WO2023124771A1 - 波束赋形方法、波束扫描方法及相关设备 - Google Patents

波束赋形方法、波束扫描方法及相关设备 Download PDF

Info

Publication number
WO2023124771A1
WO2023124771A1 PCT/CN2022/136167 CN2022136167W WO2023124771A1 WO 2023124771 A1 WO2023124771 A1 WO 2023124771A1 CN 2022136167 W CN2022136167 W CN 2022136167W WO 2023124771 A1 WO2023124771 A1 WO 2023124771A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
codeword
measurement information
subarray
target
Prior art date
Application number
PCT/CN2022/136167
Other languages
English (en)
French (fr)
Inventor
张云昊
陈雁
陈诗琪
曾勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023124771A1 publication Critical patent/WO2023124771A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection

Definitions

  • the present application relates to the technical field of communication, and in particular to a beam forming method, a beam scanning method and related equipment.
  • the integration of communication and perception refers to the integration of communication and perception capabilities of network equipment or terminals (user equipment, UE) in one or more dimensions such as devices and waveforms, such as base stations Transmit a signal to the terminal, the signal contains information for communication with the terminal, and the base station detects the echo of the signal, senses the terminal or other targets, and obtains one or more of its position, speed, shape, attitude, etc. kind of feature.
  • UE network equipment or terminals
  • the signal contains information for communication with the terminal
  • the base station detects the echo of the signal, senses the terminal or other targets, and obtains one or more of its position, speed, shape, attitude, etc. kind of feature.
  • the base station can scan the beam towards the terminal and the target, align the beam with the terminal, and sense the direction of the target.
  • the terminal determines which base station it is in and which beam of the base station it is covered by, and feeds back the measurement results to the base station so that the base station can clarify which beam can be used for subsequent communication with the terminal.
  • the base station can detect the bearing of the target.
  • the finer beams that can be introduced by a large antenna array mean that the number of beams required by the sender (such as a base station) to scan the entire space increases, the time resource overhead becomes larger, and the detection overhead of the receiver (such as a UE) also changes accordingly big. How to reduce the overhead of beam scanning is a problem that needs to be solved by large antenna array devices in synaesthesia integration scenarios.
  • the embodiment of the present application discloses a beam forming method, a beam scanning method and related equipment.
  • the first communication equipment can generate dual beams at the same time, so the dual beams can be used to scan at the same time, and the second communication equipment and the need to sense can be located at the same time.
  • the azimuth of the target, speeding up the beam scanning process, can reduce the overhead of beam scanning.
  • an embodiment of the present application provides a beamforming method, which is applied to a first communication device, and the first communication device includes an antenna array, and the antenna array includes M antenna elements, and the M antenna elements Including a first subarray and a second subarray; M is a positive integer greater than 1, and the method may include: the first communication device transmits a first beam through the first subarray weighted by the first codeword , the first codeword is used to determine the direction of the first beam; the second beam is transmitted through the second subarray weighted by the second codeword, and the second codeword is used to determine the direction of the The direction of the second beam; wherein, the first codeword and the second codeword are derived from a codebook, and the signals carried by the first beam and the second beam are the same.
  • the first communication device can generate two beams in different directions at the same time, so that dual beams can be used for scanning, and the orientation of the second communication device and the target to be sensed can be located at the same time, the beam scanning process can be accelerated, and the beam scanning can be reduced. s expenses.
  • one of the two simultaneously generated beams may be used for sensing a target, and the other beam may be used for communicating with a second communication device, so as to simultaneously support both sensing and communication functions.
  • the codebook is a (M/2)*K-dimensional codebook based on Digital Fourier Transform DFT-based, and K is the number of codewords in the codebook , M/2 is the length of each codeword in the codebook, the codebook includes the i-th codeword w i , and i is a positive integer not greater than K;
  • an element in w i is used to adjust the phase of an antenna dipole.
  • the first communication device further includes M first phase shifters, the first phase shifters correspond to the antenna elements one by one, and the first phase shifters
  • the array includes M/2 antenna elements, and the second sub-array includes M/2 antenna elements;
  • the first communication device transmits the first beam through the first subarray weighted by the first codeword based on the first phase shifter corresponding to the first subarray, and the first codeword The word is used to determine the direction of the first beam;
  • the first communication device transmits the second beam through the second subarray weighted by the second codeword based on the first phase shifter corresponding to the second subarray, and the second codeword word is used to determine the direction of the second beam.
  • the first codeword is different from the second codeword.
  • the first codeword and the second codeword are the same;
  • the first communication device further includes a second phase shifter, and when the transmitting second beam Previously, the method further included:
  • the first communication device adjusts the phase change target phase of the second subarray based on the second phase shifter
  • i is the i-th codeword in the codebook, and i is a positive integer not greater than K.
  • the embodiment of the present application provides a beam scanning method, which is applied to a first communication device, and the first communication device includes an antenna array, and the antenna array includes M antenna elements, and the M antenna elements include The first subarray and the second subarray; M is a positive integer greater than 1, and the method may include: the first communication device transmits the first subarray weighted by the first codeword at the first moment.
  • the first codeword is used to determine the direction of said first beam
  • said second codeword is used to determine said first The direction of two beams
  • the first codeword and the second codeword are two different codewords selected from a codebook, and both the first beam and the second beam carry signals; in When the first echo signal of the target is received within the first time period determined at the first moment, the third beam is transmitted through the first subarray weighted by the first codeword; the second beam determined at the first moment
  • the first communication device determines the direction of the target according to the direction of the third beam; according to the measurement information from the second communication device, Determining a beam direction for sending data to the second communication device.
  • the above method provides a dual-beam scanning method.
  • the first communication device can use two beams in different directions to scan at the same time, and can simultaneously locate the orientation of the second communication device and the target to be sensed, thereby speeding up the beam scanning process. , reducing the overhead of beam scanning.
  • the first communication device when the first communication device does not receive the second echo signal of the target within the second time period determined at the first moment, the first communication device determining the direction of the target according to the direction of the second beam.
  • the first communication device periodically transmits beams, the first moment is the start time of a cycle, and the first time period determined at the first moment may start at the first moment of a cycle.
  • the second time period determined at the first moment may be the first time period starting from the moment when the third beam is emitted, or may be the second time period starting from the first moment, wherein the first time period may be a period of time,
  • the second duration may be a duration of two periods.
  • the first communication device receives the first measurement information sent by the second communication device, where the first measurement information includes a target time with the strongest received power;
  • the fourth beam is transmitted by the first subarray weighted by the first codeword;
  • the first codeword is the codeword selected at the target time M/2 is the length of each codeword in the codebook , receiving the second measurement information sent by the second communication device, where the second measurement information is used to indicate a beam direction for sending data to the second communication device.
  • the first communication device when the first communication device receives the third measurement information sent by the second communication device within the third time period determined at the second moment, by The first subarray weighted by the first codeword transmits a fifth beam, and the third measurement information is used to indicate that the second communication device receives a beam with a received power greater than a target threshold; determined at a second moment
  • the fourth measurement information when receiving the fourth measurement information sent by the second communication device within a fourth time period, determine the beam direction for sending data to the second communication device according to the fourth measurement information; the fourth measurement information indicates Whether the fifth beam is a beam whose received power is greater than a target threshold.
  • the beam with the received power of the second communication device greater than the target threshold is used as the beam direction for sending data to the second communication device, and after the first communication device sends the beam at the second moment, it can be determined that the received power of the second communication device is greater than the target
  • the beam direction of the threshold value is used as the beam direction for sending data to the second communication device, so that the beam scanning at a subsequent time may not be completed, and while the cost of beam scanning is reduced, time may be further saved.
  • the method further includes:
  • the first communication device transmits a sixth beam through the first subarray weighted by the codeword corresponding to the beam direction of the data sent to the second communication device; the first communication device transmits a sixth beam through the beam where the target is located
  • the second subarray weighted by the codeword corresponding to the direction transmits a seventh beam; the sixth beam and the seventh beam are both used to carry the data signal sent by the first communication device to the receiving section.
  • the codebook is an M/2*K-dimensional codebook based on Digital Fourier Transform DFT-based, K is the number of codewords in the codebook, and M /2 is the length of each codeword in the codebook, the codebook includes the i-th codeword w i , where i is a positive integer not greater than K;
  • an element in w i is used to adjust the phase of an antenna dipole.
  • the first communication device further includes M first phase shifters, the first phase shifters correspond to the antenna elements one by one, and the first phase shifters
  • the array includes M/2 antenna elements, and the second subarray includes M/2 antenna elements; the first communication device uses the first code based on the first phase shifter corresponding to the first subarray
  • the first subarray weighted by word transmits the first beam, and the first codeword is used to determine the direction of the first beam;
  • the second subarray is weighted by the second codeword to transmit the second beam, the second codeword is used to determine the direction of the second beam.
  • an embodiment of the present application provides a beam scanning method applied to a second communication device, and the method may include:
  • the second communication device receives the reference signal sent by the first communication device; the second communication device measures the received power of the reference signal to obtain first measurement information; the second communication device sends the first The communication device sends the first measurement information, where the first measurement information is used to indicate the beam direction that meets the requirements; the second communication device measures the received data from the first communication device after sending the first measurement information A reference signal to obtain second measurement information; the beam direction of the reference signal is the same as one of the beams meeting the requirements; the second communication device sends the second measurement information to the first communication device , the second measurement information is used to confirm a beam direction for the first communication device to send data to the second communication device.
  • the first measurement information is the moment when the received power is the strongest or the moment when the received power is greater than the target threshold.
  • the beam direction that satisfies the requirements indicated by the first measurement information is the direction in which the first communication device transmits the two beams at the moment carried in the first measurement information.
  • the fourth aspect discloses a communication device, the communication device includes an antenna array, the antenna array includes M antenna elements, and the M antenna elements include a first sub-array and a second sub-array; M is a positive value greater than 1.
  • the communication means may include:
  • a sending unit configured to transmit a first beam through the first subarray weighted by the first codeword, the first codeword is used to determine the direction of the first beam;
  • the second subarray weighted by two codewords transmits a second beam, and the second codeword is used to determine the direction of the second beam; wherein, the first codeword and the second codeword are derived from A codebook, the signals carried by the first beam and the second beam are the same.
  • the fifth aspect discloses a communication device, the communication device includes an antenna array, the antenna array includes M antenna elements, and the M antenna elements include a first sub-array and a second sub-array; M is a positive value greater than 1.
  • the communication means may include:
  • a sending unit configured to transmit a first beam through the first subarray weighted by the first codeword at a first moment and transmit a second beam through the second subarray weighted by the second codeword, the first A codeword is used to determine the direction of the first beam, and the second codeword is used to determine the direction of the second beam; wherein, the first codeword and the second codeword are from a codebook Two different codewords selected in the first beam and the second beam both carry reference signals;
  • the receiving unit is used to receive the echo signal of the target
  • the sending unit is further configured to transmit a third echo signal of the target through the first subarray weighted by the first codeword when receiving the first echo signal of the target within the first time period determined at the first moment beam;
  • a processing unit configured to receive the second echo signal of the target within the second time period determined at the first moment; determine that the direction of the third beam is the direction in which the target is located;
  • the processing unit is further configured to determine a beam direction for sending data to the second communication device according to measurement information from the second communication device, where the measurement information is used to indicate a beam for sending data to the second communication device direction.
  • a sixth aspect discloses a communication device, which may include:
  • a receiving unit configured to receive a beam transmitted by the first communication device, where the beam carries a reference signal
  • a measuring unit configured to measure the received power of the received beam to obtain first measurement information
  • a sending unit configured to send the first measurement information to the first communication device, where the first measurement information is used to indicate a beam direction that meets requirements
  • the measurement unit is further configured to measure a target beam received from the first communication device after sending the first measurement information, to obtain second measurement information; the direction of the target beam is one of the beams meeting the requirements. One beam direction is the same;
  • the sending unit is further configured to send the second measurement information to the first communication device, where the second measurement information is used to confirm a beam direction for sending data from the first communication device to the second communication device.
  • the seventh aspect discloses a communication device, which may include a processor and a memory communication interface, where the communication interface is used to receive and send information, and when the processor executes the computer program stored in the memory, the The processor executes the method disclosed in the first aspect or any implementation manner of the first aspect and the method disclosed in the second aspect or any implementation manner of the second aspect.
  • the eighth aspect discloses a communication device, which may include a processor and a memory communication interface, the communication interface is used to receive and send information, and when the processor executes the computer program stored in the memory, the The processor executes the third aspect or the method disclosed in any implementation manner of the third aspect.
  • the ninth aspect discloses a computer-readable storage medium, on which a computer program or computer instruction is stored, and when the computer program or computer instruction is executed, the methods disclosed in the above aspects are implemented.
  • the tenth aspect discloses a chip, including a processor, configured to execute a program stored in a memory, and when the program is executed, the chip executes the above method.
  • the memory is located outside the chip.
  • the eleventh aspect discloses a computer program product, the computer program product includes computer program code, and when the computer program code is executed, the above communication method is executed.
  • FIG. 1A is a schematic diagram of a network architecture provided by an embodiment of the present application.
  • FIG. 1B and FIG. 1C are schematic diagrams of a hardware structure of an electronic device provided by an embodiment of the present application.
  • FIG. 2A is a schematic diagram of beamforming provided by an embodiment of the present application.
  • FIG. 2B is a schematic diagram of a dual beam provided in Embodiment 1 of the present application.
  • FIG. 2C is a schematic diagram of a single beam provided in Embodiment 1 of the present application.
  • FIG. 3A and FIG. 3B are schematic flowcharts of a beam scanning method provided by an embodiment of the present application.
  • FIG. 4A and FIG. 4B are schematic flowcharts of a beam scanning method for determining a beam for sending data from a first communication device to a terminal provided by an embodiment of the present application;
  • FIG. 5A and FIG. 5B are schematic flowcharts of another beam scanning method for determining a beam for sending data from a first communication device to a terminal provided by an embodiment of the present application;
  • FIG. 6A and FIG. 6B are schematic flowcharts of another beam scanning method for determining a beam for sending data from a first communication device to a terminal provided by an embodiment of the present application;
  • FIG. 7 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another communication device provided by an embodiment of the present application.
  • FIG. 1A is a schematic diagram of a network architecture disclosed in an embodiment of the present application.
  • the network architecture may include a (wireless) access network (radio access network, RAN) device 10, a terminal 20, and a target (Target) 30.
  • RAN radio access network
  • Tiget target
  • the access network device 10 may serve as a sending end, that is, the first communication device, and may generate two beams in different directions, one beam may be used for communication with the terminal 20 , and the other beam may be used for the target 30 .
  • a sending end that is, the first communication device
  • the access network device 10 may serve as a sending end, that is, the first communication device, and may generate two beams in different directions, one beam may be used for communication with the terminal 20 , and the other beam may be used for the target 30 .
  • the beam forming method reference may be made to the related description in Embodiment 1 below, which will not be repeated here.
  • the access network device 10 may simultaneously transmit two beams for scanning.
  • the beam scanning method refer to the relevant description in Embodiment 2 below, which will not be repeated here.
  • the terminal 20 After receiving the beams of the access network device 10, the terminal 20 can measure the received beams, for example, detect the received power (reference signal received power, RSRP) of the received beams, and further, the RSRP based on multiple beams can be A beam direction for communication between the terminal 20 and the access network device 10 is determined.
  • RSRP reference signal received power
  • the target 30 may reflect the beam, and the reflected beam is also called an echo signal.
  • the access network device 10 receives the echo signal, and by analyzing the echo signal, the position, speed, attitude, etc. of the target 30 can be obtained.
  • Terminal 20 which can also be referred to as terminal equipment, mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), user equipment (user equipment, UE), etc., is a device that provides voice and/or data to users. connected devices.
  • the terminal 20 can be a device with wireless transceiver function, which can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; can also be deployed on water (such as ships, etc.); can also be deployed in the air (such as aircraft, balloons and satellites, etc.).
  • the terminal can be a handheld terminal, a notebook computer, a subscriber unit (subscriber unit), a cellular phone (cellular phone), a smart phone (smart phone), a wireless data card, a personal digital assistant (personal digital assistant, PDA) computer, a tablet computer, Wireless modem (modem), handheld device (handheld), laptop computer (laptop computer), cordless phone (cordless phone) or wireless local loop (wireless local loop (WLL) station, machine type communication (MTC) ) terminals, wearable devices (such as smart watches, smart bracelets, pedometers, etc.), vehicle-mounted devices (such as cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (virtual reality, VR) equipment, augmented reality (augmented reality, AR) equipment, wireless terminals in industrial control (industrial control), smart home equipment (such as refrigerators, TVs, air conditioners, electricity meters, etc.), intelligent robots, workshop equipment, self driving ), wireless terminals in remote medical surgery, wireless terminals in
  • the (wireless) access network device 10 is a device deployed in a wireless access network to provide a wireless communication function for a terminal device.
  • Radio access network equipment may include various forms of base stations.
  • a macro base station a micro base station (also called a small cell), a relay station, an access point, and the like.
  • the base station involved in the embodiment of the present application may be a base station in the fifth generation mobile communication technology (5th generation mobile networks, 5G) or a base station in LTE, where the base station in 5G may also be called a sending and receiving point (transmission reception point, TRP) or gNB.
  • 5G fifth generation mobile communication technology
  • TRP transmission reception point
  • the device for realizing the function of the network device may be a network device; it may also be a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • the technical solutions provided by the embodiments of the present application are described by taking the apparatus for realizing the functions of the network equipment as network equipment and taking the network equipment as a base station as an example. In systems using different radio access technologies, the names of radio access network devices may be different.
  • base transceiver station in global system for mobile communication (GSM) or code division multiple access (CDMA) network, wideband code division multiple access (wideband NB (NodeB) in code division multiple access (WCDMA), eNB or eNodeB (evolutional NodeB) in long term evolution (LTE).
  • the wireless access network device may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the wireless access network device can also be the base station device in the future network (such as the sixth generation mobile communication technology (6th generation mobile networks, 6G), etc.) or the future evolution of the public land mobile network (public land mobile network, PLMN) network wireless access network equipment.
  • the wireless access network device may also be a wearable device or a vehicle-mounted device.
  • the radio access network device may also be a transmission and reception point (TRP).
  • TRP transmission and reception point
  • the target 30 involved in this embodiment of the present application may be a terminal device, a person operating a terminal device, or an object in the surrounding environment including vehicles, machines, buildings, and the like.
  • the terminal 20 may also serve as a transmitting end, generating and transmitting beams in two directions, one beam is used for communicating with the access network device 10 , and the other beam is used for sensing the target 30 .
  • FIG. 1A is not limited to include only the radio access network devices and terminal devices shown in the figure.
  • FIG. 1A is only an example and not a limitation.
  • FIG. 1B is a schematic diagram of a hardware structure of an electronic device 100 provided in an embodiment of the present application.
  • the electronic device 100 may be the aforementioned access network device 10 or terminal 20 .
  • the electronic device 100 includes at least one processor (central processing unit, CPU) 110, at least one memory 120, a bus 130, a communication interface 140, a first sub-array 150 and a second sub-array 160.
  • processor central processing unit, CPU
  • At least one phase shifter 170 may also be included.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the processor 110 can be a central processing unit (Central Processing Unit, CPU), and the processor 110 can also be other general processors, baseband processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory 120 may exist independently, and may be connected to the processor 110 through the bus 130 .
  • the memory 120 can also be integrated with the processor 110 .
  • the bus 130 is used to realize the connection between these components.
  • the communication interface 140 may include an input interface and an output interface for receiving and sending information.
  • one communication interface may be a digital channel.
  • Both the first sub-array 150 and the second sub-array 160 may include at least one antenna element, and the antenna element is used for transmitting beams. Therefore, the first sub-array 150 and the second sub-array 160 can simultaneously transmit two beams in different directions.
  • the electronic device 100 may further include a phase shifter 170 for adjusting the phase of the antenna element.
  • a phase shifter 170 for adjusting the phase of the antenna element.
  • the phase of the antenna element is changed to form a directional beam.
  • the first subarray 150 weighted based on the phase shifter 170 corresponding to the first subarray 150 can transmit the first beam; the second subarray weighted based on the phase shifter 170 corresponding to the second subarray 160 Send a second beam.
  • the signals carried by the first beam and the second beam are the same.
  • the electronic device 100 may be as shown in FIG. 1C.
  • the electronic device 100 may be the aforementioned access network device 10 , such as a base station, or a terminal 20 .
  • the phase shifter 170 includes a first phase shifter 1701 and a second phase shifter 1702, and the first phase shifter 1701 includes M 1 first phase shifters corresponding to the first sub-array 150 and corresponding to the second sub-array 160 M 2 first phase shifters.
  • the electronic device 100 may adjust the phases of the M 1 antenna elements in the first sub-array 150 based on the M 1 first phase shifters.
  • the electronic device 100 can transmit the first beam through the phase-adjusted first subarray 150; similarly, the electronic device 100 can adjust the M 2 antenna elements in the second subarray 160 based on the M 2 first phase shifters. phase. Therefore, the electronic device 100 can transmit the second beam through the phase-adjusted second subarray 160 .
  • the first sub-array 150 includes M 1 antenna elements
  • the second sub-array 160 includes M 2 antenna elements
  • M 1 and M 2 are positive integers greater than 1.
  • the second phase shifter 1702 is used to adjust the phase of the second subarray Used to combine dual beams into a single beam.
  • the first communication device such as the access network device
  • the base station includes at least one digital channel.
  • the base station includes one digital channel as an example, that is, a single digital channel.
  • the digital channel corresponds to an antenna array, and an antenna array includes M antenna elements; the M antenna elements include a first sub-array and a second sub-array.
  • the first communication device is an access network device 10 , such as a base station, as an example, and the second communication device is a terminal 20 as an example to expand the discussion.
  • the dual-beam transmission principle provided in the embodiment of the present application can be realized by the access network device 10 or the terminal 20 in the above network architecture.
  • FIG. 2A exemplarily, it is a schematic flow chart of the dual-beam transmission principle, and the method may include but not limited to some or all of the following steps:
  • the first communication device transmits a first beam by using a first subarray weighted by a first codeword f 1 , where the first codeword is used to determine a direction of the first beam.
  • the first communication device transmits a second beam by using a second subarray weighted by a second codeword f2 , where the second codeword is used to determine a direction of the second beam.
  • both the first codeword f1 and the second codeword f2 are derived from a codebook, where the first codeword may be referred to as the first beamforming vector, and the second codeword may also be referred to as the first beamforming vector.
  • the codebook is a DFT-based M/2*K dimensional codebook, where K is the number of codewords in the codebook.
  • the length of each codeword in the codebook is M/2, and each codeword includes M/2 elements, that is, M/2 weights.
  • the M/2 weights of the first codeword correspond to the M/2 antenna elements of the first subarray; the M/2 weights of the second codeword correspond to the M/2 antenna elements of the second subarray One to one correspondence.
  • the codebook is used by the first communication device to preprocess the M antenna elements.
  • the preprocessing means that the first communication device can add a weight to the M antenna elements through the codeword in the codebook, thereby adjusting the M antenna elements.
  • the phase of each antenna dipole finally realizes the control of the direction of the beam.
  • codebook A can be expressed as:
  • each column represents a codeword
  • a codeword includes M/2 elements, and each element corresponds to a weight, which is used to adjust the phase of an antenna element.
  • an element in w i is used to adjust the phase of an antenna dipole.
  • codebook A' can be expressed as:
  • each column represents a codeword
  • a codeword includes M/2 elements
  • each element corresponds to a weight, which is used to adjust the phase of an antenna element.
  • k is a positive integer not greater than K; the k+1th codeword w k is expressed as:
  • the codebook may also be an N 1 *N 2- dimensional codebook, where N 1 and N 2 are positive integers.
  • N 2 is the number of codewords in the codebook, and each codeword includes N 1 elements, that is, N 1 weights.
  • N1 and N2 may or may not be equal.
  • the N1 weights included in the first codeword may be greater than the M/2 antenna elements of the first subarray; the first communication device may select the first M/2 of the N1 weights The weights are in one-to-one correspondence with the M/2 antenna elements of the first subarray.
  • the N 2 weights included in the second codeword may be greater than the M/2 antenna elements of the second sub-array; the first communication device may select the first M/2 weights in the N 2 weights to match the second sub-array There is a one-to-one correspondence between the M/2 antenna elements.
  • M 1 and M 2 may also be unequal, that is, the first communication device may select the first M 1 weights among the N 1 weights and the M 1 antenna elements of the first subarray. One-to-one correspondence; the first M 2 weights among the N 2 weights may be selected to correspond to the M 2 antenna elements of the second subarray one-to-one.
  • N 1 is not smaller than M 1
  • N 2 is not smaller than M 2 .
  • the first communication device can adjust the phases of the M antenna elements based on the M first phase shifters. Specifically, the M weights of the first codeword and the second codeword are respectively determined by the Mth A phase shifter is assigned to the M antenna elements to adjust the phases of the M antenna elements of the two sub-arrays, so that dual beams pointing in different directions can be formed, that is, the beamforming of the first beam and the second beam is completed.
  • the first communication device transmits the first beam through the first subarray weighted by the first codeword based on the first phase shifter corresponding to the first subarray; based on the first phase shifter corresponding to the second subarray
  • the word-weighted second subarray emits a second beam.
  • the signals carried by the first beam and the second beam are the same.
  • the direction of the first beam is different from the direction of the second beam.
  • the phase shift between f1 and f2 is The phase shift This can be adjusted by a second phase shifter before the second sub-array shown in Figure 1C.
  • the first communication device may adjust the second subarray based on the second phase shifter after weighting the second subarray by the second codeword and before transmitting the second beam
  • the phase change of the target phase Dual beams can be combined into a single beam, as shown in Figure 2C.
  • Formula (3) needs to be satisfied:
  • M is the number of antenna elements
  • K is the number of codewords
  • i is the i+1th codeword in the K codewords of the codebook
  • i is a positive integer not greater than K.
  • the first communication device may be an access network device, such as a base station; in other embodiments, the sending end may also be a terminal, both of which can implement the dual-beam transmission principle provided by the embodiment of the present application.
  • the first communication device that is, the transmitting end is a terminal
  • the codebook A used by the terminal and the beam scanning mode of the terminal that is, the combination mode and usage sequence of two codewords, can be configured by the base station.
  • the first communication device weights the antenna elements of the two sub-arrays through codewords, and can generate beams pointing in two different directions, and one beam can be used to communicate with the second communication device , another beam can be used to perceive the target, and then realize the integration of communication and perception.
  • a beam scanning method involved in the embodiment of the present application is introduced below.
  • An embodiment of the present application provides a beam scanning method. This method is used to determine the beam direction for sending data to the terminal before the transmitting end and the receiving end, such as the terminal, so as to form a beam pointing to the terminal, so that the transmission power can be more concentrated in the direction of the communication terminal, Improve data transfer performance. At the same time, in the embodiment of the present application, the method can also determine the direction where the sensing target is located, and form a beam pointing to the sensing target.
  • the sending end may be the first communication device or the second communication device; similarly, the receiving end may be the first communication device or the second communication device.
  • the beam scanning method includes two cases of ignoring the echo of the terminal and not ignoring the echo of the terminal. The following is illustrated by the second embodiment.
  • the first communication device is an access network device 10 , such as a base station, as an example, and the second communication device is a terminal 20 as an example to expand the discussion.
  • the first communication device sends reference signals to the terminal through different beams; the terminal measures the reference signals sent by the first communication device one by one to obtain measurement information; After the beam direction is selected, the terminal feeds back measurement information to the first communication device.
  • the measurement information may include the time when the terminal measures the strongest received power, or include a time selected by the terminal among multiple times greater than a power threshold.
  • the first communication device weights the antenna elements of the two sub-arrays respectively by selecting codewords, and can generate dual beams pointing to two different directions, so the first communication device according to the measurement information of the terminal , it is impossible to determine which of the two beams the beam with the strongest received power for the terminal is. Therefore, after determining the moment of the beam with the strongest received power, a supplementary measurement is required to determine the received The most powerful beam. For the determination of the echo of the target, the method is the same as the determination of the beam with the strongest received power of the terminal, and will not be repeated here.
  • the first communication device may perform multiple periodic beam scans on the terminal and the target, select two different codewords from the codebook for each scan, and select different codewords for each scan.
  • the first communication device that is, the transmitting end is a terminal
  • the codebook A used by the terminal, and the beam scanning mode of the terminal, that is, the combination mode and usage order of the two selected codewords can be configured by the base station.
  • FIG. 3A and FIG. 3B it is a schematic flowchart of a beam scanning method, which may include but not limited to some or all of the following steps:
  • the first communication device transmits a first beam by using a first subarray weighted by a first codeword f1 and transmits a second beam by using a second subarray weighted by a second codeword f2 .
  • the first communication device transmits the first beam through the first subarray weighted by the first codeword f 1 (n 0 ) and through the first beam weighted by the second codeword f 2 (n 0 ).
  • the first codeword is used to determine the direction of the first beam
  • the second codeword is used to determine the direction of the second beam
  • the first codeword and the second codeword are two different codewords selected from the codebook , both the first beam and the second beam carry reference signals.
  • the reference signal may be a channel state information reference signal (channel state information reference signal, CSI-RS), may also be a synchronization signal block (synchronization signal block, SSB), and may also be a demodulation reference signal ( de-modulation reference signal, DMRS), and may also be other reference signals, which are not limited herein.
  • the reference signal is mainly used for the terminal to obtain channel information at each time, so that the terminal can measure the time or beam when the received power is the strongest or the received power is greater than the target threshold, so as to determine the beam where the first communication device sends data to the terminal.
  • the first communication device may adjust the phases of the M antenna elements through the M phase shifters, so as to achieve weighting of the antenna elements, thereby forming two beams with directivity.
  • the period may be a period of preset time, that is, a first preset time.
  • the first preset time is determined by the base station and preconfigured to the terminal, for example, configured to the terminal by broadcasting a cell system message. If the first communication device does not receive the first echo signal of the target during the period from the first moment to the end of the first preset time, it can be determined that the direction of the target is neither the direction of the first beam nor the direction of the second beam. The direction of the two beams. At this time, the first communication device may reselect two different codewords such as f 1 (n 1 ) and f 2 (n 1 ) from the codebook.
  • the first communication device when the first communication device receives the first echo signal of the target, it may also transmit the third beam through the second subarray weighted by the second codeword.
  • the first communication device When the first communication device performs beam scanning through the first beam and the second beam and receives the first echo signal of the target, the first communication device cannot determine whether the target is in the direction of the first beam or the direction of the second beam, so It is necessary to transmit a third beam through the first subarray weighted by the first codeword or the second subarray weighted by the second codeword to perform a second beam scan, which is used to determine the beam where the target is located direction.
  • the first communication device when the first communication device does not receive the first echo signal of the target, it means that the direction of the target is not in the direction of the first beam and the second beam, and the first communication device can re-select in the codebook Two different codewords, eg f 1 (n 1 ) and f 2 (n 1 ). Next, the first beam is transmitted through the first subarray weighted by the first codeword f 1 (n 1 ) and the second beam is transmitted through the second subarray weighted by the second codeword f 2 (n 1 ).
  • the second duration wherein, the first duration may be a duration of one cycle, and the second duration may be a duration of two cycles.
  • the first duration from the moment when the third beam is launched may also be a preset period of time, that is, a second preset time.
  • the second preset time is determined by the base station and pre-configured to the terminal, for example, configured to the terminal by broadcasting a cell system message. terminal.
  • the second duration starting from the first moment may include three processes of the first communication device transmitting the first beam and the second beam, receiving the first echo signal, and transmitting the third beam, and may also include the first communication device transmitting the first beam. Beam and second beam, receiving the first echo signal, transmitting the third beam, receiving the second echo signal and other four processes.
  • the emission moment of the third beam may be within the first time period determined at the first moment, or after the first time period determined at the first moment, and the second duration determined at the first moment may be two cycles, It can also be between one cycle and two cycles, or it can be one cycle.
  • the first communication device when it does not receive the second echo signal of the target, it determines that the direction of the second beam emitted by the second sub-array weighted by the second codeword f 2 (n 0 ) is the direction of the target direction.
  • the first communication device determines a beam direction for sending data to the terminal according to measurement information from the terminal, where the measurement information is used to indicate a beam direction for sending data to the terminal.
  • the beam scanning method involved in S304 may include two cases of ignoring the echo of the terminal and not ignoring the echo of the terminal. The following sub-cases are discussed.
  • Case 1 In some embodiments, the beam scanning method provided in the embodiment of the present application may ignore the echo of the terminal. As shown in Figure 4A and Figure 4B, S304 may include some or all of the steps in S401-S404:
  • the first communication device may perform multiple periodic beam scans on the terminal and the target, where n times may be used as an example, where n is a positive integer less than K/2.
  • the terminal After completing n times of beam scanning, the terminal sends first measurement information to the first communication device, where the first measurement information includes a target moment with the strongest received power.
  • the terminal sends the time n h to the first communication device, the n beam scans include the hth beam scan, and h is a positive integer less than or equal to n.
  • the terminal may receive at least one beam sent by the first communication device, where the at least one beam carries a reference signal.
  • the reference signal For a specific introduction of the reference signal, refer to related descriptions in S301 , which will not be repeated here.
  • the terminal may measure the received at least one beam, for example, may measure the received power of the beam, so as to obtain the first measurement information.
  • the first measurement information may include the target moment n h with the strongest received power.
  • the first communication device After receiving the first measurement information sent by the terminal, the first communication device transmits a third beam by using the first subarray weighted by the first codeword selected at the target time.
  • the first communication device may also transmit the third beam through the second subarray weighted by the second codeword selected at the target time.
  • the first communication device After receiving the first measurement information, the first communication device cannot determine whether the beam with the strongest received power of the terminal is the beam direction transmitted by the first subarray weighted by the first codeword or the second subarray weighted by the second codeword.
  • the beam direction emitted by the array so a supplementary measurement is required, by the first subarray weighted by the first codeword chosen at the target instant n h or by the second subarray weighted by the second codeword chosen at the target instant n h
  • the array emits a third beam.
  • the terminal After measuring the third beam, the terminal sends second measurement information to the first communication device, where the second measurement information indicates the beam with the strongest received power of the terminal.
  • the terminal may measure the received third beam, for example, may measure the received power of the third beam, so as to obtain the second measurement information.
  • the second measurement information may be used to indicate the beam with the strongest received power.
  • the first communication device receives the second measurement information sent by the terminal, and determines a beam direction for sending data to the terminal.
  • the beam with the strongest received power indicated by the second measurement information may be the third beam, or may be the second beam transmitted by the second subarray weighted by the second codeword selected at the target time n h .
  • Case 2 In some other embodiments, the beam scanning method provided in the embodiment of the present application cannot ignore the echo of the terminal. As shown in Figure 5A and Figure 5B, S304 may include some or all of the steps in S501-S504:
  • the first communication device may perform multiple periodic beam scans on the terminal and the target, here n times are taken as an example, and n is a positive integer less than K/2.
  • the first communication device receives the measurement information of the terminal at the second moment, that is, during the second beam scanning.
  • the first communication device transmits the first beam through the first subarray weighted by the first codeword f 1 (n 1 ) and through the first subarray weighted by the second codeword f 2 (n 1 )
  • the second subarray of emits a second beam.
  • the terminal sends third measurement information to the first communication device within a third time period determined at a second moment, where the third measurement information is used to indicate that the terminal receives a beam with a received power greater than a target threshold.
  • the terminal may receive the first beam and the second beam sent by the first communication device, and both beams carry reference signals.
  • reference signals For specific introduction of the reference signals, refer to related descriptions in S301 , which will not be repeated here.
  • the terminal may measure the received first beam and the second beam, for example, may measure the received power of the beam, so as to obtain the third measurement information.
  • the third measurement information is used to indicate that the terminal has received a beam with received power greater than the target threshold.
  • the measurement information may be sent to the first communication device.
  • the first communication device When receiving third measurement information sent by the terminal within a third time period determined at a second moment, the first communication device transmits a third beam by using the first subarray weighted by the first codeword.
  • the first communication device when the first communication device receives the third measurement information sent by the terminal, it may also transmit the third beam through the second subarray weighted by the second codeword.
  • the period may be a period of preset time, that is, a third preset time.
  • the third preset time is determined by the base station and pre-configured to the terminal, for example, configured to the terminal by broadcasting a cell system message.
  • the third time period determined at the second moment may also be from the second moment to the moment when the first communication device receives the third measurement information. If the first communication device does not receive the third measurement information sent by the terminal during the period from the second moment to the end of the third preset time, it can be determined that the direction of the terminal is neither the direction of the first beam nor the direction of the first beam. The direction of the two beams.
  • the first communication device may reselect two different codewords such as f 1 (n 2 ) and f 2 (n 2 ) from the codebook.
  • the first communication device When the first communication device performs beam scanning through the first beam and the second beam, after receiving the third measurement information, it cannot determine that the beam with the received power of the terminal greater than the target threshold is the first codeword-weighted beam transmitted by the first subarray.
  • a beam is also the second beam emitted by the second subarray weighted by the second codeword, so a supplementary measurement is required, by the first subarray weighted by the first codeword selected at the second moment or by the second subarray weighted by the second codeword
  • the second sub-array weighted by the second codeword selected at the moment transmits the third beam.
  • the first communication device when the first communication device does not receive the third measurement information sent by the terminal, it indicates that neither the first beam nor the second beam is a beam whose received power of the terminal is greater than the target threshold.
  • the first communication device may include in the codebook Reselect two different codewords, eg f 1 (n 2 ) and f 2 (n 2 ). Next, the first beam is transmitted through the first subarray weighted by the first codeword f 1 (n 2 ) and the second beam is transmitted through the second subarray weighted by the second codeword f 2 (n 2 ).
  • the terminal After measuring the third beam, the terminal sends fourth measurement information to the first communication device within a fourth time period determined at the second moment, where the fourth measurement information indicates a beam whose received power of the terminal is greater than the target threshold.
  • the terminal may measure the received third beam, for example, may measure the received power of the third beam, so as to obtain fourth measurement information.
  • the fourth measurement information may be used to indicate beams with received power greater than the target threshold.
  • the first communication device receives fourth measurement information sent by the terminal in the fourth time period determined at the second moment, and determines a beam direction for sending data to the terminal.
  • the beam whose received power indicated by the fourth measurement information is greater than the target threshold may be the third beam, or may be the second beam transmitted by the second subarray weighted by the second codeword selected at the second moment.
  • the second duration wherein, the first duration may be a duration of one cycle, and the second duration may be a duration of two cycles.
  • the first duration from the moment when the third beam is transmitted may also be a preset period of time, that is, the fourth preset time.
  • the fourth preset time may be determined by the base station and pre-configured to the terminal, for example, configured to the terminal by broadcasting a cell system message. terminal.
  • the second duration starting at the second moment may include four processes of the first communication device transmitting the first beam and the second beam, receiving the third measurement information, transmitting the third beam, and receiving the fourth measurement information, wherein the third beam
  • the emission moment of the second moment may be within the third time period determined at the second moment, or after the third time period determined at the second moment, and the second duration determined at the second moment may be two periods, or may be between one Between a period and two periods, there may be one period.
  • the beam with the received power of the terminal greater than the target threshold is used as the beam direction for sending data to the terminal, and after the first communication device sends the beam at the second moment, it can determine the beam direction with the received power of the terminal greater than the target threshold, and use it as The beam direction for sending data to the terminal does not need to complete n times of beam scanning, which can further save time while reducing the cost of beam scanning.
  • Case 3 In still some embodiments, the beam scanning method provided in the embodiment of the present application cannot ignore the echo of the terminal.
  • S304 may include some or all of the steps in S601-S608:
  • the first communication device may perform multiple periodic beam scans on the terminal and the target, where n times may be used as an example, where n is a positive integer less than K/2.
  • the first communication device receives the measurement information of the terminal at the third moment, that is, when the beam scans for the third time.
  • the first communication device transmits the first beam through the first subarray weighted by the first codeword f 1 (n 2 ) and transmits the first beam through the first subarray weighted by the second codeword f 2 (n 2 ).
  • the second subarray of emits a second beam.
  • the terminal sends fifth measurement information to the first communication device within a fifth time period determined at a third moment, where the fifth measurement information is used to indicate a beam whose receiving power of the terminal is greater than a target threshold.
  • the terminal may receive the first beam and the second beam sent by the first communication device, and both beams carry reference signals.
  • reference signals For specific introduction of the reference signals, refer to related descriptions in S301 , which will not be repeated here.
  • the terminal may measure the received first beam and the second beam, for example, may measure the received power of the beam, so as to obtain fifth measurement information.
  • the fifth measurement information is used to indicate that the terminal receives a beam whose received power is greater than the target threshold.
  • the measurement information may be sent to the first communication device.
  • the first communication device when the first communication device receives the fifth measurement information sent by the terminal, it may also transmit the third beam through the second subarray weighted by the second codeword.
  • the period may be a period of preset time, that is, the fifth preset time.
  • the fifth preset time may be determined by the base station and pre-configured to the terminal, for example, configured to the terminal by broadcasting a cell system message.
  • the fifth time period determined at the third moment may also be from the third moment to the moment when the first communication device receives the fifth measurement information. If the first communication device does not receive the fifth measurement information sent by the terminal during the period from the third moment to the end of the fifth preset time, it can be determined that the direction of the terminal is neither the direction of the first beam nor the direction of the first beam. The direction of the two beams. At this time, the first communication device may reselect two different codewords such as f 1 (n 3 ) and f 2 (n 3 ) from the codebook.
  • the first communication device When the first communication device performs beam scanning through the first beam and the second beam, after receiving the fifth measurement information, it cannot determine that the beam with the received power of the terminal greater than the target threshold is the first codeword-weighted beam transmitted by the first subarray.
  • a beam is also the second beam emitted by the second subarray weighted by the second codeword, so a supplementary measurement is required, by the first subarray weighted by the first codeword selected at the second moment or by the second subarray weighted by the second codeword
  • the second sub-array weighted by the second codeword selected at the moment transmits the third beam.
  • the first communication device when the first communication device does not receive the fifth measurement information sent by the terminal, it indicates that neither the first beam nor the second beam is a beam whose received power of the terminal is greater than the target threshold.
  • the first communication device may include in the codebook Reselect two different codewords, eg f 1 (n 3 ) and f 2 (n 3 ). Next, the first beam is transmitted through the first subarray weighted by the first codeword f 1 (n 3 ) and the second beam is transmitted through the second subarray weighted by the second codeword f 2 (n 3 ).
  • the terminal After measuring the third beam, the terminal sends sixth measurement information to the first communication device within a sixth time period determined at the third moment, where the sixth measurement information indicates a beam whose received power of the terminal is greater than the target threshold.
  • the terminal may measure the received third beam, for example, may measure the received power of the third beam, so as to obtain sixth measurement information.
  • the sixth measurement information may be used to indicate beams with received power greater than the target threshold.
  • the first communication device receives sixth measurement information sent by the terminal in the sixth time period determined at the third moment, and determines a beam whose received power of the terminal is greater than the target threshold.
  • the beam whose received power indicated by the sixth measurement information is greater than the target threshold may be the third beam, or may be the second beam transmitted by the second subarray weighted by the second codeword selected at the third moment.
  • the second duration wherein, the first duration may be a duration of one cycle, and the second duration may be a duration of two cycles.
  • the first duration from the moment when the third beam is transmitted may also be a preset period of time, that is, the sixth preset time.
  • the sixth preset time may be determined by the base station and pre-configured to the terminal, for example, configured to the terminal by broadcasting a cell system message. terminal.
  • the second duration starting at the third moment may include four processes of the first communication device transmitting the first beam and the second beam, receiving the fifth measurement information, transmitting the third beam, and receiving the sixth measurement information, wherein the third beam
  • the emission time of the time may be within the fifth time period determined at the third time period, or after the fifth time period determined at the third time period, and the second time period determined at the third time period may be two periods, or may be between one period and one time period. Between a period and two periods, there may be one period.
  • the terminal After completing n times of beam scanning, the terminal sends seventh measurement information to the first communication device, where the seventh measurement information includes a target moment with the strongest received power.
  • the terminal sends the time n g to the first communication device, and the n beam scans include the gth beam scan, where g is a positive integer smaller than n.
  • the terminal may receive at least one beam sent by the first communication device, where the at least one beam carries a reference signal.
  • the reference signal For a specific introduction of the reference signal, refer to related descriptions in S301 , which will not be repeated here.
  • the terminal may measure the received at least one beam, for example, may measure the received power of the beam, so as to obtain seventh measurement information.
  • the seventh measurement information may include the target moment ng with the strongest received power.
  • the first communication device After receiving the seventh measurement information sent by the terminal, the first communication device transmits a third beam by using the first subarray weighted by the first codeword selected at the target time ng .
  • the first communication device may also transmit the third beam through the second subarray weighted by the second codeword selected at the target time ng .
  • the first communication device After the first communication device receives the seventh measurement information, it cannot determine whether the terminal is in the beam direction transmitted by the first subarray weighted by the first codeword or the beam direction transmitted by the second subarray weighted by the second codeword, so A supplementary measurement is required to transmit a third beam through the first subarray weighted by the first codeword chosen at the target instant ng or by the second subarray weighted by the second codeword chosen at the target instant ng.
  • the terminal After measuring the seventh beam, the terminal sends eighth measurement information to the first communication device, where the eighth measurement information indicates the beam with the strongest received power of the terminal.
  • the terminal may measure the received third beam, for example, may measure the received power of the third beam, so as to obtain eighth measurement information.
  • the eighth measurement information may be used to indicate the beam with the strongest received power.
  • the first communication device receives the eighth measurement information sent by the terminal, and determines a beam direction for sending data to the terminal.
  • the beam with the strongest received power indicated by the eighth measurement information may be the third beam, or may be the second beam transmitted by the second subarray weighted by the second codeword selected at the target time ng .
  • the first communication device transmits the first beam through the first subarray weighted by the codeword corresponding to the beam direction in which the data is sent to the terminal; transmits the second beam through the second subarray weighted by the codeword corresponding to the beam direction where the target is located ; Both the first beam and the second beam carry data signals sent by the first communication device to the terminal.
  • the receiving end takes a terminal as an example.
  • the receiving end may also be an access network device, such as a base station.
  • the first communication device can generate dual beams at the same time, so that dual beams can be used to scan at the same time, and the orientation of the terminal and the target that needs to be sensed can be located at the same time, and the beam scanning can be accelerated process, which can reduce the overhead of beam scanning.
  • FIG. 7 is a schematic structural diagram of a communication device disclosed in an embodiment of the present application.
  • the communication device may include: a sending unit 71 , a receiving unit 72 , and a processing unit 73 .
  • the sending unit 71 is specifically configured to transmit a first beam through the first subarray weighted by the first codeword, where the first codeword is used to determine the direction of the first beam;
  • the sending unit 71 is specifically configured to transmit a second beam through the second subarray weighted by the second codeword, where the second codeword is used to determine the direction of the second beam;
  • the first codeword and the second codeword are from a codebook, and the signals carried by the first beam and the second beam are the same.
  • the codebook is an M/2*K-dimensional codebook based on Digital Fourier Transform DFT-based, K is the number of codewords in the codebook, and the codebook includes the i-th codeword w i , i is a positive integer not greater than K;
  • an element in w i is used to adjust the phase of an antenna dipole.
  • the sending unit 71 is specifically configured to transmit the first beam through the first subarray weighted by the first codeword based on the first phase shifter corresponding to the first subarray, the The first codeword is used to determine the direction of the first beam;
  • the sending unit 71 is specifically configured to transmit the second beam through the second subarray weighted by the second codeword based on the first phase shifter corresponding to the second subarray, and the second codeword word is used to determine the direction of the second beam.
  • the processing unit 73 is specifically configured to adjust the phase change target phase of the second subarray based on the second phase shifter
  • i is the i-th codeword in the codebook
  • i is a positive integer not greater than K.
  • the sending unit 71 is specifically configured to transmit the first beam through the first subarray weighted by the first codeword and transmit the second beam through the second subarray weighted by the second codeword at the first moment, the The first codeword is used to determine the direction of the first beam, and the second codeword is used to determine the direction of the second beam; wherein, the first codeword and the second codeword are slave codes For the two different codewords selected herein, both the first beam and the second beam carry signals;
  • the receiving unit 72 is specifically configured to transmit a third beam through the first subarray weighted by the first codeword when receiving the first echo signal of the target within the first time period determined at the first moment;
  • the receiving unit 72 is specifically configured to, when receiving the second echo signal of the target within the second time period determined at the first moment, the first communication device determines that the direction of the third beam is where the target is located. the direction of
  • the processing unit 73 is specifically configured to determine the direction of the target according to the direction of the second beam when the second echo signal of the target is not received within the second time period determined at the first moment.
  • the processing unit 73 is specifically configured to determine a beam direction for sending data to the second communication device according to the measurement information from the second communication device.
  • the receiving unit 72 is specifically configured to receive the first measurement information sent by the second communication device, where the first measurement information includes a target moment with the strongest received power;
  • the sending unit 71 is specifically configured to transmit a fourth beam by using the first subarray weighted by the first codeword selected at the target moment.
  • the receiving unit 72 is specifically configured to receive the second measurement information sent by the second communication device, where the second measurement information is used to indicate a beam direction for sending data to the second communication device.
  • the receiving unit 72 is specifically configured to receive the third measurement information sent by the second communication device within the third time period determined at the second moment.
  • the sending unit 71 is specifically configured to transmit a fifth beam through the first subarray weighted by the first codeword, and the third measurement information is used to indicate that the second communication device receives a signal with a received power greater than a target threshold beam;
  • the receiving unit 72 is specifically configured to receive the fourth measurement information sent by the second communication device within the fourth time period determined at the second moment.
  • the processing unit 73 is specifically configured to determine a beam direction for sending data to the second communication device according to the fourth measurement information; the fourth measurement information indicates whether the fifth beam is a beam whose received power is greater than a target threshold.
  • the sending unit 71 is specifically configured to transmit the sixth beam through the first subarray weighted by the codeword corresponding to the beam direction of the data sent to the second communication device; the sending unit 71 is specifically configured to transmit the sixth beam through the beam where the target is located.
  • the second subarray weighted by the codeword corresponding to the direction transmits a seventh beam; the sixth beam and the seventh beam are both used to carry the data signal sent by the first communication device to the receiving section.
  • FIG. 8 is a schematic structural diagram of another communication device disclosed in an embodiment of the present application.
  • the communication device may include: a receiving unit 81 , a measuring unit 82 , and a sending unit 83 .
  • the receiving unit 81 is specifically configured to receive a reference signal sent by the first communication device
  • the measuring unit 82 is specifically configured to measure the received received power of the beam to obtain first measurement information
  • the sending unit 83 is specifically configured to send the first measurement information to the first communication device, where the first measurement information is used to indicate a beam direction that meets requirements;
  • the measurement unit 82 is further configured to measure a reference signal received from the first communication device after sending the first measurement information to obtain second measurement information; the beam direction of the reference signal is the meeting requirement One of the beam directions in the beam;
  • the sending unit 83 is further configured to send the second measurement information to the first communication device, where the second measurement information is used to confirm a beam direction for sending data from the first communication device to the second communication device .
  • the embodiment of the present invention also discloses a computer-readable storage medium, on which instructions are stored, and when the instructions are executed, the methods in the above method embodiments are executed.
  • the embodiment of the present invention also discloses a computer program product including an instruction, and when the instruction is executed, the method in the above method embodiment is executed.
  • all or part of the functions may be implemented by software, hardware, or a combination of software and hardware.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored on a computer readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, DVD), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)), etc.
  • a magnetic medium for example, a floppy disk, a hard disk, or a magnetic tape
  • an optical medium for example, DVD
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种波束赋形方法、波束扫描方法及相关设备。波束赋形方法包括:第一通信设备通过由所述第一码字加权的第一子阵列发射第一波束;通过由第二码字加权的所述第二子阵列发射第二波束。波束扫描方法包括:第一通信设备在第一时刻通过由第一码字加权的第一子阵列发射第一波束以及通过由第二码字加权的第二子阵列发射第二波束;若接收到目标的第一回波信号时,通过由第一码字加权的第一子阵列发射第三波束;若接收到目标的第二回波信号时,第一通信设备确定第三波束的方向为目标所处的方向;根据来自于第二通信设备的测量信息,确定向第二通信设备发送数据的波束方向。

Description

波束赋形方法、波束扫描方法及相关设备
本申请要求于2021年12月30日提交中国专利局、申请号为202111662660.2、申请名称为“波束赋形方法、波束扫描方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种波束赋形方法、波束扫描方法及相关设备。
背景技术
通信与感知一体化,简称为通感一体化(integrated sensing and communication,ISAC),指网络设备或终端(user equipment,UE)在器件、波形等一个或多个维度融合通信与感知能力,例如基站向终端发射一个信号,该信号中包含了与终端通信的信息,且基站检测该信号的回波,对该终端或其他目标进行感知,以获取其位置、速度、外形、姿态等一种或多种特征。
在通感一体化系统中,基站可以向终端和目标扫描波束,与终端进行波束对齐,并感知目标所在方向。终端通过检测基站扫描的波束,确定自己处于哪个基站的覆盖内、以及该基站的哪个波束覆盖下,并通过向基站反馈测量结果使基站明确哪个波束可以用于后续与该终端通信。基站通过扫描波束并检测回波,可以探测目标的方位。然而,大天线阵列可以引入的更精细的波束,这意味着发送方(例如基站)扫描全部空间需要的波束数量变多、时间资源开销变大,接收方(例如UE)的检测开销也相应变大。如何降低波束扫描的开销,是通感一体化场景中大天线阵列设备需要解决的问题。
发明内容
本申请实施例公开了一种波束赋形方法、波束扫描方法及相关设备,第一通信设备可以同时生成双波束,因而可以采用双波束同时进行扫描,可以同时定位出第二通信设备和需要感知的目标的方位,加快波束扫描过程,可以降低波束扫描的开销。
第一方面,本申请实施例提供了一种波束赋形方法,应用于第一通信设备,所述第一通信设备包括天线阵列,所述天线阵列包括M个天线振子,所述M个天线振子包括第一子阵列和第二子阵列;M为大于1的正整数,该方法可以包括:所述第一通信设备通过由所述第一码字加权的所述第一子阵列发射第一波束,所述第一码字用于确定所述第一波束的方向;通过由所述第二码字加权的所述第二子阵列发射第二波束,所述第二码字用于确定所述第二波束的方向;其中,所述第一码字和所述第二码字来源于码本,所述第一波束和所述第二波束承载的信号相同。
上述方法,第一通信设备可以同时生成两个方向不同的波束,因而可以采用双波束进行扫描,可以同时定位出第二通信设备和需要感知的目标的方位,加快波束扫描过程,可以降低波束扫描的开销。在具体应用中,同时产生的两个波束中的一个波束可以用于感知目标,另一个波束用于与第二通信设备通信,以便于同时支持感知与通信两种功能。
结合第一方面,在一种可能的实现中,所述码本是基于数字傅里叶变换DFT-based的 (M/2)*K维码本,K为所述码本中码字的数量,M/2为所述码本中各个码字的长度,所述码本包括第i个码字w i,i为不大于K的正整数;
Figure PCTCN2022136167-appb-000001
其中,w i中的一个元素用于调节一个天线振子的相位。
结合第一方面,在一种可能的实现中,所述第一通信设备还包括M个第一移相器,所述第一移相器与所述天线振子一一对应,所述第一子阵列包括M/2天线振子,所述第二子阵列包括M/2天线振子;
所述第一通信设备基于所述第一子阵列对应的所述第一移相器通过由所述第一码字加权的所述第一子阵列发射所述第一波束,所述第一码字用于确定所述第一波束的方向;
所述第一通信设备基于所述第二子阵列对应的所述第一移相器通过由所述第二码字加权的所述第二子阵列发射所述第二波束,所述第二码字用于确定所述第二波束的方向。
结合第一方面,在一种可能的实现中,所述第一码字与所述第二码字不同。
结合第一方面,在另一种可能的实现中,所述第一码字和所述第二码字相同;所述第一通信设备还包括第二移相器,在所述发射第二波束之前,所述方法还包括:
所述第一通信设备基于所述第二移相器调节所述第二子阵列的相位变化目标相位
Figure PCTCN2022136167-appb-000002
Figure PCTCN2022136167-appb-000003
其中,i为所述码本中的第i个码字,i为不大于K的正整数。
第二方面,本申请实施例提供了一种波束扫描方法,应用于第一通信设备,所述第一通信设备包括天线阵列,所述天线阵列包括M个天线振子,所述M个天线振子包括第一子阵列和第二子阵列;M为大于1的正整数,该方法可以包括:所述第一通信设备在第一时刻通过由第一码字加权的所述第一子阵列发射第一波束以及通过由第二码字加权的所述第二子阵列发射第二波束,所述第一码字用于确定所述第一波束的方向,所述第二码字用于确定所述第二波束的方向;其中,所述第一码字和所述第二码字是从码本中选择的两个不同的码字,所述第一波束和所述第二波束均承载信号;在第一时刻确定的第一时间段内接收到目标的第一回波信号时,通过由所述第一码字加权的所述第一子阵列发射第三波束;在第一时刻确定的第二时间段内接收到所述目标的第二回波信号时,所述第一通信设备根据所述第三波束的方向确定所述目标所处的方向;根据来自于第二通信设备的测量信息,确定向所述第二通信设备发送数据的波束方向。
上述方法提供了一种双波束扫描的方法,第一通信设备可以同时使用两个方向不同的波束进行扫描,可以同时定位出第二通信设备和需要感知的目标的方位,进而,加快波束扫描过程,降低波束扫描的开销。
结合第二方面,在一种可能的实现中,所述第一通信设备在第一时刻确定的第二时间段内未接收到所述目标的第二回波信号时,所述第一通信设备根据所述第二波束的方向确定所述目标所处的方向。
结合第二方面,在一种可能的实现中,第一通信设备周期性地发射波束,第一时刻为一个周期的起始时间,第一时刻确定的第一时间段可以是以第一时刻开始的一个周期。第一时刻确定的第二时间段可以是以第三波束的发射时刻开始的第一时长,或可以是以第一时刻开始的第二时长,其中,该第一时长可以是一个周期的时长,第二时长可以是两个周期的时长。
结合第二方面,在一种可能的实现中,所述第一通信设备接收所述第二通信设备发送的 所述第一测量信息,所述第一测量信息包括接收功率最强的目标时刻;通过所述第一码字加权的所述第一子阵列发射第四波束;所述第一码字为在所述目标时刻选取的码字M/2为所述码本中各个码字的长度,接收所述第二通信设备发送的所述第二测量信息,所述第二测量信息用于指示向所述第二通信设备发送数据的波束方向。
结合第二方面,在另一种可能的实现中,所述第一通信设备在第二时刻确定的第三时间段内接收所述第二通信设备发送的所述第三测量信息时,通过由所述第一码字加权的所述第一子阵列发射第五波束,所述第三测量信息用于指示所述第二通信设备接收到接收功率大于目标阈值的波束;在第二时刻确定的第四时间段内接收所述第二通信设备发送的所述第四测量信息时,根据所述第四测量信息确定向所述第二通信设备发送数据的波束方向;所述第四测量信息指示所述第五波束是否为接收功率大于目标阈值的波束。
该方法中,将第二通信设备接收功率大于目标阈值的波束作为向第二通信设备发送数据的波束方向,第一通信设备在第二时刻发送波束后,可以确定第二通信设备接收功率大于目标阈值的波束方向,并将其作为向第二通信设备发送数据的波束方向,可以不用完成后续时刻的波束扫描,在降低波束扫描成本的同时,还可以进一步地节约时间。
结合第二方面,在一种可能的实现中,所述方法还包括:
所述第一通信设备通过向所述第二通信设备发送数据的波束方向对应的码字加权的所述第一子阵列发射第六波束;所述第一通信设备通过所述目标所处的波束方向对应的码字加权的所述第二子阵列发射第七波束;所述第六波束和所述第七波束用于均承载所述第一通信设备向所述接收段发送的数据信号。
结合第二方面,在一种可能的实现中,所述码本是基于数字傅里叶变换DFT-based的M/2*K维码本,K为所述码本中码字的数量,M/2为所述码本中各个码字的长度,所述码本包括第i个码字w i,i不大于K的正整数;
Figure PCTCN2022136167-appb-000004
其中,w i中的一个元素用于调节一个天线振子的相位。
结合第二方面,在一种可能的实现中,所述第一通信设备还包括M个第一移相器,所述第一移相器与所述天线振子一一对应,所述第一子阵列包括M/2天线振子,所述第二子阵列包括M/2天线振子;所述第一通信设备基于所述第一子阵列对应的所述第一移相器通过由所述第一码字加权的所述第一子阵列发射所述第一波束,所述第一码字用于确定所述第一波束的方向;基于所述第二子阵列对应的所述第一移相器通过由所述第二码字加权的所述第二子阵列发射所述第二波束,所述第二码字用于确定所述第二波束的方向。
第三方面,本申请实施例提供了一种波束扫描方法,应用于第二通信设备,该方法可以包括:
第二通信设备接收第一通信设备发送的参考信号;所述第二通信设备测量接收到的所述参考信号的接收功率,得到第一测量信息;所述第二通信设备向发所述第一通信设备发送所述第一测量信息,所述第一测量信息用于指示满足要求的波束方向;所述第二通信设备测量在发送所述第一测量信息之后接收到的来自第一通信设备的参考信号,得到第二测量信息;所述参考信号的波束方向为所述满足要求的波束中的一个波束方向相同;所述第二通信设备向所述第一通信设备发送所述第二测量信息,所述第二测量信息用于确认所述第一通信设备向所述第二通信设备发送数据的波束方向。
在一种可能的实现中,第一测量信息为接收功率最强的时刻或者接收功率大于目标阈值 的时刻。此时,第一测量信息所指示的满足要求的波束方向为第一测量信息所携带的时刻第一通信设备发射两个波束的方向。
第四方面公开一种通信装置,所述通信装置包括天线阵列,所述天线阵列包括M个天线振子,所述M个天线振子包括第一子阵列和第二子阵列;M为大于1的正整数,该通信装置可以包括:
发送单元,用于通过由所述第一码字加权的所述第一子阵列发射第一波束,所述第一码字用于确定所述第一波束的方向;用于通过由所述第二码字加权的所述第二子阵列发射第二波束,所述第二码字用于确定所述第二波束的方向;其中,所述第一码字和所述第二码字来源于码本,所述第一波束和所述第二波束承载的信号相同。
第五方面公开一种通信装置,所述通信装置包括天线阵列,所述天线阵列包括M个天线振子,所述M个天线振子包括第一子阵列和第二子阵列;M为大于1的正整数,该通信装置可以包括:
发送单元,用于在第一时刻通过由第一码字加权的所述第一子阵列发射第一波束以及通过由第二码字加权的所述第二子阵列发射第二波束,所述第一码字用于确定所述第一波束的方向,所述第二码字用于确定所述第二波束的方向;其中,所述第一码字和所述第二码字是从码本中选择的两个不同的码字,所述第一波束和所述第二波束均承载参考信号;
接收单元,用于接收目标的回波信号;
所述发送单元还用于在第一时刻确定的第一时间段内接收到所述目标的第一回波信号时,通过由所述第一码字加权的所述第一子阵列发射第三波束;
处理单元,用于在第一时刻确定的第二时间段内接收到所述目标的第二回波信号;确定所述第三波束的方向为所述目标所处的方向;
所述处理单元还用于根据来自于第二通信设备的测量信息,确定向所述第二通信设备发送数据的波束方向,所述测量信息用于指示向所述第二通信设备发送数据的波束方向。
第六方面公开一种通信装置,该通信装置可以包括:
接收单元,用于接收第一通信设备发射的波束,所述波束携带参考信号;
测量单元,用于测量接收到的波束的接收功率,得到第一测量信息;
发送单元,用于向发所述第一通信设备发送所述第一测量信息,所述第一测量信息用于指示满足要求的波束方向;
所述测量单元还用于测量在发送所述第一测量信息之后接收到的来自第一通信设备的目标波束,得到第二测量信息;所述目标波束的方向为所述满足要求的波束中的一个波束方向相同;
所述发送单元还用于向所述第一通信设备发送所述第二测量信息,所述第二测量信息用于确认所述第一通信设备向所述第二通信设备发送数据的波束方向。
第七方面公开一种通信装置,该通信装置可以包括处理器、存储器通信接口,所述通信接口用于接收和发送信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第一方面或第一方面的任一实施方式公开的方法以及第二方面或第二方面的任一实施方式公开的方法。
第八方面公开一种通信装置,该通信装置可以包括处理器、存储器通信接口,所述通信接口用于接收和发送信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第三方面或第三方面的任一实施方式公开的方法。
第九方面公开一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序或计算机指令,当该计算机程序或计算机指令运行时,实现如上述各方面公开的方法。
第十方面公开一种芯片,包括处理器,用于执行存储器中存储的程序,当程序被执行时,使得芯片执行上面的方法。作为一种可能的实施方式,存储器位于芯片之外。
第十一方面公开一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码被运行时,使得上述通信方法被执行。
附图说明
图1A为本申请实施例提供的一种网络架构示意图;
图1B和图1C为本申请实施例提供的一种电子设备的硬件结构示意图;
图2A为本申请实施例提供的一种波束赋形示意图;
图2B为本申请实施例一提供的一种双波束示意图;
图2C为本申请实施例一提供的一种单波束示意图;
图3A和图3B为本申请实施例提供的一种波束扫描方法的流程示意图;
图4A和图4B为本申请实施例提供的一种确定第一通信设备向终端发送数据的波束的波束扫描方法的流程示意图;
图5A和图5B为本申请实施例提供的另一种确定第一通信设备向终端发送数据的波束的波束扫描方法的流程示意图;
图6A和图6B为本申请实施例提供的又一种确定第一通信设备向终端发送数据的波束的波束扫描方法的流程示意图;
图7为本申请实施例提供的一种通信装置的示意图;
图8为本申请实施例提供的另一种通信装置的示意图。
具体实施方式
下面对本申请实施例使用的网络架构进行描述。
请参阅图1A,图1A是本申请实施例公开的一种网络架构示意图。该网络架构可以包括(无线)接入网(radio access network,RAN)设备10、终端20、目标(Target)30。
接入网设备10可以作为发送端,即第一通信设备,可以生成两个方向不同的波束,一个波束可以用于与终端20通信,一个波束可以用于目标30。关于波束的赋形方法可以参见下述实施例一中相关描述,这里不再赘述。
具体实现中,接入网设备10可以同时发射两个波束进行扫描,关于波束扫描方法可以参见下述实施例二中相关描述,这里不再赘述。
终端20在接收到接入网设备10的波束后,可以对接收到的波束进行测量,例如检测接收到的波束的接收功率(reference signal received power,RSRP),进而,基于多个波束的RSRP 可以确定终端20与该接入网设备10通信的波束方向。
接入网设备10的波束遇到目标30后,目标30可以反射该波束,反射的波束也称为回波信号。接入网设备10接收该回波信号,通过分析回波信号,可以获得目标30的位置、速度、姿态等。
终端20,又可以称之为终端设备、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、用户设备(user equipment,UE)等,是一种向用户提供语音和/或数据连通性的设备。终端20可以是一种具有无线收发功能的设备,其可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端可以为手持终端、笔记本电脑、用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端,可穿戴设备(如智能手表、智能手环、计步器等),车载设备(如汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(如冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(如智能机器人、热气球、无人机、飞机等)或其他可以接入网络的设备。图1A中终端以终端20示出,仅作为示例,并不对终端设备进行限定。
(无线)接入网设备10是部署在无线接入网中为终端设备提供个无线通信功能的装置。无线接入网设备可以包括各种形式的基站。例如,宏基站、微基站(也称为小站)、中继站、接入点等。示例性地,本申请实施例涉及到的基站可以是第五代移动通信技术(5th generation mobile networks,5G)中的基站或LTE中的基站,其中,5G中的基站还可以称为发送接收点(transmission reception point,TRP)或gNB。本申请实施例中,用于实现网络设备的功能的装置可以是网络设备;也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备,以网络设备是基站为例,描述本申请实施例提供的技术方案。在采用不同的无线接入技术的系统中,无线接入网设备的名称可能会有所不同。例如,全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),长期演进(long term evolution,LTE)中的eNB或eNodeB(evolutional NodeB)。无线接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。无线接入网设备还可以是未来网络(如第六代移动通信技术(6th generation mobile networks,6G)等)中的基站设备或者未来演进的公共陆地移动网(public land mobile network,PLMN)网络中的无线接入网设备。无线接入网设备还可以是可穿戴设备或车载设备。无线接入网设备还可以是传输接收节点(transmission and reception point,TRP)。
本申请实施例涉及到的目标30,既可以是终端设备,也可以是操作终端设备的人,或包括车辆、机器、建筑等在内的周围环境中的对象。
在另一些实现中,终端20也可以作为发送端,生成并发射两个方向的波束,一个波束用于与接入网设备10通信,另一个波束用来感知目标30。
需要说明的是,图1A所示的网络架构中不限于仅包括图中所示的无线接入网设备和终端设备。
应理解,图1A所示的网络架构只是示例性说明,并不对其构成限定。
图1B为本申请实施例提供的一种电子设备100的硬件结构示意图。该电子设备100可以是上述接入网设备10或终端20。
电子设备100包括至少一个处理器(central processing unit,CPU)110、至少一个存储器120、总线130、通信接口140、第一子阵列150和第二子阵列160。
可选地,还可以包括至少一个移相器170。
可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以是中央处理单元(Central Processing Unit,CPU),该处理器110还可以是其他通用处理器、基带处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器120可以是独立存在的,可以通过总线130与处理器110相连接。存储器120也可以和处理器110集成在一起。其中,总线130用于实现这些组件之间的连接。
通信接口140,可以包括输入接口和输出接口,用于接收和发送信息,在一种可能的实现中,一个通信接口可以是一个数字通道。
第一子阵列150和第二子阵列160均可以包括至少一个天线振子,天线振子用于发射波束,因此,通过第一子阵列150和第二子阵列160可以同时发射两个方向不同的波束。
在一些实施例中,电子设备100还可以包括移相器170,用于对天线振子进行相位调节,通过对天线振子赋予权值,改变天线振子的相位,从而形成具有指向性的波束。在本申请实施例中,可以基于第一子阵列150对应的移相器170加权的第一子阵列150发射第一波束;基于第二子阵列160对应的移相器170加权的第二子阵列发射第二波束。第一波束和第二波束承载的信号相同。
在一些实施例中,电子设备100可以如图1C所示。该电子设备100可以是上述接入网设备10,例如基站,或终端20。
移相器170包括第一移相器1701和第二移相器1702,该第一移相器1701包括第一子阵列150对应的M 1个第一移相器和第二子阵列160对应的M 2个第一移相器。
电子设备100可以基于M 1个第一移相器对第一子阵列150中的M 1个天线振子调节相位。从而,电子设备100可以通过调节相位后的第一子阵列150发射第一波束;同样,电子设备100可以基于M 2个第一移相器对第二子阵列160中的M 2个天线振子调节相位。从而,电子设备100可以通过调节相位后的第二子阵列160发射第二波束。其中,第一子阵列150包括M 1个天线振子;第二子阵列160包括M 2个天线振子,M 1和M 2为大于1的正整数。
第二移相器1702用于调节第二子阵列的相位
Figure PCTCN2022136167-appb-000005
用于将双波束合并为单波束。
下面介绍本申请实施例涉及的双波束发射原理。
在本申请实施例中,第一通信设备,例如接入网设备,以基站为例。进一步地,基站包括至少一个数字通道,本申请实施例中以该基站包括一个数字通道为例,即单数字通道。该数字通道对应一个天线阵列,一个天线阵列包括M个天线振子;该M个天线振子包括第一子阵列和第二子阵列。
其中,第一子阵列包括M 1个天线振子;第二子阵列包括M 2个天线振子,M为大于1的正整数,M 1和M 2为小于M的正整数;其中,M 1+M 2=M,M 1和M 2可以相等,也可以不相等。在本申请实施例中,以第一子阵列包括M/2个天线振子,第二子阵列包括M/2个天线振子为例。
在本申请实施例中以第一通信设备为接入网设备10,例如基站为例,以第二通信设备为终端20为例展开论述。
实施例一
本申请实施例提供的双波束发射原理可以通过上述网络架构中的接入网设备10或终端20来实现。
下面通过实施例一进行介绍:
具体地,如图2A示例性所示,为双波束发射原理的流程示意图,该方法可以包括但不限于如下部分或全部步骤:
S201:第一通信设备通过由第一码字f 1加权的第一子阵列发射第一波束,该第一码字用于确定第一波束的方向。
S202:第一通信设备通过由第二码字f 2加权的第二子阵列发射第二波束,第二码字用于确定第二波束的方向。
在本申请实施例中,对S201和S202的时间先后顺序不作限制。
在一些实施例中,第一码字f 1和第二码字f 2均来源于码本,其中,第一码字可以称为第一波束赋形向量,第二码字也可以称为第二波束赋形向量。码本是基于数字傅里叶变换DFT-based的M/2*K维码本,K为码本中码字的数量。码本中各个码字的长度为M/2,每个码字包括M/2个元素,即为M/2个权值。第一码字的M/2个权值与第一子阵列的M/2个天线振子一一对应;第二码字的M/2个权值与第二子阵列的M/2个天线振子一一对应。
该码本用于第一通信设备对M个天线振子进行预处理,该预处理即为第一通信设备可以通过该码本中的码字对M个天线振子分别加一个权值,从而调节M个天线振子的相位,最终实现对波束的方向的控制。
例如,码本A可以表示为:
Figure PCTCN2022136167-appb-000006
在码本A中,包括K个码字,每一列表示一个码字,一个码字中包括M/2个元素,每一个元素对应一个权值,用于调节一个天线振子的相位。
其中,i为不大于K的正整数;第i+1个码字w i表示为:
Figure PCTCN2022136167-appb-000007
其中,w i中的一个元素用于调节一个天线振子的相位。
另一些实施例中,码本A’可以表示为:
Figure PCTCN2022136167-appb-000008
在码本A’中,包括K个码字,每一列表示一个码字,一个码字中包括M/2个元素,每一个元素对应一个权值,用于调节一个天线振子的相位。
其中,k为不大于K的正整数;第k+1个码字w k表示为:
Figure PCTCN2022136167-appb-000009
如使用码本A’,则第k个码字的波束方向图取最大时所对应的角度为:
Figure PCTCN2022136167-appb-000010
在一些实施例中,码本也可以为N 1*N 2维码本,N 1和N 2为正整数。其中,N 2为码本中码字的数量,每个码字包括N 1个元素,即为N 1个权值。N 1和N 2可以相等,也可以不相等。在一种可能的实现中,第一码字包括的N 1个权值可以大于第一子阵列的M/2个天线振子;第一通信设备可以选择N 1个权值中的前M/2个权值与第一子阵列的M/2个天线振子一一对应。第二码字包括的N 2个权值可以大于第二子阵列的M/2个天线振子;第一通信设备可以选择N 2个权值中的前M/2个权值与第二子阵列的M/2个天线振子一一对应。
在另一种可能的实现中,M 1和M 2也可以不相等,即第一通信设备可以选择N 1个权值中的前M 1个权值与第一子阵列的M 1个天线振子一一对应;可以选择N 2个权值中的前M 2个权值与第二子阵列的M 2个天线振子一一对应。N 1不小于M 1,N 2不小于M 2
在一些实施例中,第一通信设备可以基于M个第一移相器对M个天线振子进行相位调节,具体地,第一码字和第二码字的M个权值分别由M个第一移相器赋予在M个天线振子上,对两个子阵列的M个天线振子进行相位调节,从而可以形成指向不同方向的双波束,即完成对第一波束与第二波束的波束赋形。
第一通信设备基于第一子阵列对应的第一移相器通过由第一码字加权的第一子阵列发射第一波束;基于第二子阵列对应的第一移相器通过由第二码字加权的第二子阵列发射第二波束。第一波束和第二波束承载的信号相同。
应理解,当第一码字和第二码字不同时,上述第一波束的方向和第二波束的方向不同。
在一些实施例中,f 1和f 2之间的相移为
Figure PCTCN2022136167-appb-000011
该相移
Figure PCTCN2022136167-appb-000012
可以通过图1C中显示的第二子阵列前的第二移相器进行调节。当f 1不等于f 2时,第一通信设备可以基于第二移相器将第二子阵列的相位设置为任意值。以M=32,K=32为例,第一通信设备可以生成两个方向不同的波束,如下图2B所示。其中,第一波束为由第一个码字加权的第一子阵列发射的第一个波束,即i=0;第二波束为由第5个码字加权的第一子阵列发射的第五个波束,即i=4。
在另一些实施例中,当f 1等于f 2时,第一通信设备可以在通过第二码字加权第二子阵列之后,发射第二波束之前,基于第二移相器调节第二子阵列的相位变化目标相位
Figure PCTCN2022136167-appb-000013
可以将双波束合并为单波束,如图2C所示。
Figure PCTCN2022136167-appb-000014
需要满足公式(3):
Figure PCTCN2022136167-appb-000015
其中,M为天线振子的数量,K为码字的数量,i为码本K个码字中的第i+1个码字,i为不 大于K的正整数。
特别地,当M=K时,
Figure PCTCN2022136167-appb-000016
只有0和π两个取值;当i为偶数时,
Figure PCTCN2022136167-appb-000017
当i为奇数时,
Figure PCTCN2022136167-appb-000018
在一些实施例中,第一通信设备可以为接入网设备,例如基站;在另一些实施例中,发送端也可以为终端,均可以实现本申请实施例提供的双波束发射原理。当第一通信设备,即发送端为终端时,终端所使用的码本A,以及终端扫描波束方式,即两个码字的组合方式和使用顺序,可以由基站配置。
本申请实施例提供的双波束发射原理,第一通信设备通过码字分别对两个子阵列的天线振子进行加权,可以产生指向两个不同方向的波束,一个波束可以用于和第二通信设备通信,另一个波束可以用于感知目标,进而,实现通信与感知的一体化。
下面介绍本申请实施例涉及的一种波束扫描方法。
本申请实施例提供了一种波束扫描的方法。该方法用于在发送端与接收端,例如终端进行数据传输之前,发送端确定向终端发送数据的波束方向,以便形成指向终端的波束,可以将发射功率更多地集中在通信终端的方向,提升数据传输性能。同时,在本申请实施例中,通过该方法也可以确定感知目标所处的方向,形成指向感知目标的波束。
在本申请实施例中,发送端可以为第一通信设备,也可以为第二通信设备;同样地,接收端可以为第一通信设备,也可以为第二通信设备。
该波束扫描方法包括忽略终端的回波和不可忽略终端的回波两种情况。下面通过实施例二阐述。
在本申请实施例中以第一通信设备为接入网设备10,例如基站为例,以第二通信设备为终端20为例展开论述。
实施例二
在一种可能的实现中,第一通信设备通过不同的波束向终端发送参考信号;终端对该第一通信设备发送的参考信号逐一进行测量,得到测量信息;在第一通信设备依次扫描完所有的波束方向后,终端向第一通信设备反馈测量信息,该测量信息可以包括终端测量到接收功率最强的时刻,或包括终端在大于一个功率门限的多个时刻中选择的一个时刻。
进一步地,在本申请实施例中,第一通信设备通过选取码字分别对两个子阵列的天线振子进行加权,可以产生指向两个不同方向的双波束,所以第一通信设备根据终端的测量信息,无法确定对于终端的接收功率最强的波束是双波束中的哪一个波束,因此,在确定接收功率最强的波束所在的时刻之后,还需要进行一次补充测量,以确定对于终端而言接收功率最强的波束。对于目标的回波确定,方法同终端的接收功率最强的波束的确定,这里不再赘述。
在本申请实施例中,第一通信设备可以对终端和目标进行多次周期性的波束扫描,每次扫描时从码本中选择两个不同的码字,每次扫描选择的码字不同。当第一通信设备,即发送端为终端时,终端所使用的码本A,以及终端扫描波束方式,即选择的两个码字的组合方式和使用顺序,可以由基站配置。
关于码本和码字的具体描述可以参见实施例一S201中的相关描述,这里不再赘述。
本申请实施例以在t=n 0时刻,即第一次波束扫描时,第一通信设备接收到目标的回波信号为例。
具体地,如图3A和图3B示例性所示,为波束扫描方法的流程示意图,该方法可以包括但不限于如下部分或全部步骤:
S301:第一通信设备在第一时刻通过由第一码字f 1加权的第一子阵列发射第一波束以及 通过由第二码字f 2加权的第二子阵列发射第二波束。
第一时刻可以以t=n 0时刻为例。
具体地,在t=n 0时刻,第一通信设备通过由第一码字f 1(n 0)加权的第一子阵列发射第一波束以及通过由第二码字f 2(n 0)加权的第二子阵列发射第二波束,其中f 1(n 0)表示t=n 0时刻对应于第一子阵列的第一码字,f 2(n 0)表示t=n 0时刻对应于第二子阵列的第二码字。
其中,第一码字用于确定第一波束的方向,第二码字用于确定第二波束的方向;第一码字和第二码字是从码本中选择的两个不同的码字,第一波束和第二波束均承载参考信号。
在本申请实施例中,参考信号可以为信道状态信息参考信号(channel state information reference signal,CSI-RS),也可以为同步信号块(synchronization signal block,SSB),还可以为解调参考信号(de-modulation reference signal,DMRS),还可以为其它参考信号,在此不作限定。参考信号主要用于终端获取各个时刻的信道信息,便于终端测量得到接收功率最强或接收功率大于目标阈值的时刻或波束,从而,确定第一通信设备向终端发送数据的波束。
关于码本和码字的具体介绍可以参见实施例一S201中的相关描述,这里不再赘述。
在一些实施例中,第一通信设备可以通过M个移相器对M个天线振子进行相位调节,以实现对天线振子的加权,从而形成具有指向性的两个波束。
S302:第一通信设备在第一时刻确定的第一时间段内接收到目标的第一回波信号时,通过由第一码字加权的第一子阵列发射第三波束。
在一种可能的实现中,第一时刻确定的第一时间段可以为t=n 0+Δt 1,可以是以第一时刻开始的一个周期。该周期可以是一段预设时间,即第一预设时间,该第一预设时间由基站确定预先配置给终端,例如通过小区系统消息广播地配置给终端。若第一通信设备在第一时刻至第一预设时间结束时刻这段时间内没有接收到目标的第一回波信号,可以认定目标所处的方向既不是第一波束的方向,也不是第二波束的方向。此时,第一通信设备可以从码本中重新选择两个不同的码字例如f 1(n 1)和f 2(n 1)。
在一些实施例中,在第一通信设备接收到目标的第一回波信号时,也可以通过由第二码字加权的第二子阵列发射第三波束。
当第一通信设备通过第一波束和第二波束进行波束扫描,收到目标的第一回波信号时,第一通信设备并不能确定目标处于第一波束的方向还是第二波束的方向,因此需要通过由第一码字加权的第一子阵列或由第二码字加权的第二子阵列发射第三波束,进行第二次波束扫描,该第二次波束扫描用于确定目标所在的波束方向。
在一些实施例中,第一通信设备未接收到目标的第一回波信号时,表示目标所处的方向不在第一波束和第二波束的方向,第一通信设备可以在码本中重新选择两个不同的码字,例如f 1(n 1)和f 2(n 1)。接下来,通过由第一码字f 1(n 1)加权的第一子阵列发射第一波束以及通过由第二码字f 2(n 1)加权的第二子阵列发射第二波束。
关于码本和码字的具体介绍可以参见实施例一S201中的相关描述,这里不再赘述。
S303:第一通信设备在第一时刻确定的第二时间段接收到目标的第二回波信号时,确定第三波束的方向为目标所处的方向。
在一种可能的实现中,第一时刻确定的第二时间段可以为t=n 0+Δt 2,可以是以第三波束的发射时刻开始的第一时长,或可以是以第一时刻开始的第二时长,其中,该第一时长可以是一个周期的时长,第二时长可以是两个周期的时长。第三波束的发射时刻开始的第一时长也可以是一段预设时间,即第二预设时间,该第二预设时间由基站确定,预先配置给终端, 例如通过小区系统消息广播地配置给终端。若在第三波束的发射时刻至第二预设时间结束时刻,没有接收到目标的第二回波信号,确定由第二码字f 2(n 0)加权的第二子阵列发射的第二波束的方向为目标所处的方向。以第一时刻开始的第二时长可以包括第一通信设备发射第一波束和第二波束,接收第一回波信号,发射第三波束等三个过程,也可以包括第一通信设备发射第一波束和第二波束,接收第一回波信号,发射第三波束,接收第二回波信号等四个过程。其中,第三波束的发射时刻可以处于第一时刻确定的第一时间段内,也可以处于第一时刻确定的第一时间段之后,以第一时刻确定的第二时长可以是两个周期,也可以介于一个周期和两个周期之间,还可以是一个周期。
在一些实施例中,第一通信设备未接收到目标的第二回波信号时,确定由第二码字f 2(n 0)加权的第二子阵列发射的第二波束的方向为目标所处的方向。
S304:第一通信设备根据来自于终端的测量信息,确定向终端发送数据的波束方向,该测量信息用于指示向终端发送数据的波束方向。
S304涉及的波束扫描方法可以包括忽略终端的回波和不可忽略终端的回波两种情况。下面分情况进行讨论。
情况一:在一些实施例中,本申请实施例提供的波束扫描方法可以忽略终端的回波。如图4A和图4B所示,S304可以包括S401-S404中的部分或全部步骤:
第一通信设备可以对终端和目标进行多次周期性的波束扫描,这里可以以n次为例,n为小于K/2的正整数。
S401:在完成n次波束扫描之后,终端向第一通信设备发送第一测量信息,第一测量信息包括接收功率最强的目标时刻。
例如,终端向第一通信设备发送时刻n h,n次波束扫描包括第h次波束扫描,h为小于或等于n的正整数。
终端可以接收第一通信设备发送的至少一个波束,该至少一个波束携带参考信号,关于参考信号的具体介绍可以参见S301中的相关描述,这里不再赘述。
终端可以对接收到的至少一个波束进行测量,例如可以测量波束的接收功率,从而,得到第一测量信息。该第一测量信息可以包括接收功率最强的目标时刻n h
S402:第一通信设备接收到终端发送的第一测量信息后,通过由在目标时刻选取的第一码字加权的第一子阵列发射第三波束。
在一些实施例中,第一通信设备在接收到通信终端发送的第一测量信息后,也可以通过在目标时刻选取的第二码字加权的第二子阵列发射第三波束。
第一通信设备在接收到第一测量信息之后,并不能确定终端的接收功率最强的波束是第一码字加权的第一子阵列发射的波束方向,还是第二码字加权的第二子阵列发射的波束方向,所以需要进行一次补充测量,通过由在目标时刻n h选取的第一码字加权的第一子阵列或由在目标时刻n h选取的第二码字加权的第二子阵列发射第三波束。
S403:终端在对第三波束测量后,向第一通信设备发送第二测量信息,第二测量信息指示终端的接收功率最强的波束。
终端可以对接收到的第三波束进行测量,例如可以测量第三波束的接收功率,从而,得到第二测量信息。该第二测量信息可以用于指示接收功率最强的波束。
S404:第一通信设备接收到终端发送的第二测量信息,确定向终端发送数据的波束方向。
该第二测量信息指示的接收功率最强的波束可以是第三波束,也可以是由在目标时刻n h选取的第二码字加权的第二子阵列发射的第二波束。
情况二:在另一些实施例中,本申请实施例提供的波束扫描方法不可以忽略终端的回波。如图5A和图5B所示,S304可以包括S501-S504中的部分或全部步骤:
第一通信设备可以对终端和目标进行多次周期性的波束扫描,这里以n次为例,n为小于K/2的正整数。
本申请实施例以在第二时刻,即第二次波束扫描时,第一通信设备接收到终端的测量信息为例。
第二时刻以t=n 1时刻为例。
具体地,在t=n 1时刻,第一通信设备通过由第一码字f 1(n 1)加权的第一子阵列发射第一波束以及通过由第二码字f 2(n 1)加权的第二子阵列发射第二波束。
S501:终端在第二时刻确定的第三时间段内向第一通信设备发送第三测量信息,该第三测量信息用于指示终端接收到接收功率大于目标阈值的波束。
终端可以接收第一通信设备发送的第一波束和第二波束,两个波束均携带参考信号,关于参考信号的具体介绍可以参见S301中的相关描述,这里不再赘述。
终端可以对接收到的第一波束和第二波束进行测量,例如可以测量波束的接收功率,从而,得到第三测量信息。该第三测量信息用于指示终端接收到接收功率大于目标阈值的波束。
当终端测量的波束的接收功率大于目标阈值时,可以向第一通信设备发送测量信息。
S502:第一通信设备在第二时刻确定的第三时间段内接收终端发送的第三测量信息时,通过由第一码字加权的第一子阵列发射第三波束。
在一些实施例中,在第一通信设备接收到终端发送的第三测量信息时,也可以通过由第二码字加权的第二子阵列发射第三波束。
在一种可能的实现中,第二时刻确定的第三时间段可以为t=n 1+Δt 1,可以是以第二时刻开始的一个周期。该周期可以是一段预设时间,即第三预设时间,该第三预设时间由基站确定预先配置给终端,例如通过小区系统消息广播地配置给终端。第二时刻确定的第三时间段也可以是以第二时刻开始至第一通信设备接收到第三测量信息的时刻。若第一通信设备在第二时刻至第三预设时间结束时刻这段时间内没有接收到终端发送的第三测量信息,可以认定终端所处的方向既不是第一波束的方向,也不是第二波束的方向。此时,第一通信设备可以从码本中重新选择两个不同的码字例如f 1(n 2)和f 2(n 2)。
当第一通信设备通过第一波束和第二波束进行波束扫描,接收到第三测量信息之后,并不能确定终端接收功率大于目标阈值的波束是第一码字加权的第一子阵列发射的第一波束,还是第二码字加权的第二子阵列发射的第二波束,所以需要进行一次补充测量,通过由在第二时刻选取的第一码字加权的第一子阵列或由在第二时刻选取的第二码字加权的第二子阵列发射第三波束。
在一些实施例中,第一通信设备未接收到终端发送的第三测量信息时,表示第一波束和第二波束均不是终端的接收功率大于目标阈值的波束第一通信设备可以在码本中重新选择两个不同的码字,例如f 1(n 2)和f 2(n 2)。接下来,通过由第一码字f 1(n 2)加权的第一子阵列发射第一波束以及通过由第二码字f 2(n 2)加权的第二子阵列发射第二波束。
S503:终端在对第三波束测量后,在第二时刻确定的第四时间段向第一通信设备发送第四测量信息,第四测量信息指示终端的接收功率大于目标阈值的波束。
终端可以对接收到的第三波束进行测量,例如可以测量第三波束的接收功率,从而,得到第四测量信息。该第四测量信息可以用于指示接收功率大于目标阈值的波束。
S504:第一通信设备在第二时刻确定的第四时间段接收到终端发送的第四测量信息,确定向终端发送数据的波束方向。
该第四测量信息指示的接收功率大于目标阈值的波束可以是第三波束,也可以是由在第二时刻选取的第二码字加权的第二子阵列发射的第二波束。
在一种可能的实现中,第二时刻确定的第四时间段可以为t=n 1+Δt 2,可以是以第三波束的发射时刻开始的第一时长,或可以是以第二时刻开始的第二时长,其中,该第一时长可以是一个周期的时长,第二时长可以是两个周期的时长。第三波束的发射时刻开始的第一时长也可以是一段预设时间,即第四预设时间,该第四预设时间可以由基站确定预先配置给终端,例如通过小区系统消息广播地配置给终端。以第二时刻开始的第二时长可以包括第一通信设备发射第一波束和第二波束,接收第三测量信息,发射第三波束,接收第四测量信息等四个过程,其中,第三波束的发射时刻可以处于第二时刻确定的第三时间段内,也可以处于第二时刻确定的第三时间段之后,以第二时刻确定的第二时长可以是两个周期,也可以介于一个周期和两个周期之间,还可以是一个周期。
该方法中,将终端接收功率大于目标阈值的波束作为向终端发送数据的波束方向,第一通信设备在第二时刻发送波束后,可以确定终端接收功率大于目标阈值的波束方向,并将其作为向终端发送数据的波束方向,可以不用完成n次波束扫描,在降低波束扫描成本的同时,还可以进一步地节约时间。
情况三:在又一些实施例中,本申请实施例提供的波束扫描方法不可以忽略终端的回波。如图6A和图6B所示,S304可以包括S601-S608中的部分或全部步骤:
第一通信设备可以对终端和目标进行多次周期性的波束扫描,这里可以以n次为例,n为小于K/2的正整数。
本申请实施例可以以在第三时刻,即第三次波束扫描时,第一通信设备接收到终端的测量信息为例。
第三时刻可以以t=n 2时刻为例。
具体地,在t=n 2时刻,第一通信设备通过由第一码字f 1(n 2)加权的第一子阵列发射第一波束以及通过由第二码字f 2(n 2)加权的第二子阵列发射第二波束。
S601:终端在第三时刻确定的第五时间段内向第一通信设备发送第五测量信息,该第五测量信息用于指示终端的接收功率大于目标阈值的波束。
终端可以接收第一通信设备发送的第一波束和第二波束,两个波束均携带参考信号,关于参考信号的具体介绍可以参见S301中的相关描述,这里不再赘述。
终端可以对接收到的第一波束和第二波束进行测量,例如可以测量波束的接收功率,从而,得到第五测量信息。该第五测量信息用于指示终端接收到接收功率大于目标阈值的波束。
当终端测量的波束的接收功率大于目标阈值时,可以向第一通信设备发送测量信息。
S602:第一通信设备在第三时刻确定的第五时间段内接收终端发送的第五测量信息时,通过由第一码字加权的第一子阵列发射第三波束。
在一些实施例中,在第一通信设备接收到终端发送的第五测量信息时,也可以通过由第二码字加权的第二子阵列发射第三波束。
在一种可能的实现中,第三时刻确定的第五时间段可以为t=n 2+Δt 1,可以是以第三时刻开始的一个周期。该周期可以是一段预设时间,即第五预设时间,该第五预设时间可以由基站确定预先配置给终端,例如通过小区系统消息广播地配置给终端。第三时刻确定的第五时 间段也可以是以第三时刻开始至第一通信设备接收到第五测量信息的时刻。若第一通信设备在第三时刻至第五预设时间结束时刻这段时间内没有接收到终端发送的第五测量信息,可以认定终端所处的方向既不是第一波束的方向,也不是第二波束的方向。此时,第一通信设备可以从码本中重新选择两个不同的码字例如f 1(n 3)和f 2(n 3)。
当第一通信设备通过第一波束和第二波束进行波束扫描,接收到第五测量信息之后,并不能确定终端接收功率大于目标阈值的波束是第一码字加权的第一子阵列发射的第一波束,还是第二码字加权的第二子阵列发射的第二波束,所以需要进行一次补充测量,通过由在第二时刻选取的第一码字加权的第一子阵列或由在第二时刻选取的第二码字加权的第二子阵列发射第三波束。
在一些实施例中,第一通信设备未接收到终端发送的第五测量信息时,表示第一波束和第二波束均不是终端的接收功率大于目标阈值的波束第一通信设备可以在码本中重新选择两个不同的码字,例如f 1(n 3)和f 2(n 3)。接下来,通过由第一码字f 1(n 3)加权的第一子阵列发射第一波束以及通过由第二码字f 2(n 3)加权的第二子阵列发射第二波束。
S603:终端在对第三波束测量后,在第三时刻确定的第六时间段向第一通信设备发送第六测量信息,第六测量信息指示终端的接收功率大于目标阈值的波束。
终端可以对接收到的第三波束进行测量,例如可以测量第三波束的接收功率,从而,得到第六测量信息。该第六测量信息可以用于指示接收功率大于目标阈值的波束。
S604:第一通信设备在第三时刻确定的第六时间段接收到终端发送的第六测量信息,确定终端的接收功率大于目标阈值的波束。
该第六测量信息指示的接收功率大于目标阈值的波束可以是第三波束,也可以是由在第三时刻选取的第二码字加权的第二子阵列发射的第二波束。
在一种可能的实现中,第三时刻确定的第六时间段可以为t=n 2+Δt 1,可以是以第三波束的发射时刻开始的第一时长,或可以是以第三时刻开始的第二时长,其中,该第一时长可以是一个周期的时长,第二时长可以是两个周期的时长。第三波束的发射时刻开始的第一时长也可以是一段预设时间,即第六预设时间,该第六预设时间可以由基站确定预先配置给终端,例如通过小区系统消息广播地配置给终端。以第三时刻开始的第二时长可以包括第一通信设备发射第一波束和第二波束,接收第五测量信息,发射第三波束,接收第六测量信息等四个过程,其中,第三波束的发射时刻可以处于第三时刻确定的第五时间段内,也可以处于第三时刻确定的第五时间段之后,以第三时刻确定的第二时长可以是两个周期,也可以介于一个周期和两个周期之间,还可以是一个周期。
S605:在完成n次波束扫描之后,终端向第一通信设备发送第七测量信息,第七测量信息包括接收功率最强的目标时刻。
例如,终端向第一通信设备发送时刻n g,n次波束扫描包括第g次波束扫描,g为小于n的正整数。
终端可以接收第一通信设备发送的至少一个波束,该至少一个波束携带参考信号,关于参考信号的具体介绍可以参见S301中的相关描述,这里不再赘述。
终端可以对接收到的至少一个波束进行测量,例如可以测量波束的接收功率,从而,得到第七测量信息。该第七测量信息可以包括接收功率最强的目标时刻n g
S606:第一通信设备接收到终端发送的第七测量信息后,通过由在目标时刻n g选取的第一码字加权的第一子阵列发射第三波束。
在一些实施例中,第一通信设备在接收到通信终端发送的第七测量信息后,也可以通过 在目标时刻n g选取的第二码字加权的第二子阵列发射第三波束。
第一通信设备在接收到第七测量信息之后,并不能确定终端处于第一码字加权的第一子阵列发射的波束方向,还是第二码字加权的第二子阵列发射的波束方向,所以需要进行一次补充测量,通过由在目标时刻n g选取的第一码字加权的第一子阵列或由在目标时刻n g选取的第二码字加权的第二子阵列发射第三波束。
S607:终端在对第七波束测量后,向第一通信设备发送第八测量信息,第八测量信息指示终端的接收功率最强的波束。
终端可以对接收到的第三波束进行测量,例如可以测量第三波束的接收功率,从而,得到第八测量信息。该第八测量信息可以用于指示接收功率最强的波束。
S608:第一通信设备接收到终端发送的第八测量信息,确定向终端发送数据的波束方向。
该第八测量信息指示的接收功率最强的波束可以是第三波束,也可以是由在目标时刻n g选取的第二码字加权的第二子阵列发射的第二波束。
S305:第一通信设备通过向终端发送数据的波束方向对应的码字加权的第一子阵列发射第一波束;通过目标所处的波束方向对应的码字加权的第二子阵列发射第二波束;该第一波束和第二波束均承载第一通信设备向终端发送的数据信号。
在本申请实施例中,接收端以终端为例,在一些实施例中,接收端也可以为接入网设备,例如基站。
本申请实施例提供的利用双波束进行波束扫描的方法,第一通信设备可以同时生成双波束,因而可以采用双波束同时进行扫描,可以同时定位出终端和需要感知的目标的方位,加快波束扫描过程,可以降低波束扫描的开销。
在本申请实施例中,对所有步骤的时间先后顺序不作限制。
基于上述网络架构,请参阅图7,图7是本申请实施例公开的一种通信装置的结构示意图。如图7所示,该通信装置可以包括:发送单元71、接收单元72、处理单元73。
发送单元71具体用于通过由所述第一码字加权的所述第一子阵列发射第一波束,所述第一码字用于确定所述第一波束的方向;
发送单元71具体用于通过由所述第二码字加权的所述第二子阵列发射第二波束,所述第二码字用于确定所述第二波束的方向;
其中,所述第一码字和所述第二码字来源于码本,所述第一波束和所述第二波束承载的信号相同。
所述码本是基于数字傅里叶变换DFT-based的M/2*K维码本,K为所述码本中码字的数量,所述码本包括第i个码字w i,i为不大于K的正整数;
Figure PCTCN2022136167-appb-000019
其中,w i中的一个元素用于调节一个天线振子的相位。
具体地,发送单元71具体用于基于所述第一子阵列对应的所述第一移相器通过由所述第一码字加权的所述第一子阵列发射所述第一波束,所述第一码字用于确定所述第一波束的方向;
发送单元71具体用于基于所述第二子阵列对应的所述第一移相器通过由所述第二码字加权的所述第二子阵列发射所述第二波束,所述第二码字用于确定所述第二波束的方向。
在所述第一码字和所述第二码字相同的情况下,处理单元73具体用于基于所述第二移相器调节所述第二子阵列的相位变化目标相位
Figure PCTCN2022136167-appb-000020
其中,i为所述码本中的第i个码字,i为不大 于K的正整数。
Figure PCTCN2022136167-appb-000021
发送单元71具体用于在第一时刻通过由第一码字加权的所述第一子阵列发射第一波束以及通过由第二码字加权的所述第二子阵列发射第二波束,所述第一码字用于确定所述第一波束的方向,所述第二码字用于确定所述第二波束的方向;其中,所述第一码字和所述第二码字是从码本中选择的两个不同的码字,所述第一波束和所述第二波束均承载信号;
接收单元72具体用于在第一时刻确定的第一时间段内接收到目标的第一回波信号时,通过由所述第一码字加权的所述第一子阵列发射第三波束;
接收单元72具体用于在第一时刻确定的第二时间段内接收到所述目标的第二回波信号时,所述第一通信设备确定所述第三波束的方向为所述目标所处的方向;
处理单元73具体用于在第一时刻确定的第二时间段内未接收到所述目标的第二回波信号时,根据所述第二波束的方向确定所述目标所处的方向。
处理单元73具体用于根据来自于第二通信设备的测量信息,确定向所述第二通信设备发送数据的波束方向。
接收单元72具体用于接收所述第二通信设备发送的所述第一测量信息,所述第一测量信息包括接收功率最强的目标时刻;
发送单元71具体用于通过在所述目标时刻选取的所述第一码字加权的所述第一子阵列发射第四波束。
接收单元72具体用于接收所述第二通信设备发送的所述第二测量信息,所述第二测量信息用于指示向所述第二通信设备发送数据的波束方向。
接收单元72具体用于在第二时刻确定的第三时间段内接收所述第二通信设备发送的所述第三测量信息。
发送单元71具体用于通过由所述第一码字加权的所述第一子阵列发射第五波束,所述第三测量信息用于指示所述第二通信设备接收到接收功率大于目标阈值的波束;
接收单元72具体用于在第二时刻确定的第四时间段内接收所述第二通信设备发送的所述第四测量信息。
处理单元73具体用于根据所述第四测量信息确定向所述第二通信设备发送数据的波束方向;所述第四测量信息指示所述第五波束是否为接收功率大于目标阈值的波束。
发送单元71具体用于通过向所述第二通信设备发送数据的波束方向对应的码字加权的所述第一子阵列发射第六波束;发送单元71具体用于通过所述目标所处的波束方向对应的码字加权的所述第二子阵列发射第七波束;所述第六波束和所述第七波束用于均承载所述第一通信设备向所述接收段发送的数据信号。
基于上述网络架构,请参阅图8,图8是本申请实施例公开的另一种通信装置的结构示意图。如图8所示,该通信装置可以包括:接收单元81、测量单元82、发送单元83。
接收单元81,具体用于接收第一通信设备发送参考信号;
测量单元82,具体用于测量接收到的所述波束的接收功率,得到第一测量信息;
发送单元83,具体用于向发所述第一通信设备发送所述第一测量信息,所述第一测量信息用于指示满足要求的波束方向;
所述测量单元82还用于测量在发送所述第一测量信息之后接收到的来自所述第一通信 设备的参考信号,得到第二测量信息;所述参考信号的波束方向为所述满足要求的波束中的一个波束方向;
所述发送单元83还用于向所述第一通信设备发送所述第二测量信息,所述第二测量信息用于确认所述第一通信设备向所述第二通信设备发送数据的波束方向。
本发明实施例还公开一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中的方法。
本发明实施例还公开一种包括指令的计算机程序产品,该指令被执行时执行上述方法实施例中的方法。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。
在上述实施例中,全部或部分功能可以通过软件、硬件、或者软件加硬件的组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本申请实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求中所使用时,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”、“这一”旨在也包括复数形式,除非其上下文中有明确地相反指示。
还应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。此外,术语“第一”、“第二”、“目标”等是用于区别不同对象,而不是用于描述特定顺序。术语“多个”是指两个或多于两个。
还应当进一步理解,在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包括在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种波束赋形方法,其特征在于,应用于第一通信设备,所述第一通信设备包括天线阵列,所述天线阵列包括M个天线振子,所述M个天线振子包括第一子阵列和第二子阵列;M为大于1的正整数,所述方法包括:
    所述第一通信设备通过由所述第一码字加权的所述第一子阵列发射第一波束,所述第一码字用于确定所述第一波束的方向;
    所述第一通信设备通过由所述第二码字加权的所述第二子阵列发射第二波束,所述第二码字用于确定所述第二波束的方向;
    其中,所述第一码字和所述第二码字来源于码本,所述第一波束和所述第二波束承载的信号相同。
  2. 根据权利要求1所述的方法,其特征在于,所述码本是基于数字傅里叶变换DFT-based的(M/2)*K维码本,K为所述码本中码字的数量,M/2为所述码本中各个码字的长度,所述码本包括第i个码字w i,i为不大于K的正整数;
    Figure PCTCN2022136167-appb-100001
    其中,w i中的一个元素用于调节一个天线振子的相位。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一通信设备还包括M个第一移相器,所述第一移相器与所述天线振子一一对应,所述第一子阵列包括M/2天线振子,所述第二子阵列包括M/2天线振子;
    所述第一通信设备基于所述第一子阵列对应的所述第一移相器,通过由所述第一码字加权的所述第一子阵列发射所述第一波束,所述第一码字用于确定所述第一波束的方向;
    所述第一通信设备基于所述第二子阵列对应的所述第一移相器,通过由所述第二码字加权的所述第二子阵列发射所述第二波束,所述第二码字用于确定所述第二波束的方向。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一码字与所述第二码字不同。
  5. 根据权利要求2所述的方法,其特征在于,所述第一码字和所述第二码字相同;所述第一通信设备还包括第二移相器,在所述发射第二波束之前,所述方法还包括:
    所述第一通信设备基于所述第二移相器加权所述第二子阵列的相位变化目标相位
    Figure PCTCN2022136167-appb-100002
    Figure PCTCN2022136167-appb-100003
    其中,i为所述码本中的第i个码字,i为不大于K的正整数。
  6. 一种波束扫描方法,其特征在于,应用于第一通信设备,所述第一通信设备包括天线阵列,所述天线阵列包括M个天线振子,所述M个天线振子包括第一子阵列和第二子阵列;M为大于1的正整数,所述方法包括:
    所述第一通信设备在第一时刻通过由第一码字加权的所述第一子阵列发射第一波束以及通过由第二码字加权的所述第二子阵列发射第二波束,所述第一码字用于确定所述第一波束的方向,所述第二码字用于确定所述第二波束的方向;其中,所述第一码字和所述第二码字 是从码本中选择的两个不同的码字,所述第一波束和所述第二波束均承载相同信号;
    所述第一通信设备在第一时刻确定的第一时间段内接收到目标的第一回波信号时,通过由所述第一码字加权的所述第一子阵列发射第三波束;
    所述第一通信设备在第一时刻确定的第二时间段内接收到所述目标的第二回波信号时,所述第一通信设备根据所述第三波束的方向确定所述目标所处的方向;
    所述第一通信设备根据来自于第二通信设备的测量信息,确定向所述第二通信设备发送数据的波束方向。
  7. 根据权利要求6所述的方法,其特征在于,所述第一通信设备在第一时刻确定的第二时间段内接收到所述目标的第二回波信号时,所述第一通信设备确定所述第三波束的方向为所述目标所处的方向,还包括:
    所述第一通信设备未接收到所述目标的第二回波信号时,所述第一通信设备根据所述第二波束的方向确定所述目标所处的方向。
  8. 根据权利要求6或7所述的方法,其特征在于,所述测量信息包括第一测量信息和第二测量信息,所述第一通信设备根据来自于第二通信设备的测量信息,确定向所述第二通信设备发送数据的波束方向,包括:
    所述第一通信设备接收所述第二通信设备发送的所述第一测量信息,所述第一测量信息包括接收功率最强的目标时刻;
    所述第一通信设备通过所述第一码字加权的所述第一子阵列发射第四波束;所述第一码字为所述第一通信设备在所述目标时刻选取的码字;
    所述第一通信设备接收所述第二通信设备发送的所述第二测量信息,所述第二测量信息用于指示向所述第二通信设备发送数据的波束方向。
  9. 根据权利要求6或7所述的方法,其特征在于,所述测量信息包括第三测量信息和第四测量信息,所述第一通信设备根据来自于第二通信设备的测量信息,确定向所述第二通信设备发送数据的波束方向,包括:
    所述第一通信设备在第二时刻确定的第三时间段内接收所述第二通信设备发送的所述第三测量信息时,通过由所述第一码字加权的所述第一子阵列发射第五波束,所述第三测量信息用于指示所述第二通信设备接收到接收功率大于目标阈值的波束;
    所述第一通信设备在第二时刻确定的第四时间段内接收所述第二通信设备发送的所述第四测量信息时,根据所述第四测量信息确定向所述第二通信设备发送数据的波束方向;所述第四测量信息指示所述第五波束是否为接收功率大于目标阈值的波束。
  10. 根据权利要求6-9任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信设备通过向所述第二通信设备发送数据的波束方向对应的码字加权的所述第一子阵列发射第六波束;所述第一通信设备通过所述目标所处的波束方向对应的码字加权的所述第二子阵列发射第七波束;所述第六波束和所述第七波束用于均承载所述第一通信设备向所述接收段发送的数据信号。
  11. 根据权利要求6-10任一项所述的方法,其特征在于,所述码本是基于数字傅里叶变 换DFT-based的M/2*K维码本,K为所述码本中码字的数量,M/2为所述码本中各个码字的长度,所述码本包括第i个码字w i,i为不大于K的正整数;
    Figure PCTCN2022136167-appb-100004
    其中,w i中的一个元素用于调节一个天线振子的相位。
  12. 根据权利要求6-11任一项所述的方法,其特征在于,所述第一通信设备还包括M个第一移相器,所述第一移相器与所述天线振子一一对应,所述第一子阵列包括M/2天线振子,所述第二子阵列包括M/2天线振子;
    所述第一通信设备基于所述第一子阵列对应的所述第一移相器通过由所述第一码字加权的所述第一子阵列发射所述第一波束,所述第一码字用于确定所述第一波束的方向;
    所述第一通信设备基于所述第二子阵列对应的所述第一移相器通过由所述第二码字加权的所述第二子阵列发射所述第二波束,所述第二码字用于确定所述第二波束的方向。
  13. 一种波束扫描方法,其特征在于,包括:
    第二通信设备接收第一通信设备发送参考信号;
    所述第二通信设备测量所述参考信号的接收功率,得到第一测量信息;
    所述第二通信设备向所述第一通信设备发送所述第一测量信息,所述第一测量信息用于指示满足要求的波束方向;
    所述第二通信设备测量在发送所述第一测量信息之后接收到的来自所述第一通信设备的参考信号,得到第二测量信息;所述参考信号的波束方向为所述满足要求的波束中的一个波束方向;
    所述第二通信设备向所述第一通信设备发送所述第二测量信息,所述第二测量信息用于确认所述第一通信设备向所述第二通信设备发送数据的波束方向。
  14. 根据权利要求13所述的方法,其特征在于,所述第一测量信息为接收功率最强的时刻或者接收功率大于目标阈值的时刻,所述满足要求的波束方向为所述第一测量信息所指示的所述第一通信设备发射波束的方向。
  15. 一种通信装置,其特征在于,所述通信装置包括天线阵列,所述天线阵列包括M个天线振子,所述M个天线振子包括第一子阵列和第二子阵列;M为大于1的正整数,所述通信装置还包括:
    发送单元,用于通过由所述第一码字加权的所述第一子阵列发射第一波束,所述第一码字用于确定所述第一波束的方向;以及用于通过由所述第二码字加权的所述第二子阵列发射第二波束,所述第二码字用于确定所述第二波束的方向;
    其中,所述第一码字和所述第二码字来源于码本,所述第一波束和所述第二波束承载的信号相同。
  16. 一种通信装置,其特征在于,所述通信装置包括天线阵列,所述天线阵列包括M个天线振子,所述M个天线振子包括第一子阵列和第二子阵列;M为大于1的正整数,所述通信装置还包括:
    发送单元,用于在第一时刻通过由第一码字加权的所述第一子阵列发射第一波束以及通过由第二码字加权的所述第二子阵列发射第二波束,所述第一码字用于确定所述第一波束的方向,所述第二码字用于确定所述第二波束的方向;其中,所述第一码字和所述第二码字是从码本中选择的两个不同的码字,所述第一波束和所述第二波束均承载参考信号;
    接收单元,用于接收目标的回波信号;
    所述发送单元还用于在第一时刻确定的第一时间段内接收到所述目标的第一回波信号时,通过由所述第一码字加权的所述第一子阵列发射第三波束;
    处理单元,用于在第一时刻确定的第二时间段内接收到所述目标的第二回波信号;确定所述第三波束的方向为所述目标所处的方向;
    所述处理单元还用于根据来自于第二通信设备的测量信息,确定向所述第二通信设备发送数据的波束方向,所述测量信息用于指示向所述第二通信设备发送数据的波束方向。
  17. 一种通信装置,其特征在于,所述通信装置包括:
    接收单元,用于接收第一通信设备发射的波束,所述波束携带参考信号;
    测量单元,用于测量接收到的所述波束的接收功率,得到第一测量信息;
    发送单元,用于向发所述第一通信设备发送所述第一测量信息,所述第一测量信息用于指示满足要求的波束方向;
    所述测量单元还用于测量在发送所述第一测量信息之后接收到的来自第一通信设备的目标波束,得到第二测量信息;所述目标波束的方向为所述满足要求的波束中的一个波束方向相同;
    所述发送单元还用于向所述第一通信设备发送所述第二测量信息,所述第二测量信息用于确认所述第一通信设备向所述第二通信设备发送数据的波束方向。
  18. 一种通信装置,其特征在于,包括处理器、存储器和通信接口,所述通信接口用于接收和发送信息,所述处理器调用所述存储器中存储的计算机程序实现如权利要求1-12任一项所述的方法。
  19. 一种通信装置,其特征在于,包括处理器、存储器和通信接口,所述通信接口用于接收和发送信息,所述处理器调用所述存储器中存储的计算机程序实现如权利要求13-14任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或计算机指令,当所述计算机程序或计算机指令被运行时,实现如权利要求1-14任一项所述的方法。
PCT/CN2022/136167 2021-12-30 2022-12-02 波束赋形方法、波束扫描方法及相关设备 WO2023124771A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111662660.2A CN116418380A (zh) 2021-12-30 2021-12-30 波束赋形方法、波束扫描方法及相关设备
CN202111662660.2 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023124771A1 true WO2023124771A1 (zh) 2023-07-06

Family

ID=86997620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136167 WO2023124771A1 (zh) 2021-12-30 2022-12-02 波束赋形方法、波束扫描方法及相关设备

Country Status (2)

Country Link
CN (1) CN116418380A (zh)
WO (1) WO2023124771A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117335848A (zh) * 2023-11-06 2024-01-02 国家工业信息安全发展研究中心 一种超大规模mimo空间非平稳信道的波束训练方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790806A (zh) * 2014-12-19 2016-07-20 株式会社Ntt都科摩 混合波束赋形技术中的公共信号传输方法及装置
CN106537804A (zh) * 2014-07-15 2017-03-22 高通股份有限公司 用于在毫米波接入系统中进行波束跟踪的非对称能力驱动方法
US20180006702A1 (en) * 2016-06-30 2018-01-04 Intel Corporation Apparatus, system and method of hybrid beamforming training
CN108401264A (zh) * 2017-02-07 2018-08-14 中兴通讯股份有限公司 一种波束信息反馈方法及装置
US20220247474A1 (en) * 2019-06-28 2022-08-04 Telefonaktiebolaget Lm Ericsson (Publ) First node, wireless device and methods performed thereby, for handling beamforming beams

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106537804A (zh) * 2014-07-15 2017-03-22 高通股份有限公司 用于在毫米波接入系统中进行波束跟踪的非对称能力驱动方法
CN105790806A (zh) * 2014-12-19 2016-07-20 株式会社Ntt都科摩 混合波束赋形技术中的公共信号传输方法及装置
US20180006702A1 (en) * 2016-06-30 2018-01-04 Intel Corporation Apparatus, system and method of hybrid beamforming training
CN108401264A (zh) * 2017-02-07 2018-08-14 中兴通讯股份有限公司 一种波束信息反馈方法及装置
US20220247474A1 (en) * 2019-06-28 2022-08-04 Telefonaktiebolaget Lm Ericsson (Publ) First node, wireless device and methods performed thereby, for handling beamforming beams

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117335848A (zh) * 2023-11-06 2024-01-02 国家工业信息安全发展研究中心 一种超大规模mimo空间非平稳信道的波束训练方法
CN117335848B (zh) * 2023-11-06 2024-04-16 国家工业信息安全发展研究中心 一种超大规模mimo空间非平稳信道的波束训练方法

Also Published As

Publication number Publication date
CN116418380A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2019134555A1 (zh) 用于终端设备的定位方法、装置及系统
CN106171012B (zh) 用于低功率室内定位的Wi-Fi扫描调度和功率适应
US20170317729A1 (en) Wireless communication apparatus and wireless communication control method
KR102178037B1 (ko) 무선 네트워크에서 피드백을 위한 기저 함수의 변환 기법
WO2020093929A1 (zh) 电子装置、无线通信方法和计算机可读介质
KR20170044994A (ko) 밀리미터파 통신 시스템에서 빔 포밍 동작을 수행하는 장치 및 방법
CN114287150B (zh) 下行链路定位期间的波束选择
CN112369086A (zh) 用于基于波束信息定位的方法、设备和计算机可读介质
US9161330B2 (en) Method of enabling single chain ranging operations
WO2020164743A1 (en) Apparatus, method and computer program for beam management
WO2023124771A1 (zh) 波束赋形方法、波束扫描方法及相关设备
WO2018020900A1 (ja) 端末装置、基地局、方法及び記録媒体
US9229093B2 (en) Method for estimating a location of an electronic device with aid of information carried by responses corresponding to one broadcast request sent to multiple devices, and associated apparatus
CN110557212A (zh) 基于扩展紧缩场测试的毫米波终端测试系统及其方法
TWI807115B (zh) 毫米波信號的通訊路徑確定方法、測量裝置及測量控制器
US11252691B2 (en) Apparatus, system and method of location mapping
US20220295570A1 (en) Rach-based tx beam refinement procedure
US11510172B1 (en) Device detection and locationing within a wireless network
WO2020238922A1 (zh) 通信方法及装置
CN115119136A (zh) 定位方法、终端及网络侧设备
CN112152689A (zh) 波束发送控制方法、装置及发送端
CN111565060A (zh) 波束赋形方法和天线设备
WO2023193710A1 (zh) 信号极化处理方法、设备及可读存储介质
EP3729676A1 (en) Enhanced establishment of communication between nodes in a communication system
CN110912600B (zh) 一种通信方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914026

Country of ref document: EP

Kind code of ref document: A1