WO2023125015A1 - 玻璃组合物、微晶玻璃及其制备方法和应用 - Google Patents

玻璃组合物、微晶玻璃及其制备方法和应用 Download PDF

Info

Publication number
WO2023125015A1
WO2023125015A1 PCT/CN2022/139075 CN2022139075W WO2023125015A1 WO 2023125015 A1 WO2023125015 A1 WO 2023125015A1 CN 2022139075 W CN2022139075 W CN 2022139075W WO 2023125015 A1 WO2023125015 A1 WO 2023125015A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
ceramics
zro
ceramic
glass composition
Prior art date
Application number
PCT/CN2022/139075
Other languages
English (en)
French (fr)
Inventor
徐兴军
陶武刚
杨成钢
Original Assignee
深圳市新旗滨科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111681556.8A external-priority patent/CN114195392A/zh
Priority claimed from CN202111682724.5A external-priority patent/CN114195394B/zh
Application filed by 深圳市新旗滨科技有限公司 filed Critical 深圳市新旗滨科技有限公司
Publication of WO2023125015A1 publication Critical patent/WO2023125015A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B13/00Rolling molten glass, i.e. where the molten glass is shaped by rolling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions

Definitions

  • the present application relates to the technical field of glass manufacturing, in particular to a glass composition, glass ceramics and a preparation method and application thereof.
  • the cover glass used to protect electronic products on the market is generally high-aluminosilicate glass.
  • High-alumina is conducive to the improvement of stress intensity and stress layer depth after ion exchange, but the glass has poor drop resistance.
  • glass-ceramic Introducing a nucleating agent into the glass formula or adjusting the proportion of oxides in the formula will form one or more crystalline phases in the subsequent heat treatment process, which is called glass-ceramic. It has both the high permeability of glass and the high strength of ceramics, which can improve the average hardness and fracture toughness of glass.
  • the microcrystalline phase in glass-ceramics can hinder the propagation path of micro-cracks, which is beneficial to the overall improvement of the glass's scratch resistance, impact resistance and drop resistance.
  • the performance of glass-ceramics depends on the ratio of crystal phase to glass phase, the size of crystal grains, etc.
  • the b-value and haze of the currently-prepared transparent glass-ceramics are relatively large, and the macroscopic performance is
  • the transmitted light tends to be yellowish, which affects the transmittance and performance of the glass-ceramics.
  • the main purpose of this application is to propose a glass composition, a glass-ceramic and its preparation method and application, aiming at solving the problems of relatively high b value and high haze of the existing glass-ceramics.
  • the application proposes a glass composition, calculated by mass percentage, comprising:
  • it further includes: B 2 O 3 , 0.1-1.7%, and/or, 0.1-1.5% CaO.
  • calculated by mass percentage including:
  • calculated by mass percentage including:
  • This application proposes a glass composition, calculated by mass percentage, including: SiO 2 72-74.3%, Al 2 O 3 7-8.5%, P 2 O 5 1.8-3%, Li 2 O 10.2-12.5%, Na 2 O 0.5-2% and ZrO 2 3.5-4.7%.
  • the present application proposes a glass composition, calculated by mass percentage, comprising the following components:
  • the present application also proposes a glass-ceramic, comprising the above-mentioned glass composition.
  • the thickness of the glass-ceramic is 0.3-1.5 mm.
  • the present application also proposes a glass-ceramic, which includes the above-mentioned glass composition, and the glass-ceramic contains crystal phase Li 2 Si 2 O 5 and crystal phase LiAlSi 4 O 10 .
  • M 1.3 ⁇ [W(Li 2 Si 2 O 5 )/W(LiAlSi 4 O 10 )] ⁇ 0.86 ⁇ [W(SiO 2 )-6 ⁇ W(Al 2 O 3 )-2 ⁇ W( Li 2 O)]+1.83 ⁇ [(W(Li 2 O)-W(Al 2 O 3 ))/(W(P 2 O 5 )+W(ZrO 2 ))]+1.67 ⁇ [W(ZrO 2 )/W(P 2 O 5 )]+0.25 ⁇ [(W(SiO 2 )-6 ⁇ W(Al 2 O 3 )-2 ⁇ W(Li 2 O))/W(Na 2 O)] ⁇ .
  • the present application also proposes a glass-ceramic, comprising the above-mentioned glass composition.
  • the crystal phase of the glass-ceramic is mainly lithium disilicate and petalite, and the total content of the crystal phase of the glass-ceramic is 60% to 90%.
  • the content of lithium disilicate is more than 30%, and the content of said petalite is more than 30%.
  • the application also proposes a method for preparing glass-ceramics, comprising the following steps:
  • the glass composition is mixed and melted, then clarified, homogenized, shaped, annealed, and finally cut to obtain a basic glass;
  • step S30 includes:
  • the basic glass is heated from room temperature to 510-540°C in 20-60 minutes, and the first nucleation treatment is performed, and the first nucleation treatment time is 3-8 hours;
  • the temperature is raised to 580-610°C in 5-30 minutes, and the second nucleation treatment is performed, and the second nucleation treatment time is 3-8 hours;
  • the temperature is raised to 650-680° C. in 5-30 minutes, and the crystallization treatment is carried out, and the crystallization treatment time is 3-8 hours;
  • the step of heat-treating the base glass to obtain glass-ceramics includes:
  • step S30 it also includes:
  • the ion exchange bath includes 20-40% NaNO 3 and 60-80% KNO 3 by mass percentage; and/or,
  • the salt bath strengthening temperature is 420-500°C; and/or,
  • the salt bath strengthening time is 3-8 hours.
  • the forming method includes float forming, overflow forming, calender forming or slit down-draw forming.
  • the present application also proposes an electronic display terminal, including the above-mentioned glass-ceramics.
  • the microcrystalline by combining the components of SiO 2 , Al 2 O 3 , P 2 O 5 , Li 2 O, Na 2 O and ZrO 2 in the glass composition with a specific specific gravity, the microcrystalline
  • the glass crystallization process and strengthening process can significantly reduce the b value and haze, and obtain glass-ceramic with excellent strengthening performance.
  • Fig. 1 is the schematic flow chart of an embodiment of the preparation method of glass-ceramics proposed by the present application
  • FIG. 2 is a schematic flow chart of another embodiment of the method for preparing glass-ceramic proposed by the present application.
  • Fig. 3 is a linear relationship diagram between M and the fracture toughness KIC of glass-ceramic in the present application.
  • the cover glass used to protect electronic products on the market is generally high-aluminosilicate glass.
  • High-alumina is conducive to the improvement of stress intensity and stress layer depth after ion exchange, but the glass has poor drop resistance.
  • glass-ceramic Introducing a nucleating agent into the glass formula or adjusting the proportion of oxides in the formula will form one or more crystalline phases in the subsequent heat treatment process, which is called glass-ceramic. It has both the high permeability of glass and the high strength of ceramics, which can improve the average hardness and fracture toughness of glass.
  • the microcrystalline phase in glass-ceramics can hinder the propagation path of micro-cracks, which is beneficial to the overall improvement of the glass's scratch resistance, impact resistance and drop resistance.
  • the performance of glass-ceramics depends on the ratio of crystal phase to glass phase, the size of crystal grains, etc.
  • the b-value and haze of the currently-prepared transparent glass-ceramics are relatively large, and the macroscopic performance is
  • the transmitted light tends to be yellowish, which affects the transmittance and performance of the glass-ceramics.
  • the present application proposes a glass composition, and the glass-ceramics prepared by the glass composition can effectively solve the problems of relatively high b value and high haze of the current transparent glass-ceramics.
  • a glass composition is proposed, calculated by mass percentage, including: SiO 2 , 71.5-74.5%; Al 2 O 3 , 6.2-8.7%; P 2 O 5 , 1.7-3%; Li 2 O, 10-12.5%; Na 2 O, 0.1-2%; ZrO 2 , 3-5%.
  • the glass composition calculated by mass percentage, further includes: B 2 O 3 , 0.1-1.7%, and/or, 0.1-1.5% CaO.
  • a glass composition is proposed, calculated by mass percentage, including: SiO 2 , 71.5-74.5%; Al 2 O 3 , 7.3-8.7%; P 2 O 5 , 1.7-3%; B 2 O 3 , 0.1-1%; Li 2 O, 10.2-12%;
  • a glass composition is proposed, based on oxides, by mass percentage, including the following components: 71.5-74% of SiO 2 , 6.2-8.5% of Al 2 O 3 , 1.7- 2.6% P 2 O 5 , 0.1-1.7% B 2 O 3 , 10-12% Li 2 O, 0.1-2% Na 2 O, 0.1-1.5% CaO and 3-5% ZrO 2 .
  • the present application proposes a glass composition, and the glass-ceramics prepared by the glass composition can effectively solve the problems of large b value, high haze, reduced crystal content and interlocking structure of twin crystal phases during the chemical strengthening process. The problem of being broken.
  • the glass composition includes the following components: SiO 2 72-74.3%, Al 2 O 3 7-8.5%, P 2 O 5 1.8-3%, Li 2 O 10.2-12.5%, Na 2 O 0.5-2% and ZrO 2 3.5-4.7%.
  • the molecular formula of LiAlSi 4 O 10 and Li 2 Si 2 O 5 is the molecular formula of LiAlSi 4 O 10 and Li 2 Si 2 O 5 , which are desired crystallographic phases of the glass-ceramics in this application.
  • the mass percentage of each component the sum of the mass of SiO 2 , Al 2 O 3 , P 2 O 5 , B 2 O 3 , Li 2 O, Na 2 O and ZrO 2 in the glass composition is used as the benchmark, or Based on the sum of the mass of SiO 2 , Al 2 O 3 , P 2 O 5 , Li 2 O, Na 2 O and ZrO 2 in the glass composition.
  • SiO 2 can be used as the main body of the glass network structure, endowing the base glass and glass-ceramics with better chemical stability, mechanical properties and molding properties.
  • SiO 2 sources are provided for the formation of Li 2 Si 2 O 5 and LiAlSi 4 O 10 crystal phases.
  • too high SiO 2 promotes the appearance of quartz and Quartz solid solution.
  • the SiO 2 content is selected to be 71.5wt%-74.5wt%, or the SiO2 content is selected to be 72wt%-74.3wt%, or the SiO2 content is selected to be 71.5wt%-74wt%.
  • Al 2 O 3 introduced into the glass composition of the present application belongs to the network intermediate oxide.
  • the non-bridging oxygen and Al form an aluminum-oxygen tetrahedron, which has a larger volume than the silicon-oxygen tetrahedron, creating larger gaps in the glass structure, which is conducive to ion exchange, making the chemical strengthening effect better and improving the mechanical properties of the glass.
  • Al 2 O 3 is an extremely refractory oxide, which can rapidly increase the high-temperature viscosity of the glass, making it more difficult to clarify and homogenize the glass, and greatly increase the concentration of bubble defects in the glass; excessively high Al 2 O 3 content can significantly increase the glass crystallite It can inhibit the crystallization ability of the basic glass, and it is difficult to form lithium disilicate; promote the excessive formation of LiAlSi 4 O 10 in the crystallization process, and even form the LiAlSi 2 O 6 crystal phase in the basic glass, which reduces the glass transmittance .
  • the content of Al 2 O 3 should be 7.3wt%-8.7wt%, or the content of Al 2 O 3 should be 6.2wt%-8.5wt%, or the content of Al 2 O 3 should be 7wt%-8.5wt%.
  • P 2 O 5 is introduced into the glass composition of the present application, and P 2 O 5 tends to promote crystallization of lithium disilicate crystals.
  • P 5+ ions have a large field strength, strong oxygen-absorbing ability, and the phosphorus-oxygen network structure tends to be strong. Since the field of P 5+ ions is stronger than that of Si 4+ ions, P 5+ ions are easily combined with alkali metal ions and separated from the network to form crystal nuclei, thereby promoting the phase separation of the basic glass and reducing the activation energy of nucleation, which is beneficial to the crystallization of the glass. change.
  • Li 2 O and P 2 O 5 react to form Li 3 PO 4 crystal phase, thereby inducing the reaction of Li 2 O and SiO 2 in the glass to form Li 2 SiO 3 , and finally form Li 2 Si 2 O 5 crystal phase; in addition, P 2 O 5 is connected with [PO 4 ] tetrahedrons to form a network, which makes the glass network structure loose and the network voids become larger, which is conducive to the mutual diffusion of Na + ions in the glass and K + ions in the molten salt, and the glass strengthening process
  • the ion strengthening plays a promoting role and plays an important role in obtaining a higher compressive stress layer.
  • the content of P 2 O 5 is selected from 1.7 wt% to 3 wt%, or the content of P 2 O 5 is selected from 1.8 wt% to 3 wt%, or the content of P 2 O 5 is selected from 1.7 wt% to 2.6 wt%.
  • B 2 O 3 can improve the meltability of the glass and lower the melting point, and help to improve the scratch resistance of the glass surface.
  • B 2 O 3 exists in the form of dense [BO 4 ] in the glass-ceramic structure, which can effectively inhibit the lithium disilicate nucleation (>580°C), which causes long lithium penetration.
  • the growth of the stone further causes the problem of large haze of the glass-ceramics; on the other hand, it limits the migration of alkali metal ions in the glass-ceramics and stabilizes the crystal structure of the glass-ceramics. Therefore, considering comprehensively, the content of B 2 O 3 is selected to be 0.1 wt % to 1.7 wt %, or the content of B 2 O 3 is selected to be 0.1 wt % to 1 wt %.
  • Li 2 O is the main exchange ion during chemical strengthening treatment.
  • the Li + ion radius is small, and the ion exchange speed of the glass containing Li + is faster, so that the glass can get a thicker strengthening layer in a short time.
  • Li + ions are exchanged with Na + ions in the melt at a faster rate than Na + with K + ions.
  • High Li 2 O concentration promotes the formation of Li 3 PO 4 in the basic microcrystallization process, which helps to form lithium disilicate crystal phase and lithium permeal feldspar crystal phase in the crystallization process; in order to achieve microcrystallization glass with high depth
  • Li + in the glass In order to strengthen the depth of ions, there must be enough Li + in the glass to strengthen each other with Na + during the chemical strengthening process, so as to reduce the cracks on the surface of crystallized glass and provide the mechanical strength of glass ceramics.
  • the Li 2 O content is selected to be 10.2 wt% to 12 wt%, or the Li 2 O content is selected to be 10.2 wt% to 12.5 wt%, or the Li 2 O content is selected to be 10 wt% to 12 wt%.
  • the introduction of Na 2 O into the glass composition of the present application can significantly reduce the viscosity of the base glass, promote the melting and clarification of the base glass, and simultaneously lower the crystallization temperature of the glass.
  • the glass To promote crystallized glass to be strengthened with K + ions in molten potassium nitrate salt, thereby generating high compressive stress on the glass surface to improve glass strength, the glass must have enough Na + . Therefore, considering comprehensively, the Na 2 O content is selected to be 0.1 wt% to 2 wt%, or the Na 2 O content is selected to be 0.4 wt% to 1.5 wt%, or the Na 2 O content is selected to be 0.5 wt% to 2 wt%.
  • ZrO 2 is introduced into the glass composition of the present application.
  • zirconium ions have a large potential energy, which can strengthen the glass network structure, and ZrO 2 is more inclined to promote the crystallization of petalite crystals; on the other hand, ZrO 2 helps to reduce the grain size during the crystallization process, thereby improving the glass network structure. Transmittance, and can quickly improve the chemical stability of the glass.
  • the crystal phase transformation of zirconia itself can generate stress induction and improve the fracture toughness after crystallization. Excessively high ZrO 2 content leads to the existence of unmelted ZrO 2 in the glass, which makes the glass unable to crystallize uniformly.
  • the content of ZrO 2 is selected from 3wt% to 5wt%, or the content of ZrO 2 is selected from 3.1wt% to 5wt%, or the content of ZrO2 is selected from 3.5wt% to 4.7wt%.
  • introducing CaO into the glass composition of the present application can improve the chemical stability and mechanical strength of the glass. Because CaO is more likely to combine with acidic Al 2 O 3 in the glass structure, which affects the coordination state of boron; in addition, CaO is more basic than Na 2 O, which can compensate for the negative charge of the [AlO 4 ] tetrahedron , to stabilize the crystal phase structure in the glass-ceramic. However, a high CaO content will cause a decrease in devitrification resistance. Therefore, considering comprehensively, the CaO content is selected to be 0.1wt%-1.5wt%.
  • the components in the glass composition include SiO 2 , Al 2 O 3 , P 2 O 5 , Li 2 O, Na 2 O and ZrO 2 , and each component of the glass composition satisfies: 2.9 ⁇ W(SiO 2 )-6 ⁇ W(Al 2 O 3 )-2 ⁇ W(Li 2 O) ⁇ 5.2.
  • A W(SiO 2 )-6 ⁇ W(Al 2 O 3 )-2 ⁇ W(Li 2 O) ⁇ 5.2.
  • W represents the mass percentage of this component in the sum of all oxide components
  • A is This formula calculates the numerator value of the resulting mass percent.
  • the A value is low, all SiO 2 will enter the crystal phase, and the relative Al 2 O 3 or Li 2 O will be excessive; if the A value is too high, all the Al 2 O 3 or Li 2 O will enter the crystal phase, and the remaining SiO 2
  • the network skeleton structure in the phase exists, and the total crystal phase content of the glass-ceramic is low.
  • excess Al 2 O 3 or Li 2 O can be avoided, and the total crystal phase content of the glass-ceramic can be effectively increased.
  • Each component of the glass composition satisfies: 0.26 ⁇ [W(Li 2 O)-W(Al 2 O 3 )]/[W(P 2 O 5 )+W(ZrO 2 )] ⁇ 0.85.
  • B [W(Li 2 O)-W(Al 2 O 3 )]/[W(P 2 O 5 )+W(ZrO 2 )], W represents the sum of the weight of this component in all oxide components mass percentage. If the B value is too low, undesired crystalline phases such as ⁇ -quartz are likely to occur, and the formation ratio of petalite feldspar crystal phases is large, and the crystal grains are easy to grow, resulting in translucent or even devitrified crystallites.
  • the B value is too high, the proportion of the glass phase in the glass-ceramic will increase, and the performance advantages of the glass-ceramic cannot be fully utilized. In this way, by controlling the B value within the above range, the performance advantages of the glass-ceramic can be fully utilized, and the crystallite ratio of the glass-ceramic can be prevented from being translucent or even devitrified.
  • the components of the glass composition satisfy: 1.17 ⁇ W(ZrO 2 )/W(P 2 O 5 ) ⁇ 2.61.
  • Write C 1 W(ZrO 2 )/W(P 2 O 5 )
  • W represents the mass percentage of this component in the sum of all oxide components.
  • Each component of the glass composition satisfies: 2.5 ⁇ [W(SiO 2 )-6 ⁇ W(Al 2 O 3 )-2 ⁇ W(Li 2 O)]/W(Na 2 O) ⁇ 5.8.
  • D [W(SiO 2 )-6 ⁇ W(Al 2 O 3 )-2 ⁇ W(Li 2 O)]/W(Na 2 O)
  • W represents that this component accounts for the mass of all oxide components and the mass percent.
  • the interlocking structure formed by lithium petalite feldspar and lithium disilicate in glass-ceramics Further maintain the interlocking structure formed by lithium petalite feldspar and lithium disilicate in glass-ceramics, and improve the performance of glass-ceramics. If the D value is too high, it will be difficult to exchange ions for chemical strengthening of the glass-ceramics; if the D value is too low, the interlocking structure formed by the lithium-petalite feldspar and lithium disilicate in the glass-ceramics cannot be maintained, and the microcrystalline structure will be destroyed during the chemical strengthening process.
  • each component of the glass composition meet the following conditions: SiO 2 72.8-73.9%, Al 2 O 3 7.4-8%, P 2 O 5 2.1-2.6%, Li 2 O 10.7-11.7% , Na 2 O 0.9-1.4%, and ZrO 2 3.9-4.4%.
  • the properties of the glass-ceramic obtained from this glass composition are further optimized.
  • the components in the glass composition are SiO 2 , Al 2 O 3 , P 2 O 5 , B 2 O 3 , Li 2 O, Na 2 O and ZrO 2 among the components of the glass ceramics Satisfy: -1.1 ⁇ W(SiO 2 )-6 ⁇ W(Al 2 O 3 )-2 ⁇ W(Li 2 O) ⁇ 6.7.
  • A W(SiO 2 )-6 ⁇ W(Al 2 O 3 )-2 ⁇ W(Li 2 O) ⁇ 6.7.
  • W represents the mass percentage of this component in the sum of all components, and the value of A is the formula Calculate the numerator value of the resulting mass percent.
  • the A value is low, all SiO 2 will enter the crystal phase, and the relative Al 2 O 3 or Li 2 O will be excessive; the formation ratio of petalite feldspar crystal phase is large, and the crystal grains are easy to grow, resulting in translucent or even loss of crystallite ratio. through. If the value of A is too high, all Al 2 O 3 or Li 2 O will enter the crystalline phase, and the remaining SiO 2 will exist as a network skeleton structure in the glass phase, and the total crystalline phase content of the glass-ceramics will be low. In this way, by controlling the value of A within the above range, the crystallite ratio of the glass-ceramic is prevented from being translucent or even devitrified, and the total crystal phase content of the glass-ceramic is effectively increased.
  • the components of the glass-ceramics satisfy: 0.19 ⁇ [W(Li 2 O)-W(Al 2 O 3 )]/[W(P 2 O 5 )+W(ZrO 2 )] ⁇ 0.98.
  • B [W(Li 2 O)-W(Al 2 O 3 )]/[W(P 2 O 5 )+W(ZrO 2 )]
  • W represents the mass of this component in the sum of all components percentage. If the B value is too low, the proportion of the glass phase in the glass-ceramic will increase, and the performance advantages of the glass-ceramic cannot be fully utilized.
  • the B value is too high, it is easy to produce undesired crystal phases such as ⁇ -quartz, and the formation ratio of petalite feldspar crystal phases is large, and the crystal grains are easy to grow, resulting in translucent or even devitrified crystallites.
  • the performance advantages of the glass-ceramic can be fully utilized, and the crystallite ratio of the glass-ceramic can be prevented from being translucent or even devitrified.
  • the components of the glass-ceramics satisfy: 0.06 ⁇ [W(ZrO 2 )-3 ⁇ W(B 2 O 3 )]/W(P 2 O 5 ) ⁇ 1.57.
  • Record C 2 [W(ZrO 2 )-3 ⁇ W(B 2 O 3 )]/W(P 2 O 5 ), W represents the mass percentage of this component to the sum of all components.
  • the two crystal phases will compete for the silicon source and the lithium source, that is, destroy the crystal phase structure formed by the other crystal phase to form its own crystal phase, and the crystal phases of the formed lithium permeable feldspar and lithium disilicate are close, and the crystal size is uniform and ⁇ 100nm, meeting the basic requirements of optical visibility. If the C 2 value is too high or too low, the single crystal phase will increase and grow easily, the visible light transmittance of microcrystals will decrease, and the haze will increase.
  • each component of the glass composition meet the following conditions: SiO 2 , 72-74%; Al 2 O 3 , 7.5-8.4%; P 2 O 5 , 2-2.8%; B 2 O 3 , 0.3-0.8%; Li 2 O, 10.5-11.8%; Na 2 O, 0.5-1.3%; ZrO 2 , 3.4-4.7%.
  • the properties of the glass-ceramic obtained from this glass composition are further optimized.
  • the components of the glass ceramics satisfy: 0.6 ⁇ W(SiO 2 )-6 ⁇ W(Al 2 O 3 )-2 ⁇ W(Li 2 O) ⁇ 5.4; 0.28 ⁇ [W(Li 2 O)-W(Al 2 O 3 )]/[W(P 2 O 5 )+W(ZrO 2 )] ⁇ 0.8; 0.5 ⁇ [W(ZrO 2 ) -3 ⁇ W(B 2 O 3 )]/W(P 2 O 5 ) ⁇ 1.36.
  • each component of the glass composition meets the following conditions: SiO 2 , 72.5-73.5%; Al 2 O 3 , 7.7-8%; P 2 O 5 , 2.1-2.5%; B 2 O 3 , 0.5% -0.7%; Li 2 O, 11-11.5%; Na 2 O, 0.7-1.1%; ZrO 2 , 3.8-4.4%.
  • the performance of the glass-ceramics obtained from the glass composition is better.
  • the components of the glass ceramics satisfy: 2.5 ⁇ W(SiO 2 )-6 ⁇ W(Al 2 O 3 )-2 ⁇ W(Li 2 O) ⁇ 4.3; 0.43 ⁇ [W(Li 2 O)-W(Al 2 O 3 )]/[W(P 2 O 5 )+W(ZrO 2 )] ⁇ 0.64; 0.81 ⁇ [W(ZrO 2 ) -3 ⁇ W(B 2 O 3 )]/W(P 2 O 5 ) ⁇ 1.16.
  • each component of the glass composition meet the following conditions: 72-73.5% of SiO 2 , 6.8-8.2% of Al 2 O 3 , 2-2.4% of P 2 O 5 , 0.4-1.1% of B 2 O 3 , 10.8-11.7% of Li 2 O, 0.4-1.7% of Na 2 O, 0.3-1% of CaO, and 3.3-4.4% of ZrO 2 .
  • the properties of the glass-ceramic obtained from this glass composition are further optimized.
  • the components in the glass composition include SiO2, Al2O3, P2O5, B2O3, Li2O, Na2O, CaO and ZrO2, and each component of the glass composition satisfies: 2.3 ⁇ W(SiO 2 )- 6 ⁇ W(Al 2 O 3 ) ⁇ 2 ⁇ W(Li 2 O) ⁇ 10.3.
  • A W(SiO 2 )-6 ⁇ W(Al 2 O 3 )-2 ⁇ W(Li 2 O)
  • W represents the mass percentage of the component
  • a value is the molecule of the mass percentage calculated by this formula value.
  • the A value is low, all SiO 2 will enter the crystal phase, and the relative Al 2 O 3 or Li 2 O will be excessive; the formation ratio of petalite feldspar crystal phase is large, and the crystal grains are easy to grow, resulting in translucent or even loss of crystallite ratio. through. If the value of A is too high, all Al 2 O 3 or Li 2 O will enter the crystalline phase, and the remaining SiO 2 will exist as a network skeleton structure in the glass phase, and the total crystalline phase content of the glass-ceramics will be low. In this way, by controlling the value of A within the above range, the crystallite ratio of the glass-ceramic is prevented from being translucent or even devitrified, and the total crystal phase content of the glass-ceramic is effectively increased. In one embodiment, preferably 2.7 ⁇ W(SiO 2 )-6 ⁇ W(Al 2 O 3 )-2 ⁇ W(Li 2 O) ⁇ 7.8.
  • Each component of the glass composition satisfies: 0.27 ⁇ [W(Li 2 O)-W(Al 2 O 3 )]/[W(P 2 O 5 )+W(ZrO 2 )] ⁇ 0.87.
  • Write B [W(Li 2 O)-W(Al 2 O 3 )]/[W(P 2 O 5 )+W(ZrO 2 )], W represents the mass percentage of this component. If the B value is too low, the proportion of the glass phase in the glass-ceramic will increase, and the performance advantages of the glass-ceramic cannot be fully utilized.
  • the B value is too high, it is easy to produce undesired crystal phases such as ⁇ -quartz, and the formation ratio of petalite feldspar crystal phases is large, and the crystal grains are easy to grow, resulting in translucent or even devitrified crystallites.
  • the performance advantages of the glass-ceramic can be fully utilized, and the crystallite ratio of the glass-ceramic can be prevented from being translucent or even devitrified.
  • the components of the glass composition satisfy: 2 ⁇ [W(ZrO 2 )-W(CaO)]/[W(P 2 O 5 )-W(B 2 O 3 )] ⁇ 3.22.
  • Write C 3 [W(ZrO 2 )-W(CaO)]/[W(P 2 O 5 )-W(B 2 O 3 )]
  • W represents the mass percentage of this component.
  • the glass crystal structure especially during the chemical strengthening process, inhibit the migration of lithium ions, and improve the crystal content of the glass-ceramics after chemical strengthening.
  • the C3 value is too high or too low, it will affect the microcrystalline visible light transmittance, b value and haze.
  • a glass-ceramic is also provided, including the above-mentioned glass composition.
  • the glass-ceramic includes all the technical features of the above-mentioned glass composition, and therefore has all the technical effects brought about by the above-mentioned glass composition, which will not be repeated here.
  • the thickness of the glass-ceramic is 0.3-1.5 mm. The thinner the plate thickness of the glass-ceramics, the more the weight of the glass-ceramics can be reduced.
  • the crystal phase of the glass-ceramic is mainly lithium disilicate and petalite
  • the total content of the crystal phase of the glass-ceramic is 60%-90%
  • the content of petalite>30% is Ensure that the lithium disilicate and lithium petalite are within this range, so that the crystal phase content of the glass-ceramics is large and the ratio of the two crystal phases is balanced, so that the strengthening performance of the glass-ceramics is better.
  • the thickness of the glass-ceramic is 0.3-1.5 mm. The thinner the plate thickness of the glass-ceramics, the more the weight of the glass-ceramics can be reduced.
  • a glass-ceramic including the above-mentioned glass composition, the glass-ceramic contains crystalline phase Li 2 Si 2 O 5 and crystalline phase LiAlSi 4 O 10 , and the glass-ceramic
  • the crystal glass includes all the technical features of the above-mentioned glass composition, and therefore has all the technical effects brought about by the above-mentioned glass composition, which will not be repeated here.
  • the glass-ceramic also needs to satisfy: 0.91 ⁇ W(Li 2 Si 2 O 5 )/W(LiAlSi 4 O 10 ) ⁇ 1.06.
  • E W(Li 2 Si 2 O 5 )/W(LiAlSi 4 O 10 )
  • W represents the mass percentage of the crystal phase in the glass-ceramics.
  • M 1.3 ⁇ E ⁇ (0.86 ⁇ A+1.83 ⁇ B+1.67 ⁇ C+0.25 ⁇ D)
  • M 1.3 ⁇ E ⁇ (0.86 ⁇ A+1.83 ⁇ B+1.67 ⁇ C+0.25 ⁇ D)
  • the thickness of the glass-ceramic is 0.3-1.5 mm. The thinner the plate thickness of the glass-ceramics, the more the weight of the glass-ceramics can be reduced.
  • the present application also proposes a method for preparing glass-ceramics, which is used to prepare the above-mentioned glass-ceramics, as shown in Figure 1, comprising the following steps:
  • the glass composition is mixed and then melted, then clarified, homogenized, shaped, annealed, and finally cut to obtain a base glass.
  • the forming method includes float forming, overflow forming, calender forming or slit down-draw forming.
  • Other clarification, homogenization, annealing and cutting processes are conventional processes in the field of glass technology, and will not be described here.
  • the obtained basic glass has a thickness of 0.3-1.5 mm.
  • step S30 includes: heating the base glass from room temperature to 510-540°C in 20-60 minutes, and performing the first nucleation treatment, the first nucleation treatment time being 3-8 hours; The temperature is raised to 580-610°C in ⁇ 30 minutes, and the second nucleation treatment is carried out.
  • the second nucleation treatment time is 3-8 hours; the temperature is raised to 650-680°C in 5-30 minutes, and the crystallization treatment is carried out.
  • the crystallization treatment time is 3-8 hours; cooling to room temperature to obtain glass-ceramics.
  • step S30 further includes:
  • the ion exchange bath includes 20-40% NaNO 3 and 60-80% KNO 3 by mass percentage; the salt bath strengthening temperature is 420-500° C.; the salt bath strengthening time is 3-8 hours.
  • the above-mentioned strengthening system can slow down the Na + /Li + exchange rate in the crystal phase, which is beneficial to reduce the Na + agglomeration in the cavity of the microcrystalline phase and the glass phase, and effectively form compressive stress; it can reduce the glass phase and exchange rate, and reduce the glass phase.
  • the difference from the crystal phase further reduces the glass b value.
  • the pretreatment step specifically includes: placing the glass-ceramic at 300-330° C. for 5-20 minutes.
  • the above pretreatment is a conventional method in the field of glass technology, and will not be described in detail here.
  • the present application also proposes an electronic display terminal, which includes the above-mentioned glass-ceramics.
  • the glass-ceramics For the specific features of the glass-ceramics, refer to the above-mentioned embodiments. Since this electronic display terminal adopts all the technical solutions of all the above-mentioned embodiments, Therefore, it has at least all the beneficial effects brought by the technical solutions of the above-mentioned embodiments, which will not be repeated here.
  • the glass-ceramic is used as a protective glass or a protective part of an electronic display terminal, or the glass-ceramic is used as a protective glass of an intelligent terminal, or the glass-ceramic is used as a protective glass of a solar cell.
  • the glass composition is mixed and then melted, then clarified, homogenized, shaped, annealed, and finally cut to obtain the base glass.
  • the basic glass is heated from room temperature to 530°C in 20 minutes for nucleation treatment, and the nucleation treatment time is 3 hours; it is heated to 680°C in 30 minutes for crystallization treatment, and the crystallization treatment The time is 3h; cooled to room temperature to obtain glass-ceramics.
  • An ion exchange bath is provided, the ion exchange bath includes 40% NaNO 3 and 60% KNO 3 by mass percentage, the glass-ceramic is pretreated and then put into the ion exchange bath for salt bathing to obtain
  • the salt bath strengthening temperature is 420° C.
  • the salt bath strengthening time is 3 hours.
  • the raw materials were weighed according to the proportions of the glass compositions of each embodiment shown in Table I1 and Table I2, and the glass ceramics, chemically strengthened glass ceramics and chemically strengthened glass ceramics of other Examples A2 to Example A14 were prepared respectively with reference to the preparation method of Example A1. Crystal glass.
  • the raw materials were weighed according to the composition ratio of the glass compositions of Comparative Examples A1 to A5 shown in Table I3, and the glass-ceramics and chemically strengthened glass-ceramics of Comparative Examples A1 to A5 were respectively prepared with reference to the preparation method of Example A1.
  • Steps (1)-(3) of the preparation method in Example A1 were carried out with the glass compositions of Example A8 and Example A14 to prepare a glass-ceramic. Please refer to Table I4 for specific process parameters during preparation.
  • test method and test equipment are as follows:
  • the main crystal phase test was carried out by X-ray diffraction analyzer.
  • the morphology of the crystals was observed using a scanning electron microscope.
  • Visible light transmittance test was carried out by using a spectrophotometer with reference to the standard ISO13468-1:1996.
  • the haze of glass is measured by ASTM D1003-92 test.
  • glass fracture toughness KIC is measured, and the unit is MPa ⁇ m 1/2 .
  • the drop performance of the sandpaper of the whole machine is measured by a mobile phone controlled drop tester.
  • the specific test conditions are: 180 mesh sandpaper, 195g total weight, 60cm base height, 5cm increments, once per height, until it breaks.
  • test methods and test equipment are common methods for evaluating glass-related properties in this industry, and are only a means to characterize or evaluate the technical solutions and technical effects of this application, and other test methods and test methods can also be used. equipment, does not affect the final result.
  • Table I4 prepares the processing parameters and performance of glass-ceramic with the glass composition of embodiment A8 and A14
  • the time represents the heating time
  • the temperature represents the target temperature of the heating
  • the time represents the processing time
  • Table I5 prepares process parameters and properties of chemically strengthened glass-ceramic with the glass composition of embodiment A8 and A14
  • the crystallite in the glass-ceramics obtained after heat treatment using the embodiments A1-A14 of the technical solution of the present application Phase lithium disilicate Li 2 Si 2 O 5 >30%, crystal phase LiAlSi 4 O 10 >30%; total crystal phase in glass-ceramics >68%.
  • the 0.7mm transmittance of the glass-ceramics is >91%, the haze is ⁇ 0.17, and the b value is ⁇ 0.4.
  • the average crystal size of the glass-ceramic grains is ⁇ 100 nm.
  • the fracture toughness KIC value (1.012 ⁇ 1.78MPa ⁇ m 1/2 ) is higher, indicating that the crystal content of the glass-ceramics in the chemical strengthening process of the embodiment of the present application is reduced, and the interlocking structure of the twin phase is destroyed.
  • the situation is significantly improved; High b value and high haze, the b value and haze of the glass-ceramic in the example of the present application are obviously lower, indicating that the glass-ceramic of the example of the present application has achieved a reduction in the b value and haze.
  • the obtained chemically strengthened glass-ceramic has excellent strengthening performance.
  • the glass composition is mixed and then melted, then clarified, homogenized, shaped, annealed, and finally cut to obtain the base glass.
  • the basic glass is heated from room temperature to 510°C in 20 minutes for the first nucleation treatment, and the first nucleation treatment time is 3 hours; it is heated to 580°C in 5 minutes for the second time Nucleation treatment, the second nucleation treatment time is 3 hours; the temperature is raised to 650° C. for 30 minutes for crystallization treatment, the crystallization treatment time is 3 hours; cooled to room temperature to obtain glass ceramics.
  • the ion-exchange bath includes 20% NaNO3 and 80% KNO3 by mass percentage,
  • the salt bath strengthening temperature is 420° C., and the salt bath strengthening time is 3 hours.
  • the raw materials were weighed according to the glass composition proportions of the examples shown in Table II1 and Table II2, and the glass ceramics, chemically strengthened glass ceramics and chemically strengthened glass crystal glass.
  • the raw materials were weighed according to the composition ratio of the glass compositions of Comparative Examples B1 to B7 shown in Table II3, and the glass ceramics and chemically strengthened glass ceramics of Comparative Examples B1 to B7 were respectively prepared by referring to the preparation method of Example B1.
  • Steps (1)-(3) of the preparation method in Example B1 were carried out with the glass compositions of Examples B1 and B9 to prepare glass-ceramics. Please refer to Table II4 for specific process parameters during preparation.
  • test method and test equipment are as follows:
  • the main crystal phase test was carried out by X-ray diffraction analyzer.
  • the morphology of the crystals was observed using a scanning electron microscope.
  • Visible light transmittance test was carried out by using a spectrophotometer with reference to the standard ISO13468-1:1996.
  • the haze of glass is measured by ASTM D1003-92 test.
  • the drop performance of the sandpaper of the whole machine is measured by a mobile phone controlled drop tester.
  • the specific test conditions are: 180 mesh sandpaper, 195g total weight, 60cm base height, 5cm increments, once per height, until it breaks.
  • test methods and test equipment are common methods for evaluating glass-related properties in this industry, and are only a means to characterize or evaluate the technical solutions and technical effects of this application, and other test methods and test methods can also be used. equipment, does not affect the final result.
  • Table II4 prepares the processing parameters and properties of glass-ceramic with the glass composition of embodiment B1 and B9
  • the time in the first nucleation treatment, the second nucleation treatment and the crystallization treatment represents the heating time
  • the temperature represents the heating target temperature
  • the time represents the processing time
  • the content of microcrystalline phase in the heat-treated glass-ceramics is small, and the crystal size is >100nm; and the transmittance is low, the b value is too large, and the haze is large; the anti-drop performance is poor.
  • the content of microcrystalline phase in heat-treated glass-ceramics is small, and the crystal size is >100nm; and the transmittance is low, the b value is too large, and the haze is large; the anti-drop performance is poor.
  • the content of microcrystalline phase in heat-treated glass-ceramics is small, and the crystal size is >100nm; and the transmittance is low, the b value is too large, and the haze is large.
  • the b-value and the haze of the glass-ceramic in the embodiment of the present application are significantly reduced, which shows that the embodiment of the present application can effectively solve the problem of the current transparent glass-ceramics.
  • the b value of the crystal glass is too large and the haze is too high, and the obtained glass-ceramic has excellent strengthening performance.
  • the glass composition is mixed and then melted, then clarified, homogenized, shaped, annealed, and finally cut to obtain the base glass.
  • the basic glass is heated from room temperature to 510°C in 20 minutes for the first nucleation treatment, and the first nucleation treatment time is 3 hours; it is heated to 580°C in 5 minutes for the second time Nucleation treatment, the second nucleation treatment time is 3 hours; the temperature is raised to 650° C. for 30 minutes for crystallization treatment, the crystallization treatment time is 3 hours; cooled to room temperature to obtain glass ceramics.
  • the ion-exchange bath includes 40% NaNO3 and 60% KNO3 by mass percentage,
  • the salt bath strengthening temperature is 500° C., and the salt bath strengthening time is 8 hours.
  • the raw materials were weighed according to the proportions of the glass compositions of the examples shown in Table III1 and Table III2, and the glass ceramics, chemically strengthened glass ceramics, and chemically strengthened glass crystal glass.
  • the raw materials were weighed according to the composition ratio of the glass compositions of Comparative Examples C1 to C6 shown in Table III3, and the glass-ceramics and chemically strengthened glass-ceramics of Comparative Examples C1 to C6 were respectively prepared by referring to the preparation method of Example C1.
  • Steps (1)-(3) of the preparation method in Example C1 were carried out with the glass compositions of Examples C1 and C8 to prepare glass-ceramics. Please refer to Table III4 for specific process parameters during preparation.
  • test method and test equipment are as follows:
  • the main crystal phase test was carried out by X-ray diffraction analyzer.
  • the morphology of the crystals was observed using a scanning electron microscope.
  • Visible light transmittance test was carried out by using a spectrophotometer with reference to the standard ISO13468-1:1996.
  • the haze of glass is measured by ASTM D1003-92 test.
  • the drop performance of the sandpaper of the whole machine is measured by a mobile phone controlled drop tester.
  • the specific test conditions are: 180 mesh sandpaper, 195g total weight, 60cm base height, 5cm increments, once per height, until it breaks.
  • test methods and test equipment are common methods for evaluating glass-related properties in this industry, and are only a means to characterize or evaluate the technical solutions and technical effects of this application, and other test methods and test methods can also be used. equipment, does not affect the final result.
  • Table III4 prepares the processing parameters and properties of glass-ceramic with the glass composition of embodiment C1 and C8
  • the time in the first nucleation treatment, the second nucleation treatment and the crystallization treatment represents the heating time
  • the temperature represents the heating target temperature
  • the time represents the processing time
  • Table III5 prepares process parameters and properties of chemically strengthened glass-ceramic with the glass composition of embodiment C1 and C8
  • the average crystal size of the crystal grains in the glass is ⁇ 100nm; the visible light transmittance of the glass-ceramics is >91% at 0.7mm, and the anti-drop height is >200cm.
  • the reduction in the total crystal phase content of chemically strengthened glass-ceramics relative to glass-ceramics in the examples of the present application is even less, indicating that the present application In the glass-ceramic of the embodiment, the reduction of the crystal content and the destruction of the interlocking structure of the twin crystal phase during the chemical strengthening process are significantly improved, and the obtained chemically-strengthened glass-ceramic has excellent strengthening performance.

Abstract

本申请公开一种玻璃组合物、微晶玻璃及其制备方法和应用,按质量百分比算,所述玻璃组合物包括:SiO 2,71.5~74.5%;Al 2O 3,6.2~8.7%;P 2O 5,1.7~3%;Li 2O,10~12.5%;Na 2O,0.1~2%;ZrO 2,3~5%。本申请的技术方案中,通过将玻璃组合物中的组分SiO 2、Al 2O 3、P 2O 5、Li 2O、Na 2O以及ZrO 2之间采用特定的比重组合,结合微晶玻璃晶化工艺及强化工艺,可以显著降低b值和雾度,得到强化性能优良的微晶玻璃。

Description

玻璃组合物、微晶玻璃及其制备方法和应用
相关申请
本申请要求于2021年12月31日申请的、申请号为202111682724.5的中国专利申请,要求于2021年12月31日申请的、申请号为202111681556.8的中国专利申请,要求于2021年12月31日申请的、申请号为202111682722.6的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及玻璃制造技术领域,特别涉及一种玻璃组合物、微晶玻璃及其制备方法和应用。
背景技术
随着显示技术的发展,玻璃常用于显示器件的保护中。市面电子产品保护用的盖板玻璃一般都属于高铝硅酸盐玻璃,高铝有利于离子交换后应力强度和应力层深度的提升,但是玻璃的抗摔性能较差。有研究表明,70%的电子产品破坏是不经意间的跌落造成的。
在玻璃配方中引入成核剂或调整配方中氧化物配比组成,在后续的热处理工艺中形成一种或多种结晶相,称为微晶玻璃。既有玻璃的高透过性又具有陶瓷的高强度性,可提高玻璃的平均硬度、断裂韧性等性能。微晶玻璃中的微晶相可以阻碍微裂纹扩展路径,有利于玻璃的抗划伤、抗冲击及抗跌落等性能的整体提升。
微晶玻璃的性能取决于晶相与玻璃相的比例、晶粒的尺寸等。在微晶玻璃制备过程中,由于玻璃组成的团聚、晶相的界面形态、晶粒外观形貌等因素,导致目前制得的透明微晶玻璃b值偏大,雾度偏高,宏观表现为透射光偏黄,影响微晶玻璃透过率及使用性能。
发明内容
本申请的主要目的是提出一种玻璃组合物、微晶玻璃及其制备方法和应用,旨在解决现有的微晶玻璃b值偏大,雾度偏高的问题。
为实现上述目的,本申请提出一种玻璃组合物,按质量百分比算,包括:
SiO 2,71.5~74.5%;
Al 2O 3,6.2~8.7%;
P 2O 5,1.7~3%;
Li 2O,10~12.5%;
Na 2O,0.1~2%;
ZrO 2,3~5%。
在一实施例中,还包括:B 2O 3,0.1~1.7%,和/或,0.1~1.5%的CaO。
在一实施例中,-1.1≤W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)≤6.7。
在一实施例中,0.19≤[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)]≤0.98。
在一实施例中,0.06≤[W(ZrO 2)-3×W(B 2O 3)]/W(P 2O 5)≤1.57。
在一实施例中,按质量百分比算,包括:
SiO 2,72~74%;
Al 2O 3,7.5~8.4%;
P 2O 5,2~2.8%;
B 2O 3,0.3~0.8%;
Li 2O,10.5~11.8%;
Na 2O,0.5~1.3%;
ZrO 2,3.4~4.7%。
在一实施例中,0.6≤W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)≤5.4;
0.28≤[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)]≤0.8;
0.5≤[W(ZrO 2)-3×W(B 2O 3)]/W(P 2O 5)≤1.36。
在一实施例中,按质量百分比算,包括:
SiO 2,72.5~73.5%;
Al 2O 3,7.7~8%;
P 2O 5,2.1~2.5%;
B 2O 3,0.5~0.7%;
Li 2O,11~11.5%;
Na 2O,0.7~1.1%;
ZrO 2,3.8~4.4%。
在一实施例中,2.5≤W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)≤4.3;
0.43≤[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)]≤0.64;
0.81≤[W(ZrO 2)-3×W(B 2O 3)]/W(P 2O 5)≤1.16。
本申请提出一种玻璃组合物,按质量百分比算,包括:SiO 272~74.3%、Al 2O 37~8.5%、P 2O 51.8~3%、Li 2O10.2~12.5%、Na 2O0.5~2%以及ZrO 23.5~4.7%。
在一实施例中,2.9≤W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)≤5.2;
0.26≤[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)]≤0.85;
1.17≤W(ZrO 2)/W(P 2O 5)≤2.61;
2.5≤[W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)]/W(Na 2O)≤5.8。
在一实施例中,按质量百分比计,包括以下组分:
SiO 272.8~73.9%、Al 2O 37.4~8%、P 2O 52.1~2.6%、Li 2O10.7~11.7%、Na 2O0.9~1.4%以及ZrO 23.9~4.4%。
在一实施例中,4.5≤W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)≤5.2;
0.42≤[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)]≤0.66;
1.5≤W(ZrO 2)/W(P 2O 5)≤2.1;
3.57≤[W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)]/W(Na 2O)≤5。
本申请提出一种玻璃组合物,按质量百分比算,按质量百分比计,包括以下组分:
71.5~74%的SiO 2、6.2~8.5%的Al 2O 3、1.7~2.6%的P 2O 5、0.1~1.7%的B 2O 3、10~12%的Li 2O、0.1~2%的Na 2O、0.1~1.5%的CaO以及3~5%的ZrO 2
在一实施例中,以氧化物为基准,按质量百分比计,包括以下组分:
72~73.5%的SiO 2、6.8~8.2%的Al 2O 3、2~2.4%的P 2O 5、0.4~1.1%的B 2O 3、10.8~11.7%的Li 2O、0.4~1.7%的Na 2O、0.3~1%的CaO以及3.3~4.4%的ZrO 2
在一实施例中,2≤[W(ZrO 2)-W(CaO)]/[W(P 2O 5)-W(B 2O 3)]≤3.22。
在一实施例中,2.06≤[W(ZrO 2)-W(CaO)]/[W(P 2O 5)-W(B 2O 3)]≤2.31。
在一实施例中,2.3≤W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)≤10.3;
0.27≤[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)]≤0.87。
在一实施例中,2.7≤W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)≤7.8;
0.46≤[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)]≤0.77。
本申请还提出一种微晶玻璃,包括如上所述的玻璃组合物。
在一实施例中,所述微晶玻璃的厚度为0.3~1.5mm。
本申请还提出一种微晶玻璃,包括如上述的玻璃组合物,所述微晶玻璃中含有晶相Li 2Si 2O 5和晶相LiAlSi 4O 10
在一实施例中,0.91≤W(Li 2Si 2O 5)/W(LiAlSi 4O 10)≤1.06。
在一实施例中,0.97≤W(Li 2Si 2O 5)/W(LiAlSi 4O 10)≤1.03。
在一实施例中,10.44≤M≤12.54;
其中,M=1.3×[W(Li 2Si 2O 5)/W(LiAlSi 4O 10)]×{0.86×[W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)]+1.83×[(W(Li 2O)-W(Al 2O 3))/(W(P 2O 5)+W(ZrO 2))]+1.67×[W(ZrO 2)/W(P 2O 5)]+0.25×[(W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O))/W(Na 2O)]}。
在一实施例中,11.85≤M≤12.54。
本申请还提出一种微晶玻璃,包括如上所述的玻璃组合物。
在一实施例中,所述微晶玻璃的晶相主要为二硅酸锂和透锂长石,所述微晶玻璃的晶相总含量为60%~90%,所述
二硅酸锂的含量>30%,所述透锂长石的含量>30%。
本申请还提出一种微晶玻璃的制备方法,包括以下步骤:
S10、称取如上所述的玻璃组合物;
S20、将所述玻璃组合物混合后熔化,然后澄清、均化、成型、退火,最后切割得到基础玻璃;
S30、对所述基础玻璃进行热处理,得到微晶玻璃。
在一实施例中,步骤S30包括:
将所述基础玻璃从室温以20~60min时间升温至510~540℃,进行第一次核化处理,所述第一次核化处理时间为3~8h;
以5~30min时间升温至580~610℃,进行第二次核化处理,所述第二次核化处理时间为3~8h;
以5~30min时间升温至650~680℃,进行晶化处理,所述晶化处理时间为3~8h;
冷却至室温,得到微晶玻璃。
在一实施例中,所述对所述基础玻璃进行热处理,得到微晶玻璃的步骤包括:
将所述基础玻璃从室温以20~60min时间升温至530~570℃,进行核化处理3h以上;
以5~30min时间升温至680~720℃,进行晶化处理3h以上;
冷却至室温,得到所述微晶玻璃。
在一实施例中,步骤S30之后,还包括:
S40、将所述微晶玻璃预处理后放入离子交换浴中进行盐浴,得到化学强化微晶玻璃;
其中,所述离子交换浴按质量百分比包括20~40%的NaNO 3和60~80%的KNO 3;和/或,
所述盐浴强化温度为420~500℃;和/或,
所述盐浴强化时间为3~8h。
在一实施例中,步骤S20中,所述成型的方法包括浮法成型、溢流成型、压延成型或狭缝下拉成型。
本申请还提出一种电子显示终端,包括如上所述的微晶玻璃。
本申请的技术方案中,通过将玻璃组合物中的组分SiO 2、Al 2O 3、P 2O 5、Li 2O、Na 2O以及ZrO 2之间采用特定的比重组合,结合微晶玻璃晶化工艺及强化工艺,可以显著降低b值和雾度,得到强化性能优良的微晶玻璃。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅为本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请提出的微晶玻璃的制备方法的一实施例的流程示意图;
图2为本申请提出的微晶玻璃的制备方法的另一实施例的流程示意图。
图3为本申请中M与微晶玻璃的断裂韧性KIC的线性关系图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。
需要说明的是,实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。另外,全文中出现的“和/或”的含义,包括三个并列的方案,以“A和/或B”为例,包括A方案、或B方案、或A和B同时满足的方案。此外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
随着显示技术的发展,玻璃常用于显示器件的保护中。市面电子产品保护用的盖板玻璃一般都属于高铝硅酸盐玻璃,高铝有利于离子交换后应力强度和应力层深度的提升,但是玻璃的抗摔性能较差。有研究表明,70%的电子产品破坏是不经意间的跌落造成的。
在玻璃配方中引入成核剂或调整配方中氧化物配比组成,在后续的热处理工艺中形成一种或多种结晶相,称为微晶玻璃。既有玻璃的高透过性又具有陶瓷的高强度性,可提高玻璃的平均硬度、断裂韧性等性能。微晶玻璃中的微晶相可以阻碍微裂纹扩展路径,有利于玻璃的抗划伤、抗冲击及抗跌落等性能的整体提升。
微晶玻璃的性能取决于晶相与玻璃相的比例、晶粒的尺寸等。在微晶玻璃制备过程中,由于玻璃组成的团聚、晶相的界面形态、晶粒外观形貌等因素,导致目前制得的透明微晶玻璃b值偏大,雾度偏高,宏观表现为透射光偏黄,影响微晶玻璃透过率及使用性能。
鉴于此,本申请提出一种玻璃组合物,通过该玻璃组合物制得的微晶玻璃能够有效解决目前的透明微晶玻璃b值偏大,雾度偏高的问题。
在本申请实施例中,提出一种玻璃组合物,按质量百分比算,包括:SiO 2,71.5~74.5%;Al 2O 3,6.2~8.7%;P 2O 5,1.7~3%;Li 2O,10~12.5%;Na 2O,0.1~2%;ZrO 2,3~5%。
在另一实施例中,该玻璃组合物,按质量百分比算,还包括:B 2O 3,0.1~1.7%,和/或,0.1~1.5%的CaO。
在本申请实施例中,提出一种玻璃组合物,按质量百分比算,包括:SiO 2,71.5~74.5%;Al 2O 3,7.3~8.7%;P 2O 5,1.7~3%;B 2O 3,0.1~1%;Li 2O,10.2~12%;
Na 2O,0.4~1.5%;ZrO 2,3.1~5%。
在本申请实施例中,提出一种玻璃组合物,以氧化物为基准,按质量百分比计,包括以下组分:71.5~74%的SiO 2、6.2~8.5%的Al 2O 3、1.7~2.6%的P 2O 5、0.1~1.7%的B 2O 3、10~12%的Li 2O、0.1~2%的Na 2O、0.1~1.5%的CaO以及3~5%的ZrO 2
本申请提出一种玻璃组合物,通过该玻璃组合物制得的微晶玻璃能够有效解决b值偏大、雾度偏高,以及化学强化过程出现的晶体含量降低、双晶相的互锁结构被破坏的问题。
按质量百分比计,所述玻璃组合物包括以下组分:SiO 272~74.3%、Al 2O 37~8.5%、P 2O 51.8~3%、Li 2O10.2~12.5%、Na 2O0.5~2%以及ZrO 23.5~4.7%。
首先需说明的是,本申请期望的微晶玻璃晶相透锂长石分子式为LiAlSi 4O 10、二硅酸锂分子式为Li 2Si 2O 5。在计算各组分的质量百分比,以玻璃组合物中SiO 2、Al 2O 3、P 2O 5、B 2O 3、Li 2O、Na 2O以及ZrO 2的质量之和为基准,或者以玻璃组合物中SiO 2、Al 2O 3、P 2O 5、Li 2O、Na 2O以及ZrO 2的质量之和为基准。
在本申请玻璃组合物中引入SiO 2,是构成玻璃骨架的成分,SiO 2可以作为玻璃网络结构的主体,赋予基础玻璃及微晶玻璃较佳的化学稳定性、机械性能和成型性能。在玻璃微晶化过程中,为形成Li 2Si 2O 5和LiAlSi 4O 10晶相提供SiO 2来源,在玻璃微晶化过程中,过高SiO 2促使玻璃微晶化过程中出现石英以及石英固溶体。因此,综合考虑,SiO 2含量选择71.5wt%~74.5wt%,或者SiO 2含量选择72wt%~74.3wt%,或者SiO 2含量选择71.5wt%~74wt%。
在本申请玻璃组合物中引入Al 2O 3,属于网络中间体氧化物。非桥氧与Al形成铝氧四面体,该体积比硅氧四面体的体积大,在玻璃结构中产生更大的缝隙,有利于离子交换,使得化学强化效果更好,提高玻璃的机械性能。但Al 2O 3属于极难熔氧化物,其能快速提高玻璃高温粘度,致使玻璃澄清均化难度加大,玻璃中的气泡缺陷浓度大量增加;Al 2O 3含量过高能显著提高玻璃微晶化温度,抑制基础玻璃的晶化能力,难以形成二硅酸锂;促进晶化过程玻璃LiAlSi 4O 10过量形成,甚至在基础玻璃中形成LiAlSi 2O 6晶相生成,使得玻璃透过率降低。因此,综合考虑,Al 2O 3含量选择7.3wt%~8.7wt%,或者Al 2O 3含量选择6.2wt%~8.5wt%,或者Al 2O 3含量选择7wt%~8.5wt%。
在本申请玻璃组合物中引入P 2O 5,P 2O 5更偏向于促使二硅酸锂晶体析晶。P 5+离子具有很大场强,夺氧能力强,磷氧网络结构趋于强固。由于P 5+离子场强大于Si 4+离子,P 5+离子容易结合碱金属离子从网络中分离出来,形成晶核,从而促使基础玻璃发生分相,降低成核活化能,利于玻璃的晶化。Li 2O和P 2O 5反应形成Li 3PO 4晶相,从而诱导玻璃中Li 2O和SiO 2反应形成Li 2SiO 3,并最终形成Li 2Si 2O 5晶相;此外,P 2O 5其以[PO 4]四面体相互连成网络,使玻璃网络结构呈疏松状态,网络空隙变大,有利于玻璃中Na +离子和熔盐中K +离子进行相互扩散,玻璃强化工艺过程中离子强化起促进作用,对获得较高压缩应力层起重要作用。但P 2O 5含量过高,晶化过程中将促使偏硅酸锂析出,导致玻璃相过少,无法形成足够的Li 2Si 2O 5晶相,并促使石英相的析出,难以获得具有高透过的晶化玻璃。因此,综合考虑,P 2O 5含量选择1.7wt%~3wt%,或者P 2O 5含量选择1.8wt%~3wt%,或者P 2O 5含量选择1.7wt%~2.6wt%。
在本申请玻璃组合物中引入B 2O 3,B 2O 3的加入可改善玻璃的可熔性以及降低熔点,并有助于改善玻璃表面的抗刮擦性质。在本申请的研究中发现,B 2O 3在微晶玻璃结构中以致密的[BO 4]形式存在,可有效地抑制二硅酸锂成核时(>580℃),引起的透锂长石的长大进一步造成微晶玻璃雾度大的问题;另一方面,限制了碱金属离子在微晶玻璃中的迁移,稳定微晶玻璃晶形结构。因此,综合考虑,B 2O 3含量选择0.1wt%~1.7wt%,或者B 2O 3含量选择0.1wt%~1wt%。
在本申请玻璃组合物中引入Li 2O,属于网络外体氧化物,降低玻璃的粘度,促使玻璃的熔化和澄清。Li +是化学强化处理过程中的主要交换离子。Li +离子半径小,含有Li +的玻璃离子交换速度更快,使玻璃短时间内得到更厚的强化层。Li +离子与熔融液中的Na +离子交换,并且速度比Na +与K +离子的交换速度快。高Li 2O浓度促使基础微晶化过程中Li 3PO 4形成,有助于晶化过程中形成二硅酸锂晶相和透锂长石晶相;为实现微晶化玻璃获得具有高深度的离子强化成深度,玻璃中必须有足够的Li +在化学强化过程中与Na +发生相互强化,减小晶化玻璃表面的裂纹,提供微晶玻璃的机械强度作用。但过高Li 2O玻璃粘度过低,难以获得化学稳定的玻璃组成,同时致使离子强化过程中压缩应力值过低,并且增加原料成本。因此,综合考虑,Li 2O含量选择10.2wt%~12wt%,或者Li 2O含量选择10.2wt%~12.5wt%,或者Li 2O含量选择10wt%~12wt%。
在本申请玻璃组合物中引入Na 2O,能显著降低基础玻璃的粘度,促使基础玻璃的熔化和澄清,同时降低玻璃晶化温度。促使晶化玻璃能够与硝酸钾熔盐中K +离子进行强化,从而在玻璃表面产生高压缩应力提高玻璃强度,玻璃必须有足够多的Na +存在。因此,综合考虑,Na 2O含量选择0.1wt%~2wt%,或者Na 2O含量选择0.4wt%~1.5wt%,或者Na 2O含量选择0.5wt%~2wt%。
在本申请玻璃组合物中引入ZrO 2。一方面,锆离子势能大,可以增强玻璃网络结构,ZrO 2更偏向于促使透锂长石晶体析晶;另一方面,ZrO 2有助于降低晶化过程中晶粒尺寸大小,从而提高玻璃的透过率,并能快速提高玻璃的化学稳定性。其次提高玻璃的断裂韧性和抗弯强度,氧化锆自身的晶相转变,可以产生应力诱导,提高晶化后的断裂韧性。过高ZrO 2含量导致玻璃中ZrO 2未熔物存在,从而导致玻璃无法均匀析晶。因此,综合考虑,ZrO 2含量选择3wt%~5wt%,或者ZrO 2含量选择3.1wt%~5wt%,或者ZrO 2含量选择3.5wt%~4.7wt%。
本申请的技术方案中,通过将玻璃组合物中的组分SiO 2、Al 2O 3、P 2O 5、B 2O 3、Li 2O、Na 2O以及ZrO 2之间采用特定的比重组合,结合微晶玻璃晶化工艺及强化工艺,可以显著降低b值和雾度,得到强化性能优良的微晶玻璃。
另外,在本申请玻璃组合物中引入CaO,能提高玻璃的化学稳定性和机械强度。由于CaO在玻璃结构中更容易与酸性的Al 2O 3结合,影响了硼的配位状态;另外,CaO的碱性比Na 2O大,可以补偿[AlO 4]四面体所带的负电荷,稳定微晶 玻璃中晶相结构。但CaO含量高会引起耐失透性下降。因此,综合考虑,CaO含量选择0.1wt%~1.5wt%。
本申请提供的技术方案中,通过将玻璃组合物中的组分SiO 2、Al 2O 3、P 2O 5、B 2O 3、Li 2O、Na 2O、CaO以及ZrO 2之间采用特定的比重组合,结合微晶玻璃晶化工艺及强化工艺,可以显著改善化学强化过程出现的晶体含量降低、双晶相的互锁结构被破坏的情况,得到强化性能优良的微晶玻璃。
在一实施例中,玻璃组合物中的组分包括SiO 2、Al 2O 3、P 2O 5、Li 2O、Na 2O以及ZrO 2,所述玻璃组合物各组分之间满足:2.9≤W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)≤5.2。记A=W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O),W代表该组分占所有氧化物组分质量之和的质量百分比,且A值为该公式计算得到的质量百分比的分子值。若A值偏低,SiO 2全部进入晶相,相对的Al 2O 3或Li 2O过剩;若A值过高,Al 2O 3或Li 2O全部进入晶相,剩余的SiO 2以玻璃相中的网络骨架结构存在,微晶玻璃的总晶相含量偏低。如此,通过将A值控制在上述范围内,避免Al 2O 3或Li 2O过剩,有效提高微晶玻璃的总晶相含量。优选地,4.5≤W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)≤5.2。
所述玻璃组合物各组分之间满足:0.26≤[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)]≤0.85。记B=[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)],W代表该组分占所有氧化物组分质量之和的质量百分比。若B值过低,易产生β-石英等不期望晶相,且透锂长石晶相的形成比例多、晶粒易长大,导致微晶比例半透明甚至失透。若B值过高,微晶玻璃中玻璃相比例增大,无法充分发挥微晶玻璃性能优势。如此,通过将B值控制在上述范围内,充分发挥微晶玻璃性能优势,避免微晶玻璃微晶比例半透明甚至失透。优选地,0.42≤[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)]≤0.66。
所述玻璃组合物各组分之间满足:1.17≤W(ZrO 2)/W(P 2O 5)≤2.61。记C 1=W(ZrO 2)/W(P 2O 5),W代表该组分占所有氧化物组分质量之和的质量百分比。通过将C 1值控制在上述范围内,降低液-液表面活化能使之分相,可以在较低的温度下成核及析晶。进而实现液相结晶和不稳分解导致相界面的发展,降低成核的活化能或能量势垒,降低成核温度和析晶温度。两种晶相会争夺硅源和锂源,即破坏对方晶相已形成的晶相结构用以形成自己晶相,形成的透锂长石和二硅酸锂的晶相量接近(W(Li 2Si 2O 5)/W(LiAlSi 4O 10)=0.91~1.06,下述详细说明),晶体尺寸均匀且<100nm,满足光学可见的基本要求。C 1值过高或过低,导致单一晶相增多且易长大,微晶可见光透过率降低、雾度增大。优选地,1.5≤W(ZrO 2)/W(P 2O 5)≤2.1。
所述玻璃组合物各组分之间满足:2.5≤[W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)]/W(Na 2O)≤5.8。记D=[W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)]/W(Na 2O),W代表该组分占所有氧化物组分质量之和的质量百分比。通过将D值控制在上述范围内,有助于稳定玻璃晶型结构,特别是强化强化过程中,抑制锂离子的迁移。进一步维持微晶玻璃透锂长石和二硅酸锂形成的互锁结构,提升微晶玻璃的性能。D值过高,微晶玻璃化学强化离子难以交换;D值过低无法维持微晶玻璃透锂长石和二硅酸锂形成的互锁结构,化学强化过程中微晶结构遭到破坏。优选地,3.57≤[W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)]/W(Na 2O)≤5。
在一实施例中,优选玻璃组合物各组分满足以下条件:SiO 272.8~73.9%、Al 2O 37.4~8%、P 2O 52.1~2.6%、Li 2O10.7~11.7%、Na 2O0.9~1.4%以及ZrO 23.9~4.4%。由此玻璃组合物得到的微晶玻璃性能进一步被优化。
在一实施例中,玻璃组合物中的组分SiO 2、Al 2O 3、P 2O 5、B 2O 3、Li 2O、Na 2O以及ZrO 2所述微晶玻璃各组分之间满足:-1.1≤W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)≤6.7。记A=W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O),W代表该组分占所有组分质量之和的质量百分比,且A值为该公式计算得到的质量百分比的分子值。若A值偏低,SiO 2全部进入晶相,相对的Al 2O 3或Li 2O过剩;透锂长石晶相的形成比例多、晶粒易长大,导致微晶比例半透明甚至失透。若A值过高,Al 2O 3或Li 2O全部进入晶相,剩余的SiO 2以玻璃相中的网络骨架结构存在,微晶玻璃的总晶相含量偏低。如此,通过将A值控制在上述范围内,避免微晶玻璃微晶比例半透明甚至失透,有效提高微晶玻璃的总晶相含量。
所述微晶玻璃各组分之间满足:0.19≤[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)]≤0.98。记B=[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)],W代表该组分占所有组分质量之和的质量百分比。若B值过低,微晶玻璃中玻璃相比例增大,无法充分发挥微晶玻璃性能优势。若B值过高,易产生β-石英等不期望晶相,且透锂长石晶相的形成比例多、晶粒易长大,导致微晶比例半透明甚至失透。如此,通过将B值控制在上述范围内,充分发挥微晶玻璃性能优势,避免微晶玻璃微晶比例半透明甚至失透。
所述微晶玻璃各组分之间满足:0.06≤[W(ZrO 2)-3×W(B 2O 3)]/W(P 2O 5)≤1.57。记C 2=[W(ZrO 2)-3×W(B 2O 3)]/W(P 2O 5),W代表该组分占所有组分质量之和的质量百分比。通过将C 2值控制在上述范围内,降低液-液表面活化能使之分相,可以在较低的温度下成核及析晶。实现液相结晶和不稳分解导致相界面的发展,降低成核的活化能或能量势垒,降低成核温度和析晶温度。两种晶相会争夺硅源和锂源,即破坏对方晶相已形成的晶相结构用以形成自己晶相,形成的透锂长石和二硅酸锂的晶相量接近,晶体尺寸均匀且<100nm,满足光学可见的基本要求。C 2值过高或过低,都会导致单一晶相增多且易长大,微晶可见光透过率降低、雾度增大。
在一实施例中,优选玻璃组合物各组分满足以下条件:SiO 2,72~74%;Al 2O 3,7.5~8.4%;P 2O 5,2~2.8%;B 2O 3,0.3~0.8%;Li 2O,10.5~11.8%;Na 2O,0.5~1.3%;ZrO 2,3.4~4.7%。由此玻璃组合物得到的微晶玻璃性能进一步被优化。
针对该玻璃组合物各组分配比,更优选地,所述微晶玻璃各组分之间满足:0.6≤W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)≤ 5.4;0.28≤[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)]≤0.8;0.5≤[W(ZrO 2)-3×W(B 2O 3)]/W(P 2O 5)≤1.36。
在一实施例中,玻璃组合物各组分满足以下条件:SiO 2,72.5~73.5%;Al 2O 3,7.7~8%;P 2O 5,2.1~2.5%;B 2O 3,0.5~0.7%;Li 2O,11~11.5%;Na 2O,0.7~1.1%;ZrO 2,3.8~4.4%。由此玻璃组合物得到的微晶玻璃性能达到更优。
针对该玻璃组合物各组分配比,更优选地,所述微晶玻璃各组分之间满足:2.5≤W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)≤4.3;0.43≤[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)]≤0.64;0.81≤[W(ZrO 2)-3×W(B 2O 3)]/W(P 2O 5)≤1.16。
在一实施例中,优选玻璃组合物各组分满足以下条件:72~73.5%的SiO 2、6.8~8.2%的Al 2O 3、2~2.4%的P 2O 5、0.4~1.1%的B 2O 3、10.8~11.7%的Li 2O、0.4~1.7%的Na 2O、0.3~1%的CaO以及3.3~4.4%的ZrO 2。由此玻璃组合物得到的微晶玻璃性能进一步被优化。
在一实施例中,玻璃组合物中的组分包括SiO2、Al2O3、P2O5、B2O3、Li2O、Na2O、CaO以及ZrO2,所述玻璃组合物各组分之间满足:2.3≤W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)≤10.3。记A=W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O),W代表该组分的质量百分比,且A值为该公式计算得到的质量百分比的分子值。若A值偏低,SiO 2全部进入晶相,相对的Al 2O 3或Li 2O过剩;透锂长石晶相的形成比例多、晶粒易长大,导致微晶比例半透明甚至失透。若A值过高,Al 2O 3或Li 2O全部进入晶相,剩余的SiO 2以玻璃相中的网络骨架结构存在,微晶玻璃的总晶相含量偏低。如此,通过将A值控制在上述范围内,避免微晶玻璃微晶比例半透明甚至失透,有效提高微晶玻璃的总晶相含量。在一实施例中,优选2.7≤W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)≤7.8。
所述玻璃组合物各组分之间满足:0.27≤[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)]≤0.87。记B=[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)],W代表该组分的质量百分比。若B值过低,微晶玻璃中玻璃相比例增大,无法充分发挥微晶玻璃性能优势。若B值过高,易产生β-石英等不期望晶相,且透锂长石晶相的形成比例多、晶粒易长大,导致微晶比例半透明甚至失透。如此,通过将B值控制在上述范围内,充分发挥微晶玻璃性能优势,避免微晶玻璃微晶比例半透明甚至失透。在一实施例中,优选0.46≤[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)]≤0.77。
所述玻璃组合物各组分之间满足:2≤[W(ZrO 2)-W(CaO)]/[W(P 2O 5)-W(B 2O 3)]≤3.22。记C 3=[W(ZrO 2)-W(CaO)]/[W(P 2O 5)-W(B 2O 3)],W代表该组分的质量百分比。通过将C 3值控制在上述范围内,一方面,降低液-液表面活化能使之分相,可以在较低的温度下成核及析晶;形成的透锂长石和二硅酸锂的晶相量接近,晶体尺寸均匀且<100nm,满足光学可见的基本要求。另一方面,稳定玻璃晶型结构,特别是化学强化过程中,抑制锂离子的迁移,改善化学强化后微晶玻璃晶体含量。另外,C 3值过高或过低会影响微晶可见光透过率、b值和雾度。在一实施例中,优选2.06≤[W(ZrO 2)-W(CaO)]/[W(P 2O 5)-W(B 2O 3)]≤2.31。
在本申请实施例中,还提出一种微晶玻璃,包括如上所述的玻璃组合物。所述微晶玻璃包括上述玻璃组合物的全部技术特征,因此,具备由上述玻璃组合物带来的全部技术效果,在此不一一赘述。
在一实施例中,所述微晶玻璃的厚度为0.3~1.5mm。微晶玻璃的板厚越薄,越可以使微晶玻璃轻量化。
在一实施例中,所述微晶玻璃的晶相主要为二硅酸锂和透锂长石,所述微晶玻璃的晶相总含量为60%~90%,所述二硅酸锂的含量>30%,所述透锂长石的含量>30%。保证二硅酸锂和透锂长石在该范围内,使得微晶玻璃的晶相含量大且两晶相比例均衡,以使微晶玻璃的强化性能更好。
在一实施例中,所述微晶玻璃的厚度为0.3~1.5mm。微晶玻璃的板厚越薄,越可以使微晶玻璃轻量化。
在本申请实施例中,还提出一种微晶玻璃,包括如上所述的玻璃组合物,所述微晶玻璃中含有晶相Li 2Si 2O 5和晶相LiAlSi 4O 10,所述微晶玻璃包括上述玻璃组合物的全部技术特征,因此,具备由上述玻璃组合物带来的全部技术效果,在此不一一赘述。
所述微晶玻璃还需满足:0.91≤W(Li 2Si 2O 5)/W(LiAlSi 4O 10)≤1.06。记E=W(Li 2Si 2O 5)/W(LiAlSi 4O 10),W代表该晶相占微晶玻璃的质量百分比。通过将E值控制在上述范围内,保证形成的透锂长石和二硅酸锂的晶相量接近,进一步提升微晶玻璃的性能。进一步优选0.97≤W(Li 2Si 2O 5)/W(LiAlSi 4O 10)≤1.03。
所述微晶玻璃还需满足:10.44≤M≤12.54;其中,M=1.3×[W(Li 2Si 2O 5)/W(LiAlSi 4O 10)]×{0.86×[W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)]+1.83×[(W(Li 2O)-W(Al 2O 3))/(W(P 2O 5)+W(ZrO 2))]+1.67×[W(ZrO 2)/W(P 2O 5)]+0.25×[(W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O))/W(Na 2O)]}。也即,M=1.3×E×(0.86×A+1.83×B+1.67×C+0.25×D),经研究发现,M与微晶玻璃的断裂韧性KIC存在线性关系,如图3所示,根据该线性关系,通过将M值控制在上述范围内,有助于提高微晶玻璃的断裂韧性。进一步优选地,11.85≤M≤12.54。
在一实施例中,所述微晶玻璃的厚度为0.3~1.5mm。微晶玻璃的板厚越薄,越可以使微晶玻璃轻量化。
此外,本申请还提出一种微晶玻璃的制备方法,用于制备上述的微晶玻璃,如图1所示,包括以下步骤:
S10、称取如上所述的玻璃组合物。
S20、将所述玻璃组合物混合后熔化,然后澄清、均化、成型、退火,最后切割得到基础玻璃。
具体地,步骤S20中,所述成型的方法包括浮法成型、溢流成型、压延成型或狭缝下拉成型。其它澄清、均化、退火和切割等工艺为玻璃技术领域的常规工序,在此不再展开赘述,经过上述工艺后,得到的基础玻璃厚度为0.3~1.5mm。
S30、对所述基础玻璃进行热处理,得到微晶玻璃。
具体地,步骤S30包括:将所述基础玻璃从室温以20~60min时间升温至510~540℃,进行第一次核化处理,所述第一次核化处理时间为3~8h;以5~30min时间升温至580~610℃,进行第二次核化处理,所述第二次核化处理时间为3~8h;以5~30min时间升温至650~680℃,进行晶化处理,所述晶化处理时间为3~8h;冷却至室温,得到微晶玻璃。
在一实施例中,如图2所示,步骤S30之后,还包括:
S40、将所述微晶玻璃预处理后放入离子交换浴中进行盐浴,得到化学强化微晶玻璃。其中,所述离子交换浴按质量百分比包括20~40%的NaNO 3和60~80%的KNO 3;所述盐浴强化温度为420~500℃;所述盐浴强化时间为3~8h。
由于微晶玻璃中晶体含量高,玻璃相与晶相存在结构上的差异,而形成结构空穴;如采用含有>40wt%NaNO 3熔盐,虽然离子交换时短时间内Na +/Li +可以达到较深的离子深度,但Na +容易团聚在微晶相与玻璃相的空穴内,很难形成压应力。玻璃相中Na +/Li +交换过快,到时玻璃相与微晶相差异进一步增大,容易引起b值增加。
采用上述强化制度可以减缓晶相中Na +/Li +交换速度,有利于减少微晶相与玻璃相的空穴内Na +团聚,有效的形成压应力;可以降低玻璃相和交换速度,减少玻璃相与晶相的差别,进一步降低玻璃b值。
需要说明的是,在步骤S40中,所述预处理的步骤具体包括:将所述微晶玻璃置于300~330℃下保温5~20min。上述预处理为玻璃技术领域的常规手段,在此不做详细说明。
本申请还提出一种电子显示终端,所述电子显示终端包括上述的微晶玻璃,该微晶玻璃的具体特征参照上述实施例,由于本电子显示终端采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有有益效果,在此不再一一赘述。其中,微晶玻璃用作电子显示终端的防护玻璃或保护部件,或者,微晶玻璃用作智能终端的防护玻璃,或者,微晶玻璃用作太阳电池的防护玻璃。
以下结合具体实施例和附图对本申请的技术方案作进一步详细说明,应当理解,以下实施例仅仅用以解释本申请,并不用于限定本申请。
实施例
(1)称取玻璃组合物,按质量百分比计,包括:SiO 272%、Al 2O 37%、P 2O 53%、Li 2O12.5%、Na 2O2%以及ZrO 23.5%。
(2)将所述玻璃组合物混合后熔化,然后澄清、均化、成型、退火,最后切割得到基础玻璃。
(3)将所述基础玻璃从室温以20min时间升温至530℃,进行核化处理,所述核化处理时间为3h;以30min时间升温至680℃,进行晶化处理,所述晶化处理时间为3h;冷却至室温,得到微晶玻璃。
(4)提供离子交换浴,所述离子交换浴按质量百分比包括40%NaNO 3和60%的KNO 3,将所述微晶玻璃预处理后放入所述离子交换浴中进行盐浴,得到化学强化微晶玻璃,所述盐浴强化温度为420℃,所述盐浴强化时间为3h。
按照表I1和表I2所示的各实施例的玻璃组合物组分配比称取原材料,并参照实施例A1的制备方法分别制备得到其它实施例A2至实施例A14的微晶玻璃、化学强化微晶玻璃。
按照表I3所示对比例A1至A5的玻璃组合物组分配比称取原材料,并参照实施例A1的制备方法分别制备得到对比例A1至A5的微晶玻璃、化学强化微晶玻璃。
以实施例A8和实施例A14的玻璃组合物进行实施例A1中制备方法的步骤(1)-(3),制备得到微晶玻璃,制备时具体工艺参数请参阅表I4。
以实施例A8和实施例A14的玻璃组合物进行实施例A1中制备方法的步骤(1)-(4),制备得到化学强化微晶玻璃,制备时步骤(4)的具体工艺参数请参阅表I5,其余步骤(1)-(3)与实施例A1保持一致。
试验例
测试方法和测试设备如下:
利用X射线衍射分析仪进行主晶相测试。
利用扫描电子显微镜进行晶体外观形貌观测。
利用Datacolor650超高精度台式分光光度测色仪进行颜色b值的测试。
利用分光光度计参照标准ISO13468-1:1996进行可见光透过率测试。
玻璃的雾度通过ASTMD1003-92测试测得。
参照ASTM E-1820测定玻璃断裂韧性KIC,单位为MPa·m 1/2
整机砂纸跌落性能通过手机受控跌落试验机测得,具体测试条件为:180目砂纸,195g总重,60cm基高,5cm递增,每高度1次,直至破碎为止。
按照试验例的测试方法和测试设备分别测试实施例B1至B14得到的微晶玻璃和化学强化微晶玻璃、对比例A1至A5得到的微晶玻璃和化学强化微晶玻璃、按表I4的工艺参数制得的微晶玻璃、按表I5的工艺参数制得的化学强化微晶玻璃的性能,并分别填入对应的表格中。
应当理解的是,上述测试方式和测试设备,是本行业领域内评价玻璃相关性能的常用方式,只是表征或是评价本申请技术方案和技术效果的一种手段,亦可采用其他测试方式和测试设备,并不影响最终结果。
表I1实施例A1至A7玻璃组合物组分和玻璃性能
Figure PCTCN2022139075-appb-000001
表I2实施例A8至A14玻璃组合物组分和玻璃性能
Figure PCTCN2022139075-appb-000002
Figure PCTCN2022139075-appb-000003
表I3对比例A1至A5玻璃组合物组分和玻璃性能
Figure PCTCN2022139075-appb-000004
表I4以实施例A8和A14的玻璃组合物制备微晶玻璃的工艺参数和性能
Figure PCTCN2022139075-appb-000005
Figure PCTCN2022139075-appb-000006
其中,核化处理以及晶化处理中时间代表升温用时,温度代表升温目标温度,时间代表处理时间。
表I5以实施例A8和A14的玻璃组合物制备化学强化微晶玻璃的工艺参数和性能
Figure PCTCN2022139075-appb-000007
由表I1、表I2、表I4和表I5所示的各实施例微晶玻璃的性能测试结果可以看出,采用本申请技术方案的实施例A1-A14,热处理后得到的微晶玻璃中晶相二硅酸锂Li 2Si 2O 5>30%,晶相透锂长石LiAlSi 4O 10>30%;微晶玻璃中总晶相>68%。所述微晶玻璃0.7mm透过率>91%、雾度<0.17、b值<0.4。所述微晶玻璃晶粒平均晶体尺寸为<100nm。所述微晶玻璃断裂韧性KIC>1.1MPa·m 1/2,抗跌落高度>200cm。
由表I3可看出,对比例A1,SiO 2=71.5%,A=0.5,D=0.42。不符合本申请玻璃组合物的要求,热处理微晶玻璃,Li 2Si 2O 5/LiAlSi 4O 10=0.81,晶体尺寸>100nm;透过率低、b值过大、雾度大;化学强化后机械性能较差。
对比例A2,A=8,D=6.67。不符合本申请玻璃组合物的要求,热处理微晶玻璃中微晶相含量少,Li 2Si 2O 5/LiAlSi 4O 10=0.6,化学强化后机械性能较差。
对比例A3,Li 2O=10%,B=0.2。不符合本申请玻璃组合物的要求,热处理微晶玻璃中微晶相含量少,Li 2Si 2O 5/LiAlSi 4O 10=0.74,晶体尺寸>100nm;透过率低、b值过大、雾度大;化学强化后机械性能较差。
对比例A4,P 2O 5=1.7%,A=2.1,C 1=2.82,D=2.33。不符合本申请玻璃组合物的要求,热处理微晶玻璃中微晶相含量少,Li 2Si 2O 5/LiAlSi 4O 10=0.55,晶体尺寸>100nm;且透过率低、b值过大、雾度大;化学强化后机械性能较差。
对比例A5,P 2O 5=3.8%,A=2.7,C 1=0.97,D=2.45。不符合本申请玻璃组合物的要求,热处理微晶玻璃中微晶相含量少,Li 2Si 2O 5/LiAlSi 4O 10=1.7,晶体尺寸>100nm;且透过率低、b值过大、雾度大;化学强化后机械性能较差。
相较于对比例中化学强化微晶玻璃的断裂韧性KIC值(0.43~0.72MPa·m 1/2),本申请实施例中化学强化微晶玻璃的断裂韧性KIC值(1.012~1.78MPa·m 1/2)更高,说明本申请实施例微晶玻璃在化学强化过程出现的晶体含量降低、双晶相的互锁结构被破坏的情况被显著改善;相较于对比例中微晶玻璃的高b值和高雾度,本申请实施例中微晶玻璃的b值和雾度显然更低,说明本申请实施例微晶玻璃实现了b值和雾度的降低。最终,得到的化学强化微晶玻璃强化性能优良。
实施例
(1)称取玻璃组合物,按质量百分比算,包括:SiO 271.5%、Al 2O 38.7%、P 2O 53%、B 2O 30.1%、Li 2O10.2%、Na 2O1.5%以及ZrO 25%,A=-1.1,B=0.19,C 2=1.57。
(2)将所述玻璃组合物混合后熔化,然后澄清、均化、成型、退火,最后切割得到基础玻璃。
(3)将所述基础玻璃从室温以20min时间升温至510℃,进行第一次核化处理,所述第一次核化处理时间为3h;以5min时间升温至580℃,进行第二次核化处理,所述第二次核化处理时间为3h;以30min时间升温至650℃,进行晶化处理,所述晶化处理时间为3h;冷却至室温,得到微晶玻璃。
(4)将所述微晶玻璃预处理后放入离子交换浴中进行盐浴,得到化学强化微晶玻璃,所述离子交换浴按质量百分比包括20%的NaNO 3和80%的KNO 3,所述盐浴强化温度为420℃,所述盐浴强化时间为3h。
按照表II1和表II2所示的各实施例的玻璃组合物组分配比称取原材料,并参照实施例B1的制备方法分别制备得到其它实施例B2至实施例B15的微晶玻璃、化学强化微晶玻璃。
按照表II3所示对比例B1至B7的玻璃组合物组分配比称取原材料,并参照实施例B1的制备方法分别制备得到对比例B1至B7的微晶玻璃、化学强化微晶玻璃。
以实施例B1和B9的玻璃组合物进行实施例B1中制备方法的步骤(1)-(3),制备得到微晶玻璃,制备时具体工艺参数请参阅表II4。
试验例
测试方法和测试设备如下:
利用X射线衍射分析仪进行主晶相测试。
利用扫描电子显微镜进行晶体外观形貌观测。
利用Datacolor650超高精度台式分光光度测色仪进行颜色b值的测试。
利用分光光度计参照标准ISO13468-1:1996进行可见光透过率测试。
玻璃的雾度通过ASTMD1003-92测试测得。
整机砂纸跌落性能通过手机受控跌落试验机测得,具体测试条件为:180目砂纸,195g总重,60cm基高,5cm递增,每高度1次,直至破碎为止。
按照试验例的测试方法和测试设备分别测试实施例B1至B15得到的微晶玻璃和化学强化微晶玻璃、对比例B1至B7得到的微晶玻璃和化学强化微晶玻璃、按表II4的工艺参数制得的微晶玻璃的性能,并分别填入对应的表格中。
应当理解的是,上述测试方式和测试设备,是本行业领域内评价玻璃相关性能的常用方式,只是表征或是评价本申请技术方案和技术效果的一种手段,亦可采用其他测试方式和测试设备,并不影响最终结果。
表II1实施例B1至B8玻璃组合物组分和玻璃性能
Figure PCTCN2022139075-appb-000008
Figure PCTCN2022139075-appb-000009
表II2实施例B9至B15玻璃组合物组分和玻璃性能
Figure PCTCN2022139075-appb-000010
表II3对比例B1至B7玻璃组合物组分和玻璃性能
Figure PCTCN2022139075-appb-000011
Figure PCTCN2022139075-appb-000012
表II4以实施例B1和B9的玻璃组合物制备微晶玻璃的工艺参数和性能
Figure PCTCN2022139075-appb-000013
其中,第一次核化处理、第二次核化处理以及晶化处理中时间代表升温用时,温度代表升温目标温度,时间代表处理时间。
由表II1、表II2和表II4所示的各实施例玻璃的性能测试结果可以看出,采用本申请技术方案的实施例B1-B15,微晶玻璃中二硅酸锂Li 2Si 2O 5占30%~45%,透锂长石LiAlSi 4O 10占30%~45%,总晶相占微晶玻璃的60%~90%、晶体尺寸均匀,平均晶体尺寸为<100nm。0.7mm的微晶玻璃在560nm波长处透过率>91%、雾度<0.17、b值<0.5;抗跌落高度>200cm。
由表II3可看出,对比例1,B 2O 3=0%,C 2=1.58。不符合本申请玻璃组合物的要求,热处理微晶玻璃中微晶相含量少、晶体尺寸>100nm;且透过率低、b值过大、雾度大。
对比例B2,B 2O 3=1.1%,但是C 2=-0.22。不符合本申请玻璃组合物的要求,热处理微晶玻璃中微晶相含量少、晶体尺寸>100nm;且透过率低、b值过大、雾度大;抗跌落性能差。
对比例B3,Al 2O 3=9.5%,A=-4.8,B=0.08。不符合本申请玻璃组合物的要求,热处理微晶玻璃中微晶相含量少、晶体尺寸>100nm;且透过率低、b值过大、雾度大;抗跌落性能差。
对比例B4,SiO 2=74.7%,A=12.1。不符合本申请玻璃组合物的要求,热处理微晶玻璃中微晶相含量少;抗跌落性能差。
对比例B5,Li 2O=13%,B=1.08。不符合本申请玻璃组合物的要求,热处理微晶玻璃中微晶相含量少、晶体尺寸>100nm;且透过率低、b值过大、雾度大。
对比例B6,Al 2O 3=9%,B=-0.06。不符合本申请玻璃组合物的要求,热处理微晶玻璃中微晶相含量少;抗跌落性能差。
对比例B7,虽然玻璃组分在本申请要求内,但是C 2=1.91,不符合本申请玻璃组合物的要求,热处理微晶玻璃中微晶相含量少、晶体尺寸>100nm;且透过率低、b值过大、雾度大。
相较于对比例中微晶玻璃的b值和雾度,本申请实施例中微晶玻璃的b值显著减小、雾度显著降低,说明本申请实施例能够有效解决目前制得的透明微晶玻璃b值偏大,雾度偏高的问题,得到的微晶玻璃强化性能优良。
实施例
(1)称取玻璃组合物,按质量百分比计,包括:SiO 271.5%、Al 2O 36.2%、P 2O 51.7%、B 2O 30.1%、Li 2O12%、Na 2O2%、CaO1.5%以及ZrO 25%,A=10.3,B=0.87,C 3=2.19。
(2)将所述玻璃组合物混合后熔化,然后澄清、均化、成型、退火,最后切割得到基础玻璃。
(3)将所述基础玻璃从室温以20min时间升温至510℃,进行第一次核化处理,所述第一次核化处理时间为3h;以5min时间升温至580℃,进行第二次核化处理,所述第二次核化处理时间为3h;以30min时间升温至650℃,进行晶化处理,所述晶化处理时间为3h;冷却至室温,得到微晶玻璃。
(4)将所述微晶玻璃预处理后放入离子交换浴中进行盐浴,得到化学强化微晶玻璃,所述离子交换浴按质量百分比包括40%的NaNO 3和60%的KNO 3,所述盐浴强化温度为500℃,所述盐浴强化时间为8h。
按照表III1和表III2所示的各实施例的玻璃组合物组分配比称取原材料,并参照实施例C1的制备方法分别制备得到其它实施例C2至实施例C16的微晶玻璃、化学强化微晶玻璃。
按照表III3所示对比例C1至C6的玻璃组合物组分配比称取原材料,并参照实施例C1的制备方法分别制备得到对比例C1至C6的微晶玻璃、化学强化微晶玻璃。
以实施例C1和C8的玻璃组合物进行实施例C1中制备方法的步骤(1)-(3),制备得到微晶玻璃,制备时具体工艺参数请参阅表III4。
以实施例C1和C8的玻璃组合物进行实施例C1中制备方法的步骤(1)-(4),制备得到化学强化微晶玻璃,制备时步骤(4)的具体工艺参数请参阅表III5,其余步骤(1)-(3)与实施例C1保持一致。
试验例
测试方法和测试设备如下:
利用X射线衍射分析仪进行主晶相测试。
利用扫描电子显微镜进行晶体外观形貌观测。
利用Datacolor650超高精度台式分光光度测色仪进行颜色b值的测试。
利用分光光度计参照标准ISO13468-1:1996进行可见光透过率测试。
玻璃的雾度通过ASTMD1003-92测试测得。
整机砂纸跌落性能通过手机受控跌落试验机测得,具体测试条件为:180目砂纸,195g总重,60cm基高,5cm递增,每高度1次,直至破碎为止。
按照试验例的测试方法和测试设备分别测试实施例C1至C16得到的微晶玻璃和化学强化微晶玻璃、对比例C1至C6得到的微晶玻璃和化学强化微晶玻璃、按表III4的工艺参数制得的微晶玻璃、按表III5的工艺参数制得的化学强化微晶玻璃的性能,并分别填入对应的表格中。
应当理解的是,上述测试方式和测试设备,是本行业领域内评价玻璃相关性能的常用方式,只是表征或是评价本申请技术方案和技术效果的一种手段,亦可采用其他测试方式和测试设备,并不影响最终结果。
表III1实施例C1至C8玻璃组合物组分和玻璃性能
Figure PCTCN2022139075-appb-000014
Figure PCTCN2022139075-appb-000015
表III2实施例C9至C16玻璃组合物组分和玻璃性能
Figure PCTCN2022139075-appb-000016
Figure PCTCN2022139075-appb-000017
表III3对比例C1至C6玻璃组合物组分和玻璃性能
Figure PCTCN2022139075-appb-000018
表III4以实施例C1和C8的玻璃组合物制备微晶玻璃的工艺参数和性能
Figure PCTCN2022139075-appb-000019
Figure PCTCN2022139075-appb-000020
其中,第一次核化处理、第二次核化处理以及晶化处理中时间代表升温用时,温度代表升温目标温度,时间代表处理时间。
表III5以实施例C1和C8的玻璃组合物制备化学强化微晶玻璃的工艺参数和性能
Figure PCTCN2022139075-appb-000021
由表III1、表III2、表III4和表III5所示的各实施例玻璃的性能测试结果可以看出,采用本申请技术方案的实施例C1-C16,化学强化微晶玻璃中二硅酸锂Li 2Si 2O 5>30%,透锂长石LiAlSi 4O 10>30%;微晶玻璃的晶相总含量和化学强化微 晶玻璃的晶相总含量均为60%~90%;微晶玻璃内晶粒平均晶体尺寸为<100nm;微晶玻璃0.7mm可见光透过率>91%,抗跌落高度>200cm。
由表III3可看出,对比例C1,Al 2O 3=9%、A=-4、C 3=1。不符合本申请玻璃组合物的要求,热处理微晶玻璃中微晶相含量少、晶体尺寸>100nm;且透过率低、b值过大、雾度大。
对比例C2,Al 2O 3=5.5%、A=18.5、C 3=1.2。不符合本申请玻璃组合物的要求,热处理微晶玻璃中微晶相含量少,抗跌落性能相对较差。
对比例C3,Li 2O=12.5%,B=1.04、C 3=1.1。不符合本申请玻璃组合物的要求,热处理微晶玻璃晶体尺寸>100nm;且透过率低、b值过大、雾度大。
对比例C4,Li 2O=9%,B=0.15、C 3=1.22。不符合本申请玻璃组合物的要求,微晶玻璃化强后晶相含量少,抗跌落性能相对较差。
对比例C5,CaO=1.6%,ZrO 2=2.6%,C 3=0.43不符合本申请玻璃组合物的要求,热处理微晶玻璃晶体尺寸>100nm;且透过率低、b值过大、雾度大;微晶玻璃化强后晶相含量少,抗跌落性能相对较差。
对比例C6,B 2O 3=0,C 3=1.64。不符合本申请玻璃组合物的要求,热处理微晶玻璃晶体尺寸>100nm;且透过率低、b值过大、雾度大;微晶玻璃化强后晶相含量少,抗跌落性能相对较差。
相较于对比例中化学强化微晶玻璃相对微晶玻璃的晶相总含量减少量,本申请实施例中化学强化微晶玻璃相对微晶玻璃的晶相总含量减少量更少,说明本申请实施例微晶玻璃在化学强化过程出现的晶体含量降低、双晶相的互锁结构被破坏的情况被显著改善,得到的化学强化微晶玻璃强化性能优良。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包括在本申请的专利保护范围内。

Claims (20)

  1. 一种玻璃组合物,其中,按质量百分比算,包括:
    SiO 2,71.5~74.5%;
    Al 2O 3,6.2~8.7%;
    P 2O 5,1.7~3%;
    Li 2O,10~12.5%;
    Na 2O,0.1~2%;
    ZrO 2,3~5%。
  2. 如权利要求1所述的玻璃组合物,其中,还包括:B 2O 3,0.1~1.7%,和/或,0.1~1.5%的CaO。
  3. 如权利要求2所述的玻璃组合物,其中,-1.1≤W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)≤6.7。
  4. 如权利要求2所述的玻璃组合物,其中,0.19≤[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)]≤0.98。
  5. 如权利要求2所述的玻璃组合物,其中,0.06≤[W(ZrO 2)-3×W(B 2O 3)]/W(P 2O 5)≤1.57。
  6. 如权利要求2所述的玻璃组合物,其中,按质量百分比算,包括:
    SiO 2,72~74%;
    Al 2O 3,7.5~8.4%;
    P 2O 5,2~2.8%;
    B 2O 3,0.3~0.8%;
    Li 2O,10.5~11.8%;
    Na 2O,0.5~1.3%;
    ZrO 2,3.4~4.7%。
  7. 如权利要求6所述的玻璃组合物,其中,0.6≤W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)≤5.4;
    0.28≤[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)]≤0.8;
    0.5≤[W(ZrO 2)-3×W(B 2O 3)]/W(P 2O 5)≤1.36。
  8. 如权利要求2所述的玻璃组合物,其中,2.9≤W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)≤5.2;
    0.26≤[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)]≤0.85;
    1.17≤W(ZrO 2)/W(P 2O 5)≤2.61;
    2.5≤[W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)]/W(Na 2O)≤5.8。
  9. 如权利要求2所述的玻璃组合物,其特征在于,2≤[W(ZrO 2)-W(CaO)]/[W(P 2O 5)-W(B 2O 3)]≤3.22。
  10. 如权利要求3所述的玻璃组合物,其特征在于,2.06≤[W(ZrO 2)-W(CaO)]/[W(P 2O 5)-W(B 2O 3)]≤2.31。
  11. 如权利要求2所述的玻璃组合物,其特征在于,2.3≤W(SiO 2)-6×W(Al 2O 3)-2×W(Li 2O)≤10.3;
    0.27≤[W(Li 2O)-W(Al 2O 3)]/[W(P 2O 5)+W(ZrO 2)]≤0.87。
  12. 一种微晶玻璃,其中,包括如权利要求1至11任意一项所述的玻璃组合物。
  13. 如权利要求12所述的微晶玻璃,其中,所述微晶玻璃的厚度为0.3~1.5mm。
  14. 如权利要求12所述的微晶玻璃,其中,所述微晶玻璃含有晶相Li 2Si 2O 5和晶相LiAlSi 4O 10
  15. 一种微晶玻璃的制备方法,其中,包括以下步骤:
    S10、称取如权利要求1至11任意一项所述的玻璃组合物;
    S20、将所述玻璃组合物混合后熔化,然后澄清、均化、成型、退火,最后切割得到基础玻璃;
    S30、对所述基础玻璃进行热处理,得到微晶玻璃。
  16. 如权利要求15所述的微晶玻璃的制备方法,其中,所述对所述基础玻璃进行热处理,得到微晶玻璃的步骤包括:
    将所述基础玻璃从室温以20~60min时间升温至530~570℃,进行核化处理3h以上;
    以5~30min时间升温至680~720℃,进行晶化处理3h以上;
    冷却至室温,得到所述微晶玻璃。
  17. 如权利要求15所述的微晶玻璃的制备方法,其中,步骤S30包括:
    将所述基础玻璃从室温以20~60min时间升温至510~540℃,进行第一次核化处理,所述第一次核化处理时间为3~8h;
    以5~30min时间升温至580~610℃,进行第二次核化处理,所述第二次核化处理时间为3~8h;
    以5~30min时间升温至650~680℃,进行晶化处理,所述晶化处理时间为3~8h;
    冷却至室温,得到微晶玻璃。
  18. 如权利要求15所述的微晶玻璃的制备方法,其中,步骤S30之后,还包括:
    S40、将所述微晶玻璃预处理后放入离子交换浴中进行盐浴,得到化学强化微晶玻璃;
    其中,所述离子交换浴按质量百分比包括20~40%的NaNO 3和60~80%的KNO 3;和/或,
    所述盐浴强化温度为420~500℃;和/或,
    所述盐浴强化时间为3~8h。
  19. 如权利要求15所述的微晶玻璃的制备方法,其中,步骤S20中,所述成型的方法包括浮法成型、溢流成型、压延成型或狭缝下拉成型。
  20. 一种电子显示终端,其中,包括如权利要求12、13或14中任一项所述的微晶玻璃。
PCT/CN2022/139075 2021-12-24 2022-12-14 玻璃组合物、微晶玻璃及其制备方法和应用 WO2023125015A1 (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
CN202111608702 2021-12-24
CN202111681556.8 2021-12-31
CN202111681556.8A CN114195392A (zh) 2021-12-24 2021-12-31 一种玻璃组合物、微晶玻璃及其制备方法和应用
CN202111682724.5A CN114195394B (zh) 2021-12-24 2021-12-31 一种玻璃组合物、微晶玻璃及其制备方法和应用
CN202111682724.5 2021-12-31
CN202111682722.6 2021-12-31
CN202111682722.6A CN114195393B (zh) 2021-12-24 2021-12-31 一种玻璃组合物、微晶玻璃及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023125015A1 true WO2023125015A1 (zh) 2023-07-06

Family

ID=80658094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139075 WO2023125015A1 (zh) 2021-12-24 2022-12-14 玻璃组合物、微晶玻璃及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN114195393B (zh)
WO (1) WO2023125015A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230150869A1 (en) * 2021-11-12 2023-05-18 Corning Incorporated Glass-ceramic articles with improved mechanical properties and low haze
CN114195393B (zh) * 2021-12-24 2022-06-28 深圳市新旗滨科技有限公司 一种玻璃组合物、微晶玻璃及其制备方法和应用
CN114671618B (zh) * 2022-04-24 2023-11-07 清远南玻节能新材料有限公司 微晶玻璃、强化玻璃及其制备方法与应用
CN115417601A (zh) * 2022-08-11 2022-12-02 湖南兆湘光电高端装备研究院有限公司 一种制备微晶玻璃的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944954A (zh) * 2017-07-26 2020-03-31 Agc株式会社 化学强化用玻璃、化学强化玻璃以及电子设备壳体
US20200148584A1 (en) * 2017-05-18 2020-05-14 Eurokera S.N.C. Method of manufacturing a lithium aluminosilicate glass product for a glass-ceramic product
CN111757858A (zh) * 2018-02-27 2020-10-09 Agc株式会社 三维形状的晶化玻璃、三维形状的化学强化玻璃以及它们的制造方法
CN111954646A (zh) * 2018-03-29 2020-11-17 康宁股份有限公司 经离子交换的玻璃陶瓷制品
CN112585101A (zh) * 2018-08-20 2021-03-30 康宁股份有限公司 具有改进的应力分布的玻璃陶瓷制品
CN113195424A (zh) * 2018-07-16 2021-07-30 康宁股份有限公司 具有改进的性质的玻璃陶瓷制品及其制造方法
CN114195392A (zh) * 2021-12-24 2022-03-18 深圳市新旗滨科技有限公司 一种玻璃组合物、微晶玻璃及其制备方法和应用
CN114195394A (zh) * 2021-12-24 2022-03-18 深圳市新旗滨科技有限公司 一种玻璃组合物、微晶玻璃及其制备方法和应用
CN114195393A (zh) * 2021-12-24 2022-03-18 深圳市新旗滨科技有限公司 一种玻璃组合物、微晶玻璃及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3862831A (en) * 1973-04-20 1975-01-28 Ibm Glass fabrication process
CN113402172B (zh) * 2021-08-06 2023-09-22 成都光明光电有限责任公司 玻璃陶瓷和玻璃陶瓷制品
CN113387586A (zh) * 2021-08-06 2021-09-14 成都光明光电股份有限公司 微晶玻璃、微晶玻璃制品及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200148584A1 (en) * 2017-05-18 2020-05-14 Eurokera S.N.C. Method of manufacturing a lithium aluminosilicate glass product for a glass-ceramic product
CN110944954A (zh) * 2017-07-26 2020-03-31 Agc株式会社 化学强化用玻璃、化学强化玻璃以及电子设备壳体
CN111757858A (zh) * 2018-02-27 2020-10-09 Agc株式会社 三维形状的晶化玻璃、三维形状的化学强化玻璃以及它们的制造方法
CN111954646A (zh) * 2018-03-29 2020-11-17 康宁股份有限公司 经离子交换的玻璃陶瓷制品
CN113195424A (zh) * 2018-07-16 2021-07-30 康宁股份有限公司 具有改进的性质的玻璃陶瓷制品及其制造方法
CN112585101A (zh) * 2018-08-20 2021-03-30 康宁股份有限公司 具有改进的应力分布的玻璃陶瓷制品
CN114195392A (zh) * 2021-12-24 2022-03-18 深圳市新旗滨科技有限公司 一种玻璃组合物、微晶玻璃及其制备方法和应用
CN114195394A (zh) * 2021-12-24 2022-03-18 深圳市新旗滨科技有限公司 一种玻璃组合物、微晶玻璃及其制备方法和应用
CN114195393A (zh) * 2021-12-24 2022-03-18 深圳市新旗滨科技有限公司 一种玻璃组合物、微晶玻璃及其制备方法和应用

Also Published As

Publication number Publication date
CN114195393B (zh) 2022-06-28
CN114195393A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
WO2023125015A1 (zh) 玻璃组合物、微晶玻璃及其制备方法和应用
CN110104954B (zh) 一种低温晶化的可离子交换玻璃陶瓷
CN111320392B (zh) 微晶玻璃、强化微晶玻璃及其制备方法
US10676390B2 (en) Glass-ceramic article and glass-ceramic for electronic device cover plate
CN109608047B (zh) 一种高结晶度钠霞石透明微晶玻璃及其制备方法
CN110143759B (zh) 一种高强度透明微晶玻璃
CN110627365B (zh) 一种透明的强化玻璃陶瓷及其制备方法
CN111268913A (zh) 电子设备盖板用微晶玻璃制品和微晶玻璃
CN109265011A (zh) 一种镁铝硅体系玻璃和高结晶度透明微晶玻璃的制备方法
CN114195394B (zh) 一种玻璃组合物、微晶玻璃及其制备方法和应用
CN110590165B (zh) 低膨胀微晶玻璃及其制造方法
JP7138139B2 (ja) Li2O-Al2O3-SiO2系結晶化ガラス
CN114195392A (zh) 一种玻璃组合物、微晶玻璃及其制备方法和应用
CN115286251A (zh) 强化玻璃、微晶玻璃及其制备方法与应用
WO2019233291A1 (zh) 一种适用于浮法成型的无磷无碱玻璃配合料及其制备的无磷无碱玻璃
CN115490428A (zh) 一种超高抗跌落强度的透明微晶玻璃及其制备方法
US11505491B2 (en) Glass ceramic and chemically strengthened glass
CN110330226B (zh) 无碱铝硼硅酸盐玻璃及其制备方法和应用
CN115893851A (zh) 微晶玻璃及其制备方法
CN112408803B (zh) 一种晶种增韧锂铝硅酸微晶玻璃复合材料及其制备方法
JP2022120047A (ja) Li2O-Al2O3-SiO2系結晶化ガラス
CN115772002A (zh) 一种高透过率低雾度玻璃组合物、微晶玻璃及其制备方法
WO2015129495A1 (ja) 珪酸塩ガラスの製造方法、珪酸塩ガラス及び珪酸塩ガラス用シリカ原料
WO2024017081A1 (zh) 一种耐酸碱性优异的微晶玻璃及其制备方法和用途
CN118026536A (zh) 一种微晶玻璃及其制备方法、强化微晶玻璃、应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914270

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)