WO2023124996A1 - 含硫手性桥联茂金属化合物及其制备和应用 - Google Patents

含硫手性桥联茂金属化合物及其制备和应用 Download PDF

Info

Publication number
WO2023124996A1
WO2023124996A1 PCT/CN2022/138876 CN2022138876W WO2023124996A1 WO 2023124996 A1 WO2023124996 A1 WO 2023124996A1 CN 2022138876 W CN2022138876 W CN 2022138876W WO 2023124996 A1 WO2023124996 A1 WO 2023124996A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
compound
reaction
add
solvent
Prior art date
Application number
PCT/CN2022/138876
Other languages
English (en)
French (fr)
Inventor
雷珺宇
张蔚
高玉李
义建军
洪柳婷
郝海军
张明革
李荣波
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Publication of WO2023124996A1 publication Critical patent/WO2023124996A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound

Definitions

  • the invention relates to a sulfur-containing chiral bridged metallocene compound and its preparation and application.
  • Polypropylene material is a material with excellent performance. It is widely used in clothing, daily necessities, medical hygiene, food industry, etc. With the continuous improvement of processing technology, the requirements for catalysts required for the production of polypropylene are becoming more and more stringent.
  • Sinn Angew.Chem.Int.Ed.Engl., 1980,92,396
  • Kaminsky Micromol.Chem., Rapid Commun., 1983,4,417) and others discovered metallocene complexes
  • the homogeneous catalytic olefin polymerization system composed of MAO can catalyze olefin polymerization with high activity.
  • the discovery of methylaluminoxane contributed to the rapid development of this field.
  • the activity of metallocenes and other transition metal complexes activated by methylalumoxane is more than 10 times higher than that of Ziegler-Natta catalysts, and has the characteristics of polymer molecular weight distribution and adjustable polymer tacticity (Chem.Rev. , 2000, 100:1253).
  • Chiral-metallocene catalysts mainly regulate the structure of polypropylene through the regulation of the chiral structure of the catalyst.
  • the metallocene compound with C 2 symmetry and its racemic structure activates the central metal cation is achiral, but due to steric hindrance, only monomers consistent with the chirality of the growing chain are more likely to participate in coordination during the polymerization process , so isotactic polypropylene can be obtained (J. Organomet. Chem., 1982, 232(3): 233-47).
  • the bridged metallocene catalysis has more excellent catalytic performance (Macromolecules, 2002, 35:5382-5387), and is widely used in the design and synthesis of zirconocene metals, with SiMe 2 bridged and (2-methyl- 4-phenyl) substituted zirconocene complex (SBI type) has good activity and can catalyze the preparation of high isotactic polypropylene, showing great potential in the development of isotactic polypropylene (Angewandte Chemie International Edition in English, 1980,19 (11):857-875.).
  • the purpose of the present invention is to provide a novel sulfur-containing chiral bridged metallocene compound.
  • the sulfur-containing chiral bridged metallocene compound is the compound described in the general formula (I):
  • R 1 is selected from one of 4-substituted phenyl, 2-naphthyl;
  • R 2 and R 3 are selected from alkyl groups
  • M is selected from one of TI, Zr, Hf;
  • X is selected from halogen.
  • R 1 is selected from one of 4-tert-butylphenyl, 4-fluorophenyl, 4-methoxyphenyl, and 2-naphthyl.
  • both R 2 and R 3 are methyl.
  • X is chlorine
  • R 2 and R 3 are alkyl groups
  • R 2 and R 3 are alkyl groups
  • R 2 and R 3 are alkyl groups
  • R 1 is 4-substituted phenyl, 2-naphthyl
  • R 2 and R 3 are alkyl groups
  • R 1 is 4-substituted phenyl, 2-naphthyl
  • R 2 and R 3 are alkyl groups
  • Equation 6 add the ligand represented by the general formula (IX) into an ether solvent, add n-butyllithium reagent under low temperature conditions; add metal halide MX 4 under low temperature conditions, and react at room temperature to obtain the target Compound, as shown in general formula (I);
  • R 1 is a 4-phenyl substituent, 2-naphthyl
  • R 2 and R 3 are alkyl groups
  • M is one of titanium, zirconium and hafnium
  • X is halogen
  • the reaction temperature in step (1) is 80° C.
  • the reaction time is 1 h.
  • step (2) the polar solvent is chloroform, and the brominated reagent is liquid bromine, and the compound shown in general formula (IV): the brominated reagent molar ratio is 1: 1.1.
  • the polar solvent is a mixed solution of an alcohol solvent and an ether solvent;
  • the alcohol solvent is any one or more of methanol, ethanol, butanol ,
  • the ether solvent is any one or more of ether, methyl tert-butyl ether, tetrahydrofuran, the volume ratio of the ether solvent to the alcohol solvent is 1-3:1;
  • the reducing agent is boron One of sodium hydride, lithium aluminum hydride, potassium borohydride, and sodium cyanoborohydride.
  • the organic acid is one or more of p-toluenesulfonic acid, formic acid, and acetic acid
  • the compound represented by general formula (VI) undergoes an intramolecular dehydration reaction
  • the organic acid molar ratio is 70:1, and the reaction time is 15 minutes.
  • the aryl Grignard reagent is represented by general formula (VIII) as 4-methoxyphenylmagnesium bromide, 4-tert-butylphenyl bromide
  • the zinc halide is zinc chloride
  • the catalyst is palladium acetate, diphenylphosphinoferrocene palladium dichloride , tetrakistriphenylphosphine palladium, dichloroditriphenylphosphine palladium, bis(tri-tert-butylphosphine)palladium, preferably bis(tri-tert-butylphosphine)palladium, nickel acetate, diphenylphosphinoferrocene dichloro A kind of in nickel, tetrakistriphenylphosphine nickel, dichlorodi
  • the catalyst is bis(tri-tert-butylphosphine)palladium.
  • the anhydrous ether solution is a tetrahydrofuran solution, and the reaction time is specifically 16 hours.
  • the ether solvent is diethyl ether
  • the present invention relates to the use of the above sulfur-containing chiral bridged metallocene compound as a propylene polymerization catalyst.
  • a propylene polymerization catalyst which comprises the above sulfur-containing chiral bridged metallocene compound.
  • the present invention relates to a catalytic polymerization reaction of polypropylene, using the above sulfur-containing chiral bridged metallocene compound as a propylene polymerization catalyst.
  • Eaton reagent is a methanesulfonic acid solution containing 7.7wt% P 2 O 5 , which is an effective acidic cyclization reagent, which can replace polyphosphoric acid to catalyze the acylation reaction or carry out related ring reaction.
  • p-toluenesulfonic acid instead of phosphoric acid sulfate for pure dehydration can effectively reduce by-products and avoid the dangers of using phosphoric acid sulfate.
  • the reason or mechanism of this beneficial effect is described: p-toluenesulfonic acid is a strong organic acid without strong oxidizing properties, which can effectively catalyze the dehydration reaction of alcohol, and is economical and effective.
  • polyphosphoric acid is used as a catalyst to catalyze the ring-forming reaction of 2-methylthiophene and methacrylic acid to prepare the compound having the structure of general formula (IV) in claim 5.
  • polyphosphoric acid was highly corrosive and easy to deliquescence, especially when the post-treatment liquid separation extraction, the organic phase and the aqueous phase were not easy to separate, resulting in difficulty in extraction.
  • Eaton's reagent that is, 7.7w% P 2 O 5 methanesulfonic acid solution
  • to replace polyphosphoric acid can well solve the problem of liquid separation, and the reaction is easier to control and the yield is stable.
  • bromine cannot be achieved under conventional CC coupling conditions, for example, palladium acetate, diphenylphosphinoferrocene palladium dichloride, tetrakistriphenylphosphine palladium, dichloroditriphenylphosphine palladium, Bis(tri-tert-butylphosphine)palladium, preferably bis(tri-tert-butylphosphine)palladium, nickel acetate, diphenylphosphinoferrocene nickel dichloride, tetrakistriphenylphosphine nickel, dichloroditriphenylphosphine Under the catalysis of nickel, bis(tri-tert-butylphosphine) nickel, etc., it cannot react with arylboronic acid and aryl Grignard reagent.
  • arylboronic acid and aryl Grignard reagent for example, palladium acetate, diphenylphosphinofer
  • Examples 1, 2, 3, and 4 of the present invention are shown in process route 1 to synthesize [dimethylsilyl (2,5-dimethyl-3-(4-methoxyphenyl)-cyclopentadienyl [2,3-b]thiophene) 2 ]zirconium dichloride, [dimethylsilyl(2,5-dimethyl-3-(4-tert-butylphenyl)-cyclopentadienyl[2, 3-b]thiophene) 2 ]zirconium dichloride, [dimethylsilyl(2,5-dimethyl-3-(4-fluorophenyl)-cyclopentadienyl[2,3-b]thiophene ) 2 ] zirconium dichloride, [dimethylsilyl (2,5-dimethyl-3-(2-naphthyl)-cyclopentadienyl [2,3-b]thiophene) 2 ] dichloride Zirconium and other four new
  • the structure of the metallocene catalyst provided by the present invention preferably adopts the method of silicon bridging, and in the compound ligand, the 2nd position of the bridgehead is substituted with an alkyl group and the 4th position is aryl substituted, and a thiophene-containing compound with C2 symmetry is synthesized. Zirconocene metal complexes with chiral ring bridges.
  • the design idea of the present invention is that, unlike the indene (benzocyclopentadiene) used in the general literature as the ligand, thienocyclopentadiene is used as the ring structure.
  • S in the thiophene ring has an electron-donating conjugation effect and a soft basicity, it can better coordinate with transition metals
  • the inventors designed and synthesized a chiral bridged zirconocene whose ligand is thienocyclopentadiene Metal catalyst, using Eaton reagent as ring-closing reagent to prepare intermediate 2,5-dimethyl-3-bromo-cyclopentyl[2,3-b]thiophene, on this basis for subsequent coupling, bridging , Zr metal coordination, prepared [dimethylsilyl(2,5-dimethyl-3-phenyl-R-cyclopentadienyl[2,3-b]thiophene) 2 ]zirconium dichloride, Compared with the original preparation method, the synthesis steps are simpler, the preparation process is safer, and it is convenient for large-scale preparation and industrial production.
  • the zirconocene metal complex with chiral bridging structure containing thiophene ring is applied to the catalytic polymerization reaction of polypropylene.
  • the molar ratio of co-catalyst (MAO) to silica gel and metallocene complex is [Al]/[SiO 2 ]/ [Zr] is 50:33:1, the load temperature is 40°C, and the catalytic reaction time is 2h, which can catalyze polypropylene with high melting index.
  • Evaluation analysis methods used in the present invention 1 H NMR, 13 C NMR, Fourier transform infrared spectroscopy.
  • Comparative example 1 uses polyphosphoric acid to prepare 2,5-dimethyl-cyclopenta[2,3-b]thia-4-one
  • the obtained mixed solution was poured into 2L of ice-water mixture, and the organic phase was extracted with 1L of dichloromethane, and the obtained organic phase was neutralized with sodium carbonate successively, then washed with 500L of water, then dried with anhydrous Na2SO4 , filtered, The organic solvent was removed by rotary evaporation to obtain a black oily liquid, which was distilled under reduced pressure to obtain 24.06 g of a light colorless oily liquid with a yield of 30.8%.
  • Table 1 The yield is close to 31% described in US Patent US 2007/0135623 A1.
  • Example Catalyst composition yield Example 1 Eaton reagent 45.1% Comparative example 1 polyphosphoric acid 30.8% Comparative example 2 Sulfuric acid, phosphoric acid mixture 15.3%
  • Step (2) Synthesis of 2,5-dimethyl-3-bromo-cyclopenta[2,3-b]thiophen-4-one
  • the bromine solution in chloroform was dropped into a three-neck flask, and the temperature was controlled at 0°C during the dropwise addition. After the dropwise addition, the reaction system was placed at room temperature for 3 h, and the progress of the reaction was detected by thin-layer chromatography. After the reaction was completed, the reaction mixture was poured into ice-water mixture and washed with dichloromethane. The layers were separated, and the organic phase was washed with saturated NaHCO3 solution until neutral. After drying, the organic solvent was removed by rotary evaporation to obtain a tan oily liquid, which was distilled under reduced pressure to obtain 73.37 g of a yellow transparent oil with a yield of 80.47%.
  • Step (4) Synthesis of 2,5-dimethyl-3-(4-methoxyphenyl)-cyclopentadienyl[2,3-b]thiophene
  • Step (5) Synthesis of dimethylsilyl (2,5-dimethyl-3-(4-methoxy)-phenyl-cyclopentadienyl[2,3-b]thiophene) 2
  • R 2 is methyl; R 3 is methyl; M is zirconium; X is chlorine.
  • Step (2) Synthesis of 2,5-dimethyl-3-bromo-cyclopenta[2,3-b]thiophen-4-one
  • the bromine solution in chloroform was dropped into a three-neck flask, and the temperature was controlled at 0°C during the dropwise addition. After the dropwise addition, the reaction system was placed at room temperature for 1.5 h, and the progress of the reaction was detected by thin-layer chromatography. After the reaction was completed, the reaction mixture was poured into ice-water mixture and washed with dichloromethane. The layers were separated, and the organic phase was washed with saturated NaHCO3 solution until neutral. After drying, the organic solvent was removed by rotary evaporation to obtain a tan oily liquid, which was distilled under reduced pressure to obtain 17.16 g of a yellow transparent oil with a yield of 73.71%.
  • the organic phase was extracted with 500 ml of dichloromethane, washed with saturated Na2CO3 solution, and then washed with water until the organic phase was neutral to obtain a black solution, which was then dried with anhydrous K2SO4 , filtered, and the organic solvent was removed in vacuo, A reddish-brown liquid was obtained.
  • Step (4) Synthesis of 2,5-dimethyl-3-(4-tert-butylphenyl)-cyclopentadienyl[2,3-b]thiophene
  • Step (5) Synthesis of dimethylsilyl (2,5-dimethyl-3-(4-tert-butyl)-phenyl-cyclopentadienyl[2,3-b]thiophene) 2
  • R 2 is methyl; R 3 is methyl; M is zirconium; X is chlorine.
  • Step (1) to step (3) are the same as in Example 1 to obtain the intermediate 2,5-dimethyl-3-bromo-cyclopentadienyl[2,3-b]thiophene.
  • Step (4) Synthesis of 2,5-dimethyl-3-(4-fluorophenyl)-cyclopentadienyl[2,3-b]thiophene
  • Step (5) Synthesis of dimethylsilyl (2,5-dimethyl-3-(4-fluorophenyl)-cyclopentadienyl[2,3-b]thiophene) 2
  • Step (6) [Dimethylsilyl(2,5-dimethyl-3-(4-fluorophenyl)-cyclopentadienyl[2,3-b]thiophene) 2 ] zirconium dichloride synthesis
  • reaction solution was filtered, rinsed with ether, the filtrate was collected and sucked dry, and recrystallized with 3 ml of dichloromethane.
  • the solid remaining on the funnel was rinsed with dichloromethane to obtain 0.23 g of the product, elemental analysis C 55.46%, H 4.65%; theoretical value C 55.56%, H 4.66%.
  • the sulfur-containing chiral bridged metallocene compound prepared by the present embodiment is shown in formula (1), wherein R 1 is p-4-fluorophenyl;
  • R 2 is methyl; R 3 is methyl; M is zirconium; X is chlorine.
  • Step (1) to step (3) are the same as in Example 1 to obtain the intermediate 2,5-dimethyl-3-bromo-cyclopentadienyl[2,3-b]thiophene.
  • Step (4) Synthesis of 2,5-dimethyl-3-(2-naphthyl)-cyclopentadienyl[2,3-b]thiophene) 2
  • Step (5) Synthesis of dimethylsilyl (2,5-dimethyl-3-(2-naphthyl)-cyclopentadienyl[2,3-b]thiophene) 2
  • Step (6) Synthesis of [dimethylsilyl (2,5-dimethyl-3-(2-naphthyl)-cyclopentadienyl [2,3-b]thiophene) 2 ] zirconium dichloride
  • the sulfur-containing chiral bridged metallocene compound prepared by the present embodiment is shown in formula (1), wherein, R 1 is p-2-naphthyl;
  • R 2 is methyl; R 3 is methyl; M is zirconium; X is chlorine.
  • reaction solution was filtered, rinsed with ether, the filtrate was collected and sucked dry, and recrystallized with 3ml of dichloromethane to obtain 0.31g of solid, yield 15.77%, elemental analysis C 67.11%, H 7.52%; theoretical value C67.
  • R2 is methyl; R3 is isopropyl; M is titanium; X is chlorine.
  • the sulfur-containing chiral bridged metallocene compound prepared by the present embodiment is shown in formula (1), wherein, R 1 is p-4-fluorophenyl; R 2 is methyl; R 3 methyl; M is zirconium; X For fluorine.
  • Example 1 is 4-methoxyphenyl-zirconium dichloride
  • embodiment 2 is 4-tert-butylphenyl-zirconium dichloride
  • embodiment 3 is 4-fluorophenyl-zirconium dichloride
  • Embodiment 4 is 2-naphthyl-4-methoxy
  • embodiment 5 is 4-methoxy-hafnium dibromide
  • embodiment 6 is 4-tert-butyl-titanium dichloride
  • embodiment 7 is 4 -fluorophenyl-zirconium difluoride
  • the loaded metallocene catalyst was placed in finger tubes, each tube was filled with 100mg, and then the 5L polymerization kettle was preheated to 70°C and then cooled to room temperature. At the same time, keep vacuuming the reactor for 3h. After the vacuum is completed, then fill with propylene to atmospheric pressure, add 500ml of hexane as a solvent, continue to add 2ml of triethylaluminum under stirring conditions, and then add the catalyst after 10 minutes. Heating was started after 10 minutes of pre-polymerization, the polymerization temperature was 70° C., the polymerization time was 1 hour, and the reaction was stopped after the polymerization ended. The polymer was taken out, washed, dried and weighed. The relevant test results are shown in Table 2.
  • the substituent phenyl is tert-butylphenyl, and when the coordination metal is Zr, the activity of the catalyst is high, and the carrier supports the catalyst metal The content is high, and the melt index of the prepared polypropylene is the largest.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种含硫手性桥联茂金属化合物,为通式(I)所述化合物。其中,R1选自4-取代苯基,2-萘基中的一个;R2,R3选自烷基;M选自TI、Zr、Hf中的一个;X选自卤素。本发明还公开所述含硫手性桥联茂金属化合物的制备和应用。使用本发明的方法合成茂锆化合物共享了中间体,避免了反应过程中的一些危险和有害试剂,更适合于放大生产。

Description

含硫手性桥联茂金属化合物及其制备和应用 技术领域
本发明涉及含硫手性桥联茂金属化合物及其制备和应用。
背景技术
聚丙烯材料是一种性能优异的材料,广泛应用于服装、日用品、医疗卫生、食品工业等方面,随着加工工艺的不断改进,对于生产聚丙烯所需要的催化剂要求也越来越严苛。二十世纪八十年代初,Sinn(Angew.Chem.Int.Ed.Engl.,1980,92,396)和Kaminsky(Macromol.Chem.,Rapid Commun.,1983,4,417)等人发现了茂金属络合物和MAO组成的均相催化烯烃聚合体系可高活性催化烯烃聚合。甲基铝氧烷的发现促进了这个领域的迅速发展。由甲基铝氧烷活化的茂金属和其他过渡金属配合物的活性比Ziegler-Natta催化剂高10倍以上,且具有聚合物分子量分布,聚合物立构规整度可调节的特点(Chem.Rev.,2000,100:1253)。
手性-茂金属催化剂主要通过催化剂手性结构的调控来调节聚丙烯结构。具有C 2对称性茂金属化合物其外消旋结构体活化的中心金属阳离子是非手性的但由于空间位阻的关系,聚合过程中只有与增长链手性一致的单体才更容易参与配位,因此可以得到等规聚丙烯(J.Organomet.Chem.,1982,232(3):233-47)。而桥联的茂金属催化具有更为优异的催化性能(Macromolecules,2002,35:5382-5387),被广泛运用再茂锆金属的设计合成中,具有SiMe 2桥联与(2-甲基-4-苯基)取代的茂锆复合物(SBI型)活性好,能够催化制备高等规聚丙烯,在开发等规聚丙烯方面显示出极大的潜力(Angewandte Chemie International Edition in English,1980,19(11):857-875.)。
发明内容
本发明目的在于提供一种新的含硫手性桥联茂金属化合物。
作为本发明的一个方面,涉及一种含硫手性桥联茂金属化合物,所述含硫手性桥联茂金属化合物为通式(I)所述化合物:
Figure PCTCN2022138876-appb-000001
其中,
R 1选自4-取代苯基,2-萘基中的一个;
R 2,R 3选自烷基;
M选自TI、Zr、Hf中的一个;
X选自卤素。
在至少一个可能的具体实施方式中,R 1选自4-叔丁基苯基、4-氟苯基、4-甲氧基苯基、2-萘基中的一种。
在至少一个可能的具体实施方式中,R 2、R 3均为甲基。
在至少一个可能的具体实施方式中,X为氯。
作为本发明的另一个方面,涉及制备上述含硫手性桥联茂金属化合物的方法,包括:
(1)在60-80℃条件和伊顿试剂催化条件下,按方程式一所示将通式(II)所示的噻吩类化合物与通式(III)所示的丙烯酸类化合物反应,得到通式(IV)所示的化合物;
Figure PCTCN2022138876-appb-000002
其中,R 2和R 3为烷基;
(2)按方程式二所示将氯化铝和通式(IV)所示化合物分别溶于极性溶剂后混合,并加入溴代试剂,反应得到通式(V)所示化合物;
Figure PCTCN2022138876-appb-000003
其中,R 2和R 3为烷基;
(3)按方程式三所示将通式(V)所示的化合物溶于极性溶剂中,加入还原试剂进行还原反应,得到通式(VI)所示的化合物,将通式(VI)所示化合物溶于苯类溶剂中加入有机酸催化,使通式(VI)所示化合物进行分子内脱水反应得到通式(VII)所示化合物;
Figure PCTCN2022138876-appb-000004
其中,R 2和R 3为烷基;
(4)按方程式四所示,将卤代锌加入无水溶剂,在氮气氛围下加入如通式(VIII)所示芳基格式试剂;加入通式(VII)所示化合物,搅拌,加入催化剂,在60~80℃条件下反应得到通式(IX)所示的配体前体;
Figure PCTCN2022138876-appb-000005
其中,
R 1为4-取代苯基,2-萘基;
R 2和R 3为烷基;
(5)按方程式五所示将通式(IX)所示化合物加入无水醚溶剂,在酒精液氮浴、氮气保护条件下加入正丁基锂,低温条件下加入二氯二甲基硅烷,反应得到通式(X)所示配体;
Figure PCTCN2022138876-appb-000006
其中,
R 1为4-取代苯基,2-萘基;
R 2和R 3为烷基;
(6)按方程式六所示,将通式(IX)所示的配体加入醚溶剂中,在低温条件下加入正丁基锂试剂;低温条件下加入金属卤代物MX 4,室温反应得到目标化合物,如通式 (I)所示;
Figure PCTCN2022138876-appb-000007
其中,
R 1为4-苯基取代基,2-萘基;
R 2、R 3为烷基;
M为钛、锆、铪中的一个;
X为卤素。
在至少一个可能的具体实施方式中,步骤(1)的反应温度为80℃,反应时间为1h。
在至少一个可能的具体实施方式中,步骤(2)中,所述极性溶剂为氯仿,所述溴代试剂为液溴,通式(IV)所示化合物:溴代试剂摩尔比为1:1.1。
在至少一个可能的具体实施方式中,步骤(3)中,所述极性溶剂为醇溶剂和醚溶剂的混合溶液;所述醇溶剂为甲醇、乙醇、丁醇中的任意一种或多种,所述醚溶剂为乙醚、甲基叔丁基醚、四氢呋喃中的任意一种或多种,所述醚溶剂与所述醇溶剂的体积比为1-3:1;所述还原剂为硼氢化钠、氢化铝锂、硼氢化钾、氰基硼氢化钠中的一种。
在至少一个可能的具体实施方式中,步骤(3)中,所述有机酸为对甲苯磺酸、甲酸、乙酸中的一种或多种,通式(VI)所示化合物经分子内脱水反应得到通式(VII)所示化合物,以所述苯类溶剂甲苯、苯二甲苯、三甲苯、四甲苯、氯苯中的一种或多种作为反应溶剂,通式(VI)所示化合物与有机酸摩尔比为70:1,反应时间为15min。
在至少一个可能的具体实施方式中,步骤(4)中,所述芳基格式试剂如通式(VIII)所示为4-甲氧基苯基溴化镁、4-叔丁基苯基溴化镁、4-氟苯基溴化镁、2-萘基溴化镁中的一种,卤代锌为氯化锌,所述催化剂为醋酸钯、二苯基磷二茂铁二氯化钯、四三苯基膦钯、二氯二三苯基膦钯、双(三叔丁基膦)钯,优选双(三叔丁基膦)钯,醋酸镍、二苯基磷二茂铁二氯化镍、四三苯基膦镍、二氯二三苯基膦镍、双(三叔丁基膦)镍中的一种,所述催化剂与通式(VII)所示化合物摩尔比为0.23:1,所述反应温度具体为80℃,所述无水溶剂为为四氢呋喃、乙醚、甲苯中的任意一种或多种。
在至少一个可能的具体实施方式中,所述催化剂为双(三叔丁基膦)钯。
在至少一个可能的具体实施方式中,步骤(5)中,无水醚溶液为四氢呋喃溶液,所述反应时间具体为16h。
在至少一个可能的具体实施方式中,步骤(6)中,所述醚溶剂为乙醚,所述正丁基锂:通式(IX)所示化合物:金属卤代物的摩尔比为2:2:1,其中,M为钛、锆、铪中的一种,X为卤素。
作为本发明的再一个方面,涉及上述含硫手性桥联茂金属化合物作为丙烯聚合催化剂的应用。
作为本发明的又一个方面,涉及一种丙烯聚合催化剂,所述催化剂包括上述含硫手性桥联茂金属化合物。
作为本发明的又一个方面,涉及一种聚丙烯催化聚合反应,使用上述含硫手性桥联茂金属化合物作为丙烯聚合催化剂。
多聚磷酸作为强脱水性,低亲核性的酸性试剂,易潮解,腐蚀性较强,不易称量和取样,使用过程中较为危险,使用伊顿试剂替代多聚磷酸,可以有效降低该类风险(有机化学,2004,(08):48-55)。产生该有益效果的原因或机理叙述:伊顿试剂是含有7.7wt%的P 2O 5的甲磺酸溶液,它是有效的酸性环合试剂,可以代替的多聚磷酸催化酰基化反应或者进行关环反应。
使用对甲苯磺酸替代硫酸磷酸进行纯脱水可以有效减少副产物,并且避免使用硫酸磷酸带来的危险性。产生该有益效果的原因或机理叙述:对甲苯磺酸属于不具有强氧化性的有机强酸,可以有效催化醇脱水反应,经济实惠,效果良好。
使用2-甲基噻吩先进形成环反应再溴代,羰基还原脱水制成中间体,在此基础上进行不同格式试剂偶联反应以得到所需的配体,再进一步反应制备新的茂锆化合物。产生该有益效果的原因或机理叙述:使用该方法合成茂锆化合物共享了中间体,避免了反应过程中的一些危险和有害试剂,更适合于放大生产。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。本发明实施例所用试剂或仪器或方法指导未注明提供来源者,均为可以通过市购获得的常规产品或可从申请人处获得。
在美国专利申请US 2007/0135623 A1中,采用的是多聚磷酸为催化剂催化2-甲基 噻吩与甲基丙烯酸的成环反应,制备具有权利要求5中具有通式(IV)结构的化合物。当时实验发现多聚磷酸腐蚀性较强,易潮解,特别后处理分液提取时,有机相和水相不易分层,导致提取困难。采用伊顿试剂(即7.7w%P 2O 5的甲磺酸溶液)替代多聚磷酸则可以很好地解决此分液的问题,反应也更容易控制,收率稳定。接下来的溴代反应的选择性和收率都很高。进一步还原、分子内脱水,得到具有通式(VII)结构的2,5-二甲基-3-溴-环戊基[2,3-b]噻吩。美国专利申请US 2007/0135623 A1文献方法直接使用2,5-二甲基-3-溴-环戊基[2,3-b]噻吩进行硅桥联及锆金属配位,未在溴取代的位置通过C-C偶连反应进行衍生化。我们发现,常规的C-C偶连条件下无法实现对溴的取代,例如,醋酸钯、二苯基磷二茂铁二氯化钯、四三苯基膦钯、二氯二三苯基膦钯、双(三叔丁基膦)钯,优选双(三叔丁基膦)钯,醋酸镍、二苯基磷二茂铁二氯化镍、四三苯基膦镍、二氯二三苯基膦镍、双(三叔丁基膦)镍等催化下,无法与芳基硼酸、芳基格式试剂进行反应。本发明通过大量的条件筛选,发现只有在双(三叔丁基膦)钯催化下和ZnCl 2存在下,可以实现2,5-二甲基-3-溴-环戊基[2,3-b]噻吩与具有通式(VIII)的芳基格式试剂偶连反应。进而可以与MeSiCl 2偶连制备具有通式(X)的配体。再于MX 4(M=Ti,Zr,Hf;X=Cl,Br)进行反应制备权利要求I中具有通式(I)的配合物。
本发明实施例1,2,3,4以工艺路线一所示,合成[二甲基硅(2,5-二甲基-3-(4-甲氧基苯基)-环戊二烯基[2,3-b]噻吩) 2]二氯化锆、[二甲基硅(2,5-二甲基-3-(4-叔丁基苯基)-环戊二烯基[2,3-b]噻吩) 2]二氯化锆、[二甲基硅(2,5-二甲基-3-(4-氟苯基)-环戊二烯基[2,3-b]噻吩) 2]二氯化锆、[二甲基硅(2,5-二甲基-3-(2-萘基)-环戊二烯基[2,3-b]噻吩) 2]二氯化锆等四种新的噻吩环硅桥联手性结构茂锆金属络合物,在丙烯聚合中表现出优异的催化性能:
Figure PCTCN2022138876-appb-000008
工艺路线一
发明人经进一步研发,作出本发明。本发明提供的茂金属催化剂结构优先采用硅桥联的方式,在化合物配体中对其桥头2号位进行烷基取代以及4号位进行芳基取代,合成了一种含噻吩具有C 2对称性环桥联手性结构茂锆金属络合物。本发明设计思路在于,不同于一般文献中所用茚(苯并环戊二烯)作为配体,而是以噻吩并环戊二烯作为茂环结构。考虑到噻吩环中S具有给电子共轭效应以及较软的碱性,可以更好得与过渡金属配位,发明人设计并合成配体为噻吩并环戊二烯的手性桥联茂锆金属催化剂,以伊顿试剂为关环试剂,制备中间体2,5-二甲基-3-溴-环戊基[2,3-b]噻吩,在此基础上进行后续的偶联,桥联,Zr金属配位,制备了[二甲基硅(2,5-二甲基-3-苯基-R-环戊二烯基[2,3-b]噻吩) 2]二氯化锆,其合成步骤较原有的制备方法更为简单,制备过程更加安全,方便于大规模制备及工业化生产。
含噻吩环手性桥联结构茂锆金属络合物应用于聚丙烯催化聚合反应,助催化剂(MAO)与硅胶与茂金属络合物的摩尔量之比为[Al]/[SiO 2]/[Zr]为50:33:1,负载温度为40℃,催化反应时间为2h,可催化得到高熔指的聚丙烯。
本发明所用评价分析方法: 1H NMR, 13C NMR,傅里叶红外光谱。
实施例1:[二甲基硅(2,5-二甲基-3-(4-甲氧基苯基)-环戊二烯基[2,3-b]噻吩) 2]二氯化锆的合成
步骤(1):2,5-二甲基-环戊[2,3-b]噻-4-酮的合成
在室温条件下,将46.31g(0.47mol)的2-甲基噻吩86.09g(0.56mol)的甲基丙烯酸在圆底烧瓶中混合,并转移至恒压滴液漏斗中。向三口烧瓶中加入300ml伊顿试剂,将恒压滴液漏斗中的液体逐滴滴加至三口烧瓶中,并使反应体系逐步升温至60℃,滴加完毕后反应一个小时,之后使反应体系逐渐降温至室温。
将得到的混合液倒入500ml冰水混合物中,边搅拌边加入400ml二氯甲烷,利用300ml分液漏斗进行分液,取下层有机相。得到的有机相先后用2L饱和NaHCO 3溶液和500mL水洗涤,之后用无水Na 2SO 4干燥。旋蒸除去有机溶剂,得到黑色油状液体,减压蒸馏得到35.25g淡黄色油状液体,产率45.10%,结果见表1。 1H NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)6.74(s,1H),3.21(dd,J=17.2,6.8Hz,1H),2.95(pd,J=7.4,2.7Hz,1H),2.57(d,J=2.7Hz,3H),2.53(d,J=2.7Hz,1H),1.33(d,J=7.4Hz,3H); 13C NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)199.49,167.56,157.13,137.66,122.64,116.72,46.30,32.93,16.85。
对比例1使用多聚磷酸制备2,5-二甲基-环戊[2,3-b]噻-4-酮
将46.31g(0.47mol)的2-甲基噻吩86.09g(0.56mol)的甲基丙烯酸在圆底烧瓶中混合, 并转移至恒压滴液漏斗中。向三口烧瓶加入多聚磷酸溶液(从400gP 4O 10和280g85%磷酸),将恒压滴液漏斗中的液体逐滴滴加至三口烧瓶中,并使反应体系逐步升温至60℃,滴加完毕后反应1.5个小时,待反应完毕后,使反应体系逐渐降温至室温。将得到的混合液倒入2L冰水混合物中,1L二氯甲烷提取有机相,得到的有机相先后用碳酸钠中和,然后用500L水洗涤,之后用无水Na 2SO 4干燥,过滤,旋蒸除去有机溶剂,得到黑色油状液体,减压蒸馏得到24.06g淡无色油状液体,产率30.8%,结果见表1。与美国专利US 2007/0135623 A1中所述产率31%接近。
对比例2使用硫酸磷酸混合溶液制备2,5-二甲基-环戊[2,3-b]噻-4-酮
将46.31g(0.50mol)的2-甲基噻吩86.09g(0.59mol)的甲基丙烯酸在圆底烧瓶中混合,并转移至恒压滴液漏斗中。向三口烧瓶中加入98%浓硫酸410g和300g85%磷酸混合液,将恒压滴液漏斗中的液体逐滴滴加至三口烧瓶中,并使反应体系逐步升温至60℃,滴加完毕后反应1.5个小时,待反应完毕后,使反应体系逐渐降温至室温。将得到的混合液倒入2L冰水混合物中,2.5L二氯甲烷提取有机相,得到的有机相先后用碳酸钠溶液中和,500ml饱和氯化钠溶液洗涤,之后用无水K 2CO 3干燥。旋蒸除去有机溶剂,得到黑色油状液体,减压蒸馏得到12.72g黄色油状液体,产率15.3%,结果见表1。
表1
实施例 催化剂组成 收率
实施例1 伊顿试剂 45.1%
对比例1 多聚磷酸 30.8%
对比例2 硫酸、磷酸混合液 15.3%
通过对比例得出,使用伊顿试剂催化2-甲基噻吩与甲基丙烯酸反应产生的副产物少,收率更高。
步骤(2):2,5-二甲基-3-溴-环戊[2,3-b]噻吩-4-酮的合成
称取111.06g(0.83mol)氯化铝固体并用150ml氯仿溶解并加入到500ml三口烧瓶中。将61.78g(0.37mol)2,5-二甲基-环戊[2,3-b]噻吩-4-酮溶于100ml氯仿并利用250ml恒压滴液漏斗滴入到三口烧瓶中,滴加过程中控制温度为0℃。而后将19.06ml(0.37mol)液溴置于250ml恒压滴液漏斗中,并加入25ml氯仿。将溴的氯仿溶液滴入到三口烧瓶中,滴加过程中控制温度为0℃。滴加完成后将反应体系置于室温反应3h,用薄层色谱法检测反应进度。反应完成后将反应混合液倒入冰水混合液中,用二氯甲烷洗涤。分液,取有机相用饱和NaHCO 3溶液洗涤至中性。干燥后旋蒸除去有机溶剂,得到棕褐色油状液体,减压蒸馏,得到73.37g黄色透明油状物,产率80.47%。 1H NMR(400MHz, CDCl 3,25℃,TMS):δ(ppm)3.17(dd,J=17.4,6.9Hz,1H),2.98(td,J=7.3,2.6Hz,1H),2.52(s,3H),1.35(d,J=7.5Hz,3H); 13C NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)198.49,166.26,150.65,136.19,108.08,62.45,46.01,32.82,16.64。
步骤(3):2,5-二甲基-3-溴-环戊二烯基[2,3-b]噻吩的合成
称取27.56g(112.40mmol)2,5-二甲基-3-溴-环戊[2,3-b]噻吩-4-酮并倒入到500ml三口烧瓶中,加入四氢呋喃:甲醇体积比3:1的混合溶液210ml,分5次加入硼氢化钠6.67g(176.50mmol)此过程控制温度为0℃,反应36h。反应完毕后,将反应溶液倒入80ml冰水中,用10%的盐酸水溶液190ml调节溶液的PH,使溶液的PH=1。用400ml二氯甲烷提取有机相,先用120ml饱和Na 2CO 3溶液洗涤,然后用水洗涤至有机相为中性,得黑色溶液,随后用无水K 2SO 4干燥,过滤,真空去除有机溶剂,得到红褐色液体。将上述液体溶于210ml甲苯中,与0.34g(1.93mmol)对甲苯磺酸回流15min,反应体系由红色变为暗红色,将此液体用硅胶柱淋洗,洗脱剂为正己烷与甲基叔丁基醚体积比1:1混合液体,旋蒸除去有机溶剂,得到红棕色油状液体18.62g,产率72.28%。 1H NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)6.35(d,J=1.6Hz,1H),3.04(s,3H),2.39(s,6H),2.12(s,6H); 13C NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)145.72,144.81,140.79,131.85,122.12,105.81,40.15,16.94,15.08。
步骤(4):2,5-二甲基-3-(4-甲氧基苯基)-环戊二烯基[2,3-b]噻吩的合成
在氮气保护下向500ml Schlenk瓶中加入50ml干燥的四氢呋喃溶液,而后加入35ml(1M)氯化锌溶液和35ml(1M)4-甲氧基溴化镁溶液,溶液变浑浊。在室温条件下搅拌1h,而后先后将8.02g(35mmol)2,5-二甲基-3-溴-环戊二烯基[2,3-b]噻吩和0.36g(0.70mmol)双(三叔丁基膦)钯加入到混合溶液中。加热至65℃,用薄层色谱法监测反应进度。10h后反应结束,过滤,旋干,用500ml石油醚热提取,得到淡黄色固体7.98g,产率88.96%。mp:61-62℃. 1H NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)7.34(d,J=8.5Hz,2H),6.96(d,J=8.5Hz,2H),6.41(s,1H),3.85(s,3H),3.10(s,2H),2.47(s,3H),2.13(s,3H); 13C NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)158.31,145.53,145.11,140.23,133.45,132.55,129.75,128.92,122.01,113.80,55.29,40.38,16.99,14.82。
步骤(5):二甲基硅(2,5-二甲基-3-(4-甲氧基)-苯基-环戊二烯基[2,3-b]噻吩) 2的合成
在-78℃下,将8ml(20mmol)正丁基锂的己烷溶液(2.5M)慢慢用注射器滴加到5.02g(20mmol)2,5-二甲基-3-(4-甲氧基苯基)-环戊二烯基[2,3-b]噻吩的40ml四氢呋喃溶液中,边搅拌边滴加,随后升至20℃,并搅拌过夜。反应完毕后,将体系重新冷至-78℃,向反应溶液中滴加1.08ml(10mmol)二氯二甲基硅烷,滴加完毕后,将体系升至20℃, 并搅拌反应6h,反应结束,加入50ml水,用二氯甲烷提取有机层,随后用无水Mg 2SO 4干燥,过滤,用50ml乙醚洗涤结晶,过滤,母液用石油醚:乙酸乙酯50:1的洗脱剂柱层析,得到3.84g黄色固体,产率68.6%. 1H NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)7.40-7.01(m,8H),6.52(s,2H),3.89(s,1H),2.53(s,6H),2.30(s,6H),-0.17(s,3H),-0.21(s,3H); 13C NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)158.40,149.20,146.59,136.23,134.65,130.38,130.04,128.78,122.85,113.76,55.22,45.90,17.69,14.62,-8.07。
步骤(6):[二甲基硅(2,5-二甲基-3-(4-甲氧基苯基)-环戊二烯基[2,3-b]噻吩) 2]二氯化锆的合成
在-78℃下,将3.8ml(3mmol)正丁基锂的己烷溶液(1.6M)慢慢用注射器滴加到1.70g(3mmol)二甲基硅(2,5-二甲基-3-(4-甲氧基)-苯基-环戊二烯基[2,3-b]噻吩) 2的100ml乙醚溶液中,边搅拌边滴加,随后室温搅拌5h。反应完毕,将0.70g(3mmol)氯化锆加入体系中,并使反应体系在室温下搅拌6h。反应结束后,将反应溶液过滤,用乙醚冲洗,收集滤液抽干,用3ml二氯甲烷重结晶。同时将残留在漏斗上的固体用二氯甲烷冲洗,将母液抽干,得到固体0.73g,产率34.59%,元素分析C 56.89%,H 5.23%;理论值C 56.97%,H 5.31%; 1H NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)7.44(d,J=8Hz,4H),6.98(d,J=8Hz,4H),6.58(s,2H),3.83(s,6H),2.52(s,6H),2.32(s,6H),1.06(s,6H); 13C NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)160.72,148.60,145.10,136.22,131.93,130.97,128.70,126.86,119.87,115.77,85.79,57.09,20.84,16.93,0.90。
本实施例制备的含硫手性桥联茂金属化合物为式(I)所示,其中,R 1为4-甲氧基苯基;
R 2为甲基;R 3甲基;M为锆;X为氯。
实施例2[二甲基硅(2,5-二甲基-3-(4-叔丁基苯基)-环戊二烯基[2,3-b]噻吩) 2]二氯化锆的合成:
步骤(1):2,5-二甲基-环戊[2,3-b]噻-4-酮的合成
在室温条件下,将44.34g(0.45mol)的2-甲基噻吩77.48g(0.50mol)的甲基丙烯酸在圆底烧瓶中混合,并转移至恒压滴液漏斗中。向三口烧瓶中加入300ml伊顿试剂,将恒压滴液漏斗中的液体逐滴滴加至三口烧瓶中,并使反应体系逐步升温至80℃,滴加完毕后反应3个小时,之后使反应体系逐渐降温至室温。
将得到的混合液倒入500ml冰水混合物中,边搅拌边加入400ml二氯甲烷,利用300ml分液漏斗进行分液,取下层有机相。得到的有机相先后用3L饱和NaHCO 3溶液和水洗涤,之后用无水Na 2SO 4干燥。旋蒸除去有机溶剂,得到黑色油状液体,减压蒸 馏得到35.25g淡黄色油状液体,产率37.2%。 1H NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)6.74(s,1H),3.21(dd,J=17.2,6.8Hz,1H),2.95(pd,J=7.4,2.7Hz,1H),2.57(d,J=2.7Hz,3H),2.53(d,J=2.7Hz,1H),1.33(d,J=7.4Hz,3H)。
步骤(2):2,5-二甲基-3-溴-环戊[2,3-b]噻吩-4-酮的合成
称取28.4g(0.213mol)氯化铝固体并用100ml氯仿溶解并加入到500ml三口烧瓶中。将15.77g(0.095mol)2,5-二甲基-环戊[2,3-b]噻吩-4-酮溶于50ml氯仿并利用250ml恒压滴液漏斗滴入到三口烧瓶中,滴加过程中控制温度为0-5℃。而后将5.35ml(0.104mol)液溴置于250ml恒压滴液漏斗中,并加入20ml氯仿。将溴的氯仿溶液滴入到三口烧瓶中,滴加过程中控制温度为0℃。滴加完成后将反应体系置于室温反应1.5h,用薄层色谱法检测反应进度。反应完成后将反应混合液倒入冰水混合液中,用二氯甲烷洗涤。分液,取有机相用饱和NaHCO 3溶液洗涤至中性。干燥后旋蒸除去有机溶剂,得到棕褐色油状液体,减压蒸馏,得到17.16g黄色透明油状物,产率73.71%。 1H NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)3.17(dd,J=17.4,6.9Hz,1H),2.98(td,J=7.3,2.6Hz,1H),2.52(s,3H),1.35(d,J=7.5Hz,3H)。
步骤(3):2,5-二甲基-3-溴-环戊二烯基[2,3-b]噻吩的合成
称取24.52g(100.0mmol)2,5-二甲基-3-溴-环戊[2,3-b]噻吩-4-酮并倒入到500ml三口烧瓶中,加入四氢呋喃:甲醇体积比1:1的混合溶液200ml,分5次加入硼氢化钠5.93g(157.03mmol)此过程控制温度为0℃,反应24h。反应完毕后,将反应溶液倒入100ml冰水中,用10%的盐酸水溶液调节溶液的PH=1。用500ml二氯甲烷提取有机相,先用饱和Na 2CO 3溶液洗涤,然后用水洗涤至有机相为中性,得黑色溶液,随后用无水K 2SO 4干燥,过滤,真空去除有机溶剂,得到红褐色液体。将上述液体溶于180ml甲苯中,与0.25g(1.43mmol)对甲苯磺酸回流15min,反应体系由红色变为暗红色,将此液体用硅胶柱淋洗,洗脱剂为正己烷与甲基叔丁基醚体积比1:1混合液体,旋蒸除去有机溶剂,得到红棕色油状液体16.34g,产率71.30%。 1H NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)6.35(d,J=1.6Hz,1H),3.04(s,3H),2.39(s,6H),2.12(s,6H)。
步骤(4):2,5-二甲基-3-(4-叔丁基苯基)-环戊二烯基[2,3-b]噻吩的合成
在氮气保护下向500ml Schlenk瓶中加入50ml干燥的四氢呋喃溶液,而后加入35ml(1M)氯化锌溶液和35ml(1M)4-叔丁基溴化镁溶液,溶液变浑浊。在室温条件下搅拌2h,而后先后将8.02g(35mmol)2,5-二甲基-3-溴-环戊二烯基[2,3-b]噻吩和0.36g(0.70mmol)双(三叔丁基膦)钯加入到混合溶液中。加热至80℃,用薄层色谱法监测反应进度。4h后反应结束,过滤,旋干,用500ml石油醚热提取,得到淡黄色固体4.21g,产率42.60%。 1H NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)7.34(d,J=8.4Hz,2H),7.25(d,J=8.4Hz,2H),6.31(s,1H),3.04(s,2H),2.40(s,3H),2.03(s,3H),1.27(s,9H); 13C NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)148.30,144.50,143.99,139.20,132.60,132.43,131.89,127.57,127.21,125.59,124.18,122.36,120.92,39.46,38.47,33.50,30.33,15.90,13.86。
步骤(5):二甲基硅(2,5-二甲基-3-(4-叔丁基)-苯基-环戊二烯基[2,3-b]噻吩) 2的合成
在-78℃下,将8ml(20mmol)正丁基锂的己烷溶液(2.5M)慢慢用注射器滴加到5.08g(20mmol)2,5-二甲基-3-(4-叔丁基苯基)-环戊二烯基[2,3-b]噻吩的40ml四氢呋喃溶液中,边搅拌边滴加,随后升至20℃,并搅拌过夜。反应完毕后,将体系重新冷至-78℃,向反应溶液中滴加1.08ml(10mmol)二氯二甲基硅烷,滴加完毕后,将体系升至20℃,并搅拌过夜。反应结束,加入50ml水,用二氯甲烷提取有机层,随后用无水Mg 2SO 4干燥,过滤,用石油醚柱层析,得到3.20g黄色固体,产率56.5%。 1H NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)):δ(ppm)7.74–7.64(m,8H),6.81(s,2H),4.08(s,2H),2.79(s,6H),2.53(s,6H),1.64(s,18H),0.02(d,J=20Hz,6H); 13C NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)149.43,149.25,146.29,136.35,135.22,133.50,130.44,128.70,126.69,125.28,123.22,46.11,34.61,31.46,18.06,15.00,-7.31,-8.52。
步骤(6):[二甲基硅(2,5-二甲基-3-(4-叔丁基苯基)-环戊二烯基[2,3-b]噻吩) 2]二氯化锆的合成
在-78℃下,将3.8ml(3mmol)正丁基锂的己烷溶液(1.6M)慢慢用注射器滴加到1.82g(3mmol)二甲基硅(2,5-二甲基-3-(4-叔丁基)-苯基-环戊二烯基[2,3-b]噻吩) 2100ml乙醚溶液中,边搅拌边滴加,随后室温搅拌12h。反应完毕,将0.70g(3mmol)氯化锆加入体系中,并使反应体系在室温下搅拌6h。反应结束后,将反应溶液过滤,用乙醚冲洗,收集滤液抽干,用3ml二氯甲烷重结晶。同时将残留在漏斗上的固体用二氯甲烷冲洗,将母液抽干,得到产物0.76g,产率34.54%,元素分析C 62.11%,H 6.44%;理论值C 62.19%,H 6.46%; 1H NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)7.42–7.49(m,8H),6.59(s,2H),2.55(s,6H),2.31(s,6H),1.34(s,18H),1.07(s,6H); 13C NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)151.18,147.65,144.76,135.34,132.47,130.27,129.47,126.45,126.02,119.08,84.91,35.45,31.99,19.94,16.12,0.00。
本实施例制备的含硫手性桥联茂金属化合物为式(1)所示,其中,R 1为4-叔丁基苯基;
R 2为甲基;R 3甲基;M为锆;X为氯。
实施例3[二甲基硅(2,5-二甲基-3-(4-氟苯基)-环戊二烯基[2,3-b]噻吩) 2]二氯化锆的 合成:
步骤(1)至步骤(3)同实施例1,得到中间体2,5-二甲基-3-溴-环戊二烯基[2,3-b]噻吩。
步骤(4):2,5-二甲基-3-(4-氟苯基)-环戊二烯基[2,3-b]噻吩的合成
在氮气保护下向500mlSchlenk瓶中加入50ml干燥的四氢呋喃溶液,而后加入35ml(1M)氯化锌溶液和35ml(1M)4-氟苯基溴化镁溶液,溶液变浑浊,在室温条件下搅拌1h,而后先后将8.02g(35mmol)2,5-二甲基-3-溴-环戊二烯基[2,3-b]噻吩和0.36g(0.70mmol)双(三叔丁基膦)钯加入到混合溶液中。加热至65℃,用薄层色谱法监测反应进度。10h后反应结束,过滤,旋干,用500ml石油醚热提取,得到浅绿色固体6.69g,产率78.40%。mp:80-81℃。 1H NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)7.41-7.11(m,4H,Ar-H),6.44(s,1H),3.12(s,2H),2.49(s,3H),2.16(s,3H); 13C NMR(101MHz,CDCl3)δ194.77,192.94,140.56,132.46,130.17,122.02,115.42,115.21,40.28,16.96,14.72。
步骤(5):二甲基硅(2,5-二甲基-3-(4-氟苯基)-环戊二烯基[2,3-b]噻吩) 2的合成
在-78℃下,将8ml(20mmol)正丁基锂的己烷溶液(2.5M)慢慢用注射器滴加到4.89g(20mmol)2,5-二甲基-3-(4-氟苯基)-环戊二烯基[2,3-b]噻吩的40ml四氢呋喃溶液中,边搅拌边滴加,随后升至20℃,并搅拌过夜。反应完毕后,将体系重新冷至-78℃,向反应溶液中滴加0.97ml(10mmol)二氯二甲基硅烷,滴加完毕后,将体系升至20℃,并搅拌反应24h,加入50ml水,用二氯甲烷提取有机层,随后用无水Mg 2SO 4干燥,过滤,真空去除有机溶剂,用乙醚在室温条件下重结晶,得到产物1.62g,产率29.78%。 1H NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)7.44–7.41(m,8H),6.49(s,2H),3.93(s,1H),3.80(s,1H),2.53(d,J=4.0Hz,6H),2.29(s,3H),2.18(s,3H)-0.17(s,3H),-0.20(s,3H); 13C NMR(CDCl 3,25℃,TMS):δ(ppm)162.87,160.43,146.69,136.50,135.49,130.61,130.53,122.80,122.72,115.38,115.17,46.18,46.96,18.01,17.92,12.79,14.75,-7.67。
步骤(6):[二甲基硅(2,5-二甲基-3-(4-氟苯基)-环戊二烯基[2,3-b]噻吩) 2]二氯化锆的合成
在-78℃下,将3.8ml(3mmol)正丁基锂的己烷溶液(1.6M)慢慢用注射器滴加到1.50g(3mmol)二甲基硅(2,5-二甲基-3-(4-氟苯基)-环戊二烯基[2,3-b]噻吩) 2的100ml乙醚溶液中,边搅拌边滴加,随后室温搅拌5h。反应完毕,将0.70g(3mmol)氯化锆加入体系中,并使反应体系在室温下搅拌两天。反应结束后,将反应溶液过滤,用乙醚冲洗,收集滤液抽干,用3ml二氯甲烷重结晶。同时将残留在漏斗上的固体用二氯甲烷冲洗,得到产物0.23g,元素分析C 55.46%,H 4.65%;理论值C 55.56%,H 4.66%。 1H NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)7.50–7.12(m,8H),6.57(s,2H),2.54(s,6H),2.34(s, 6H),1.09(s,18H),1.23(s,6H); 13C NMR(101MHz,CDCl 3)δ146.88,144.26,134.36,133.00,130.70,128.80,125.00,117.84,115.47,83.94,65.86,19.17,15.22。
本实施例制备的含硫手性桥联茂金属化合物为式(1)所示,其中,R 1为对4-氟苯基;
R 2为甲基;R 3甲基;M为锆;X为氯。
实施例4[二甲基硅(2,5-二甲基-3-(2-萘基)-环戊二烯基[2,3-b]噻吩) 2]二氯化锆的合成:
步骤(1)至步骤(3)同实施例1,得到中间体2,5-二甲基-3-溴-环戊二烯基[2,3-b]噻吩。
步骤(4):2,5-二甲基-3-(2-萘基)-环戊二烯基[2,3-b]噻吩) 2的合成
在氮气保护下向500mlSchlenk瓶中加入50ml干燥的四氢呋喃溶液,而后加入24ml(1M)氯化锌溶液和47ml(23.5M)2-萘基溴化镁溶液,溶液变浑浊,在室温条件下搅拌1h,而后先后将5.27g(23.5mmol)化合物4和0.24g(0.47mmol)双(三叔丁基膦)钯加入到混合溶液中。加热至65℃,用薄层色谱法监测反应进度。10h后反应结束,过滤,旋干,用1000ml石油醚热提取,得到淡黄色固体3.24g,产率35.40%。mp:85-87℃。 1H NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)7.94-7.52(m,7H,Ar-H),6.48(s,1H),3.20(s,2H),2.58(s,3H),2.18(s,3H); 13C NMR(101MHz,CDCl 3)δ145.60,145.28,127.91,127.71,127.36,127.12,126.16,125.80,122.04,40.45,16.99,14.89.
步骤(5):二甲基硅(2,5-二甲基-3-(2-萘基)-环戊二烯基[2,3-b]噻吩) 2的合成
在-78℃下,将8ml(20mmol)正丁基锂的己烷溶液(2.5M)慢慢用注射器滴加到5.33g(20mmol)2,5-二甲基-3-(2-萘基)-环戊二烯基[2,3-b]噻吩的40ml四氢呋喃溶液中,边搅拌边滴加,随后升至25℃,搅拌3h,将体系重新冷至-78℃,向反应溶液中滴加0.97ml(10mmol)二氯二甲基硅烷,滴加完毕后,将体系升至20℃,并搅拌过夜,反应完毕后加入50ml水,用二氯甲烷提取有机层,随后用无水Mg 2SO 4干燥,过滤,真空去除有机溶剂,用乙醚在室温条件下重结晶,得到产物3.72g,产率30.5%。 1H NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)8.02-7.45(m,14H,Ar-H(o)),6.49(s,2H),2.57(d,J=4.0Hz,6H),2.19(s,3H),2.18(s,3H),-0.17(s,3H),-0.20(s,3H); 13C NMR(101MHz,CDCl3)δ164.19,160.34,149.52,140.56,136.67,135.93,134.02,133.58,132.22,126.18,125.78,123.03,46.28,18.12,14.99。
步骤(6):[二甲基硅(2,5-二甲基-3-(2-萘基)-环戊二烯基[2,3-b]噻吩) 2]二氯化锆的合成
1.82g(3.0mmol)二甲基硅(2,5-二甲基-3-(2-萘基)-环戊二烯基[2,3-b]噻吩) 2置于200ml Schlenk瓶中,真空处理后加入100ml无水乙醚。随后在酒精-液氮浴条件下加入 2.4ml(2.5M)正丁基锂的正己烷溶液中,搅拌5小时,而后在无水无氧的条件下将0.70g(3mmol)四氯化锆加入Schlenk瓶中,搅拌3小时,静置,过滤,滤饼用15ml无水乙醚洗涤,而后继续过滤,合并两次滤液并浓缩。滤饼用50ml二氯甲烷溶解,过滤,得到的滤液抽干,得到深绿色固体0.39g,产率17%,元素分析C 62.27%,H 4.95%;理论值C 63.13%,H 5.05%; 1H NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)7.94-7.46(m,14H,Ar-H(o)),6.66(s,2H,C=C-H),2.60(s,6H,C=C-C-H),2.36(s,6H,,C=C-C-H),1.09(s,6H,Si-C-H); 13C NMR(101MHz,CDCl 3)δ164.19,160.34,149.52,140.56,136.67,135.93,134.02,133.58,132.22,126.18,125.78,123.03,46.28,18.12,14.99; 13C NMR(101MHz,CDCl 3)δ134.33,133.46,132.59,129.81,128.22,127.66,127.07,126.06,125.98,118.14,19.24,15.43。
本实施例制备的含硫手性桥联茂金属化合物为式(1)所示,其中,R 1为对2-萘基;
R 2为甲基;R 3甲基;M为锆;X为氯。
实施例5[二甲基硅(2,5-二甲基-3-(4-甲氧基苯基)-环戊二烯基[2,3-b]噻吩) 2]二溴化铪
在-78℃下,将3.8ml(3mmol)正丁基锂的己烷溶液(1.6M)慢慢用注射器滴加到1.70g(3mmol)二甲基硅(2,5-二甲基-3-(4-甲氧基)-苯基-环戊二烯基[2,3-b]噻吩) 2100ml乙醚溶液中,边搅拌边滴加,随后室温搅拌12h。反应完毕,将1.49g(3mmol)溴化铪加入体系中,并使反应体系在室温下搅拌12h。反应结束后,将反应溶液过滤,用乙醚冲洗,收集滤液抽干,用3ml二氯甲烷重结晶。同时将残留在漏斗上的固体用二氯甲烷冲洗,将母液抽干,得到产物0.17g,产率6.55%,元素分析C 46.35%,H 4.11%;理论值C 46.23%,H 4.31%; 1H NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)7.42(d,J=8Hz,4H),6.97(d,J=8Hz,4H),6.56(s,2H),3.81(s,6H),2.51(s,6H),2.31(s,6H),1.04(s,6H); 13C NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)160.71,148.60,145.08,136.22,131.90,130.96,128.70,126.85,119.87,115.75,85.76,57.08,20.84,16.90,0.89。
本实施例制备的含硫手性桥联茂金属化合物为式(I)所示,其中,R 1为4-甲氧基苯基;
R 2为甲基;R 3甲基;M为铪;X为溴。
实施例6[二甲基硅(2-异丙基-5-甲基-3-(4-叔丁基)-苯基-环戊二烯基[2,3-b]噻吩) 2]二氯化钛的合成
在-78℃下,将3.8ml(3mmol)正丁基锂的己烷溶液(1.6M)慢慢用注射器滴加到1.82g(3mmol)二甲基硅(2-异丙基-5-甲基-3-(4-叔丁基)-苯基-环戊二烯基[2,3-b]噻吩) 2的 100ml乙醚溶液中,边搅拌边滴加,随后室温搅拌6h。反应完毕,加入0.33ml(3mmol)四氯化钛加入体系中,并使反应体系在室温下搅拌5h。反应结束后,将反应溶液过滤,用乙醚冲洗,收集滤液抽干,用3ml二氯甲烷重结晶,得到固体0.31g,产率15.77%,元素分析C 67.11%,H 7.52%;理论值C67.06%,H 7.34%; 1H NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)7.44-7.51(m,8H),6.59(s,2H),2.53(s,6H),2.30(s,12H),1.34(s,18H),1.06(s,6H); 13C NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)151.18,147.65,144.77,135.33,132.46,130.27,129.48,126.44,126.05,119.10,84.92,35.44,31.94,19.93,16.12,0.00。
本实施例制备的含硫手性桥联茂金属化合物为式(1)所示,其中,R 1为4-叔丁基苯基;
R 2为甲基;R 3为异丙基;M为钛;X为氯。
实施例7[二甲基硅(2,5-二甲基-3-(4-氟苯基)-环戊二烯基[2,3-b]噻吩) 2]二氟化锆的合成
在-78℃下,将3.8ml(3mmol)正丁基锂的己烷溶液(1.6M)慢慢用注射器滴加到1.50g(3mmol)二甲基硅(2,5-二甲基-3-(4-氟苯基)-环戊二烯基[2,3-b]噻吩) 2的100ml乙醚溶液中,边搅拌边滴加,随后室温搅拌5h。反应完毕,将0.50g(3mmol)氟化锆加入体系中,并使反应体系在室温下搅拌两天。反应结束后,将反应溶液过滤,用乙醚冲洗,收集滤液抽干,用3ml二氯甲烷重结晶。同时将残留在漏斗上的固体用二氯甲烷冲洗,得到产物0.15g收率7.14%,元素分析C 58.21%,H 4.89%;理论值C 58.17%,H 4.88%; 1H NMR(400MHz,CDCl 3,25℃,TMS):δ(ppm)7.50-7.12(m,8H),6.56(s,2H),2.51(s,6H),2.34(s,6H),1.07(s,18H),1.21(s,6H); 13C NMR(101MHz,CDCl 3)δ146.89,144.26,134.35,133.03,130.72,128.81,125.00,117.85,115.47,83.94,65.86,19.15,15.20。
本实施例制备的含硫手性桥联茂金属化合物为式(1)所示,其中,R 1为对4-氟苯基;R 2为甲基;R 3甲基;M为锆;X为氟。
实施例8-14茂金属化合物的负载
将1g二氧化硅和1g甲基铝氧烷(MAO)固体粉末溶于30ml无水甲苯中,100℃下搅拌反应5h,沉淀后除去上清液,用甲苯洗涤2次,将110mg茂金属化合物(实施例1为4-甲氧基苯基-二氯化锆,实施例2为4-叔丁基苯基-二氯化锆,实施例3为4-氟苯基-二氯化锆,实施例4为2-萘基-4-甲氧基,实施例5为4-甲氧基-二溴化铪,实施例6为4-叔丁基-二氯化钛,实施例7为4-氟苯基-二氟化锆),溶解在10ml无水甲苯中,与上述沉淀在40℃下搅拌反应5h,在反应完成后,静置沉淀,移除上清液并用甲苯洗 涤2次,己烷洗涤2次,进行真空干燥,得到负载型催化剂,记为Cat-1,Cat-2,Cat-3,Cat-4,Cat-5,Cat-6,Cat-7。
实施例15-21丙烯聚合
在手套箱内,将负载后的茂金属催化剂置于指形管内,每管填料100mg,然后对5L的聚合釜进行预热,先加热至70℃,之后降至室温。同时保持对反应釜抽真空3h。抽真空完毕后,然后充入丙烯至大气压,加入500ml己烷做溶剂,在搅拌条件下继续加入2ml三乙基铝,10分钟后再加入催化剂。预聚合10min后开始加热,聚合温度为70℃,聚合时间为1h,聚合结束后停止反应。取出聚合物,洗涤烘干并称重,相关测试结果见表2。
表2
Figure PCTCN2022138876-appb-000009
比较实施例8-11可知,取代基苯基为叔丁基苯基时,含有噻吩环结构的茂金属催化剂的负载催化剂金属含量最接近3%,且其催化活性最高,制备的聚丙烯熔融指数高,流动性好。比较实施例11与实施例13可知,使用钛作为催化剂的催化活性中心时,其催化效果不及使用锆作为催化活性中心。比较实施例10与实施例14,由于氟极强吸电子能力,导致对实施例14所示催化剂的载体负载量极低,且催化剂活性远低于实施例10。综上所述,在本发明所示的几种含有噻吩环结构的茂金属催化剂中,取代基苯基为叔丁基苯基,配位金属为Zr时,催化剂的活性高,载体负载催化剂金属含量高,且制备的聚丙烯熔融指数最大。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (18)

  1. 一种含硫手性桥联茂金属化合物,其中,所述含硫手性桥联茂金属化合物为通式(I)所述化合物:
    Figure PCTCN2022138876-appb-100001
    其中,
    R 1选自4-取代苯基、2-萘基中的一个;
    R 2,R 3选自烷基;
    M选自TI、Zr、Hf中的一个;
    X选自卤素。
  2. 权利要求1所述含硫手性桥联茂金属化合物,其中,R 1选自4-叔丁基苯基、4-氟苯基、4-甲氧基苯基、2-萘基中的一种。
  3. 权利要求1所述含硫手性桥联茂金属化合物,其中,R 2、R 3均为甲基。
  4. 权利要求1所述含硫手性桥联茂金属化合物,其中,X为氯。
  5. 制备权利要求1所述含硫手性桥联茂金属化合物的方法,其中,包括:
    (1)在60-80℃条件和伊顿试剂催化条件下,按方程式一所示将通式(II)所示的噻吩类化合物与通式(III)所示的丙烯酸类化合物反应,得到通式(IV)所示的化合物;
    Figure PCTCN2022138876-appb-100002
    其中,R 2和R 3为烷基;
    (2)按方程式二所示将氯化铝和通式(IV)所示化合物分别溶于极性溶剂后混合,并加入溴代试剂,反应得到通式(V)所示化合物;
    Figure PCTCN2022138876-appb-100003
    其中,R 2和R 3为烷基;
    (3)按方程式三所示将通式(V)所示的化合物溶于极性溶剂中,加入还原试剂进行还原反应,得到通式(VI)所示的化合物,将通式(VI)所示化合物溶于苯类溶剂中加入有机酸催化,使通式(VI)所示化合物进行分子内脱水反应得到通式(VII)所示化合物;
    Figure PCTCN2022138876-appb-100004
    其中,R 2和R 3为烷基;
    (4)按方程式四所示,将卤代锌加入无水溶剂,在氮气氛围下加入如通式(VIII)所示芳基格式试剂;加入通式(VII)所示化合物,搅拌,加入催化剂,在60~80℃条件下反应得到通式(IX)所示的配体前体;
    Figure PCTCN2022138876-appb-100005
    其中,
    R 1为4-取代苯基,2-萘基;
    R 2和R 3为烷基;
    (5)按方程式五所示将通式(IX)所示化合物加入无水醚溶剂,在酒精液氮浴、氮气保护条件下加入正丁基锂,低温条件下加入二氯二甲基硅烷,反应得到通式(X)所示配体;
    Figure PCTCN2022138876-appb-100006
    其中,
    R 1为4-取代苯基,2-萘基;
    R 2和R 3为烷基;
    (6)按方程式六所示,将通式(IX)所示的配体加入醚溶剂中,在低温条件下加入正丁基锂试剂;低温条件下加入金属卤代物MX 4,室温反应得到目标化合物,如通式(I)所示;
    Figure PCTCN2022138876-appb-100007
    其中,
    R 1为4-苯基取代基,2-萘基;
    R 2、R 3为烷基;
    M为钛、锆、铪中的一个;
    X为卤素。
  6. 权利要求5所述方法,其中,步骤(1)的反应温度为80℃,反应时间为1h。
  7. 权利要求5所述方法,其中,步骤(2)中,所述极性溶剂为氯仿,所述溴代试剂为液溴,通式(IV)所示化合物:溴代试剂摩尔比为1:1.1。
  8. 权利要求5所述方法,其中,步骤(3)中,所述极性溶剂为醇溶剂和醚溶剂的混合溶液;所述醇溶剂为甲醇、乙醇、丁醇中的任意一种或多种,所述醚溶剂为乙醚、甲基叔丁基醚、四氢呋喃中的任意一种或多种,所述醚溶剂与所述醇溶剂的体积比为1-3:1。
  9. 权利要求5所述方法,其中,步骤(3)中,所述还原剂为硼氢化钠、氢化铝锂、 硼氢化钾、氰基硼氢化钠中的一种。
  10. 权利要求5所述方法,其中,步骤(3)中,所述有机酸为对甲苯磺酸、甲酸、乙酸中的一种或多种,通式(VI)所示化合物经分子内脱水反应得到通式(VII)所示化合物,以所述苯类溶剂甲苯、苯二甲苯、三甲苯、四甲苯、氯苯中的一种或多种作为反应溶剂,通式(VI)所示化合物与有机酸摩尔比为70:1,反应时间为15min。
  11. 权利要求5所述的方法,其中,步骤(4)中,所述芳基格式试剂如通式(VIII)所示为4-甲氧基苯基溴化镁、4-叔丁基苯基溴化镁、4-氟苯基溴化镁、2-萘基溴化镁中的一种,卤代锌为氯化锌,所述催化剂为醋酸钯、二苯基磷二茂铁二氯化钯、四三苯基膦钯、二氯二三苯基膦钯、双(三叔丁基膦)钯、醋酸镍、二苯基磷二茂铁二氯化镍、四三苯基膦镍、二氯二三苯基膦镍、双(三叔丁基膦)镍中的一种,所述催化剂与通式(VII)所示化合物摩尔比为0.23:1,所述反应温度具体为80℃,所述无水溶剂为为四氢呋喃、乙醚、甲苯中的任意一种或多种。
  12. 权利要求11所述方法,其中,所述催化剂为双(三叔丁基膦)钯。
  13. 权利要求11所述方法,其中,所述催化剂为双(三叔丁基膦)钯。
  14. 权利要求5所述方法,其中,步骤(5)中,无水醚溶液为四氢呋喃溶液,所述反应时间具体为16h。
  15. 权利要求5所述方法,其中,步骤(6)中,所述醚溶剂为乙醚,所述正丁基锂:通式(IX)所示化合物:金属卤代物的摩尔比为2:2:1,其中,M为钛、锆、铪中的一种,X为卤素。
  16. 权利要求1所述含硫手性桥联茂金属化合物作为丙烯聚合催化剂的应用。
  17. 一种丙烯聚合催化剂,其中,所述催化剂包括权利要求1所述含硫手性桥联茂金属化合物。
  18. 一种聚丙烯催化聚合反应,其中,使用权利要求1所述含硫手性桥联茂金属化合物作为丙烯聚合催化剂。
PCT/CN2022/138876 2021-12-31 2022-12-14 含硫手性桥联茂金属化合物及其制备和应用 WO2023124996A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111671597.9A CN116410238A (zh) 2021-12-31 2021-12-31 含硫手性桥联茂金属化合物及其制备和应用
CN202111671597.9 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023124996A1 true WO2023124996A1 (zh) 2023-07-06

Family

ID=86997722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138876 WO2023124996A1 (zh) 2021-12-31 2022-12-14 含硫手性桥联茂金属化合物及其制备和应用

Country Status (2)

Country Link
CN (1) CN116410238A (zh)
WO (1) WO2023124996A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1347424A (zh) * 1999-12-15 2002-05-01 巴塞尔技术有限公司 金属茂化合物、其制备方法及其在烯烃聚合催化体系中的应用
US20050010058A1 (en) * 2001-11-30 2005-01-13 Elder Michael J Metallocene compounds and process for the preparation of propylene polymers
US20050234204A1 (en) * 2002-09-06 2005-10-20 Luigi Resconi Process for the copolymerization of ethylene
US20060160968A1 (en) * 2004-12-16 2006-07-20 Voskoboynikov Alexander Z Process for producing substituted metallocene compounds for olefin polymerization
US20070135596A1 (en) * 2005-12-14 2007-06-14 Voskoboynikov Alexander Z Preparation of substituted bridged indenyl and related ligands
JP2021152155A (ja) * 2020-03-24 2021-09-30 日本ポリプロ株式会社 オレフィン重合用担持系触媒、及び、当該オレフィン重合用担持系触媒を用いたプロピレン系重合体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1347424A (zh) * 1999-12-15 2002-05-01 巴塞尔技术有限公司 金属茂化合物、其制备方法及其在烯烃聚合催化体系中的应用
US20050010058A1 (en) * 2001-11-30 2005-01-13 Elder Michael J Metallocene compounds and process for the preparation of propylene polymers
US20050234204A1 (en) * 2002-09-06 2005-10-20 Luigi Resconi Process for the copolymerization of ethylene
US20060160968A1 (en) * 2004-12-16 2006-07-20 Voskoboynikov Alexander Z Process for producing substituted metallocene compounds for olefin polymerization
US20070135596A1 (en) * 2005-12-14 2007-06-14 Voskoboynikov Alexander Z Preparation of substituted bridged indenyl and related ligands
JP2021152155A (ja) * 2020-03-24 2021-09-30 日本ポリプロ株式会社 オレフィン重合用担持系触媒、及び、当該オレフィン重合用担持系触媒を用いたプロピレン系重合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VYATCHESLAV V. IZMER ET AL.: "Palladium-Catalyzed Pathways to Aryl-Substituted Indenes:Efficient Synthesis of Ligands and the Respective ansa-Zirconocenes", ORGANOMETALLICS, vol. 25, no. 5, 25 January 2006 (2006-01-25), XP002432930, ISSN: 1520-6041, DOI: 10.1021/om050937e *

Also Published As

Publication number Publication date
CN116410238A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
ES2643158T3 (es) Catalizadores
JP4838475B2 (ja) メタロセン化合物、その製造方法及びオレフィン重合のための触媒系におけるその使用
EP1448578B1 (en) Metallocene compounds and process for the preparation of propylene polymers
AU2006224576B2 (en) Metallocene compounds
CN105452268B (zh) 茂金属化合物、包含其的催化剂组合物以及使用其制备烯烃聚合物的方法
JP6420911B2 (ja) 混成担持触媒およびこれを用いるオレフィン系重合体の製造方法
KR20200133264A (ko) 올레핀 중합용 촉매
EP1996600B1 (en) Metallocene compounds
EP1752462B1 (en) Siloxy substituted metallocene catalysts
JP4758650B2 (ja) 1−ブテンポリマーの製造方法
KR101503002B1 (ko) 메탈로센 화합물 및 이를 이용하여 제조되는 올레핀계 중합체
CN102834422B (zh) 使用包含噻吩稠合的环戊二烯基配体的过渡金属化合物制备聚丙烯的方法
KR20130125311A (ko) 안사-메탈로센 화합물 및 이를 이용한 담지 촉매의 제조방법
CN108602908B (zh) 负载型复合催化剂及使用其制备烯烃聚合物的方法
WO2009050037A1 (en) Metallocene compounds based on ethanediyl-bridged indene and cyclopentadithiophene ligands
WO2003066641A1 (fr) Complexes de metaux de transition, ligands, catalyseurs de polymerisation pour olefines, et procedes de production de polymeres d'olefines
KR20150066344A (ko) 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀계 중합체의 제조방법
WO2023124996A1 (zh) 含硫手性桥联茂金属化合物及其制备和应用
KR101617871B1 (ko) 이핵 메탈로센 화합물, 촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법
CN111116789B (zh) 双核茂金属负载型催化剂及其制备方法和应用
CN111116788B (zh) 聚丙烯及其制备方法
JP7206196B2 (ja) オレフィン重合触媒用遷移金属化合物、これを含むオレフィン重合触媒およびこれを用いて重合されたポリオレフィン
KR101785705B1 (ko) 촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법
CN111116678B (zh) 双核茂金属化合物及其制备方法和应用
CN118221849A (zh) 一种茂金属催化剂组合物在聚α烯烃蜡制备中作为催化剂的用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914251

Country of ref document: EP

Kind code of ref document: A1