WO2023124495A1 - 一种适应晶硅p+层接触的厚膜银浆用玻璃粉及其制备方法 - Google Patents

一种适应晶硅p+层接触的厚膜银浆用玻璃粉及其制备方法 Download PDF

Info

Publication number
WO2023124495A1
WO2023124495A1 PCT/CN2022/128496 CN2022128496W WO2023124495A1 WO 2023124495 A1 WO2023124495 A1 WO 2023124495A1 CN 2022128496 W CN2022128496 W CN 2022128496W WO 2023124495 A1 WO2023124495 A1 WO 2023124495A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
crystalline silicon
glass powder
layer
glass
Prior art date
Application number
PCT/CN2022/128496
Other languages
English (en)
French (fr)
Inventor
刘家敬
李宇
杨至灏
黄良辉
Original Assignee
广东南海启明光大科技有限公司
佛山市瑞纳新材科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东南海启明光大科技有限公司, 佛山市瑞纳新材科技有限公司 filed Critical 广东南海启明光大科技有限公司
Publication of WO2023124495A1 publication Critical patent/WO2023124495A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells

Definitions

  • the present invention relates to C03C, and more specifically, the present invention relates to the field of functional glass frit materials, which can be used as raw materials for preparing thick-film silver pastes, and related thick-film silver pastes can be applied to the p+ layer surface of N-type crystalline silicon solar cells to realize electrode and Ohmic contact of the p+ layer.
  • Solar cell power generation technology as a new power generation technology that is clean, environmentally friendly, safe and reliable, rich in resources, and wide in application fields, is one of the most promising energy utilization technologies in the future world.
  • the mainstream photovoltaic technology is mainly P-type rear passivated local contact cell (PERC cell), the industrialization efficiency is 22.5-23.3%, but limited by the industrialization of PERC cell technology, the highest conversion efficiency is about 24.5%.
  • Product development will encounter obvious bottlenecks in continuous development; while the highest efficiency of N-TOPCon/P-TOPCon battery industrialization is expected to reach 27.0%, which will become one of the cores of future photovoltaic technology development.
  • TOPCon crystalline silicon solar cells have the characteristics of relatively simple preparation process, high conversion efficiency, low temperature coefficient and small light decay. The efficiency in 2021 has reached the level of 24.2-24.5%.
  • the development level of silver paste related to TOPCon crystalline silicon cells determines the speed of TOPCon cell technology development.
  • For the p+ layer structure of TOPCon batteries its surface concentration is low, and it is necessary to use a special silver-aluminum paste for TOPCon batteries that is different from the silver paste on the front side of PERC batteries.
  • aluminum-containing powder is often added to high-conductivity silver powder to improve ohmic contact.
  • the glass powder of the silver-aluminum paste needs to be specially optimized to effectively balance the metal-induced recombination speed and the metal-semiconductor contact resistance.
  • the alloy powder of Al and Zn, Cu, Ni, Au, Zn or Sn is added, and the glass powder is made of at least one of PbO/SiO2/ZnO/Bi2O3/Al2O3/B2O3.
  • This kind of raw material design only defines the weight ratio of PbO as 50-97%, and does not clearly define the use range of other oxides, and the softening point is 200-700°C.
  • the glass powder of this glass system is difficult to effectively reduce the aluminum pinning effect, and its metal-induced recombination speed is relatively high, which cannot effectively balance the contact resistivity and open-circuit voltage in TOPCon crystalline silicon solar cells.
  • the mass ratio of glass powder for silver-aluminum paste is 60-80% PbO, 15-25% ZnO, 1-10% B2O3, 1-5% SiO2, 0.1- 1.0% WO3, the efficiency of the prepared N-type battery can reach 22.12%, and the contact resistivity can be ⁇ 1.8m ⁇ cm 2 .
  • the glass softening temperature of the invention is relatively high, suitable for sheet sources with high p+ layer concentration and low square resistance, which cannot satisfy the current high square resistance system.
  • the first aspect of the present invention provides a glass frit adapted to contact with the p+ layer of crystalline silicon, the composition of the glass frit includes metal oxides and non-metal oxides, and the metal oxides include lead oxide, Zinc oxide, aluminum oxide, thallium oxide, the non-metallic oxides include silicon oxide, boron oxide.
  • the glass powder is prepared from metal or nonmetal oxides, nitrates, carbonates or crystals of two or more thereof, without specific limitation, wherein each component
  • the final content in the glass powder can be measured by ICP-OES/XRF/EDS and other equipment.
  • the composition of the glass powder includes: 20-80wt% lead oxide, 1-15wt% zinc oxide, 2-25wt% boron oxide, 0.5-8wt% alumina , 0.1-20wt% thallium oxide, 0.2-18wt% silicon oxide.
  • lead oxide As the main oxide, lead oxide has the effects of lowering the smelting temperature, lowering the softening point of the glass, improving the ability to dissolve silver, widening the temperature window of the glass, and improving the contact characteristics. It is one of the commonly used elements in photovoltaic silver paste glass.
  • the SiN layer on the surface of the substrate has a certain corrosion and melting effect. At this moment, the ohmic contact between the silver powder and the silicon chip, but its large amount will also cause increased pollution.
  • the inventors have found that by adding other metal or non-metal oxides, While reducing the lead content, the ohmic contact is promoted, the resistance is reduced, and the photoelectric conversion efficiency is improved.
  • the proportion of lead oxide in the glass powder is 20-80wt%, preferably 40-70wt%, more preferably 50-65wt%.
  • lead oxide include one or more of lead monoxide (PbO), trilead tetroxide (Pb 3 O 4 ), and lead nitrate (Pb(NO 3 ) 2 ).
  • the present invention selects an oxide with a lower softening point, which can promote the sliding of the glass powder in the sintering of the slurry, but also causes the wettability of the glass powder to silver powder to decrease as the temperature increases during the sintering process of the glass powder, and there is a problem of partial exposure.
  • acidic silica as a glass skeleton, it can make the glass have good chemical stability and high-temperature flow uniformity, and improve the degree of vitrification of the glass.
  • the proportion of acidic silicon oxide, such as SiO 2 is 0.2-18 wt%, preferably 1-10 wt%, more preferably 3-8 wt%.
  • Boron oxide has abrupt changes in different glass designs, mainly its tetrahedral and trihedral transitions.
  • the introduction of a certain amount of B 2 O 3 can effectively reduce the softening temperature of the glass and improve the leveling property, enhance the wetting ability of the glass to the substrate, increase the contact area with the silicon substrate, and reduce the ohmic contact resistance, but the silicon-based and boron-based It is difficult to form a uniform melt between the compounds, which will affect the wetting of the silver powder, and at the same time affect the formation of silver crystallites, reducing the open circuit voltage and fill factor.
  • the proportion of boron oxide, such as B 2 O 3 in the glass powder is 2-25 wt%, preferably 5-15 wt%, more preferably 8-15 wt%.
  • alkaline earth zinc oxide taking advantage of its strong chemical stability, proper addition can improve the acid resistance and water resistance of glass powder, and its octahedral structure is also beneficial to improve the wetting of glass powder with lower transformation temperature to silver powder at high temperature.
  • Wet and infiltrate the silicon substrate and also help to promote the transformation of some boron oxide box tetrahedrons, thereby promoting the formation of a homogeneous melt between silicon and boron compounds.
  • zinc oxide such as ZnO, is a semiconductor oxide, which is suitable for forming a good ohmic contact with the silicon substrate, but the amount of zinc added should not be too much, otherwise it will not be conducive to the wetting of silver powder and the reduction of screen printing holes.
  • the proportion of zinc oxide in the glass powder is 1-15wt%, preferably 3-10wt%, more preferably 3-8wt%.
  • Thallium oxide is a strong oxidizing oxide, which can effectively promote the dissolution of silver, promote the formation of silver microcrystals at the silver-silicon interface, and reduce the ohmic contact resistance between the electrode and the silicon substrate.
  • Thallium oxide has a very low melting point, which can effectively reduce the softening temperature of glass, increase the softening and wetting time of glass powder, further reduce the ohmic contact resistance, and by adding thallium oxide, it also promotes the uniform melting of metals and non-metals, and promotes the silver powder package.
  • the proportion of thallium oxide, such as Tl 2 O 3 in the glass powder is 0.5-10 wt%, preferably 2-10 wt%, more preferably 4-8 wt%.
  • the proportion of aluminum oxide , such as Al2O3 in the glass powder is 0.2 ⁇ 8wt%, preferably 1 ⁇ 6wt%, more preferably 2 ⁇ 4wt%.
  • auxiliary oxides can also be added, and the introduction of different oxides can be used to adjust the high-temperature leveling, wettability, glass transition temperature, and Adhesion, redox characteristics, acid and alkali resistance, and reliability, etc., and the inventors found that the metal and non-metal oxides of the present invention are used as the main components, which can adapt to a variety of different auxiliary oxides, and can form a uniform system to promote
  • the coating of silver powder and the bonding to the silicon substrate can reduce the formation of silicate even for calcium oxide, which can form silicate with silicon dioxide, etc., and obtain higher photoelectric conversion efficiency and silver microcrystalline structure.
  • the composition of the glass powder in the metal oxide also includes a pro-oxidant
  • the elements in the pro-oxidant include: bismuth, calcium, barium, lithium, sodium, titanium , vanadium, zirconium, niobium, yttrium, tungsten, germanium, gallium, antimony, tellurium, cerium, neodymium or erbium, which can be oxides, nitrates, carbonates or both of these elements Crystals of one or more, including but not limited to, bismuth trioxide (Bi 2 O 3 ), calcium oxide (CaO), barium oxide (BaO), lithium oxide (Li 2 O), sodium oxide (Na 2 O ), titanium oxide (TiO 2 ), vanadium pentoxide (V 2 O 5 ), zirconia (ZrO), niobium pentoxide (Nb 2 O 5 ), yttrium oxide-free (Y 2 O 5 ), tungsten
  • the glass transition temperature (differential thermal analysis test) of the glass powder is 250-500°C, preferably 300-450°C, more preferably 330-400°C.
  • the particle size D50 (laser particle size distribution analyzer test) of the glass powder is 0.5-4 ⁇ m, preferably 1.0-3.0 ⁇ m, more preferably 1.5-2.5 ⁇ m; the specific surface area (BET ratio) of the glass powder Surface area test method) is 0.5-3.0m 2 /g, preferably 0.8-2.0m 2 /g, more preferably 1.0-1.5m 2 /g, which can be selected according to the particle size of the silver powder in the silver paste, and is not specifically limited.
  • the second aspect of the present invention provides a method for preparing the glass powder suitable for the contact of the p+ layer of crystalline silicon, which includes: blending the raw materials for the preparation of the glass powder at high temperature, and grinding to obtain the glass powder.
  • the specific method includes but is not limited to, smelting ball milling One of the method, sol-gel sintering ball milling method, smelting dry milling method.
  • the smelting ball milling method is to weigh, mix, smelt, quench, dry, ball mill, and then dry the raw materials required for the preparation to obtain the glass powder.
  • the melting temperature is 800-1300°C.
  • the quenching process can be selected but not limited to One of water quenching and dry quenching
  • the ball milling process can be selected but not limited to one of water milling and solvent milling.
  • the sol-gel sintering ball milling method is to prepare the elements involved in the above-mentioned raw materials into a gel, and obtain the glass powder after high-temperature sintering ball milling.
  • the smelting dry grinding method is to obtain the glass powder after weighing, mixing, melting, quenching, drying and dry grinding the raw materials required for the preparation, wherein the dry grinding includes but not limited to zirconium bead mill and jet mill.
  • the third aspect of the present invention provides an application of the glass frit suitable for contacting the p+ layer of crystalline silicon in thick-film silver paste.
  • the mass percentage of the glass powder in the thick-film silver paste is 0.5-10 wt%, and the silver-aluminum paste is prepared above the p+ layer of the TOPCon battery by screen printing technology, and after 720- After high-temperature sintering at 820°C, electrodes with good ohmic contact are formed.
  • the present invention has the following beneficial effects:
  • the present invention provides a glass frit for thick-film silver paste adapted to the contact of the p+ layer of crystalline silicon. By introducing the glass frit into the thick-film silver paste, metal-semiconductor contact resistance and metal-induced recombination speed can be reduced.
  • the glass frit provided by the present invention can be used in the silver-aluminum paste of TOPCon battery, optimize the metal-semiconductor contact performance of the silver-aluminum paste and the p+ layer of crystalline silicon solar cells, reduce metal-induced recombination, improve the open circuit voltage of solar cells, and improve N Type or P-type TOPCon crystalline silicon solar cell photoelectric conversion efficiency.
  • a suitable metal or non-metal oxide as the main component, it can promote the formation of a uniform system, which can promote the wetting of the silver powder and the bonding to the silicon substrate during the subsequent sintering of the silver paste, and reduce the air bubbles in the thick film , reducing the contact resistivity.
  • the glass frit of the main component provided by the present invention can act with various other co-oxidants to further adjust the performance of the glass frit, which has good system adaptability.
  • Reference example 1-2 and embodiment 1-18 provide a kind of glass powder, the preparation raw material of described glass powder is by weight percentage, as shown in table 1:
  • the glass frits provided by Examples 1-18 and Reference Examples 1-2 were applied in the silver-aluminum paste of TOPCon battery, and the corresponding silver-aluminum paste was printed on the p+ layer of the N-type TOPCon crystalline silicon substrate, and dried to obtain a film thickness of 15 microns. After sintering at 750-760°C, the obtained cells were tested for current-voltage performance.
  • the data included open circuit voltage (Voc), series resistance (Rs), fill factor (FF) and conversion efficiency (Eta). The results are shown in Table 2.
  • the glass frit provided by Examples 1-18 and Reference Examples 1-2 was tested by differential thermal analysis (DSC) for transition temperature, and TLM equipment was used to test the contact resistivity of TOPCon solar cell electrodes. The results are shown in Table 2.
  • the formula of the silver-aluminum paste is calculated by weight percentage, including: 87% silver powder, 2% aluminum powder, 3% glass powder, 5% diethylene glycol butyl ether acetate, 1% cellulose acetate butyrate CAB, ethyl cellulose 1% EC, 0.5% glyceryl diacetate, 0.5% dimethyl adipate.
  • the glass frit provided by the invention can be used in silver-aluminum paste, which can significantly improve the aluminum pinning effect brought about by the addition of aluminum, reduce the metal-induced recombination speed to increase the open circuit voltage, and at the same time help to improve the metal-semiconductor contact and reduce the series connection.
  • Resistance and contact resistivity can obtain a crystalline silicon solar cell with high conversion efficiency, and the silver-aluminum paste provided in the embodiment can be applied to a silicon wafer whose surface doping resistance is above 75 ⁇ / ⁇ .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)
  • Glass Compositions (AREA)

Abstract

提供了一种适应晶硅p+层接触的厚膜银浆用玻璃粉及其制备方法。该玻璃粉的成分包括金属氧化物和非金属氧化物,其中,金属氧化物包括氧化铅、氧化铝、氧化锌、氧化铊,非金属氧化物包括氧化硅、氧化硼。通过在厚膜银浆中引入该玻璃粉,可减少金属-半导体接触电阻和金属诱导复合速度。通过控制玻璃粉的粒度和用量,可促进银浆烧结中银微晶快速形成的同时,减少对掺杂层的侵蚀和铝钉扎的形成,提升电池开路电压和填充因子。该玻璃粉可用于TOPCon电池银铝浆中,优化银铝浆与晶体硅太阳电池p+层的金属-半导体接触性能,降低金属诱导复合,提升太阳电池的开路电压,提高N型或P型TOPCon晶体硅太阳电池光电转换效率。

Description

一种适应晶硅p+层接触的厚膜银浆用玻璃粉及其制备方法 技术领域
本发明涉及C03C,更具体地,本发明涉及功能型玻璃粉材料领域,可用于制备厚膜银浆的原材料,相关厚膜银浆可应用于N型晶硅太阳电池p+层表面,实现电极与p+层的欧姆接触。
背景技术
太阳能电池发电技术作为清洁环保、安全可靠、资源丰富、应用领域宽的新型发电技术,是未来世界最有发展前途的能源利用技术之一。目前主流光伏技术主要为P型背面钝化局域接触电池(PERC电池),产业化效率为22.5~23.3%,但受限于PERC电池技术的产业化最高转化效率为约24.5%左右,其相关产品的开发将遇到明显的持续开发瓶颈问题;而N-TOPCon/P-TOPCon电池产业化最高效率预计到27.0%,其将成为未来光伏技术发展的核心之一。
TOPCon晶硅太阳电池具有制备流程相对简单、转换效率高、温度系数低及小光衰等特点,2021年的效率已经到24.2~24.5%水平。TOPCon晶硅电池相关银浆的开发水平决定了TOPCon电池技术发展的快慢程度。针对TOPCon电池的p+层结构,它的表面浓度较低,需要用采用不同于PERC电池正面银浆的TOPCon电池专用银铝浆。目前往往在高导电银粉上添加含铝粉,利用铝粉提高欧姆接触,但是高活性铝粉在高温烧结下会从表面氧化铝壳中溅射出,迅速溶解掉硅沉底的p+掺杂层,形成明显的铝钉扎作用,导致较高的金属诱导,导致光生载流子复合速度过快,电池开路电压及填充因子发生明显下降,太阳电池转化效率下降明显,影响太阳能电池的电学性能。为了平衡该性能,需要特殊优化银铝浆的玻璃粉,以有效平衡金属诱导复合速度和金属-半导体接触电阻。
日本纳美仕公司公开的CN 108701504 A专利中通过添加Al与Zn、Cu、Ni、Au、Zn或Sn的合金粉末等,玻璃粉采用含PbO/SiO2/ZnO/Bi2O3/Al2O3/B2O3中至少一种原料设计,只定义PbO重量比为50~97%,没有明确定义其它各氧化物的使用范围,软化点为200~700℃。采用该玻璃体系的玻璃粉难以实现有效降低铝钉扎作用,其金属诱导复合速度较大,无法在TOPCon晶硅太阳电池中有效平衡接触电阻率和开路电压。
Phoenix股份公司公开的韩国专利10-2015-0142235开发的银铝浆用玻璃粉原料质量比为60~80%PbO、15~25%ZnO、1-10%B2O3、1-5%SiO2、0.1~1.0%WO3,制备出的N型电池效率达22.12%,接触电阻率可<1.8mΩ·cm 2。该发明的玻璃软化温度较高,适用的p+层浓度较高、方阻较低的片源,无法满足目前高方阻体系。
发明内容
为了解决上述问题,本发明第一个方面提供了一种适应晶硅p+层接触的玻璃粉,所述玻璃粉的成份包括金属氧化物和非金属氧化物,所述金属氧化物包括氧化铅、氧化锌、氧化铝、氧化铊,所述非金属氧化物包括氧化硅、氧化硼。
作为本发明一种优选的技术方案,所述玻璃粉为金属或非金属的氧化物、硝酸盐、碳酸盐或其两者或多者的结晶物制备得到,不做具体限定,其中各成份在玻璃粉中的最终含量可通过ICP-OES/XRF/EDS等设备测定。
作为本发明一种优选的技术方案,所述玻璃粉的成份按重量百分数计,包括:20~80wt%氧化铅、1~15wt%氧化锌、2~25wt%氧化硼、0.5~8wt%氧化铝、0.1~20wt%氧化铊、0.2~18wt%氧化硅。
氧化铅作为主体氧化物,具有降低熔炼温度、降低玻璃软化点、提升溶银能力、拓宽玻璃温度窗口、改善接触特性等效果,是光伏银浆玻璃常用的元素之一,氧化铅还可对硅衬底表面SiN层起到一定的腐蚀熔解作用,此刻银粉和硅片的欧姆接触,但其较大的用量也会造成污染增加,而发明人发现,通过添加其他金属或非金属的氧化物,可降低铅含量的同时,促进欧姆接触,降低电阻,提高光电转化效率。按重量比计算,氧化铅在玻璃粉中的比例为20~80wt%,优选40~70wt%,更优选50~65wt%。氧化铅可列举的有,一氧化铅(PbO)、四氧化三铅(Pb 3O 4)、硝酸铅(Pb(NO 3) 2)中一种或几种引入。
本发明选择软化点较低的氧化物,可促进玻璃粉在浆料烧结中的滑动,但也造成玻璃粉烧结过程中随着温度增加,对银粉的润湿性下降,存在部分暴露的问题,通过添加酸性氧化硅作为玻璃骨架存在,它可以使玻璃具有良好的化学稳定性和高温流动均一性,提升玻璃的玻璃化程度。按重量比计算,酸性氧化硅,如SiO 2在玻璃粉中的比例为0.2~18wt%,优选1~10wt%,更优选3~8wt%。
氧化硼在不同的玻璃设计中会有突变现象,主要其四面体和三面体的转变。引入一定量的B 2O 3可以有效降低玻璃软化温度和提高流平性,增强玻璃对衬底的润湿能力,增加与硅衬底的接触面积,减少欧姆接触电阻,但是硅系和硼系化合物之间难以形成均匀熔体,会影响对银粉的润湿的同时,也会影响银微晶的形成,降低开路电压和填充因子。按重量比计算,氧化硼,如B 2O 3在玻璃粉中的比例为2-25wt%,优选5~15wt%,更优选8~15wt%。
通过添加碱土氧化锌,利用其较强的化学稳定性,适当的加入提升玻璃粉的耐酸和耐水性,且其八面体的结构还有利于改善高温时较低转化温度的玻璃粉对银粉的润湿和对硅基底的浸润,且还有利于促进部分氧化硼箱四面体的转变,从而促进硅和硼系化合物形成均一熔体。且氧化锌,如ZnO属于半导体氧化物,适合跟硅衬底形成较好的欧姆接触,但是锌的添加量不能太多,否则不利于对银粉的润湿和丝网印刷孔洞降低。按重量比计算,氧化锌在玻璃粉中的比例为1-15wt%,优选3~10wt%,更优选3~8wt%。
氧化铊属于氧化性强的氧化物,可以有效促进银溶解,促进银硅界面银微晶的形成,减少电极与硅衬底的欧姆接触电阻。氧化铊具有非常低的熔点,能够有效降低玻璃软化温度,增加玻璃粉的软化润湿时间,进一步降低欧姆接触电阻,且通过添加氧化铊,还促进了金属和非金属的均匀熔融,促进对银粉的包裹。按重量比计算,氧化铊,如Tl 2O 3在玻璃粉中的比例为0.5~10wt%,优选2~10wt%,更优选4~8wt%。
在玻璃粉中添加少量的两性氧化铝,随着和玻璃粉其他成分研磨形成铝和其他金属和非金属相关联的结构,有利于后续添加到银浆中并印刷烧结时,减少含铝粉的溅射,避免铝钉扎的形成,进一步提高转化效率,按重量比计算,氧化铝,如Al 2O 3在玻璃粉中的比例为0.2~8wt%,优选1~6wt%,更优选2~4wt%。
为适应晶硅p+层接触的厚膜银浆用玻璃粉,还可添加助氧化物,利用不同氧化物的引入,来针对性调整玻璃粉的高温流平性、润湿性、玻璃转变温度、附着性、氧化还原特性、耐酸碱性和可靠性等,且发明人发现,通过本发明金属和非金属氧化物作为主体成分,可适应多种不同的助氧化物,均可形成均一体系促进银粉的包覆和对硅基底的粘结,即便对于可和二氧化硅等形成硅酸盐的氧化钙等,也可减少其硅酸盐形成,得到较高光电转化效率和银微晶结构。作为本发明 一种优选的技术方案,所述金属氧化物中所述玻璃粉的成份还包括助氧化物,所述助氧化物中的元素包括:包括铋、钙、钡、锂、钠、钛、钒、锆、铌、钇、钨、锗、镓、锑、碲、铈、钕或铒中的至少一种的氧化物,可为这些元素的氧化物、硝酸盐、碳酸盐或其两者或多者的结晶物,包括但不限于,三氧化二铋(Bi 2O 3)、氧化钙(CaO)、氧化钡(BaO)、氧化锂(Li 2O)、氧化钠(Na 2O)、氧化钛(TiO 2)、五氧化二钒(V 2O 5)、氧化锆(ZrO)、五氧化二铌(Nb 2O 5)、无氧化二钇(Y 2O 5)、氧化钨(WO 3)、氧化锗(GeO 2)、三氧化二镓(Ga 2O 3)、三氧化二锑(Sb 2O 3)、二氧化碲(TeO 2)、二氧化铈(CeO 2)、三氧化二钕(Nd 2O 3)、三氧化二铒(Er 2O 3),按重量比计算,助氧化物在玻璃粉中的比例为0~8.0wt%,优选0.5~3wt%,更优选1~2wt%。
作为本发明一种优选的技术方案,所述玻璃粉的玻璃化温度(差热分析测试)为250~500℃,优选300~450℃,更优选330~400℃。
作为本发明一种优选的技术方案,所述玻璃粉的粒度D50(激光粒度分布仪测试)为0.5~4μm,优选1.0~3.0μm,更优选1.5~2.5μm;玻璃粉的比表面积(BET比表面积测试法)为0.5~3.0m 2/g,优选0.8~2.0m 2/g,更优选1.0~1.5m 2/g,可根据银浆中银粉粒径进行选择,不做具体限定。
本发明第二个方面提供了一种所述的适应晶硅p+层接触的玻璃粉的制备方法,包括:将玻璃粉的制备原料高温共混,研磨得到,具体方法包括但不限于,熔炼球磨法、溶胶凝胶烧结球磨法、熔炼干磨法中的一种。熔炼球磨法是将制备所需的原料称量、混合、熔炼、淬火、烘干、球磨、再烘干,得到所述玻璃粉,其熔炼温度为800~1300℃,淬火工艺可选择但不限于水淬、干淬中的一种,球磨工艺可选择但不限于水磨、溶剂磨中的一种。溶胶凝胶烧结球磨法是将上述原材料涉及的元素制备成凝胶状,经高温烧结球磨后得到所述玻璃粉。熔炼干磨法是将制备所需的原料称量、混合、熔炼、淬火、烘干、干磨后得到所述玻璃粉,其中干磨包括但不限于锆珠磨、气流磨。
本发明第三个方面提供了一种所述的适应晶硅p+层接触的玻璃粉在厚膜银浆中的应用。
作为本发明一种优选的技术方案,所述玻璃粉在厚膜银浆中的质量百分数为0.5~10wt%,通过丝网印刷技术将银铝浆制备在TOPCon电池的p+层上方,经过 720~820℃高温烧结后形成具有良好欧姆接触的电极。
本发明与现有技术相比具有以下有益效果:
(1)本发明提供一种适应晶硅p+层接触的厚膜银浆用玻璃粉,通过在厚膜银浆中引入该玻璃粉,可减少金属-半导体接触电阻和金属诱导复合速度。
(2)通过控制玻璃粉的粒度和用量,可促进银浆烧结中银微晶快速形成的同时,减少对掺杂层的侵蚀和铝钉扎的形成,提升电池开路电压和填充因子。
(3)本发明提供的玻璃粉可用于TOPCon电池银铝浆中,优化银铝浆与晶体硅太阳电池p+层的金属-半导体接触性能,降低金属诱导复合,提升太阳电池的开路电压,提高N型或P型TOPCon晶体硅太阳电池光电转换效率。
(4)通过选择合适的金属或非金属氧化物作为主体成分,可促进形成均匀体系,当后续银浆烧结过程中可促进对银粉的润湿和对硅基底的粘结,减少厚膜中气泡,降低接触电阻率。
(5)且本发明提供的主体成分的玻璃粉可和多种其他助氧化物作用,来进一步调节玻璃粉的性能,具有好的体系适应性。
具体实施方式
实施例
参照例1-2和实施例1-18提供一种玻璃粉,所述玻璃粉的制备原料按重量百分数计,如表1所示:
表1
Figure PCTCN2022128496-appb-000001
Figure PCTCN2022128496-appb-000002
性能评价
将实施例1~18和参考例1~2提供的玻璃粉应用在TOPCon电池银铝浆中,将相应银铝浆印刷在N型TOPCon晶硅基板p+层上、干燥得到15微米膜厚,经过750-760℃烧结,得到的电池片进行电流-电压性能测试,数据包括开路电压(Voc)、串联电阻(Rs)、填充因子(FF)和转换效率(Eta),结果见表2。将实施例1~18和参照例1~2提供玻璃粉采用差热分析(DSC)测试转变温度,并采用TLM设备测试TOPCon太阳电池电极的接触电阻率,结果见表2所示。
其中银铝浆的配方按重量百分数计,包括:银粉87%、铝粉2%、玻璃粉3%、二乙二醇丁醚醋酸酯5%、醋酸丁酸纤维素CAB 1%、乙基纤维素EC 1%、二乙酸甘油酯0.5%、己二酸二甲酯0.5%。
表2
Figure PCTCN2022128496-appb-000003
Figure PCTCN2022128496-appb-000004
由测试结果可知,本发明提供的玻璃粉可用于银铝浆中,明显改善添加铝带来的铝钉扎作用,减少金属诱导复合速度从而提高开路电压,同时有利于改善金属半导体接触,减少串联电阻和接触电阻率,得到高转化效率的晶硅太阳能电池,且实施例提供的银铝浆可应用于表面掺杂方阻在75Ω/□以上的硅片。

Claims (10)

  1. 一种适应晶硅p+层接触的玻璃粉,其特征在于,所述玻璃粉的成份包括金属氧化物和非金属氧化物,所述金属氧化物包括氧化铅、氧化锌、氧化铝、氧化铊,所述非金属氧化物包括氧化硅、氧化硼。
  2. 根据权利要求1所述的适应晶硅p+层接触的玻璃粉,其特征在于,按重量比计算,氧化铅在玻璃粉中的比例为20~80wt%,优选40~70wt%,更优选50~65wt%。
  3. 根据权利要求1所述的适应晶硅p+层接触的玻璃粉,其特征在于,按重量比计算,氧化硅在玻璃粉中的比例为0.2~18wt%,优选1~10wt%,更优选3~8wt%。
  4. 根据权利要求1所述的适应晶硅p+层接触的玻璃粉,其特征在于,按重量比计算,氧化硼在玻璃粉中的比例为2-25wt%,优选5~15wt%,更优选8~15wt%。
  5. 根据权利要求1所述的适应晶硅p+层接触的玻璃粉,其特征在于,按重量比计算,氧化锌在玻璃粉中的比例为1-15wt%,优选3~10wt%,更优选3~8wt%;
    按重量比计算,氧化铊在玻璃粉中的比例为0.1~20wt%,优选2~10wt%,更优选4~8wt%。
  6. 根据权利要求1所述的适应晶硅p+层接触的玻璃粉,其特征在于,按重量比计算,氧化铝,在玻璃粉中的比例为0.2~8wt%,优选1~6wt%,更优选2~4wt%。
  7. 根据权利要求1~6任意一项所述的适应晶硅p+层接触的玻璃粉,其特征在于,所述玻璃粉的成份还包括助氧化物,所述助氧化物包括铋、钙、钡、锂、钠、钛、钒、锆、铌、钇、钨、锗、镓、锑、碲、铈、钕或铒中的至少一种的氧化物,按重量比计算,助氧化物在玻璃粉中的比例为0~8.0wt%,优选0.5~3wt%,更优选1~2wt%。
  8. 根据权利要求1所述的适应晶硅p+层接触的玻璃粉,其特征在于,所述玻璃粉的玻璃化温度为250~500℃,优选300~450℃,更优选330~400℃。
  9. 一种根据权利要求1~8任意一项所述的适应晶硅p+层接触的玻璃粉的制备方法,其特征在于,包括:将玻璃粉的制备原料高温共混,研磨得到。
  10. 一种根据权利要求1~8任意一项所述的适应晶硅p+层接触的玻璃粉在厚膜银浆中的应用。
PCT/CN2022/128496 2021-12-31 2022-10-31 一种适应晶硅p+层接触的厚膜银浆用玻璃粉及其制备方法 WO2023124495A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111669051.X 2021-12-31
CN202111669051.XA CN114380507A (zh) 2021-12-31 2021-12-31 一种适应晶硅p+层接触的厚膜银浆用玻璃粉及其制备方法

Publications (1)

Publication Number Publication Date
WO2023124495A1 true WO2023124495A1 (zh) 2023-07-06

Family

ID=81199405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128496 WO2023124495A1 (zh) 2021-12-31 2022-10-31 一种适应晶硅p+层接触的厚膜银浆用玻璃粉及其制备方法

Country Status (2)

Country Link
CN (1) CN114380507A (zh)
WO (1) WO2023124495A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114380507A (zh) * 2021-12-31 2022-04-22 广东南海启明光大科技有限公司 一种适应晶硅p+层接触的厚膜银浆用玻璃粉及其制备方法
CN115836032B (zh) * 2022-09-08 2024-04-05 深圳市首骋新材料科技有限公司 玻璃料以及制备方法、导电浆料以及制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325246A (ja) * 1986-07-17 1988-02-02 Matsushita Electric Ind Co Ltd 封着用ガラス
EP2187444A1 (en) * 2008-11-13 2010-05-19 Gigastorage Corporation Electroconductive paste composition, electrode and solar cell device comprising same
KR20160024153A (ko) * 2014-08-25 2016-03-04 엘지전자 주식회사 태양 전지 전극용 페이스트 조성물 및 태양 전지
CN111977982A (zh) * 2020-09-11 2020-11-24 南通天盛新能源股份有限公司 一种n型银铝浆用玻璃粉及其制备方法
CN112777938A (zh) * 2019-11-11 2021-05-11 江西佳银科技有限公司 一种晶硅太阳能正银浆料用玻璃粉及其制备方法和用途
CN113380439A (zh) * 2020-03-02 2021-09-10 常州聚和新材料股份有限公司 用于形成太阳能电池电极的组合物及由其形成的太阳能电池电极
CN114360760A (zh) * 2021-12-31 2022-04-15 广东南海启明光大科技有限公司 一种导电性粉末、厚膜银铝浆及其制备方法和应用
CN114380507A (zh) * 2021-12-31 2022-04-22 广东南海启明光大科技有限公司 一种适应晶硅p+层接触的厚膜银浆用玻璃粉及其制备方法
CN114822909A (zh) * 2022-04-29 2022-07-29 广东南海启明光大科技有限公司 用于低温烧结的晶体硅太阳电池银铝浆、制备方法、用途

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038091A (en) * 1972-04-21 1977-07-26 Owens-Illinois, Inc. Sealing glass vehicle and composition and method for making same
JP2554198B2 (ja) * 1990-10-24 1996-11-13 シャープ株式会社 溶着用ガラス
JPH04321536A (ja) * 1991-04-22 1992-11-11 Sharp Corp 磁気ヘッド溶着用ガラス組成物
KR102183618B1 (ko) * 2019-04-22 2020-11-26 주식회사 휘닉스에이엠 태양 전지 전극 형성용 유리 프릿 조성물, 및 이를 포함하는 페이스트 조성물

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6325246A (ja) * 1986-07-17 1988-02-02 Matsushita Electric Ind Co Ltd 封着用ガラス
EP2187444A1 (en) * 2008-11-13 2010-05-19 Gigastorage Corporation Electroconductive paste composition, electrode and solar cell device comprising same
KR20160024153A (ko) * 2014-08-25 2016-03-04 엘지전자 주식회사 태양 전지 전극용 페이스트 조성물 및 태양 전지
CN112777938A (zh) * 2019-11-11 2021-05-11 江西佳银科技有限公司 一种晶硅太阳能正银浆料用玻璃粉及其制备方法和用途
CN113380439A (zh) * 2020-03-02 2021-09-10 常州聚和新材料股份有限公司 用于形成太阳能电池电极的组合物及由其形成的太阳能电池电极
CN111977982A (zh) * 2020-09-11 2020-11-24 南通天盛新能源股份有限公司 一种n型银铝浆用玻璃粉及其制备方法
CN114360760A (zh) * 2021-12-31 2022-04-15 广东南海启明光大科技有限公司 一种导电性粉末、厚膜银铝浆及其制备方法和应用
CN114380507A (zh) * 2021-12-31 2022-04-22 广东南海启明光大科技有限公司 一种适应晶硅p+层接触的厚膜银浆用玻璃粉及其制备方法
CN114822909A (zh) * 2022-04-29 2022-07-29 广东南海启明光大科技有限公司 用于低温烧结的晶体硅太阳电池银铝浆、制备方法、用途

Also Published As

Publication number Publication date
CN114380507A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
TWI543955B (zh) Lead - free conductive paste composition for solar cells
JP5649290B2 (ja) 太陽電池電極用無鉛導電性組成物
WO2023124495A1 (zh) 一种适应晶硅p+层接触的厚膜银浆用玻璃粉及其制备方法
JP6084249B2 (ja) 鉛フリーのガラスフリットを含む導電ペースト
US20060102228A1 (en) Method of making solar cell contacts
TW201517059A (zh) 用於太陽能電池之導電漿及其製造方法
JP6039731B2 (ja) 鉛フリーのガラスフリットを含む導電ペースト
JP2014038829A (ja) 太陽電池接点用導電性厚膜ペースト
CN104157328A (zh) 一种硅太阳能电池正面电极银浆及其制备方法
CN102476919A (zh) 一种玻璃粉及其制备方法以及一种太阳能电池用导电浆料
JP6042933B2 (ja) 鉛フリーのガラスフリットを含む導電ペースト
EP4283634A2 (en) Conductive silver aluminum paste, preparation method, electrode and cell
TWI492245B (zh) A battery composition for solar cell electrodes
CN102956283A (zh) 一种新型高效晶硅太阳能电池用无铅化银浆及其制备与应用
JP2016110972A (ja) 鉛フリーのガラスフリットを含む導電ペースト
TW201425260A (zh) 太陽電池用導電性糊組成物
CN102958862A (zh) 低熔点玻璃组合物及使用其的导电性糊剂材料
CN104157331A (zh) 一种硅太阳能电池电极银包铜浆料及其制备方法
CN101913763A (zh) 太阳能电池背场铝浆用玻璃组合物及其制备方法
CN109659064A (zh) 一种晶硅Perc电池用具有高拉力的正面银浆料及其制备工艺
US11634355B2 (en) Ceramic glass powder and solar cell metallization paste containing ceramic glass powder
CN114213026A (zh) 一种晶硅太阳能电池副栅电极银浆用复合体系玻璃粉
CN102762509A (zh) 低熔点玻璃组合物及使用其的导电性糊剂材料
CN116130141B (zh) 电极浆料及其制备方法、应用
CN109493993B (zh) 一种用于晶硅太阳能电池正面电极的银浆料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913758

Country of ref document: EP

Kind code of ref document: A1