in the moving direction (Y-axis direction), that is, Pos(j) .
- Fig. 6 is a plan view of the pull-out container shown in Fig. 5 viewed from an arrow C, and is a plan view showing each Area (j) for calculating the free capacity.
- Fig. 7 is a side view schematically showing a pull-out container filled with storage items, for explaining calculation of empty capacity.
- FIG. 8 is a diagram showing an example of a table for explaining calculation of free capacity. Next, a method of calculating the free capacity of the drawer containers 12A to 12E will be described with reference to FIGS. 6 to 8 .
- the width dimension (X-axis direction) inside each of the pull-out containers 12A to 12E is set to W.
- Depth detection sensors 30A to 30C are located approximately at the centers in the width direction (X-axis direction) of pull-out containers 12A to 12E, and one depth detection sensor 30A to 30C measures the entire measurement area above the width W.
- the area of the total length L in the moving direction (Y-axis direction) of the pull-out containers 12A to 12E is equally divided into n parts.
- the storage areas (planes) of the pull-out containers 12A to 12E are divided into a plane corresponding to Pos(j) shown in FIG. 5 , that is, Area(j).
- the control unit 50 can calculate the free capacity of Area(j) using the detection data of the depth detection sensors 30A to 30C.
- FIG. 7 shows a method of calculating the individual free capacity AV in Area(j) and Area(j-1) and Area(j+1) before and after it in the moving direction (Y-axis direction).
- the distance between the depth detection sensors 30A to 30C and the pull-out containers 12A to 30C is subtracted from the distance from the depth detection sensors 30A to 30C to the upper surface of the stored object G detected by the depth detection sensors 30A to 30C.
- the distance H between the upper surfaces of 12E the distance from the upper surfaces of the pull-out containers 12A to 12E to the upper surface of the storage object G, that is, the depth data D(j) can be obtained.
- the upper surface of the storage object G may not be in the same plane in the width direction (X-axis direction) and the moving direction (Y-axis direction), by placing the upper surface of the storage object G Approximate to a plane (that is, by treating the individual free capacity AV of Area(j) as a cuboid), the individual free capacity AV(j) can be easily calculated by the following calculation formula.
- the depth detection sensors 30A to 30C detect the handle portion 16 which is the upper surface of the front end of the pull-out containers 12A to 12E
- the control part 50 determines which pull-out container 12A to 12E is pulled out by the distance PA to PE of the upper surface 16A of the upper surface 16A.
- the control unit 50 selects the depth detection sensors 30A to 30C and the position detection sensors 32A to 32C having measurement ranges corresponding to the determined pull-out containers 12A to 12E.
- the control section 50 acquires depth data based on the measured values of the selected depth detection sensors 30A to 30C every time the selected position detection sensors 32A to 32C detect the distance Q(j). D(j). By repeating this, the control unit 50 can acquire depth data D( 1 ) to D(n) for Area( 1 ) to Area(n) identified from the measurement data of the position detection sensors 32A to 32C. Then, individual free capacities AV( 1 ) to AV(n) of Area( 1 ) to (n) can be calculated based on the obtained depth data D( 1 ) to D(n).
- the total free capacity VT of the pull-out containers 12A to 12E can be calculated.
- the calculation of the free capacity AV(j) may be performed every time the depth data D(j) of Area(j) is obtained during the movement of the pull-out containers 12A to 12E, or may be performed when the depth data D(j) of Area(j) is obtained as described later. All the depth data D(j) of Area(j) are performed together afterwards.
- the table of FIG. 8 shows an example of summation processing of individual vacant capacities AV(j).
- depth data D(j) is obtained based on the measured values of the depth detection sensors 30A to 30C, and the obtained depth data D(j) is multiplied by Using W and L/n, the independent free capacity AV(j) can be calculated.
- the free capacities VT of the pull-out containers 12A to 12E can be calculated.
- the control unit 50 can calculate the individual vacant capacity AV(j) of each Area(j), and calculate the vacant capacity of the pull-out containers 12A to 12E by summing all the calculated individual vacant capacities AV(j).
- Capacity VT The value of j when pushing back in the moving direction (Y-axis direction) changes from n to 1 when pulling out to 1 to n when pushing back. This makes it possible to grasp the change in the free capacity of the pull-out containers 12A to 12E that are pulled out and pushed back.
- the free capacities VT of the pull-out containers 12A to 12E calculated by the control unit 50 may be transmitted to, for example, a mobile phone terminal of the user via the transmission unit 60, or may be displayed on a display device.
- the control unit 50 may cause the light emitting units 34A to 34E to emit light in a color corresponding to the calculated free capacity VT.
- control unit 50 performs control processing to end the detection of the free capacity of the drawer containers 12A to 12E.
- one depth detection sensor 30A to 30C is arranged for a plurality of pull-out containers 12A to 12E arranged vertically, and n detection positions Pos, Area(j) Determined to make the detection ranges in the respective moving directions (Y-axis direction) equal, let the lengths of the entire detection ranges in the width direction (X-axis direction) of the depth detection sensors 30A to 30C be W, the moving direction (Y-axis direction), and The length of the entire detection range in the direction) is L, and the depth data determined based on the measured values of the depth detection sensors 30A to 30C in each detection position Pos, Area(j) is D(j), so W ⁇ L/n ⁇ D calculates the individual free capacity AV(j) in each detection position Pos, Area(j), and by summing the individual free capacity AV(j), calculates the internal space of the pull-out containers 12A to 12E. Free capacity VT.
- the free capacity VT inside the drawer containers 12A to 12E can be accurately calculated in a short time.
- the depth data D(j) is obtained from the measured values of the depth detection sensors 30A to 30C at the detection positions of Area (j ⁇ 1) or Area (j+1) adjacent in the direction ).
- the individual free capacity AV(j) of the detection area Area(j) can be calculated using the depth data D(j).
- the measurement of the entire measurement area of the width W is performed with one depth detection sensor 30A to 30C, but the present invention is not limited thereto.
- a plurality of depth detection sensors may be arranged in the width direction (X-axis direction) of the pull-out containers 12A to 12E. In this case, it is preferable to configure so that the measurement ranges of the respective depth detection sensors become equal.
- the individual free capacity AV can be calculated by the following calculation formula.
- Fig. 9 is a side view showing a modified example of a pull-out container including a position detection rib.
- modification examples of the pull-out containers 12A to 12E including the position detection rib 18 ′ will be described with reference to FIG. 9 .
- the position detection rib 18 shown in FIG. 5 above has a step-like shape in which the height of the upper surface 18A changes stepwise, but the position detection rib 18' of the modified example is different in that it has a height of the upper surface 18A' that continuously changes. inclined surface.
- the upper surface 18A' is sloped so that it is higher on the front side and lower on the rear side of the pull-out containers 12A to 12E. In the side view in FIG. 5 , upper surface 18A' extends linearly.
- the distance R(y) corresponds one-to-one.
- the control unit 50 can obtain the depth data D(j) at Area(j), calculate the individual free capacity AV, and sum them to calculate the free capacity VT inside the pull-out containers 12A to 12E.
- the inclined upper surface 18A' does not necessarily have to be a plane, and any curved surface can be used as long as the distance Q(z) corresponds to the distance R(y).
- FIG. 10 is a flowchart showing an example of control processing performed by the control unit 50 for calculating the free capacity VT. Next, the flow of control performed by the control unit 50 for calculating the total empty capacity VT of the above-mentioned pull-out containers 12A to 12E will be described with reference to FIG. 10 .
- step S2 it is judged whether the doors 6A, 6B are open (step S2). In this judgment, if it is discriminated that the doors 6A and 6B are not open (No), it becomes a standby state in which this judgment process is repeated. In the judgment of step S2, if it is discriminated that the doors 6A, 6B are open (Yes), then the depth detection sensors 30A to 30C and the position detection sensors 32A to 32C are powered on next (step S4).
- the power of the depth detection sensors 30A, 30B and the position detection sensors 32A, 32B is turned on.
- the power of the depth detection sensor 30C and the position detection sensor 32C is turned on.
- the power is turned on, light is emitted from the light source of the sensor.
- step S6 it is judged whether the depth detection sensors 30A to 30C have detected which of the pull-out specific values PA to PE of the determination pull-out containers 12A to 12E. In this judgment, if it is discriminated that the pull-out of the specific values PA to PE is not detected (No), it becomes a standby state in which this judgment process is repeated.
- the pull-out specific values PA to PE are the distances from the depth detection sensors 30A to 30C to the upper surface 16A of the handle portion 16 which is the upper surface of the front ends of the pull-out containers 12A to 12E. For example, as shown in FIG. 4B , when the depth detection sensor 30B detects the pull-out specific value PB, it can be recognized that the pull-out container 12B moves forward. In step S4, if it is discriminated which of the pull-out specific values PA to PE is detected by the detection sensors 30A to 30C (Yes), the moving pull-out type containers 12A to 12E are determined, and the determined pull-out type containers 12A to 12E are determined. Depth measurement ranges corresponding to the containers 12A to 12E (step S8). Then, the depth detection sensors 30A to 30C and the position detection sensors 32A to 32C corresponding to the determined depth measurement range are selected (step S10 ).
- step S12 it is judged whether the distance Q(1) corresponding to Pos(1) as the frontmost measurement area is detected at the selected position detection sensors 32A to 32C (refer to FIG. 5) (step S12). In this judgment, if it is discriminated that the distance Q(1) corresponding to Pos(1) has not been detected (No), it becomes a standby state in which this judgment process is repeated. In the judgment of step S12, if it is discriminated that the distance Q(1) corresponding to Pos(1) is detected (YES), control processing of inputting 1 to the counter J is next performed (step S14).
- step S22 since the pull-out container has been in the open state for a long time and has been stopped for a long time, a control process of reporting a detection error is performed (step S22), and this control process ends.
- step S18 if it is discriminated that the position detection sensors 32A to 32C have detected the distance Q(j+1) corresponding to Pos(j+1) (Yes), the counter J is incremented. 1 control processing (step S24). Then, it is judged whether the value of the counter J is n (step S26). In this judgment, if it is judged that the value of the counter J is not n, that is, smaller than n (No), then return to step S16, and repeat the control processing and judgment processing shown in steps S16 to S26. In this way, the depth data D(1) to D(n ⁇ 1) of Pos(1) to Pos(n ⁇ 1) can be obtained.
- step S26 if it is discriminated that the value of the counter J is n (Yes), the depth data D(n) at the measurement position Pos(n) is obtained based on the measurement values from the selected depth detection sensors 30A to 30C. ) (step S28).
- the individual free capacities AV(1) to AV(n) are calculated from the acquired depth data D(1) to D(n), summed, and the total free capacity VT( Step S30).
- the data of the free capacity VT is transmitted to the transmitting unit 60 (step S32). Further, the light emitting units 34A to 34E are controlled to emit light of a color corresponding to the free capacity VT (step S34 ), and this control process ends.
- the light emitting parts 34A to 34E notified of the calculation results of the empty capacities VT of the pull-out containers 12A to 12E are arranged on the peripheral frame portion 10A of the pull-out containers 12A to 12E whose empty capacities are calculated. , emit light in the width direction (X-axis direction) from the light emitting portions 34A to 34E, and indicate the state of the free capacity VT in color.
- the user can grasp the free capacity VT of each of the pull-out containers 12A to 12E without opening the pull-out containers 12A to 12E.
- the user since light is emitted in the width direction (X-axis direction) from the light emitting parts 34A to 34E, the user can accurately grasp the free capacity VT of each pull-out container 12A to 12E without feeling glare.
- the free capacity detection device 20 includes at least one depth detection sensor 30A to 30C, which is a distance sensor, and is fixed at a position on the upper side of a plurality of pull-out containers 12A to 12E arranged vertically. , configured to overlook the inside of the pull-out containers 12A to 12E from the upper side; and a control section 50 electrically connected to the depth detection sensors 30A to 30C; The distance to the upper surface 16A of the frontmost portion 16 of one of the pull-out containers 12A to 12E detected when the pull-out container 12A to 12E is moved from the storage position to the front side is used to determine the pull-out type of movement.
- Containers 12A to 12E for the determined pull-out type containers 12A to 12E, the pull-out type containers 12A to 12E are acquired based on the measured values of the depth detection sensors 30A to 30C at designated detection positions in the moving direction (Y-axis direction). Depth data D(j) of the inside of 12E, and use the depth data D(j) to calculate the free capacity VT inside the pull-out containers 12A to 12E.
- the upper surface of the frontmost portion 16 of the pull-out containers 12A to 12E can be detected based on the depth detection sensors 30A to 30C.
- the distance of 16A accurately determines the moving pull-out containers 12A to 12E.
- the empty capacities VT inside the pull-out containers 12A to 12E can be calculated based on the measured values of the depth detection sensors 30A to 30C at designated detection positions in the moving direction (Y-axis direction). . Thereby, the free capacity can be calculated in a short time with a small number of sensors.
- the free capacity detection device 20 includes at least one position detection sensor 32A to 32C, which is a distance sensor, and is fixed at a position on the upper side of the plurality of pull-out containers 12A to 12E arranged vertically, And electrically connected with the control unit 50; each pull-out container 12A to 12E is formed with position detection ribs 18, 18', and the height of its upper surface varies according to the position on the moving direction (Y-axis direction); based on the position detection The distances Q(j), Q(z) to the upper surfaces 18A, 18A' of the position detecting ribs 18, 18' detected by the sensors 32A to 32C can determine the movement direction (Y-axis direction) of the pull-out containers 12A to 12E. ) on the position Pos(j), R(y).
- the position detection ribs 18, 18' are formed on the pull-out containers 12A to 12E, and the heights of the upper surfaces 18A, 18A' differ depending on positions in the moving direction (Y-axis direction), it is possible to The distances Q(j), Q(z) from the position detection sensors 32A to 32C to the upper surfaces 18A, 18A' of the position detection ribs 18, 18' are determined in the moving direction (Y-axis direction) of the pull-out containers 12A to 12E.
- control unit 50 determines the moving pull-out containers 12A to 12E, it determines the distance range for detection based on the determined pull-out containers 12A to 12E, and selects the depth detection range corresponding to the distance range. Sensors 30A to 30C. In this way, even when a plurality of pull-out containers 12A to 12E are arranged vertically, the free capacity VT of each of the pull-out containers 12A to 12E can be accurately calculated.
- the storage areas 12A to 12E to be measured among the plurality of storage areas 12A to 12E can be specified with a simple structure at low cost, and the determined storage areas 12A to 12E can be detected in a short time.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Abstract
一种空余容量检测装置,包括:至少一个深度检测传感器(30A)至(30C),固定在上下排列的多个拉出式容器(12A)至(12E)的上侧的位置;以及与深度检测传感器(30A)至(30C)电气连接的控制部(50),控制部(50)基于深度检测传感器(30A)至(30C)在多个拉出式容器(12A)至(12E)中的一个储藏位置向前侧移动时,检测到的至该拉出式容器(12A)至(12E)的最前部的上表面的距离来确定移动的拉出式容器(12A)至(12E),针对所确定的拉出式容器(12A)至(12E),基于在移动方向上的预定检测位置处,深度检测传感器(30A)至(30C)的预定值,取得该拉出式容器(12A)至(12E)内部的深度数据,并使用该深度数据算出该拉出式容器(12A)至(12E)内部的空余容量。
Description
本发明涉及用于检测储藏区域的空余容量的空余容量检测装置。
例如,在没有事先确认冰箱中的情况就去买东西时,很可能发生购入了无法储藏到冰箱中的量的食品的情形。为了防止发生这样的情形,提出了用于检测冰箱的储藏区域的空余容量的信息处理装置(例如,参考专利文献1:特开2017-219270号公报)。专利文献1中记载的信息处理装置包括从冰箱的储藏室内部的不同位置进行拍摄的多个拍摄装置,通过比较每个拍摄装置拍摄的图像就能测量储藏室的空余容量。
然而,专利文献1中记载的信息处理装置需要包括多个拍摄装置,控制装置需要进行包括图像处理、图像解析等的复杂的控制处理。因此,装置的制造成本上升,并且为了复杂的控制处理,到测量结果出来为止可能需要时间。特别地,在测量多个储藏区域的空余容量的情况下,需要对每个划分出来的储藏区域包括多个拍摄装置。此外,为了辨别测定区域是哪个储藏区域,需要包括图像解析的控制处理。因此,装置的制造成本进一步上升,到测量结果出来为止可能需要更多的时间。
发明内容
因此,本发明的目的是解决上述问题,提供成本低廉且结构简单的空余容量检测装置,其能够确定多个储藏区域中的作为测定对象的储藏区域并以短时间检测出所确定的储藏区域的空余容量。
本发明的空余容量检测装置的特征在于,其包括:
至少一个深度传感器,其为距离传感器,固定在上下排列的多个拉出式容器的上侧的位置,被配置成从上侧俯瞰所述拉出式容器的内部,以及
与所述深度检测传感器电气连接的控制部,
所述控制部在多个所述拉出式容器中的一个从储藏位置向前侧移动时,基于所述深度检测传感器检测到的至该拉出式容器的最前部的上表面的距离来确定移动的拉出式容器,并且
针对所确定的所述拉出式容器,基于所述深度检测传感器在移动方向上的预定检测位置处的测定值,来取得该拉出式容器内部的深度数据,并使用该深度数据来算出该拉出式容器内部的空余容量。
根据本发明,即使是在有上下多个拉出式容器的情况下,也能基于检测传感器检测到的到拉出式容器的最前部的上表面的距离准确地确定移动的拉出式容器。针对所确定的拉出式容器,基于深度检测传感器在移动方向上的指定检测位置处的测定值,能够算出拉出式容器内部的空余容量。由此,能够以少量传感器在短时间算出空余容量。
这样就能够提供成本低廉且结构简单的空余容量检测装置,其能够确定多个储藏区域中的作为测定对象的储藏区域并以短时间检测出所确定的储藏区域的空余容量。
此外,本发明的空余容量检测装置的特征在于,
其还包括至少一个位置检测传感器,其是与所述控制部电气连接的距离传感器,固定在上下排列的多个拉出式容器的上侧的位置,
每个所述拉出式容器形成有位置检测肋,其上表面高度根据移动方向上的位置不同而不同,
基于所述位置检测传感器检测到的到所述位置检测肋的上表面的距离来确定所述拉出式容器在移动方向上的位置。
根据本发明,由于拉出式容器形成有其上表面高度根据移动方向上的位置不同而不同的位置检测肋,因此能够基于从位置检测传感器到位置检测肋的上表面的距离来确定拉出式容器在移动 方向上的位置。由于位置检测传感器检测的是上下方向上的距离,因此可以与深度检测传感器一样配置在拉出式容器的上方。这样就可以实现构造简单且节省空间的空余容量检测装置。
此外,在本发明的空余容量检测装置中,其特征在于,
为上下排列的多个拉出式容器配置一个所述深度检测传感器,
n个所述检测位置被确定为使各个移动方向上的检测范围变得均等,
假定所述深度检测传感器的所述宽度方向上的全部检测范围的长度为W、并且所述移动方向上的全部检测范围的长度为L,
基于每个所述检测位置处的所述深度检测传感器的测定值而确定的所述深度数据为D,
每个所述检测位置处的单独空余容量用W×L/n×D算出,
通过对该单独空余容量求和来算出拉出式容器内部的空余容量。
样,用使用作为距离传感器的深度检测传感器的测定数据的简易计算即可在短时间准确地算出拉出式容器内部的空余容量。
此外,在本发明的空余容量检测装置中,其特征在于,
所述控制部在确定移动的所述拉出式容器时,确定所述拉出式容器所要检测的距离范围,并选择与该距离范围相对应的所述深度检测传感器。
根据本发明,由于按拉出式容器选择与进行检测的距离范围相对应的深度检测传感器,即使是在上下排列有许多拉出式容器的情况下,也能准确地算出各拉出式容器的空余容量。
此外,在本发明的空余容量检测装置中,其特征在于,
在所述拉出式容器的周边框部配置有发光部,向其通知所述拉出式容器的空余容量的算出结果,
从所述发光部向所述宽度方向射出光,
用颜色指示空余容量的状态。
根据本发明,使用者可以根据来自发光部的光的颜色在不打开拉出式容器的情况下掌握各拉出式容器的空余容量。特别地,由于从发光部向宽度方向射出光,因此使用者可以准确地掌握各拉出式容器的空余容量,而不会感到眩光。
如上所述,根据本发明,可以提供成本低廉且结构简单的空余容量检测装置,其能够确定多个储藏区域中的作为测定对象的储藏区域并以短时间检测出所确定的储藏区域的空余容量。。
图1是示出包括本发明的一个实施形态所涉及的空余容量检测装置的冰箱的概况的立体图。
图2A是放大示出图1所示的冰箱的拉出式容器的区域的立体图。
图2B是从前侧看图2A所示的拉出式容器的区域的正视图。
图2C是按图2B的箭头A-A示出的侧视图。
图2D是按图2B的箭头B-B示出的侧视图。
图3是示出本发明的一个实施形态所涉及的空余容量检测装置的系统结构的框图。
图4A是示出打开门即将拉出第一列拉出式容器中的上数第二个拉出式容器的状态的侧视图。
图4B是示出在打开门并拉出上数第二个拉出式容器的情况下确定被拉出的拉出式容器时的侧视图。
图5是示出本发明的一个实施形态所涉及的包括位置检测肋的拉出式容器的侧视图。
图6是示出从箭头C看图5所示的拉出式容器的平面图,并且是示出用于算出空余容量的各Area(j)的平面图。
图7是示意性地示出装入了储藏物的拉出式容器的侧视图,用于说明空余容量的计算。
图8是示出用于说明空余容量的计算的表格的一个示例的图。
图9是示出包括位置检测肋的拉出式容器的变型示例的侧视图。
图10是示出在控制部进行的用于计算空余容量的控制处理的一个示例的流程图。
接下来参考附图来说明用于实施本发明的实施形态。此外,下文说明的实施形态是用于具现化本发明的技术思想的内容,除非有特定的记载,否则本发明不限于接下来的内容。在各图中,具有同一功能的部件可附有同一符号。为了使说明更明确,还可夸张地示出各图所示的部件的大小或位置关系等。在下述记载和附图中,将拉出式容器的宽度方向记载为X轴方向,将拉出式容器的移动方向(即前后方向)记载为Y轴方向,并将高度方向记载为Z轴方向。另外,在下文中,设想使用者面向冰箱的门的情况来示出左右。
(一个实施形态所涉及的空余容量检测装置)
图1是示出包括本发明的一个实施形态所涉及的空余容量检测装置的冰箱的概况的立体图。图2A是放大示出图1所示的冰箱的拉出式容器的区域的立体图。图2B是从前侧看图2A所示的拉出式容器的区域的正视图。图2C是按图2B的箭头A-A示出的侧视图。图2D是按图2B的箭头B-B示出的侧视图。
本实施形态所涉及的冰箱2包括壳体4和从壳体4向前侧自由旋转地安装的门6A、6B。被门6A、6B覆盖了其前侧开口的壳体4的内部形成冷冻室。在门6A、6B的上方,包括自由旋转地安装在壳体4上的两个门,被这两个门覆盖了其前侧开口的壳体4的内部形成冷藏室。
被门6A覆盖了其前表面开口的冷冻室内包括第一列拉出式容器,由上下排列的三个拉出式容器12A、12B,12C组成(参考图2B、2C)。同样,被门6B覆盖了其前表面开口的冷冻室内包括第二列拉出式容器,由上下排列的两个拉出式容器12D、12E组成(参考图2B、2D)。基于拉出式容器12A、12B,12C的第一列和基于拉出式容器12D、12E的第二列储藏在框体10中,第一列和第二列之间配置有框体10的中间隔断10B。第一列的右侧和第二列的左侧配置有框体10的周边框部10A。
在图1、图2A至图2D中示出了拉出式容器12A至12E被推入最后侧的状态。该位置称为“储藏位置”。当拉出式容器12A至12E处于储藏位置时,冰箱2的门6A、6B能够完全闭合。在本实施形态中,示出了拉出式容器12A至12E储藏在冷冻室内的示例,但是不限于此,拉出式容器12A至12E也可以储藏在冷藏室内。
<传感器的配置>
在第一列拉出式容器12A至12C的最上侧的拉出式容器12A的上侧的位置,固定有作为距离传感器的深度检测传感器30A、30B。深度检测传感器30A、30B被配置成从上侧俯瞰拉出式容器12A至12C的内部。深度检测传感器30A、30B在宽度方向(X轴方向)上配置在拉出式容器12A至12C的大致中央处。虽然图中示为一个传感器,但是在第一列拉出式容器的上方配置有两个深度检测传感器30A、30B。
两个深度检测传感器30A、30B就测定的距离范围而言有所不同。深度检测传感器30B的测定范围与深度检测传感器30A的测定范围相比到达距传感器更远的位置。具体地,使得深度检测传感器30A测定最上侧的拉出式容器12A,并且使得深度检测传感器30B测定拉出式容器12A下面的两个拉出式容器12B、12C。
第一列拉出式容器12A至12C中的最上侧的拉出式容器12A的上侧的位置,还固定有作为距离传感器的位置检测传感器32A、32B。位置检测传感器32A、32B在宽度方向(X轴方向)上配置在拉出式容器12A至12C的右侧。虽然图中示为一个传感器,但是在第一列拉出式容器12A至12C的上方固定有两个位置检测传感器32A、32B。
两个位置检测传感器32A、32B就测定的距离范围而言有所不同。位置检测传感器32B的测定范围与位置检测传感器32A的测定范围相比到达距传感器更远的位置。具体地,使得位置检测传感器32A测定最上侧的拉出式容器12A,并且使得位置检测传感器32B测定拉出式容器12A下面的两个拉出式容器12B、12C。
第二列拉出式容器12D、12E中的上侧拉出式容器12D的上侧的位置,配置有作为距离传感器的深度检测传感器30C,其被配置成从上侧俯瞰拉出式容器12D、12E的内部。深度检测传感 器30C在宽度方向(X轴方向)上配置在拉出式容器12D、12E的大致中央处。用一个深度检测传感器30C可以测定上下两个拉出式容器12D、12E。
第二列拉出式容器中的上侧拉出式容器12D的上侧的位置,还配置有作为距离传感器的位置检测传感器32C。位置检测传感器32C在宽度方向(X轴方向)上配置在拉出式容器12D、12E的左侧。用一个位置检测传感器32C可以测定上下两个拉出式容器12D、12E。
一般而言,构成深度检测传感器30A至30C和位置检测传感器32A至32C的距离传感器包括由LED或激光二极管形成的光源和光接收元件,从光源射出的光在撞到测定对象物时反射,光接收元件接收到其反射光。可以评估接收到的反射光,通过运算换算成距离并输出。在本实施形态中,使用基于光接收元件处的接收光位置用三角测距方式测定距离的距离传感器。然而不限于此,例如,可以使用基于从光的射出到光的接收的时间来测定距离的距离传感器,也可以使用根据具有脉冲宽度的激光来使用脉冲传播的距离传感器。
深度检测传感器30A至30C和位置检测传感器32A至32C可以安装在例如配置在拉出式容器12A至12E的上侧的浅盘的前方的下表面上,并且被安装成发送和接收光的面朝下。同样,也可以安装在配置在拉出式容器12A至12E的上侧的门的下部,并且被安装成发送和接收光的面朝下。
第一列拉出式容器12A至12C的右侧面形成有位置检测肋18,其上表面的高度(Z轴方向的位置)根据移动方向(Y轴方向)上的位置不同而不同(参考图2C)。同样,第二列拉出式容器12D、12E的左侧面形成有位置检测肋18,其上表面的高度(Z轴方向的位置)不同根据移动方向(Y轴方向)上的位置不同而(参考图2D)。本实施形态所涉及的位置检测肋18具有上表面18A的高度呈台阶状变化的阶梯一样的形状。
作为距离传感器的深度检测传感器30A至30C位于拉出式容器12A至12E的大致中央处,被配置成从上侧俯瞰拉出式容器12A至12E的内部。当拉出式容器12A至12E中的任一个从储藏位置向前侧移动时,深度检测传感器30A至30C首先测定到拉手部16的上表面16A的距离,拉手部16的上表面16A即拉出式容器12A至12E的最前部的上表面。进一步地,在拉出式容器12A至12E向前侧移动时,深度检测传感器30A至30C测定到拉出式容器12A至12E内部的测定对象物的距离。
深度检测传感器30A至30C可以测定从深度检测传感器30A至30C(具体来说是光接收面)到拉出式容器12A至12E内部的测定对象物的高度方向(Z轴方向)上的距离。通过从该测定数据减去深度检测传感器30A至30C与拉出式容器12A至12E的上表面之间的距离,即可取得拉出式容器中的深度数据。若拉出式容器12A至12E中有空余,则深度数据为拉出式容器12A至12E的上表面与底表面之间的距离。另一方面,若拉出式容器12A至12E中有储藏物,则深度数据为从拉出式容器的上表面到储藏物的上表面(反射面)的距离。通过这样的测定,可以掌握储藏物的反射面上方的空余区域的深度数据。如后文所述,控制部50使用该深度数据来计算拉出式容器12A至12E内部的空余容量。
位置检测传感器32A、32B配置在形成于第一列拉出式容器12A至12C的右侧面上的位置检测肋18的上方。基于位置检测传感器32A、32B检测到的到位置检测肋18的上表面18A的距离可以确定拉出式容器12A至12C在移动方向(Y轴方向)上的位置。同样,位置检测传感器32C配置在形成于第二列拉出式容器12D、12E的左侧面上的位置检测肋18的上方。如后文所述,基于位置检测传感器32C检测到的到位置检测肋18的上表面18A的距离可以确定拉出式容器12D、12E在移动方向(Y轴方向)上的位置。
<发光部>
在配置于第一列拉出式容器12A至12C和第二列拉出式容器12D、12E中的每一个的外侧的框体10的周边框部10A上,配置有发光部34A至34E,向其通知拉出式容器12A至12E的空余容量的算出结果。可以例如以LED作为发光部34A至34的光源。然而,光源不限于LED,可以使用其他任意种类的光源。发光部34A至34E可以通过颜色来指示空余容量的状态。此外,如图2B中用虚线箭头示意性地示出的,使得来自发光部34A至34E的光向宽度方向(X轴方向)射出。
<空余容量检测装置的系统结构>
图3是示出本发明的一个实施形态所涉及的空余容量检测装置20的系统结构的框图。接下来,参考图3对本实施形态所涉及的空余容量检测装置20的系统结构进行说明。
本实施形态所涉及的空余容量检测装置20包括控制部50。此外,作为与控制部50电气连接的传感器,包括如上所述的与第一列拉出式容器12A至12C相对应的深度检测传感器30A、30B和位置检测传感器32A、32B、以及与第二列拉出式容器12D、12E相对应的深度检测传感器30C和位置检测传感器32C。
深度检测传感器30A至30C和位置检测传感器32A至32C之类的距离传感器输出模拟信号,因此易受噪声的影响。因此,用配置在深度检测传感器30A至30C和位置检测传感器32A至32C附近的传感器处理部40进行模数变换,使得从传感器处理部40向控制部50发送数字信号。
控制部50与发送部60电气连接,来自控制部50的控制处理的结果发送至发送部60,并且控制处理的结果可以从发送部60无线或有线地发送至使用者的手机终端或显示装置。进一步地,控制部50与如上所述的发光部34A至34E电气连接。这样,控制部50可以发送与算出的空余容量相对应的控制信号,以使发光部34A至34E用与每个拉出式容器12A至12E的空余容量相对应的颜色发光。例如,空余容量较大时发蓝色的光,并且空余容量较小时发红色的光,于是用户可以直观地了解空余容量。
在本实施形态中,空余容量检测装置20是与冰箱2分开的装置。因此,控制部50作为与冰箱2的控制装置分开的控制装置而存在。然而不限于此,空余容量检测装置20也可以被构造为冰箱2的一部分。在这种情况下,空余容量检测装置20的控制部50也可以被构造为冰箱2的控制装置的一部分。
(移动的拉出式容器的确定方法)
图4A是示出打开门6A即将拉出第一列拉出式容器12A至12C中的上数第二个拉出式容器12B的状态的侧视图。图4B是示出在打开门6A并拉出上数第二个拉出式容器12B的情况下确定被拉出的拉出式容器12B时的侧视图。
接下来,参考图4A和4B来说明确定从储藏位置向前移动的拉出式容器12A至12E的方法。这里,以从储藏位置向前侧拉出第一列拉出式容器12A至12C中的上数第二个拉出式容器12B的情况为例进行说明。
在打开门6A时,深度检测传感器30A、30B和位置检测传感器32A、32B变为开启(ON)状态,变为来自传感器的光源的光射出的状态。在从储藏位置向前侧拉出拉出式容器12B时,从深度检测传感器30A、30B的光源射出的光首先撞到作为拉出式容器12B的最前部的上表面的拉手部16的上表面16A,并且反射光射入深度检测传感器30A、30B的光接收面。尽管也可以用深度检测传感器30A、30B二者来测定到拉出式容器12B的拉手部16的上表面16A的距离PB,但是根据传感器的测定范围,深度检测传感器30B检测出更加正确的距离。
将从深度检测传感器30A到拉出式容器12A的拉手部16的上表面16A的距离PA和拉出式容器12A的测定范围
从深度检测传感器30B到拉出式容器12B的拉手部16的上表面16A的距离PB和拉出式容器12B的测定范围
以及从深度检测传感器30B到拉出式容器12C的拉手部16的上表面16A的距离PC和拉出式容器12C的测定范围
保存在控制部50的存储部中。
基于这样的存储数据,在深度检测传感器30A、30B检测到距离PB时,控制部50确定向前侧移动的是拉出式容器12B。然后,按所确定的拉出式容器12B来确定进行检测的距离范围
并选择与距离范围
相对应的深度检测传感器30B和位置检测传感器32B。
同样,在深度检测传感器30A、30B检测到距离PA时,控制部50可以确定移动的是拉出式容器12A。然后,按所确定的拉出式容器12A来确定进行检测的距离范围
并选择与距离范围
相对应的深度检测传感器30A和位置检测传感器32A。此外,在深度检测传感器30A、30B检测到距离PC时,控制部50可以确定移动的是拉出式容器12C。然后,按所确定的拉出式容器12C来确定进行检测的距离范围
并选择与距离范围
相对应的深度检测传感器30B和位置检测传感器32B。
对第二列拉出式容器12D、12E也可以进行同样的控制处理。在深度检测传感器30C检测到距离PD时,控制部50可以确定移动的是拉出式容器12D。然后,按所确定的拉出式容器12D来确定进行检测的距离范围
此外,在检测传感器30C检测到距离PE时,控制部50可以确定移动的是拉出式容器12E。然后,按所确定的拉出式容器12E来确定进行检测的距离范围
在第二列中,通过检测传感器30C和位置检测传感器32C来进行两个拉出式容器12D、12E的测定。这里,用于确定拉出式容器12A至12E的距离PA至PE也可以称为“拉出确定值”。
(拉出式容器的移动方向上的位置的检测方法)
图5是示出本发明的一个实施形态所涉及的包括位置检测肋18的拉出式容器12A至12E的侧视图。接下来,参考图5对检测拉出式容器12A至12E在移动方向(Y轴方向)上的位置的方法进行说明。
本实施形态所涉及的位置检测肋18被形成为阶梯状。位置检测肋18的上表面18A被形成为台阶状,使得在移动方向(Y轴方向)上,上表面18A的高度(Z轴方向的位置)随着远离前表面侧而降低。这样,用位置检测传感器32A至32C检测到的到位置检测肋18的距离就与移动方向(Y轴方向)上的位置(台阶状的区域)一一对应。
图5中示出了形成1至n的n个台阶的情况。各台阶是在移动方向(Y轴方向)和高度方向(Z轴方向)上均等地分成n份而形成的。若位置检测肋18的移动方向(Y轴方向)上的长度为L,则各台阶在移动方向(Y轴方向)上的长度为L/n。若位置检测肋18的高度尺寸(Z轴方向的长度)为U,则各台阶在高度(Y轴方向的位置)上的差为U/n。
拉出式容器12A至12E的移动方向(Y轴方向)可以划分成长度为L/n的n个区域。移动方向(Y轴方向)上最前一个区域用Pos(1)表示,并且最后一个区域用Pos(n)表示。此外,若将1至n的任意整数设为j,则各区域可以用Pos(j)代表(j是1至n的整数)。此外,从位置检测传感器32A至32C到位置检测肋18的Pos(j)的上表面18A的距离可以用Q(j)代表。
例如,在位置检测传感器32A至C检测到的Pos(j-1)、Pos(j)、Pos(j+1)中,有Q(j-1)=Q(j)+U/n,Q(j+1)=Q(j)-U/n。
当拉出式容器12A至12E从储藏位置向前侧移动并且位置检测传感器32A至32C检测到距离Q(j)时,控制部50判断出Pos(j)位于位置检测传感器32A至32C的正下方。在本实施形态中,深度检测传感器30A至30C和位置检测传感器32A至32C在移动方向(Y轴方向)上配置在相同的位置。由此,可以使用位置检测传感器32A至32C检测到Q(j)时的深度检测传感器30A至30C的测定数据来算出与Pos(j)相对应的空余容量。
当Pos(n)位于位置检测传感器32A至32C的正下方时,拉出式容器12A至12E处于最大拉出状态,拉出式容器12A至12E无法比该位置进一步向前侧移动了。使用者在该状态下进行储藏物的存取。由此,可以将Pos(n)在位置检测传感器32A至32C的正下方的位置称为“存取位置”。
情况不限于深度检测传感器30A至30C和位置检测传感器32A至32C在移动方向(Y轴方向)上配置在相同的位置,它们也可以配置在不同的位置。即使是在这种情况下,由于深度检测传感器30A至30C和位置检测传感器32A至32C在移动方向(Y轴方向)上的距离是确定的,因此可以使用深度检测传感器30A至30C检测到的数据来准确地算出与Pos(j)的位置相对应的空余容量。
这样,每个拉出式容器12A至12E形成有位置检测肋18,其上表面18A的高度根据移动方向(Y轴方向)上的位置不同而不同,并且可以基于位置检测传感器32A至32C检测到的到位置检测肋18的上表面18A的距离Q(j)来准确地确定拉出式容器12A至12E在移动方向(Y轴方向)上的位置(台阶状的区域),即Pos(j)。
(拉出式容器的空余容量的算出方法)
图6是从箭头C看图5所示的拉出式容器的平面图,并且是示出了用于算出空余容量的各Area(j)的平面图。图7是示意性地示出装入了储藏物的拉出式容器的侧视图,用于说明空余容 量的计算。图8是示出用于说明空余容量的计算的表格的一个示例的图。接下来,参考图6至图8来说明拉出式容器12A至12E的空余容量的算出方法。
每个拉出式容器12A至12E内部的宽度尺寸(X轴方向)设为W。深度检测传感器30A至30C位于拉出式容器12A至12E的宽度方向(X轴方向)上的大致中央处,用一个深度检测传感器30A至30C来进行宽度W上的全部测定区域的测定。
另一方面,如上所述,拉出式容器12A至12E的移动方向(Y轴方向)上的总长L的区域被均等地分成n份。这样,拉出式容器12A至12E的储藏区域(平面)被划分成与图5所示的Pos(j)相对应的平面,即Area(j)。每当拉出式容器12A至12E前进L/n,控制部50就可以使用深度检测传感器30A至30C的检测数据算出Area(j)的空余容量。
图7中示出了Area(j)和在移动方向(Y轴方向)上在其前后的Area(j-1)、Area(j+1)中的单独空余容量AV的算出方法。
以Area(j)为例,通过从深度检测传感器30A至30C检测到的从深度检测传感器30A至30C到储藏物G的上表面的距离减去深度检测传感器30A至30C与拉出式容器12A至12E的上表面之间的距离H,可以取得从拉出式容器12A至12E的上表面到储藏物G的上表面的距离,即深度数据D(j)。
在Area(j)中,尽管也可能有储藏物G的上表面在宽度方向(X轴方向)和移动方向(Y轴方向)上不在一个平面中的情况,但是通过将储藏物G的上表面近似为平面(也就是说,通过将Area(j)的单独空余容量AV视为直方体),可以用下述计算式简易地计算单独空余容量AV(j)。
单独空余容量AV(j)=W×L/n×D(j)
与Area(j)前后邻接的Area(j-1)、Area(j+1)也是同样,用如下所述的计算式可以算出单独空余容量AV(j-1)、AV(j+1);
单独空余容量AV(j-1)=W×L/n×D(j-1),
单独空余容量AV(j+1)=W×L/n×D(j+1)。
当拉出式容器12A至12E中的一个被从储藏位置拉出而向前移动时,首先,深度检测传感器30A至30C检测到作为拉出式容器12A至12E的前端的上表面的拉手部16的上表面16A的距离PA至PE,控制部50确定被拉出的是哪个拉出式容器12A至12E。控制部50选择具有与所确定的拉出式容器12A至12E相对应的测定范围的深度检测传感器30A至30C和位置检测传感器32A至32C。
在拉出式容器12A至12E进一步向前移动时,所选位置检测传感器32A至32C每次检测距离Q(j),控制部50就基于所选深度检测传感器30A至30C的测定值取得深度数据D(j)。通过反复这样做,控制部50可以对于按位置检测传感器32A至32C的测定数据辨别出的Area(1)至Area(n)取得深度数据D(1)至D(n)。然后,可以基于所取得的深度数据D(1)至D(n)算出Area(1)至(n)的单独空余容量AV(1)至AV(n)。
通过对算出的全部Area(j)的单独空余容量AV(j)进行求和,可以算出拉出式容器12A至12E的总空余容量VT。空余容量AV(j)的算出可以是在拉出式容器12A至12E移动期间在每次取得Area(j)的深度数据D(j)时进行的,也可以如后文所述是在取得了所有Area(j)的深度数据D(j)之后一起进行的。
图8的表格示出了单独空余容量AV(j)的求和处理的一个示例。图8中,在移动方向(Y轴方向)上,针对j=1至n,基于深度检测传感器30A至30C的测定值取得深度数据D(j),将所取得的深度数据D(j)乘以W和L/n,即可算出单独空余容量AV(j)。通过对全部的单独空余容量AV(j)[j=1至n]求和,可以算出拉出式容器12A至12E的空余容量VT。
在拉出式容器12A至12E拉出到前方的存取位置并进行了储藏物的存取之后,在将拉出式容器12A至12E推回时,可以用同样的计算算出拉出式容器12A至12E的空余容量VT。也就是说,控制部50可以算出各Area(j)的单独空余容量AV(j),并通过对算出的全部单独空余容量AV(j)进行求和来算出拉出式容器12A至12E的空余容量VT。在移动方向(Y轴方向)上推回时的j的值从拉出时的n至1变为推回时的1至n。这样就能够掌握被拉出又推回的拉出式容器12A至 12E的空余容量的变化。
用控制部50算出的拉出式容器12A至12E的空余容量VT可以经由发送部60发送至例如使用者的手机终端,或者可以显示在显示装置上。此外,控制部50可以使发光部34A至34E用与算出的空余容量VT相对应的颜色发光。
也有在拉出式容器12A至12E从储藏位置拉出到存取位置之前停留较长时间的情况。在这种情况下,控制部50进行控制处理,以结束拉出式容器12A至12E的空余容量的检测。
在如上所述的本实施形态所涉及的空余容量检测装置20中,对上下排列的多个拉出式容器12A至12E配置一个深度检测传感器30A至30C,n个检测位置Pos、Area(j)被确定为使各个移动方向(Y轴方向)上的检测范围变得均等,设深度检测传感器30A至30C的宽度方向(X轴方向)上的全部检测范围的长度为W、移动方向(Y轴方向)上的全部检测范围的长度为L、并且基于每个检测位置Pos、Area(j)中的深度检测传感器30A至30C的测定值而确定的深度数据为D(j),于是用W×L/n×D算出每个检测位置Pos、Area(j)中的单独空余容量AV(j),通过对该单独空余容量AV(j)进行求和,算出拉出式容器12A至12E内部的空余容量VT。
这样,利用使用作为距离传感器的深度检测传感器30A至30C的测定数据的简易计算,即可在短时间准确地算出拉出式容器12A至12E内部的空余容量VT。
<空余容量VT的计算方法的变型示例>
在上述空余容量VT的计算中,也有无法得到Area(j)的检测位置处的深度检测传感器30A至30C的测定值的情况,在这种情况下可以考虑如下方式:使用在移动方向(Y轴方向)上邻接的Area(j-1)或Area(j+1)的检测位置处的深度检测传感器30A至30C的测定值来取得深度数据D(j)。可以使用该深度数据D(j)来算出检测区域Area(j)的单独空余容量AV(j)。
在邻接的测定值处存在同一储藏物G的情况下,邻接的检测位置处得到近似的测定值的可能性较高。由此,有望得到具有实践中可利用的精度水平的空余容量VT。
<在宽度方向上有多个深度检测传感器的变型示例>
在上述实施形态中,用一个深度检测传感器30A至30C来进行宽度W的整个测定区域的测定,但是不限于此。也可以在拉出式容器12A至12E的宽度方向(X轴方向)上配置多个深度检测传感器。在这种情况下,优选地配置成使得各深度检测传感器的测定范围变得均等。例如,在宽度方向上配置m个深度检测传感器的情况下,可以用下述计算式算出单独空余容量AV。若各Area用Area(i)(j)[i=1至m的整数,j=1至n的整数]表示并且其深度数据用D(i)(j)表示,则各Area(i)(j)的深度单独空余容量AV(i)(j)可以表示为
AV(j)=W/m×L/n×D(i)(j)。
(包括位置检测肋的拉出式容器的变型示例)
图9是示出包括位置检测肋的拉出式容器的变型示例的侧视图。接下来,参考图9对包括位置检测肋18'的拉出式容器12A至12E的变型示例进行说明。
上述图5所示的位置检测肋18具有上表面18A的高度呈台阶状变化的阶梯一样的形状,但是变型示例的位置检测肋18'的不同点在于,其具有上表面18A'的高度连续变化的倾斜面。上表面18A'倾斜,使得其在拉出式容器12A至12E的前侧较高且后侧变低。在图5中的侧面视图中,上表面18A'呈直线状延伸。位置检测传感器32A至32B检测到的在高度方向(Z轴方向)上的到上表面18A'的距离Q(z)与移动方向(Y轴方向)上的距拉出式容器12A至12E的前端的距离R(y)一一对应。
由此,基于位置检测传感器32A至32C检测到的到位置检测肋18'的上表面18A'的距离Q(z),可以准确地确定拉出式容器12A至12E在移动方向(Y轴方向)上的位置R(y)。这样,与上文一样,控制部50可以取得Area(j)处的深度数据D(j)并算出单独空余容量AV,对其进行求和,算出拉出式容器12A至12E内部的空余容量VT。倾斜的上表面18A'不一定必须是平面,只要距离Q(z)与距离R(y)一一对应,可以采用任意的曲面。
(控制部的处理流程)
图10是示出由控制部50进行的用于计算空余容量VT的控制处理的一个示例的流程图。接 下来,参考图10对控制部50进行的用于算出如上所述的拉出式容器12A至12E的总空余容量VT的控制流程进行说明。
首先,判断门6A、6B是否打开(步骤S2)。在该判断中,如果辨别出门6A、6B没有打开(否),则变为反复进行该判断处理的待机状态。在步骤S2的判断中,如果辨别出门6A、6B打开(是),则接下来接通深度检测传感器30A至30C和位置检测传感器32A至32C的电源(步骤S4)。
更具体地,在辨别出门6A打开时,接通深度检测传感器30A、30B和位置检测传感器32A、32B的电源。在辨别出门6B打开时,接通深度检测传感器30C和位置检测传感器32C的电源。在接通电源时,使得从传感器的光源射出光。
接下来,判断深度检测传感器30A至30C是否检测到了确定拉出式容器12A至12E的拉出特定值PA至PE中的哪个(步骤S6)。在该判断中,如果辨别出没有检测到拉出特定值PA至PE(否),则变为反复进行该判断处理的待机状态。
拉出特定值PA至PE是从深度检测传感器30A至30C到作为拉出式容器12A至12E的前端的上表面的拉手部16的上表面16A的距离。例如,如图4B所示,在深度检测传感器30B检测到拉出特定值PB时,可以辨别出拉出式容器12B向前移动。在步骤S4中,如果辨别出检测传感器30A至30C检测到了拉出特定值PA至PE中的哪个(是),则确定移动的拉出式容器12A至12E,并确定与所确定的拉出式容器12A至12E相对应的深度测定范围(步骤S8)。然后,选择与所确定的深度测定范围相对应的深度检测传感器30A至30C和位置检测传感器32A至32C(步骤S10)。
接下来,判断所选位置检测传感器32A至32C处是否检测到了与作为最前侧的测定区域的Pos(1)相对应的距离Q(1)(参考图5)(步骤S12)。在该判断中,如果辨别出没有检测到与Pos(1)相对应的距离Q(1)(否),则变为反复进行该判断处理的待机状态。在步骤S12的判断中,如果辨别出检测到到与Pos(1)相对应的距离Q(1)(是),则接下来进行向计数器J输入1的控制处理(步骤S14)。
接下来,基于根据所选深度检测传感器30A至30C的测定值取得深度数据D(j)(这里,j=1)(步骤S16)。然后,判断位置检测传感器32A至32C是否检测到了与Pos(j+1)(这里为Pos(2))相对应的距离Q(j+1)(步骤S18)。在该判断中,如果辨别出位置检测传感器32A至32C尚未检测到距离Q(j+1)(否),则接下来判断自上次的深度数据D(j)取得起是否经过了时间T(步骤S20)。
在该判断中,如果辨别出自上次的深度数据取得起没有经过时间T(否),则再次返回步骤S18。如果是在取得了深度数据D(j)后拉出式容器12A至12E变为停止状态经过了时间T的情况下,则辨别出自上次的深度数据D(j)取得起经过了时间T(是),于是前进到步骤S22。在步骤S22中,由于拉出式容器长时间在打开状态下处于长时间停止状态,因此进行报告检测错误的控制处理(步骤S22),并结束本控制处理。
在经过时间T之前,在步骤S18的判断中,如果辨别出位置检测传感器32A至32C检测到了与Pos(j+1)相对应的距离Q(j+1)(是),则进行计数器J加1的控制处理(步骤S24)。然后,判断计数器J的值是否为n(步骤S26)。在该判断中,如果辨别出计数器J的值不为n,即比n小(否),则返回步骤S16,重复步骤S16至S26所示的控制处理和判断处理。这样就可以取得Pos(1)至Pos(n-1)的深度数据D(1)至D(n-1)。
然后,在步骤S26的判断中,如果辨别出计数器J的值为n(是),则基于根据所选深度检测传感器30A至30C的测定值取得测定位置Pos(n)处的深度数据D(n)(步骤S28)。从所取得的深度数据D(1)至D(n)算出单独空余容量AV(1)至AV(n),对其进行求和,并算出拉出式容器12A至12E的总空余容量VT(步骤S30)。然后,将空余容量VT的数据发送至发送部60(步骤S32)。进一步地,控制发光部34A至34E,使之射出与空余容量VT相对应的颜色的光(步骤S34),并结束本控制处理。
在本实施形态中,使得被通知有拉出式容器12A至12E的空余容量VT的算出结果的发光部 34A至34E配置在算出其空余容量的拉出式容器12A至12E的周边框部10A上,从发光部34A至34E向宽度方向(X轴方向)上射出光,并用颜色指示空余容量VT的状态。
有了来自发光部34A至34E的光的颜色,使用者不用打开拉出式容器12A至12E也能掌握各拉出式容器12A至12E的空余容量VT。特别地,由于从发光部34A至34E向宽度方向(X轴方向)射出光,因此使用者能够准确地掌握各拉出式容器12A至12E的空余容量VT而不会感到眩光。
如上所述,本实施形态所涉及的空余容量检测装置20包括:至少一个深度检测传感器30A至30C,其为距离传感器,固定在上下排列的多个拉出式容器12A至12E的上侧的位置,被配置成从上侧俯瞰拉出式容器12A至12E的内部;以及与深度检测传感器30A至30C电气连接的控制部50;控制部50基于深度检测传感器30A至30C在多个拉出式容器12A至12E中的一个拉出式容器12A至12E从储藏位置向前侧移动时检测到的到该拉出式容器12A至12E的最前部16的上表面16A的距离来确定移动的拉出式容器12A至12E,针对所确定的拉出式容器12A至12E,基于在移动方向(Y轴方向)上的指定检测位置处的深度检测传感器30A至30C的测定值取得该拉出式容器12A至12E内部的深度数据D(j),并使用该深度数据D(j)算出该拉出式容器12A至12E内部的空余容量VT。
根据本实施形态,即使是在有上下多个拉出式容器12A至12E的情况下,也能基于深度检测传感器30A至30C检测到的到拉出式容器12A至12E的最前部16的上表面16A的距离准确地确定移动的拉出式容器12A至12E。针对所确定的拉出式容器12A至12E,基于移动方向(Y轴方向)上的指定检测位置处的深度检测传感器30A至30C的测定值可以算出拉出式容器12A至12E内部的空余容量VT。由此,能够以少量传感器在短时间算出空余容量。
这样就能够提供成本低廉且结构简单的空余容量检测装置20,其能够确定多个储藏区域12A至12E中的作为测定对象的储藏区域12A至12E,并以短时间检测出所确定的储藏区域12A至12E的空余容量VT。
进一步地,本实施形态所涉及的空余容量检测装置20包括至少一个位置检测传感器32A至32C,其为距离传感器,其固定在上下排列的多个拉出式容器12A至12E的上侧的位置,并与控制部50电气连接;每个拉出式容器12A至12E形成有位置检测肋18、18',其上表面的高度根据移动方向(Y轴方向)上的位置不同而不同;基于位置检测传感器32A至32C检测到的到位置检测肋18、18'的上表面18A、18A'的距离Q(j)、Q(z),可以确定拉出式容器12A至12E在移动方向(Y轴方向)上的位置Pos(j)、R(y)。
根据本实施形态,由于拉出式容器12A至12E形成有位置检测肋18、18',其上表面18A、18A'的高度根据移动方向(Y轴方向)上的位置不同而不同,因此可以基于从位置检测传感器32A至32C到位置检测肋18、18'的上表面18A、18A'的距离Q(j)、Q(z)来确定拉出式容器12A至12E在移动方向(Y轴方向)上的位置Pos(j)、R(y)。由于位置检测传感器32A至32C检测上下方向(Z轴方向)上的距离,因此其可以与深度检测传感器30A至30C一样配置在拉出式容器12A至12E的上方。这样就可以实现结构简单且节省空间的空余容量检测装置20。
特别地,控制部50在确定了移动的拉出式容器12A至12E时,根据所确定的拉出式容器12A至12E来确定进行检测的距离范围,并选择与该距离范围相对应的深度检测传感器30A至30C。这样,即使是在多个拉出式容器12A至12E上下排列的情况下,也能准确地算出各拉出式容器12A至12E的空余容量VT。
在包括如上所述的空余容量检测装置20的冰箱2中,可以用低成本的简单结构确定多个储藏区域12A至12E中的作为测定对象的储藏区域12A至12E,并在短时间检测出所确定的储藏区域12A至12E的空余容量VT。
尽管说明了本发明的实施形态、实施方式,但是也可以在结构的细节方面改变所公开的内容,并且还可以在不脱离所请求保护的本发明的范围和思想的情况下实现实施形态、实施方式中的要素的组合或顺序变化等。
Claims (10)
- 一种空余容量检测装置,其特征在于,其包括:至少一个深度传感器,其为距离传感器,固定在上下排列的多个拉出式容器的上侧的位置,被配置成从上侧俯瞰所述拉出式容器的内部,以及控制部,与所述深度检测传感器电气连接;所述控制部在多个所述拉出式容器中的一个从储藏位置向前侧移动时,基于所述深度检测传感器检测到的至所述拉出式容器的最前部的上表面的距离来确定移动的所述拉出式容器,并且对于移动的所述拉出式容器,根据所述深度检测传感器在移动方向上的预定检测位置处的测定值,获取所述拉出式容器内部的深度数据,并使用该深度数据计算所述拉出式容器内部的空余容量。
- 根据权利要求1所述的空余容量检测装置,其特征在于,还包括至少一个位置检测传感器,其为与所述控制部电气连接的距离传感器,固定在上下排列的多个拉出式容器的上侧的位置;每个所述拉出式容器形成有位置检测肋,其上表面高度根据移动方向上的位置不同而不同,基于所述位置检测传感器检测到的到所述位置检测肋的上表面的距离来确定所述拉出式容器在移动方向上的位置。
- 根据权利要求1所述的空余容量检测装置,其特征在于,上下排列的多个拉出式容器配置有一个所述深度检测传感器,n个所述检测位置被确定为使各个移动方向上的检测范围变得均等,假定所述深度检测传感器的宽度方向上的全部检测范围的长度为W、并且所述移动方向上的全部检测范围的长度为L,基于每个所述检测位置处的所述深度检测传感器的测定值而确定的所述深度数据为D,每个所述检测位置处的单独空余容量用W×L/n×D算出,通过对该单独空余容量求和来算出拉出式容器内部的空余容量。
- 根据权利要求1所述的空余容量检测装置,其特征在于,所述控制部在识别移动的所述拉出式容器时,确定被识别的所述拉出式容器所要检测的距离范围,并选择与该距离范围相对应的深度检测传感器。
- 根据权利要求1所述的空余容量检测装置,其特征在于,所述拉出式容器的周边框部配置有发光部,向其通知所述拉出式容器的空余容量的算出结果;从所述发光部向宽度方向射出光;用颜色指示空余容量的状态。
- 如权利要求2所述的空余容量检测装置,其特征在于,所述位置检测肋呈阶梯状,所述位置检测肋的上表面被形成为台阶状,在移动方向上,所述上表面的高度随着远离前表面侧而降低。
- 如权利要求2所述的空余容量检测装置,其特征在于,所述拉出式容器中的深度数据为:所述深度检测传感器至所述拉出式容器内部的测定对象物的高度方向上的距离减去所述深度检测传感器与所述拉出式容器的上表面之间的距离。
- 一种冰箱,其包括壳体,其特征在于,还包括如权利要求1所述的空余容量检测装置,所述拉出式容器安装于所述壳体内。
- 如权利要求8所述的冰箱,其特征在于,所述拉出式容器的外侧的框体的周边框部上设置有发光部,所述发光部通过不同颜色指示空余容量的状态。
- 如权利要求9所述的冰箱,其特征在于,所述发光部的光向宽度方向射出。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021215014A JP2023098319A (ja) | 2021-12-28 | 2021-12-28 | 空き容量検出装置 |
JP2021-215014 | 2021-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023125469A1 true WO2023125469A1 (zh) | 2023-07-06 |
Family
ID=86997852
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/142145 WO2023125469A1 (zh) | 2021-12-28 | 2022-12-27 | 空余容量检测装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023098319A (zh) |
WO (1) | WO2023125469A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001021340A (ja) * | 1999-07-08 | 2001-01-26 | Hiroyuki Kakinuma | 立体物測定方法及び立体物測定装置 |
JP2012220341A (ja) * | 2011-04-08 | 2012-11-12 | Nikon Corp | 形状測定装置、形状測定方法、及びそのプログラム |
JP2018043845A (ja) * | 2016-09-14 | 2018-03-22 | アクア株式会社 | 収納物管理システム |
CN108389230A (zh) * | 2018-03-07 | 2018-08-10 | 上海扩博智能技术有限公司 | 冰箱容量自动检测方法、系统、设备及存储介质 |
CN109631456A (zh) * | 2017-10-06 | 2019-04-16 | 东芝生活电器株式会社 | 冰箱 |
-
2021
- 2021-12-28 JP JP2021215014A patent/JP2023098319A/ja active Pending
-
2022
- 2022-12-27 WO PCT/CN2022/142145 patent/WO2023125469A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001021340A (ja) * | 1999-07-08 | 2001-01-26 | Hiroyuki Kakinuma | 立体物測定方法及び立体物測定装置 |
JP2012220341A (ja) * | 2011-04-08 | 2012-11-12 | Nikon Corp | 形状測定装置、形状測定方法、及びそのプログラム |
JP2018043845A (ja) * | 2016-09-14 | 2018-03-22 | アクア株式会社 | 収納物管理システム |
CN109631456A (zh) * | 2017-10-06 | 2019-04-16 | 东芝生活电器株式会社 | 冰箱 |
CN108389230A (zh) * | 2018-03-07 | 2018-08-10 | 上海扩博智能技术有限公司 | 冰箱容量自动检测方法、系统、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
JP2023098319A (ja) | 2023-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11209528B2 (en) | Time-of-flight depth image processing systems and methods | |
WO2021013195A1 (en) | Lighting system for a household appliance | |
US11656342B2 (en) | Histogram-based signal detection with sub-regions corresponding to adaptive bin widths | |
US20080264074A1 (en) | Ice level and quality sensing system employing digital imaging | |
WO2016173167A1 (zh) | 冰箱的使用容积检测方法与装置 | |
JP2016148503A (ja) | 冷蔵庫、冷蔵庫管理方法及びプログラム | |
US6879407B2 (en) | Displacement sensor | |
CN104896863B (zh) | 冰箱与冰箱的使用容积检测方法 | |
US11423572B2 (en) | Built-in calibration of time-of-flight depth imaging systems | |
US10520300B2 (en) | Optical liquid level measurement system for dispensing apparatus | |
WO2023125469A1 (zh) | 空余容量检测装置 | |
WO2022171025A1 (zh) | 具有可重量检测的搁架组件的冰箱 | |
CN110017659A (zh) | 家用制冷器具设备 | |
WO2016173165A1 (zh) | 冰箱 | |
US20190212415A1 (en) | Method for estimating object distance and electronic device | |
WO2016173168A1 (zh) | 冰箱的使用容积检测方法与装置 | |
CN111522024B (zh) | 解决多路径损坏的图像处理系统、方法和成像设备 | |
EP2700916B1 (fr) | Appareil de pesee a interface tactile dynamique | |
WO2016173163A1 (zh) | 冰箱与冰箱的使用容积检测方法 | |
CN110520713A (zh) | 介质槽传感器 | |
CN118696250A (zh) | 可选择信号的三维填充监测传感器 | |
US20230401532A1 (en) | Stock level detection apparatus and methods thereof | |
CN116034244A (zh) | 具有可移动相机的制冷电器 | |
JP6681606B2 (ja) | 食品分析装置 | |
CN113454486A (zh) | 基于比率变化检测的接近度感测 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22914723 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |