WO2023124956A1 - 硅基复合材料及其制备方法、锂离子电池 - Google Patents

硅基复合材料及其制备方法、锂离子电池 Download PDF

Info

Publication number
WO2023124956A1
WO2023124956A1 PCT/CN2022/138564 CN2022138564W WO2023124956A1 WO 2023124956 A1 WO2023124956 A1 WO 2023124956A1 CN 2022138564 W CN2022138564 W CN 2022138564W WO 2023124956 A1 WO2023124956 A1 WO 2023124956A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
based composite
composite material
oil
water
Prior art date
Application number
PCT/CN2022/138564
Other languages
English (en)
French (fr)
Inventor
陈曦
庞春雷
梁腾宇
任建国
贺雪琴
Original Assignee
贝特瑞新材料集团股份有限公司
惠州市鼎元新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贝特瑞新材料集团股份有限公司, 惠州市鼎元新能源科技有限公司 filed Critical 贝特瑞新材料集团股份有限公司
Publication of WO2023124956A1 publication Critical patent/WO2023124956A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the technical field of energy storage materials, and in particular, relates to silicon-based composite materials, preparation methods, and lithium-ion batteries.
  • the intrinsic conductivity of silicon-based negative electrode materials is poor, and the huge volume expansion ( ⁇ 400%) during lithium intercalation causes the solid electrolyte interphase (SEI) film to be destroyed and new SEI films are repeatedly generated, resulting in its continuous consumption.
  • SEI solid electrolyte interphase
  • the silicon-based negative electrode material In order to make the silicon-based negative electrode material have a higher specific capacity and improve the cycle stability of the silicon-based negative electrode material, it is necessary to improve the silicon-based negative electrode material.
  • the present application provides a silicon-based composite material and a preparation method thereof, and a lithium ion battery, which can improve the specific capacity and cycle stability of the silicon-based composite material.
  • the present application provides a silicon-based composite material
  • the silicon-based composite material includes a Si-O-C spherical structure
  • the ratio between the number of Si-O bonds and the number of Si-C bonds in the silicon-based composite material is The ratio is greater than 2.
  • the silicon-based composite material includes at least one of the following features (1) to (5):
  • the Si-OC spherical structure includes SiO 4 structural units and SiO 3 C structural units, and the mass fraction of the SiO 3 C structural units is greater than the mass fraction of the SiO 4 structural units;
  • the Si-OC spherical structure includes a SiO 4 structural unit and a SiO 3 C structural unit, and the ratio of the mass fraction of the SiO 3 C structural unit to the SiO 4 structural unit is greater than 2;
  • the Si-OC spherical structure includes SiO 4 structural units, SiO 3 C structural units and SiO 2 C 2 structural units; the sum of the mass fractions of the SiO 4 structural units and the SiO 3 C structural units and The mass fraction ratio of the SiO 2 C 2 structural units is greater than 2;
  • the molar ratio of C/Si in the Si-O-C spherical structure is 0.5-3.5.
  • At least part of the surface of the Si-O-C spherical structure is provided with a cladding layer, and the cladding layer includes at least one of the following features (1) to (3):
  • the cladding layer includes at least one of a carbon layer and a polymer layer
  • the cladding layer includes at least one of a carbon layer and a polymer layer, and the material of the carbon layer includes an inorganic carbon material;
  • the cladding layer includes at least one of a carbon layer and a polymer layer, and the material of the polymer layer includes polyolefin, polyolefin derivatives, alginic acid, alginic acid derivatives, polyvinyl alcohol, poly At least one of vinyl alcohol derivatives, polyacrylic acid, polyacrylic acid derivatives, polyamide, polyamide derivatives, carboxymethylcellulose and carboxymethylcellulose derivatives.
  • the silicon-based composite material includes at least one of the following features (1) to (8):
  • the silicon-based composite material includes Si microcrystals
  • the silicon-based composite material includes Si microcrystals, and the median particle size of the Si microcrystals is 1 nm to 10 nm;
  • the capacity in the range of 0-0.1V accounts for 20%-50% of the overall capacity of the silicon-based composite material, and the capacity in the range of 0.1V-0.6V accounts for 20%-50% of the total capacity of the silicon-based composite material. 50% to 80% of the overall capacity of silicon-based composite materials;
  • the Wardell sphericity of the silicon-based composite material is greater than 0.95;
  • the median particle diameter D50 of the silicon-based composite material is 0.3 ⁇ m to 5.8 ⁇ m;
  • the specific surface area of the silicon-based composite material is 2.0m 2 /g to 9.5m 2 /g;
  • the powder tap density of the silicon-based composite material is 0.6g/cm 3 -1.2g/cm 3 .
  • the present application provides a method for preparing a silicon-based composite material, comprising the following steps:
  • the gel is subjected to a first heat treatment to obtain a silicon-based composite material.
  • the mixing of raw materials comprising solvent, siloxane raw material, phenolic raw material, aldehyde raw material and catalyst to obtain the oil phase specifically includes: adding siloxane raw material and phenolic raw material to the solvent for the first mixing to obtain a first solution, adding aldehyde raw materials and catalysts to the first solution for second mixing to obtain an oil phase.
  • the preparation method includes at least one of the following features (1) to (6):
  • the solvent includes at least one of water and ethanol
  • the siloxane raw materials include aromatic siloxane, octamethyltetrasiloxane, decamethyltetrasiloxane, 1,3-divinyltetramethyldisiloxane and octamethyltetrasiloxane at least one of trisiloxanes;
  • the phenolic raw material includes at least one of resorcinol, m-aminophenol and bisphenol A;
  • the catalyst includes at least one of vinyl tetramethyl-disiloxane complex and dibutyltin dilaurate;
  • the preparation method includes at least one of the following features (1) to (3):
  • the mass ratio of the phenolic raw material to the siloxane raw material is 1:(2 ⁇ 8);
  • the preparation method includes at least one of the following features (1) to (2):
  • the first pH adjustment solution includes at least one of ammonia and urea
  • the concentration of the first pH adjustment solution is 0.1mol/L ⁇ 2mol/L.
  • adding the oil phase to the water phase to obtain an oil-in-water emulsion specifically includes: adding an emulsifier to deionized water to obtain a water phase; adding the oil phase dropwise to the water phase, An oil-in-water emulsion is obtained.
  • adding an emulsifier to deionized water to obtain a water phase specifically includes: adding an emulsifier and a second pH adjustment solution to deionized water to obtain a water phase with a pH of 11-12.
  • the preparation method includes at least one of the following features (1) to (4):
  • the second pH adjustment solution includes at least one of ammonia and urea
  • the concentration of the second pH adjustment solution is 0.1mol/L ⁇ 2mol/L;
  • the emulsifier includes at least one of polysorbate-80, polysorbate-60, polysorbate-40 and polysorbate-20;
  • the emulsifier accounts for 1% to 20% of the mass of the water phase.
  • the preparation method includes at least one of the following features (1) to (4):
  • the temperature of the water bath or oil bath is 25°C to 100°C;
  • the step of drying the gel is also included before performing the first heat treatment on the gel.
  • the preparation method includes at least one of the following features (1) to (4):
  • the temperature of the first heat treatment is 600°C to 1000°C;
  • the first heat treatment is carried out in a first protective gas atmosphere
  • the first heat treatment is performed in a first protective gas atmosphere, and the first protective gas atmosphere includes at least one of nitrogen, argon and helium.
  • the method further includes: a step of performing a second heat treatment on the silicon-based composite material by using a cladding material.
  • the method includes at least one of the following features (1) to (8):
  • the cladding material includes at least one of a carbon source and a polymer material
  • the coating material includes at least one of a carbon source and a polymer material, and the carbon source includes at least one of a solid-phase carbon source, a liquid-phase carbon source, and a gas-phase carbon source;
  • the coating material includes at least one of a carbon source and a polymer material
  • the solid-phase carbon source includes at least one of citric acid, glucose, pitch, phenolic resin and furfural resin
  • the coating material includes at least one of a carbon source and a polymer material, and the liquid carbon source includes low-temperature liquid-phase pitch, furfuryl alcohol, glycidyl methacrylate and triethylene glycol dimethacrylate at least one of esters;
  • the cladding material includes at least one of a carbon source and a polymer material, and the gaseous carbon source includes at least one of methane, acetylene, ethylene, ethane, propane, propylene, propyne, acetone, and benzene kind;
  • the coating material includes at least one of a carbon source and a polymer material
  • the polymer material includes polyolefin, polyolefin derivatives, alginic acid, alginic acid derivatives, polyvinyl alcohol, polyvinyl alcohol derivatives, polyacrylic acid, polyacrylic acid derivatives, polyamide, polyamide derivatives, carboxymethylcellulose and carboxymethylcellulose derivatives.
  • the temperature of the second heat treatment is 600°C to 1000°C;
  • the holding time of the second heat treatment is 0.5h-20h.
  • the present application provides a lithium-ion battery, the lithium-ion battery includes the silicon-based composite material described in the first aspect or includes the silicon-based composite material described in the second aspect.
  • Si in the Si-O-C spherical structure of the present application mainly forms Si-O bonds with O, and Si can also form Si-C bonds with C simultaneously, and the Si-O-C spherical structure of the present application
  • the ratio of the number of Si-O bonds to the number of Si-C bonds in the bulk is greater than 2.
  • Si-O bonds have a higher specific capacity and a larger number, indicating that silicon-based composites have a relatively high High specific capacity.
  • the spherical Si-O-C structure can be used as a buffer skeleton, making the Si-based composites have better cycle capacity retention and lower cycle expansion.
  • Fig. 1 is the preparation flow chart of the silicon-based composite material of the present application
  • Fig. 2 is the electron micrograph of the silicon-based composite material that the embodiment 1 of the present application makes;
  • Fig. 3 is the electron micrograph of the silicon-based composite material that the embodiment 2 of the present application makes;
  • FIG. 4 is an electron microscope image of the silicon-based composite material prepared in Example 3 of the present application.
  • the present application provides a silicon-based composite material, which includes a Si-O-C spherical structure, and the ratio of the number of Si-O bonds to the number of Si-C bonds in the silicon-based composite material is greater than 2.
  • Si in the Si-O-C spherical structure of the present application mainly forms Si-O bonds with O, and Si can also form Si-C bonds with C at the same time.
  • Si-O bonds The ratio of the number to the number of Si-C bonds is greater than 2. Compared with Si-C bonds, Si-O bonds have a higher specific capacity and a larger number, indicating that the silicon-based composite has a higher specific capacity.
  • the spherical Si-O-C structure can be used as a buffer skeleton, making the Si-based composites have better cycle capacity retention and lower cycle expansion.
  • C is usually coated on the surface of the SiO core, and Si and C can hardly form Si-C bonds; while the silicon-based material of the present application has a single-layer structure, and Si and C can form more Si
  • the -C bond can enhance the bonding force of Si and C in the material, thereby enhancing the mechanical strength of the entire silicon-based material.
  • the ratio of the number of Si-O bonds to the number of Si-C bonds in the silicon-based composite material can be greater than 2, greater than 2.5, greater than 3, greater than 3.5, greater than 4, greater than 4.5, greater than 5, greater than 5.5, greater than 6. Greater than 6.5, greater than 7, greater than 7.5, etc. Of course, it can also be other values within the above range, which is not limited here.
  • the Si—OC spherical structure may include SiO 4 structural units and SiO 3 C structural units.
  • Si mainly forms Si-O bonds with O, and there are also a small amount of Si elements and C elements that are not bonded, and the Si elements that are not bonded exist in a small amount of Si-O bonds in the form of microcrystals.
  • unbonded C elements exist in the form of free C around the matrix composed of Si-O bonds.
  • SiO 4 structural units and SiO 3 C structural units mainly exist in Si-OC spherical structures, and SiO Both the 4 structural unit and the SiO 3 C structural unit are reversible phases, and the specific capacity of the above two structural units is more than three times higher than that of graphite, so that the silicon-based composite material of the present application has a higher specific capacity.
  • the mass fraction of the SiO 3 C structural unit is greater than that of the SiO 4 structural unit.
  • the SiO 3 C structural unit can have a higher reversible specific capacity, so that the silicon-based When the composite material contains more SiO 3 C structural units, the silicon-based composite material can have a higher reversible specific capacity.
  • the ratio of the mass fraction of the SiO 3 C structural unit to the mass fraction of the SiO 4 structural unit is greater than 2, and the ratio of the mass fraction of the SiO 3 C structural unit to the mass fraction of the SiO 4 structural unit can be greater than 2, greater than 3, Greater than 3.5, greater than 4, greater than 4.5, greater than 5, greater than 5.5, greater than 6, greater than 6.5, greater than 7, greater than 7.5, etc.
  • it can also be other values within the above range, which is not limited here.
  • the Si-OC spherical structure further includes SiO 2 C 2 structural units.
  • the SiO 2 C 2 structural unit is also a reversible phase, and its reversible specific capacity is lower than that of the SiO 4 structural unit and SiO 3 C structural unit. Its presence in the Si-OC spherical structure can also increase the reversible ratio of the silicon-based composite. capacity.
  • the ratio of the sum of the mass fractions of SiO 4 structural units and SiO 3 C structural units to the mass fraction of SiO 2 C 2 structural units is greater than 2.
  • the SiO 4 structural unit and the SiO 3 C structural unit have higher reversible specific capacities, making silicon-based composites contain more SiO 3 C structural units and SiO 4 structural units Under this condition, silicon-based composites can have higher reversible specific capacity.
  • the ratio of the sum of the mass fractions of SiO 4 structural units and SiO 3 C structural units to the mass fraction of SiO 2 C 2 structural units can be greater than 2, greater than 2.5, greater than 3, greater than 3.5, greater than 4, greater than 4.5, greater than 5, etc. , of course, can also be other values within the above range, which is not limited here.
  • the Si-OC spherical structure since the Si-OC spherical structure contains Si-C bonds and Si-O bonds, the Si-OC spherical structure also includes SiOC 3 structural units and SiC 4 structural units with more Si-C bonds, Among them, the specific capacity of the SiOC 3 structural unit and the SiC 4 structural unit is lower than that of the SiO 2 C 2 structural unit.
  • the Si-OC spherical structure of the present application contains SiO 4 structural units and SiO 3 C structural units, and can optionally contain SiO 2 C 2 structural units and SiOC 3 structures containing more Si-C bonds Units and SiC 4 structural units, preferably, the Si-OC spherical structure contains SiO 4 structural units, SiO 3 C structural units and SiO 2 C 2 structural units, and does not contain SiOC 3 structural units and SiC 4 structural units; further preferred Specifically, the Si-OC spherical structure only contains SiO 4 structural units and SiO 3 C structural units, which can make the silicon-based composite material as a whole have a higher specific capacity.
  • the Si-OC spherical structure mainly contains SiO 4 structural units, SiO 3 C structural units, and may contain less SiO 2 C 2 structural units, it hardly contains SiOC 3 structural units and SiC 4 structural units. Therefore, the O/Si molar ratio in the Si-OC spherical structure is 1 to 2. Specifically, the O/Si molar ratio in the Si-OC spherical structure can be 1, 1.2, 1.5, 1.7, 1.9 and 2, etc., of course it can also be are other values within the above range, and are not limited here.
  • the above SiO 4 structural unit, SiO 3 C structural unit, SiO 2 C 2 structural unit, and SiC 4 structural unit structural unit can be distinguished by testing nuclear magnetic resonance NMR.
  • the 29Si chemical shift is related to the electronegativity of the substituents. As the electronegativity of the substituent R increases, the Si NMR chemical shift becomes smaller and shifts to higher fields.
  • the chemical shift ⁇ Si of SiO 3 C is -65.3ppm
  • the chemical shift ⁇ Si of SiO 2 C 2 is -106ppm
  • the chemical shift ⁇ Si of SiO 4 is -82.4ppm
  • the C/Si molar ratio of the Si-O-C spherical structure is 0.5 to 3.5, and the C/Si molar ratio of the Si-O-C spherical structure can be 0.5, 1, 1.5, 2, 2.5, 3 and 3.5, etc., of course, can also be other values within the above range, which are not limited here.
  • the C dispersed in the Si-O-C spherical structure can also provide a certain reversible capacity. Therefore, as the C/Si molar ratio increases, the Si-O-C spherical structure can obtain a higher reversible capacity, so that the silicon-based composite material of the present application has a higher specific capacity.
  • At least part of the surface of the Si—O—C spherical structure is provided with a cladding layer.
  • the cladding layer includes at least one of a carbon layer and a polymer layer.
  • the carbon layer includes a layer of inorganic carbon material.
  • the inorganic carbon material layer can effectively improve the conductivity of the Si-O-C spherical structure, and it can form a good conductive network with the free C on the surface and inside of the Si-O-C spherical structure in the Si-O-C spherical structure, further Improve the first Coulombic efficiency of the material.
  • the inorganic carbon material layer is coated on the surface of the Si-O-C spherical structure, which will not affect the morphology and amorphous structure of the Si-O-C spherical structure, ensuring that the Si-O-C spherical structure can maintain its better specific capacity and cycle stability.
  • the inorganic carbon material includes at least one of graphite, amorphous pyrolytic carbon, carbon nanotubes, carbon nanowires, carbon nanoparticles, and carbon fibers.
  • the material of the polymer layer includes polyolefin, polyolefin derivatives, alginic acid, alginic acid derivatives, polyvinyl alcohol, polyvinyl alcohol derivatives, polyacrylic acid, polyacrylic acid derivatives, polyamide, poly At least one of amide derivatives, carboxymethylcellulose and carboxymethylcellulose derivatives.
  • the silicon-based composite material includes Si microcrystals
  • the median particle size of the Si microcrystals is 1 nm to 10 nm
  • the size of the Si crystallites can be 1 nm, 2 nm, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, or 8 nm. , 9nm, 10nm, etc.
  • Controlling the median particle size of Si crystallites within the above-mentioned range can form a structure in which Si is dispersed in SiO 2 , which is conducive to improving the cycle performance of silicon-based composite materials used in lithium-ion batteries.
  • the median particle size of Si crystallites is less than 1nm, the dispersed structure in which Si is dispersed in the SiO2 framework cannot be effectively formed, resulting in poor cycle performance of track composites; if the median particle size of Si crystallites is larger than 10nm, it indicates that Si A large amount of elemental silicon and silicon dioxide are generated in the silicon-based composites, resulting in larger volume expansion and lower capacity of the silicon-based composites.
  • the capacity in the range of 0-0.1V accounts for 20%-50% of the overall capacity of the silicon-based composite material
  • the capacity in the range of 0.1V-0.6V accounts for 20%-50% of the overall capacity of the silicon-based composite material. 50% to 80% of the overall capacity of the material.
  • the range of 0-0.1V corresponds to the process of lithium ions intercalating into crystalline silicon
  • the range of 0.1V-0.6V corresponds to the process of lithium ions intercalating into the Si-O-C glass phase.
  • the capacity of the interval accounts for 50% to 80% of the overall capacity of the silicon-based composite material, indicating that the silicon-based composite material mainly forms a Si-O-C glass phase, and the Si-O-C glass phase has a high reversible specific capacity and Coulombic efficiency , so that the reversible specific capacity of silicon-based composites is further improved.
  • the Wardell sphericity of the silicon-based composite material is greater than 0.95, specifically 0.96, 0.97, 0.98, and 0.99, and of course other values within the above range, which are not limited here.
  • Wardell sphericity refers to the diameter ratio between the largest inscribed sphere and the smallest circumscribed sphere of a material. Controlling the Wardell sphericity of silicon-based composites within the above range indicates that the shape of silicon-based composites is highly similar to spherical structures , the spherical structure has high fluidity and packing density, so it is easier to obtain negative electrode materials with good electrochemical properties during the processing of negative electrode materials.
  • the median particle size D50 of the silicon-based composite material is 0.3 ⁇ m to 5.8 ⁇ m, specifically 0.3 ⁇ m, 0.5 ⁇ m, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, and 5.8 ⁇ m, etc., and of course it can also be Other values within the above range are not limited here.
  • Controlling the median particle size of the silicon-based composite material within the above range indicates that the particle size of the silicon-based composite material is moderate, which can avoid the excessive specific surface area of the silicon-based composite material due to too small particle size, which makes the particles easy to agglomerate and cause processing
  • the performance of the negative electrode material of the lithium-ion battery is deteriorated, and the negative electrode material of the battery with too high activity continues to consume the electrolyte during the cycle, resulting in the deterioration of the capacity retention rate.
  • (D90-D10)/D50 of the silicon-based composite material is less than or equal to 1.20.
  • (D90-D10)/D50 can specifically be 0.90, 0.95, 1.00, 1.05, 1.10, 1.15, and 1.20, etc., of course, can also be other values within the above range, which is not limited here. It can be understood that D90 is the particle size at which the cumulative distribution of material particles is 90%, D10 is the particle size at which the cumulative distribution of material particles is 10%, and D50 is the particle size at which the cumulative distribution of material particles is 50%, also known as the median particle size.
  • Ideal battery materials need to have a narrow particle size distribution. Studies have shown that too much fine powder will lead to excessively active battery materials that will continue to consume electrolyte during circulation, resulting in deterioration of capacity retention, while large particles with greater expansion It is easy to cause particle pulverization during cycling, which will easily lead to continuous thickening of SEI, and it will be more difficult for the Si-O-C material itself to intercalate and delithiate lithium. Therefore, by narrowing the particle size distribution, the cycle performance of the material can be improved.
  • (D90-D10)/D50 is less than or equal to 1.20, indicating that the particle size span of the silicon-based composite material is relatively small, that is, the silicon-based composite material has a relatively uniform particle size distribution, making the silicon-based composite material While avoiding the above-mentioned problems, the material further has a higher packing density, which is convenient for improving the electrochemical performance and cycle performance of the material.
  • the silicon-based composite material has a specific surface area of 2.0m 2 /g to 9.5m 2 /g, specifically 9.5m 2 /g, 8m 2 /g, 7m 2 /g, 6m 2 /g, 5m 2 /g, 4m 2 /g, 3m 2 /g, 2m 2 /g, etc., of course, may also be other values within the above range, which are not limited here. Controlling the specific surface area of the silicon-based composite material within the above range can avoid the performance degradation of the negative electrode material of the lithium ion battery caused by the excessive specific surface area.
  • the powder tap density of the silicon-based composite material is 0.6g/cm 3 to 1.2g/cm 3 , specifically 0.6g/cm 3 , 0.7g/cm 3 , 0.8g/cm 3 , 0.9g/cm 3 , 1.0 g/cm 3 , 1.1 g/cm 3 , and 1.2 g/cm 3 , etc., of course, can also be other values within the above range, which are not limited here.
  • Controlling the powder tap density of the silicon-based composite material within the above range shows that the material of the present application does not have a porous structure, indicating that the silicon-based negative electrode material of the present application is a structure with relatively high hardness from the inside to the outside, which is conducive to maintaining Structural stability is conducive to the improvement of the electrochemical performance of silicon-based composites.
  • the silicon-based composite material of the present application has a higher tap density. At the same time, it can also avoid the structural collapse of the porous structure under the action of huge stress, resulting in internal pores. It will cause a large amount of electrolyte infiltration, which will lead to the deterioration of electrochemical performance.
  • the present application also discloses a method for preparing a silicon-based composite material, as shown in Figure 1, comprising the following steps:
  • the gel is subjected to a first heat treatment to obtain a silicon-based composite material.
  • a catalyst is added in the process of preparing the oil phase, so that hydrolysis and condensation reactions occur among the siloxane raw materials, phenolic raw materials and aldehyde raw materials to generate spherical sol molecules with a larger molecular weight polymer network.
  • the phenolic resin formed by the reaction of residual phenolic raw materials and aldehyde raw materials is carbonized to form free C in the Si-O-C spherical structure, which reduces the formation of Si-C on the one hand.
  • the free elemental C can form a conductive network in the Si-O-C framework, which improves the conductivity of the material and is conducive to obtaining an anode material with excellent comprehensive performance.
  • the present application adopts a sol-gel method to prepare silicon-based composite materials, and the preparation method is simple and can be carried out without complicated equipment.
  • the O/Si molar ratio in the siloxane raw material is ⁇ 1, and the O/Si molar ratio in the siloxane raw material can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1, etc., of course, can also be other values within the above range, which are not limited here.
  • the O/Si molar ratio in the siloxane raw material is controlled within the above range to avoid the O/Si molar ratio in the silicon-based composite material being too high, so that the silicon-based composite material can be more inclined to form a silicon-based composite material with a better specific capacity.
  • the SiO 3 C structural unit makes the ratio of the number of Si-O bonds to the number of Si-C bonds in the silicon-based composite material greater than 2, so that the silicon-based composite material can obtain a higher specific capacity.
  • Step S100 mixing raw materials including solvent, siloxane raw material, phenolic raw material, aldehyde raw material and catalyst to obtain an oil phase, specifically:
  • Step S101 adding siloxane raw materials and phenolic raw materials to the solvent for first mixing to obtain a first solution.
  • the solvent includes at least one of deionized water and ethanol, and when the solvent includes both deionized water and ethanol, the mass ratio of ethanol to deionized water is 1:(1-10). For example, it can be 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:9 and 1:10, etc. Of course, it can also be the above range Other values within are not limited here.
  • siloxane raw materials include aromatic siloxane, octamethyltetrasiloxane (C 8 H 24 O 4 Si 4 ), decamethyltetrasiloxane (C 10 H 30 O 3 Si 4 ), 1,3-divinyltetramethyldisiloxane (C 8 H 18 OSi 2 ) and octamethyltrisiloxane (C 8 H 24 O 2 Si 3 ).
  • the aromatic siloxane may be, for example, dimethyldiphenylpolysiloxane, phenyltrimethylsiloxane, octaphenylcyclotetrasiloxane and the like.
  • the prepared silicon-based composite materials are more inclined to generate SiO 3 C structural units and SiO 4 structural units with higher reversible specific capacity, and less likely to generate SiO 3 structural units with lower specific capacity.
  • the phenolic raw material includes at least one of resorcinol, m-aminophenol, and bisphenol-A.
  • This application selects the above-mentioned siloxane raw materials, so that the prepared silicon-based composite materials are more inclined to generate SiO 3 C structural units and SiO 4 structural units with higher reversible specific capacity, and less SiC with lower specific capacity. 4 structural units, SiOC 3 structural units.
  • the mass ratio of phenolic raw materials to siloxane raw materials is 1:(2-8).
  • it can be 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, etc.
  • it can also be other values within the above range, which is not limited here.
  • the mass ratio of the phenolic raw material to the first solution is 1:(100-300), such as 1:100, 1:150, 1:200, 1:250 and 1:300, etc., of course It can also be other values within the above range, which is not limited here.
  • the first mixing is carried out under the first stirring conditions, specifically:
  • the rotating speed of the first stirring is 100r/min ⁇ 400r/min, specifically, it can be 100r/min, 150r/min, 200r/min, 250r/min, 300r/min, 350r/min and 400r/min, etc. Of course, it can also be Other values within the above range are not limited here.
  • the time for the first stirring is 30min to 180min, specifically 30min, 40min, 50min, 60min, 80min, 90min, 100min, 120min, 130min, 150min, 170min and 180min, etc.
  • 30min, 40min, 50min, 60min, 80min, 90min 100min, 120min, 130min, 150min, 170min and 180min, etc.
  • it can also be other values within the above range. This is not limited.
  • the first mixing method includes at least one of VC mixing, fusion, ball milling, suction filtration, heating to reflux, three-dimensional mixing and fluidized bed mixing.
  • a step of adding a first pH adjusting solution is also included.
  • the specific step 101 is: adding the first pH adjustment solution to the solvent to adjust the pH value between 11 and 12 to obtain a pretreatment solution; adding siloxane raw materials and phenolic raw materials to the pretreatment solution, and mixing them uniformly to obtain first solution.
  • the first pH adjustment solution includes at least one of ammonia water and urea
  • the concentration of the first pH adjustment solution is 0.1 mol/L to 2 mol/L, for example, it can be 0.1 mol/L, 0.3 mol/L , 0.5 mol/L, 1 mol/L, 1.2 mol/L, 1.5 mol/L, 1.8 mol/L and 2 mol/L, etc., of course, can also be other values within the above range, which are not limited here.
  • the volume ratio of the first pH adjusting solution to the solvent is 1:(30-100). For example, it can be 1:30, 1:40, 1:50, 1:60, 1:70, 1:80, 1:90, 1:100, etc. Of course, it can also be other values within the above range. Do limited.
  • Step S102 adding aldehyde raw material and catalyst to the first solution for second mixing to obtain an oil phase.
  • the aldehyde raw material includes formaldehyde
  • the use of formaldehyde makes the prepared silicon-based composite material more inclined to form SiO 3 C structural units and SiO 4 structural units with higher reversible specific capacity, and less to form SiO 4 structural units.
  • the catalyst includes platinum divinyltetramethyl-disiloxane complex and/or dibutyltin dilaurate.
  • the catalyst selected in this application can promote the hydrolysis and condensation reaction of siloxane raw materials, phenolic raw materials and aldehyde raw materials to generate a 3D bulk polymer network with a large molecular weight and a micron-sized spherical structure.
  • the volume ratio of the aldehyde raw material to the first solution is 1:(50-250).
  • it can be 1:50, 1:100, 1:150, 1:250, etc.
  • it can also be other values within the above range, which is not limited here.
  • the catalyst accounts for 0.5% to 15% of the mass of the siloxane raw material, such as 0.5%, 1%, 2%, 5%, 7%, 10%, 13%, 15%, etc., of course It can be other values within the above range, which is not limited here.
  • the second mixing is performed under a second stirring condition:
  • the rotation speed of the second stirring is 100r/min ⁇ 400r/min, specifically, it can be 100r/min, 150r/min, 200r/min, 250r/min, 300r/min, 350r/min and 400r/min, etc. Of course, it can also be Other values within the above range are not limited here.
  • the second stirring time is 5 min to 30 min, specifically 5 min, 10 min, 15 min, 20 min, 25 min and 30 min, etc., of course, other values within the above range can also be used, which is not limited here.
  • the second mixing method includes at least one of VC mixing, fusion, ball milling, suction filtration, heating to reflux, three-dimensional mixing and fluidized bed mixing.
  • Step S200 adding the oil phase into the water phase to obtain an oil-in-water emulsion.
  • an emulsifier is added to deionized water to obtain a water phase, and then an oil phase is added to the obtained water phase to obtain an oil-in-water emulsion.
  • the oil phase is added dropwise into the emulsifier, and the oil phase is added dropwise into the water phase to form an oil-in-water emulsion, which can promote multiple sol molecules generated by the hydrolytic condensation reaction to coat simultaneously In a layer of water coating, thus promoting the generation of micron-sized Si-O-C spherical particles.
  • the emulsifier includes at least one of polysorbate-80, polysorbate-60, polysorbate-40, and polysorbate-20.
  • the hydrophilic-hydrophobic balance (HLB) of the above-mentioned emulsifiers is between 8 and 18, so that when the oil phase is added to the water phase, it is easier to form an oil-in-water (O-W) emulsion, which promotes the formation of multiple sol molecules by hydrolysis and condensation reactions. It can be coated in a water coating layer at the same time, thereby promoting the generation of micron-sized Si-O-C spherical particles.
  • the emulsifier accounts for 1%-20% of the mass of the water phase. For example, it can be 1%, 2%, 5%, 7%, 10%, 13%, 15%, 17% and 20%, etc. Of course, it can also be other values within the above range, which is not limited here.
  • the mass ratio of the oil phase to the water phase is 1:(20-100).
  • it can be 1:20, 1:30, 1:40, 1:50, 1:60, 1:70, 1:80, 1:90 and 1:100, etc.
  • it can also be other values within the above range , is not limited here.
  • step 200 is specifically: adding an emulsifier to the water phase and adding a second pH adjustment solution to adjust the solution
  • the pH value is between 11 and 12, and the oil phase is added dropwise to the water phase.
  • this application controls the speed of the reaction under the premise of ensuring sufficient reaction through the selection of raw materials and appropriate proportions in step 100 and step 200, thereby improving the sphericity and particle size collection of Si-OC microspheres.
  • the narrow range makes it possible for the present application to obtain spherical particles with a micron-scale size, the particles will not appear to be stuck, and the dispersibility is good. And it can be more inclined to generate SiO 3 C structural units and SiO 4 structural units with higher reversible specific capacity, and less likely to generate SiC 4 structural units and SiOC 3 structural units with lower specific capacity.
  • the oil-in-water solution is left standing in a water bath or an oil bath to form a gel.
  • the nucleation rate and generation rate of the oil-in-water emulsion can be controlled by adjusting the pH value.
  • the nucleation rate is much greater than the generation rate, a large number of crystal nuclei will be formed in the solution, but the growth rate of the crystal nuclei is very slow at this time, so these crystal nuclei will agglomerate and produce colloidal precipitation, making the obtained material It does not have a spherical structure, and the tap density of the material is very low, which reduces the electrochemical performance of the material.
  • the nucleation rate When the nucleation rate is much lower than the growth rate, there are fewer crystal nuclei in the solution, but at this time the growth rate of the crystal nuclei is very high, so that there will be no agglomeration during the crystal formation process.
  • the application adjusts the pH value between 11 and 12, which can reduce the supersaturation in the solution.
  • the nucleation rate In the process of crystal formation, compared with the growth rate, the nucleation rate tends to decrease, so that there are fewer crystals in the solution. Nuclei, these crystal nuclei have a better growth space, and finally particles with a moderate particle size will be obtained.
  • the pH value is between 11 and 12
  • the fluctuation of the pH value is small, so that the reaction is carried out under a relatively stable pH condition, and a silicon-based composite material with a concentrated particle size distribution is obtained.
  • small particles in the solution have greater solubility than large particles.
  • the alkaline environment promotes the dissolution of small particles, and the newly formed particles can be arranged and grown on larger crystals in an orderly manner. Facilitate the growth of crystals.
  • inner particles and corner particles have different activities. Specifically, inner particles are less active than corner particles due to stronger binding forces, while corner particles are more active.
  • the synthesized particles have a better shape, and can present a spherical structure, and the spherical structure has higher fluidity and packing density, which improves the Si Electrochemical properties of the matrix composites.
  • the pH value is not adjusted, the morphology of the final precursor microspheres may be affected, and there may be a large number of "fluff" structures on the surface of the particles, which will greatly increase the specific surface area of the material, thereby increasing the side reactions. Affecting the capacity retention rate when the material is cycled will also lead to thickening of the SEI film and increased expansion; in addition, the plush structure and lower tap density will reduce the processability of the material. Therefore, in this application, by rationally adjusting the pH value between 11 and 12 and controlling the reaction temperature range, the surface of the prepared silicon-based composite material is smooth and the particle size distribution is narrow, which helps to improve the cycle performance of the material.
  • the static pH environment is 11, 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, 11.9, and 12, etc.
  • it can also be other values within the above range, which will not be done here limited.
  • the third pH adjusting solution includes at least one of ammonia water and urea.
  • the concentration of the third pH adjustment solution is 0.1 mol/L-2 mol/L, for example, it can be 0.1 mol/L, 0.3 mol/L, 0.5 mol/L, 1 mol/L, 1.2 mol/L, 1.5 mol/L, 1.8 mol/L, 2 mol/L, etc., of course, can also be other values within the above range, which are not limited here.
  • the temperature of the water bath or oil bath is 25°C to 100°C, such as 25°C, 30°C, 35°C, 45°C, 55°C, 60°C, 67°C, 80°C, 85°C, 90°C °C, 100°C, etc., of course, can also be other values within the above range, which are not limited here.
  • the oil-in-water emulsion can be turned into a gel, and finally the particle size of the prepared silicon-based composite material is in the micron order, which is not easy to agglomerate, and the specific surface area is moderate, which can avoid silicon-based composite materials.
  • the silicon-based composite material prepared by the present application can have a narrow particle size distribution and a good spherical appearance, which further improves the cycle performance of the material.
  • the temperature is lower than 25°C, the particle size of the formed material will be small, and materials with micron particle size cannot be obtained; if the temperature is higher than 100°C, the energy consumption will increase, and the evaporation of the solution system during the reaction will also make the reaction Accurate continuous measurement of pH is greatly affected. With the increase of reaction temperature, the specific discharge capacity increases slightly, but the bulk density decreases.
  • Step S400 subjecting the gel to a first heat treatment to obtain a silicon-based composite material.
  • the gel microspheres composited by siloxane and phenolic resin are carbonized, and basically achieve non-polarization, thereby forming a silicon-based composite mainly composed of Si, C, O, and H.
  • Material Specifically, Si, O, and part of C form a Si(O,C) 4 tetrahedral structure, mainly including basic units such as SiC 4 , SiOC 3 , SiO 2 C 2 , SiO 3 C, and SiO 4 , and the remaining C is formed as free carbon form exists.
  • SiO 3 C with the highest reversible specific capacity is the most, followed by SiO 4 , while the content of SiO 2 C 2 is less, and SiC 4 and SiOC 3 are further less than SiO 2 C 2 .
  • the H content of Si-OC composite microspheres is very small, some exist in the form of CH bonds around the free carbon, and some exist in the form of Si-H bonds.
  • the first heat treatment is performed in a first protective gas atmosphere
  • the first protective atmosphere includes at least one of nitrogen, argon, and helium.
  • the temperature of the first heat treatment is 600°C to 1000°C, such as 600°C, 700°C, 800°C, 900°C and 1000°C, etc.
  • 600°C 600°C, 700°C, 800°C, 900°C and 1000°C, etc.
  • it can also be other values within the above range, and it is not mentioned here Do limited.
  • the holding time of the first heat treatment is 2h to 10h, specifically 2h, 3h, 4h, 5h, 6h, 7h, 8h, 9h and 10h, etc., and of course it can also be other values within the above range, It is not limited here.
  • the equipment for the first heat treatment includes at least one of a rotary furnace, a tube furnace, a box furnace, a roller kiln, a tunnel kiln and a pusher kiln.
  • the step of drying the gel is further included before performing the first heat treatment on the gel.
  • the drying temperature is 10°C to 100°C, such as 10°C, 20°C, 30°C, 40°C, 50°C, 60°C, 70°C, 80°C, 90°C and 100°C, etc., of course It can also be other values within the above range, which is not limited here.
  • the drying time is 5min to 60min, such as 5min, 10min, 20min, 30min, 35min, 40min, 45min, 50min, 55min and 60min, etc.
  • 5min to 60min such as 5min, 10min, 20min, 30min, 35min, 40min, 45min, 50min, 55min and 60min, etc.
  • it can also be other values within the above range, which are not mentioned here. Do limited.
  • the drying method includes at least one of centrifugation, suction filtration and spray drying.
  • a step of surface coating the obtained silicon-based composite material is also included.
  • the method includes: mixing the silicon-based composite material and the coating material for the third time and then performing the second heat treatment to obtain the silicon-based composite material with a coating layer on the surface of the Si-O-C spherical structure.
  • the cladding material includes at least one of a carbon source and a polymeric material.
  • the carbon source includes at least one of a solid-phase carbon source, a liquid-phase carbon source, and a gas-phase carbon source.
  • the solid phase carbon source includes an organic solid carbon source of at least one of citric acid, glucose, pitch, phenolic resin, and furfural resin.
  • the cooled Si-O-C composite microspheres can be evenly mixed with the carbon source, placed in a furnace, and filled with protective gases such as nitrogen, argon, helium, neon, and krypton and xenon etc. for thermal cracking, so that the carbon source cracks and coats the surface of Si-O-C composite microspheres.
  • the liquid-phase carbon source includes an organic liquid carbon source of at least one of low-temperature liquid-phase pitch, furfuryl alcohol, glycidyl methacrylate, and triethylene glycol dimethacrylate.
  • the cooled Si-O-C composite microspheres can be evenly mixed with the carbon source, placed in a furnace, and filled with protective gases such as nitrogen, argon, helium, neon, krypton Gas and xenon are used for thermal cracking, so that the carbon source cracks and coats the surface of Si-O-C composite microspheres.
  • the gaseous carbon source includes at least one of methane, acetylene, ethylene, ethane, propane, propylene, propyne, acetone, and benzene.
  • the cooled Si-O-C composite microspheres can be placed in a furnace, and the gaseous carbon source is introduced for thermal cracking, so that amorphous carbon is deposited on the surface of the Si-O-C composite microspheres.
  • Polymer materials include polyolefins, polyolefin derivatives, alginic acid, alginic acid derivatives, polyvinyl alcohol, polyvinyl alcohol derivatives, polyacrylic acid, polyacrylic acid derivatives, polyamide, polyamide derivatives, carboxymethyl fibers At least one of ketone and carboxymethylcellulose derivatives.
  • the temperature of the second heat treatment is 600°C to 1000°C, such as 600°C, 700°C, 800°C, 900°C and 1000°C, etc.
  • 600°C 600°C, 700°C, 800°C, 900°C and 1000°C, etc.
  • it can also be other values within the above range, and it is not mentioned here Do limited.
  • the holding time of the second heat treatment is 0.5h to 20h, for example, it can be 0.5h, 1h, 3h, 5h, 10h, 15h and 20h, etc. Of course, it can also be other values within the above range, here No limit.
  • the second heat treatment is performed in a second protective atmosphere including at least one of nitrogen, helium, neon, argon, krypton, and xenon.
  • the embodiment of the present application also discloses a lithium-ion battery, the lithium-ion battery comprises the silicon-based composite material as described in this application or the silicon-based composite material prepared by the method as described in this application.
  • the negative electrode material prepared in this example includes a Si—O—C material and a coating layer on the surface of the Si—O—C material.
  • the thickness of the coating layer is 500 nm, and the coating layer is polyacrylic acid.
  • Siloxane is placed in a tube furnace and sintered at a high temperature under the protection of Ar gas.
  • the Ar gas flow rate is 0.2L/min
  • the sintering initial temperature is 50°C
  • it is raised to 400°C at a speed of 5°C/min. Keep it warm for 1h; then raise the temperature to 1200°C at a rate of 5°C/min and hold it for 5h, then cool down with the furnace to obtain a silicon-based composite material.
  • Electron microscope test Scanning electron microscopy was used to confirm the spherical particle structure in the material, combined with energy dispersive X-ray spectroscopy (EDS) to characterize the uniformity of Si, O, and C element distribution in the material.
  • EDS energy dispersive X-ray spectroscopy
  • Specific surface area The specific surface area is measured by using the American Mike TriStar 3000 specific surface area and pore size analyzer.
  • Powder tap density Place a sample of a specified mass in a graduated cylinder, vibrate according to the specified number of times (3000 times for conventional testing), read the volume of the tapped cylinder and calculate the tap density.
  • the instrument used is the American Kangta DAT-6-220 tap density meter
  • Si crystallite size use PANalytical X’pert Pro X-ray diffractometer to measure the XRD peak, and then use Jade 6.5 software to fit the Si peak in XRD to obtain the Si crystallite size.
  • the first reversible specific capacity and the first coulombic efficiency (ICE) Prepare the negative electrode slurry according to the ratio of silicon-based negative electrode material, conductive carbon black, and PPA mass ratio of 75:15:10, coat it on copper foil, and dry it Made of negative electrode sheet.
  • a coin cell was assembled in a glove box filled with Ar gas with a lithium metal sheet as a counter electrode. With a current density of 0.1C, charge and discharge tests were carried out on the coin cell in the charge and discharge range of 0.01-5V, and the first reversible specific capacity and the first coulombic efficiency (ICE) of the coin cell were obtained.
  • Capacity retention rate and pole piece thickness expansion rate according to the silicon-based negative electrode material and graphite mixture, Super-P, KS-6, CMC, SBR mass ratio is 92:2:2:2:2 to prepare the negative electrode slurry , coated on copper foil, and dried to make negative electrode sheet.
  • the proportion of the silicon-based negative electrode material and graphite in the silicon-based negative electrode material and graphite mixture is determined by the first reversible specific capacity of the two and the required capacity of the two.
  • a coin cell was assembled in a glove box filled with Ar gas with a lithium metal sheet as a counter electrode. With a current density of 1C, the button battery was repeatedly charged and discharged 50 times in the charge and discharge interval of 0.01V-5V, and the capacity retention rate and electrode thickness expansion rate of the battery after 50 cycles were obtained.
  • XPS Analyze the different valence states and chemical bond types of Si, O, and C elements in silicon-based negative electrode materials.
  • the active material should first be taken out of the simulated battery in an anaerobic anaerobic glove box, cleaned with the solvent DEC, and then tested after it is completely dried.
  • Test instrument VG Mul-tilab2000X-ray photoelectron spectrometer
  • Test conditions Lightly etched with argon ions before the test to remove impurities on the surface of the sample, the excitation source is MgK ⁇ (1253.6eV), the resolution is 0.1eV, and the focus spot is 400 ⁇ m.
  • the obtained electronic energy spectrum is divided into peaks by using the peak division software origin or xpspeakfit, and then the standard binding energy data of Si 2p is queried according to the peak position, and the Gaussian peak is used to fit the obtained test curve.
  • Si 2p peaks can be fitted into Si-O and Si-C peaks, among which the peaks at 100-102Ev belong to Si-C peaks, the peaks at 103eV-104Ev belong to Si-O bonding, and the peaks at 99eV-100eV belong to Si-Si single bond, that is, free Si.
  • the Si-C bond can also be fitted by C1s, which corresponds to the 283eV-284eV of the C1s peak.
  • the Si-O bond can also be obtained by O1s fitting, which corresponds to the 531eV-533eV of the O1s peak. According to the area of each Gaussian peak, how much of the Si element combines with O to form Si-O bonds, and how much combines with C to form Si-C bonds, so as to calculate the number of Si-O bonds and Si-C bonds Ratio.
  • 29 Si MAS NMR 29 Si Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy
  • instrument model is Bruker AV 300 nuclear magnetic resonance instrument.
  • the pulse width is 4.5ut
  • is 54.7°
  • the relaxation delay ie, the time delay between two samples
  • the rotation speed is 7kHz.
  • TMS was used as the chemical shift standard for determination.
  • the relative atomic content of the structural unit can be obtained.
  • the average composition of SiO 4 structural unit, SiO 3 C structural unit, and SiO 2 C 2 structural unit is SiO 2 , SiO 3/2 C 1/4 , SiO 2/2 C 2/4 , and the average molecular weight is 60, 55, 50g/cm 3 .
  • the relative mass fraction was calculated by conversion, and the absolute mass fraction was obtained by subtracting the content of free carbon.
  • the mass fraction ratios of SiO 4 +SiO 3 C/SiO 2 C 2 and SiO 3 C/SiO 4 can be calculated.
  • Cyclic voltaic should study the redox reaction mechanism and reaction reversibility in the charge and discharge process.
  • Test instrument AUTOLAB PGSTAT30 electrochemical workstation
  • Test conditions test software and analysis software NOVA1.6. The test temperature is 25°C, the scan rate is 0.1mV/s, and the voltage range is 0.005V ⁇ 1.5V.
  • the redox peak value of the silicon-based composite material prepared in Example 1 A two-electrode simulated battery is used to carry out CV test on the silicon-based negative electrode material, and the electron microscope images of the silicon-based composite material are shown in Figure 2(a) and Figure 2(b) , as can be seen from Figure 2(a) and 2(b), the surface of the silicon-based negative electrode material particles prepared in Example 1 is smooth and round, and the sphericity of the sphere is good. Contains a porous structure.
  • the electron micrograph of the silicon-based composite material prepared in Example 2 is shown in FIG. 3 . It can be seen from FIG. 3 that the silicon-based composite material particles prepared in Example 2 have a smooth and rounded surface, and the spheres have better sphericity.
  • the electron microscope picture of the silicon-based composite material that embodiment 3 makes is shown in Fig. 4 (a) and Fig. 4 (b), as can be seen from Fig. 4 (a) and Fig. 4 (b), the silicon-based composite material that embodiment 3 makes
  • the surface smoothness of spherical Si-O-C particles is not as smooth as that of Examples 1 and 2, and the sphericity of the spheres is better.
  • the cross-sectional view shows that the interior of the spheres is also a uniform structure, and the roughness on the surface is confirmed by EDS. Si and C are also uniformly dispersed. structure.
  • Examples 1-13 have better electrochemical properties than Comparative Examples 1-3.
  • the preparation process by adjusting the pH value between 11-12, the preparation process does not Colloidal precipitation will occur, and at the same time, the temperature range for the sol to gel is controlled between 25°C and 100°C, so that the finally prepared silicon-based composite material can have a good particle size distribution, a moderate particle diameter, and an electric charge. The overall chemical properties are good.
  • the temperature of the water bath in Example 12 is 15°C, and the temperature of the water bath is lower, the particle size of the obtained silicon-based composite material will be significantly reduced, although the smaller particle size will make the expansion distribution of the silicon-based composite material more uniform, which is beneficial to certain
  • such smaller particles will significantly increase the specific surface area of the silicon-based composite material, leading to an increase in side reactions during the charging and discharging process of the battery, thereby bringing about the specific capacity and the first Coulomb of the silicon-based composite material.
  • the efficiency is significantly reduced, and agglomeration is prone to occur, which deteriorates its processing performance. Therefore, the comprehensive electrochemical performance of the entire silicon-based composite is not good.
  • Comparative Example 1 did not control the pH environment for the formation of gel, which led to the tendency of colloidal precipitation during the synthesis of precursor microspheres, and it was difficult to form a silicon-based composite material with a good structure, which led to the failure of the final silicon-based composite material.
  • the particle size span and electrochemical performance are inferior to those of Example 1.
  • the silicon-based composite material was prepared directly by high-temperature sintering of siloxane materials, and the particle size of the prepared material was small, and the particle size expanded greatly, which made the comprehensive electrochemical performance of the silicon-based composite material poor.
  • Comparative Example 3 used vinyltrimethoxysilane (C 5 H 12 O 3 Si, density 0.97 g/cm 3 ) with an O/Si ratio greater than 1 as the siloxane raw material.
  • O/Si ratio in the selected raw materials is greater than 1
  • more SiOC 3 with a lower specific capacity is generated in the prepared silicon-based negative electrode material, which makes the final silicon-based composite material have a higher reversible specific capacity.
  • the SiO 3 C and SiO 4 are less, and the ratio of the number of Si-O bonds to the number of Si-C bonds in the material is less than 2, which leads to a decrease in the specific capacity and the first Coulombic efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本申请涉及一种硅基复合材料及其制备方法、锂离子电池。所述硅基复合材料包括Si-O-C球形结构体,且所述硅基复合材料中Si-O键的数量与Si-C键的数量之比大于2。从而硅基复合材料可以具有较高的比容量。同时,硅基复合材料的球形结构以及其中Si-O-C形成的缓冲骨架可以使得硅基复合材料具有较好的循环容量保持率和较低的循环膨胀,使得硅基复合材料适用于锂离子电池中。

Description

硅基复合材料及其制备方法、锂离子电池
本申请要求于2021年12月31日提交中国专利局,申请号为2021116780446、发明名称为“硅基复合材料及其制备方法、锂离子电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于储能材料技术领域,具体地讲,尤其涉及硅基复合材料及制备方法、锂离子电池。
背景技术
动力电池领域对于锂离子电池能量密度要求的不断提高,已经接近其理论比容量(372mAh/g)常见的石墨类负极材料已不能满足这种高容量和长寿命的需求。而硅基负极材料具有超过石墨负极材料10倍的理论比容量(~4200mAh/g),成为现今负极材料研究的热点之一。
但是,硅基负极材料本征导电性差,在嵌锂时巨大的体积膨胀(~400%)使得固态电解质界面(solid electrolyte interphase,SEI)膜会破坏从而反复生成新的SEI膜,导致其不断消耗电解液并增厚,从而导致较大的膨胀率;同时巨大体积变化也会导致颗粒粉化,影响颗粒间及电池活性物质和集流体的电接触性,造成比容量的衰减,循环性能较差。为了使硅基负极材料可以具有较高的比容量,且可以提高硅基负极材料的循环稳定性,需要对硅基负极材料进行改进。
申请内容
本申请为了克服上述缺陷,提供硅基复合材料及其制备方法、锂离子电池,能够提高硅基复合材料的比容量和循环稳定性。
第一方面,本申请提供一种硅基复合材料,所述硅基复合材料包括Si-O-C球形结构体,且所述硅基复合材料中Si-O键的数量与Si-C键的数量之比大于2。
结合第一方面,述硅基复合材料包含以下特征(1)至(5)中的至少一种:
(1)所述Si-O-C球形结构体包括SiO 4结构单元和SiO 3C结构单元,所述SiO 3C结构单元的质量分数大于所述SiO 4结构单元的质量分数;
(2)所述Si-O-C球形结构体包括SiO 4结构单元和SiO 3C结构单元,所述SiO 3C结构单元的质量分数与所述SiO 4结构单元的质量分数之比大于2;
(3)所述Si-O-C球形结构体包括SiO 4结构单元、SiO 3C结构单元和SiO 2C 2结构单元;所述SiO 4结构单元与所述SiO 3C结构单元的质量分数之和与所述SiO 2C 2结构单元的质量分数之比大于2;
(4)所述Si-O-C球形结构体中O/Si摩尔比为1~2;
(5)所述Si-O-C球形结构体中C/Si摩尔比为0.5~3.5。
结合第一方面,所述Si-O-C球形结构体的至少部分表面设置有包覆层,所述包覆层包含以下特征(1)至(3)中的至少一种:
(1)所述包覆层包括碳层和聚合物层中的至少一种;
(2)所述包覆层包括碳层和聚合物层中的至少一种,所述碳层的材质包括无机碳材料;
(3)所述包覆层包括碳层和聚合物层中的至少一种,所述聚合物层的材质包括聚烯烃、聚烯烃衍生物、海藻酸、海藻酸衍生物、聚乙烯醇、聚乙烯醇衍生物、聚丙烯酸、聚丙 烯酸衍生物、聚酰胺、聚酰胺衍生物、羧甲基纤维素和羧甲基纤维素衍生物中的至少一种。
结合第一方面,所述硅基复合材料包含以下特征(1)至(8)中的至少一种:
(1)所述硅基复合材料包括Si微晶;
(2)所述硅基复合材料包括Si微晶,所述Si微晶的中值粒径为1nm~10nm;
(3)所述硅基复合材料的电容电压特性曲线中,0~0.1V区间的容量占所述硅基复合材料整体容量的20%~50%,0.1V~0.6V区间的容量占所述硅基复合材料整体容量的50%~80%;
(4)所述硅基复合材料的沃德尔球形度大于0.95;
(5)所述硅基复合材料的中值粒径D50为0.3μm~5.8μm;
(6)所述硅基复合材料的(D90-D10)/D50小于等于1.20;
(7)所述硅基复合材料的比表面积为2.0m 2/g~9.5m 2/g;
(8)所述硅基复合材料的粉体振实密度为0.6g/cm 3~1.2g/cm 3
第二方面,本申请提供一种硅基复合材料的制备方法,包括以下步骤:
将包含溶剂、硅氧烷类原料、酚类原料、醛类原料和催化剂的原料混合得到油相,其中,所述硅氧烷类原料中O/Si摩尔比≤1;
将所述油相加入水相中得到水包油型乳液;
在pH=11~12的环境下,将所述水包油型乳液形成凝胶;
将所述凝胶进行第一热处理得到硅基复合材料。
结合第二方面,所述将包含溶剂、硅氧烷类原料、酚类原料、醛类原料和催化剂的原料混合得到油相具体包括:在溶剂加入硅氧烷类原料和酚类原料进行第一混合得第一溶液,在所述第一溶液中加入醛类原料和催化剂进行第二混合得到油相。
结合第二方面,所述制备方法包括如下特征(1)~(6)中的至少一种:
(1)所述溶剂包括水和乙醇中的至少一种;
(2)所述硅氧烷类原料包括芳香族硅氧烷、八甲基四硅氧烷、十甲基四硅氧烷、1,3-二乙烯基四甲基二硅氧烷和八甲基三硅氧烷中的至少一种;
(3)所述酚类原料包括间苯二酚、间氨基苯酚和双酚A中的至少一种;
(4)所述醛类原料包括甲醛;
(5)所述催化剂包括乙烯基四甲基-二硅氧烷络合物和二月硅酸二丁基锡中的至少一种;
(6)所述醛类原料与所述第一溶液的体积比为1:(50~250)。
结合第二方面,所述制备方法包括如下特征(1)~(3)中的至少一种:
(1)所述酚类原料与所述硅氧烷原料的质量比为1:(2~8);
(2)所述催化剂在所述硅氧烷原料中的质量占比为0.5%~15%;
(3)所述油相与所述水相之间的质量比例为1:(20~100)。
结合第二方面,所述溶剂加入硅氧烷类原料和酚类原料进行第一混合之前还包括:在溶剂加入第一pH调节溶液得到pH=11~12的预处理溶液,再在预处理溶液中加入硅氧烷类原料和酚类原料进行第一混合得第一溶液。
结合第二方面,所述制备方法包括如下特征(1)~(2)中的至少一种:
(1)所述第一pH调节溶液包括氨水和尿素中的至少一种;
(2)所述第一pH调节溶液的浓度为0.1mol/L~2mol/L。
结合第二方面,所述将所述油相加入水相中得到水包油型乳液具体包括:在去离子水中加入乳化剂,得到水相;将所述油相滴加入所述水相中,得到水包油型乳液。
结合第二方面,在去离子水中加入乳化剂,得到水相具体包括:在去离子水中加入乳化剂和第二pH调节溶液得到pH=11~12的水相。
结合第二方面,所述制备方法包括如下特征(1)~(4)中的至少一种:
(1)所述第二pH调节溶液包括氨水和尿素中的至少一种;
(2)所述第二pH调节溶液的浓度为0.1mol/L~2mol/L;
(3)所述乳化剂包括聚山梨酯-80、聚山梨酯-60、聚山梨酯-40和聚山梨酯-20中的至少一种;
(4)所述乳化剂占所述水相质量的1%~20%。
结合第二方面,所述在pH=11~12的环境下,将所述水包油型乳液形成凝胶具体包括:在pH=11~12的环境,将所述水包油型乳液在水浴或油浴下静置,生成凝胶。
结合第二方面,所述制备方法包括如下特征(1)~(4)中的至少一种:
(1)所述水浴或油浴的温度为25℃~100℃;
(2)所述将所述水包油型乳液在水浴或油浴之前还包括:在所述水包油型乳液中添加第三调节溶液使得所述水包油型乳液的pH=11~12;
(3)所述将所述水包油型乳液在水浴或油浴之前还包括:在所述水包油型乳液中添加第三调节溶液使得所述水包油型乳液的pH=11~12,所述第三pH调节溶液包括氨水和尿素中的至少一种;
(4)所述将所述水包油型乳液在水浴或油浴之前还包括:在所述水包油型乳液中添加第三调节溶液使得所述水包油型乳液的pH=11~12,所述第三pH调节溶液的浓度为0.1mol/L~2mol/L。
结合第二方面,所述将所述凝胶进行第一热处理之前还包括对所述凝胶进行干燥的步骤。
结合第二方面,所述制备方法包括如下特征(1)~(4)中的至少一种:
(1)所述第一热处理的温度为600℃~1000℃;
(2)所述第一热处理的保温时间为2h~10h;
(3)所述第一热处理在第一保护性气体氛围中进行;
(4)所述第一热处理在第一保护性气体氛围中进行,所述第一保护性氛围包括氮气、氩气和氦气中的至少一种。
结合第二方面,所述得到硅基复合材料之后还包括:采用包覆材料对所述硅基复合材料进行第二热处理的步骤。
结合第二方面,所述方法包括如下特征(1)~(8)中的至少一种:
(1)所述包覆材料包括碳源和聚合物材料中的至少一种;
(2)所述包覆材料包括碳源和聚合物材料中的至少一种,所述碳源包括固相碳源、液相碳源和气相碳源中的至少一种;
(3)所述包覆材料包括碳源和聚合物材料中的至少一种,所述固相碳源包括柠檬酸、葡萄糖、沥青、酚醛树脂和糠醛树脂中的至少一种;
(4)所述包覆材料包括碳源和聚合物材料中的至少一种,所述液相碳源包括低温液相沥青、糠醇、甲基丙烯酸缩水甘油酯和三乙二醇二甲基丙烯酸酯中的至少一种;
(5)所述包覆材料包括碳源和聚合物材料中的至少一种,所述气相碳源包括甲烷、乙炔、乙烯、乙烷、丙烷、丙烯、丙炔、丙酮和苯中的至少一种;
(6)所述包覆材料包括碳源和聚合物材料中的至少一种,所述聚合物材料包括聚烯烃、聚烯烃衍生物、海藻酸、海藻酸衍生物、聚乙烯醇、聚乙烯醇衍生物、聚丙烯酸、聚丙烯酸衍生物、聚酰胺、聚酰胺衍生物、羧甲基纤维素和羧甲基纤维素衍生物中的至少一种。
(7)所述第二热处理的温度为600℃~1000℃;
(8)所述第二热处理的保温时间为0.5h~20h。
第三方面,本申请提供一种锂离子电池,所述锂离子电池包括第一方面所述的硅基复合材料或包括第二方面所述的硅基复合材料。
本申请的技术方案至少具有以下有益的效果:本申请Si-O-C球形结构体中Si主要与O形成Si-O键,同时Si还能够与C形成Si-C键,本申请Si-O-C球形结构体中Si-O键的数量与Si-C键的数量之比大于2,与Si-C键相比,Si-O键具有较高的比容量且数量较多,表明硅 基复合材料具有较高的比容量。而且,球形形貌的Si-O-C结构可以作为缓冲骨架,使得硅基复合材料具有较好的循环容量保持率和较低的循环膨胀。
附图说明
下面结合附图和实施例对本申请进一步说明。
图1为本申请硅基复合材料的制备流程图;
图2是本申请实施例1制得的硅基复合材料的电镜图;
图3是本申请实施例2制得的硅基复合材料的电镜图;
图4是本申请实施例3制得的硅基复合材料的电镜图。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其它含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请提供一种硅基复合材料,包括Si-O-C球形结构体,且硅基复合材料中Si-O键的数量与Si-C键的数量之比大于2。
在上述方案中,本申请Si-O-C球形结构体中Si主要与O形成Si-O键,同时Si还能够与C形成Si-C键,本申请Si-O-C球形结构体中Si-O键的数量与Si-C键的数量之比大于2,与Si-C键相比,Si-O键具有较高的比容量且数量较多,表明硅基复合材料具有较高的比容量。而且,球形形貌的Si-O-C结构可以作为缓冲骨架,使得硅基复合材料具有较好的循环容量保持率和较低的循环膨胀。而现有技术中通常是在SiO内核的表面包覆C元素,Si与C几乎不能形成Si-C键;而本申请的硅基材料为单层结构,且Si和C能够形成较多的Si-C键,能够增强材料中Si和C的结合力,从而能够增强整个硅基材料的机械强度。
具体地,硅基复合材料中Si-O键的数量与Si-C键的数量之比可以为大于2、大于2.5、大于3、大于3.5、大于4、大于4.5、大于5、大于5.5、大于6、大于6.5、大于7、大于7.5等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,Si-O-C球形结构体可以包括SiO 4结构单元和SiO 3C结构单元。本申请Si-O-C球形结构体中Si主要与O形成Si-O键,同时也存在少量未成键的Si元素和C元素,未成键的Si元素以微晶的方式存在于少量的Si-O键组成的基质周围,未成键的C元素以游离C的形式存在于Si-O键组成的基质周围,因此,Si-O-C球形结构体中主要以SiO 4结构单元和SiO 3C结构单元存在,SiO 4结构单元和SiO 3C结构单元皆为可逆相,且上述两种结构单元的比容量高于石墨的比容量三倍以上,使得本申请的硅基复合材料具有较高的比容量。
在一些实施方式中,进一步,SiO 3C结构单元的质量分数大于SiO 4结构单元的质量分数,与SiO 4结构单元相比,SiO 3C结构单元可以具有更高的可逆比容量,使得硅基复合材料包含更多SiO 3C结构单元的情况下,硅基复合材料可以具有更高的可逆比容量。优选地,SiO 3C结构单元的质量分数与SiO 4结构单元的质量分数之比大于2,SiO 3C结构单元的质量分数与SiO 4结构单元的质量分数之比具体可以大于2、大于3、大于3.5、大于4、大于4.5、大于5、大于5.5、大于6、大于6.5、大于7、大于7.5等,当然也可以是上述范围内的其他值,在此不 做限定。
在一些实施方式中,Si-O-C球形结构体中还包括SiO 2C 2结构单元。SiO 2C 2结构单元也为可逆相,其可逆比容量相对于SiO 4结构单元以及SiO 3C结构单元较低,其存在于Si-O-C球形结构体中也可以增加硅基复合材料的可逆比容量。
在一些实施方式中,SiO 4结构单元与SiO 3C结构单元的质量分数之和与SiO 2C 2结构单元的质量分数之比大于2。与SiO 2C 2结构单元结构单元相比,SiO 4结构单元和SiO 3C结构单元具有较高的可逆比容量,使得硅基复合材料包含更多SiO 3C结构单元和SiO 4结构单元的情况下,硅基复合材料可以具有更高的可逆比容量。SiO 4结构单元与SiO 3C结构单元的质量分数之和与SiO 2C 2结构单元的质量分数之比具体可以大于2、大于2.5、大于3、大于3.5、大于4、大于4.5、大于5等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,由于Si-O-C球形结构中包含Si-C键和Si-O键,在Si-O-C球形结构中还包括Si-C键较多的SiOC 3结构单元以及SiC 4结构单元,其中,SiOC 3结构单元以及SiC 4结构单元的比容量均低于SiO 2C 2结构单元。
综上所述,本申请的Si-O-C球形结构体中包含SiO 4结构单元和SiO 3C结构单元,可以选择性的包含SiO 2C 2结构单元、含Si-C键较多的SiOC 3结构单元以及SiC 4结构单元,优选地,Si-O-C球形结构体中包含SiO 4结构单元、SiO 3C结构单元和SiO 2C 2结构单元,不包含SiOC 3结构单元以及SiC 4结构单元;进一步优选地,Si-O-C球形结构体中仅包含SiO 4结构单元和SiO 3C结构单元,能够使得硅基复合材料整体可以具有较高的比容量。
在一些实施方式中,由于Si-O-C球形结构体中主要包含SiO 4结构单元、SiO 3C结构单元、还可能包含较少的SiO 2C 2结构单元,而几乎不包含SiOC 3结构单元以及SiC 4结构单元。因此,Si-O-C球形结构体中O/Si摩尔比为1~2,具体地Si-O-C球形结构体中O/Si摩尔比可以1、1.2、1.5、1.7、1.9和2等,当然也可以是上述范围内的其他值,在此不做限定。
关于上述SiO 4结构单元、SiO 3C结构单元、SiO 2C 2结构单元,以及SiC 4结构单元结构单元可以通过测试核磁共振NMR的方式进行区分。29Si化学位移与取代基的电负性有关。随着取代基R电负性的增强,Si NMR化学位移变小,向高场移动。在复合材料的29SiMAS NMR的核磁共振峰中,SiO 3C的化学位移δSi为-65.3ppm,SiO 2C 2的化学位移δSi为-106ppm,SiO 4的化学位移δSi为-82.4ppm,通过核磁共振峰中不同的化学位移去区分各个结构单元。
在一些实施方式中,Si-O-C球形结构体的C/Si摩尔比为0.5~3.5,Si-O-C球形结构体的C/Si摩尔比具体可以是0.5、1、1.5、2、2.5、3和3.5等,当然也可以是上述范围内的其他值,在此不做限定。
在Si-O-C球形结构体的O/Si摩尔比处于1~2,C/Si摩尔比处于0.5~3.5的情况下,弥散于Si-O-C球形结构体内部的C也可以提供一定的可逆容量,从而随着C/Si摩尔比的增加,Si-O-C球形结构体可以获得更高的可逆容量,使得本申请的硅基复合材料具有较高的比容量。
在一些实施方式中,Si-O-C球形结构体的至少部分表面设置有包覆层。
在一些实施方式中,包覆层包括碳层和聚合物层中的至少一种。
在一些实施方式中,碳层包括无机碳材料层。无机碳材料层可以有效地改善Si-O-C球形结构体的导电性,其可以与Si-O-C球形结构体中游离在Si-O-C球形结构体表面以及内部的C一起形成良好的导电网络,进一步地提升材料的首次库伦效率。并且,无机碳材料层包覆于Si-O-C球形结构体的表面,其不会对Si-O-C球形结构体的形貌以及无定型结构产生影响,确保Si-O-C球形结构体可以保持其较好的比容量以及循环稳定性。
在一些实施方式中,无机碳材料包括石墨、无定型热解碳、碳纳米管、碳纳米线、碳纳米颗粒和碳纤维中的至少一种。
在一些实施方式中,聚合物层的材质包括聚烯烃、聚烯烃衍生物、海藻酸、海藻酸衍生物、聚乙烯醇、聚乙烯醇衍生物、聚丙烯酸、聚丙烯酸衍生物、聚酰胺、聚酰胺衍生物、羧甲基纤维素和羧甲基纤维素衍生物中的至少一种。
在一些实施方式中,硅基复合材料包括Si微晶,Si微晶的中值粒径为1nm~10nm,Si微晶尺寸具体可以为1nm、2nm、3nm、4nm、5nm、6nm、7nm、8nm、9nm、10nm等,当然也可以是上述范围内的其他值,在此不做限定。将Si微晶的中值粒径控制在上述范围内,能够形成Si弥散在SiO 2中的结构,有利于硅基复合材料应用于锂离子电池中循环性能的提高。Si微晶的中值粒径小于1nm,则不能有效形成Si弥散在SiO 2骨架中的弥散结构,导致轨迹复合材料的循环性能较差;Si微晶的中值粒径大于10nm,则表明硅基复合材料中生成了大量的单质硅和二氧化硅,导致硅基复合材料的体积膨胀较大、容量较低。
在一些实施方式中,硅基复合材料的电容电压特性曲线中,0~0.1V区间的容量占硅基复合材料整体容量的20%~50%,0.1V~0.6V区间的容量占硅基复合材料整体容量的50%~80%。在硅基复合材料的电容电压特性曲线中,0~0.1V区间对应锂离子嵌入晶体硅的过程,0.1V~0.6V区间对应锂离子嵌入Si-O-C玻璃相的过程,将在0.1~0.6V区间的容量占硅基复合材料整体容量的占比控制在50%~80%,表明硅基复合材料主要形成了Si-O-C玻璃相,Si-O-C玻璃相具有较高的可逆比容量以及库伦效率,使得硅基复合材料的可逆比容量进一步提高。
在一些实施方式中,硅基复合材料的沃德尔球形度大于0.95,具体可以是0.96、0.97、0.98和0.99等,当然也可以是上述范围内的其他值,在此不做限定。沃德尔球形度是指材料的最大内切球体和最小外接球体之间的直径比,将硅基复合材料的沃德尔球形度控制在上述范围内,表明硅基复合材料的形状与球形结构高度类似,球形结构具有较高的流动性和堆积密度,从而在负极材料的加工过程中可以更加容易获得具有良好电化学性能的负极材料。
在一些实施方式中,硅基复合材料的中值粒径D50为0.3μm~5.8μm,具体可以是0.3μm、0.5μm、1μm、2μm、3μm、4μm、5μm和5.8μm等,当然也可以是上述范围内的其他值,在此不做限定。将硅基复合材料的中值粒径控制在上述范围内,表明硅基复合材料的粒径适中,可以避免硅基复合材料由于粒径过小导致比表面积过大,使得颗粒容易团聚而导致加工后的锂离子电池负极材料性能出现劣化以及过高活性的电池负极材料在循环时持续消耗电解液造成容量保持率的劣化的情况。
在一些实施方式中,硅基复合材料的(D90-D10)/D50小于等于1.20。(D90-D10)/D50具体可以是0.90、0.95、1.00、1.05、1.10、1.15和1.20等,当然也可以是上述范围内的其他值,在此不做限定。可以理解,D90为材料颗粒累积分布为90%的粒径,D10为材料颗粒累积分布为10%的粒径,D50为材料颗粒累积分布为50%的粒径,也称中值粒径。
理想的电池材料需要具备较窄的粒度分布,研究表明,过多的细粉会导致过高活性的电池材料在循环时持续消耗电解液造成容量保持率的劣化,而具有更大膨胀的大颗粒在循环时易于造成颗粒粉化,其容易带来SEI的持续增厚,并且Si-O-C材料本身的嵌脱锂也会更困难。因而通过收窄粒度分布,可以提升材料的循环性能。本申请的硅基复合材料中,(D90-D10)/D50小于等于1.20,表明了硅基复合材料的粒径跨度较小,即硅基复合材料具有较为均一的粒径分布,使得硅基复合材料可以避免上述问题的同时,还进一步具有较高的堆积密度,便于提高材料的电化学性能以及循环性能。
在一些实施方式中,硅基复合材料的比表面积为2.0m 2/g~9.5m 2/g,具体可以为9.5m 2/g、8m 2/g、7m 2/g、6m 2/g、5m 2/g、4m 2/g、3m 2/g、2m 2/g等,当然也可以是上述范围内的其他值,在此不做限定。将硅基复合材料的比表面积控制在上述范围内,可以避免比表面积过大导致锂离子电池负极材料性能出现劣化的情况。
硅基复合材料的粉体振实密度为0.6g/cm 3~1.2g/cm 3,具体可以是0.6g/cm 3、0.7g/cm 3、0.8g/cm 3、0.9g/cm 3、1.0g/cm 3、1.1g/cm 3和1.2g/cm 3等,当然也可以是上述范围内的其他值,在此不做限定。将硅基复合材料的粉体振实密度控制在上述范围内,表明本申请的材料不具有多孔结构,表明本申请的硅基负极材料从内到外均为硬度较大的结构,有利于保持结构稳定性,有利于硅基复合材料电化学性能的提高。本申请的硅基复合材料相对于具有多孔结构的电池材料来说,具有更高的振实密度,同时,由于也可以避免多孔结构体在巨大应力作用下而发生结构崩塌,导致内部的孔隙就会使得电解液大量渗入,带来电化学性能的劣化 的情况。
本申请还公开一种硅基复合材料的制备方法,如图1所示,包括以下步骤:
将包含溶剂、硅氧烷类原料、酚类原料、醛类原料和催化剂的原料混合得到油相,其中,硅氧烷类原料中O/Si摩尔比≤1;
将油相滴加入水相中得到水包油型乳液;
在pH=11~12的环境下,将水包油型乳液形成凝胶;
将凝胶进行第一热处理,得到硅基复合材料。
在上述方案中,在制备油相的过程中加入催化剂,使得硅氧烷类原料、酚类原料和醛类原料之间发生水解缩合反应,生成分子量较大的高分子网络的球体溶胶分子。进一步将制备好的油相加入水相中形成水包油型乳液,再将水包油型乳液形成凝胶,形成凝胶在pH=11~12的环境下进行,控制溶胶形成的成核速度和生成速度,避免产生胶状沉淀,使得最后制得的硅基复合材料可以具有良好的流动性,且具有较高的振实密度和放电比容量,从而具有优异的电化学性能。此外,通过对凝胶进行第一热处理,使得残余的酚类原料、醛类原料反应形成的酚醛树脂被碳化,形成在Si-O-C球形结构体中游离的C,一方面降低了生成Si-C键的概率,另一方面游离的单质C可以在Si-O-C骨架中形成导电网络,提升了材料的导电性,有利于得到综合性能优异的负极材料。本申请采用溶胶-凝胶方法制备硅基复合材料,制备方法简单、不需要复杂的设备即可进行。
在本申请中,硅氧烷类原料中O/Si摩尔比≤1,硅氧烷类原料中O/Si摩尔比具体可以是0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9和1等,当然也可以是上述范围内的其他值,在此不做限定。将硅氧烷类原料中O/Si摩尔比控制在上述范围内,避免制得的硅基复合材料中O/Si摩尔比过高,使得硅基复合材料可以更倾向于形成具有较好比容量的SiO 3C结构单元,使得硅基复合材料中的Si-O键的数量与Si-C键的数量之比大于2,使得硅基复合材料可以获得更高的比容量。
以下结合实施例具体介绍本申请的制备方法:
步骤S100、将包含溶剂、硅氧烷类原料、酚类原料、醛类原料和催化剂的原料混合得到油相,具体地:
步骤S101、在溶剂中加入硅氧烷类原料和酚类原料进行第一混合得到第一溶液。
在一些实施方式中,溶剂包括去离子水和乙醇中的至少一种,当溶剂同时包括去离子水和乙醇时,乙醇与去离子水的质量比为1:(1~10)。例如可以是1:1、1:2、1:3、1:4、1:5、1:6、1:7、1:8、1:9和1:10等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,硅氧烷类原料包括芳香族硅氧烷、八甲基四硅氧烷(C 8H 24O 4Si 4)、十甲基四硅氧烷(C 10H 30O 3Si 4)、1,3-二乙烯基四甲基二硅氧烷(C 8H 18OSi 2)和八甲基三硅氧烷(C 8H 24O 2Si 3)中的至少一种。示例性地,芳香族硅氧烷例如可以是二甲基二苯基聚硅氧烷,苯基三甲基硅氧烷和八苯基环四硅氧烷等。本申请通过合理选择硅氧烷类原料,使得制备得到的硅基复合材料更加倾向于生成具有较高可逆比容量的SiO 3C结构单元、SiO 4结构单元、而较少生成比容量较低的SiC 4结构单元、SiOC 3结构单元。
在一些实施方式中,酚类原料包括间苯二酚、间氨基苯酚和双酚A中的至少一种。本申请选择上述硅氧烷类原料,使得制备得到的硅基复合材料更加倾向于生成具有较高可逆比容量的SiO 3C结构单元、SiO 4结构单元、而较少生成比容量较低的SiC 4结构单元、SiOC 3结构单元。
在一些实施方式中,酚类原料与硅氧烷原料的质量比为1:(2~8)。例如可以是1:2、1:3、1:4、1:5、1:6、1:7和1:8等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,酚类原料与第一溶液的质量比为1:(100~300),例如可以是1:100、1:150、1:200、1:250和1:300等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,第一混合在第一搅拌条件下进行,具体为:
第一搅拌的转速为100r/min~400r/min,具体可以是100r/min、150r/min、200r/min、 250r/min、300r/min、350r/min和400r/min等,当然也可以是上述范围内的其他值,在此不做限定。
第一搅拌的时间为30min~180min,具体可以是30min、40min、50min、60min、80min、90min、100min、120min、130min、150min、170min和180min等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,第一混合的方式包括VC混合、融合、球磨、抽滤、加热回流、三维混合和流化床混合中的至少一种。
在一些实施方式中,在溶剂中加入硅氧烷类原料和酚类原料之前还包括加入第一pH调节溶液的步骤。具体步骤101为:在溶剂中加入第一pH调节溶液以调整pH值在11~12之间,得到预处理溶液;在预处理溶液中加入硅氧烷类原料以及酚类原料,混合均匀后得到第一溶液。
在一些实施方式中,第一pH调节溶液包括氨水和尿素中的至少一种,第一pH调节溶液的浓度为0.1mol/L~2mol/L,例如可以是0.1mol/L、0.3mol/L、0.5mol/L、1mol/L、1.2mol/L、1.5mol/L、1.8mol/L和2mol/L等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,第一pH调节溶液与溶剂的体积比为1:(30~100)。例如可以是1:30、1:40、1:50、1:60、1:70、1:80、1:90、1:100等,当然也可以是上述范围内的其他值,在此不做限定。
步骤S102、在第一溶液中加入醛类原料和催化剂进行第二混合得到油相。
在一些实施方式中,醛类原料包括甲醛,甲醛的使用使得制备得到的硅基复合材料更加倾向于生成具有较高可逆比容量的SiO 3C结构单元、SiO 4结构单元、而较少生成比容量较低的SiC 4结构单元、SiOC 3结构单元。
在一些实施方式中,催化剂包括铂二乙烯基四甲基-二硅氧烷络合物和/或二月硅酸二丁基锡。本申请所选用的催化剂可以促使硅氧烷原料、酚类原料和醛类原料发生水解缩合反应,生成分子量较大的3D体相高分子网络,生成微米级尺寸的球体结构。
在一些实施方式中,醛类原料与第一溶液的体积比为1:(50~250)。例如可以是1:50、1:100、1:150和1:250等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,催化剂占硅氧烷原料质量的0.5%~15%,例如可以是0.5%、1%、2%、5%、7%、10%、13%、15%等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,第二混合在第二搅拌条件下进行:
第二搅拌的转速为100r/min~400r/min,具体可以是100r/min、150r/min、200r/min、250r/min、300r/min、350r/min和400r/min等,当然也可以是上述范围内的其他值,在此不做限定。
第二搅拌的时间为5min~30min,具体可以是5min、10min、15min、20min、25min和30min等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,第二混合的方式包括VC混合、融合、球磨、抽滤、加热回流、三维混合和流化床混合中的至少一种。
步骤S200、将油相加入水相中,得到水包油型乳液。
具体地,在去离子水中加入乳化剂,得到水相,再将油相加入所得水相中,得到水包油型乳液。
在一些实施方式中,油相采用滴加的方式加入含有乳化剂中,将油相滴加入水相中,形成水包油型乳液,可以促使水解缩合反应生成的多个溶胶分子可以同时包覆在一层水包覆层中,从而促使了微米级Si-O-C球形颗粒的生成。
在一些实施方式中,乳化剂包括聚山梨酯-80、聚山梨酯-60、聚山梨酯-40和聚山梨酯-20中的至少一种。上述乳化剂的亲水疏水平衡值(HLB)在8~18之间,使得油相加入水相时,可以更加容易生成水包油(O-W)型乳液,促使水解缩合反应生成的多个溶胶分子可以同时包覆在一层水包覆层中,从而促使了微米级Si-O-C球形颗粒的生成。
在一些实施方式中,乳化剂占水相质量的1%~20%。例如可以是1%、2%、5%、7%、10%、13%、15%、17%和20%等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,油相与水相的质量比为1:(20~100)。例如可以是1:20、1:30、1:40、1:50、1:60、1:70、1:80、1:90和1:100等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,将油相加入含有乳化剂的水相之前还包括加入第二pH调节溶液的步骤,步骤200具体为:在水相中加入乳化剂并加入第二pH调节溶液以调整溶液的pH值在11~12之间,将油相滴加入水相中。
综上所述,本申请通过步骤100和步骤200中原料的选择以及合适的配比,在保证充分反应的前提下控制反应的速度,从而提升制备Si-O-C微球的球形度和粒径收窄的范围,使得本申请可以获得微米级尺寸的球形颗粒,颗粒不会出现粘连现象,分散性好。且可以更加倾向于生成具有较高可逆比容量的SiO 3C结构单元、SiO 4结构单元、而较少生成比容量较低的SiC 4结构单元、SiOC 3结构单元。解决了现有技术采用溶胶-凝胶方法制备硅基复合材料容易出现形貌不规则,或者虽然是球形结构,但是颗粒粒径较小(纳米级别),或者需要使用耐压要求高的特殊设备的问题。
步骤S300、在pH=11~12的环境下,将水包油型乳液形成凝胶。
具体地:将水包油型溶液在水浴或油浴下静置,生成凝胶。
本步骤中,通过调整pH值可以控制水包油型乳液形成的成核速度和生成速度。当成核速度远大于生成速度时,溶液中将会形成大量的晶核,而此时晶核的生长速度却很慢,因此这些晶核就会发生团聚现象从而产生胶状沉淀,使得得到的材料不具有球形结构,而且材料的振实密度很低,降低材料的电化学性能。当成核速度远小于生长速度时,溶液中具有较少的晶核数目,而此时晶核的生长速度却很大,这样在晶体的生成过程中就不会出现团聚现象。本申请调整pH值在11~12之间,能够降低溶液中的过饱和度,在晶体的生成过程中,与生长速度相比,成核速度趋向于减小,从而溶液中有较少的晶核,这些晶核具有较好的生长空间,最终将会得到粒径适中的颗粒。同时,由于pH值在11~12之间,pH值波动较小,使反应在较为稳定的pH条件下进行,得到粒径分布集中的硅基复合材料。此外,由于此时溶液处于碱性环境,溶液中小颗粒比大颗粒具有更大的溶解度,碱性环境促进了小颗粒的溶解,新生成的颗粒就可以在较大晶体上有序地排列生长,有利于晶体的长大。在较大的颗粒中,内部粒子与边角粒子具有不同的活性,具体来说,内部粒子由于受到较强的束缚力,相比边角粒子所具有的活性较低,而边角粒子则要活泼的多,这样碱性溶液便可以与边角粒子发生相互作用,合成的颗粒具有较好的形貌,可以呈现出球形结构,而球形结构具有较高的流动性和堆积密度,提高了硅基复合材料的电化学性能。如果不对pH值进行调节,可能会对最终形成的前驱体微球的形貌产生影响,颗粒表面可能存在大量“绒毛”结构,这会使得材料的比表面积大大增加,从而使得副反应增多,从而影响材料循环时的容量保持率,也会导致SEI膜增厚、膨胀增加;此外,毛绒结构和较低的振实密度都会降低材料的加工性能。因此,本申请中通过合理调整pH值在11~12之间,并控制反应温度范围,使得制备得到的硅基复合材料表面光滑,粒径分布窄,有助于改善材料的循环性能。
在一些实施方式中,静置的pH环境为11、11.1、11.2、11.3、11.4、11.5、11.6、11.7、11.8、11.9和12等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,本步骤中的pH=11~12的环境可以是在步骤100或步骤200中预设,还可以是本步骤中形成凝胶之前加入第三pH调节溶液使得环境pH为11~12。
在一些实施方式中,第三pH调节溶液包括氨水和尿素中的至少一种。
在一些实施方式中,第三pH调节溶液的浓度为0.1mol/L~2mol/L,例如可以是0.1mol/L、0.3mol/L、0.5mol/L、1mol/L、1.2mol/L、1.5mol/L、1.8mol/L和2mol/L等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,水浴或油浴的温度为25℃~100℃,例如可以是25℃、30℃、35℃、 45℃、55℃、60℃、67℃、80℃、85℃、90℃和100℃等,当然也可以是上述范围内的其他值,在此不做限定。在上述温度范围内,可以是使得水包油型乳液转为凝胶,最终使得制备得到的硅基复合材料的粒径为微米级,不容易产生团聚,且比表面积适中,可以避免硅基复合材料由于粒径过小导致比表面积过大,使得颗粒容易团聚而导致加工后的锂离子电池负极材料性能出现劣化以及过高活性的电池负极材料在循环时持续消耗电解液造成容量保持率的劣化的情况。同时,本申请制备得到的硅基复合材料可以具有较窄的粒径分布以及良好的球形风貌,使得材料的循环性能进一步提升。若温度低于25℃,导致形成的材料的颗粒粒径较小,无法得到微米级粒径的材料;若温度高于100℃,导致能耗增加,反应过程中溶液体系的蒸发也会使反应的pH值的准确连续测量受到较大影响。随反应温度的升高,放电比容量略有增加,堆积密度则呈降低趋势。
步骤S400、将凝胶进行第一热处理,得到硅基复合材料。
在上述步骤中,凝胶在第一热处理过程中,硅氧烷以及酚醛树脂复合的凝胶微球被碳化,基本实现无极化,从而形成主要由Si、C、O、H组成的硅基复合材料。具体地,Si、O和部分C形成Si(O,C) 4四面体结构,主要包括SiC 4、SiOC 3、SiO 2C 2、SiO 3C、SiO 4等基本单元,剩余的C以自由碳形式存在。并且可逆比容量最高的SiO 3C含量最多,其次为SiO 4,而SiO 2C 2含量较少,SiC 4以及SiOC 3进一步少于SiO 2C 2。Si-O-C复合微球H含量极少,一些以C-H键形式存在于自由碳外围,一些以Si-H键形式存在。
在一些实施方式中,第一热处理在第一保护性气体氛围中进行,第一保护性氛围包括氮气、氩气和氦气中的至少一种。将凝胶的第一热处理过程处于还原性气氛下,有利于形成对锂离子更可逆的Si-O-C玻璃相,其可以具有较高的可逆比容量和库伦效率。
在一些实施方式中,第一热处理的温度为600℃~1000℃,例如为600℃、700℃、800℃、900℃和1000℃等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,第一热处理的保温时间为2h~10h,具体可以是2h、3h、4h、5h、6h、7h、8h、9h和10h等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,第一热处理的设备包括回转炉、管式炉、箱式炉、辊道窑、隧道窑和推板窑中的至少一种。
在一些实施方式中,在对凝胶进行第一热处理之前还包括对凝胶进行干燥处理的步骤。
在一些实施方式中,干燥的温度为10℃~100℃,例如为10℃、20℃、30℃、40℃、50℃、60℃、70℃、80℃、90℃和100℃等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,干燥的时间为5min~60min,例如5min、10min、20min、30min、35min、40min、45min、50min、55min和60min等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,干燥的方式包括离心、抽滤和喷雾干燥中的至少一种。
在一些实施方式中,得到硅基复合材料后还包括对得到的硅基复合材料进行表面包覆的步骤。具体包括:将硅基复合材料与包覆材料进行第三混合后进行第二热处理,得到Si-O-C球形结构体表面设有包覆层的硅基复合材料。
在一些实施方式中,包覆材料包括碳源和聚合物材料中的至少一种。
在一些实施方式中,碳源包括固相碳源、液相碳源和气相碳源中的至少一种。
在一些实施方式中,固相碳源包括柠檬酸、葡萄糖、沥青、酚醛树脂和糠醛树脂中的至少一种的有机固体碳源。在采用固态碳源的情况下,可以将冷却后的Si-O-C复合微球与碳源混合均匀,置于炉中,通入保护性气体如氮气、氩气、氦气、氖气、氪气及氙气等进行热裂解,使碳源裂解包覆Si-O-C复合微球表面。
在一些实施方式中,液相碳源包括低温液相沥青、糠醇、甲基丙烯酸缩水甘油酯和三乙二醇二甲基丙烯酸酯中的至少一种的有机液体碳源。在采用液相碳源的情况下,可以将冷却后的Si-O-C复合微球与碳源混合均匀,置于炉中,通入保护性气体如氮气、氩气、氦气、氖气、氪气及氙气等进行热裂解,使碳源裂解包覆Si-O-C复合微球表面。
在一些实施方式中,气相碳源包括甲烷、乙炔、乙烯、乙烷、丙烷、丙烯、丙炔、丙酮和苯中的至少一种。在采用气相碳源的情况下,可以将冷却后的Si-O-C复合微球置于炉中,通入气相碳源进行热裂解,使无定型碳沉积在Si-O-C复合微球表面。
聚合物材料包括聚烯烃、聚烯烃衍生物、海藻酸、海藻酸衍生物、聚乙烯醇、聚乙烯醇衍生物、聚丙烯酸、聚丙烯酸衍生物、聚酰胺、聚酰胺衍生物、羧甲基纤维素和羧甲基纤维素衍生物中的至少一种。
在一些实施方式中,第二热处理的温度为600℃~1000℃,例如为600℃、700℃、800℃、900℃和1000℃等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,第二热处理的保温时间为0.5h~20h,例如可以是0.5h、1h、3h、5h、10h、15h和20h等,当然也可以是上述范围内的其他值,在此不做限定。
在一些实施方式中,第二热处理在第二保护性氛围气氛中进行,第二保护性氛围包括氮气、氦气、氖气、氩气、氪气和氙气中的至少一种。
本申请实施例中还公开一种锂离子电池,所述锂离子电池包含如本申请所述的硅基复合材料或如本申请所述的方法制得的硅基复合材料。
下面通过具体实施例对本申请作进一步的说明。
实施例1
(1)将30mL 1mol/L氨水分散在2000mL水和1000mL乙醇的混合溶液中,以300r/min的速度搅拌1h,以调整pH值在11~12之间,得到预处理溶液;
(2)在预处理溶液中缓慢加入100mL八甲基三硅氧烷(密度0.82g/cm 3)和10g间苯二酚,继续以200r/min速度搅拌30min,得到第一溶液;
(3)在第一溶液中再滴加14mL甲醛溶液,将铂二乙烯基四甲基-二硅氧烷络合物(占八甲基三硅氧烷质量的1%)加入到混合物中,接着以200r/min的转速搅拌15min,得到油相;
(4)在另一个容器中,在离子水中加入20%的聚山梨酯-80获得水相。水相和油相的质量比为50:1。
(5)水相和油相各自混合均匀后,在搅拌的同时,将油相通逐滴滴加到水相中形成水包油型乳液;
(6)将乳液在80℃水浴条件下中加热24小时,在此过程中油相液体快速凝胶固化,生成凝胶;
(7)对凝胶进行离心、洗涤、干燥,得到甲基聚倍半硅氧烷-酚醛树脂复合微球;
(8)将干燥好的甲基聚倍半硅氧烷-酚醛树脂复合微球在管式炉中氩气气氛下于800℃碳化6小时,得到黑色的Si-O-C复合微球。
实施例2
(1)将30mL 1mol/L尿素分散在2000mL水和1000mL乙醇的混合溶液中,以300r/min的速度搅拌1h,以调整pH值在11~12之间,得到预处理溶液;
(2)在预处理溶液中缓慢加入100mL八甲基三硅氧烷(密度0.82g/cm 3)和10g间苯二酚,继续以200r/min速度搅拌30min,得到第一溶液;
(3)在第一溶液中再滴加14mL甲醛溶液,将铂二乙烯基四甲基-二硅氧烷络合物(占八甲基三硅氧烷质量的1%)加入到混合物中,接着以200r/min的转速搅拌15min,得到油相;
(4)在另一个容器中,在离子水中加入20%的聚山梨酯-80获得水相。水相和油相的质量比为50:1。
(5)水相和油相各自混合均匀后,在搅拌的同时,将油相通逐滴滴加到水相中形成水包油型乳液;
(6)将乳液在80℃水浴条件下中加热24小时,在此过程中油相液体快速凝胶固化,生成凝胶;
(7)对凝胶进行离心、洗涤、干燥,得到甲基聚倍半硅氧烷-酚醛树脂复合微球;
(8)将干燥好的甲基聚倍半硅氧烷-酚醛树脂复合微球在管式炉中氩气气氛下于800℃碳化6小时,得到黑色的Si-O-C复合微球。
(9)使用葡萄糖作为碳源,将葡萄糖与得到的Si-O-C复合微球通过VC混合机混合,采用辊道窑,并使用氩气为保护气氛,在1000℃碳化,得到包覆碳材料层的硅基复合材料。
实施例3
(1)将100mL 0.5mol/L氨水分散在2000mL水和1000mL乙醇的混合溶液中,以200r/min的速度搅拌120min,以调整pH值在11~12之间,得到预处理溶液。
(2)在预处理溶液中缓慢加入100mL十甲基四硅氧烷(0.8g/cm 3~0.9g/cm 3)和29g间苯二酚,继续以400r/min速度搅拌60min,得到第一溶液。
(3)在第一溶液中再滴加42mL甲醛溶液,将二月硅酸二丁基锡(占十甲基四硅氧烷质量的0.5%)加入到混合物中,接着以100r/min的转速搅拌20min,得到油相。
(4)在另一个容器中,在离子水中加入10%的聚山梨酯-20获得水相。水和油相的质量比为20:1。
(5)水相和油相各自混合均匀后,在搅拌的同时,将油相通逐滴滴加到水相中形成水包油型乳液。
(6)将乳液在100℃油浴条件下加热6小时,在此过程中油相液体快速凝胶固化,生成凝胶。
(7)对凝胶进行离心、洗涤、干燥,得到甲基聚倍半硅氧烷-酚醛树脂复合微球。
(8)将干燥好的甲基聚倍半硅氧烷-酚醛树脂复合微球在管式炉中氩气气氛下于600℃碳化1小时,得到黑色的Si-O-C复合微球。
(9)使用低温液相沥青作为碳源,将沥青与得到的Si-O-C复合微球融合,采用回转炉,并使用氮气为保护气氛,在800℃碳化,得到包覆碳材料层的硅基复合材料。
实施例4
(1)混合3000mL水和500mL乙醇,以400r/min的速度搅拌60min之后,缓慢加入100mL八甲基三硅氧烷(密度0.82g/cm 3)和18g双酚A,继续以100r/min速度搅拌60min,得到预处理溶液。
(2)在预处理溶液中再滴加25mL甲醛溶液,将铂二乙烯基四甲基-二硅氧烷络合物(占八甲基三硅氧烷质量的3%)加入到混合物中,接着以200r/min的转速搅拌25min,得到油相。
(3)在另一个容器中,在离子水中加入1%的聚山梨酯-40获得水相。水和油相的质量比为60:1。
(4)水相和油相各自混合均匀后,在搅拌的同时,将油相通逐滴滴加到水相中形成水包油型乳液。
(5)将80mL 2mol/L氨水分散在水包油型乳液中,将乳液在25℃水浴中加热12小时,在此过程中油相液体快速凝胶固化,生成凝胶。
(6)对凝胶进行离心、洗涤、干燥,得到甲基聚倍半硅氧烷-酚醛树脂复合微球。
(7)将干燥好的甲基聚倍半硅氧烷-酚醛树脂复合微球在管式炉中氩气气氛下于900℃碳化3小时,得到黑色的Si-O-C复合微球。
(8)使用甲烷作为碳源,在回转炉放置Si-O-C复合微球,将甲烷气体通入,并使用氮气为保护气氛,在900℃碳化,得到包覆碳材料层的硅基复合材料。
实施例5
(1)将100mL 0.1mol/L氨水分散在4000mL水和500mL乙醇的混合溶液中,以350r/min的速度搅拌90min,以调整pH值在11~12之间,得到预处理溶液。
(2)在预处理溶液中缓慢加入100mL 1,3-二乙烯基四甲基二硅氧烷(密度0.81g/cm 3和20g间氨基苯酚,继续以150r/min速度搅拌180min,得到第一溶液。
(3)在第一溶液中再滴加27mL甲醛溶液,将铂二乙烯基四甲基-二硅氧烷络合物(占1,3-二乙烯基四甲基二硅氧烷质量的15%)加入到混合物中,接着以400r/min的转速搅拌30min,得到油相。
(4)在另一个容器中,在离子水中加入10%的聚山梨酯-60获得水相。水和油相的质量比为100:1。
(5)水相和油相各自混合均匀后,在搅拌的同时,将油相通逐滴滴加到水相中形成水包油型乳液。
(6)将乳液在70℃油浴中加热18小时,在此过程中油相液体快速凝胶固化生成凝胶。
(7)对凝胶进行离心、洗涤、干燥,得到甲基聚倍半硅氧烷-酚醛树脂复合微球。
(8)将干燥好的甲基聚倍半硅氧烷-酚醛树脂复合微球在管式炉中氩气气氛下于700℃碳化5小时,得到黑色的Si-O-C复合微球。
(9)使用乙炔作为碳源,在回转炉放置Si-O-C复合微球,将乙炔气体通入,并使用氮气为保护气氛,在850℃碳化,得到包覆碳材料层的硅基复合材料。
实施例6
(1)将30mL 1mol/L氨水分散在2000mL水和1350mL乙醇的混合溶液中,以300r/min的速度搅拌1h,以调整pH值在11~12之间,得到预处理溶液。
(2)在预处理溶液中缓慢加入100mL芳香族硅氧烷(密度0.9g/cm 3)和10g间苯二酚,继续以200r/min速度搅拌30min,得到第一溶液。
(3)在第一溶液中再滴加14mL甲醛溶液,将铂二乙烯基四甲基-二硅氧烷络合物(占芳香族硅氧烷质量的1%)加入到混合物中,接着以200r/min的转速搅拌15min,得到油相。
(4)在另一个容器中,在离子水中加入20%的聚山梨酯-80获得水相。水相和油相的质量比为50:1。
(5)水相和油相各自混合均匀后,在搅拌的同时,将油相通逐滴滴加到水相中形成水包油型乳液。
(6)将乳液在80℃水浴条件下中加热24小时,在此过程中油相液体快速凝胶固化,生成凝胶。
(7)对凝胶进行离心、洗涤、干燥,得到甲基聚倍半硅氧烷-酚醛树脂复合微球;
(8)将干燥好的甲基聚倍半硅氧烷-酚醛树脂复合微球在管式炉中氩气气氛下于800℃碳化6小时,得到黑色的Si-O-C复合微球。
(9)使用柠檬酸以及沥青作为碳源,将柠檬酸以及沥青与得到的Si-O-C复合微球通过VC混合机混合,采用辊道窑,并使用氩气为保护气氛,在1000℃碳化,得到包覆碳材料层的硅基复合材料。
实施例7
(1)将100mL 0.5mol/L氨水分散在1000mL水和1000mL乙醇的混合溶液中,以200r/min的速度搅拌120min,以调整pH值在11~12之间,得到预处理溶液。
(2)在预处理溶液中缓慢加入75mL八甲基四硅氧烷(0.96g/cm 3)和29g间苯二酚,继续以400r/min速度搅拌60min,得到第一溶液。
(3)在第一溶液中再滴加42mL甲醛溶液,将二月硅酸二丁基锡(占八甲基四硅氧烷质量的0.5%)加入到混合物中,接着以100r/min的转速搅拌20min,得到油相。
(4)在另一个容器中,在离子水中加入10%的聚山梨酯-20获得水相。水和油相的质量比为20:1。
(5)水相和油相各自混合均匀后,在搅拌的同时,将油相通逐滴滴加到水相中形成水包油型乳液。
(6)将乳液在100℃油浴条件下加热6小时,在此过程中油相液体快速凝胶固化,生 成凝胶。
(7)对凝胶进行离心、洗涤、干燥,得到甲基聚倍半硅氧烷-酚醛树脂复合微球。
(8)将干燥好的甲基聚倍半硅氧烷-酚醛树脂复合微球在管式炉中氩气气氛下于600℃碳化1小时,得到黑色的Si-O-C复合微球。
(9)使用糠醇、甲基丙烯酸缩水甘油酯、以及三乙二醇二甲基丙烯酸酯作为碳源,将糠醇、甲基丙烯酸缩水甘油酯、以及三乙二醇二甲基丙烯酸酯得到的Si-O-C复合微球融合,采用回转炉,并使用氮气为保护气氛,在800℃碳化,得到包覆碳材料层的硅基复合材料。
实施例8
(1)将80mL的2mol/L氨水分散在3000mL水中,以400r/min的速度搅拌60min,以调整pH值在11~12之间,得到预处理溶液。
(2)在预处理溶液中缓慢加入100mL十甲基四硅氧烷(密度0.85g/cm 3)和18g双酚A,继续以100r/min速度搅拌60min,得到第一溶液。
(3)在第一溶液中再滴加25mL甲醛溶液,将铂二乙烯基四甲基-二硅氧烷络合物(占十甲基四硅氧烷质量的3%)加入到混合物中,接着以200r/min的转速搅拌25min,得到油相。
(4)在另一个容器中,在离子水中加入1%的聚山梨酯-40获得水相。水和油相的质量比为60:1。
(5)水相和油相各自混合均匀后,在搅拌的同时,将油相通逐滴滴加到水相中形成水包油型乳液。
(6)将乳液在25℃水浴中加热12小时,在此过程中油相液体快速凝胶固化,生成凝胶。
(7)对凝胶进行离心、洗涤、干燥,得到甲基聚倍半硅氧烷-酚醛树脂复合微球。
(8)将干燥好的甲基聚倍半硅氧烷-酚醛树脂复合微球在管式炉中氩气气氛下于900℃碳化3小时,得到黑色的Si-O-C复合微球。
(9)使用乙烯以及丙烯作为碳源,在回转炉放置Si-O-C复合微球,将乙烯以及丙烯气体通入,并使用氮气为保护气氛,在900℃碳化,得到包覆碳材料层的硅基复合材料。
实施例9
(1)将30mL的1mol/L氨水分散在1000mL乙醇的混合溶液中,以300r/min的速度搅拌1h,以调整pH值在11~12之间,得到预处理溶液。
(2)在预处理溶液中缓慢加入100mL八甲基三硅氧烷(密度0.82g/cm 3)和10g间苯二酚,继续以200r/min速度搅拌30min,得到第一溶液。
(3)在第一溶液中再滴加14mL甲醛溶液,将铂二乙烯基四甲基-二硅氧烷络合物(占八甲基三硅氧烷质量的1%)加入到混合物中,接着以200r/min的转速搅拌15min,得到油相。
(4)在另一个容器中,在离子水中加入20%的聚山梨酯-80获得水相。水相和油相的质量比为50:1。
(5)水相和油相各自混合均匀后,在搅拌的同时,将油相通逐滴滴加到水相中形成水包油型乳液。
(6)将乳液在80℃水浴条件下中加热24小时,在此过程中油相液体快速凝胶固化,生成凝胶。
(7)对凝胶进行离心、洗涤、干燥,得到甲基聚倍半硅氧烷-酚醛树脂复合微球。
(8)将干燥好的甲基聚倍半硅氧烷-酚醛树脂复合微球在管式炉中氩气气氛下于800℃碳化6小时,得到黑色的Si-O-C复合微球。
(9)使用酚醛树脂以及糠醛树脂作为碳源,将酚醛树脂以及糠醛树脂与得到的Si-O-C复合微球通过VC混合机混合,采用辊道窑,并使用氩气为保护气氛,在1000℃碳化,得 到包覆碳材料层的硅基复合材料。
实施例10
(1)将100mL的0.5mol/L氨水分散在2000mL水和1000mL乙醇的混合溶液中,以200r/min的速度搅拌120min,以调整pH值在11~12之间,得到预处理溶液。
(2)在预处理溶液中缓慢加入100mL十甲基四硅氧烷(0.8g/cm 3~0.9g/cm 3)和29g间苯二酚,继续以400r/min速度搅拌60min,得到第一溶液。
(3)在第一溶液中再滴加42mL甲醛溶液,将二月硅酸二丁基锡(占十甲基四硅氧烷质量的0.5%)加入到混合物中,接着以100r/min的转速搅拌20min,得到油相。
(4)在另一个容器中,在离子水中加入10%的聚山梨酯-20获得水相。水和油相的质量比为20:1。
(5)水相和油相各自混合均匀后,在搅拌的同时,将油相通逐滴滴加到水相中形成水包油型乳液。
(6)将乳液在100℃油浴条件下加热6小时,在此过程中油相液体快速凝胶固化,生成凝胶。
(7)对凝胶进行离心、洗涤、干燥,得到甲基聚倍半硅氧烷-酚醛树脂复合微球。
(8)将干燥好的甲基聚倍半硅氧烷-酚醛树脂复合微球在管式炉中氩气气氛下于600℃碳化1小时,得到黑色的Si-O-C复合微球。
(9)使用乙烷、丙烷以及丙炔作为碳源,在回转炉放置Si-O-C复合微球,将乙烷、丙烷以及丙炔气体通入,并使用氮气为保护气氛,在900℃碳化,得到包覆碳材料层的硅基复合材料。
实施例11
(1)在2000mL水和1000mL乙醇的混合溶液中缓慢加入100mL十甲基四硅氧烷(0.8g/cm 3~0.9g/cm 3)和29g间苯二酚,继续以400r/min速度搅拌60min,得到第一溶液。
(2)在第一溶液中再滴加42mL甲醛溶液,将二月硅酸二丁基锡(占十甲基四硅氧烷质量的0.5%)加入到混合物中,接着以100r/min的转速搅拌20min,得到油相。
(3)在另一个容器中,在离子水中加入10%的聚山梨酯-20以及100mL 0.5mol/L氨水,获得水相。水和油相的质量比为20:1。
(4)水相和油相各自混合均匀后,在搅拌的同时,将油相通逐滴滴加到水相中形成水包油型乳液。
(5)将乳液在100℃油浴条件下加热6小时,在此过程中油相液体快速凝胶固化,生成凝胶。
(6)对凝胶进行离心、洗涤、干燥,得到甲基聚倍半硅氧烷-酚醛树脂复合微球。
(7)将干燥好的甲基聚倍半硅氧烷-酚醛树脂复合微球在管式炉中氩气气氛下于600℃碳化1小时,得到黑色的Si-O-C复合微球。
(8)使用丙酮以及苯作为碳源,在回转炉放置Si-O-C复合微球,将丙酮以及苯气体通入,并使用氮气为保护气氛,在900℃碳化,得到包覆碳材料层的硅基复合材料。
实施例12
(1)将30mL 1mol/L氨水分散在2000mL水和1000mL乙醇的混合溶液中,以300r/min的速度搅拌1h,以调整pH值在11~12之间,得到预处理溶液;
(2)在预处理溶液中缓慢加入100mL八甲基三硅氧烷(密度0.82g/cm 3)和10g间苯二酚,继续以200r/min速度搅拌30min,得到第一溶液;
(3)在第一溶液中再滴加14mL甲醛溶液,将铂二乙烯基四甲基-二硅氧烷络合物(占八甲基三硅氧烷质量的1%)加入到混合物中,接着以200r/min的转速搅拌15min,得到油相。
(4)在另一个容器中,在离子水中加入20%的聚山梨酯-80获得水相。水相和油相的质量比为50:1。
(5)水相和油相各自混合均匀后,在搅拌的同时,将油相通逐滴滴加到水相中形成水包油型乳液。
(6)将乳液在15℃水浴条件下中加热24小时,在此过程中油相液体快速凝胶固化,生成凝胶。
(7)对凝胶进行离心、洗涤、干燥,得到聚倍半硅氧烷-酚醛树脂复合微球。
(8)将干燥好的聚倍半硅氧烷-酚醛树脂复合微球在管式炉中氩气气氛下于800℃碳化6小时,得到黑色的Si-O-C复合微球。
(9)使用葡萄糖作为碳源,将葡萄糖与得到的Si-O-C复合微球通过VC混合机进行混合,采用辊道窑,并使用氩气为保护气氛,在1000℃碳化,得到包覆碳材料层的硅基复合材料。
实施例13
(1)将30mL 1mol/L尿素分散在2000mL水和1000mL乙醇的混合溶液中,以300r/min的速度搅拌1h,以调整pH值在11~12之间,得到预处理溶液;
(2)在预处理溶液中缓慢加入100mL八甲基三硅氧烷(密度0.82g/cm 3)和10g间苯二酚,继续以200r/min速度搅拌30min,得到第一溶液;
(3)在第一溶液中再滴加14mL甲醛溶液,将铂二乙烯基四甲基-二硅氧烷络合物(占八甲基三硅氧烷质量的1%)加入到混合物中,接着以200r/min的转速搅拌15min,得到油相;
(4)在另一个容器中,在离子水中加入20%的聚山梨酯-80获得水相。水相和油相的质量比为50:1。
(5)水相和油相各自混合均匀后,在搅拌的同时,将油相通逐滴滴加到水相中形成水包油型乳液;
(6)将乳液在80℃水浴条件下中加热24小时,在此过程中油相液体快速凝胶固化,生成凝胶;
(7)对凝胶进行离心、洗涤、干燥,得到甲基聚倍半硅氧烷-酚醛树脂复合微球;
(8)将干燥好的甲基聚倍半硅氧烷-酚醛树脂复合微球在管式炉中氩气气氛下于800℃碳化6小时,得到黑色的Si-O-C复合微球。
(9)将4g聚丙烯酸溶解于100ml蒸馏水中,升温至40℃后搅拌反应2h后,加入100gSi-O-C复合材料和5g水,在温度为60℃反应2h后冷却,抽滤分离出固体物质,然后置于180℃的干燥箱中热处理4h,冷却得到负极材料。
本实施例制得的负极材料包括Si-O-C材料及位于Si-O-C材料表面的包覆层,包覆层的厚度为500nm,包覆层为聚丙烯酸。
对比例1
(1)在2000mL水和1000mL乙醇的混合溶液中,缓慢加入100mL八甲基三硅氧烷(密度0.82g/cm 3)和10g间苯二酚,继续以200r/min速度搅拌30min,得到预处理溶液。
(2)在预处理溶液中再滴加14mL甲醛溶液,将铂二乙烯基四甲基-二硅氧烷络合物(占八甲基三硅氧烷质量的1%)加入到混合物中,接着以200r/min的转速搅拌15min,得到油相。
(3)在另一个容器中,在离子水中加入20%的聚山梨酯-80获得水相。水相和油相的质量比为50:1。
(4)水相和油相各自混合均匀后,在搅拌的同时,将油相通逐滴滴加到水相中形成水包油型乳液。
(5)将乳液在80℃水浴条件下中加热24小时,在此过程中油相液体快速凝胶固化,生成凝胶。
(6)对凝胶进行离心、洗涤、干燥,得到甲基聚倍半硅氧烷-酚醛树脂复合微球。
(7)将干燥好的甲基聚倍半硅氧烷-酚醛树脂复合微球在管式炉中氩气气氛下于800℃ 碳化6小时,得到黑色的Si-O-C复合微球。
(8)使用葡萄糖作为碳源,将葡萄糖与得到的Si-O-C复合微球通过VC混合机混合,采用辊道窑,并使用氩气为保护气氛,在1000℃碳化,得到包覆碳材料层的硅基复合材料。
对比例2
(1)将含氢硅油、二乙烯基苯和氯箔酸的溶液(浓度为12ppm)按质量比5:4:1混合均匀,然后在100℃下交联24h后合成固体聚硅氧烷;
(2)硅氧烷置于管式炉内,在Ar气保护下高温烧结,Ar气流量为0.2L/min,烧结起始温度为50℃,以5℃/min的速度升至400℃,保温1h;再以5℃/min的速度升温至1200℃保温5h后随炉冷却,得到硅基复合材料。
对比例3
(1)将30mL 1mol/L氨水分散在2000mL水和1000mL乙醇的混合溶液中,以300r/min的速度搅拌1h,以调整pH值在11~12之间,得到预处理溶液;
(2)在预处理溶液中缓慢加入100mL乙烯基三甲氧基硅烷(C 5H 12O 3Si,密度0.97g/cm 3)和10g间苯二酚,继续以200r/min速度搅拌30min,得到第一溶液。
(3)在第一溶液中再滴加14mL甲醛溶液,将铂二乙烯基四甲基-二硅氧烷络合物(占八甲基三硅氧烷质量的1%)加入到混合物中,接着以200r/min的转速搅拌15min,得到油相。
(4)在另一个容器中,在离子水中加入20%的聚山梨酯-80获得水相。水相和油相的质量比为50:1。
(5)水相和油相各自混合均匀后,在搅拌的同时,将油相通逐滴滴加到水相中形成水包油型乳液。
(6)将乳液在80℃水浴条件下中加热24小时,在此过程中油相液体快速凝胶固化,生成凝胶。
(7)对凝胶进行离心、洗涤、干燥,得到聚倍半硅氧烷-酚醛树脂复合微球。
(8)将干燥好的聚倍半硅氧烷-酚醛树脂复合微球在管式炉中氩气气氛下于800℃碳化6小时,得到黑色的Si-O-C复合微球。
(9)使用葡萄糖作为碳源,将葡萄糖与得到的Si-O-C复合微球通过VC混合机进行混合,采用辊道窑,并使用氩气为保护气氛,在1000℃碳化,得到包覆碳材料层的硅基复合材料。
性能测试
(1)电镜测试:使用扫描电子显微镜来确认材料中球形颗粒结构,结合能量色散X射线光谱法(EDS)对于材料中Si、O、C元素分布的均匀性进行表征。
(2)电性能测试:使用激光粒度仪测得D50、D90和D10,再计算得到(D90-D10)/D50的值,同时其存在类正态分布的对称分布。
(3)比表面积:使用美国麦克TriStar3000比表面积与孔径分析仪设备测得比表面积。
(4)粉体振实密度:将规定质量的样品放置于量筒中,按照规定次数进行振动(常规测试振实3000次),读取振实后的量筒体积并计算振实密度。采用的仪器为美国康塔DAT-6-220振实密度仪
(5)沃德尔(Wadell)球形度测试:使用激光粒度仪测得粒径分布,得到每个粒度范围内的等效体积直径。用该等效体积直径作为该极小粒度分布范围内的所有球体的粒径,并将该范围内的所有颗粒等效为理想球体,算出每个粒径分布范围内的比表面积。接着使用体积百分比加权得到与所有颗粒等体积的球的比表面积,从而球的溶胶-凝胶法制得的Si-O-C材料的球形度-计算得到等体积球的比表面积/比表面积仪测试得到的颗粒比表面积。
(6)Si微晶尺寸:使用帕那科X’pert Pro X射线衍射仪测得XRD峰,接着使用Jade 6.5 软件对于XRD中的Si峰进行拟合,从而得到Si微晶尺寸。
(7)首次可逆比容量和首次库伦效率(ICE):按照硅基负极材料、导电炭黑、PPA质量比为75:15:10的比例调制负极浆料,在铜箔上涂布,干燥后制成负极极片。以金属锂片作为对电极,在充满Ar气的手套箱中组装成扣式电池。以0.1C的电流密度,在0.01-5V的充放电区间内对扣式电池进行充放电测试,得到该扣式电池的首次可逆比容量和首次库伦效率(ICE)。
(8)容量保持率和极片厚度膨胀率:按照硅基负极材料与石墨混合物,Super-P,KS-6,CMC,SBR质量比为92:2:2:2:2调制成负极浆料,在铜箔上涂布,干燥后制成负极极片。其中硅基负极材料与石墨混合物中硅基负极材料和石墨的占比由两者的首次可逆比容量及两者所需配成的容量决定。以金属锂片作为对电极,在充满Ar气的手套箱中组装成扣式电池。以1C的电流密度,在0.01V-5V的充放电区间对扣式电池进行重复50次的充放电测试,得到电池循环50圈后的容量保持率和极片厚度膨胀率。
(9)XPS:对于硅基负极材料中的Si、O、C元素的不同价态及化学键类型进行分析。在研究活性物质在充放电过程中的结构变化时,首先要在厌水厌氧手套箱中将活性物质从模拟电池中取出,用溶剂DEC清洗干净,然后待其完全干燥后再进行测试。测试仪器:VG Mul-tilab2000X-射线光电子能谱仪测试条件:测试前采用氩离子轻度刻蚀以清除样品表面杂质,激发源为MgKα(1253.6eV),分辨率0.1eV,聚焦光斑400μm,对于获得的电子能谱图采用分峰软件origin或者xpspeakfit进行分峰,再根据峰位查询Si 2p的标准结合能数据,用高斯峰来拟合所得的测试曲线。Si 2p峰可以拟合成Si-O和Si-C峰,其中位于100~102Ev处的峰属于Si-C峰,位于103e V~104Ev的峰属于Si-O键合,处于99e V~100eV属于Si-Si单键,即游离Si。基于类似的方法,Si-C键也可以通过C1s拟合得到,其对应于C1s峰的283eV~284eV处。Si-O键也可以通过O1s拟合得到,其对应于O1s峰的531eV~533eV处。根据每一个高斯峰的面积,来去定Si元素中有多少与O结合形成Si-O键,有多少与C结合形成Si-C键,从而计算得到Si-O键和Si-C键的数量之比。
(10) 29Si MAS NMR标准硅结构化学位移: 29Si MAS NMR( 29Si Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy)仪器型号为Bruker AV 300型核磁共振共振仪。为了定量分析,在测试过程中使用单脉冲,而不是用交叉极化的方法。脉冲宽度为4.5ut,θ为54.7°,驰豫延迟(即两次采样的时间延迟)为5秒,转速为7kHz。以TMS为化学位移标准进行测定。在研究活性物质在充放电过程中的结构变化时,首先要在厌水厌氧手套箱中将活性物质从模拟电池中取出,用溶剂DEC清洗干净,然后待其完全干燥后再进行测试。通过积分每一种硅结构单元对应的核磁峰的面积,可以获取该结构单元的相对原子含量。例如,SiO 4结构单元、SiO 3C结构单元、SiO 2C 2结构单元的平均组成为SiO 2、SiO 3/2C 1/4、SiO 2/2C 2/4,平均分子量分别为60、55、50g/cm 3。通过转换计算相对质量分数,减去自由碳的含量得到绝对质量分数。进而能够推算出SiO 4+SiO 3C/SiO 2C 2以及SiO 3C/SiO 4的质量分数比值。
(11)红外测硅成键方式:采用美国赛默飞Nicolet iS20傅里叶红外光谱仪。光谱范围:2000cm -1~350cm -1
(12)自由碳含量测定:采用德国布鲁克的G4ICARUS HF红外碳硫分析仪。样品在高温富氧的状态下燃烧,其所含碳元素被氧化为二氧化碳,生成的气体随载气进入红外检测器,通过对二氧化碳信号的变化进行定量统计可计算出碳元素的含量。
(13)循环伏要研究充放电过程中的氧化还原反应机理、反应可逆性等。测试仪器:AUTOLAB PGSTAT30型电化学工作站测试条件:测试软件及分析软件NOVA1.6。测试温度25℃,扫描速率0.1mV/s,电压范围0.005V~1.5V。
以上测试结果如下:
一、电镜测试
实施例1制得的硅基复合材料的氧化还原峰值:采用两电极模拟电池对硅基负极材 料进行CV测试,硅基复合材料的电镜图如图2(a)和图2(b)所示,由图2(a)、2(b)可以看出,实施例1制得的硅基负极材料颗粒表面光滑圆润,球体的球形度较好,切面图显示出球体内部也是均一结构,且不含有多孔结构。
实施例2制得的硅基复合材料的电镜图如图3所示。由图3可以看出,实施例2制得的硅基复合材料颗粒的表面光滑圆润,球体的球形度较好。
实施例3制得的硅基复合材料的电镜图如图4(a)和图4(b)所示,由图4(a)和图4(b)可以看出,实施例3制得的球形Si-O-C颗粒表面光滑程度不如实施例1和实施例2,球体的球形度较好,切面图显示出球体内部也是均一结构,其中表面的粗糙物经过EDS确认也为Si和C均匀弥散的结构。
二、电性能测试
按照上述方式对实施例1~13以及对比例1~3进行测试,结果如表1以及表2所示。
表1.各实施例和对比例的性能参数
Figure PCTCN2022138564-appb-000001
表2.各实施例和对比例的性能参数
Figure PCTCN2022138564-appb-000002
Figure PCTCN2022138564-appb-000003
由表1和表2数据可知,实施例1~13相比对比例1~3具有更好的电化学性能,在制备过程中,通过调整pH值在11~12之间,使得制备过程中不会产生胶状沉淀,同时控制溶胶转为凝胶的温度范围在25℃~100℃之间,使得最后制得的硅基复合材料可以具有良好的粒径分布、适中的粒径直径,且电化学性能整体较好。
实施例12的水浴温度为15℃,水浴温度较低,得到的硅基复合材料的粒径会显著减小,虽然较小的粒径会使得硅基复合材料的膨胀分布更均匀,有利于一定程度上循环性能的改善,但是这种较小的颗粒会使得硅基复合材料的比表面积显著增加,导致电池在充放电过程中副反应增多,从而带来硅基复合材料的比容量和首次库伦效率显著降低,并且容易发生团聚现象,使得其加工性能有所劣化。因此整个硅基复合材料的综合电化学性能不佳。
对比例1未控制形成凝胶的pH环境,从而导致前驱体微球的合成过程中容易出现胶状沉淀,后续较难形成结构良好的硅基复合材料,从而导致最终生成的硅基复合材料的粒径跨度以及电化学性能均劣于实施例1。
对比例2直接采用硅氧烷材料高温烧结制备硅基复合材料,其制备的材料的粒径较小,且粒径扩大较大,使得硅基复合材料的综合电化学性能不佳。
对比例3使用了O/Si比大于1的乙烯基三甲氧基硅烷(C 5H 12O 3Si,密度0.97g/cm 3)作为硅氧烷原料。这里由于选择的原料里面O/Si比大于1,使得制备得到的硅基负极材料中生成较多的比容量较低的SiOC 3,这样使得最终得到的硅基复合材料中具有较高可逆比容量的SiO 3C和SiO 4较少,材料中Si-O键的数量与Si-C键的数量之比小于2,从而导致比容量和首次库伦效率的下降。
以上对本申请所提供的一种硅基复合材料及其制备方法、锂离子电池进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种硅基复合材料,其特征在于,所述硅基复合材料包括Si-O-C球形结构体,且所述硅基复合材料中Si-O键的数量与Si-C键的数量之比大于2。
  2. 根据权利要求1所述的硅基复合材料,其特征在于,所述硅基复合材料包含以下特征(1)至(5)中的至少一种:
    (1)所述Si-O-C球形结构体包括SiO 4结构单元和SiO 3C结构单元,所述SiO 3C结构单元的质量分数大于所述SiO 4结构单元的质量分数;
    (2)所述Si-O-C球形结构体包括SiO 4结构单元和SiO 3C结构单元,所述SiO 3C结构单元的质量分数与所述SiO 4结构单元的质量分数之比大于2;
    (3)所述Si-O-C球形结构体包括SiO 4结构单元、SiO 3C结构单元和SiO 2C 2结构单元;所述SiO 4结构单元与所述SiO 3C结构单元的质量分数之和与所述SiO 2C 2结构单元的质量分数之比大于2;
    (4)所述Si-O-C球形结构体中O/Si摩尔比为1~2;
    (5)所述Si-O-C球形结构体中C/Si摩尔比为0.5~3.5。
  3. 根据权利要求1所述的硅基复合材料,其特征在于,所述Si-O-C球形结构体的至少部分表面设置有包覆层,所述包覆层包含以下特征(1)至(3)中的至少一种:
    (1)所述包覆层包括碳层和聚合物层中的至少一种;
    (2)所述包覆层包括碳层和聚合物层中的至少一种,所述碳层的材质包括无机碳材料;
    (3)所述包覆层包括碳层和聚合物层中的至少一种,所述聚合物层的材质包括聚烯烃、聚烯烃衍生物、海藻酸、海藻酸衍生物、聚乙烯醇、聚乙烯醇衍生物、聚丙烯酸、聚丙烯酸衍生物、聚酰胺、聚酰胺衍生物、羧甲基纤维素和羧甲基纤维素衍生物中的至少一种。
  4. 根据权利要求1所述的硅基复合材料,其特征在于,所述硅基复合材料包含以下特征(1)至(8)中的至少一种:
    (1)所述硅基复合材料包括Si微晶;
    (2)所述硅基复合材料包括Si微晶,所述Si微晶的中值粒径为1nm~10nm;
    (3)所述硅基复合材料的电容电压特性曲线中,0~0.1V区间的容量占所述硅基复合材料整体容量的20%~50%,0.1V~0.6V区间的容量占所述硅基复合材料整体容量的50%~80%;
    (4)所述硅基复合材料的沃德尔球形度大于0.95;
    (5)所述硅基复合材料的中值粒径D50为0.3μm~5.8μm;
    (6)所述硅基复合材料的(D90-D10)/D50小于等于1.20;
    (7)所述硅基复合材料的比表面积为2.0m 2/g~9.5m 2/g;
    (8)所述硅基复合材料的粉体振实密度为0.6g/cm 3~1.2g/cm 3
  5. 一种硅基复合材料的制备方法,其特征在于,包括以下步骤:
    将包含溶剂、硅氧烷类原料、酚类原料、醛类原料和催化剂的原料混合得到油相,其中,所述硅氧烷类原料中O/Si摩尔比≤1;
    将所述油相加入水相中得到水包油型乳液;
    在pH=11~12的环境下,将所述水包油型乳液形成凝胶;
    将所述凝胶进行第一热处理得到硅基复合材料。
  6. 根据权利要求5所述的制备方法,其特征在于,所述将包含溶剂、硅氧烷类原料、酚类原料、醛类原料和催化剂的原料混合得到油相具体包括:在溶剂加入硅氧 烷类原料和酚类原料进行第一混合得第一溶液,在所述第一溶液中加入醛类原料和催化剂进行第二混合得到油相。
  7. 根据权利要求5或6所述的制备方法,其特征在于,所述制备方法包括如下特征(1)~(6)中的至少一种:
    (1)所述溶剂包括水和乙醇中的至少一种;
    (2)所述硅氧烷类原料包括芳香族硅氧烷、八甲基四硅氧烷、十甲基四硅氧烷、1,3-二乙烯基四甲基二硅氧烷和八甲基三硅氧烷中的至少一种;
    (3)所述酚类原料包括间苯二酚、间氨基苯酚和双酚A中的至少一种;
    (4)所述醛类原料包括甲醛;
    (5)所述催化剂包括乙烯基四甲基-二硅氧烷络合物和二月硅酸二丁基锡中的至少一种;
    (6)所述醛类原料与所述第一溶液的体积比为1:(50~250)。
  8. 根据权利要求5或6所述的制备方法,其特征在于,所述制备方法包括如下特征(1)~(3)中的至少一种:
    (1)所述酚类原料与所述硅氧烷原料的质量比为1:(2~8);
    (2)所述催化剂在所述硅氧烷原料中的质量占比为0.5%~15%;
    (3)所述油相与所述水相之间的质量比例为1:(20~100)。
  9. 根据权利要求6所述的制备方法,其特征在于,所述溶剂加入硅氧烷类原料和酚类原料进行第一混合之前还包括:在溶剂加入第一pH调节溶液得到pH=11~12的预处理溶液,再在预处理溶液中加入硅氧烷类原料和酚类原料进行第一混合得第一溶液。
  10. 根据权利要求9所述的制备方法,其特征在于,所述制备方法包括如下特征(1)~(2)中的至少一种:
    (1)所述第一pH调节溶液包括氨水和尿素中的至少一种;
    (2)所述第一pH调节溶液的浓度为0.1mol/L~2mol/L。
  11. 根据权利要求5所述的制备方法,其特征在于,所述将所述油相加入水相中得到水包油型乳液具体包括:在去离子水中加入乳化剂,得到水相;将所述油相滴加入所述水相中,得到水包油型乳液。
  12. 根据权利要求11所述的制备方法,其特征在于,在去离子水中加入乳化剂,得到水相具体包括:在去离子水中加入乳化剂和第二pH调节溶液得到pH=11~12的水相。
  13. 根据权利要求12所述的制备方法,其特征在于,所述制备方法包括如下特征(1)~(4)中的至少一种:
    (1)所述第二pH调节溶液包括氨水和尿素中的至少一种;
    (2)所述第二pH调节溶液的浓度为0.1mol/L~2mol/L;
    (3)所述乳化剂包括聚山梨酯-80、聚山梨酯-60、聚山梨酯-40和聚山梨酯-20中的至少一种;
    (4)所述乳化剂占所述水相质量的1%~20%。
  14. 根据权利要求5所述的制备方法,其特征在于,所述在pH=11~12的环境下,将所述水包油型乳液形成凝胶具体包括:在pH=11~12的环境,将所述水包油型乳液在水浴或油浴下静置,生成凝胶。
  15. 根据权利要求14所述的制备方法,其特征在于,所述制备方法包括如下特征(1)~(4)中的至少一种:
    (1)所述水浴或油浴的温度为25℃~100℃;
    (2)所述将所述水包油型乳液在水浴或油浴之前还包括:在所述水包油型乳液中添加第三调节溶液使得所述水包油型乳液的pH=11~12;
    (3)所述将所述水包油型乳液在水浴或油浴之前还包括:在所述水包油型乳液中添加第三调节溶液使得所述水包油型乳液的pH=11~12,所述第三pH调节溶液包括氨水和尿素中的至少一种;
    (4)所述将所述水包油型乳液在水浴或油浴之前还包括:在所述水包油型乳液中添加第三调节溶液使得所述水包油型乳液的pH=11~12,所述第三pH调节溶液的浓度为0.1mol/L~2mol/L。
  16. 根据权利要求5所述的制备方法,其特征在于,所述将所述凝胶进行第一热处理之前还包括对所述凝胶进行干燥的步骤。
  17. 根据权利要求5所述的制备方法,其特征在于,所述制备方法包括如下特征(1)~(4)中的至少一种:
    (1)所述第一热处理的温度为600℃~1000℃;
    (2)所述第一热处理的保温时间为2h~10h;
    (3)所述第一热处理在第一保护性气体氛围中进行;
    (4)所述第一热处理在第一保护性气体氛围中进行,所述第一保护性氛围包括氮气、氩气和氦气中的至少一种。
  18. 根据权利要求5所述的制备方法,其特征在于,所述得到硅基复合材料之后还包括:采用包覆材料对所述硅基复合材料进行第二热处理的步骤。
  19. 根据权利要求18所述的制备方法,其特征在于,所述方法包括如下特征(1)~(8)中的至少一种:
    (1)所述包覆材料包括碳源和聚合物材料中的至少一种;
    (2)所述包覆材料包括碳源和聚合物材料中的至少一种,所述碳源包括固相碳源、液相碳源和气相碳源中的至少一种;
    (3)所述包覆材料包括碳源和聚合物材料中的至少一种,所述固相碳源包括柠檬酸、葡萄糖、沥青、酚醛树脂和糠醛树脂中的至少一种;
    (4)所述包覆材料包括碳源和聚合物材料中的至少一种,所述液相碳源包括低温液相沥青、糠醇、甲基丙烯酸缩水甘油酯和三乙二醇二甲基丙烯酸酯中的至少一种;
    (5)所述包覆材料包括碳源和聚合物材料中的至少一种,所述气相碳源包括甲烷、乙炔、乙烯、乙烷、丙烷、丙烯、丙炔、丙酮和苯中的至少一种;
    (6)所述包覆材料包括碳源和聚合物材料中的至少一种,所述聚合物材料包括聚烯烃、聚烯烃衍生物、海藻酸、海藻酸衍生物、聚乙烯醇、聚乙烯醇衍生物、聚丙烯酸、聚丙烯酸衍生物、聚酰胺、聚酰胺衍生物、羧甲基纤维素和羧甲基纤维素衍生物中的至少一种;
    (7)所述第二热处理的温度为600℃~1000℃;
    (8)所述第二热处理的保温时间为0.5h~20h。
  20. 一种锂离子电池,其特征在于,所述锂离子电池包括权利要求1~4任一项所述的硅基复合材料或权利要求5~19任一项所述的制备方法制备的硅基复合材料。
PCT/CN2022/138564 2021-12-31 2022-12-13 硅基复合材料及其制备方法、锂离子电池 WO2023124956A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111678044.6A CN116417584A (zh) 2021-12-31 2021-12-31 硅基复合材料及其制备方法、锂离子电池
CN202111678044.6 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023124956A1 true WO2023124956A1 (zh) 2023-07-06

Family

ID=86997715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138564 WO2023124956A1 (zh) 2021-12-31 2022-12-13 硅基复合材料及其制备方法、锂离子电池

Country Status (2)

Country Link
CN (1) CN116417584A (zh)
WO (1) WO2023124956A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111924847A (zh) * 2020-08-06 2020-11-13 中国科学技术大学 一种SiOC微球、其制备方法及其在锂离子电池负极材料中的应用
CN113196527A (zh) * 2018-12-19 2021-07-30 Dic株式会社 硅纳米粒子和使用其的非水二次电池负极用活性物质以及二次电池
CN113185321A (zh) * 2021-05-27 2021-07-30 洛阳理工学院 一种具有复合孔结构多孔SiOC陶瓷的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113196527A (zh) * 2018-12-19 2021-07-30 Dic株式会社 硅纳米粒子和使用其的非水二次电池负极用活性物质以及二次电池
CN111924847A (zh) * 2020-08-06 2020-11-13 中国科学技术大学 一种SiOC微球、其制备方法及其在锂离子电池负极材料中的应用
CN113185321A (zh) * 2021-05-27 2021-07-30 洛阳理工学院 一种具有复合孔结构多孔SiOC陶瓷的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M.WILAMOWSKA ET AL.: "Tailoring of SiOC composition as a way to better performing anodes for Li-ion batteries", SOLID STATE IONICS, vol. 260, 16 April 2014 (2014-04-16), pages 94 - 100, XP028644800, ISSN: 0167-2738, DOI: 10.1016/j.ssi.2014.03.021 *
MONIKA WILAMOWSKA-ZAWLOCKA ET AL.: "Silicon oxycarbide ceramics as anodes for lithium ion batteries: influence of carbon content on lithium storage capacity", RSC ADVANCES, vol. 6, no. 106, 27 October 2016 (2016-10-27), pages 104597 - 104607, XP055615126, ISSN: 2046-2069, DOI: 10.1039/C6RA24539K *

Also Published As

Publication number Publication date
CN116417584A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
CN103305965B (zh) 具有纳米微孔隙的硅碳复合材料及其制备方法与用途
Kim et al. Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes
Zhao et al. Novel design and synthesis of carbon-coated porous silicon particles as high-performance lithium-ion battery anodes
CN110165187A (zh) 一种锂离子电池用硅碳二次颗粒材料及其制备方法
CN109273680A (zh) 一种多孔硅碳负极材料及其制备方法和锂离子电池
CN107579203B (zh) 一种锂离子电池硅掺杂碳多孔复合薄膜及其制备方法
CN109103425A (zh) 负极材料、负极以及具有该负极的电池
WO2023207996A1 (zh) 一种硅负极材料及其制备方法、负极极片和锂离子电池
CN108682787B (zh) 一种锂离子电池极片及其制备方法
Zhao et al. Facile preparation of micron-sized silicon-graphite‑carbon composite as anode material for high-performance lithium-ion batteries
Peng et al. Insight into the performance of the mesoporous structure SiOx nanoparticles anchored on carbon fibers as anode material of lithium-ion batteries
CN112635727A (zh) 具有核壳结构的硅氧颗粒及其制备方法、负极材料、电池
CN115863600A (zh) 一种硅碳负极材料及其制备方法和应用
WO2020211848A1 (zh) 一种纳米复合负极材料及其制备方法与应用
Liu et al. Rational-design micro-nanostructure of porous carbon film/silicon nanowire/graphite microsphere composites for high-performance lithium-ion batteries
WO2024061099A1 (zh) 复合负极材料及其制备方法和应用
Su et al. Effect of binders on performance of Si/C composite as anode for Li-ion batteries
CN115275167A (zh) 一种硅碳复合材料及其制备方法
Liu et al. Improved lithium storage performance by encapsulating silicon in free-standing 3D network structure carbon-based composite membranes as flexible anodes
Zhong et al. An egg holders-inspired structure design for large-volume-change anodes with long cycle life
Hu et al. Anchoring porous F-TiO2 particles by directed-assembly on PMIA separators for enhancing safety and electrochemical performances of Li-ion batteries
Raić et al. Ag decorated porous Si structure as potential high-capacity anode material for Li-ion cells
CN110098402A (zh) 一种锂离子电池用硅碳负极材料及其制备方法
WO2023124956A1 (zh) 硅基复合材料及其制备方法、锂离子电池
CN112687851A (zh) 硅氧颗粒及其制备方法、负极材料和电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914211

Country of ref document: EP

Kind code of ref document: A1