WO2023125267A1 - 信号处理设备及数据传输方法 - Google Patents

信号处理设备及数据传输方法 Download PDF

Info

Publication number
WO2023125267A1
WO2023125267A1 PCT/CN2022/141305 CN2022141305W WO2023125267A1 WO 2023125267 A1 WO2023125267 A1 WO 2023125267A1 CN 2022141305 W CN2022141305 W CN 2022141305W WO 2023125267 A1 WO2023125267 A1 WO 2023125267A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
module
signal processing
processing device
antenna
Prior art date
Application number
PCT/CN2022/141305
Other languages
English (en)
French (fr)
Inventor
王健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020247025167A priority Critical patent/KR20240125044A/ko
Priority to EP22914521.4A priority patent/EP4440241A1/en
Publication of WO2023125267A1 publication Critical patent/WO2023125267A1/zh
Priority to US18/755,331 priority patent/US20240348296A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Definitions

  • the present disclosure relates to the communication field, and more specifically, to a signal processing device and a data transmission method.
  • distributed access network equipment In the current cellular wireless communication system, distributed access network equipment has been used as a main form of access network equipment.
  • Some distributed access network devices include a baseband unit (Baseband Unit, BBU) and a radio remote unit (Radio Remote Unit, RRU), which support a limited range of the first frequency band.
  • BBU Baseband Unit
  • RRU Radio Remote Unit
  • BBUs BBUs and active antenna units
  • AAU Active Antenna Unit
  • Embodiments of the present disclosure provide a data transmission solution.
  • the first signal processing device can simultaneously support two different segmentation modes, and thus can simultaneously support the first frequency range and the second frequency range. In this way, the requirements of various services can be met through the first signal processing device, which can reduce the complexity of deployment and further reduce the cost.
  • a first signal processing device includes: an interface module configured to perform Ethernet data transmission with the second signal processing device via an optical fiber; a scheduling module configured to, based on the transmission configuration information from the second signal processing device, send the The data is scheduled to the first processing module or the second processing module, and the data to be processed includes Ethernet data from the second signal processing device, or uplink data from the antenna module; the first processing module is configured to follow the first The splitting mode processes the data from the scheduling module; the second processing module is configured to process the data from the scheduling module according to the second splitting mode; and the antenna module is configured to send the data processed by the first processing module or the second processing module data and/or receive uplink data.
  • the first signal processing device can process data according to the first splitting mode and the second splitting mode respectively based on the scheduling. It can be seen that the first signal processing device can support two different splitting modes at the same time, so as to meet various business requirements. demand. In this way, there is no need to deploy the RRU and the AAU separately, which can reduce complexity and cost.
  • the scheduling module is coupled to the interface module, the antenna module, the first processing module and the second processing module. In this way, the scheduling module can schedule the data from the interface module or the antenna module to the first processing module or the second processing module, so as to realize correct data distribution.
  • the first slicing mode is a time-domain slicing mode
  • the first processing module is configured to perform radio frequency (RF) processing on the data from the scheduling module.
  • the first split mode may indicate that physical layer processing is performed by the first baseband module of the second signal processing device, and radio frequency processing is performed by the first processing module of the first signal processing device.
  • the first splitting mode may be a splitting mode supporting CPRI, so the first signal processing device may support data processing of CPRI.
  • the first processing module includes: a conversion submodule configured to implement conversion between Ethernet data and time domain data; and a beamforming submodule configured to implement a first number of multiple A conversion between multiple channels of first time domain data and a second number of multiple channels of second time domain data, the second number corresponds to the number of antenna channels of the antenna module, and the first number is smaller than the second number.
  • the first processing module can convert the Ethernet data into time domain data, so that beamforming can be performed in the time domain, thereby ensuring correct processing of the data.
  • the data to be processed includes Ethernet data from the second signal processing device, the number of antenna channels corresponding to the Ethernet data is the first number, and the conversion submodule is configured to determine based on the Ethernet data Corresponding multiple channels of first time domain data; and a beamforming submodule configured to determine multiple channels of second time domain data based on multiple channels of first time domain data and a second number of multiple first antenna weight parameters .
  • the time domain data can be recovered from the Ethernet data from the second signal processing device, and beamforming is performed in the time domain, so that the first signal processing device supports the time domain split mode, thereby enabling Data processing in the first frequency band range is supported.
  • the first processing module is coupled to the antenna module, and the antenna module is configured to send multiple channels of second time-domain data via multiple antenna channels. In this way, by transmitting through multiple antenna channels, the characteristics of multiple antennas can be fully utilized to realize MIMO transmission.
  • the conversion submodule is configured to determine multiple channels of first time-domain data based on splitting the load of the Ethernet data. In this way, by splitting the load of the Ethernet data, corresponding time-domain data can be obtained, and subsequent time-domain processing can be performed on the time-domain data.
  • the data to be processed includes uplink data from the antenna module, the uplink data includes a second number of multiple paths of second time domain data, and the beamforming submodule is configured to be based on Multiple channels of second time domain data and a second number of multiple second antenna weight parameters to determine multiple channels of first time domain data; and a conversion submodule configured to determine the corresponding Ethernet based on multiple channels of first time domain data data.
  • data from the antenna modules can be converted into time domain data of corresponding fewer antenna channels, thereby facilitating time domain processing at the second signal processing device.
  • the first processing module is coupled to the interface module, and the interface module is configured to: transmit the Ethernet data determined by the conversion submodule to the second signal processing device.
  • the converting submodule is configured to: group data of multiple chips in multiple channels of first time domain data into packets to obtain Ethernet data.
  • Ethernet data can be obtained by grouping multiple chips in the time-domain data. In this way, the conversion of time-domain data to Ethernet data is realized, thereby ensuring correct transmission of data via the optical fiber.
  • the number of multiple chips is determined based on at least one of the following factors: the first number, the number of samples of at least one chip in the multiple chips, and the bit width of the samples , or bandwidth. In this way, various factors can be fully considered when grouping packets, the transmission bandwidth can be fully utilized, the transmission efficiency is higher, and the waste of bandwidth resources can be avoided.
  • the interface module is further configured to obtain at least one of the following from the second signal processing device: the first number, the second number, the second number of multiple first antenna weight parameters, or the second Number of multiple second antenna weight parameters. In this way, information synchronization between the first signal processing device and the second signal processing device can be realized, and consistency of data processing can be ensured.
  • the transmission configuration information includes indication information whether to be processed by the first processing module. In this way, the configuration manner can be simplified, and the transmission overhead of configuration information can be reduced.
  • the transmission configuration information includes first indication information and second indication information, the first indication information indicates the correspondence between the first frequency band range and the first processing module, and the second indication information indicates the second frequency band The correspondence between the range and the second processing module.
  • the first signal processing device can simultaneously support the first frequency range and the second frequency range, avoiding deploying different devices for different frequency ranges, thereby reducing hardware costs.
  • the scheduling module is configured to: if the data to be processed is within the first frequency range, schedule the data to be processed to the first processing module; if the data to be processed is within the second frequency range, schedule the data to be processed to The processed data is dispatched to the second processing module.
  • the scheduling module can schedule data based on the frequency band range, so as to ensure that the first processing module and the second processing module can process data corresponding to the frequency band range, and ensure correct processing of the data. In this way, different carriers can be transmitted through the same optical fiber, and the dispatching module can implement distribution and scheduling to two different processing modules.
  • the second splitting mode is an internal splitting mode of the physical layer.
  • the division mode within the physical layer may indicate that: the physical lower layer is processed by the second processing module of the first signal processing device, and the physical upper layer is processed by the second baseband module of the second signal processing device.
  • the second processing module is coupled to the interface module, the scheduling module and the antenna module.
  • the optical fiber is an enhanced common public radio interface (Enhanced Common Public Radio Interface, eCPRI) optical fiber.
  • eCPRI Enhanced Common Public Radio Interface
  • a second signal processing device in a second aspect of the present disclosure, includes: a first baseband module configured to generate time-domain data, and the number of antenna channels corresponding to the time-domain data is a first number; a conversion module configured to convert the time-domain data into a first Ethernet Ethernet data; and an interface module configured to transmit the first Ethernet data to the first signal processing device via an optical fiber.
  • the second signal processing device can convert the generated time-domain data into Ethernet data for transmission, so that correct transmission through the optical fiber can be confirmed, and air interface efficiency can be improved.
  • the conversion module is coupled to the first baseband module and the interface module.
  • the conversion module is configured to: group the data of multiple chips in the time domain data into packets to obtain the first Ethernet data.
  • the number of multiple chips is determined based on at least one of the following factors: the first number, the number of samples of at least one chip in the multiple chips, and the bit width of the samples , or bandwidth.
  • it further includes a second baseband module configured to generate second Ethernet data; and the interface module is further configured to transmit the second Ethernet data to the first signal interface device.
  • a scheduling module is also included, and the interface module is also configured to receive Ethernet data from the first signal processing device; the scheduling module is configured to schedule the Ethernet data to the conversion module or the second baseband module
  • the conversion module is configured to convert the Ethernet data scheduled by the scheduling module into corresponding time domain data, and the number of antenna channels corresponding to the corresponding time domain data is the first number; the first baseband module is configured to process the corresponding time domain data domain data; and the second baseband module is configured to process the Ethernet data scheduled by the scheduling module. In this way, uplink data can be scheduled to the correct baseband module for processing.
  • the conversion module is configured to determine the corresponding time-domain data based on the load splitting of the Ethernet data.
  • the scheduling module is coupled to the conversion module and the second baseband module.
  • the interface module is further configured to send the transmission configuration information to the first signal processing device.
  • the transmission configuration information includes indication information whether to be processed by the first processing module of the first signal processing device.
  • the transmission configuration information includes first indication information and second indication information
  • the first indication information indicates the correspondence between the first frequency range and the first processing module of the first signal processing device
  • the second The indication information indicates the correspondence between the second frequency band range and the second processing module of the first signal processing device.
  • the interface module is configured to send at least one of the following to the first signal processing device: the first number, the second number, the second number of multiple first antenna weight parameters, or the first number Two quantities of a plurality of second antenna weight parameters, wherein the second quantity represents the number of antenna channels through which the antenna module of the first signal processing device transmits and receives data.
  • the optical fiber is an enhanced common public radio interface eCPRI optical fiber.
  • a communication system including the first signal processing device in the above first aspect or any embodiment and the second signal processing device in the above second aspect or any embodiment, wherein the first A signal processing device and a second signal processing device are connected via an optical fiber.
  • the optical fiber is an eCPRI optical fiber.
  • a data transmission method includes: acquiring data to be processed; scheduling the data to be processed to the first processing module or the second processing module based on the transmission configuration information from the second signal processing device, the data to be processed includes data from the second signal processing device Ethernet data from the antenna module, or uplink data from the antenna module; the first processing module processes the scheduled data according to the first split mode; and the second processing module processes the scheduled data according to the second split mode.
  • the first slicing mode is a time-domain slicing mode
  • processing the scheduled data by the first processing module according to the first slicing mode includes: executing, by the first processing module, the scheduled data RF processing.
  • the data to be processed includes Ethernet data from the second signal processing device, the number of antenna channels corresponding to the Ethernet data is the first number, and the first processing module uses the first division mode Processing the scheduled data includes: determining corresponding multiple channels of first time domain data based on Ethernet data; and determining multiple channels of second time domain data based on multiple channels of first time domain data and a second number of multiple first antenna weight parameters. field data, the second number corresponds to the number of antenna channels of the antenna module, and the first number is smaller than the second number.
  • the method further includes sending multiple channels of second time domain data through multiple antenna channels of the antenna module.
  • determining the corresponding multiple channels of first time-domain data based on the Ethernet data includes: determining multiple channels of first time-domain data based on load splitting of the Ethernet data.
  • the data to be processed includes uplink data from the antenna module, the uplink data includes a second number of multiple channels of second time domain data, and is divided by the first processing module according to the first Mode processing of the scheduled data includes: determining multiple channels of first time domain data based on multiple channels of second time domain data and a second number of multiple second antenna weight parameters; and determining the corresponding multiple channels of first time domain data based on multiple channels of first time domain data Ethernet data.
  • the method further includes: transmitting the determined Ethernet data to the second signal processing device.
  • determining corresponding Ethernet data based on multiple channels of first time domain data includes: grouping data of multiple chips in multiple channels of first time domain data to obtain Ethernet data.
  • the number of multiple chips is determined based on at least one of the following factors: the first number, the number of samples of at least one chip in the multiple chips, and the bit width of the samples , or bandwidth.
  • it also includes obtaining at least one of the following from the second signal processing device: a first number, a second number, a second number of multiple first antenna weight parameters, or a second number of multiple Second antenna weight parameter.
  • the transmission configuration information includes indication information whether to be processed by the first processing module.
  • the transmission configuration information includes first indication information and second indication information, the first indication information indicates the correspondence between the first frequency band range and the first processing module, and the second indication information indicates the second frequency band The correspondence between the range and the second processing module.
  • scheduling the data to be processed to the first processing module or the second processing module based on the transmission configuration information from the second signal processing device includes: if the data to be processed is within the first frequency range, scheduling the data to be processed to The processed data is dispatched to the first processing module; if the data to be processed is within the second frequency range, the data to be processed is dispatched to the second processing module.
  • the second splitting mode is an internal splitting mode of the physical layer.
  • the optical fiber is an eCPRI optical fiber.
  • a data processing method includes: generating time-domain data by a first baseband module, the number of antenna channels corresponding to the time-domain data is a first number; converting the time-domain data into first Ethernet data; and transmitting the first Ethernet data via an optical fiber to the first signal processing device.
  • converting the time-domain data into the first Ethernet data includes: grouping data of multiple chips in the time-domain data to obtain the first Ethernet data.
  • the number of multiple chips is determined based on at least one of the following factors: the first number, the number of samples of at least one chip in the multiple chips, and the bit width of the samples , or bandwidth.
  • the method further includes: generating the second Ethernet data by the second baseband module; and transmitting the second Ethernet data to the first signal processing device via an optical fiber.
  • it also includes: receiving Ethernet data from the first signal processing device via an optical fiber; scheduling the Ethernet data to the conversion module or the second baseband module; converting the scheduled Ethernet data by the conversion module is the corresponding time-domain data, and the number of antenna channels corresponding to the corresponding time-domain data is the first number; the corresponding time-domain data is processed by the first baseband module; and the scheduled Ethernet data is processed by the second baseband module.
  • converting the Ethernet data into corresponding time-domain data includes: determining the corresponding time-domain data based on splitting the load of the Ethernet data.
  • the method further includes: sending the transmission configuration information to the first signal processing device.
  • the transmission configuration information includes indication information whether to be processed by the first processing module of the first signal processing device.
  • the transmission configuration information includes first indication information and second indication information
  • the first indication information indicates the correspondence between the first frequency range and the first processing module of the first signal processing device
  • the second The indication information indicates the correspondence between the second frequency band range and the second processing module of the first signal processing device.
  • it also includes sending at least one of the following to the first signal processing device: the first number, the second number, the second number of multiple first antenna weight parameters, or the second number of A plurality of second antenna weight parameters, wherein the second number represents the number of antenna channels through which the antenna module of the first signal processing device transmits and receives data.
  • the optical fiber is an eCPRI optical fiber.
  • a communication device in a sixth aspect of the present disclosure, includes a processor and a memory, and the memory stores instructions executed by the processor.
  • the communication device realizes: obtaining data to be processed; based on the transmission configuration information from the second signal processing device , dispatch the data to be processed to the first processing module or the second processing module, the data to be processed includes the Ethernet data from the second signal processing device, or the uplink data from the antenna module; the first processing module according to The first split mode processes the scheduled data; and the second processing module processes the scheduled data according to the second split mode.
  • the first slicing mode is a time-domain slicing mode
  • the communication device when the instructions are executed by the processor, the communication device is enabled to: perform RF processing on the scheduled data by the first processing module.
  • the data to be processed includes Ethernet data from the second signal processing device, the number of antenna channels corresponding to the Ethernet data is the first number, and when the instruction is executed by the processor, the communication device Realization: determine multiple channels of corresponding first time domain data based on Ethernet data; and determine multiple channels of second time domain data based on multiple channels of first time domain data and a second number of multiple first antenna weight parameters, the second The number corresponds to the number of antenna channels of the antenna module, and the first number is smaller than the second number.
  • the communication device when the instructions are executed by the processor, the communication device is enabled to: transmit multiple channels of second time-domain data through multiple antenna channels of the antenna module.
  • the communication device when the instruction is executed by the processor, the communication device is enabled to: determine multiple channels of first time-domain data based on load splitting of Ethernet data.
  • the data to be processed includes uplink data from the antenna module, the uplink data includes a second number of multiple paths of second time domain data, and when the instructions are executed by the processor, the communication The device implements: determining multiple channels of first time domain data based on multiple channels of second time domain data and a second number of multiple second antenna weight parameters; and determining corresponding Ethernet data based on multiple channels of first time domain data.
  • the communication device when the instructions are executed by the processor, the communication device is enabled to: transmit the determined Ethernet data to the second signal processing device.
  • the communication device when the instruction is executed by the processor, the communication device is enabled to realize: grouping data of multiple chips in multiple channels of first time-domain data to obtain Ethernet data.
  • the number of multiple chips is determined based on at least one of the following factors: the first number, the number of samples of at least one chip in the multiple chips, and the bit width of the samples , or bandwidth.
  • it also includes obtaining at least one of the following from the second signal processing device: a first number, a second number, a second number of multiple first antenna weight parameters, or a second number of multiple Second antenna weight parameter.
  • the transmission configuration information includes indication information whether to be processed by the first processing module.
  • the transmission configuration information includes first indication information and second indication information, the first indication information indicates the correspondence between the first frequency band range and the first processing module, and the second indication information indicates the second frequency band The correspondence between the range and the second processing module.
  • the communication device when the instruction is executed by the processor, the communication device is enabled to implement: if the data to be processed is in the first frequency range, dispatch the data to be processed to the first processing module; if the data to be processed is in the In the second frequency range, the data to be processed is scheduled to the second processing module.
  • the second splitting mode is an internal splitting mode of the physical layer.
  • the optical fiber is an eCPRI optical fiber.
  • a communication device in a seventh aspect of the present disclosure, includes a processor and a memory, and the memory stores instructions executed by the processor.
  • the communication device realizes: the time domain data is generated by the first baseband module, and the antenna corresponding to the time domain data
  • the number of channels is the first number; the time-domain data is converted into first Ethernet data; and the first Ethernet data is transmitted to the first signal processing device via an optical fiber.
  • the communication device when the instruction is executed by the processor, the communication device is enabled to realize: grouping data of multiple chips in the time domain data to obtain the first Ethernet data.
  • the number of multiple chips is determined based on at least one of the following factors: the first number, the number of samples of at least one chip in the multiple chips, and the bit width of the samples , or bandwidth.
  • the communication device when the instructions are executed by the processor, the communication device is enabled to: generate the second Ethernet data by the second baseband module; and transmit the second Ethernet data to the first signal processing device via an optical fiber.
  • the communication device when the instruction is executed by the processor, the communication device is enabled to: receive Ethernet data from the first signal processing device via an optical fiber; dispatch the Ethernet data to the conversion module or the second baseband module; The conversion module converts the scheduled Ethernet data into corresponding time domain data, and the number of antenna channels corresponding to the corresponding time domain data is the first number; the corresponding time domain data is processed by the first baseband module; and the corresponding time domain data is processed by the second baseband The module handles the scheduled Ethernet data.
  • the communication device when the instruction is executed by the processor, the communication device is enabled to: determine the corresponding time-domain data based on the load splitting of the Ethernet data.
  • the communication device when the instruction is executed by the processor, the communication device is enabled to: send the transmission configuration information to the first signal processing device.
  • the transmission configuration information includes indication information whether to be processed by the first processing module of the first signal processing device.
  • the transmission configuration information includes first indication information and second indication information
  • the first indication information indicates the correspondence between the first frequency range and the first processing module of the first signal processing device
  • the second The indication information indicates the correspondence between the second frequency band range and the second processing module of the first signal processing device.
  • the communication device when the instructions are executed by the processor, the communication device is enabled to: send at least one of the following to the first signal processing device: the first number, the second number, multiples of the second number The first antenna weight parameter, or a second number of multiple second antenna weight parameters, wherein the second number represents the number of antenna channels through which the antenna module of the first signal processing device transmits and receives data.
  • the optical fiber is an eCPRI optical fiber.
  • a computer-readable storage medium on which computer-executable instructions are stored, and when the computer-executable instructions are executed by a processor, the above-mentioned fourth aspect or its The operation of the method in any embodiment, or realize the operation according to the above fifth aspect or the method in any embodiment thereof.
  • a chip or a chip system includes a processing circuit configured to perform operations according to the method in the above fourth aspect or any embodiment thereof, or implement operations according to the method in the above fifth aspect or any embodiment thereof.
  • a computer program or computer program product is provided.
  • the computer program or computer program product is tangibly stored on a computer-readable medium and comprises computer-executable instructions which, when executed, implement operations according to the method in the fourth aspect or any embodiment thereof above, Or implement the operations according to the method in the above fifth aspect or any embodiment thereof.
  • Fig. 1 shows a schematic block diagram of distributed access network equipment
  • Fig. 2 shows another schematic block diagram of distributed access network equipment
  • Figure 3 shows a schematic diagram of different segmentation modes
  • Fig. 4 shows a schematic block diagram of an access network device according to an embodiment of the present disclosure
  • Fig. 5 shows a schematic block diagram of a first signal processing device according to some embodiments of the present disclosure
  • FIG. 6 shows a signaling interaction diagram of a data transmission process according to some embodiments of the present disclosure
  • FIG. 7 shows a schematic diagram of converting time-domain data into Ethernet data according to some embodiments of the present disclosure
  • FIG. 8 shows a signaling interaction diagram of a data transmission process according to some embodiments of the present disclosure
  • FIG. 9 shows a signaling interaction diagram of a data transmission process according to some embodiments of the present disclosure.
  • FIG. 10 shows a signaling interaction diagram of a data transmission process according to some embodiments of the present disclosure.
  • Fig. 11 shows a schematic block diagram of an example device that may be used to implement embodiments of the present disclosure.
  • Embodiments of the present disclosure may be implemented according to any suitable communication protocol, including but not limited to, third generation (3rd Generation, 3G), fourth generation (4G), fifth generation (5G), sixth generation (6G) wireless LAN communication protocols such as Institute of Electrical and Electronics Engineers (Institute of Electrical and Electronics Engineers, IEEE) 802.11, etc., and/or any other protocols currently known or developed in the future.
  • 3G third generation
  • 4G fourth generation
  • 5G fifth generation
  • 6G sixth generation
  • wireless LAN communication protocols such as Institute of Electrical and Electronics Engineers (Institute of Electrical and Electronics Engineers, IEEE) 802.11, etc., and/or any other protocols currently known or developed in the future.
  • the technical solutions of the embodiments of the present disclosure are applied to communication systems that follow any appropriate communication protocols, such as: General Packet Radio Service (General Packet Radio Service, GPRS), Global System for Mobile Communications (Global System for Mobile Communications, GSM), Enhanced Data rate GSM evolution system (Enhanced Data rate for GSM Evolution, EDGE), Universal Mobile Telecommunications System (Universal Mobile Telecommunications Service, UMTS), Long Term Evolution (LTE) system, Wideband Code Division Multiple Access system (Wideband Code Division Multiple Access, WCDMA), code division multiple access 2000 system (Code Division Multiple Access, CDMA2000), time division synchronous code division multiple access system (Time Division-Synchronization Code Division Multiple Access, TD-SCDMA), frequency division duplex (Frequency Division Duplex, FDD) system, time division duplex (Time Division Duplex, TDD), fifth generation system or new radio (New Radio, NR), future evolution of the sixth generation communication system, etc.
  • General Packet Radio Service General Packet Radio Service
  • GSM Global System for Mobile Communications
  • terminal device refers to any terminal device capable of wired or wireless communication with network devices or with each other.
  • the terminal equipment may sometimes be called user equipment (User Equipment, UE).
  • a terminal device can be any type of mobile terminal, stationary terminal or portable terminal.
  • terminal equipment may include a mobile handset, station, unit, device, mobile terminal (Mobile Terminal, MT), subscription station, portable subscription station, Internet node, communicator, desktop computer, laptop computer, notebook computer, tablet Computers, personal communication system devices, personal navigation devices, personal digital assistants (Personal Digital Assistant, PDA), positioning devices, radio broadcast receivers, e-book devices, game devices, Internet of Things (IoT) devices, vehicle-mounted devices , aircraft, virtual reality (Virtual Reality, VR) devices, augmented reality (Augmented Reality, AR) devices, wearable devices, terminal devices in 5G networks or evolved public land mobile networks (Public Land Mobile Network, PLMN) Any terminal device, other device that can be used for communication, or any combination of the above. Embodiments of the present disclosure do not limit this.
  • the term "network device” in this disclosure is an entity or node that can be used to communicate with a terminal device, for example, it can be an access network device.
  • the access network device may be a device deployed in the radio access network to provide a wireless communication function for the mobile terminal, for example, it may be a radio access network (Radio Access Network, RAN) network device.
  • Access network equipment may include various types of base stations. As an example, the access network equipment may include various forms of macro base stations, micro base stations, pico base stations, femto base stations, relay stations, access points, remote radio units (Remote Radio Unit, RRU), radio heads (Radio Head, RH ), Remote Radio Head (RRH) and so on.
  • the names of access network equipment may be different, for example, in a Long Term Evolution (LTE) network, it is called an evolved NodeB (evolved NodeB, eNB or eNodeB), which is called Node B (NodeB, NB) in 3G network, can be called gNode B (gNB) or NR Node B (NR NB) in 5G network, and so on.
  • the access network device may include a central unit (Central Unit, CU) and/or a distributed unit (Distributed Unit, DU).
  • CU and DU can be placed in different places, for example: DU is remote and placed in a high-traffic area, and CU is placed in the central computer room.
  • the CU and DU can also be placed in the same equipment room.
  • the CU and DU can also be different components under one rack.
  • the foregoing apparatus for providing a wireless communication function for a terminal device is collectively referred to as a network device, which is not specifically limited in the embodiments of the present disclosure.
  • Distributed access network equipment is the main form of access network equipment in the current cellular wireless communication system.
  • FIG. 1 shows a schematic block diagram of a distributed access network device 100 .
  • a distributed access network device 100 includes a BBU 110 and an RRU 120, and is connected through an optical fiber 130.
  • the RRU 120 may be connected to the antenna 102 via the feeder 101 so as to be able to communicate with the terminal device 140.
  • the optical fiber 130 in FIG. 1 may be a cable according to the Common Public Radio Interface (Common Public Radio Interface, CPRI) protocol.
  • CPRI Common Public Radio Interface
  • REC Radio Equipment Control
  • RE Radio Equipment
  • RRU 120 can include 4 modules: digital intermediate frequency module, transceiver module, power amplifier module and filter module.
  • the digital intermediate frequency module can be used for modulation and demodulation of optical transmission, digital up-down conversion, analog-to-digital (Analog/Digital, A/D) conversion, etc.;
  • the signal module is used to convert the intermediate frequency signal to the radio frequency signal; the converted radio frequency signal can pass through the power amplifier module and the filter module, and then be transmitted to the terminal device 140 through the antenna 102 .
  • the time-domain split mode is used, that is, the BBU 110 completes the media access control (Media Access Control, MAC) layer, physical layer, etc.
  • the RRU 120 completes the processing of radio frequency (Radio Frequency, RF).
  • the carrier supported by the RRU 120 is within the first frequency band, such as the 1.8GHz frequency band.
  • FIG. 2 shows another schematic block diagram of a distributed access network device 200 .
  • the distributed access network device 200 includes a BBU 210 and an AAU 220, and is connected through an optical fiber 230, wherein the AAU 220 includes an antenna module, so as to be able to communicate with a terminal device 240.
  • the BBU 210 may include CUs and DUs, which are not shown in FIG. 2 .
  • the optical fiber 230 may be a cable according to the enhanced common public radio interface (Enhanced Common Public Radio Interface, eCPRI) protocol.
  • the distributed access network device 200 shown in FIG. 2 can support Massive Multiple Input Multiple Output (Massive Multiple Input Multiple Output, Massive MIMO), and use the internal segmentation mode of the physical layer. That is to say, the BBU 210 completes the processing of the MAC layer and the high-level physical layer, and the AAU 220 completes the processing of the low-layer physical layer and RF.
  • the carrier supported by the AAU 220 is within the second frequency band, such as the 2.1GHz frequency band.
  • FIG. 3 shows a schematic diagram of different splitting modes 300 .
  • a time domain splitting mode 310 is shown, such as option 8 (Option-8), and a physical layer internal splitting mode 320 is shown, such as option 7-1, option 7-2 and option 7- 3.
  • option 8 Option-8
  • a physical layer internal splitting mode 320 is shown, such as option 7-1, option 7-2 and option 7- 3.
  • the BBU performs physical layer coding, rate matching, scrambling, modulation, layer mapping, precoding, resource element (Resource Element, RE) mapping, beam assignment Beamforming (BF) port expansion, etc., and the physical underlying inverse fast Fourier transform (inverse Fast Fourier Transform, iFFT) and cyclic shift (Cyclic Prefix, CP) addition, etc. are performed by the AAU.
  • inverse Fast Fourier transform inverse Fast Fourier Transform, iFFT
  • CP Cyclic Prefix
  • the AAU For uplink transmission, the AAU performs CP removal and Fast Fourier Transform (FFT) at the physical bottom layer, and the BBU performs port reduction, RE demapping, channel estimation, diversity combination, equalization, and inverse Discrete Fourier Transform (inverse Discrete Fourier Transform, iDFT), demodulation, descrambling, de-rate matching, decoding, etc.
  • FFT Fast Fourier Transform
  • iDFT inverse Discrete Fourier Transform
  • segmentation mode in the present disclosure can also be referred to as segmentation mode or protocol segmentation mode, etc., and in some scenarios, the segmentation mode can be used to represent the segmentation between RRU or AAU and BBU .
  • the splitting manner may indicate splitting between AAUs and DUs.
  • the RRU is connected to the BBU through the CPRI interface, and supports the first frequency range
  • the AAU is connected to the BBU through the eCPRI interface, and supports the second frequency range.
  • operators need to provide access network equipment that supports both the first frequency band range and the second frequency band range.
  • the method of separately deploying the RRU and the BBU not only has a complex structure, but also leads to higher costs.
  • embodiments of the present disclosure provide a signal processing device that can be connected to a second signal processing device through an optical fiber and supports two different splitting modes, that is, It is said that it can support the first frequency range and the second frequency range at the same time. In this way, the hardware complexity of the device can be reduced, and the installation cost can be reduced.
  • Embodiments according to the present disclosure will be described in detail below with reference to FIGS. 4 to 11 . It can be understood that the embodiments of the present disclosure are not limited to the scenarios of the BBU and RRU and the BBU and AAU proposed above, and can also be applied to other scenarios.
  • Fig. 4 shows a schematic block diagram of an access network device 400 according to an embodiment of the present disclosure.
  • the access network device 400 includes a first signal processing device 410 and a second signal processing device 420 , and the first signal processing device 410 and the second signal processing device 420 are connected through an optical fiber 430 .
  • the first signal processing device 410 may be installed outdoors, such as on a pole; the second signal processing device 420 may be installed inside a building.
  • the optical fiber 430 may be an optical cable of the eCPRI protocol.
  • the first signal processing device 410 may include a first eCPRI interface
  • the second signal processing device 420 may include a second eCPRI interface.
  • the first signal processing device 410 and the second signal processing device 420 may transmit Ethernet data to each other.
  • the second signal processing device 420 transmits downlink Ethernet data to the first signal processing device 410 .
  • the first signal processing device 410 transmits uplink Ethernet data to the second signal processing device 420 .
  • the first signal processing device 410 may include an interface module 411 , a scheduling module 412 , a first processing module 413 , a second processing module 414 and an antenna module 415 .
  • the interface module 411 is connected to the scheduling module 412
  • the scheduling module 412 is connected to the first processing module 413 and the second processing module 414
  • the scheduling module 412 is also connected to the antenna module 415 .
  • the interface module 411 may be configured to perform Ethernet data transmission with the second signal processing device 420 via the optical fiber 430 .
  • the scheduling module 412 may be configured to schedule the data to be processed to the first processing module 413 or the second processing module 414 based on the transmission configuration information from the second signal processing device 420 .
  • the first processing module 413 may be configured to process the data from the scheduling module 412 according to the first splitting mode.
  • the second processing module 414 may be configured to process the data from the scheduling module 412 according to the second splitting mode.
  • the antenna module 415 may be configured to send downlink data and/or receive uplink data, wherein the downlink data is data processed by the first processing module 413 or the second processing module 414 .
  • the data to be processed scheduled by the scheduling module 412 may be Ethernet data from the interface module 411 , or may be uplink data from the antenna module 415 .
  • the scheduling module 412 may include a first scheduling sub-module and a second scheduling sub-module.
  • FIG. 5 shows another block diagram of the first signal processing device 410 according to some embodiments of the present disclosure.
  • the interface module 411 is connected to the first scheduling submodule 510
  • the first scheduling submodule 510 is connected to the first processing module 413 and the second processing module 414 .
  • the antenna module 415 is connected to the second scheduling sub-module 520
  • the second scheduling sub-module 520 is connected to the first processing module 413 and the second processing module 414 .
  • the first scheduling sub-module 510 may be configured to schedule the Ethernet data from the interface module 411 to the first processing module 413 or the second processing module 414 based on the transmission configuration information from the second signal processing device 420 .
  • the second scheduling sub-module 520 may be configured to schedule uplink data from the antenna module 415 to the first processing module 413 or the second processing module 414 based on the transmission configuration information from the second signal processing device 420 .
  • the first scheduling submodule 510 may also be configured to transmit the data processed by the first processing module 413 or the second processing module 414 to the interface module 411 .
  • the second scheduling sub-module 510 may also be configured to transmit the data processed by the first processing module 413 or the second processing module 414 to the antenna module 415 .
  • the first processing module 413 may include a conversion submodule 530 and a beamforming submodule 540 , and the conversion submodule 530 is connected to the beamforming submodule 540 .
  • the conversion sub-module 530 may be configured to realize conversion between Ethernet data and time domain data.
  • the beamforming sub-module 540 may be configured to convert between the first number of multiple channels of first time domain data and the second multiple multiple channels of second time domain time.
  • the first quantity is less than the second quantity.
  • the first number may be any value among 1, 2, 4 or 8
  • the second number may be any value among 32, 64 or 128.
  • the values of the first quantity and the second quantity listed in the present disclosure are only illustrative, and should not be construed as limiting the embodiments of the present disclosure.
  • the conversion sub-module 530 implementing the conversion function may also be called a data bridge (bridge) or other names, which is not limited in the present disclosure.
  • the scheduling module 412 may be configured by a control plane (not shown in the figure) of the first signal processing device 410, for example, may be configured according to the splitting modes corresponding to different carriers.
  • the first signal processing device 410 may be obtained by upgrading the AAU 220 shown in FIG. 2 .
  • the AAU 220 can be upgraded to the first signal processing device 410 by adding a scheduling module 412 and a first processing module 413. In this way, existing equipment can be fully utilized, large-scale equipment replacement can be avoided, and costs can be further reduced.
  • the second signal processing device 420 may include a first baseband module 421 , a second baseband module 422 , a conversion module 423 and an interface module 424 .
  • the first baseband module 421 is connected to the conversion module 423
  • the conversion module 423 and the second baseband module 422 are connected to the interface module 424 .
  • the first baseband module 421 may be configured to generate or process time domain data.
  • the second baseband module 422 may be configured to generate or process Ethernet data.
  • the conversion module 423 can be configured to realize conversion between time domain data and Ethernet data.
  • the interface module 424 may be configured to perform Ethernet data transmission with the first signal processing device 410 via the optical fiber 430 .
  • the conversion module 423 may convert the time-domain data from the first baseband module 421 into Ethernet data, and may convert the Ethernet data from the interface module 424 into time-domain data.
  • the second signal processing device 420 may further include a scheduling module 425 .
  • the scheduling module 425 can be connected to the conversion module 423 and the second baseband module 422 , and the scheduling module 425 can also be connected to the interface module 424 .
  • the scheduling module 425 may be configured to schedule the Ethernet data from the interface module 424 to the conversion module 423 or the second baseband module 422 .
  • the conversion module 423 may convert the Ethernet data from the scheduling module 425 into time domain data, and then provide the converted time domain data to the first baseband module 421 .
  • the conversion module 423 that implements the conversion function may also be called a data bridge or other names, which is not limited in the present disclosure.
  • the scheduling module 425 can realize the distribution function of Ethernet data, and accordingly the scheduling module 425 can also be called a distribution module, which is not limited in the present disclosure.
  • the second signal processing device 420 may be obtained by upgrading the BBU 110 shown in FIG. 1 to the BBU 210 shown in FIG. 2 .
  • the BBU 110 can be upgraded to the second signal processing device 420 by adding a second baseband module 422 and a conversion module 423, and replacing the original CPRI interface with an eCPRI interface.
  • the BBU 210 can be upgraded to a second signal processing device 420 by adding a first baseband module 421 and a conversion module 423 on the basis of the BBU 210 as shown in FIG. 2 . In this way, existing equipment can be fully utilized, large-scale equipment replacement can be avoided, and costs can be further reduced.
  • the transmission from the second signal processing device 420 to the first signal processing device 410 via the antenna module 415 of the first signal processing device 410 may be referred to as downlink transmission.
  • the transmission received via the antenna module 415 of the first signal processing device 410 and from the first signal processing device 410 to the second signal processing device 420 may be referred to as uplink transmission.
  • the first signal processing device 410 includes a plurality of modules
  • the second signal processing device 420 includes a plurality of modules
  • the modules in FIG. 4 or FIG. 5 are only illustrative, In an actual scenario, the first signal processing device 410 and the second signal processing device 420 may include fewer or more modules.
  • the antenna module 415 may be independent from the first signal processing device 410, that is, the first signal processing device 410 may not include the antenna module 415, and so on. No longer listed in this disclosure.
  • each function in the disclosed embodiments Units can be integrated into one unit, or physically exist separately, or two or more units can be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • FIG. 6 shows a signaling interaction diagram of a data transmission process 600 according to some embodiments of the present disclosure.
  • the first signal processing device 410 and the second signal processing device 420 are involved, and the process 600 is a downlink transmission from the second signal processing device 420 to the first signal processing device 410 .
  • the first baseband module 421 of the second signal processing device 420 generates 610 time domain data. Specifically, the first baseband module 421 can generate time-domain data through a series of operations such as encoding, rate matching, ..., and adding CP.
  • Time domain data may also be called in-phase quadrature (In-phase Quadrature, IQ) data, or may be called baseband quadrature sampling data, or may be called CPRI data or other names, which is not limited in the present disclosure.
  • IQ in-phase quadrature
  • baseband quadrature sampling data or may be called CPRI data or other names, which is not limited in the present disclosure.
  • the time-domain data generated by the first baseband module 421 may be in-phase or quadrature-modulated digital baseband data of a user plane (User Plane).
  • the time-domain data generated by the first baseband module 421 may include multiple IQ data streams corresponding to the first number of antenna channels.
  • the time-domain data generated by the first baseband module 421 may be called multiple channels of first IQ data, and the number of multiple channels is equal to the first number, for example, any value among 1, 2, 4 or 8.
  • a basic frame may include 16 samples, wherein the first sample is used to transmit a control word, and the second to 16th samples are used to transmit IQ data.
  • the remaining 15 samples except the first sample in the basic frame can be called chips (chip), that is to say, a basic frame includes a transmission control word of 1 sample and 15 samples. point chips.
  • sample point may also be called a word (word) or other names, which is not limited in the present disclosure.
  • the bit width of a sample point can indicate how many bits (bits) a sample point includes, so it can be understood that the bit width can be regarded as the number of bits included in a chip.
  • the baseband configuration information of the first baseband module 421 may include a bit width, that is, the bit width may be configured in the first baseband module 421 in advance.
  • the specific value of the bit width is not limited in the embodiments of the present disclosure, for example, the bit width may be equal to 15 bits or other values.
  • the conversion module 423 of the second signal processing device 420 converts 620 the time domain data into Ethernet data.
  • the conversion module 423 can obtain corresponding Ethernet data by grouping multiple chips in the time domain data.
  • the conversion module 423 may sequentially splice the chips in the time domain data, and use the spliced data as the payload of the Ethernet data.
  • FIG. 7 shows a schematic diagram of a situation 700 of converting time domain data into Ethernet data according to some embodiments of the present disclosure.
  • the basic unit of time domain data 710 is a basic frame 712 , and the basic frame 712 includes a control word 7121 and a chip 7122 .
  • the basic unit of time domain data 710 is a basic frame 712 , and the basic frame 712 includes a control word 7121 and a chip 7122 .
  • the Ethernet data 720 may include a transport network layer header 721 , a common header 722 , a service header 723 , and a payload 724 , and optionally may also include padding 725 .
  • a plurality of chips 7122 may be grouped and used as the payload 724 of the Ethernet data 720 .
  • the number of multiple chips included in the packet of Ethernet data 720 may be determined based on the following factors: the first number, the number of samples included in a chip, the number of bits of a sample Width and transmission bandwidth, etc.
  • the bandwidth is 20 MHz
  • the maximum transmission unit (Maximum Transmission Unit, MTU) of the Ethernet data corresponding to this bandwidth is 1500 bytes (byte)
  • the length of the packet header is 64 bytes.
  • the first number is equal to 4
  • the number of samples included in a chip is equal to 8
  • the bit width of the samples is equal to 15.
  • the number of multiple chips may be determined as: (1500-64)/(4 ⁇ 8 ⁇ 15 ⁇ 2/8), that is, 11. In this way, the transmission bandwidth can be fully utilized, the transmission efficiency of the Ethernet can be ensured, and resource waste can be avoided.
  • the above method of determining the number of multiple chips is only for illustration, and in actual scenarios, the number of multiple chips can also be equal to other values, for example, it can be equal to a value smaller than the number determined in the above method, For example, 10 or 9, etc., which is not limited in the present disclosure.
  • the interface module 424 of the second signal processing device 420 transmits 630 the Ethernet data to the first signal processing device 410 via the optical fiber 430 .
  • the interface module 411 of the first signal processing device 410 can receive the Ethernet data from the second signal processing device 420 .
  • the scheduling module 412 of the first signal processing device 410 schedules 640 the Ethernet data to the first processing module 413 based on the transmission configuration information.
  • the transmission configuration information may be sent by the second signal processing device 420 to the first signal processing device 410 in advance.
  • the interface module 424 of the second signal processing device 420 sends 601 transmission configuration information to the first signal processing device 410 , and accordingly, the interface module 411 of the first signal processing device 410 can receive the transmission configuration information.
  • the transmission configuration information may include indication information whether to be processed by the first processing module 413 .
  • the indication information may be understood as a switch for the first processing module 413 to process data, for example, it may be 1 or 0. Understandably, the indication information may also be in other forms, which is not limited in the present disclosure. If the indication information indicates to be processed by the first processing module 413 , the scheduling module 412 of the first signal processing device 410 schedules the Ethernet data received from the interface module 411 to the first processing module 413 . On the contrary, if the indication information indicates not to be processed by the first processing module 413 , the scheduling module 412 of the first signal processing device 410 schedules the Ethernet data received from the interface module 411 to the second processing module 414 .
  • the transmission configuration information may include first indication information and second indication information, wherein the first indication information indicates the correspondence between the first frequency range and the first processing module 413, and the second indication information indicates the second Correspondence between the frequency range and the second processing module 414 .
  • first indication information indicates the correspondence between the first frequency range and the first processing module 413
  • second indication information indicates the second Correspondence between the frequency range and the second processing module 414 .
  • a certain field of Ethernet data received from the interface module 411 may carry frequency information, and if the frequency information is within the first frequency range, the scheduling module 412 of the first signal processing device 410 will receive from the interface module 411 The Ethernet data is dispatched to the first processing module 413 . If the frequency information is within the second frequency range, the scheduling module 412 of the first signal processing device 410 schedules the Ethernet data received from the interface module 411 to the second processing module 414 .
  • the transmission configuration information in the embodiments of the present disclosure may also include other indication forms, so that the scheduling module 412 can determine to schedule the Ethernet data from the interface module 411 to the first processing module based on the transmission configuration information 413 is also a second processing module 414 .
  • the scheduling module 412 schedules Ethernet data to the first processing module 413 .
  • the first processing module 413 processes the Ethernet data from the scheduling module 412 according to the first splitting mode.
  • the first slicing mode may be a time-domain slicing mode.
  • the first splitting mode may be a splitting mode supporting the CPRI protocol. Referring to FIG. 3 , the first splitting mode may be option 8 as shown in FIG. 3 .
  • the first processing module 413 performs RF processing on the Ethernet data without performing physical layer processing.
  • the conversion sub-module 530 converts 650 the Ethernet data into time domain data. Specifically, the conversion submodule 530 may convert the Ethernet data into a first number of multiple channels of first time-domain data.
  • the first number may be pre-configured by the second signal processing device 420 to the first signal processing device 410 .
  • the transmission configuration information as in 601 may include the first quantity.
  • the first number may be independent of the transmission configuration information, for example, the second signal processing device 420 notifies the first signal processing device 410 of the first number through another separate signaling.
  • the conversion submodule 530 may determine the corresponding first number of multiple channels of first time-domain data based on the load splitting of the Ethernet data.
  • the payload of the Ethernet can be an eCPRI payload, and the conversion submodule 530 can split the payload according to the size of the chip, and add a control word on the basis of the chip as a basic frame, so as to obtain multiple channels of first time-domain data.
  • the beamforming submodule 540 converts the first multiple channels of first time-domain data into a second multiple multiple channels of second time-domain data, wherein the second quantity is greater than the first quantity.
  • the beamforming submodule 540 may determine the second number of multiple channels of second time domain data based on the first multiple channels of first time domain data and multiple first antenna weight parameters.
  • the second number and/or multiple first antenna weight parameters may be pre-configured by the second signal processing device 420 to the first signal processing device 410 .
  • the transmission configuration information as in 601 may include the second number and/or multiple first antenna weight parameters.
  • the second number and/or multiple first antenna weight parameters are independent of the transmission configuration information, for example, the second signal processing device 420 sets the second number and/or multiple The first signal processing device 410 is notified of the first antenna weight parameter.
  • the second number may correspond to the number of antenna channels of the antenna module 415 , for example, the second number may be equal to or smaller than the total number of channels of the antenna module 415 .
  • the first number may be expressed as N1, and the second number may be expressed as N2, and N1 ⁇ N2.
  • at least part of the N1 paths of first time-domain data may be copied to obtain N2 paths of time-domain data; and then each of the N2 paths of time-domain data is multiplied by a corresponding first antenna weight parameter, Thus, N2 channels of second time-domain data are obtained.
  • the first to eighth channels of the 32 channels of time domain data are N1 channels of first time domain data
  • the first time domain data of the first channel in the data the 9th to 16th channels of the 32 channels of time domain data are the second channel of the first time domain data of the N1 channel of first time domain data
  • the 32 channels of time domain data The 17th to 24th channels in the first time domain data of the N1 channel are the 3rd channel of the first time domain data
  • the 25th to 32nd channels of the 32 channels of time domain data are the first time domain data of the N1 channel
  • processing of data by the first processing module 413 described in the embodiments of the present disclosure is only illustrative, and in actual scenarios, other processing, such as power amplification and filtering, may also be included.
  • the antenna module 415 of the first signal processing device 410 transmits 670 multiple channels of second time domain data. Specifically, the antenna module 415 may send N2 pieces of second time-domain data to the terminal device through its N2 antenna channels.
  • the conversion module 423 of the second signal processing device 420 in the embodiment of the present disclosure can convert the time-domain data into Ethernet data, so that it can be transmitted to the first signal processing device 410 via the eCPRI optical fiber. This can support more cells and improve air interface performance.
  • the first processing module 413 of the first signal processing device 410 can process the Ethernet data from the second signal processing device 420 according to the first division mode, so as to support the first frequency range.
  • FIG. 8 shows a signaling interaction diagram of a data transmission process 800 according to some embodiments of the present disclosure.
  • the first signal processing device 410 and the second signal processing device 420 are involved, and the process 800 is a downlink transmission from the second signal processing device 420 to the first signal processing device 410 .
  • the second baseband module 422 of the second signal processing device 420 generates 810 Ethernet data.
  • the interface module 424 of the second signal processing device 420 transmits 820 the Ethernet data to the first signal processing device 410 via the optical fiber 430 .
  • the interface module 411 of the first signal processing device 410 can receive the Ethernet data from the second signal processing device 420 .
  • the scheduling module 412 of the first signal processing device 410 schedules 830 the Ethernet data to the second processing module 414 based on the transmission configuration information.
  • the transmission configuration information may be sent by the second signal processing device 420 to the first signal processing device 410 in advance.
  • the interface module 424 of the second signal processing device 420 sends 801 transmission configuration information to the first signal processing device 410 , and accordingly, the interface module 411 of the first signal processing device 410 can receive the transmission configuration information.
  • the transmission configuration information reference may be made to the above-mentioned embodiment described in conjunction with 601 in FIG. 6 , which is not repeated here for brevity.
  • the second processing module 414 performs processing 840 on the Ethernet data from the scheduling module 412 according to the second segmentation mode.
  • the second splitting mode may be an internal splitting mode of the physical layer.
  • the second splitting mode may be a splitting mode supporting the eCPRI protocol.
  • the second splitting mode may be option 7-1 or option 7-2 or option 7- 3.
  • the second processing module 414 performs physical bottom layer processing and RF processing on the Ethernet data without performing physical high layer processing. Taking option 7-1 as an example for the second splitting mode, the processing performed by the second processing module 414 may include operations such as iFFT and adding CP.
  • the processing of data by the second processing module 414 described in the embodiments of the present disclosure is only illustrative, and in an actual scenario, the processing may include, for example, frequency-domain beamforming, power amplification, filtering, and the like.
  • the processing may include, for example, frequency-domain beamforming, power amplification, filtering, and the like.
  • reference may be made to operations of the AAU in the prior art.
  • the antenna module 415 of the first signal processing device 410 transmits 850 downlink data.
  • the second baseband module 422 of the second signal processing device 420 in the embodiment of the present disclosure can generate Ethernet data, so that it can be transmitted to the first signal processing device 410 via the eCPRI optical fiber.
  • the second processing module 414 of the first signal processing device 410 can process the Ethernet data from the second signal processing device 420 according to the second splitting mode, so as to support the second frequency range.
  • FIG. 9 shows a signaling interaction diagram of a data transmission process 900 according to some embodiments of the present disclosure.
  • the first signal processing device 410 and the second signal processing device 420 are involved, and the process 900 is an uplink transmission from the first signal processing device 410 to the second signal processing device 420 .
  • the antenna module 415 of the first signal processing device 410 receives 910 uplink data.
  • the uplink data may come from a terminal device.
  • the second number of antenna channels of the antenna module 415 may receive multiple channels of data, for example, the second number of multiple channels of second time domain data.
  • the scheduling module 412 of the first signal processing device 410 schedules 920 the uplink data to the first processing module 413 based on the transmission configuration information.
  • the transmission configuration information may be sent by the second signal processing device 420 to the first signal processing device 410 in advance.
  • the interface module 424 of the second signal processing device 420 sends 901 the transmission configuration information to the first signal processing device 410, and accordingly, the interface module 411 of the first signal processing device 410 can receive the transmission configuration information.
  • the transmission configuration information may include indication information whether to be processed by the first processing module 413 .
  • the indication information may be understood as a switch for the first processing module 413 to process data, for example, it may be 1 or 0. Understandably, the indication information may also be in other forms, which is not limited in the present disclosure. If the indication information indicates to be processed by the first processing module 413 , the scheduling module 412 of the first signal processing device 410 schedules the uplink data received from the antenna module 415 to the first processing module 413 . On the contrary, if the indication information indicates not to be processed by the first processing module 413 , the scheduling module 412 of the first signal processing device 410 schedules the uplink data received from the antenna module 415 to the second processing module 414 .
  • the transmission configuration information may include first indication information and second indication information, wherein the first indication information indicates the correspondence between the first frequency range and the first processing module 413, and the second indication information indicates the second Correspondence between the frequency range and the second processing module 414 .
  • a certain field of uplink data received by the antenna module 415 may carry frequency information, and if the frequency information is within the first frequency range, the scheduling module 412 of the first signal processing device 410 will receive from the antenna module 415 The uplink data of is scheduled to the first processing module 413 . If the frequency information is within the second frequency range, the scheduling module 412 of the first signal processing device 410 schedules the uplink data received from the antenna module 415 to the second processing module 414 .
  • the transmission configuration information in the embodiments of the present disclosure may also include other indication forms, so that the scheduling module 412 can determine to schedule the uplink data received from the antenna module 415 to the first based on the transmission configuration information.
  • the first processing module 413 is also the second processing module 414 . In the process 900 of FIG. 9 , it is assumed that the scheduling module 412 schedules uplink data to the first processing module 413 .
  • the first processing module 413 processes the uplink data from the scheduling module 412 according to the first segmentation mode.
  • the first slicing mode may be a time-domain slicing mode.
  • the first splitting mode may be a splitting mode supporting the CPRI protocol. Referring to FIG. 3 , the first splitting mode may be option 8 as shown in FIG. 3 .
  • the first processing module 413 performs RF processing on the uplink data without performing physical layer processing.
  • the beamforming submodule 540 converts 930 the uplink data into a first number of multiple channels of first time domain data, wherein the first number is smaller than the second number.
  • the first number may be pre-configured by the second signal processing device 420 to the first signal processing device 410 .
  • the transmission configuration information as in 901 may include the first quantity.
  • the first number may be independent of the transmission configuration information, for example, the second signal processing device 420 notifies the first signal processing device 410 of the first number through another separate signaling.
  • the beamforming submodule 540 may convert the second multiple channels of second time domain data into the first multiple channels of first time domain data. Specifically, the beamforming submodule 540 may determine the first multiple channels of first time domain data based on the second multiple multiple channels of second time domain data and multiple second antenna weight parameters.
  • a plurality of second antenna weight parameters may be pre-configured by the second signal processing device 420 to the first signal processing device 410 .
  • the transmission configuration information as in 901 may include a plurality of second antenna weight parameters.
  • the multiple second antenna weight parameters are independent of the transmission configuration information, for example, the second signal processing device 420 notifies the first signal processing device 410 of the multiple second antenna weight parameters through another separate signaling .
  • the first number may be expressed as N1, and the second number may be expressed as N2, and N1 ⁇ N2.
  • each of the N2 paths of second time-domain data can be multiplied by the corresponding second antenna weight parameter to obtain the N2 paths of time-domain data; and then at least part of the N2 paths of time-domain data are combined , to obtain the first time-domain data of the N1 channel.
  • the multiple second antenna weight parameters are the second number of second antenna weight parameters, and the multiple second antenna weight parameters may be represented as wr1, wr2, ... wrN2 in sequence.
  • the 1st to 8th paths in the N2 time-domain data can be combined (for example, summed) as the 1st time-domain data in the N1-way first time-domain data, and the N2-way time-domain data
  • the 9th path to the 16th path are merged (such as summing) as the 2nd path first time domain data in the N1 path first time domain data
  • the 17th path to the 24th path in the N2 path time domain data are merged (
  • summation) is used as the third first time domain data of the N1 first time domain data
  • the 25th to 32nd channels of the N2 time domain data are combined (for example, summation) as the first time of the N1 channel
  • the fourth channel of first time domain data in the domain data is used as the third first time domain data of the N1 first time domain data.
  • processing of data by the first processing module 413 described in the embodiments of the present disclosure is only illustrative, and in actual scenarios, other processing, such as power amplification and filtering, may also be included.
  • the conversion sub-module 530 converts 940 the first number of multiple channels of first time-domain data into Ethernet data. Specifically, the conversion operation of the conversion sub-module 530 is similar to the conversion 620 performed by the conversion module 423 of the second signal processing device 420 described above in conjunction with FIG. 6 , and for brevity, details are not repeated here.
  • the interface module 411 of the first signal processing device 410 transmits 950 the Ethernet data to the second signal processing device 420 .
  • the interface module 424 of the second signal processing device 420 can receive the Ethernet data from the first signal processing device 410 .
  • the scheduling module 425 of the second signal processing device 420 schedules 960 the Ethernet data to the converting module 423 .
  • the scheduling module 425 can perform scheduling based on the frequency information of the Ethernet data. If the frequency information is within the first frequency range, the scheduling module 425 of the second signal processing device 420 schedules the Ethernet data received from the interface module 424 to the conversion module 423 . If the frequency information is within the second frequency range, the scheduling module 425 of the second signal processing device 420 schedules the Ethernet data received from the interface module 424 to the second baseband module 422 . In the process 900 of FIG. 9 , it is assumed that the scheduling module 425 schedules Ethernet data to the conversion module 423 .
  • the conversion module 423 of the second signal processing device 420 converts the Ethernet data 970 into time domain data. Specifically, the conversion module 423 may convert the Ethernet data into multiple channels of first time-domain data of the first quantity.
  • the conversion module 423 may determine the corresponding first number of multiple channels of first time-domain data based on the load splitting of the Ethernet data.
  • the load of the Ethernet can be an eCPRI load, and the conversion module 423 can split the load according to the size of the chip, and add a control word on the basis of the chip as a basic frame, so as to obtain multiple channels of first time domain data.
  • the first baseband module 421 of the second signal processing device 420 processes 980 the time domain data.
  • the first baseband module 421 can process the time-domain data through a series of operations such as CP removal, FFT, . . . , decoding.
  • Fig. 10 shows a signaling interaction diagram of a data transmission process 1000 according to some embodiments of the present disclosure.
  • the first signal processing device 410 and the second signal processing device 420 are involved, and the process 1000 is an uplink transmission from the first signal processing device 410 to the second signal processing device 420 .
  • the antenna module 415 of the first signal processing device 410 receives 1010 uplink data.
  • the scheduling module 412 of the first signal processing device 410 schedules 1020 the uplink data to the second processing module 414 based on the transmission configuration information.
  • the transmission configuration information may be sent by the second signal processing device 420 to the first signal processing device 410 in advance. 10, the interface module 424 of the second signal processing device 420 sends 1001 transmission configuration information to the first signal processing device 410, and accordingly, the interface module 411 of the first signal processing device 410 can receive the transmission configuration information.
  • the transmission configuration information may include indication information whether to be processed by the first processing module 413 .
  • the indication information may be understood as a switch for the first processing module 413 to process data, for example, it may be 1 or 0. Understandably, the indication information may also be in other forms, which is not limited in the present disclosure. If the indication information indicates to be processed by the first processing module 413 , the scheduling module 412 of the first signal processing device 410 schedules the uplink data received from the antenna module 415 to the first processing module 413 . On the contrary, if the indication information indicates not to be processed by the first processing module 413 , the scheduling module 412 of the first signal processing device 410 schedules the uplink data received from the antenna module 415 to the second processing module 414 .
  • the transmission configuration information may include first indication information and second indication information, wherein the first indication information indicates the correspondence between the first frequency range and the first processing module 413, and the second indication information indicates the second Correspondence between the frequency range and the second processing module 414 .
  • first indication information indicates the correspondence between the first frequency range and the first processing module 413
  • second indication information indicates the second Correspondence between the frequency range and the second processing module 414 .
  • a certain field of uplink data received from the antenna module 415 may carry frequency information, and if the frequency information is within the first frequency range, the scheduling module 412 of the first signal processing device 410 will receive from the antenna module 415 The received uplink data is scheduled to the first processing module 413. If the frequency information is within the second frequency range, the scheduling module 412 of the first signal processing device 410 schedules the uplink data received from the antenna module 415 to the second processing module 414 .
  • the transmission configuration information in the embodiments of the present disclosure may also include other indication forms, so that the scheduling module 412 can determine to schedule the uplink data received from the antenna module 415 to the first based on the transmission configuration information.
  • the first processing module 413 is also the second processing module 414 . In the process 1000 of FIG. 10 , it is assumed that the scheduling module 412 schedules uplink data to the second processing module 414 .
  • the second processing module 414 performs processing 1030 on the uplink data from the scheduling module 412 according to the second splitting mode.
  • the second splitting mode may be an internal splitting mode of the physical layer.
  • the second splitting mode may be a splitting mode supporting the eCPRI protocol.
  • the second splitting mode may be option 7-1 or option 7-2 or option 7- 3.
  • the second processing module 414 performs physical bottom layer processing and RF processing on the Ethernet data without performing physical high layer processing. Taking option 7-1 as an example for the second splitting mode, the processing performed by the second processing module 414 may include operations such as CP removal and FFT.
  • the processing of data by the second processing module 414 described in the embodiments of the present disclosure is only illustrative, and in an actual scenario, the processing may include, for example, frequency-domain beamforming, power amplification, filtering, and the like.
  • the processing may include, for example, frequency-domain beamforming, power amplification, filtering, and the like.
  • reference may be made to operations of the AAU in the prior art.
  • the data processed by the second processing module 414 is Ethernet data.
  • the interface module 411 of the first signal processing device 410 transmits 1040 the Ethernet data to the second signal processing device 420 .
  • the interface module 424 of the second signal processing device 420 can receive the Ethernet data from the first signal processing device 410 .
  • the scheduling module 425 of the second signal processing device 420 schedules 1050 the Ethernet data to the second baseband module 422 .
  • the scheduling module 425 can perform scheduling based on the frequency information of the Ethernet data. If the frequency information is within the first frequency range, the scheduling module 425 of the second signal processing device 420 schedules the Ethernet data received from the interface module 424 to the converting module 423 . If the frequency information is within the second frequency range, the scheduling module 425 of the second signal processing device 420 schedules the Ethernet data received from the interface module 424 to the second baseband module 422 . In the process 1000 of FIG. 10 , it is assumed that the scheduling module 425 schedules Ethernet data to the second baseband module 422 .
  • the second baseband module 422 of the second signal processing device 420 processes 1060 the Ethernet data. Specifically, taking the second splitting mode as option 7-1 as an example, the second baseband module 422 can perform a series of operations such as port reduction, RE demapping, ..., decoding, etc. on the data.
  • the scheduling module 412 can be scheduled to the first processing module 413 or the second processing module 414 based on the transmission configuration information, so that the first processing module 413 can respectively Processing is performed according to the first division mode, and the second processing module 414 can perform processing according to the second division mode, so that the first frequency range and the second frequency range can be supported simultaneously.
  • FIG. 11 shows a schematic block diagram of an example device 1100 that may be used to implement embodiments of the present disclosure.
  • the device 1100 may be implemented or included in the first signal processing device 410 of FIG. 4 , or the device 1100 may be implemented or included in the second signal processing device 420 of FIG. 4 .
  • device 1100 includes one or more processors 1110 , one or more memories 1120 coupled to processors 1110 , and communication module 1140 coupled to processors 1110 .
  • the communication module 1140 can be used for two-way communication.
  • the communication module 1140 may have at least one communication interface for communication.
  • Communication interfaces may include any interface necessary to communicate with other devices.
  • the processor 1110 can be any type suitable for the local technology network, and can include but not limited to at least one of the following: a general purpose computer, a special purpose computer, a microcontroller, a digital signal processor (Digital Signal Processor, DSP), or a control based One or more of the multi-core controller architectures of the processor.
  • Device 1100 may have multiple processors, such as application specific integrated circuit chips, that are time slaved to a clock that is synchronized to a main processor.
  • Memory 1120 may include one or more non-volatile memories and one or more volatile memories.
  • non-volatile memory include but are not limited to at least one of the following: read-only memory (Read-Only Memory, ROM) 1124, erasable programmable read-only memory (Erasable Programmable Read Only Memory, EPROM), flash memory, hard disk , Compact Disc (CD), Digital Video Disk (Digital Versatile Disc, DVD) or other magnetic and/or optical storage.
  • Examples of volatile memory include, but are not limited to, at least one of: Random Access Memory (RAM) 1122, or other volatile memory that does not persist for the duration of a power outage.
  • RAM Random Access Memory
  • the computer program 1130 comprises computer-executable instructions executed by the associated processor 1110 .
  • Program 1130 may be stored in ROM 1124.
  • Processor 1110 may perform any suitable actions and processes by loading program 1130 into RAM 1122.
  • Embodiments of the present disclosure may be implemented by means of a program 1130 such that the device 1100 may perform any process as discussed with reference to FIGS. 6 to 10 .
  • Embodiments of the present disclosure can also be realized by hardware or by a combination of software and hardware.
  • Program 1130 may be tangibly embodied on a computer-readable medium, which may be included in device 1100 , such as in memory 1120 , or other storage device accessible by device 1100 .
  • Program 1130 may be loaded from a computer readable medium into RAM 1122 for execution.
  • the computer readable medium may include any type of tangible nonvolatile memory such as ROM, EPROM, flash memory, hard disk, CD, DVD, and the like.
  • the communication module 1140 in the device 1100 can be implemented as a transmitter and a receiver (or transceiver), which can be configured to send/receive information such as first schedule indication information, second schedule indication information, transmission data etc.
  • the device 1100 may further include one or more of a scheduler, a controller, and a radio frequency/antenna, which will not be described in detail in this disclosure.
  • the device 1100 in FIG. 11 may be implemented as an electronic device, or may be implemented as a chip or a chip system in the electronic device, which is not limited by the embodiments of the present disclosure.
  • An embodiment of the present disclosure also provides a communication system, which may include the above-mentioned first signal processing device and the above-mentioned second signal processing device.
  • Embodiments of the present disclosure also provide a chip, which may include an input interface, an output interface, and a processing circuit.
  • a chip which may include an input interface, an output interface, and a processing circuit.
  • the interaction of signaling or data may be completed by the input interface and the output interface, and the generation and processing of signaling or data information may be completed by the processing circuit.
  • Embodiments of the present disclosure also provide a chip system, including a processor, configured to support a computing device to implement the functions involved in any of the foregoing embodiments.
  • the system-on-a-chip may further include a memory for storing necessary program instructions and data, and when the processor runs the program instructions, the device installed with the system-on-a-chip can implement the program described in any of the above-mentioned embodiments.
  • the chip system may consist of one or more chips, and may also include chips and other discrete devices.
  • Embodiments of the present disclosure further provide a processor, configured to be coupled with a memory, where instructions are stored in the memory, and when the processor executes the instructions, the processor executes the methods and functions involved in any of the foregoing embodiments.
  • Embodiments of the present disclosure also provide a computer program product containing instructions, which, when run on a computer, cause the computer to execute the methods and functions involved in any of the above embodiments.
  • Embodiments of the present disclosure also provide a computer-readable storage medium on which computer instructions are stored, and when a processor executes the instructions, the processor is made to execute the methods and functions involved in any of the above embodiments.
  • the various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software, which may be executed by a controller, microprocessor or other computing device. While various aspects of the embodiments of the present disclosure are shown and described as block diagrams, flowcharts, or using some other pictorial representation, it should be understood that the blocks, devices, systems, techniques or methods described herein can be implemented as, without limitation, Exemplary, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controllers or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer-readable storage medium.
  • the computer program product comprises computer-executable instructions, eg included in program modules, which are executed in a device on a real or virtual processor of a target to perform the process/method as above with reference to the accompanying drawings.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or divided as desired among the program modules.
  • Machine-executable instructions for program modules may be executed within local or distributed devices. In a distributed device, program modules may be located in both local and remote storage media.
  • Computer program codes for implementing the methods of the present disclosure may be written in one or more programming languages. These computer program codes can be provided to processors of general-purpose computers, special-purpose computers, or other programmable data processing devices, so that when the program codes are executed by the computer or other programmable data processing devices, The functions/operations specified in are implemented.
  • the program code may execute entirely on the computer, partly on the computer, as a stand-alone software package, partly on the computer and partly on a remote computer or entirely on the remote computer or server.
  • computer program code or related data may be carried by any suitable carrier to enable a device, apparatus or processor to perform the various processes and operations described above.
  • carriers include signals, computer readable media, and the like.
  • signals may include electrical, optical, radio, sound, or other forms of propagated signals, such as carrier waves, infrared signals, and the like.
  • a computer readable medium may be any tangible medium that contains or stores a program for or related to an instruction execution system, apparatus, or device.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination thereof. More detailed examples of computer-readable storage media include electrical connections with one or more wires, portable computer diskettes, hard disks, random storage access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM or flash), optical storage, magnetic storage, or any suitable combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

本公开提供了一种信号处理设备及数据传输方法,涉及通信领域。该第一信号处理设备包括:接口模块,被配置为经由光纤与第二信号处理设备进行以太网数据传输;调度模块,被配置为基于传输配置信息将待处理的数据调度到第一处理模块或者第二处理模块;第一处理模块,被配置为按照第一切分模式处理来自调度模块的数据;第二处理模块,被配置为按照第二切分模式处理来自调度模块的数据;以及天线模块,被配置为发送第一处理模块或第二处理模块处理后的数据和/或接收上行链路数据。如此,第一信号处理设备可以按照第一切分模式或第二切分模式来处理数据,从而能够满足各种业务的需求。这样能够降低部署的复杂度,从而降低成本。

Description

信号处理设备及数据传输方法
相关申请的交叉引用
本申请要求在2021年12月27日提交中国专利局、申请号为202111619125.9、申请名称为“信号处理设备及数据传输方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信领域,更具体地,涉及一种信号处理设备及数据传输方法。
背景技术
在目前的蜂窝无线通信系统中,分布式接入网设备已经作为一种主要的接入网设备形态。一些分布式接入网设备包括基带单元(Baseband Unit,BBU)和射频拉远单元(Radio Remote Unit,RRU),其支持第一频段范围是有限的。随着技术的演进,另一些分布式接入网设备包括BBU和有源天线单元(Active Antenna Unit,AAU),其支持不同于第一频段范围的第二频段范围。
为了满足不同业务的需求,运营商需要提供同时支持第一频段范围和第二频段范围的接入网设备。目前运营商会同时部署RRU和AAU来实现此目的,但是由于RRU和AAU需要分别安装,因此复杂度高,并且硬件成本过高。
发明内容
本公开的实施例提供了一种数据传输方案,第一信号处理设备能够同时支持两种不同的切分模式,进而能够同时支持第一频段范围和第二频段范围。如此,通过第一信号处理设备便能够满足各种业务的需求,这样能够降低部署的复杂度,进而降低成本。
在本公开的第一方面,提供了一种第一信号处理设备。该第一信号处理设备包括:接口模块,被配置为经由光纤与第二信号处理设备进行以太网数据传输;调度模块,被配置为基于来自第二信号处理设备的传输配置信息,将待处理的数据调度到第一处理模块或者第二处理模块,待处理的数据包括来自第二信号处理设备的以太网数据,或者来自天线模块的上行链路数据;第一处理模块,被配置为按照第一切分模式处理来自调度模块的数据;第二处理模块,被配置为按照第二切分模式处理来自调度模块的数据;以及天线模块,被配置为发送第一处理模块或第二处理模块处理后的数据和/或接收上行链路数据。
如此,第一信号处理设备可以基于调度分别按照第一切分模式和第二切分模式来处理数据,可见第一信号处理设备可以同时支持两种不同的切分模式,从而能够满足各种业务的需求。这样,无需再分别部署RRU和AAU,能够降低复杂度,降低成本。
在一些可能的实施方式中,调度模块耦合地连接到接口模块、天线模块、第一处理模块和第二处理模块。如此,调度模块能够将来自接口模块或天线模块的数据调度到第一处理模块或第二处理模块,实现数据的正确分发。
在一些可能的实施方式中,第一切分模式为时域切分模式,第一处理模块被配置为对来 自调度模块的数据执行射频RF处理。可选地,第一切分模式可以指示物理层处理由第二信号处理设备的第一基带模块执行,而射频处理由第一信号处理设备的第一处理模块执行。可选地,第一切分模式可以为支持CPRI的切分模式,如此第一信号处理设备可以支持CPRI的数据处理。
在一些可能的实施方式中,第一处理模块包括:转换子模块,被配置为实现以太网数据与时域数据之间的转换;以及波束赋形子模块,被配置为实现第一数量的多路第一时域数据与第二数量的多路第二时域数据之间的转换,第二数量对应于天线模块的天线通道数,第一数量小于第二数量。
如此,第一处理模块可以将以太网数据转换为时域数据,从而能够在时域执行波束赋形,从而确保对数据的正确处理。
在一些可能的实施方式中,待处理的数据包括来自第二信号处理设备的以太网数据,以太网数据所对应的天线通道数为第一数量,并且转换子模块被配置为基于以太网数据确定对应的多路第一时域数据;以及波束赋形子模块,被配置为对基于多路第一时域数据以及第二数量的多个第一天线权重参数,确定多路第二时域数据。
如此,针对下行链路传输,能够从来自第二信号处理设备的以太网数据恢复出时域数据,并在时域执行波束赋形,这样第一信号处理设备支持时域切分模式,进而能够支持在第一频段范围的数据处理。
在一些可能的实施方式中,第一处理模块耦合地连接到天线模块,天线模块被配置为经由多个天线通道发送多路第二时域数据。如此,通过多个天线通道发送,能够充分利用多天线的特性,实现MIMO传输。
在一些可能的实施方式中,转换子模块被配置为基于以太网数据的负载的拆分,确定多路第一时域数据。如此,通过将以太网数据的负载进行拆分,能够得到对应的时域数据,进而能够针对时域数据进行后续的时域处理。
在一些可能的实施方式中,待处理的数据包括来自天线模块的上行链路数据,上行链路数据包括第二数量的多路第二时域数据,并且波束赋形子模块,被配置为基于多路第二时域数据以及第二数量的多个第二天线权重参数,确定多路第一时域数据;以及转换子模块,被配置为基于多路第一时域数据确定对应的以太网数据。
如此,针对上行链路传输,能够将来自天线模块的数据转换为对应的更少天线通道的时域数据,从而便于在第二信号处理设备处的时域处理。
在一些可能的实施方式中,第一处理模块耦合地连接到接口模块,并且接口模块被配置为:将转换子模块所确定的以太网数据传输到第二信号处理设备。
在一些可能的实施方式中,转换子模块被配置为:将多路第一时域数据中的多个码片的数据进行组包,得到以太网数据。
如此,通过将时域数据中的多个码片进行组包,能够得到以太网数据,以此方式,实现了时域数据向以太网数据的转换,从而确保经由光纤的数据的正确传输。
在一些可能的实施方式中,多个码片的数量基于以下因素中的至少一项所确定:第一数量、多个码片中的至少一个码片的样点的数量、样点的位宽、或带宽。如此,在组包时能充分考虑各个因素,充分利用传输的带宽,传输效率更高,避免带宽资源的浪费。
在一些可能的实施方式中,接口模块还被配置为获取来自第二信号处理设备的以下至少一项:第一数量、第二数量、第二数量的多个第一天线权重参数、或第二数量的多个第二天 线权重参数。如此,能够实现第一信号处理设备和第二信号处理设备之间的信息同步,确保对数据处理的一致性。
在一些可能的实施方式中,传输配置信息包括是否由第一处理模块进行处理的指示信息。如此,能够简化配置方式,减少配置信息的传输开销。
在一些可能的实施方式中,传输配置信息包括第一指示信息和第二指示信息,第一指示信息指示第一频段范围与第一处理模块之间的对应关系,第二指示信息指示第二频段范围与第二处理模块之间的对应关系。
如此,能够确保第一处理模块和第二处理模块分别处理不同的频段范围,从而确保对数据的正确处理。以此方式,第一信号处理设备能够同时支持第一频段范围和第二频段范围,避免分别为不同的频段范围部署不同的设备,进而减少了硬件成本。
在一些可能的实施方式中,调度模块被配置为:如果待处理的数据处于第一频段范围,将待处理的数据调度到第一处理模块;如果待处理的数据处于第二频段范围,将待处理的数据调度到第二处理模块。如此,调度模块能够基于频段范围来调度数据,确保第一处理模块和第二处理模块能够处理对应频段范围的数据,确保对数据的正确处理。这样,不同的载波可以经同一光纤进行传输,并且可以由调度模块实现向两个不同的处理模块的分发和调度。
在一些可能的实施方式中,第二切分模式为物理层内部切分模式。可选地,物理层内部切分模式可以指示:物理底层由第一信号处理设备的第二处理模块来处理,而物理高层由第二信号处理设备的第二基带模块来处理。
在一些可能的实施方式中,第二处理模块耦合地连接到接口模块、调度模块和天线模块。
在一些可能的实施方式中,光纤为增强的通用公共无线电接口(Enhanced Common Public Radio Interface,eCPRI)光纤。
在本公开的第二方面,提供了一种第二信号处理设备。该第二信号处理设备包括:第一基带模块,被配置为生成时域数据,时域数据所对应的天线通道数为第一数量;转换模块,被配置为将时域数据转换为第一以太网数据;以及接口模块,被配置为经由光纤将第一以太网数据传输到第一信号处理设备。
如此,第二信号处理设备能够将生成的时域数据转换为以太网数据进行传输,这样能够确定通过光纤的正确传输,提高空口效率。
在一些可能的实施方式中,转换模块耦合地连接到第一基带模块和接口模块。
在一些可能的实施方式中,转换模块被配置为:将时域数据中的多个码片的数据进行组包,得到第一以太网数据。
在一些可能的实施方式中,多个码片的数量基于以下因素中的至少一项所确定:第一数量、多个码片中的至少一个码片的样点的数量、样点的位宽、或带宽。
在一些可能的实施方式中,还包括第二基带模块,被配置为生成第二以太网数据;并且接口模块还被配置为将第二以太网数据传输到第一信号接口设备。
在一些可能的实施方式中,还包括调度模块,并且接口模块还被配置为接收来自第一信号处理设备的以太网数据;调度模块被配置为将以太网数据调度到转换模块或第二基带模块;转换模块被配置为将调度模块所调度的以太网数据转换为对应的时域数据,对应的时域数据所对应的天线通道数为第一数量;第一基带模块被配置为处理对应的时域数据;以及第二基带模块被配置为处理调度模块所调度的以太网数据。如此,能够将上行链路数据调度到正确的基带模块进行处理。
在一些可能的实施方式中,转换模块被配置为基于以太网数据的负载的拆分,确定对应的时域数据。
在一些可能的实施方式中,调度模块耦合地连接到转换模块和第二基带模块。
在一些可能的实施方式中,接口模块还被配置为将传输配置信息发送到第一信号处理设备。
在一些可能的实施方式中,传输配置信息包括是否由第一信号处理设备的第一处理模块进行处理的指示信息。
在一些可能的实施方式中,传输配置信息包括第一指示信息和第二指示信息,第一指示信息指示第一频段范围与第一信号处理设备的第一处理模块之间的对应关系,第二指示信息指示第二频段范围与第一信号处理设备的第二处理模块之间的对应关系。
在一些可能的实施方式中,接口模块被配置为将以下中的至少一项发送到第一信号处理设备:第一数量、第二数量、第二数量的多个第一天线权重参数、或第二数量的多个第二天线权重参数,其中第二数量表示第一信号处理设备的天线模块收发数据的天线通道数。
在一些可能的实施方式中,光纤为增强的通用公共无线电接口eCPRI光纤。
在本公开的第三方面,提供了一种通信系统,包括如上第一方面或任一实施例的第一信号处理设备以及如上第二方面或任一实施例的第二信号处理设备,其中第一信号处理设备和第二信号处理设备经由光纤连接。可选地,该光纤为eCPRI光纤。
在本公开的第四方面,提供了一种数据传输方法。该方法包括:获取待处理的数据;基于来自第二信号处理设备的传输配置信息,将待处理的数据调度到第一处理模块或者第二处理模块,待处理的数据包括来自第二信号处理设备的以太网数据,或者来自天线模块的上行链路数据;由第一处理模块按照第一切分模式处理所调度的数据;以及由第二处理模块按照第二切分模式处理所调度的数据。
在一些可能的实施方式中,第一切分模式为时域切分模式,并且由第一处理模块按照第一切分模式处理所调度的数据包括:由第一处理模块对所调度的数据执行RF处理。
在一些可能的实施方式中,待处理的数据包括来自第二信号处理设备的以太网数据,以太网数据所对应的天线通道数为第一数量,并且由第一处理模块按照第一切分模式处理所调度的数据包括:基于以太网数据确定对应的多路第一时域数据;以及基于多路第一时域数据以及第二数量的多个第一天线权重参数,确定多路第二时域数据,第二数量对应于天线模块的天线通道数,第一数量小于第二数量。
在一些可能的实施方式中,还包括经由天线模块的多个天线通道发送多路第二时域数据。
在一些可能的实施方式中,基于以太网数据确定对应的多路第一时域数据包括:基于以太网数据的负载的拆分,确定多路第一时域数据。
在一些可能的实施方式中,待处理的数据包括来自天线模块的上行链路数据,上行链路数据包括第二数量的多路第二时域数据,并且由第一处理模块按照第一切分模式处理所调度的数据包括:基于多路第二时域数据以及第二数量的多个第二天线权重参数,确定多路第一时域数据;以及基于多路第一时域数据确定对应的以太网数据。
在一些可能的实施方式中,还包括:将所确定的以太网数据传输到第二信号处理设备。
在一些可能的实施方式中,基于多路第一时域数据确定对应的以太网数据包括:将多路第一时域数据中的多个码片的数据进行组包,得到以太网数据。
在一些可能的实施方式中,多个码片的数量基于以下因素中的至少一项所确定:第一数 量、多个码片中的至少一个码片的样点的数量、样点的位宽、或带宽。
在一些可能的实施方式中,还包括获取来自第二信号处理设备的以下至少一项:第一数量、第二数量、第二数量的多个第一天线权重参数、或第二数量的多个第二天线权重参数。
在一些可能的实施方式中,传输配置信息包括是否由第一处理模块进行处理的指示信息。
在一些可能的实施方式中,传输配置信息包括第一指示信息和第二指示信息,第一指示信息指示第一频段范围与第一处理模块之间的对应关系,第二指示信息指示第二频段范围与第二处理模块之间的对应关系。
在一些可能的实施方式中,基于来自第二信号处理设备的传输配置信息将待处理的数据调度到第一处理模块或者第二处理模块包括:如果待处理的数据处于第一频段范围,将待处理的数据调度到第一处理模块;如果待处理的数据处于第二频段范围,将待处理的数据调度到第二处理模块。
在一些可能的实施方式中,第二切分模式为物理层内部切分模式。在第三方面的一些实施例中,光纤为eCPRI光纤。
在本公开的第五方面,提供了一种数据处理方法。该方法包括:由第一基带模块生成时域数据,时域数据所对应的天线通道数为第一数量;将时域数据转换为第一以太网数据;以及经由光纤将第一以太网数据传输到第一信号处理设备。
在一些可能的实施方式中,将时域数据转换为第一以太网数据包括:将时域数据中的多个码片的数据进行组包,得到第一以太网数据。
在一些可能的实施方式中,多个码片的数量基于以下因素中的至少一项所确定:第一数量、多个码片中的至少一个码片的样点的数量、样点的位宽、或带宽。
在一些可能的实施方式中,还包括:由第二基带模块生成第二以太网数据;以及经由光纤将第二以太网数据传输到第一信号处理设备。
在一些可能的实施方式中,还包括:经由光纤接收来自第一信号处理设备的以太网数据;将以太网数据调度到转换模块或第二基带模块;由转换模块将所调度的以太网数据转换为对应的时域数据,对应的时域数据所对应的天线通道数为第一数量;由第一基带模块处理对应的时域数据;以及由第二基带模块处理所调度的以太网数据。
在一些可能的实施方式中,将以太网数据转换为对应的时域数据包括:基于以太网数据的负载的拆分,确定对应的时域数据。
在一些可能的实施方式中,还包括:将传输配置信息发送到第一信号处理设备。
在一些可能的实施方式中,传输配置信息包括是否由第一信号处理设备的第一处理模块进行处理的指示信息。
在一些可能的实施方式中,传输配置信息包括第一指示信息和第二指示信息,第一指示信息指示第一频段范围与第一信号处理设备的第一处理模块之间的对应关系,第二指示信息指示第二频段范围与第一信号处理设备的第二处理模块之间的对应关系。
在一些可能的实施方式中,还包括将以下中的至少一项发送到第一信号处理设备:第一数量、第二数量、第二数量的多个第一天线权重参数、或第二数量的多个第二天线权重参数,其中第二数量表示第一信号处理设备的天线模块收发数据的天线通道数。
在一些可能的实施方式中,光纤为eCPRI光纤。
在本公开的第六方面,提供了一种通信装置。该通信装置包括处理器以及存储器,存储器上存储有由处理器执行的指令,当指令被处理器执行时使得该通信装置实现:获取待处理 的数据;基于来自第二信号处理设备的传输配置信息,将待处理的数据调度到第一处理模块或者第二处理模块,待处理的数据包括来自第二信号处理设备的以太网数据,或者来自天线模块的上行链路数据;由第一处理模块按照第一切分模式处理所调度的数据;以及由第二处理模块按照第二切分模式处理所调度的数据。
在一些可能的实施方式中,第一切分模式为时域切分模式,并且当指令被处理器执行时使得该通信装置实现:由第一处理模块对所调度的数据执行RF处理。
在一些可能的实施方式中,待处理的数据包括来自第二信号处理设备的以太网数据,以太网数据所对应的天线通道数为第一数量,并且当指令被处理器执行时使得该通信装置实现:基于以太网数据确定对应的多路第一时域数据;以及基于多路第一时域数据以及第二数量的多个第一天线权重参数,确定多路第二时域数据,第二数量对应于天线模块的天线通道数,第一数量小于第二数量。
在一些可能的实施方式中,当指令被处理器执行时使得该通信装置实现:经由天线模块的多个天线通道发送多路第二时域数据。
在一些可能的实施方式中,当指令被处理器执行时使得该通信装置实现:基于以太网数据的负载的拆分,确定多路第一时域数据。
在一些可能的实施方式中,待处理的数据包括来自天线模块的上行链路数据,上行链路数据包括第二数量的多路第二时域数据,并且当指令被处理器执行时使得该通信装置实现:基于多路第二时域数据以及第二数量的多个第二天线权重参数,确定多路第一时域数据;以及基于多路第一时域数据确定对应的以太网数据。
在一些可能的实施方式中,当指令被处理器执行时使得该通信装置实现:将所确定的以太网数据传输到第二信号处理设备。
在一些可能的实施方式中,当指令被处理器执行时使得该通信装置实现:将多路第一时域数据中的多个码片的数据进行组包,得到以太网数据。
在一些可能的实施方式中,多个码片的数量基于以下因素中的至少一项所确定:第一数量、多个码片中的至少一个码片的样点的数量、样点的位宽、或带宽。
在一些可能的实施方式中,还包括获取来自第二信号处理设备的以下至少一项:第一数量、第二数量、第二数量的多个第一天线权重参数、或第二数量的多个第二天线权重参数。
在一些可能的实施方式中,传输配置信息包括是否由第一处理模块进行处理的指示信息。
在一些可能的实施方式中,传输配置信息包括第一指示信息和第二指示信息,第一指示信息指示第一频段范围与第一处理模块之间的对应关系,第二指示信息指示第二频段范围与第二处理模块之间的对应关系。
在一些可能的实施方式中,当指令被处理器执行时使得该通信装置实现:如果待处理的数据处于第一频段范围,将待处理的数据调度到第一处理模块;如果待处理的数据处于第二频段范围,将待处理的数据调度到第二处理模块。
在一些可能的实施方式中,第二切分模式为物理层内部切分模式。在第三方面的一些实施例中,光纤为eCPRI光纤。
在本公开的第七方面,提供了一种通信装置。该通信装置包括处理器以及存储器,存储器上存储有由处理器执行的指令,当指令被处理器执行时使得该通信装置实现:由第一基带模块生成时域数据,时域数据所对应的天线通道数为第一数量;将时域数据转换为第一以太网数据;以及经由光纤将第一以太网数据传输到第一信号处理设备。
在一些可能的实施方式,当指令被处理器执行时使得该通信装置实现:将时域数据中的多个码片的数据进行组包,得到第一以太网数据。
在一些可能的实施方式中,多个码片的数量基于以下因素中的至少一项所确定:第一数量、多个码片中的至少一个码片的样点的数量、样点的位宽、或带宽。
在一些可能的实施方式中,当指令被处理器执行时使得该通信装置实现:由第二基带模块生成第二以太网数据;以及经由光纤将第二以太网数据传输到第一信号处理设备。
在一些可能的实施方式中,当指令被处理器执行时使得该通信装置实现:经由光纤接收来自第一信号处理设备的以太网数据;将以太网数据调度到转换模块或第二基带模块;由转换模块将所调度的以太网数据转换为对应的时域数据,对应的时域数据所对应的天线通道数为第一数量;由第一基带模块处理对应的时域数据;以及由第二基带模块处理所调度的以太网数据。
在一些可能的实施方式中,当指令被处理器执行时使得该通信装置实现:基于以太网数据的负载的拆分,确定对应的时域数据。
在一些可能的实施方式中,当指令被处理器执行时使得该通信装置实现:将传输配置信息发送到第一信号处理设备。
在一些可能的实施方式中,传输配置信息包括是否由第一信号处理设备的第一处理模块进行处理的指示信息。
在一些可能的实施方式中,传输配置信息包括第一指示信息和第二指示信息,第一指示信息指示第一频段范围与第一信号处理设备的第一处理模块之间的对应关系,第二指示信息指示第二频段范围与第一信号处理设备的第二处理模块之间的对应关系。
在一些可能的实施方式中,当指令被处理器执行时使得该通信装置实现:将以下中的至少一项发送到第一信号处理设备:第一数量、第二数量、第二数量的多个第一天线权重参数、或第二数量的多个第二天线权重参数,其中第二数量表示第一信号处理设备的天线模块收发数据的天线通道数。
在一些可能的实施方式中,光纤为eCPRI光纤。
在本公开的第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机可执行指令,该计算机可执行指令被处理器执行时实现根据上述第四方面或其任一实施例中的方法的操作,或者实现根据上述第五方面或其任一实施例中的方法的操作。
在本公开的第九方面,提供了一种芯片或芯片系统。该芯片或芯片系统包括处理电路,被配置为执行根据上述第四方面或其任一实施例中的方法的操作,或者实现根据上述第五方面或其任一实施例中的方法的操作。
在本公开的第十方面,提供了一种计算机程序或计算机程序产品。该计算机程序或计算机程序产品被有形地存储在计算机可读介质上并且包括计算机可执行指令,计算机可执行指令在被执行时实现根据上述第四方面或其任一实施例中的方法的操作,或者实现根据上述第五方面或其任一实施例中的方法的操作。
附图说明
结合附图并参考以下详细说明,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标注表示相同或相似的元素,其中:
图1示出了分布式接入网设备的一个示意框图;
图2示出了分布式接入网设备的另一个示意框图;
图3示出了不同的切分模式的示意图;
图4示出了根据本公开的实施例的接入网设备的一个示意框图;
图5示出了根据本公开的一些实施例的第一信号处理设备的示意框图;
图6示出了根据本公开的一些实施例的数据传输过程的信令交互图;
图7示出了根据本公开的一些实施例的将时域数据转换为以太网数据的情形的一个示意图;
图8示出了根据本公开的一些实施例的数据传输过程的信令交互图;
图9示出了根据本公开的一些实施例的数据传输过程的信令交互图;
图10示出了根据本公开的一些实施例的数据传输过程的信令交互图;以及
图11示出了可以用来实施本公开的实施例的示例设备的示意性框图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
在本公开的实施例的描述中,术语“包括”及其类似用语应当理解为开放性包含,即“包括但不限于”。术语“基于”应当理解为“至少部分地基于”。术语“一个实施例”或“该实施例”应当理解为“至少一个实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。
本公开的实施例可以根据任何适当的通信协议来实施,包括但不限于,第三代(3rd Generation,3G)、第四代(4G)、第五代(5G)、第六代(6G)等蜂窝通信协议、诸如电气与电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11等的无线局域网通信协议、和/或目前已知或者将来开发的任何其他协议。
本公开的实施例的技术方案应用于遵循任何适当通信协议的通信系统,例如:通用分组无线业务(General Packet Radio Service,GPRS)、全球移动通信系统(Global System for Mobile Communications,GSM)、增强型数据速率GSM演进系统(Enhanced Data rate for GSM Evolution,EDGE)、通用移动通信系统(Universal Mobile Telecommunications Service,UMTS)、长期演进(Long Term Evolution,LTE)系统、宽带码分多址系统(Wideband Code Division Multiple Access,WCDMA)、码分多址2000系统(Code Division Multiple Access,CDMA2000)、时分同步码分多址系统(Time Division-Synchronization Code Division Multiple Access,TD-SCDMA)、频分双工(Frequency Division Duplex,FDD)系统、时分双工(Time Division Duplex,TDD)、第五代系统或新无线电(New Radio,NR)、未来演进的第六代通信系统等等。
应当理解,本公开的实施例不限于特定的通信系统,而是可以被应用到任何存在类似问题的各种通信系统中,例如无线局域网(WLAN)、有线通信系统、或者将来开发的其他通信系统等。
在本公开中的术语“终端设备”指能够与网络设备之间或者彼此之间进行有线或无线通信的任何终端设备。终端设备有时可以称为用户设备(User Equipment,UE)。终端设备可以 是任意类型的移动终端、固定终端或便携式终端。作为示例,终端设备可以包括移动手机、站点、单元、设备、移动终端(Mobile Terminal,MT)、订阅台、便携式订阅台、互联网节点、通信器、台式计算机、膝上型计算机、笔记本计算机、平板计算机、个人通信系统设备、个人导航设备、个人数字助理(Personal Digital Assistant,PDA)、定位设备、无线电广播接收器、电子书设备、游戏设备、物联网(Internet of Things,IoT)设备、车载设备、飞行器、虚拟现实(Virtual Reality,VR)设备、增强现实(Augmented Reality,AR)设备、可穿戴设备、5G网络中的终端设备或者演进的公用陆地移动网络(Public Land Mobile Network,PLMN)中的任何终端设备、可用于通信的其他设备、或者上述的任意组合。本公开的实施例对此并不做限定。
在本公开中的术语“网络设备”是可以用于与终端设备通信的实体或节点,例如可以是接入网设备。接入网设备可以是部署在无线接入网中为移动终端提供无线通信功能的装置,例如可以是无线接入网(Radio Access Network,RAN)网络设备。接入网设备可以包括各种类型的基站。作为示例,接入网设备可以包括各种形式的宏基站、微基站、微微基站、毫微微基站、中继站、接入点、远程无线电单元(Remote Radio Unit,RRU)、射频头(Radio Head,RH)、远程无线电头端(Remote Radio Head,RRH)等等。在采用不同的无线接入技术的系统中,接入网设备的名称可能会有所不同,例如在长期演进系统(Long Term Evolution,LTE)网络中称为演进的节点B(evolved NodeB,eNB或eNodeB),在3G网络中称为节点B(NodeB,NB),在5G网络中可以称为g节点B(gNB)或NR节点B(NR NB),等等。在某些场景下,接入网设备可以包含集中单元(Central Unit,CU)和/或分布单元(Distributed Unit,DU)。CU和DU可以放置在不同的地方,例如:DU拉远,放置于高话务量的区域,CU放置于中心机房。或者,CU和DU也可以放置在同一机房。CU和DU也可以为一个机架下的不同部件。为方便描述,本公开后续的实施例中,上述为终端设备提供无线通信功能的装置统称为网络设备,本公开的实施例不再具体限定。
分布式接入网设备是目前的蜂窝无线通信系统中的接入网设备的主要形态。
图1示出了分布式接入网设备100的一个示意框图。在图1中,分布式接入网设备100包括BBU 110和RRU 120,并且通过光纤130进行连接。RRU 120可以经由馈线101连接到天线102,从而能够与终端设备140进行通信。
图1中的光纤130可以是依照通用公共无线接口(Common Public Radio Interface,CPRI)协议的线缆。CPRI是目前用于连接BBU与RRU的无线标准接口协议之一。并且在CPRI协议中,BBU也被称为无线电设备控制(Radio Equipment Control,REC),RRU也被称为无线电设备(Radio Equipment,RE)。
RRU 120可以包括4个模块:数字中频模块、收发信机模块、功放模块和滤波模块。以分布式接入网设备100到终端设备140的下行传输为例,数字中频模块可以用于光传输的调制解调、数字上下变频、模数(Analog/Digital,A/D)转换等;收发信机模块用于实现中频信号到射频信号的变换;被转换后的射频信号可以再经过功放模块和滤波模块,并通过天线102传输到终端设备140。
在如图1所示的分布式接入网设备100中,使用的是时域切分模式,也就是说,由BBU 110完成媒体接入控制(Media Access Control,MAC)层、物理层等的处理,由RRU 120完成射频(Radio Frequency,RF)的处理。并且,RRU 120所支持的载波为第一频段范围,例如1.8GHz频段。
图2示出了分布式接入网设备200的另一个示意框图。在图2中,分布式接入网设备200包括BBU 210和AAU 220,并且通过光纤230进行连接,其中AAU 220包括天线模块,从而能够与终端设备240进行通信。可选地,BBU 210可以包括CU和DU,在图2中未示出。
光纤230可以是依照增强的通用公共无线接口(Enhanced Common Public Radio Interface,eCPRI)协议的线缆。如图2所示的分布式接入网设备200能够支持大规模多入多出(Massive Multiple Input Multiple Output,Massive MIMO),并使用物理层内部切分模式。也就是说,由BBU 210完成MAC层、高层物理层等的处理,由AAU 220完成低层物理层和RF的处理。并且,AAU 220所支持的载波为第二频段范围,例如2.1GHz频段。
图3示出了不同的切分模式300的示意图。在图3中示出了时域切分模式310,例如为选项8(Option-8),还示出了物理层内部切分模式320,例如选项7-1、选项7-2和选项7-3。
结合图3,以选项7-1为例:针对下行传输,由BBU执行物理高层的编码、速率匹配、加扰、调制、层映射、预编码、资源单元(Resource Element,RE)映射、波束赋形(Beamforming,BF)端口扩展等,并由AAU执行物理底层的逆快速傅里叶变换(inverse Fast Fourier Transform,iFFT)和循环移位(Cyclic Prefix,CP)添加等。针对上行传输,由AAU执行物理底层的CP移除和快速傅里叶变换(Fast Fourier Transform,FFT),并由BBU执行物理高层的端口缩减、RE解映射、信道估计、分集组合、均衡、逆离散傅里叶变换(inverse Discrete Fourier Transform,iDFT)、解调制、解扰、解速率匹配、解码等。关于选项7-2和选项7-3可以结合图3,本公开中不再罗列。
示例性地,关于选项7-1、选项7-2和选项7-3可以参照3GPP TS 38.816(如15.0.0)中第4.2节的介绍,关于选项8可以参照3GPP TS 38.801(如14.0.0)中第11.1.2.8节的介绍.但是应注意,图3示出的切分方式仅是示意,不能解释为对本公开的实施例的限制。
可理解的是,本公开中的切分模式也可以被称为切分方式或协议切分模式等,在一些场景下,切分模式可以被用于表征RRU或AAU与BBU之间的切分。例如,在BBU包括CU和DU时,切分方式可以表示AAU与DU之间的切分。
如上所述,RRU使用CPRI接口与BBU连接,且支持第一频段范围;AAU使用eCPRI接口与BBU连接,且支持第二频段范围。为了满足不同业务的需求,运营商需要提供同时支持第一频段范围和第二频段范围的接入网设备。通过将RRU和BBU分别部署的方式不仅结构复杂,而且导致较高的成本。
针对上述问题以及在类似场景中的潜在其他问题,本公开的实施例提供了一种信号处理设备,其可以通过光纤与第二信号处理设备连接,且支持两种不同的切分模式,也就是说能够同时支持第一频段范围和第二频段范围。这样,能够降低设备的硬件复杂度,并且降低安装成本。以下将结合图4至图11详细描述根据本公开的实施例。可理解,本公开的实施例不限于上述提出的BBU和RRU以及BBU与AAU的场景,还可以被适用于其他的场景。
图4示出了根据本公开的实施例的接入网设备400的一个示意框图。接入网设备400包括第一信号处理设备410和第二信号处理设备420,并且第一信号处理设备410与第二信号处理设备420通过光纤430进行连接。
在一些实施例中,第一信号处理设备410可以被安装在室外,例如抱杆上;第二信号处理设备420可以被安装在楼宇内部。可选地,光纤430可以为eCPRI协议的光缆。相应地,第一信号处理设备410可以包括第一eCPRI接口,第二信号处理设备420可以包括第二eCPRI接口。第一信号处理设备410和第二信号处理设备420可以彼此传输以太网数据。例如针对 下行链路传输,第二信号处理设备420将下行链路的以太网数据传输到第一信号处理设备410。例如针对上行链路传输,第一信号处理设备410将上行链路的以太网数据传输到第二信号处理设备420。
如图4所示,第一信号处理设备410可以包括接口模块411、调度模块412、第一处理模块413、第二处理模块414和天线模块415。接口模块411连接到调度模块412,调度模块412连接到第一处理模块413和第二处理模块414,调度模块412还连接到天线模块415。接口模块411可以被配置为经由光纤430与第二信号处理设备420进行以太网数据传输。调度模块412可以被配置为基于来自第二信号处理设备420的传输配置信息,将待处理的数据调度到第一处理模块413或第二处理模块414。第一处理模块413可以被配置为按照第一切分模式处理来自调度模块412的数据。第二处理模块414可以被配置为按照第二切分模式处理来自调度模块412的数据。天线模块415可以被配置为发送下行链路数据和/或接收上行链路数据,其中下行链路数据为由第一处理模块413或第二处理模块414处理后的数据。具体地,调度模块412所调度的待处理的数据可以是来自接口模块411的以太网数据,或者可以是来自天线模块415的上行链路数据。
在本公开的一些实施例中,调度模块412可以包括第一调度子模块和第二调度子模块。如图5示出了根据本公开的一些实施例的第一信号处理设备410的另一框图。如图5所示,接口模块411连接到第一调度子模块510,第一调度子模块510连接到第一处理模块413和第二处理模块414。天线模块415连接到第二调度子模块520,第二调度子模块520连接到第一处理模块413和第二处理模块414。
第一调度子模块510可以被配置为基于来自第二信号处理设备420的传输配置信息,将来自接口模块411的以太网数据调度到第一处理模块413或第二处理模块414。第二调度子模块520可以被配置为基于来自第二信号处理设备420的传输配置信息,将来自天线模块415的上行链路数据调度到第一处理模块413或第二处理模块414。可选地,第一调度子模块510还可以被配置为将由第一处理模块413或第二处理模块414处理之后的数据传输到接口模块411。第二调度子模块510还可以被配置为将由第一处理模块413或第二处理模块414处理之后的数据传输到天线模块415。
如图5所示,第一处理模块413可以包括转换子模块530和波束赋形子模块540,且转换子模块530连接到波束赋形子模块540。转换子模块530可以被配置为实现以太网数据与时域数据之间的转换。波束赋形子模块540可以被配置为实现第一数量的多路第一时域数据与第二数量的多路第二时域时间之间的转换。第一数量小于第二数量。举例而言,第一数量可以为1、2、4或8中的任一值,第二数量可以为32、64或128中的任一值。但是应注意,本公开中所列举的第一数量和第二数量的值仅是示意,不应解释为对本公开的实施例的限制。
可理解,在一些示例中,实现转换功能的转换子模块530也可以被称为数据桥(bridge)或其他名称,本公开对此不限定。本公开的实施例中,调度模块412可以是由第一信号处理设备410的控制面(图中未示出)进行配置的,例如可以按照不同载波对应的切分模式进行配置。
在本公开的一些实施例中,第一信号处理设备410可以是通过对如图2所示的AAU 220进行升级改造而得到的。例如,可以在如图2所示的AAU 220的基础上,通过增加调度模块412和第一处理模块413以将AAU 220升级为第一信号处理设备410。如此,能够充分地利用已有设备,避免大规模的设备替换,进一步降低成本。
如图4所示,第二信号处理设备420可以包括第一基带模块421、第二基带模块422、转换模块423和接口模块424。第一基带模块421连接到转换模块423,转换模块423和第二基带模块422连接到接口模块424。第一基带模块421可以被配置为生成或处理时域数据。第二基带模块422可以被配置为生成或处理以太网数据。转换模块423可以被配置为实现时域数据与以太网数据之间的转换。接口模块424可以被配置为经由光纤430与第一信号处理设备410进行以太网数据传输。具体而言,转换模块423可以将来自第一基带模块421的时域数据转换为以太网数据,可以将来自接口模块424的以太网数据转换为时域数据。
可选地,第二信号处理设备420还可以包括调度模块425。调度模块425可以连接到转换模块423和第二基带模块422,调度模块425还可以连接到接口模块424。调度模块425可以被配置为将来自接口模块424的以太网数据调度到转换模块423或第二基带模块422。相应地,转换模块423可以将来自调度模块425的以太网数据转换为时域数据,再将转换后的时域数据提供给第一基带模块421。
可理解,在一些示例中,实现转换功能的转换模块423也可以被称为数据桥或其他名称,本公开对此不限定。在一些示例中,可以理解调度模块425能够实现以太网数据的分发功能,相应地也可以将调度模块425称为分发模块,本公开对此不限定。
在本公开的一些实施例中,第二信号处理设备420可以是通过对如图1所示的BBU 110进行如图2所示的BBU 210进行升级改造而得到的。例如,可以在如图1所示的BBU 110的基础上,通过增加第二基带模块422和转换模块423,并将原CPRI接口替换为eCPRI接口以将BBU 110升级为第二信号处理设备420。可以在如图2所示的BBU 210的基础上,通过增加第一基带模块421和转换模块423以将BBU 210升级为第二信号处理设备420。如此,能够充分地利用已有设备,避免大规模的设备替换,进一步降低成本。
可以将从第二信号处理设备420到第一信号处理设备410,以经由第一信号处理设备410的天线模块415发射出去的传输称为下行链路传输。可以将经由第一信号处理设备410的天线模块415接收,并从第一信号处理设备410到第二信号处理设备420的传输称为上行链路传输。
应注意,尽管在图4和图5中示出了第一信号处理设备410包括多个模块,第二信号处理设备420包括多个模块,但是在图4或图5中的模块仅是示意,在实际场景中,第一信号处理设备410和第二信号处理设备420可以包括更少或更多的模块。例如天线模块415可以独立于第一信号处理设备410,即第一信号处理设备410可以不包括天线模块415,等等。本公开中不再罗列。
应理解,本公开的实施例中对模块或单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时也可以有另外的划分方式,另外,在公开的实施例中的各功能单元可以集成在一个单元中,也可以是单独物理存在,也可以两个或两个以上单元集成为一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
下面将结合如下的图6至图8所示的信令交互图来更为详细地描述本公开的一些实施例。
图6示出了根据本公开的一些实施例的数据传输过程600的信令交互图。图6中涉及第一信号处理设备410和第二信号处理设备420,并且过程600为从第二信号处理设备420到第一信号处理设备410的下行链路传输。
第二信号处理设备420的第一基带模块421生成610时域数据。具体地,第一基带模块421可以通过编码、速率匹配、…、添加CP等一系列操作生成时域数据。
时域数据也可以被称为同相正交(In-phase Quadrature,IQ)数据,或者可以被称为基带正交采样数据,或者可以被称为CPRI数据或其他名称,本公开对此不限定。可选地,第一基带模块421所生成的时域数据可以是用户面(User Plane)的以同相或正交调制的数字基带数据。
第一基带模块421所生成的时域数据可以包括对应于第一数量的天线通道数的多个IQ数据流。可选地,可以将第一基带模块421所生成的时域数据称为多路第一IQ数据,且多路的数量等于第一数量,例如1、2、4或8中的任一值。
时域数据的传输基本单位为基本帧(base frame),例如一个基本帧的时间长度为1/3.84MHz=260.41667纳秒(ns)。一个基本帧可以包括16个样点,其中第1个样点用于传输控制字,第2个样点至第16个样点用于传输IQ数据。为了便于描述可以将基本帧中除去第1个样点之外的其余15个样点称为码片(chip),也就是说,一个基本帧包括1个样点的传输控制字以及15个样点的码片。
可理解,尽管上述的示例中,码片包括15个样点,但是本公开的实施例不限于此,例如码片所包括的样点的数量可以等于8或其他值等。另外,上述的“样点”也可以被称为字(word)或其他名称等,本公开对此不限定。
样点的位宽可以表示样点包括多少个比特(bit),从而可理解,位宽可以觉得码片所包括的bit数。在具体实现中,第一基带模块421的基带配置信息可以包括位宽,也就是说,可以预先将位宽配置在第一基带模块421中。本公开的实施例中对位宽的具体值不作限定,例如位宽可以等于15bit或其他值等。
第二信号处理设备420的转换模块423将时域数据转换620为以太网数据。
具体而言,转换模块423可以通过将时域数据中的多个码片进行组包,以得到对应的以太网数据。
在一些实施例中,转换模块423可以将时域数据中的码片进行依次拼接,并将拼接之后的数据作为以太网数据的负载。如图7示出了根据本公开的一些实施例的将时域数据转换为以太网数据的情形700的一个示意图。
如图7所示,时域数据710的基本单位为基本帧712,基本帧712包括控制字7121和码片7122。如图7所示,时域数据710的基本单位为基本帧712,基本帧712包括控制字7121和码片7122。以太网数据720可以包括传输网络层报头721、公共报头722、服务报头723和负载724,可选地还可以包括填充725。示例性地,可以将多个码片7122进行组包并作为以太网数据720的负载724。
在本公开的一些实施例中,以太网数据720的报文所包括的多个码片的数量可以基于以下因素来确定:第一数量、码片所包括的样点的数量、样点的位宽以及传输的带宽等。
举例而言,假设带宽为20MHz,该带宽对应的以太网数据的最大传输单元(Maximum Transmission Unit,MTU)为1500字节(byte)、包头长度为64字节。假设第一数量等于4,码片包括的样点的数量等于8,样点的位宽等于15。作为一例,可以确定多个码片的数量为:将(1500-64)/(4×8×15×2/8)下取整,即11。以此方式,能够充分地利用传输带宽,确保以太网的传输效率,避免资源浪费。
可理解,上述确定多个码片的数量的方式仅是示意,在实际场景中,也可以多个码片的数量可以等于其他的值,例如可以等于比上述方式确定的数量更小的值,例如10或9等,本公开对此不限定。
第二信号处理设备420的接口模块424经由光纤430将以太网数据传输630到第一信号处理设备410。相应地,第一信号处理设备410的接口模块411可以接收到来自第二信号处理设备420的以太网数据。
第一信号处理设备410的调度模块412基于传输配置信息,将以太网数据调度640到第一处理模块413。
在本公开的一些实施例中,传输配置信息可以是由第二信号处理设备420预先发送到第一信号处理设备410的。参照图6,第二信号处理设备420的接口模块424将传输配置信息发送601到第一信号处理设备410,相应地,第一信号处理设备410的接口模块411可以接收到传输配置信息。
在一些实施例中,传输配置信息可以包括是否由第一处理模块413进行处理的指示信息。举例而言,该指示信息可以被理解为是第一处理模块413处理数据的开关,例如可以为1或0。可理解,该指示信息也可以为其他的形式,本公开对此不限定。如果该指示信息指示由第一处理模块413进行处理,则第一信号处理设备410的调度模块412将从接口模块411接收到的以太网数据调度到第一处理模块413。相反,如果该指示信息指示不由第一处理模块413进行处理,则第一信号处理设备410的调度模块412将从接口模块411接收到的以太网数据调度到第二处理模块414。
在一些实施例中,传输配置信息可以包括第一指示信息和第二指示信息,其中第一指示信息指示第一频段范围与第一处理模块413之间的对应关系,第二指示信息指示第二频段范围与第二处理模块414之间的对应关系。举例而言,从接口模块411接收到的以太网数据的某字段可以携带频率信息,如果该频率信息位于第一频段范围,则第一信号处理设备410的调度模块412将从接口模块411接收到的以太网数据调度到第一处理模块413。如果该频率信息位于第二频段范围,则第一信号处理设备410的调度模块412将从接口模块411接收到的以太网数据调度到第二处理模块414。
应注意的是,本公开的实施例中的传输配置信息也可以包括其他的指示形式,从而调度模块412可以基于传输配置信息,能够确定将来自接口模块411的以太网数据调度到第一处理模块413还是第二处理模块414。在图6的过程600中,假设调度模块412将以太网数据调度到第一处理模块413。
第一处理模块413对来自调度模块412的以太网数据,按照第一切分模式进行处理。第一切分模式可以为时域切分模式。可选地,第一切分模式可以是支持CPRI协议的切分模式,结合图3,该第一切分模式可以为如图3所示的选项8。示例性地,第一处理模块413对以太网数据进行RF处理,而不执行物理层的处理。
参照图6,转换子模块530将以太网数据转换650为时域数据。具体地,转换子模块530可以将以太网数据转换为第一数量的多路第一时域数据。
在本公开的一些实施例中,第一数量可以是由第二信号处理设备420预先配置到第一信号处理设备410的。在一些实施例中,如601中的传输配置信息可以包括第一数量。在另一些实施例中,第一数量可以独立于传输配置信息,例如第二信号处理设备420通过另一单独的信令将第一数量告知第一信号处理设备410。
转换子模块530可以基于以太网数据的负载的拆分确定对应的第一数量的多路第一时域数据。以太网的负载可以为eCPRI负载,转换子模块530可以将负载按照码片的大小进行拆分,并在码片的基础上添加控制字而作为基本帧,从而得到多路第一时域数据。
波束赋形子模块540将第一数量的多路第一时域数据转换为第二数量的多路第二时域数据,其中第二数量大于第一数量。
具体而言,波束赋形子模块540可以基于第一数量的多路第一时域数据以及多个第一天线权重参数,来确定第二数量的多路第二时域数据。
在本公开的一些实施例中,第二数量和/或多个第一天线权重参数可以是由第二信号处理设备420预先配置到第一信号处理设备410的。在一些实施例中,如601中的传输配置信息可以包括第二数量和/或多个第一天线权重参数。在另一些实施例中,第二数量和/或多个第一天线权重参数以独立于传输配置信息,例如第二信号处理设备420通过另一单独的信令将第二数量和/或多个第一天线权重参数告知第一信号处理设备410。示例性地,第二数量可以对应于天线模块415的天线通道数,例如第二数量可以等于或小于天线模块415的总通道数。
为了描述方便,可以将第一数量表示为N1,将第二数量表示为N2,且N1<N2。在一些实施例中,可以将N1路第一时域数据中的至少部分进行复制,得到N2路时域数据;然后将N2路时域数据中的每路乘以对应的第一天线权重参数,从而得到N2路第二时域数据。
举例而言,假设N1=4,N2=32。可以将N1路第一时域数据中的每一路时域数据复制8份,从而得到32路时域数据,例如32路时域数据中的第1路至第8路为N1路第一时域数据中的第1路第一时域数据,32路时域数据中的第9路至第16路为N1路第一时域数据中的第2路第一时域数据,32路时域数据中的第17路至第24路为N1路第一时域数据中的第3路第一时域数据,32路时域数据中的第25路至第32路为N1路第一时域数据中的第4路第一时域数据。可选地,多个第一天线权重参数为第二数量的第一天线权重参数,可以将多个第一天线权重参数依次表示为wt1、wt2、…wtN2。那么,可以将32路时域数据中的第i路乘以wti(i=1,2,…,N2)作为N2路第二时域数据中的第i路第二时域数据。
应注意,上述对波束赋形子模块540基于第一数量的多路第一时域数据得到第二数量的多路第二时域数据的实施例仅是示意,本公开不限于此,例如波束赋形子模块540可以将N1路第一时域数据中的第j路(j=1,2,…,N1)第一时域数据复制N2份,并将复制后的N2份分别乘以对应的得到第一天线权重参数wti(i=1,2,…,N2)。
应注意,本公开实施例中所描述的第一处理模块413对数据的处理过程仅是示意,在实际场景中,还可以包括其他的处理,例如功放、滤波等。
第一信号处理设备410的天线模块415传输670多路第二时域数据。具体地,天线模块415可以通过其N2个天线通道将N2个第二时域数据发送到终端设备。
如此,本公开实施例中的第二信号处理设备420的转换模块423可以将时域数据转换为以太网数据,从而能够经由eCPRI光纤传输到第一信号处理设备410。这样能够支持更多的小区,提升空口的性能。并且,第一信号处理设备410的第一处理模块413能够按照第一切分模式处理来自第二信号处理设备420的以太网数据,从而能够支持第一频段范围。
图8示出了根据本公开的一些实施例的数据传输过程800的信令交互图。图8中涉及第一信号处理设备410和第二信号处理设备420,并且过程800为从第二信号处理设备420到第一信号处理设备410的下行链路传输。
第二信号处理设备420的第二基带模块422生成810以太网数据。
第二信号处理设备420的接口模块424经由光纤430将以太网数据传输820到第一信号处理设备410。相应地,第一信号处理设备410的接口模块411可以接收到来自第二信号处理设备420的以太网数据。
第一信号处理设备410的调度模块412基于传输配置信息,将以太网数据调度830到第二处理模块414。
在本公开的一些实施例中,传输配置信息可以是由第二信号处理设备420预先发送到第一信号处理设备410的。参照图8,第二信号处理设备420的接口模块424将传输配置信息发送801到第一信号处理设备410,相应地,第一信号处理设备410的接口模块411可以接收到传输配置信息。关于该传输配置信息可以参照上述结合图6的601所描述的实施例,为了简洁,这里不再重复。
第二处理模块414对来自调度模块412的以太网数据,按照第二切分模式进行处理840。第二切分模式可以为物理层内部切分模式。可选地,第二切分模式可以是支持eCPRI协议的切分模式,结合图3,该第二切分模式可以为如图3所示的选项7-1或选项7-2或选项7-3。示例性地,第二处理模块414对以太网数据进行物理底层处理和RF处理,而不执行物理高层的处理。以第二切分模式是选项7-1为例,第二处理模块414所执行的处理可以包括iFFT和添加CP等操作。
应注意,本公开实施例中所描述的第二处理模块414对数据的处理过程仅是示意,在实际场景中,该处理过程可以包括例如频域波束赋形、功放、滤波等。在一些示例中,关于第二处理模块414的具体操作可以参照已有技术中的AAU的操作等。
第一信号处理设备410的天线模块415传输850下行链路数据。
如此,本公开实施例中的第二信号处理设备420的第二基带模块422能生成以太网数据,从而能够经由eCPRI光纤传输到第一信号处理设备410。并且,第一信号处理设备410的第二处理模块414能够按照第二切分模式处理来自第二信号处理设备420的以太网数据,从而能够支持第二频段范围。
图9示出了根据本公开的一些实施例的数据传输过程900的信令交互图。图9中涉及第一信号处理设备410和第二信号处理设备420,并且过程900为从第一信号处理设备410到第二信号处理设备420的上行链路传输。
第一信号处理设备410的天线模块415接收910上行链路数据。示例性地,该上行链路数据可以来自于终端设备。可选地,天线模块415的第二数量个天线通道可以接收多路数据,例如称为第二数量的多路第二时域数据。
第一信号处理设备410的调度模块412基于传输配置信息,将上行链路数据调度920到第一处理模块413。
在本公开的一些实施例中,传输配置信息可以是由第二信号处理设备420预先发送到第一信号处理设备410的。参照图9,第二信号处理设备420的接口模块424将传输配置信息发送901到第一信号处理设备410,相应地,第一信号处理设备410的接口模块411可以接收到传输配置信息。
在一些实施例中,传输配置信息可以包括是否由第一处理模块413进行处理的指示信息。举例而言,该指示信息可以被理解为是第一处理模块413处理数据的开关,例如可以为1或0。可理解,该指示信息也可以为其他的形式,本公开对此不限定。如果该指示信息指示由第一处理模块413进行处理,则第一信号处理设备410的调度模块412将从天线模块415接收到的上行链路数据调度到第一处理模块413。相反,如果该指示信息指示不由第一处理模块413进行处理,则第一信号处理设备410的调度模块412将从天线模块415接收到的上行链路数据调度到第二处理模块414。
在一些实施例中,传输配置信息可以包括第一指示信息和第二指示信息,其中第一指示信息指示第一频段范围与第一处理模块413之间的对应关系,第二指示信息指示第二频段范围与第二处理模块414之间的对应关系。举例而言,天线模块415接收到的上行链路数据的某字段可以携带频率信息,如果该频率信息位于第一频段范围,则第一信号处理设备410的调度模块412将从天线模块415接收到的上行链路数据调度到第一处理模块413。如果该频率信息位于第二频段范围,则第一信号处理设备410的调度模块412将从天线模块415接收到的上行链路数据调度到第二处理模块414。
应注意的是,本公开的实施例中的传输配置信息也可以包括其他的指示形式,从而调度模块412可以基于传输配置信息,能够确定将来自天线模块415接收到的上行链路数据调度到第一处理模块413还是第二处理模块414。在图9的过程900中,假设调度模块412将上行链路数据调度到第一处理模块413。
第一处理模块413对来自调度模块412的上行链路数据,按照第一切分模式进行处理。第一切分模式可以为时域切分模式。可选地,第一切分模式可以是支持CPRI协议的切分模式,结合图3,该第一切分模式可以为如图3所示的选项8。示例性地,第一处理模块413对上行链路数据进行RF处理,而不执行物理层的处理。
参照图9,波束赋形子模块540将上行链路数据转换930为第一数量的多路第一时域数据,其中第一数量小于第二数量。
在本公开的一些实施例中,第一数量可以是由第二信号处理设备420预先配置到第一信号处理设备410的。在一些实施例中,如901中的传输配置信息可以包括第一数量。在另一些实施例中,第一数量可以独立于传输配置信息,例如第二信号处理设备420通过另一单独的信令将第一数量告知第一信号处理设备410。
波束赋形子模块540可以将第二数量的多路第二时域数据转换为第一数量的多路第一时域数据。具体而言,波束赋形子模块540可以基于第二数量的多路第二时域数据以及多个第二天线权重参数,来确定第一数量的多路第一时域数据。
在本公开的一些实施例中,多个第二天线权重参数可以是由第二信号处理设备420预先配置到第一信号处理设备410的。在一些实施例中,如901中的传输配置信息可以包括多个第二天线权重参数。在另一些实施例中,多个第二天线权重参数以独立于传输配置信息,例如第二信号处理设备420通过另一单独的信令将多个第二天线权重参数告知第一信号处理设备410。
为了描述方便,可以将第一数量表示为N1,将第二数量表示为N2,且N1<N2。在一些实施例中,可以将N2路第二时域数据中的每路乘以对应的第二天线权重参数,从而得到N2路时域数据;然后将N2路时域数据中的至少部分进行合并,得到N1路第一时域数据。
举例而言,假设N1=4,N2=32。可选地,多个第二天线权重参数为第二数量的第二天线权重参数,可以将多个第二天线权重参数依次表示为wr1、wr2、…wrN2。可以将N2路第二时域数据中的第i路第二时域数据乘以wri(i=1,2,…,N2)作为N2路时域数据中的第i路时域数据。然后,可以将N2路时域数据中第1路至第8路进行合并(例如求和)作为N1路第一时域数据中的第1路第一时域数据,将N2路时域数据中第9路至第16路进行合并(例如求和)作为N1路第一时域数据中的第2路第一时域数据,将N2路时域数据中第17路至第24路进行合并(例如求和)作为N1路第一时域数据中的第3路第一时域数据,将N2路时域数据中第25路至第32路进行合并(例如求和)作为N1路第一时域数据中的第4路第 一时域数据。
应注意,本公开实施例中所描述的第一处理模块413对数据的处理过程仅是示意,在实际场景中,还可以包括其他的处理,例如功放、滤波等。
转换子模块530将第一数量的多路第一时域数据转换940为以太网数据。具体地,转换子模块530的转换操作类似于前述结合图6所描述的第二信号处理设备420的转换模块423进行转换620的操作,为了简洁,这里不再赘述。
第一信号处理设备410的接口模块411将以太网数据传输950到第二信号处理设备420。相应地,第二信号处理设备420的接口模块424可以接收到来自第一信号处理设备410的以太网数据。
第二信号处理设备420的调度模块425将以太网数据调度960到转换模块423。具体而言,调度模块425可以基于以太网数据的频率信息进行调度。如果该频率信息位于第一频段范围,则第二信号处理设备420的调度模块425将从接口模块424接收到的以太网数据调度到转换模块423。如果该频率信息位于第二频段范围,则第二信号处理设备420的调度模块425将从接口模块424接收到的以太网数据调度到第二基带模块422。在图9的过程900中,假设调度模块425将以太网数据调度到转换模块423。
第二信号处理设备420的转换模块423将以太网数据970转换为时域数据。具体地,转换模块423可以将以太网数据转换为第一数量的多路第一时域数据。
转换模块423可以基于以太网数据的负载的拆分确定对应的第一数量的多路第一时域数据。以太网的负载可以为eCPRI负载,转换模块423可以将负载按照码片的大小进行拆分,并在码片的基础上添加控制字而作为基本帧,从而得到多路第一时域数据。
第二信号处理设备420的第一基带模块421对时域数据进行处理980。具体地,第一基带模块421可以通过移除CP、FFT、…、解码等一系列操作对时域数据进行处理。
图10示出了根据本公开的一些实施例的数据传输过程1000的信令交互图。图10中涉及第一信号处理设备410和第二信号处理设备420,并且过程1000为从第一信号处理设备410到第二信号处理设备420的上行链路传输。
第一信号处理设备410的天线模块415接收1010上行链路数据。
第一信号处理设备410的调度模块412基于传输配置信息,将上行链路数据调度1020到第二处理模块414。
在本公开的一些实施例中,传输配置信息可以是由第二信号处理设备420预先发送到第一信号处理设备410的。参照图10,第二信号处理设备420的接口模块424将传输配置信息发送1001到第一信号处理设备410,相应地,第一信号处理设备410的接口模块411可以接收到传输配置信息。
在一些实施例中,传输配置信息可以包括是否由第一处理模块413进行处理的指示信息。举例而言,该指示信息可以被理解为是第一处理模块413处理数据的开关,例如可以为1或0。可理解,该指示信息也可以为其他的形式,本公开对此不限定。如果该指示信息指示由第一处理模块413进行处理,则第一信号处理设备410的调度模块412将从天线模块415接收到的上行链路数据调度到第一处理模块413。相反,如果该指示信息指示不由第一处理模块413进行处理,则第一信号处理设备410的调度模块412将从天线模块415接收到的上行链路数据调度到第二处理模块414。
在一些实施例中,传输配置信息可以包括第一指示信息和第二指示信息,其中第一指示 信息指示第一频段范围与第一处理模块413之间的对应关系,第二指示信息指示第二频段范围与第二处理模块414之间的对应关系。举例而言,从天线模块415接收到的上行链路数据的某字段可以携带频率信息,如果该频率信息位于第一频段范围,则第一信号处理设备410的调度模块412将从天线模块415接收到的上行链路数据调度到第一处理模块413。如果该频率信息位于第二频段范围,则第一信号处理设备410的调度模块412将从天线模块415接收到的上行链路数据调度到第二处理模块414。
应注意的是,本公开的实施例中的传输配置信息也可以包括其他的指示形式,从而调度模块412可以基于传输配置信息,能够确定将来自天线模块415接收到的上行链路数据调度到第一处理模块413还是第二处理模块414。在图10的过程1000中,假设调度模块412将上行链路数据调度到第二处理模块414。
第二处理模块414对来自调度模块412的上行链路数据,按照第二切分模式进行处理1030。第二切分模式可以为物理层内部切分模式。可选地,第二切分模式可以是支持eCPRI协议的切分模式,结合图3,该第二切分模式可以为如图3所示的选项7-1或选项7-2或选项7-3。示例性地,第二处理模块414对以太网数据进行物理底层处理和RF处理,而不执行物理高层的处理。以第二切分模式是选项7-1为例,第二处理模块414所执行的处理可以包括CP移除和FFT等操作。
应注意,本公开实施例中所描述的第二处理模块414对数据的处理过程仅是示意,在实际场景中,该处理过程可以包括例如频域波束赋形、功放、滤波等。在一些示例中,关于第二处理模块414的具体操作可以参照已有技术中的AAU的操作等。并且可理解,经第二处理模块414处理后的数据为以太网数据。
第一信号处理设备410的接口模块411将以太网数据传输1040到第二信号处理设备420。相应地,第二信号处理设备420的接口模块424可以接收到来自第一信号处理设备410的以太网数据。
第二信号处理设备420的调度模块425将以太网数据调度1050到第二基带模块422。具体而言,调度模块425可以基于以太网数据的频率信息进行调度。如果该频率信息位于第一频段范围,则第二信号处理设备420的调度模块425将从接口模块424接收到的以太网数据调度到转换模块423。如果该频率信息位于第二频段范围,则第二信号处理设备420的调度模块425将从接口模块424接收到的以太网数据调度到第二基带模块422。在图10的过程1000中,假设调度模块425将以太网数据调度到第二基带模块422。
第二信号处理设备420的第二基带模块422对以太网数据进行处理1060。具体地,以第二切分模式是选项7-1为例,第二基带模块422可以对数据执行端口缩减、RE解映射、…、解码等一系列操作。
如此,本公开实施例中针对来自天线模块415的上行链路数据,能够由调度模块412基于传输配置信息调度到第一处理模块413或第二处理模块414,如此能够分别由第一处理模块413按照第一切分模式进行处理,由第二处理模块414能够按照第二切分模式进行处理,从而能够同时支持第一频段范围和第二频段范围。
应理解,在本公开的实施例中,“第一”,“第二”,“第三”等只是为了表示多个对象可能是不同的,但是同时不排除两个对象之间是相同的。“第一”,“第二”,“第三”等不应当解释为对本公开实施例的任何限制。
还应理解,本公开的实施例中的方式、情况、类别以及实施例的划分仅是为了描述的方 便,不应构成特别的限定,各种方式、类别、情况以及实施例中的特征在符合逻辑的情况下,可以相互结合。
还应理解,上述内容只是为了帮助本领域技术人员更好地理解本公开的实施例,而不是要限制本公开的实施例的范围。本领域技术人员根据上述内容,可以进行各种修改或变化或组合等。这样的修改、变化或组合后的方案也在本公开的实施例的范围内。
还应理解,上述内容的描述着重于强调各个实施例之前的不同之处,相同或相似之处可以互相参考或借鉴,为了简洁,这里不再赘述。
图11示出了可以用来实施本公开的实施例的示例设备1100的示意性框图。设备1100可以被实现为或者被包括在图4的第一信号处理设备410中,或者设备1100可以被实现为或者被包括在图4的第二信号处理设备420中。如图所示,设备1100包括一个或多个处理器1110,耦合到处理器1110的一个或多个存储器1120,以及耦合到处理器1110的通信模块1140。
通信模块1140可以用于双向通信。通信模块1140可以具有用于通信的至少一个通信接口。通信接口可以包括与其他设备通信所必需的任何接口。
处理器1110可以是适合于本地技术网络的任何类型,并且可以包括但不限于以下至少一种:通用计算机、专用计算机、微控制器、数字信号处理器(Digital Signal Processor,DSP)、或基于控制器的多核控制器架构中的一个或多个。设备1100可以具有多个处理器,例如专用集成电路芯片,其在时间上从属于与主处理器同步的时钟。
存储器1120可以包括一个或多个非易失性存储器和一个或多个易失性存储器。非易失性存储器的示例包括但不限于以下至少一种:只读存储器(Read-Only Memory,ROM)1124、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、硬盘、光盘(Compact Disc,CD)、数字视频盘(Digital Versatile Disc,DVD)或其他磁存储和/或光存储。易失性存储器的示例包括但不限于以下至少一种:随机存取存储器(Random Access Memory,RAM)1122、或不会在断电持续时间中持续的其他易失性存储器。
计算机程序1130包括由关联处理器1110执行的计算机可执行指令。程序1130可以存储在ROM 1124中。处理器1110可以通过将程序1130加载到RAM 1122中来执行任何合适的动作和处理。
可以借助于程序1130来实现本公开的实施例,使得设备1100可以执行如参考图6至图10所讨论的任何过程。本公开的实施例还可以通过硬件或通过软件和硬件的组合来实现。
程序1130可以有形地包含在计算机可读介质中,该计算机可读介质可以包括在设备1100中(诸如在存储器1120中)或者可以由设备1100访问的其他存储设备。可以将程序1130从计算机可读介质加载到RAM 1122以供执行。计算机可读介质可以包括任何类型的有形非易失性存储器,例如ROM、EPROM、闪存、硬盘、CD、DVD等。
在一些实施例中,设备1100中的通信模块1140可以被实现为发送器和接收器(或收发器),其可以被配置为发送/接收诸如第一调度指示信息、第二调度指示信息、传输数据等。另外,设备1100还可以进一步包括调度器、控制器、射频/天线中的一个或多个,本公开不再详细阐述。
示例性地,图11中的设备1100可以被实现为电子设备,或者可以被实现为电子设备中的芯片或芯片系统,本公开的实施例对此不限定。
本公开的实施例还提供了一种通信系统,该通信系统可以包括如上所述的第一信号处理设备和如上所述的第二信号处理设备。
本公开的实施例还提供了一种芯片,该芯片可以包括输入接口、输出接口和处理电路。在本公开的实施例中,可以由输入接口和输出接口完成信令或数据的交互,由处理电路完成信令或数据信息的生成以及处理。
本公开的实施例还提供了一种芯片系统,包括处理器,用于支持计算设备以实现上述任一实施例中所涉及的功能。在一种可能的设计中,芯片系统还可以包括存储器,用于存储必要的程序指令和数据,当处理器运行该程序指令时,使得安装该芯片系统的设备实现上述任一实施例中所涉及的方法。示例性地,该芯片系统可以由一个或多个芯片构成,也可以包含芯片和其他分立器件。
本公开的实施例还提供了一种处理器,用于与存储器耦合,存储器存储有指令,当处理器运行所述指令时,使得处理器执行上述任一实施例中涉及的方法和功能。
本公开的实施例还提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述各实施例中任一实施例中涉及的方法和功能。
本公开的实施例还提供了一种计算机可读存储介质,其上存储有计算机指令,当处理器运行所述指令时,使得处理器执行上述任一实施例中涉及的方法和功能。
通常,本公开的各种实施例可以以硬件或专用电路、软件、逻辑或其任何组合来实现。一些方面可以用硬件实现,而其他方面可以用固件或软件实现,其可以由控制器,微处理器或其他计算设备执行。虽然本公开的实施例的各个方面被示出并描述为框图,流程图或使用一些其他图示表示,但是应当理解,本文描述的框,装置、系统、技术或方法可以实现为,如非限制性示例,硬件、软件、固件、专用电路或逻辑、通用硬件或控制器或其他计算设备,或其某种组合。
本公开还提供有形地存储在非暂时性计算机可读存储介质上的至少一个计算机程序产品。该计算机程序产品包括计算机可执行指令,例如包括在程序模块中的指令,其在目标的真实或虚拟处理器上的设备中执行,以执行如上参考附图的过程/方法。通常,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、库、对象、类、组件、数据结构等。在各种实施例中,可以根据需要在程序模块之间组合或分割程序模块的功能。用于程序模块的机器可执行指令可以在本地或分布式设备内执行。在分布式设备中,程序模块可以位于本地和远程存储介质中。
用于实现本公开的方法的计算机程序代码可以用一种或多种编程语言编写。这些计算机程序代码可以提供给通用计算机、专用计算机或其他可编程的数据处理装置的处理器,使得程序代码在被计算机或其他可编程的数据处理装置执行的时候,引起在流程图和/或框图中规定的功能/操作被实施。程序代码可以完全在计算机上、部分在计算机上、作为独立的软件包、部分在计算机上且部分在远程计算机上或完全在远程计算机或服务器上执行。
在本公开的上下文中,计算机程序代码或者相关数据可以由任意适当载体承载,以使得设备、装置或者处理器能够执行上文描述的各种处理和操作。载体的示例包括信号、计算机可读介质、等等。信号的示例可以包括电、光、无线电、声音或其它形式的传播信号,诸如载波、红外信号等。
计算机可读介质可以是包含或存储用于或有关于指令执行系统、装置或设备的程序的任何有形介质。计算机可读介质可以是计算机可读信号介质或计算机可读存储介质。计算机可读介质可以包括但不限于电子的、磁的、光学的、电磁的、红外的或半导体系统、装置或设备,或其任意合适的组合。计算机可读存储介质的更详细示例包括带有一根或多根导线的电 气连接、便携式计算机磁盘、硬盘、随机存储存取器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或闪存)、光存储设备、磁存储设备,或其任意合适的组合。
此外,尽管在附图中以特定顺序描述了本公开的方法的操作,但是这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。相反,流程图中描绘的步骤可以改变执行顺序。附加地或备选地,可以省略某些步骤,将多个步骤组合为一个步骤执行,和/或将一个步骤分解为多个步骤执行。还应当注意,根据本公开的两个或更多装置的特征和功能可以在一个装置中具体化。反之,上文描述的一个装置的特征和功能可以进一步划分为由多个装置来具体化。
以上已经描述了本公开的各实现,上述说明是示例性的,并非穷尽的,并且也不限于所公开的各实现。在不偏离所说明的各实现的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在很好地解释各实现的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其他普通技术人员能理解本文公开的各个实现方式。

Claims (35)

  1. 一种第一信号处理设备,包括:
    接口模块,被配置为经由光纤与第二信号处理设备进行以太网数据传输;
    调度模块,被配置为基于来自所述第二信号处理设备的传输配置信息,将待处理的数据调度到第一处理模块或者第二处理模块,所述待处理的数据包括来自所述第二信号处理设备的以太网数据,或者来自天线模块的上行链路数据;
    所述第一处理模块,被配置为按照第一切分模式处理来自所述调度模块的数据;
    所述第二处理模块,被配置为按照第二切分模式处理来自所述调度模块的数据;以及
    所述天线模块,被配置为发送所述第一处理模块或所述第二处理模块处理后的数据和/或接收所述上行链路数据。
  2. 根据权利要求1所述的第一信号处理设备,其中所述第一处理模块包括:
    转换子模块,被配置为实现所述以太网数据与时域数据之间的转换;以及
    波束赋形子模块,被配置为实现第一数量的多路第一时域数据与第二数量的多路第二时域数据之间的转换,所述第二数量对应于所述天线模块的天线通道数,所述第一数量小于所述第二数量。
  3. 根据权利要求2所述的第一信号处理设备,其中所述待处理的数据包括来自所述第二信号处理设备的所述以太网数据,所述以太网数据所对应的天线通道数为所述第一数量,并且其中,
    所述转换子模块,被配置为基于所述以太网数据确定对应的所述多路第一时域数据;以及
    所述波束赋形子模块,被配置为对基于所述多路第一时域数据以及第二数量的多个第一天线权重参数,确定所述多路第二时域数据。
  4. 根据权利要求3所述的第一信号处理设备,其中所述转换子模块被配置为:基于所述以太网数据的负载的拆分,确定所述多路第一时域数据。
  5. 根据权利要求2所述的第一信号处理设备,其中所述待处理的数据包括来自所述天线模块的上行链路数据,所述上行链路数据包括所述第二数量的多路第二时域数据,并且其中,
    所述波束赋形子模块,被配置为基于所述多路第二时域数据以及第二数量的多个第二天线权重参数,确定所述多路第一时域数据;以及
    所述转换子模块,被配置为基于所述多路第一时域数据确定对应的以太网数据。
  6. 根据权利要求5所述的第一信号处理设备,其中所述转换子模块被配置为:
    将所述多路第一时域数据中的多个码片的数据进行组包,得到所述以太网数据,其中所述多个码片的数量基于以下因素中的至少一项所确定:所述第一数量、所述多个码片中的至少一个码片的样点的数量、所述样点的位宽、或带宽。
  7. 根据权利要求1至6中任一项所述的第一信号处理设备,其中所述接口模块还被配置为获取来自所述第二信号处理设备的以下至少一项:第一数量、第二数量、第二数量的多个第一天线权重参数、或第二数量的多个第二天线权重参数。
  8. 根据权利要求1至7中任一项所述的第一信号处理设备,其中所述传输配置信息包括是否由所述第一处理模块进行处理的指示信息;或者,其中所述传输配置信息包括第一指示信息和第二指示信息,所述第一指示信息指示第一频段范围与所述第一处理模块之间的对应 关系,所述第二指示信息指示第二频段范围与所述第二处理模块之间的对应关系。
  9. 根据权利要求1至8中任一项所述的第一信号处理设备,其中所述调度模块被配置为:
    如果所述待处理的数据处于第一频段范围,将所述待处理的数据调度到所述第一处理模块;
    如果所述待处理的数据处于第二频段范围,将所述待处理的数据调度到所述第二处理模块。
  10. 根据权利要求1至9中任一项所述的第一信号处理设备,其中所述第一切分模式为时域切分模式,所述第一处理模块被配置为对来自所述调度模块的所述数据执行射频RF处理,所述第二切分模式为物理层内部切分模式。
  11. 一种第二信号处理设备,包括:
    第一基带模块,被配置为生成时域数据,所述时域数据所对应的天线通道数为第一数量;
    转换模块,被配置为将所述时域数据转换为第一以太网数据;以及
    接口模块,被配置为经由光纤将所述第一以太网数据传输到第一信号处理设备。
  12. 根据权利要求11所述的第二信号处理设备,其中所述转换模块被配置为:将所述时域数据中的多个码片的数据进行组包,得到所述第一以太网数据,其中所述多个码片的数量基于以下因素中的至少一项所确定:第一数量、所述多个码片中的至少一个码片的样点的数量、所述样点的位宽、或带宽。
  13. 根据权利要求11或12所述的第二信号处理设备,还包括:
    第二基带模块,被配置为生成第二以太网数据;
    并且其中所述接口模块还被配置为将所述第二以太网数据传输到所述第一信号接口设备。
  14. 根据权利要求11至13中任一项所述的第二信号处理设备,还包括调度模块,并且其中,
    所述接口模块,还被配置为接收来自所述第一信号处理设备的以太网数据;
    所述调度模块,被配置为将所述以太网数据调度到所述转换模块或第二基带模块;
    所述转换模块,被配置为将所述调度模块所调度的所述以太网数据转换为对应的时域数据,所述对应的时域数据所对应的天线通道数为所述第一数量;
    所述第一基带模块,被配置为处理所述对应的时域数据;以及
    所述第二基带模块,被配置为处理所述调度模块所调度的所述以太网数据。
  15. 根据权利要求11至14中任一项所述的第二信号处理设备,其中所述接口模块还被配置为将传输配置信息发送到所述第一信号处理设备;
    其中所述传输配置信息包括是否由所述第一处理模块进行处理的指示信息;或者,其中所述传输配置信息包括第一指示信息和第二指示信息,所述第一指示信息指示第一频段范围与所述第一信号处理设备的第一处理模块之间的对应关系,所述第二指示信息指示第二频段范围与所述第一信号处理设备的第二处理模块之间的对应关系。
  16. 根据权利要求11至15中任一项所述的第二信号处理设备,其中所述接口模块被配置为将以下中的至少一项发送到所述第一信号处理设备:所述第一数量、第二数量、第二数量的多个第一天线权重参数、或第二数量的多个第二天线权重参数,其中所述第二数量表示所述第一信号处理设备的天线模块收发数据的天线通道数。
  17. 一种通信系统,包括:
    如权利要求1至10中任一项所述的第一信号处理设备;以及
    如权利要求11至16中任一项所述的第二信号处理设备,其中所述第一信号处理设备和所述第二信号处理设备经由光纤连接。
  18. 一种数据传输方法,包括:
    获取待处理的数据;
    基于来自第二信号处理设备的传输配置信息,将所述待处理的数据调度到第一处理模块或者第二处理模块,所述待处理的数据包括来自所述第二信号处理设备的以太网数据,或者来自天线模块的上行链路数据;
    由所述第一处理模块按照第一切分模式处理所调度的数据;以及
    由所述第二处理模块按照第二切分模式处理所调度的数据。
  19. 根据权利要求18所述的方法,其中所述待处理的数据包括来自所述第二信号处理设备的所述以太网数据,所述以太网数据所对应的天线通道数为第一数量,并且其中由所述第一处理模块按照第一切分模式处理所调度的数据包括:
    基于所述以太网数据确定对应的所述多路第一时域数据;以及
    基于所述多路第一时域数据以及第二数量的多个第一天线权重参数,确定所述多路第二时域数据,所述第二数量对应于所述天线模块的天线通道数,所述第一数量小于所述第二数量。
  20. 根据权利要求18所述的方法,其中所述待处理的数据包括来自所述天线模块的所述上行链路数据,所述上行链路数据包括第二数量的多路第二时域数据,并且其中由所述第一处理模块按照第一切分模式处理所调度的数据包括:
    基于所述多路第二时域数据以及第二数量的多个第二天线权重参数,确定所述多路第一时域数据;以及
    基于所述多路第一时域数据确定对应的以太网数据。
  21. 根据权利要求20所述的方法,其中所述基于所述多路第一时域数据确定对应的以太网数据包括:将所述多路第一时域数据中的多个码片的数据进行组包,得到所述以太网数据,其中所述多个码片的数量基于以下因素中的至少一项所确定:所述第一数量、所述多个码片中的至少一个码片的样点的数量、所述样点的位宽、或带宽。
  22. 根据权利要求18至21中任一项所述的方法,还包括获取来自所述第二信号处理设备的以下至少一项:第一数量、第二数量、第二数量的多个第一天线权重参数、或第二数量的多个第二天线权重参数。
  23. 根据权利要求18至22中任一项所述的方法,其中所述传输配置信息包括是否由所述第一处理模块进行处理的指示信息;或者,其中所述传输配置信息包括第一指示信息和第二指示信息,所述第一指示信息指示第一频段范围与所述第一处理模块之间的对应关系,所述第二指示信息指示第二频段范围与所述第二处理模块之间的对应关系。
  24. 根据权利要求18至23中任一项所述的方法,其中所述基于来自第二信号处理设备的传输配置信息将所述待处理的数据调度到第一处理模块或者第二处理模块包括:
    如果所述待处理的数据处于第一频段范围,将所述待处理的数据调度到所述第一处理模块;
    如果所述待处理的数据处于第二频段范围,将所述待处理的数据调度到所述第二处理模块。
  25. 根据权利要求18至24中任一项所述的方法,其中所述第一切分模式为时域切分模 式,并且其中由所述第一处理模块按照第一切分模式处理所调度的数据包括:由所述第一处理模块对所调度的所述数据执行射频RF处理,并且其中所述第二切分模式为物理层内部切分模式。
  26. 一种数据处理方法,包括:
    由第一基带模块生成时域数据,所述时域数据所对应的天线通道数为第一数量;
    将所述时域数据转换为第一以太网数据;以及
    经由光纤将所述第一以太网数据传输到第一信号处理设备。
  27. 根据权利要求26所述的方法,其中所述将所述时域数据转换为第一以太网数据包括:将所述时域数据中的多个码片的数据进行组包,得到所述第一以太网数据,其中所述多个码片的数量基于以下因素中的至少一项所确定:所述第一数量、所述多个码片中的至少一个码片的样点的数量、所述样点的位宽、或带宽。
  28. 根据权利要求26或27所述的方法,还包括:
    由第二基带模块生成第二以太网数据;以及
    经由所述光纤将所述第二以太网数据传输到所述第一信号处理设备。
  29. 根据权利要求26至28中任一项所述的方法,还包括:
    经由所述光纤接收来自所述第一信号处理设备的以太网数据;
    将所述以太网数据调度到所述转换模块或第二基带模块;
    由所述转换模块将所调度的所述以太网数据转换为对应的时域数据,所述对应的时域数据所对应的天线通道数为所述第一数量;
    由所述第一基带模块处理所述对应的时域数据;以及
    由所述第二基带模块处理所调度的所述以太网数据。
  30. 根据权利要求29所述的方法,其中所述传输配置信息包括是否由所述第一信号处理设备的第一处理模块进行处理的指示信息;或者,其中所述传输配置信息包括第一指示信息和第二指示信息,所述第一指示信息指示第一频段范围与所述第一信号处理设备的第一处理模块之间的对应关系,所述第二指示信息指示第二频段范围与所述第一信号处理设备的第二处理模块之间的对应关系。
  31. 根据权利要求26至30中任一项所述的方法,还包括将以下中的至少一项发送到所述第一信号处理设备:所述第一数量、第二数量、第二数量的多个第一天线权重参数、或第二数量的多个第二天线权重参数,其中所述第二数量表示所述第一信号处理设备的天线模块收发数据的天线通道数。
  32. 一种通信装置,包括收发器、处理器以及存储器,存储器上存储有由处理器执行的指令,当指令被处理器执行时使得该通信装置实现根据权利要求18至31中任一项所述的方法。
  33. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现根据权利要求18至31中任一项所述的方法。
  34. 一种计算机程序产品,所述计算机程序产品上包含计算机可执行指令,所述计算机可执行指令在被执行时实现根据权利要求18至31中任一项所述的方法。
  35. 一种芯片,包括处理电路,被配置为执行根据权利要求18至31中任一项所述的方法。
PCT/CN2022/141305 2021-12-27 2022-12-23 信号处理设备及数据传输方法 WO2023125267A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247025167A KR20240125044A (ko) 2021-12-27 2022-12-23 신호 처리 디바이스 및 데이터 송신 방법
EP22914521.4A EP4440241A1 (en) 2021-12-27 2022-12-23 Signal processing device and data transmission method
US18/755,331 US20240348296A1 (en) 2021-12-27 2024-06-26 Signal processing device and data transmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111619125.9A CN114466470A (zh) 2021-12-27 2021-12-27 信号处理设备及数据传输方法
CN202111619125.9 2021-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/755,331 Continuation US20240348296A1 (en) 2021-12-27 2024-06-26 Signal processing device and data transmission method

Publications (1)

Publication Number Publication Date
WO2023125267A1 true WO2023125267A1 (zh) 2023-07-06

Family

ID=81407892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141305 WO2023125267A1 (zh) 2021-12-27 2022-12-23 信号处理设备及数据传输方法

Country Status (5)

Country Link
US (1) US20240348296A1 (zh)
EP (1) EP4440241A1 (zh)
KR (1) KR20240125044A (zh)
CN (1) CN114466470A (zh)
WO (1) WO2023125267A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114466470A (zh) * 2021-12-27 2022-05-10 华为技术有限公司 信号处理设备及数据传输方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110719238A (zh) * 2018-07-13 2020-01-21 华为技术有限公司 数据传输控制方法、装置和接入网设备
CN111512562A (zh) * 2017-12-27 2020-08-07 瑞典爱立信有限公司 用于处理下行链路通信的分布式基站系统的方法、系统和单元
CN112583455A (zh) * 2019-09-29 2021-03-30 上海华为技术有限公司 一种信号处理方法以及基站
EP3840507A1 (en) * 2019-08-14 2021-06-23 Huawei Technologies Co., Ltd. Information determination method and apparatus
CN114466470A (zh) * 2021-12-27 2022-05-10 华为技术有限公司 信号处理设备及数据传输方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106454560A (zh) * 2016-07-05 2017-02-22 广州埃信电信设备有限公司 一种多业务数字光分布系统及多业务容量调度方法
JP7145170B2 (ja) * 2017-04-07 2022-09-30 華為技術有限公司 基地局機能配備方法及び装置
EP3618550B1 (en) * 2017-06-12 2021-12-15 Huawei Technologies Co., Ltd. Business execution method and apparatus
CN112511233A (zh) * 2019-09-16 2021-03-16 中兴通讯股份有限公司 射频拉远装置、有源天线和基站系统
CN111372287B (zh) * 2020-03-09 2021-09-28 京信网络系统股份有限公司 信号处理方法、接入网设备及多制式接入网设备
CN112351437B (zh) * 2020-09-30 2021-12-24 联想(北京)有限公司 一种前传网络的数据处理方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111512562A (zh) * 2017-12-27 2020-08-07 瑞典爱立信有限公司 用于处理下行链路通信的分布式基站系统的方法、系统和单元
CN110719238A (zh) * 2018-07-13 2020-01-21 华为技术有限公司 数据传输控制方法、装置和接入网设备
EP3840507A1 (en) * 2019-08-14 2021-06-23 Huawei Technologies Co., Ltd. Information determination method and apparatus
CN112583455A (zh) * 2019-09-29 2021-03-30 上海华为技术有限公司 一种信号处理方法以及基站
CN114466470A (zh) * 2021-12-27 2022-05-10 华为技术有限公司 信号处理设备及数据传输方法

Also Published As

Publication number Publication date
US20240348296A1 (en) 2024-10-17
EP4440241A1 (en) 2024-10-02
CN114466470A (zh) 2022-05-10
KR20240125044A (ko) 2024-08-19

Similar Documents

Publication Publication Date Title
WO2019136724A1 (zh) Srs传输方法及相关设备
JP6373914B2 (ja) 時分割複信(tdd)上りリンク−下りリンク(ul−dl)構成管理の方法、システムおよび装置
WO2018201846A1 (zh) 资源指示方法及通信设备
WO2019141285A1 (zh) 一种天线选择指示方法、装置和系统
KR101420239B1 (ko) 다중 무선 프로토콜들 통해 데이터 플로우들을 지원하기 위한 방법들 및 장치
US10206219B2 (en) Base station apparatus and resource management method and data processing method in wireless communication system
WO2019095929A1 (zh) 通信方法和通信设备
WO2019136723A1 (zh) 上行数据传输方法及相关设备
WO2020029996A1 (zh) 检测dci的方法、配置pdcch的方法和通信装置
CN108476499B (zh) 无线网络中相同链路方向的子帧部分之间的保护时段
JP2020526996A (ja) 伝送方法及びその装置
KR20200098700A (ko) 무선 통신 시스템에서 물리 계층 기능을 분리하는 방법
US10701755B2 (en) Wireless communications using virtualized base stations network
CN111093293A (zh) 一种天线信号的处理方法及装置
US20190320486A1 (en) Virtualized Wireless Base Stations Network
US20240348296A1 (en) Signal processing device and data transmission method
US11075674B2 (en) Method, system and apparatus
JP2019509660A5 (zh)
WO2018171689A1 (zh) 一种信息传输方法及通信设备
US20120236953A1 (en) Base Station
WO2024016837A1 (zh) 一种通信方法及装置
WO2023169514A1 (zh) 一种通信的方法与装置
JP2017511094A (ja) 方法、装置及びシステム
WO2014201875A1 (zh) 交叉时隙干扰消除的方法及终端
WO2020226931A1 (en) Data frame generation and combination in multi-band communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914521

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022914521

Country of ref document: EP

Effective date: 20240628

ENP Entry into the national phase

Ref document number: 20247025167

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE