WO2023124275A1 - 一种用于大规模熔盐储能的储罐 - Google Patents

一种用于大规模熔盐储能的储罐 Download PDF

Info

Publication number
WO2023124275A1
WO2023124275A1 PCT/CN2022/119861 CN2022119861W WO2023124275A1 WO 2023124275 A1 WO2023124275 A1 WO 2023124275A1 CN 2022119861 W CN2022119861 W CN 2022119861W WO 2023124275 A1 WO2023124275 A1 WO 2023124275A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
cold
tank
hot
pipe
Prior art date
Application number
PCT/CN2022/119861
Other languages
English (en)
French (fr)
Inventor
赵宇炜
洪增元
卢日时
姚亮
程方
Original Assignee
哈尔滨汽轮机厂辅机工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨汽轮机厂辅机工程有限公司 filed Critical 哈尔滨汽轮机厂辅机工程有限公司
Publication of WO2023124275A1 publication Critical patent/WO2023124275A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/74Large containers having means for heating, cooling, aerating or other conditioning of contents
    • B65D88/744Large containers having means for heating, cooling, aerating or other conditioning of contents heating or cooling through the walls or internal parts of the container, e.g. circulation of fluid inside the walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the invention relates to the technical field of molten salt storage, in particular to a storage tank for large-scale molten salt energy storage.
  • the energy storage system is an effective means to solve the discontinuous problems of wind energy, solar energy, etc., to realize the shift of peaks and valleys in the power grid, and to promote the consumption of clean energy. It is of positive significance for the realization of the "double carbon" goal.
  • the common energy storage methods include electrochemical energy storage, pumped hydro storage, compressed air energy storage, molten salt energy storage and flywheel energy storage, among which only pumped hydro energy storage and compressed air energy storage can realize large-scale storage, but The two are limited by geography, seasons and other conditions, and cannot be widely used.
  • High-temperature molten salt heat storage is a technical solution often used in photothermal power generation systems, and it is also a relatively mature solution for storing high-grade heat energy at present.
  • molten salt pump can only With a submerged pump installed on the top of the tank, the limited length of the pump shaft limits the height of the molten salt tank, thereby limiting the total volume of the molten salt tank.
  • the present invention solves the problem that the existing molten salt energy storage storage tank has a high freezing point temperature of the molten salt.
  • the pump is arranged on the top of the tank.
  • the liquid level will change up and down , the lowest point is close to the bottom of the tank, so the pump shaft of the molten salt pump needs to be longer and extend below the liquid surface.
  • a storage tank for large-scale molten salt energy storage which consists of a tank body, a hot salt pump, a hot salt pipeline system, a hot plate salt distribution device, a cold salt pump, a cold salt pipeline system, and a cold plate Type salt distribution device, electric heater, cold salt distribution device support unit;
  • the tank roof is a spherical crown vault, and the tank roof is equipped with pressure gauges, liquid level gauges, temperature gauges, safety relief units, hot salt pumps, hot salt piping systems, cold salt pumps and cold salt
  • the piping system, and the hot salt pump is arranged close to the tank wall, the inlet is set close to the liquid level inside the tank, the hot salt piping system is set at the center of the tank top, the outlet is connected to the hot plate salt distribution device, and the cold salt pump is close to Tank wall layout, the inlet of the cold salt suction pipe is set inside the tank close to the bottom of the tank, the cold salt piping system is arranged close to the tank wall, and the outlet is connected to the cold flat plate salt distribution device located in the center of the tank close to the bottom of the tank.
  • the bottom of the salt distribution device is equipped with a cold salt distribution device support unit, and the inside of the tank is equipped with several electric heaters along the circumferential direction near the bottom of the tank;
  • the hot salt pump includes a hot salt suction pipe, a pump head and a power unit, the power unit is connected to one end of the pump head, and the pump head is arranged close to the liquid surface, so the pump shaft of the hot salt pump does not need to be very long, and the pump head
  • the other end of the pipe is connected to the top of the hot salt suction pipe, and the inlet of the hot salt suction pipe is close to the liquid surface;
  • the hot salt pipeline system includes a hot salt pipe, a radial limiting device and a support rod.
  • the bottom of the hot salt pipe is provided with a radial limiting device, and the radial limiting device is uniformly arranged along the outer surface of the circumference.
  • There are a number of support rods the top of each support rod is fixedly connected with the steel structure support of the tank inside the tank, and the top of the hot salt pipe passes through the outer wall of the top of the tank, so that the hot salt pipe can pass through the radial limit device along the vertical direction. Sliding freely in the vertical direction without radial shaking;
  • the cold salt pump includes a power unit, a pump head, an expansion absorption structure, a cold salt suction pipe, a heat preservation device for the cold salt suction pipe, a heat preservation and protection pipe for the suction pipe, a heat preservation expansion device, and a radial limit device for the suction pipe;
  • the power unit is connected to one end of the pump head, and the pump head is arranged close to the liquid surface, so the pump shaft of the cold salt pump does not need to be very long.
  • the other end of the pump head is connected to one end of the expansion absorption structure, and the other end of the expansion absorption structure is connected to the cold One end of the salt suction pipe is connected, and the inlet of the cold salt suction pipe is arranged close to the bottom of the tank.
  • the cold salt suction pipe insulation device is installed outside the cold salt suction pipe to realize the mutual influence of the temperature field inside the isolation pipe and the tank.
  • the outside of the cold salt suction pipe insulation device is There is a heat preservation and protection pipe for the suction pipe, and a number of thermal insulation and expansion devices are arranged on it to absorb the relative displacement of the cold salt suction pipe and the heat preservation and protection pipe of the suction pipe due to temperature difference.
  • the outer surface of the cold salt suction pipe is arranged along the height direction. A number of radial limit devices for the suction pipe ensure that the cold salt suction pipe can move freely in the vertical direction without shaking relative to the horizontal direction of the tank;
  • cold salt pipeline system includes cold salt pipes, cold salt pipe insulation cotton, cold salt pipe insulation protection pipes, cold salt pipeline thermal insulation expansion joints, and cold salt pipe radial limit devices;
  • the cold salt pipe insulation device is installed on the outside of the cold salt pipe to realize the mutual influence of the temperature field inside the insulation pipe and the tank.
  • the thermal insulation expansion joint of the cold salt pipe is used to absorb the thermal displacement caused by the temperature difference between the cold salt pipe and the cold salt pipe insulation protection pipe.
  • the outer surface of the cold salt pipe is provided with a radial limit device for the cold salt pipe to ensure that the cold salt pipe can Move freely in the vertical direction without shaking relative to the horizontal direction of the tank;
  • the hot-salt distribution device includes a hot-salt connecting flange, a straight pipe, a hot-salt extension cylinder, a hot-salt upper plate, a hot-salt distribution support plate, a hot-salt lower plate, a hot-salt inclined support plate, a hot-salt Salt diversion cone and thermal salt breaking net;
  • the lower surface of the hot-salt upper plate is fixedly connected with the upper surface of the hot-salt distribution support plate
  • the lower surface of the hot-salt distribution support plate is fixedly connected with the upper surface of the hot-salt lower plate
  • a blind is arranged in the middle of the lower surface of the hot-salt lower plate.
  • the inside of the blind hole is provided with a hot salt diversion cone, the middle part of the upper surface of the hot salt upper plate is provided with a through hole, and the upper part of the through hole is provided with a hot salt expansion tube, and the top of the hot salt expansion tube is connected with the straight pipe
  • the bottom end is connected, the top of the straight pipe is provided with a hot salt connecting flange, and a plurality of hot salt inclined support plates are arranged between the outer wall of the straight pipe and the upper surface of the hot salt upper plate, and the inside of the straight pipe is embedded with a hot salt breaking net;
  • the upper surface of the hot-salt upper plate forms an included angle of a° with the horizontal horizontal line, 2 ⁇ a ⁇ 6;
  • the lower surface of the hot-salt lower plate forms an included angle of b° with the transverse horizontal line , 10 ⁇ b ⁇ 30;
  • the cold plate type salt distribution device includes a cold salt connecting flange, a cold salt extension cylinder, a cold salt upper plate, a cold salt distribution support plate, a cold salt lower plate, a cold salt inclined support plate, and a cold salt diversion plate. Cones, support ribs, support plates and cold salt crushing screens;
  • the lower surface of the cold salt upper plate is connected to the upper surface of the cold salt distribution support plate, the lower surface of the cold salt distribution support plate is connected to the upper surface of the cold salt lower plate, and the middle part of the lower surface of the cold salt lower plate is provided with a blind hole.
  • the inside of the blind hole is provided with a cold salt diversion cone, the lower surface of the cold salt lower plate is provided with a support plate, a plurality of support ribs are arranged between the lower surface of the cold salt lower plate and the upper surface of the support plate, and the cold salt upper plate is provided with a support plate.
  • the top of the through hole is provided with a cold salt expansion cylinder, and the top of the cold salt expansion cylinder is provided with a cold salt connecting flange.
  • a plurality of cold salt inclined support plates are evenly arranged in the circumferential direction, and a cold salt crushing net is embedded inside the cold salt expansion cylinder;
  • the upper surface of the cold-salt upper plate forms an included angle of c° with the transverse horizontal line, 10 ⁇ c ⁇ 30
  • the lower surface of the cold-salt lower plate forms an included angle of d° with the transverse horizontal line, 2 ⁇ d ⁇ 6;
  • the support unit of the cold salt distribution device includes horizontal supporting steel, rollers and lower horizontal supporting steel; the horizontal supporting steel and the lower horizontal supporting steel are arranged in parallel, and the middle part between the horizontal supporting steel and the lower horizontal supporting steel is provided with rollers,
  • the lower surface of the lower horizontal support section steel is welded and fixed to the inner bottom surface of the tank body, and the horizontal support section steel is welded and fixed to the lower surface of the support plate;
  • the electric heater includes a protective sleeve and an electric heater body, the outer surface of the electric heater body is covered with a protective sleeve, and the outer surface of the protective sleeve is welded and fixed to the tank wall of the tank body and is close to the bottom of the tank;
  • the hot salt density is low in the upper part
  • the cold salt density is high in the lower part
  • the temperature gradient layer passes through the salt distribution device and the pipeline system.
  • the salt distribution device enters the tank, and the cold salt is pumped out of the tank by the cold salt pump, and the temperature slope gradually moves down.
  • the heat storage process ends; when the heat is released, the hot salt is pumped by the hot salt pump.
  • the cold salt enters the tank through the cold salt pipeline system from the cold plate salt distribution device, and the temperature slope gradually moves upwards.
  • the exothermic process ends.
  • the liquid level of the salt in the tank changes little and is kept close to the top of the tank, realizing the function of storing hot and cold molten salt in one storage tank at the same time. It not only saves the material cost of the tank body and the cost of manufacturing and installation, but also saves the investment in supporting electric heating systems, instruments, etc., and reduces the failure points, and the reliability of the whole system is higher. Since the pump head of the hot and cold molten salt pump only needs to be arranged close to the liquid surface to meet the demand, the pump shaft of the molten salt pump does not need to be very long, which reduces the cost of the molten salt pump and improves the reliability of the molten salt pump.
  • the length of the pump shaft is limited, and the height of the tank is no longer limited, which can realize a larger volume of molten salt storage and large-scale molten salt energy storage.
  • the shape of the tank body becomes a slender structure, which is more economical and reasonable. Since the cold salt is below and the temperature is low, the requirements for the foundation are also reduced.
  • the internal heat insulation device and expansion absorption structure Through the internal heat insulation device and expansion absorption structure, the mutual interference of the temperature field in the pipe and the tank is avoided, as well as the stress concentration phenomenon caused by the limited thermal displacement caused by the temperature difference, so as to ensure the safe and stable operation of the whole equipment.
  • the present invention has the following beneficial effects:
  • the present invention overcomes the disadvantages of the prior art.
  • the hot salt density is low in the upper part, the cold salt density is high in the lower part, and there is a temperature gradient layer in the middle.
  • the pipeline system enters the tank from the hot plate salt distributor, and the cold salt is pumped out of the tank by the cold salt pump, and the temperature slope gradually moves down. When it reaches the vicinity of the cold plate salt distributor, the heat storage process ends; The salt is pumped out of the tank by the hot salt pump, and the cold salt enters the tank through the cold salt pipeline system from the cold flat-plate salt distribution device.
  • the liquid level of the salt in the tank changes little and is kept close to the top of the tank, realizing the function of storing hot and cold molten salt in one storage tank at the same time. It saves the cost of tank materials and manufacturing and installation costs, and saves the investment in supporting electric heating systems, instruments, etc., and reduces the failure points, and the reliability of the whole system is higher;
  • the arrangement of the liquid level can meet the demand, so the pump shaft of the molten salt pump does not need to be very long, which reduces the cost of the molten salt pump and improves the reliability of the molten salt pump.
  • Fig. 1 is a main sectional view of a storage tank for large-scale molten salt energy storage according to the present invention
  • Fig. 2 is a main sectional view of a tank body in a storage tank for large-scale molten salt energy storage according to the present invention
  • Fig. 3 is a front view of a thermal salt pump in a storage tank for large-scale molten salt energy storage according to the present invention
  • Fig. 4 is a front view of a hot salt piping system in a storage tank for large-scale molten salt energy storage according to the present invention
  • Fig. 5 is a front view of an electric heater in a storage tank for large-scale molten salt energy storage according to the present invention
  • Fig. 6 is a main sectional view of a hot plate type salt distributor in a storage tank for large-scale molten salt energy storage according to the present invention
  • Fig. 7 is a top view of a hot plate salt distribution device in a storage tank for large-scale molten salt energy storage according to the present invention.
  • Fig. 8 is a front view of a cold salt pump in a storage tank for large-scale molten salt energy storage according to the present invention
  • Fig. 9 is a front view of a cold salt piping system in a storage tank for large-scale molten salt energy storage according to the present invention.
  • Fig. 10 is a main sectional view of a cold flat-plate salt distribution device in a storage tank for large-scale molten salt energy storage according to the present invention
  • Fig. 11 is a top view of a cold plate salt distribution device in a storage tank for large-scale molten salt energy storage according to the present invention
  • Fig. 12 is a front view of a cold salt distribution device support unit in a storage tank for large-scale molten salt energy storage according to the present invention.
  • Fig. 13 is a top view of a cold salt distributor support unit in a storage tank for large-scale molten salt energy storage according to the present invention.
  • a storage tank for large-scale molten salt energy storage described in this embodiment includes a tank body 1, a hot salt pump 2, a hot salt pipeline system 3, and a hot plate Type salt distributor 4, cold salt pump 5, cold salt pipeline system 6, cold plate salt distributor 7, electric heater 8, cold salt distributor support unit 9;
  • the tank roof of the tank body 1 is a spherical vault, and the tank roof of the tank body 1 is equipped with pressure gauges, liquid level gauges, temperature gauges, safety relief units, hot salt pumps, hot salt piping systems, cold salt pumps and The cold salt pipeline system, and the hot salt pump is arranged close to the tank wall, the inlet is set close to the liquid level inside the tank, the hot salt pipeline system is set at the center of the tank top, and the outlet is connected to the hot plate salt distributor.
  • the pump is arranged close to the tank wall, the inlet of the cold salt suction pipe is set inside the tank close to the bottom of the tank, the cold salt pipeline system is arranged close to the tank wall, and the outlet is connected to the cold flat plate salt distribution device located in the center of the tank near the bottom of the tank.
  • the bottom of the flat-plate salt distributor is equipped with a cold salt distributor support unit, and the inside of the tank is equipped with several electric heaters along the circumferential direction near the bottom of the tank;
  • the hot salt density is low in the upper part
  • the cold salt density is high in the lower part
  • the hot plate salt distribution device 4 enters the tank body 1, and the cold salt is pumped out of the tank body 1 by the cold salt pump 5, and the thermostat layer gradually moves downward. When it reaches the vicinity of the cold flat salt distribution device 7, the heat storage process ends; When hot, the hot salt is pumped out of the tank body 1 by the hot salt pump 2, and the cold salt enters the tank body 1 through the cold salt pipeline system 6 and the cold flat-plate salt distribution device 7. Nearby, the exothermic process ends.
  • the liquid level of the salt in the tank changes little and is kept close to the top of the tank, realizing the function of storing hot and cold molten salt in one storage tank at the same time. It not only saves the material cost of the tank body and the cost of manufacturing and installation, but also saves the investment in supporting electric heating systems, instruments, etc., and reduces the failure points, and the reliability of the whole system is higher.
  • the pump head of the hot and cold molten salt pump only needs to be arranged close to the liquid surface to meet the demand, the pump shaft of the molten salt pump does not need to be very long, and the height of the tank is no longer limited, so that a larger volume of molten salt can be stored for large-scale Large-scale molten salt energy storage. Since the cold salt is below and the temperature is low, the requirements for the foundation are also reduced. ;
  • the structure of the tank body 1 is a slender structure. Compared with the double-tank scheme of a chunky tank structure with increased volume by increasing the diameter, the amount of invalid molten salt at the bottom is greatly reduced. Considering the high price of molten salt, it can The system cost is greatly saved; the roof structure of the tank body 1 is a spherical crown vault, which is a self-supporting vault-shaped structure with high technical maturity, which can store a large capacity of molten salt, and has high safety and reliability; The molten salt pump no longer needs to be equipped with an extremely long shaft, the reliability of the molten salt pump is improved, the failure rate of the system is reduced, and the safety and reliability of the equipment are improved. At the same time, the reduction of the shaft length of the molten salt pump can greatly reduce the cost and reduce investment.
  • this structure does not require additional equipment such as molten salt tanks and pipelines leading to high-level molten salt tanks. Due to the large heat dissipation of the pipeline and the rapid temperature drop, a heating system is required to introduce fault points, and the molten salt will solidify after the temperature drop of the pipeline, causing the entire system to shut down, and the reliability is poor.
  • the cold and hot medium pipelines are arranged vertically inside the tank body, and the molten salt automatically flows into the molten salt tank when the machine is shut down, eliminating the risk of molten salt solidification or configuring an expensive and complicated heating system, saving investment, and increasing the safety and reliability of the equipment. reliability.
  • the hot and cold salt pipes are installed inside the tank, and the outside of the cold salt pipe is equipped with a heat insulation device, which avoids the mutual interference between the temperature field in the pipe and the tank, and ensures the safe and stable operation of the whole equipment.
  • the thermal displacement is relatively large under the condition of high temperature and high temperature difference.
  • the radial limit support device of the hot salt pipe it is allowed to Free movement along the vertical direction prevents stress concentration damage and improves the reliability of the heat storage tank.
  • the tank body 1 includes tank bottom 1-1, tank wall 1-2, tank roof 1-3, tank roof steel structure support 1-4, pressure gauge 1-5, liquid level gauge 1-6, temperature Instrument 1-7, safety relief device 1-8 and tank body insulation device 1-9, tank bottom 1-1 upper part welded tank wall 1-2, tank wall 1-2 upper part welded tank roof 1-3, tank roof steel
  • the outer edge of the structural support 1-4 is welded to the inside of the tank wall 1-2, and its upper part is welded to the lower surface of the tank roof 1-3.
  • the tank roof 1-3 is equipped with a pressure gauge 1-5, a liquid level gauge 1-6, and a temperature gauge 1-7.
  • the safety release device 1-8 is equipped with a tank body insulation device 1-9 outside the tank wall 1-2 and the tank roof 1-3
  • the hot salt pump 2 includes a hot salt suction pipe 2-1, a pump head 2-2 and a power unit 2-3, the power unit 2-3 is connected to one end of the pump head 2-2, and the pump head 2-2 The other end of the pump is connected to the top of the hot salt suction pipe 2-1, and the pump head is arranged near the liquid surface, so the pump shaft does not need to be very long.
  • Embodiment 4 This embodiment is described in conjunction with FIG. 4. This embodiment is a further limitation on the storage tank described in Embodiment 1.
  • a storage tank for large-scale molten salt energy storage described in this embodiment tank, the hot salt pipeline system 3 includes a hot salt pipe 3-1, a support rod 3-2 and a radial limit device 3-3, the hot salt pipe 3-1 is installed at the center of the tank top 1-3, and the bottom A radial limiting device 3-3 is provided, and the radial limiting device 3-3 is evenly provided with a number of support rods 3-2 along the outer surface of the circumference, and the top of each support rod 3-3 is in contact with the inner tank of the tank body 1.
  • the top steel structure supports 1-4 fixed connections.
  • Embodiment 5 This embodiment is described in conjunction with FIG. 5. This embodiment is a further limitation on the storage tank described in Embodiment 1.
  • a storage tank for large-scale molten salt energy storage described in this embodiment tank, the electric heater 8 includes a protective sleeve 8-1 and an electric heater body 8-2, the outer surface of the electric heater body 8-2 is covered with a protective sleeve 8-1, and the protective sleeve 8 The outer surface of -1 is welded and fixed to the tank wall 1-2 of the tank body 1;
  • Embodiment 6 This embodiment is described in conjunction with FIG. 6. This embodiment is a further limitation on the storage tank described in Embodiment 1.
  • a storage tank for large-scale molten salt energy storage described in this embodiment tank, the cold salt pump 5 includes a power unit 5-1, a pump head 5-2, an expansion absorption structure 5-3, a cold salt suction pipe 5-4, a cold salt suction pipe insulation device 5-5, and a suction pipe insulation Protective pipe 5-6, thermal insulation expansion device 5-7 and suction pipe radial limit device 5-8;
  • the input end of the power unit 5-1 is connected to one end of the pump head 5-2, and the pump head 5-2 is arranged near the liquid surface, so the pump shaft of the cold salt pump does not need to be very long, and the other end of the pump head 5-2 is connected to the liquid surface.
  • One end of the expansion absorption structure 5-3 is connected, and the other end of the expansion absorption structure 5-3 is connected to one end of the cold salt suction pipe 5-4.
  • the inlet of the cold salt suction pipe 5-4 is arranged near the tank bottom 1-1, and the cold salt
  • the outside of the suction pipe 5-4 is provided with a cold salt suction pipe insulation device 5-5, and the outside of the cold salt suction pipe insulation device 5-5 is provided with a suction pipe insulation protection pipe 5-6, and a number of thermal insulation expansion devices 5-6 are arranged on it 7.
  • the outer surface of the cold salt suction pipe 5-4 is provided with several suction pipe radial limit devices 5-8 along the height direction;
  • the cold salt suction pipe 5-4 of the cold salt pump 5 is externally laid with a cold salt suction pipe heat preservation device 5-5, and the heat insulating material is externally laid with a suction pipe heat preservation pipe 5-6 to isolate the molten salt in the pipe from the tank.
  • the temperature field of the inner molten salt influences each other to ensure the normal operation of the system.
  • an expansion absorbing structure 5-3 is provided on the insulation protection pipe to prevent damage caused by thermal displacement difference between the cold salt suction pipe 5-4 and the suction pipe insulation protection pipe 5-6, and several suction pipe diameters are arranged along the height direction To the limiter 5-8, it is ensured that the cold salt suction pipe can move freely in the vertical direction without shaking in the horizontal direction of the relative tank body.
  • Embodiment 7 This embodiment is described in conjunction with FIG. 7. This embodiment is a further limitation on the storage tank described in Embodiment 1.
  • a storage tank for large-scale molten salt energy storage described in this embodiment The cold salt pipeline system 6 includes a cold salt pipe 6-1, a cold salt pipe heat preservation device 6-2, a cold salt pipe insulation protection pipe 6-3, a cold salt pipe insulation expansion joint 6-4 and a cold salt pipe Radial limit device 6-5;
  • a cold salt pipe insulation device 6-2 is provided outside the cold salt pipe 6-1 to realize the mutual influence of the temperature field inside the isolation pipe and the tank, and the cold salt pipe insulation device 6-2 is provided with a cold salt pipe insulation protection pipe 6-3 , there are several cold-salt pipe insulation expansion joints 6-4 sequentially arranged on it from top to bottom to absorb the thermal displacement of the cold-salt pipe 6-1 and the cold-salt pipe insulation protection pipe 6-3 due to the temperature difference, and the cold-salt pipe
  • the outer surface of the pipe 6-1 is provided with a radial stop device 6-5 for the cold salt pipe to ensure that the cold salt pipe 6-1 can move freely in the vertical direction without shaking relative to the horizontal direction of the tank.
  • Embodiment 8 This embodiment is described in conjunction with Fig. 8 and Fig. 9. This embodiment is a further limitation on the storage tank described in Embodiment 1.
  • the tank described in this embodiment is used for large-scale molten salt storage energy storage tank
  • the hot plate salt distribution device 4 includes hot salt connecting flange 4-1, straight pipe 4-2, hot salt extension cylinder 4-3, hot salt upper plate 4-4, hot salt distribution Support plate 4-5, hot salt flat plate 4-6, hot salt inclined support plate 4-7, hot salt diversion cone 4-8 and hot salt crushing net 4-9;
  • the lower surface of the hot salt upper plate 4-4 is fixedly connected to the upper surface of the hot salt distribution support plate 4-5, and the lower surface of the hot salt distribution support plate 4-5 is fixedly connected to the upper surface of the hot salt lower plate 4-6,
  • a blind hole is provided in the middle of the lower surface of the hot-salt lower plate 4-6, and a hot-salt diversion cone 4-8 is arranged inside the blind hole, and a through-hole is arranged in the middle of the upper surface of the hot-salt upper plate 4-4.
  • the upper part of the through hole is provided with a hot salt expansion cylinder 4-3, the top of the hot salt expansion cylinder 4-3 is connected to the bottom end of the straight pipe 4-2, and the top of the straight pipe 4-2 is provided with a hot salt connection flange 4-3.
  • a plurality of hot salt inclined support plates 4-7 are arranged between the outer wall of the straight pipe 4-2 and the upper surface of the hot salt upper plate 4-4, and a hot salt crushing net 4-9 is embedded inside the straight pipe 4-2 ;
  • this structure does not need to use a salt distribution ring with a complicated structure that requires uniform temperature everywhere, and adopts a flat-plate salt distribution device structure, which has a simpler structure, is not easy to be blocked, and is convenient for manufacture, installation and maintenance. maintenance, high reliability and lower price.
  • an angle of a° is formed between the upper surface of the hot-salt upper plate 4-4 and the horizontal horizontal line, and 2 ⁇ a ⁇ 6; The angle between them is b°, 10 ⁇ b ⁇ 30; the hot plate salt distribution device 4 is designed through reasonable crushing mesh 4-9, hot salt expansion cylinder 4-3 and hot salt diversion cone 4-8, etc.
  • thermocline layer it can realize the stable and uniform flow of molten salt, reduce the resistance, and realize the normal and reliable operation of the thermocline layer; on the other hand, by setting the inclination angle of the plate or opening holes, it can prevent the residue of molten salt, and the natural salt discharge does not need manual cleaning; , The molten salt will not remain and solidify on the salt distribution device, no manual cleaning is required, and it can ensure that the molten salt can flow stably and fully in the salt distribution device without impacting the flow field in the tank.
  • Embodiment 10 This embodiment is described in conjunction with Fig. 10 and Fig. 11. This embodiment is a further limitation on the storage tank described in Embodiment 1.
  • the storage tank described in this embodiment is used for large-scale molten salt storage storage tank
  • the cold flat plate salt distribution device 7 includes a cold salt connecting flange 7-1, a cold salt extension cylinder 7-2, a cold salt upper plate 7-3, a cold salt distribution support plate 7-4, Cold salt lower plate 7-5, cold salt inclined support plate 7-6, cold salt diversion cone 7-7, support rib 7-8, support plate 7-9 and cold salt crushing net 7-10;
  • the lower surface of the cold salt upper plate 7-3 is connected with the upper surface of the cold salt distribution support plate 7-4, and the lower surface of the cold salt distribution support plate 7-4 is connected with the upper surface of the cold salt lower plate 7-5.
  • the middle part of the lower surface of the lower plate 7-5 is provided with a blind hole, and the inside of the blind hole is provided with a cold salt diversion cone 7-7, and the lower surface of the lower plate 7-5 of the cold salt is provided with a support plate 7-9.
  • a plurality of support ribs 7-8 are provided between the lower surface of the lower plate 7-5 and the upper surface of the support plate 7-9, and a through hole is provided in the middle of the upper surface of the cold salt upper plate 7-3, and the top of the through hole is provided with
  • a plurality of cold salt inclined support plates 7-6 are evenly arranged along the circumferential direction, and a cold salt crushing net 7-10 is embedded inside the cold salt extension cylinder 7-2.
  • Embodiment 11 This embodiment is described in conjunction with Fig. 10 and Fig. 11. This embodiment is a further limitation on the storage tank described in Embodiment 8.
  • a large-scale molten salt described in this embodiment For energy storage tanks, the angle between the upper surface of the cold salt upper plate 7-3 and the transverse horizontal line is c°, 10 ⁇ c ⁇ 30, and the angle between the lower surface of the cold salt lower plate 7-5 and the transverse horizontal line is form an included angle of d°, 2 ⁇ d ⁇ 6;
  • the angle between the upper surface of the cold-salt upper plate 7-3 and the horizontal horizontal line is c°, 10 ⁇ c ⁇ 30, and the angle between the lower surface of the cold-salt lower plate 7-5 and the horizontal horizontal line is The angle between them is d°, 2 ⁇ d ⁇ 6; when the salt is discharged, the molten salt will not remain and solidify on the salt distribution device, no manual cleaning is required, and it can ensure that the molten salt can flow stably and fully in the salt distribution device, without It will impact the flow field in the tank.
  • the storage tank for energy storage, the cold salt distributor support unit 9 includes horizontal support steel 9-1, roller 9-2 and lower horizontal support steel 9-3; horizontal support steel 9-1 and lower horizontal support steel 9- 3.
  • a roller 9-2 is provided in the middle between the horizontal support section steel 9-1 and the lower horizontal support section steel 9-3, the lower surface of the lower horizontal support section steel 9-3 is welded and fixed to the inner bottom surface of the tank body 1, and the horizontal support section steel 9-1 is welded and fixed to the lower surface of the support plate 7-9;
  • the horizontal supporting steel 9-1 and the lower horizontal supporting steel 9-3 are arranged in parallel, and the middle part between the horizontal supporting steel 9-1 and the lower horizontal supporting steel 9-3 is provided with a roller 9-2.
  • the supporting unit 9 of the cold salt distribution device adopts a rolling support structure, which can move freely in the radial direction to avoid damage due to stress concentration.
  • the support unit 9 of the cold salt distribution device adopts a Z-shaped structure, which can absorb thermal displacement in the vertical direction and avoid damage caused by stress concentration.
  • the hot salt density is low in the upper part, the cold salt density is high in the lower part, and there is a temperature gradient layer in the middle, which passes through the salt distributor and pipeline system.
  • the hot salt passes through the hot salt pipeline system.
  • the salt container 4 enters the tank body 1, and the cold salt is pumped out of the tank body 1 by the cold salt pump 5, and the thermocline gradually moves down.
  • the hot salt pump 2 pumps out the tank body 1, and the cold salt enters the tank body 1 through the cold salt pipeline system 6 and the cold flat-plate salt distribution device 7, and the thermocline gradually moves up. When it reaches the vicinity of the hot-plate salt distribution device 4, heat The process is over.
  • the liquid level of the salt in the tank changes little and is kept close to the top of the tank, realizing the function of storing hot and cold molten salt in one storage tank at the same time. It not only saves the material cost of the tank body and the cost of manufacturing and installation, but also saves the investment in supporting electric heating systems, instruments, etc., and reduces the failure points, and the reliability of the whole system is higher. Since the pump head of the hot and cold molten salt pump only needs to be arranged close to the liquid surface to meet the demand, the pump shaft of the molten salt pump does not need to be very long, which reduces the cost of the molten salt pump and improves the reliability of the molten salt pump.
  • the length of the pump shaft is limited, and the height of the tank is no longer limited, which can realize a larger volume of molten salt storage and large-scale molten salt energy storage.
  • the shape of the tank body becomes a slender structure, which is more economical and reasonable. , because the cold salt is below, the temperature is low, and the requirements for the foundation are also reduced.
  • there is no need to set up a molten salt tank and its connecting pipes and heat tracing devices which reduces failure points, and the system is simpler and more reliable.
  • the internal heat insulation device and expansion absorption structure Through the internal heat insulation device and expansion absorption structure, the mutual interference of the temperature field in the pipe and the tank is avoided, as well as the stress concentration phenomenon caused by the limited thermal displacement caused by the temperature difference, so as to ensure the safe and stable operation of the whole equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

一种用于大规模熔盐储能的储罐,热盐密度低在储罐上部,冷盐密度高在下部,中间有一温度梯度层即斜温层,通过布盐器及管道系统,储热时热盐经过热盐管道系统(3)由热平板式布盐器(4)进入罐体,冷盐由冷盐泵(5)抽出罐体,斜温层逐渐下移,当达到冷平板式布盐器(7)附近时,储热过程结束;放热时热盐由热盐泵(2)抽出罐体,冷盐经过冷盐管道系统(6)由冷平板式布盐器进入罐体,斜温层逐渐上移,当达到热平板布盐器附近时,放热过程结束。

Description

一种用于大规模熔盐储能的储罐 技术领域
本发明涉及熔盐存储技术领域,具体涉及一种用于大规模熔盐储能的储罐。
背景技术
储能系统是解决风能、太阳能等存在的不连续问题,实现电网移峰填谷,促进清洁能源消纳的有效手段,对于实现“双碳”目标具有积极意义。目前常见的储能方式有电化学储能、抽水蓄能、压缩空气储能、熔盐储能及飞轮储能等,其中可以实现大规模存储的仅有抽水蓄能及压缩空气储能,但二者又受地理、季节等条件限制,无法大范围应用。高温熔盐储热是光热发电系统中经常采用的技术方案,也是目前储存高品位热能的较为成熟的方案,具有存储温度高、技术可靠性高、工程化程度高、适用范围广等优点。采用冷热两个盐罐进行熔盐储能是国内外经常采用的技术,但受制于熔盐凝固点温度较高的特点,为避免熔盐长期处于环境温度散热而发生凝固,熔盐泵只能采用安装于罐顶部的液下泵,泵轴长度有限造成了熔盐罐高度受限,进而限制了熔盐罐的总体积。此外,考虑熔盐目前的价格较为昂贵,一味通过增加直径来增加罐体容积的方法一方面造成了罐体投资的增加,另一方面造成了为维持最低液位而需要的熔盐量的增加,成本大量增加。以上问题的存在,使得采用熔盐进行大规模储能受到了限制。
发明内容
本发明为解决现有的熔盐储能的储罐由于熔盐凝固点温度高,为避免泵中熔盐凝结将泵布置于罐顶部,熔盐储热双罐运行时,液位将会上下变化,最低时接近罐体底部,因而需要熔盐泵泵轴较长,伸入到液面之下,由于泵轴无法做的过长,限制了罐体无法太高,导致罐体的体积较小,从而导致容积较小的问题,以及其他单罐方案,需额外设置熔盐槽及其连接管道和伴热装置,增加了故障点,系统复杂可靠性差的问题,而提出一种用于大规模熔盐储能的储罐。
本发明的一种用于大规模熔盐储能的储罐,其组成包括罐体、热盐泵、热盐管道系统、热平板式布盐器、冷盐泵、冷盐管道系统、冷平板式布盐器、电加热器、冷布盐器支撑单元;
罐体的罐顶为球冠形拱顶,罐体的罐顶上设有压力仪表、液位仪表、温度仪表、安全泄放单元以及热盐泵、热盐管道系统、冷盐泵和冷盐管道系统,且热盐泵靠近罐壁布置,其入口设置在罐体的内部接近液面位置,热盐管道系统设置在罐顶中心位置,出口与热平 板式布盐器相连,冷盐泵靠近罐壁布置,其冷盐吸入管入口设置在罐体内部接近罐底位置,冷盐管道系统靠近罐壁布置,出口与位于罐体中心靠近罐底的冷平板式布盐器相连,冷平板式布盐器的底部设有冷布盐器支撑单元,罐体的内部靠近罐底沿圆周方向设有若干电加热器;
进一步的,所述的热盐泵包括热盐吸入管、泵头和动力装置,动力装置与泵头的一端连接,泵头靠近液面布置,因而热盐泵的泵轴无需很长,泵头的另一端与热盐吸入管的顶部连接,热盐吸入管的入口靠近液面;
进一步的,所述的热盐管道系统包括热盐管、径向限位装置和支撑拉杆,热盐管的底部设有径向限位装置,且径向限位装置沿圆周外表面均匀的设有若干支撑拉杆,每个支撑拉杆的顶端与罐体内部罐顶钢结构支撑固定连接,热盐管的顶部穿过罐体顶部的外壁,实现了热盐管可以通过径向限位装置沿竖直方向自由滑动而不发生径向晃动;
进一步的,所述的冷盐泵包括动力装置、泵头、膨胀吸收结构、冷盐吸入管、冷盐吸入管保温装置、吸入管保温护管、保温膨胀装置和吸入管径向限位装置;
动力装置与泵头的一端连接,泵头布置在靠近液面位置,因而冷盐泵得泵轴无需很长,泵头的另一端与膨胀吸收结构的一端连接,膨胀吸收结构的另一端与冷盐吸入管的一端连接,冷盐吸入管的入口靠近罐底布置,冷盐吸入管外部设有冷盐吸入管保温装置,实现隔绝管内与罐内温度场相互影响,冷盐吸入管保温装置外部设有吸入管保温护管,在其上设有若干保温膨胀装置,用以吸收冷盐吸入管和吸入管保温护管因温差产生的相对位移,冷盐吸入管的外表面沿高度方向设有若干吸入管径向限位装置,保证冷盐吸入管可以沿竖直方向自由移动而不发生相对罐体的水平方向的晃动;
进一步的,所述的冷盐管道系统包括冷盐管、冷盐管保温棉、冷盐管保温护管、冷盐管道保温膨胀节和冷盐管径向限位装置;
冷盐管的外部设有冷盐管保温装置,实现隔绝管内与罐内温度场相互影响,冷盐管保温装置外部设有冷盐管保温护管,在其上从上到下依次设有若干冷盐管道保温膨胀节,用以吸收冷盐管和冷盐管保温护管因温差产生的热位移,冷盐管外表面设有冷盐管径向限位装置,保证冷盐管可以沿竖直方向自由移动而不发生相对罐体的水平方向的晃动;
进一步的,所述的热平板式布盐器包括热盐连接法兰、直管、热盐扩展筒、热盐上平板、热盐分布支撑板、热盐下平板、热盐斜支撑板、热盐导流锥和热盐破碎网;
热盐上平板的下表面与热盐分布支撑板的上表面固定连接,热盐分布支撑板的下表面与热盐下平板的上表面固定连接,热盐下平板的下表面中部设有一个盲孔,且盲孔的内 部设有热盐导流锥,热盐上平板的上表面的中部设有通孔,且通孔的上部设有热盐扩展筒,热盐扩展筒的顶端与直管底端连接,直管的顶端设有热盐连接法兰,直管外壁与热盐上平板上表面之间设有多个热盐斜支撑板,直管的内部嵌设有热盐破碎网;
进一步的,所述的热盐上平板的上表面与横向水平线之间成a°夹角,2≤a≤6;所述的热盐下平板的下表面与横向水平线之间成b°夹角,10≤b≤30;
进一步的,所述的冷平板式布盐器包括冷盐连接法兰、冷盐扩展筒、冷盐上平板、冷盐分布支撑板、冷盐下平板、冷盐斜支撑板、冷盐导流锥、支撑肋、支撑板和冷盐破碎网;
冷盐上平板的下表面与冷盐分布支撑板的上表面连接,冷盐分布支撑板的下表面与冷盐下平板的上表面连接,冷盐下平板的下表面的中部设有盲孔,且盲孔内部设有冷盐导流锥,冷盐下平板的下表面设有支撑板,冷盐下平板的下表面与支撑板上表面之间设有多个支撑肋,冷盐上平板的上表面中部设有通孔,且该通孔顶部设有冷盐扩展筒,冷盐扩展筒的顶部设有冷盐连接法兰,冷盐扩展筒外壁与冷盐上平板的上表面之间沿圆周方向均匀的设有多个冷盐斜支撑板,冷盐扩展筒的内部嵌设有冷盐破碎网;
进一步的,所述的冷盐上平板的上表面与横向水平线之间成c°夹角,10≤c≤30,冷盐下平板的下表面与横向水平线之间成d°夹角,2≤d≤6;
进一步的,所述的冷布盐器支撑单元包括水平支撑型钢、滚轮和下水平支撑型钢;水平支撑型钢和下水平支撑型钢平行设置,水平支撑型钢和下水平支撑型钢之间中部设有滚轮,下水平支撑型钢的下表面与罐体内部底面焊接固定,水平支撑型钢与支撑板的下表面焊接固定;
所述的电加热器包括保护套管和电加热器本体,电加热器本体的外表面套设有保护套管,且保护套管的外表面与罐体的罐壁焊接固定且靠近罐底;
进一步的,运行时,热盐密度低在上部,冷盐密度高在下部,中间有一温度梯度层斜温层,通过布盐器及管道系统,储热时热盐经过热盐管道系统由热平板式布盐器进入罐体,冷盐由冷盐泵抽出罐体,斜温层逐渐下移,当达到冷平板式布盐器附近时,储热过程结束;放热时热盐由热盐泵抽出罐体,冷盐经过冷盐管道系统由冷平板式布盐器进入罐体,斜温层逐渐上移,当达到热平板布盐器附近时,放热过程结束。整个储放热过程,罐内盐的液位变化较小,均维持在靠近罐顶附近,实现了一个储罐同时存储冷热熔盐的功能,与原来需要冷热双罐相比,不仅节省了罐体材料成本及制造安装成本,而且节省了配套的电加热系统、仪表等的投资,且减少了故障点,整个系统的可靠性更高。由于冷热熔盐泵的 泵头只需靠近液面布置即能满足需求,因而熔盐泵泵轴无需很长,降低了熔盐泵成本,提高了熔盐泵的可靠性,同时由于不受泵轴长度的限制,罐体高度不再受到限制,可以实现更大容积的熔盐存储,进行大规模熔盐储能。罐体形状变为细长型结构,更为经济合理。由于冷盐在下方,温度低,对基础的要求也降低了。此外,相对于其他单罐方案,无需设置熔盐槽及其连接管道和伴热装置,减少了故障点,系统更加简单,可靠性高。通过内部的隔热装置及膨胀吸收结构,避免了管内与罐内温度场的相互干扰,以及因为温差产生热位移受限带来的应力集中现象,保证整个设备能够安全稳定的运行。
本发明与现有技术相比具有以下有益效果:
本发明克服了现有技术的缺点,采用热盐密度低在上部,冷盐密度高在下部,中间有一温度梯度层斜温层,通过布盐器及管道系统,储热时热盐经过热盐管道系统由热平板式布盐器进入罐体,冷盐由冷盐泵抽出罐体,斜温层逐渐下移,当达到冷平板式布盐器附近时,储热过程结束;放热时热盐由热盐泵抽出罐体,冷盐经过冷盐管道系统由冷平板式布盐器进入罐体,斜温层逐渐上移,当达到热平板布盐器附近时,放热过程结束。整个储放热过程,罐内盐的液位变化较小,均维持在靠近罐顶附近,实现了一个储罐同时存储冷热熔盐的功能,与原来需要冷热双罐相比,不仅节省了罐体材料成本及制造安装成本,而且节省了配套的电加热系统、仪表等的投资,且减少了故障点,整个系统的可靠性更高;由于冷热熔盐泵的泵头只需靠近液面布置即能满足需求,因而熔盐泵泵轴无需很长,降低了熔盐泵成本,提高了熔盐泵的可靠性,同时由于不受泵轴长度的限制,罐体高度不再受到限制,可以实现更大容积的熔盐存储,进行大规模熔盐储能;罐体形状变为细长型结构,更为经济合理。由于冷盐在下方,温度低,对基础的要求也降低了。此外,相对于其他单罐方案,无需设置熔盐槽及其连接管道和伴热装置,减少了故障点,系统更加简单,可靠性高。通过内部的隔热装置及膨胀吸收结构,避免了管内与罐内温度场的相互干扰,以及因为温差产生热位移受限带来的应力集中现象,保证整个设备能够安全稳定的运行。
附图说明
图1是本发明所述的一种用于大规模熔盐储能的储罐的主剖视图;
图2是本发明所述的一种用于大规模熔盐储能的储罐中罐体的主剖视图;
图3是本发明所述的一种用于大规模熔盐储能的储罐中热盐泵的主视图;
图4是本发明所述的一种用于大规模熔盐储能的储罐中热盐管道系统的主视图;
图5是本发明所述的一种用于大规模熔盐储能的储罐中电加热器的主视图;
图6是本发明所述的一种用于大规模熔盐储能的储罐中热平板式布盐器的主剖视图;
图7是本发明所述的一种用于大规模熔盐储能的储罐中热平板式布盐器的俯视图;
图8是本发明所述的一种用于大规模熔盐储能的储罐中冷盐泵的主视图;
图9是本发明所述的一种用于大规模熔盐储能的储罐中冷盐管道系统的主视图;
图10是本发明所述的一种用于大规模熔盐储能的储罐中冷平板式布盐器的主剖视图;
图11是本发明所述的一种用于大规模熔盐储能的储罐中冷平板式布盐器的俯视图;
图12是本发明所述的一种用于大规模熔盐储能的储罐中冷布盐器支撑单元的主视图。
图13是本发明所述的一种用于大规模熔盐储能的储罐中冷布盐器支撑单元的俯视图。
具体实施方式
具体实施方式一:结合图1说明本实施方式,本实施方式所述的一种用于大规模熔盐储能的储罐包括罐体1、热盐泵2、热盐管道系统3、热平板式布盐器4、冷盐泵5、冷盐管道系统6、冷平板式布盐器7、电加热器8、冷布盐器支撑单元9;
罐体1的罐顶为球冠形拱顶,罐体1的罐顶上设有压力仪表、液位仪表、温度仪表、安全泄放单元以及热盐泵、热盐管道系统、冷盐泵和冷盐管道系统,且热盐泵靠近罐壁布置,其入口设置在罐体的内部接近液面位置,热盐管道系统设置在罐顶中心位置,出口与热平板式布盐器相连,冷盐泵靠近罐壁布置,其冷盐吸入管入口设置在罐体内部接近罐底位置,冷盐管道系统靠近罐壁布置,出口与位于罐体中心靠近罐底的冷平板式布盐器相连,冷平板式布盐器的底部设有冷布盐器支撑单元,罐体的内部靠近罐底沿圆周方向设有若干电加热器;
本具体实施方式,运行时,热盐密度低在上部,冷盐密度高在下部,中间有一温度梯度层斜温层,通过布盐器及管道系统,储热时热盐经过热盐管道系统3由热平板式布盐器4进入罐体1,冷盐由冷盐泵5抽出罐体1,斜温层逐渐下移,当达到冷平板式布盐器7附近时,储热过程结束;放热时热盐由热盐泵2抽出罐体1,冷盐经过冷盐管道系统6由冷平板式布盐器7进入罐体1,斜温层逐渐上移,当达到热平板布盐器4附近时,放热过程结束。整个储放热过程,罐内盐的液位变化较小,均维持在靠近罐顶附近,实现了一个储罐同时存储冷热熔盐的功能,与原来需要冷热双罐相比,不仅节省了罐体材料成本及制造安装成本,而且节省了配套的电加热系统、仪表等的投资,且减少了故障点,整个系统的可靠性更高。由于冷热熔盐泵的泵头只需靠近液面布置即能满足需求,因而熔盐泵泵 轴无需很长,罐体高度不再受到限制,可以实现更大容积的熔盐存储,进行大规模熔盐储能。由于冷盐在下方,温度低,对基础的要求也降低了。;
罐体1的结构为细长型结构,与通过增加直径来增加容积的矮胖型罐体结构的双罐方案相比,底部的无效熔盐量极大减少,考虑熔盐高昂的价格,能够极大节省系统成本;采用罐体1的罐顶结构为球冠形拱顶,为技术成熟度较高的自支撑拱顶形结构,能够储存较大容量的熔盐,安全可靠性高;由于熔盐泵不在需要配置极长的轴,熔盐泵的可靠性提高,系统的故障率降低,提高了设备的安全性与可靠性,同时熔盐泵轴长的减少能极大降低熔盐泵的成本,减少投资。
相比于其他的单罐熔盐储热装置,本结构无需额外配置如熔盐槽等装置以及引出至高位布置熔盐槽的管道。由于管道散热量较大,温降较快,需配套加热系统,引入故障点,且管道温降后将会造成熔盐凝固致使整套系统停机,可靠性差。本发明中冷热介质管道均竖直布置于罐体内部,停机时熔盐自动流入熔盐罐,杜绝额熔盐凝固风险或配置昂贵复杂加热系统,节省了投资,增加了设备的安全性与可靠性。
冷热盐管道均设置在罐体内部,且冷盐管道外部设有隔热装置,避免了管内与罐内温度场的相互干扰,保证整个设备能够安全稳定的运行。
由于熔盐罐直径及高度尺寸均较大,在高温度高温差条件下热位移较大,通过设置热盐管径向限位支撑装置,在限制熔盐管发生径向位移的情况下,允许沿竖直方向自由移动,防止发生应力集中破坏,储热罐的可靠性提高。
具体实施方式二:结合图2说明本实施方式,本实施方式是对具体实施方式一所述的储罐的进一步的限定,本实施方式所述的一种用于大规模熔盐储能的储罐,所述的罐体1包括罐底1-1、罐壁1-2、罐顶1-3、罐顶钢结构支撑1-4、压力仪表1-5、液位仪表1-6、温度仪表1-7、安全泄放装置1-8和罐体保温装置1-9,罐底1-1上部焊接罐壁1-2,罐壁1-2上部焊接罐顶1-3,罐顶钢结构支撑1-4外边缘与罐壁1-2内部焊接,其上部与罐顶1-3下表面焊接,罐顶1-3上装有压力仪表1-5、液位仪表1-6、温度仪表1-7、安全泄放装置1-8,在罐壁1-2及罐顶1-3外部设有罐体保温装置1-9
具体实施方式三:结合图3说明本实施方式,本实施方式是对具体实施方式一所述的储罐的进一步的限定,本实施方式所述的一种用于大规模熔盐储能的储罐,所述的热盐泵2包括热盐吸入管2-1、泵头2-2和动力装置2-3,动力装置2-3与泵头2-2的一端连接,泵头2-2的另一端与热盐吸入管2-1的顶部连接,泵头布置在靠近液面附近位置,因而泵轴无需很长。
具体实施方式四:结合图4说明本实施方式,本实施方式是对具体实施方式一所述的储罐的进一步的限定,本实施方式所述的一种用于大规模熔盐储能的储罐,所述的热盐管道系统3包括热盐管3-1、支撑拉杆3-2和径向限位装置3-3,热盐管3-1安装于罐顶1-3中心位置,底部设有径向限位装置3-3,且径向限位装置3-3沿圆周外表面均匀的设有若干支撑拉杆3-2,每个支撑拉杆3-3的顶端与罐体1内部罐顶钢结构支撑1-4固定连接。
具体实施方式五:结合图5说明本实施方式,本实施方式是对具体实施方式一所述的储罐的进一步的限定,本实施方式所述的一种用于大规模熔盐储能的储罐,所述的电加热器8包括保护套管8-1和电加热器本体8-2,电加热器本体8-2的外表面套设有保护套管8-1,且保护套管8-1的外表面与罐体1的罐壁1-2焊接固定;
具体实施方式六:结合图6说明本实施方式,本实施方式是对具体实施方式一所述的储罐的进一步的限定,本实施方式所述的一种用于大规模熔盐储能的储罐,所述的冷盐泵5包括动力装置5-1、泵头5-2、膨胀吸收结构5-3、冷盐吸入管5-4、冷盐吸入管保温装置5-5、吸入管保温护管5-6、保温膨胀装置5-7和吸入管径向限位装置5-8;
动力装置5-1的输入端与泵头5-2的一端连接,泵头5-2布置在靠近液面位置,因而冷盐泵得泵轴无需很长,泵头5-2的另一端与膨胀吸收结构5-3的一端连接,膨胀吸收结构5-3的另一端与冷盐吸入管5-4的一端连接,冷盐吸入管5-4的入口靠近罐底1-1布置,冷盐吸入管5-4外部设有冷盐吸入管保温装置5-5,冷盐吸入管保温装置5-5外部设有吸入管保温护管5-6,在其上设有若干保温膨胀装置5-7,冷盐吸入管5-4的外表面沿高度方向设有若干吸入管径向限位装置5-8;
本具体实施方式,采用冷盐泵5的冷盐吸入管5-4外部敷设有冷盐吸入管保温装置5-5,绝热材料外部敷设吸入管保温护管5-6,隔绝管内熔盐与罐内熔盐温度场相互影响,保证系统能够正常工作。同时在保温护管上设有膨胀吸收结构5-3,防止冷盐吸入管5-4与吸入管保温护管5-6存在热位移差而发生破坏,并沿高度方向设有若干吸入管径向限位装置5-8,保证冷盐吸入管可以沿竖直方向自由移动而不发生相对罐体的水平方向的晃动。
具体实施方式七:结合图7说明本实施方式,本实施方式是对具体实施方式一所述的储罐的进一步的限定,本实施方式所述的一种用于大规模熔盐储能的储罐,所述的冷盐管道系统6包括冷盐管6-1、冷盐管保温装置6-2、冷盐管保温护管6-3、冷盐管道保温膨胀节6-4和冷盐管径向限位装置6-5;
冷盐管6-1的外部设有冷盐管保温装置6-2,实现隔绝管内与罐内温度场相互影响,冷盐管保温装置6-2外部设有冷盐管保温护管6-3,在其上从上到下依次设有若干冷盐管 道保温膨胀节6-4,用以吸收冷盐管6-1和冷盐管保温护管6-3因温差产生的热位移,冷盐管6-1外表面设有冷盐管径向限位装置6-5,保证冷盐管6-1可以沿竖直方向自由移动而不发生相对罐体的水平方向的晃动。
具体实施方式八:结合图8和图9说明本实施方式,本实施方式是对具体实施方式一所述的储罐的进一步的限定,本实施方式所述的一种用于大规模熔盐储能的储罐,所述的热平板式布盐器4包括热盐连接法兰4-1、直管4-2、热盐扩展筒4-3、热盐上平板4-4、热盐分布支撑板4-5、热盐下平板4-6、热盐斜支撑板4-7、热盐导流锥4-8和热盐破碎网4-9;
热盐上平板4-4的下表面与热盐分布支撑板4-5的上表面固定连接,热盐分布支撑板4-5的下表面与热盐下平板4-6的上表面固定连接,热盐下平板4-6的下表面中部设有一个盲孔,且盲孔的内部设有热盐导流锥4-8,热盐上平板4-4的上表面的中部设有通孔,且通孔的上部设有热盐扩展筒4-3,热盐扩展筒4-3的顶端与直管4-2底端连接,直管4-2的顶端设有热盐连接法兰4-1,直管4-2外壁与热盐上平板4-4上表面之间设有多个热盐斜支撑板4-7,直管4-2的内部嵌设有热盐破碎网4-9;
本具体实施方式,在布盐装置方面,本结构无需采用为实现要求各处温度均匀的结构复杂的布盐环,采用平板式布盐器结构,结构更加简单,不易堵塞,便于制造、安装及维修,可靠性高,价格更为低廉。
具体实施方式九:结合图8和图9说明本实施方式,本实施方式是对具体实施方式六所述的储罐的进一步的限定,本实施方式所述的一种用于大规模熔盐储能的储罐,所述的热盐上平板4-4的上表面与横向水平线之间成a°夹角,2≤a≤6;所述的热盐下平板4-6的下表面与横向水平线之间成b°夹角,10≤b≤30;
本具体实施方式,采用热盐上平板4-4的上表面与横向水平线之间成a°夹角,2≤a≤6;所述的热盐下平板4-6的下表面与横向水平线之间成b°夹角,10≤b≤30;热平板式布盐器4通过合理的破碎网4-9、热盐扩展筒4-3及热盐导流锥4-8等结构设计,一方面可以实现熔盐稳定均匀的流出,减小阻力,实现斜温层正常可靠的工作,另一方面通过设置平板倾角或开有孔洞,防止熔盐残留,自然排盐无需人工清理;排盐时,熔盐不会在布盐器上存留及凝固,无需人工清理,且可保证熔盐能够在布盐器中稳定充分流动,不会冲击罐内流场。
具体实施方式十:结合图10和图11说明本实施方式,本实施方式是对具体实施方式一所述的储罐的进一步的限定,本实施方式所述的一种用于大规模熔盐储能的储罐,所 述的冷平板式布盐器7包括冷盐连接法兰7-1、冷盐扩展筒7-2、冷盐上平板7-3、冷盐分布支撑板7-4、冷盐下平板7-5、冷盐斜支撑板7-6、冷盐导流锥7-7、支撑肋7-8、支撑板7-9和冷盐破碎网7-10;
冷盐上平板7-3的下表面与冷盐分布支撑板7-4的上表面连接,冷盐分布支撑板7-4的下表面与冷盐下平板7-5的上表面连接,冷盐下平板7-5的下表面的中部设有盲孔,且盲孔内部设有冷盐导流锥7-7,冷盐下平板7-5的下表面设有支撑板7-9,冷盐下平板7-5的下表面与支撑板7-9上表面之间设有多个支撑肋7-8,冷盐上平板7-3的上表面中部设有通孔,且该通孔顶部设有冷盐扩展筒7-2,冷盐扩展筒7-2的顶部设有冷盐连接法兰7-1,冷盐扩展筒7-2外壁与冷盐上平板7-3的上表面之间沿圆周方向均匀的设有多个冷盐斜支撑板7-6,冷盐扩展筒7-2的内部嵌设有冷盐破碎网7-10。
具体实施方式十一:结合图10和图11说明本实施方式,本实施方式是对具体实施方式八所述的储罐的进一步的限定,本实施方式所述的一种用于大规模熔盐储能的储罐,所述的冷盐上平板7-3的上表面与横向水平线之间成c°夹角,10≤c≤30,冷盐下平板7-5的下表面与横向水平线之间成d°夹角,2≤d≤6;
本具体实施方式,采用所述的冷盐上平板7-3的上表面与横向水平线之间成c°夹角,10≤c≤30,冷盐下平板7-5的下表面与横向水平线之间成d°夹角,2≤d≤6;排盐时,熔盐不会在布盐器上存留及凝固,无需人工清理,且可保证熔盐能够在布盐器中稳定充分流动,不会冲击罐内流场。
具体实施方式十二:结合图12和图13说明本实施方式,本实施方式是对具体实施方式一所述的储罐的进一步的限定,本实施方式所述的一种用于大规模熔盐储能的储罐,所述的冷布盐器支撑单元9包括水平支撑型钢9-1、滚轮9-2和下水平支撑型钢9-3;水平支撑型钢9-1和下水平支撑型钢9-3平行设置,水平支撑型钢9-1和下水平支撑型钢9-3之间中部设有滚轮9-2,下水平支撑型钢9-3的下表面与罐体1内部底面焊接固定,水平支撑型钢9-1与支撑板7-9的下表面焊接固定;
本具体实施方式,采用水平支撑型钢9-1和下水平支撑型钢9-3平行设置,水平支撑型钢9-1和下水平支撑型钢9-3之间中部设有滚轮9-2,由于热位移较大,冷布盐器支撑单元9采用可滚动支撑结构,可沿径向自由移动,避免应力集中发生破坏。同时冷布盐器支撑单元9采用Z字形结构,可吸收竖直方向热位移,避免应力集中发生破坏。
工作原理
运行时,热盐密度低在上部,冷盐密度高在下部,中间有一温度梯度层斜温层,通 过布盐器及管道系统,储热时热盐经过热盐管道系统3由热平板式布盐器4进入罐体1,冷盐由冷盐泵5抽出罐体1,斜温层逐渐下移,当达到冷平板式布盐器7附近时,储热过程结束;放热时热盐由热盐泵2抽出罐体1,冷盐经过冷盐管道系统6由冷平板式布盐器7进入罐体1,斜温层逐渐上移,当达到热平板布盐器4附近时,放热过程结束。整个储放热过程,罐内盐的液位变化较小,均维持在靠近罐顶附近,实现了一个储罐同时存储冷热熔盐的功能,与原来需要冷热双罐相比,不仅节省了罐体材料成本及制造安装成本,而且节省了配套的电加热系统、仪表等的投资,且减少了故障点,整个系统的可靠性更高。由于冷热熔盐泵的泵头只需靠近液面布置即能满足需求,因而熔盐泵泵轴无需很长,降低了熔盐泵成本,提高了熔盐泵的可靠性,同时由于不受泵轴长度的限制,罐体高度不再受到限制,可以实现更大容积的熔盐存储,进行大规模熔盐储能。罐体形状变为细长型结构,更为经济合理。,由于冷盐在下方,温度低,对基础的要求也降低了。此外,相对于其他单罐方案,无需设置熔盐槽及其连接管道和伴热装置,减少了故障点,系统更加简单,可靠性高。通过内部的隔热装置及膨胀吸收结构,避免了管内与罐内温度场的相互干扰,以及因为温差产生热位移受限带来的应力集中现象,保证整个设备能够安全稳定的运行。

Claims (10)

  1. 一种用于大规模熔盐储能的储罐,其特征在于:它包括罐体(1)、热盐泵(2)、热盐管道系统(3)、热平板式布盐器(4)、冷盐泵(5)、冷盐管道系统(6)、冷平板式布盐器(7)、电加热器(8)、冷布盐器支撑单元(9);
    罐体(1)的罐顶为球冠形拱顶,罐体(1)的罐顶靠近罐壁位置设有热盐泵(2)、冷盐泵(5)和冷盐管道系统(6)及安装于其下的冷平板式布盐器(7),在罐顶中心位置设有热盐管道系统(3)及安装于其下部的热平板式布盐器(4),且热盐泵(2)的入口设置在罐体(1)的内部靠近液面,热盐管道系统(3)与热平板式布盐器(4)相连,熔盐由热平板式布盐器(4)周向均匀流入罐体(1)内部,冷盐泵(5)入口设置在罐体(1)的内部靠近罐底,冷盐管道系统(6)与冷平板式布盐器(7)相连,熔盐由冷平板式布盐器(7)周向均匀流入罐体(1)内部,冷平板式布盐器(7)的底部设有冷布盐器支撑单元(9),罐体(1)的内部靠近罐底附近沿圆周方向均布有多个电加热器(8)。
  2. 根据权利要求1所述的一种用于大规模熔盐储能的储罐,其特征在于:所述的罐体(1)由罐底(1-1)、罐壁(1-2)、罐顶(1-3)、罐顶钢结构支撑(1-4)、压力仪表(1-5)、液位仪表(1-6)、温度仪表(1-7)、安全泄放装置(1-8)和罐体保温装置(1-9)组成;
    罐底(1-1)上部焊接罐壁(1-2),罐壁(1-2)上部焊接罐顶(1-3),罐顶钢结构支撑(1-4)外边缘与罐壁(1-2)内部焊接,其上部与罐顶(1-3)下表面焊接,罐顶(1-3)上装有压力仪表(1-5)、液位仪表(1-6)、温度仪表(1-7)、安全泄放装置(1-8),在罐壁(1-2)及罐顶(1-3)外部设有罐体保温装置(1-9)。
  3. 根据权利要求1所述的一种用于大规模熔盐储能的储罐,其特征在于:所述的热盐泵(2)包括热盐吸入管(2-1)、泵头(2-2)和动力装置(2-3),动力装置(2-3)的输入端与泵头(2-2)的一端连接,泵头(2-2)的另一端与热盐吸入管(2-1)的顶部连接。
  4. 根据权利要求1所述的一种用于大规模熔盐储能的储罐,其特征在于:所述的热盐管道系统(3)包括热盐管(3-1)、支撑拉杆(3-2)和径向限位装置(3-3);
    热盐管(3-1)的底部设有径向限位装置(3-3),且径向限位装置(3-3)沿圆周外表面均匀的设有多个支撑拉杆(3-2),每个支撑拉杆(3-2)的顶端与罐体(1)的罐顶钢结构支撑(1-4)固定连接,热盐管(3-1)的顶部穿过罐体(1)顶部的外壁,且热盐管(3-1)受热膨胀时可以通过径向限位装置(3-3)沿竖直方向自由滑动,但水平方向受到限制而不发生晃动。
  5. 根据权利要求1所述的一种用于大规模熔盐储能的储罐,其特征在于:所述的冷盐泵(5)包括动力装置(5-1)、泵头(5-2)、膨胀吸收结构(5-3)、冷盐吸入管(5-4)、 冷盐吸入管保温装置(5-5)、吸入管保温护管(5-6)、保温膨胀装置(5-7)和吸入管径向限位装置(5-8);
    动力装置(5-1)的与泵头(5-2)的一端连接,泵头(5-2)的另一端与膨胀吸收结构(5-3)的一端连接,膨胀吸收结构(5-3)的另一端与冷盐吸入管(5-4)的一端连接,冷盐吸入管(5-4)的入口位于罐底附近,,冷盐吸入管(5-4)外部设有冷盐吸入管保温装置(5-5),实现隔绝管内与罐内温度场相互影响,冷盐吸入管保温装置(5-5)外部设有吸入管保温护管(5-6),在其上设有若干保温膨胀装置(5-7),用以吸收冷盐吸入管(5-4)和吸入管保温护管(5-6)因温差产生的相对位移,冷盐吸入管(5-4)的外表面沿高度方向设有若干吸入管径向限位装置(5-8),保证冷盐吸入管(5-4)可以沿竖直方向自由移动而不发生相对罐体的水平方向的晃动。
  6. 根据权利要求1所述的一种用于大规模熔盐储能的储罐,其特征在于:所述的冷盐管道系统(6)包括冷盐管(6-1)、冷盐管保温装置(6-2)、冷盐管保温护管(6-3)、冷盐管道保温膨胀节(6-4)和冷盐管径向限位装置(6-5);
    冷盐管(6-1)的外部设有冷盐管保温装置(6-2),实现隔绝管内与罐内温度场相互影响,冷盐管保温装置(6-2)外部设有冷盐管保温护管(6-3),在其上从上到下依次设有若干冷盐管道保温膨胀节(6-4),用以吸收冷盐管(6-1)和冷盐管保温护管(6-3)因温差产生的热位移,冷盐管(6-1)外表面设有冷盐管径向限位装置(6-5),保证冷盐管(6-1)可以沿竖直方向自由移动而不发生相对罐体的水平方向的晃动。
  7. 根据权利要求1所述的一种用于大规模熔盐储能的储罐,其特征在于:所述的热平板式布盐器(4)包括热盐连接法兰(4-1)、直管(4-2)、热盐扩展筒(4-3)、热盐上平板(4-4)、热盐分布支撑板(4-5)、热盐下平板(4-6)、热盐斜支撑板(4-7)、热盐导流锥(4-8)和热盐破碎网(4-9);
    热盐上平板(4-4)的下表面与热盐分布支撑板(4-5)的上表面固定连接,热盐分布支撑板(4-5)的下表面与热盐下平板(4-6)的上表面固定连接,热盐下平板(4-6)的下表面中部设有一个盲孔,且盲孔的内部设有热盐导流锥(4-8),热盐上平板(4-4)的上表面的中部设有通孔,且通孔的上部设有热盐扩展筒(4-3),热盐扩展筒(4-3)的顶端与直管(4-2)底端连接,直管(4-2)的顶端设有热盐连接法兰(4-1),直管(4-2)外壁与热盐上平板(4-4)上表面之间设有多个热盐斜支撑板(4-7),直管(4-2)的内部嵌设有热盐破碎网(4-9)。
  8. 根据权利要求6所述的一种用于大规模熔盐储能的储罐,其特征在于:所述的热盐 上平板(4-4)的上表面与横向水平线之间成a°夹角,2≤a≤6;所述的热盐下平板(4-6)的下表面与横向水平线之间成b°夹角,10≤b≤30。
  9. 根据权利要求1所述的一种用于大规模熔盐储能的储罐,其特征在于:所述的冷平板式布盐器(7)包括冷盐连接法兰(7-1)、冷盐扩展筒(7-2)、冷盐上平板(7-3)、冷盐分布支撑板(7-4)、冷盐下平板(7-5)、冷盐斜支撑板(7-6)、冷盐导流锥(7-7)、支撑肋(7-8)、支撑板(7-9)和冷盐破碎网(7-10);
    冷盐上平板(7-3)的下表面与冷盐分布支撑板(7-4)的上表面连接,冷盐分布支撑板(7-4)的下表面与冷盐下平板(7-5)的上表面连接,冷盐下平板(7-5)的下表面的中部设有盲孔,且盲孔内部设有冷盐导流锥(7-7),冷盐下平板(7-5)的下表面设有支撑板(7-9),冷盐下平板(7-5)的下表面与支撑板(7-9)上表面之间设有多个支撑肋(7-8),冷盐上平板(7-3)的上表面中部设有通孔,且该通孔顶部设有冷盐扩展筒(7-2),冷盐扩展筒(7-2)的顶部设有冷盐连接法兰(7-1),冷盐扩展筒(7-2)外壁与冷盐上平板(7-3)的上表面之间沿圆周方向均匀的设有多个冷盐斜支撑板(7-6),冷盐扩展筒(7-2)内部嵌设有冷盐破碎网(7-10);
    所述的冷盐上平板(7-3)的上表面与横向水平线之间成c°夹角,10≤c≤30,冷盐下平板(7-5)的下表面与横向水平线之间成d°夹角,2≤d≤6。
  10. 根据权利要求1所述的一种用于大规模熔盐储能的储罐,其特征在于:所述的冷布盐器支撑单元(9)包括水平支撑型钢(9-1)、滚轮(9-2)和下水平支撑型钢(9-3);水平支撑型钢(9-1)和下水平支撑型钢(9-3)平行设置,水平支撑型钢(9-1)和下水平支撑型钢(9-3)之间中部设有滚轮(9-2),下水平支撑型钢(9-3)的下表面与罐体(1)内部底面焊接固定,水平支撑型钢(9-1)与支撑板(7-9)的下表面焊接固定;
    所述的电加热器(8)包括保护套管(8-1)和电加热器本体(8-2),电加热器本体(8-2)的外表面套设有保护套管(8-1),且保护套管(8-1)的外表面与罐体(1)的罐壁(1-2)焊接固定。
PCT/CN2022/119861 2021-12-27 2022-09-20 一种用于大规模熔盐储能的储罐 WO2023124275A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111613805.XA CN114132646A (zh) 2021-12-27 2021-12-27 一种用于大规模熔盐储能的储罐
CN202111613805.X 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023124275A1 true WO2023124275A1 (zh) 2023-07-06

Family

ID=80383535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119861 WO2023124275A1 (zh) 2021-12-27 2022-09-20 一种用于大规模熔盐储能的储罐

Country Status (2)

Country Link
CN (1) CN114132646A (zh)
WO (1) WO2023124275A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114132646A (zh) * 2021-12-27 2022-03-04 哈尔滨汽轮机厂辅机工程有限公司 一种用于大规模熔盐储能的储罐

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145107A (ja) * 1995-11-20 1997-06-06 Fuji Denki Koji Kk 潜熱蓄熱システム
KR101102333B1 (ko) * 2011-03-02 2012-01-04 케이디피시엠 주식회사 멀티 냉각방식 p.c.m 축냉 시스템
CN105091333A (zh) * 2015-07-28 2015-11-25 上海电气集团股份有限公司 一种新型储热用熔融盐罐
CN107490045A (zh) * 2017-09-13 2017-12-19 北京工业大学 一种移动式熔盐蓄、放热装置
CN108413795A (zh) * 2018-02-05 2018-08-17 晖保智能科技(上海)有限公司 一种高低温熔融盐单罐储热装置
CN109838928A (zh) * 2017-09-08 2019-06-04 甘肃光热发电有限公司 高温熔盐集热场及热盐罐的首次注盐方法
US20190234655A1 (en) * 2018-01-30 2019-08-01 Xiaojuan Qiu High-temperature long-shaft molten salt pump detection testbed
CN209355515U (zh) * 2018-12-17 2019-09-06 江苏鑫晨光热技术有限公司 一种用于熔盐介质的新型储罐
CN114132646A (zh) * 2021-12-27 2022-03-04 哈尔滨汽轮机厂辅机工程有限公司 一种用于大规模熔盐储能的储罐
CN216862479U (zh) * 2021-12-27 2022-07-01 哈尔滨汽轮机厂辅机工程有限公司 一种用于大规模熔盐储能的储罐

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145107A (ja) * 1995-11-20 1997-06-06 Fuji Denki Koji Kk 潜熱蓄熱システム
KR101102333B1 (ko) * 2011-03-02 2012-01-04 케이디피시엠 주식회사 멀티 냉각방식 p.c.m 축냉 시스템
CN105091333A (zh) * 2015-07-28 2015-11-25 上海电气集团股份有限公司 一种新型储热用熔融盐罐
CN109838928A (zh) * 2017-09-08 2019-06-04 甘肃光热发电有限公司 高温熔盐集热场及热盐罐的首次注盐方法
CN107490045A (zh) * 2017-09-13 2017-12-19 北京工业大学 一种移动式熔盐蓄、放热装置
US20190234655A1 (en) * 2018-01-30 2019-08-01 Xiaojuan Qiu High-temperature long-shaft molten salt pump detection testbed
CN108413795A (zh) * 2018-02-05 2018-08-17 晖保智能科技(上海)有限公司 一种高低温熔融盐单罐储热装置
CN209355515U (zh) * 2018-12-17 2019-09-06 江苏鑫晨光热技术有限公司 一种用于熔盐介质的新型储罐
CN114132646A (zh) * 2021-12-27 2022-03-04 哈尔滨汽轮机厂辅机工程有限公司 一种用于大规模熔盐储能的储罐
CN216862479U (zh) * 2021-12-27 2022-07-01 哈尔滨汽轮机厂辅机工程有限公司 一种用于大规模熔盐储能的储罐

Also Published As

Publication number Publication date
CN114132646A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
CN206583343U (zh) 一种夹套式多通道相变储热装置
WO2023124275A1 (zh) 一种用于大规模熔盐储能的储罐
CN206583344U (zh) 一种多仓式换热相变储热装置
WO2018161508A1 (zh) 一种跨季节自然水体蓄热和电极锅炉结合进行火电厂调峰的系统
CN113465432A (zh) 一种夹层式储热装置
CN203550643U (zh) 核反应堆非能动冷凝器
CN216862479U (zh) 一种用于大规模熔盐储能的储罐
WO2019080808A1 (zh) 储能换热一体化系统
CN103267423A (zh) 核电站安全壳内的热交换器
CN203857445U (zh) 适用于高温兰炭固体颗粒废热回收利用的余热锅炉
CN108332591B (zh) 一种蓄冷蓄热一体化装置
CN207365478U (zh) 一种高、低温熔盐的储能换热系统
CN102135270B (zh) 太阳能热发电用储热蒸发一体化装置
CN111595176A (zh) 一种冷却水塔以及玄武岩纤维工业化生产线冷却系统
CN210400068U (zh) 一种利用蒸汽冷凝水作为热能的保温系统
CN208671706U (zh) 间断式热源热水储热综合利用系统
CN206692682U (zh) 一种防冻型高炉软水膨胀罐
CN201954731U (zh) 超导式热水器
CN214650749U (zh) 储油罐新式自动调节加温装置
CN205939730U (zh) 一种双排管密排太阳能集热联集器
CN110953912A (zh) 一种热容量可调的相变储热装置
CN219177664U (zh) 一种熔盐加热储能蒸汽发生一体化装置
CN204630113U (zh) 一种全塑承压双循环太阳能水箱
CN209260478U (zh) 沥青路面冷却装置
CN204227680U (zh) 带电辅加热的容积式换热内胆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913540

Country of ref document: EP

Kind code of ref document: A1