WO2019080808A1 - 储能换热一体化系统 - Google Patents

储能换热一体化系统

Info

Publication number
WO2019080808A1
WO2019080808A1 PCT/CN2018/111265 CN2018111265W WO2019080808A1 WO 2019080808 A1 WO2019080808 A1 WO 2019080808A1 CN 2018111265 W CN2018111265 W CN 2018111265W WO 2019080808 A1 WO2019080808 A1 WO 2019080808A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
energy storage
tank
heat
integrated
Prior art date
Application number
PCT/CN2018/111265
Other languages
English (en)
French (fr)
Inventor
曾智勇
李珂
崔小敏
Original Assignee
深圳市爱能森科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市爱能森科技有限公司 filed Critical 深圳市爱能森科技有限公司
Publication of WO2019080808A1 publication Critical patent/WO2019080808A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the utility model belongs to the technical field of energy storage equipment, and more particularly to an integrated system of energy storage heat exchange.
  • a molten salt (abbreviated as a molten salt) is a molten liquid of a salt.
  • a molten salt refers to a melt of an inorganic salt, for example, a melt of an alkali metal, an alkaline earth metal halide, a nitrate, or a sulfate.
  • Commonly used high temperature heat storage materials can be classified into sensible heat and latent heat.
  • the sensible heat-type high-temperature heat storage material has the advantages of stable performance and low price, but its heat storage density is low, and the heat storage device is bulky; the latent heat type high-temperature heat storage material has problems of high temperature corrosion and high price, but its heat storage The density is high, the heat storage device is compact, and the endothermic-exothermic process is approximately isothermal, which is easy to operate and control.
  • High-temperature molten salt is one kind of latent heat storage phase change material, and at the same time it can form ionic liquid, which has many characteristics that low temperature heat storage material does not have, which has caused great concern.
  • Molten salt energy storage systems can effectively increase the stability of renewable energy or industrial waste heat output.
  • the energy storage heat exchange system is two sets of energy storage tanks and brine heat exchangers.
  • the system is complex and the layout space is large.
  • the new heating energy station project is generally located in the old town or new industrial park, and the available construction area is very large. Limited.
  • the purpose of the utility model is to provide an integrated energy storage heat exchange system, which solves the technical problem that the existing energy storage system has a complicated structure, large layout space requirements and high cost.
  • An integrated energy storage heat exchange system comprising a heat storage heat exchange tank and a ground device carrying the energy storage heat exchange tank;
  • the energy storage heat exchange tank includes a tank body for containing a heat storage material, the tank body is provided with a feeding port and a sewage outlet, and the top end of the tank body is disposed to extend into the heat storage material to make the storage a circulation pump for circulating a turbulent flow in the thermal material, the pump body of the circulation pump is located below a liquid level of the heat storage material; the tank body is provided with a heater and a heat exchanger, and the heat exchanger is connected for conveying a heat exchange medium inlet and a heat exchange medium outlet of the external heat exchange medium, wherein the heat exchange medium inlet and the heat exchange medium outlet are located on the side wall of the tank;
  • the foundation device comprises a bottom lining, a bottom insulation layer and a bottom reinforced concrete layer arranged in sequence along the gravity direction of the energy storage heat exchange tank.
  • the bottom liner is a 45# steel liner, and the bottom liner has the same shape as the bottom of the energy storage heat exchanger tank.
  • the circulation pump is provided with a pumping pipe and a pumping pipe, and an injection hole is arranged around the pumping pipe.
  • the can body is provided with a thermometer that protrudes into the can body and detects the temperature of the heat storage material.
  • a safety valve is disposed at a top end of the can body.
  • the feeding port is located at a top end of the can body
  • the sewage outlet is located at a side wall of the can body and near a bottom end of the can body.
  • the heat exchanger is located in a midway position within the can body.
  • the heat exchanger is a fixed tube plate heat exchanger.
  • the heater is an electric heater.
  • the heat exchange medium is water.
  • the energy storage heat exchange integrated system provided by the utility model heats the energy storage by the heater during the energy storage, and directly transfers heat through the heat exchanger of the tank through the external heat exchange medium during heat exchange, and is equipped with a circulation pump to increase the storage.
  • the material is circulated in the thermal material to improve heat exchange efficiency. In this way, the heat exchange device and the energy storage tank are optimized, and the whole energy storage heat exchange is integrated, which simplifies the heat exchange system.
  • the heat exchange arrangement has a large operation space and a large heat exchange area, and the heat storage material for heating has only been
  • the energy storage in the tank can be energy-dissipated, and the energy storage heat can be continuously, stably and safely controlled by controlling the flow of the external heat exchange medium; at the same time, the energy storage heat exchange tank can be supported by the ground-based device to support the energy storage heat exchanger tank.
  • the weight can prevent the energy stored in the tank from spreading out and reduce the energy loss.
  • the heat storage effect of the energy storage heat exchange integrated system of the utility model is better and the cost is better. Lower, easier to control.
  • FIG. 1 is a schematic diagram of an integrated energy storage heat exchange system according to an embodiment of the present invention.
  • 1-energy storage heat exchanger 11-tank; 111-heat exchange medium inlet; 112-heat exchange medium outlet; 113-feed port; 114-sewage port; 12-circulation pump; 121-pump pipe; Outlet; 13-heater; 14-heat exchanger; 15-thermometer; 16-safety valve;
  • the energy storage heat exchange integrated system comprises a heat storage heat exchange tank 1 and a foundation device 2 carrying the energy storage heat exchange tank energy storage heat exchange tank 1;
  • the energy storage heat exchange tank 1 comprises a tank for containing heat storage materials
  • the body 11 is provided with a feeding port 113 and a sewage outlet 114.
  • the top end of the can body 11 is provided with a circulation pump 12 which projects into the energy storage material to circulate the energy storage material.
  • the pump body of the circulation pump 12 is located at the energy storage.
  • the heater 11 is provided with a heater 13 and a heat exchanger 14 connected to the heat exchange medium inlet 111 for transporting the external heat exchange medium and the heat exchange medium outlet 112, the heat exchange medium inlet 111 and the heat exchange medium outlet 112 are located on the side wall of the tank body 1;
  • the foundation device 2 includes a bottom liner 21, a bottom insulation layer 22 and a bottom reinforced concrete layer 23 which are sequentially disposed along the gravity direction of the heat storage heat exchange tank 1.
  • the energy storage heat exchange integrated system heats the energy storage by the heater 13 during energy storage, and directly transfers heat through the heat exchanger 14 in the tank 11 through the external heat exchange medium during heat exchange, and It is equipped with a circulation pump 12 to increase the circulation disturbance in the energy storage material to improve the heat exchange efficiency.
  • the heat exchange device and the energy storage tank are optimized, and the whole energy storage heat exchange is integrated, which simplifies the heat exchange system.
  • the heat exchange arrangement has large operation space and large heat exchange area; and the special energy storage material for heating has only been
  • the energy storage in the tank 11 is energy-dissipating, and the energy storage heat exchange can be realized continuously, stably and safely by controlling the flow rate of the external heat exchange medium; at the same time, the energy storage heat exchange tank 1 is supported by the ground device 2, which can support the energy storage.
  • the weight of the heat exchange tank 11 can prevent the energy stored in the tank from spreading outward and reduce the energy loss.
  • the energy storage heat exchange of the utility model is integrated. The heat transfer effect of the system is better, the cost is lower, and the control is simpler.
  • the material of the can body 11 is mainly selected from the strength, temperature resistance, weldability, corrosion resistance and cost of the can body 11.
  • the tank 11 needs sufficient strength and corrosion resistance, so the tank 11 selects the low alloy structural steel Q345R.
  • the storage heat exchange tank 1 has a design temperature of 12 ° C and a design pressure of -0.004 / 0.002 MPa (this pressure is the gas pressure above the liquid storage material inside the energy storage heat exchange tank 1).
  • the energy storage heat exchange tank 1 adopts a flat bottom dome structure type, and the support structure is arranged inside the tank body 11.
  • the manual inspection opening is opened at the top, and the heater 13 is arranged on the side of the high and low temperature tank.
  • the molten salt filling factor can be taken as 0.9.
  • the bottom liner 21, the bottom insulation layer 22 and the bottom reinforced concrete layer 23 of the foundation device 2 at the bottom of the energy storage heat exchange tank 1 All have their own design requirements.
  • the bottom lining 21 mainly functions to withstand the gravity of the entire tank body and the heat storage material, and can prevent the bottom of the tank from being directly subjected to shearing force, and can ensure that the tank bottom can freely expand and contract when heated and expanded.
  • the bottom annular wall can be set as two inner and outer ring walls, which can reduce the maximum stress on the bottom lining when the height is constant, thereby reducing the thickness of the bottom lining 21 ,reduce the cost.
  • the use of the bottom lining 21 can reduce the thickness of the steel plate at the bottom of the tank and increase the safety margin.
  • the shape of the bottom lining 21 is the same as the shape of the bottom of the energy storage heat exchange tank 1, and is a solid circular plate and a bottom lining plate. 21 does not need to contact corrosive nitrates, and can choose materials with strong compressive and shear resistance. This design chooses 45# steel liner. In order to ensure that the bottom and the liner can be freely stretched under heat, dry sand can be laid under the bottom liner 21.
  • the material of the bottom insulation layer 22 may be selected from refractory bricks and heat insulation bricks, and the refractory bricks are directly connected to the bottom liner 21, and the heat insulation bricks are arranged under the refractory bricks.
  • the insulation between the bottom and the tank is made of two kinds of insulation materials. The reason for this is that the insulation material near the bottom of the tank is made of heat-resistant material, which can protect the underlying material and improve the foundation strength.
  • the bottom reinforced concrete layer 23 functions to support the weight of the tank, and the bottom is a reinforced concrete structure, which is the foundation of the entire system, and the flatness of the insulating surface of the foundation device 2 is ⁇ 2 mm.
  • the ground device 2 is further provided with a bottom circulation system (not labeled), which mainly adopts a breathing tube air cooling design, and the bottom circulation The system mainly prevents overheating of the bottom base portion, prevents the bottom concrete layer 23 from being overheated and broken, and reduces the strength, causing the tank body to tilt.
  • a bottom circulation system (not labeled)
  • the system mainly prevents overheating of the bottom base portion, prevents the bottom concrete layer 23 from being overheated and broken, and reduces the strength, causing the tank body to tilt.
  • the circulation pump 12 includes a pumping pipe 121 and a pumping pipe 122.
  • the impeller in the pumping pipe 121 rotates, the energy storage material in the tank 11 is pumped into the pump body of the circulation pump 12, and then pumped out from the pumping pipe 122, so that the circulating energy is continuously applied to the energy storage material in the tank 11.
  • the circulating spoiler makes the temperature of the energy storage material uniform, thereby significantly improving the heat exchange efficiency.
  • an injection hole (not shown) is disposed around the pumping pipe 122. With this design, the internal agitation of the energy storage material system can be promoted, and the turbulence can be further increased to improve the heat exchange efficiency.
  • the can body 11 is provided with a thermometer 15 extending into the can body 11 for detecting the temperature of the energy storage material.
  • the thermometer 15 extends into the can body 11 and is inserted into the energy storage material, so that the temperature of the energy storage material can be monitored in real time through the thermometer 15, so that the real-time temperature of the energy storage material can be effectively known by the worker in real time, thereby further controlling
  • the operating state of the heater 13 and the heat exchanger 14 enables control of the energy storage material within a temperature range that needs to be set.
  • a safety valve 16 is disposed at the top end of the tank body 11.
  • the safety valve 16 enables the energy storage heat exchange integrated system to work safely and efficiently.
  • the feeding port 113 is located at the top end of the tank body 11, and the sewage outlet 114 is located at the side wall of the tank body 11 and close to the bottom end of the tank body 11. position.
  • the feeding port 113 is used for adding the energy storage material into the tank body 11.
  • the top end of the tank body 11 is more favorable for feeding; at the same time, if there is a fault in the tank body 11, the worker can also enter from the feeding port 113 for maintenance.
  • the drain port 114 is located at the side wall of the can body 11 and near the bottom end of the can body 11 to facilitate the discharge of contaminants in the can body 11.
  • the heat exchanger 14 is located at a middle position in the tank body 11. With this arrangement, the space inside the can body 11 is rationally utilized, and the heat exchange effect on the energy storage material is better.
  • the heat exchanger 14 is a fixed tube plate heat exchanger.
  • the fixed tube plate heat exchanger has better heat transfer through the tube sheet.
  • the heater 13 is an electric heater.
  • the energy storage material can adopt a low melting point molten salt, the total effective heat storage capacity is 1.8 MWh, and the molten salt demand is 32 tons.
  • the system adopts a single-tube energy storage heat exchanger tank, in which the minimum working temperature is 60 ° C, the maximum working temperature is 100 ° C, and the heat exchange coil is internally set to reduce the initial investment.
  • the design temperature of the heat storage medium in the cold tank is 150 °C
  • the design temperature of the heat storage medium in the hot tank is 400 °C
  • the average thermal efficiency of the heat accumulator is 98%
  • the diameter of the tank is 3.0 m
  • the height is 3 m
  • the heat storage tank 1 It adopts a flat-bottom vault structure and is designed for normal pressure. If the system is shut down for a long time, it is required to provide heat loss from the heat to keep the molten salt at a relatively stable temperature.
  • the system is designed to be electrically heated to provide heat from the air source heat pump by storing the valley electricity in the event of extreme weather. When the energy is stored, the molten salt is heated by the valley electric power to achieve the purpose of energy storage.
  • high-temperature and low-temperature tanks can be installed in the integrated heat storage and heat exchange system, and electric heaters are installed.
  • the electric heater of the high-temperature tank is mainly used for energy storage heating.
  • the main function of the electric heater of the low-temperature tank is to prevent During long-term operation, the bottom of the tank, the wall of the tank, the top of the tank, etc., due to heat loss caused by heat conduction, convection, heat radiation, etc., cause the molten salt to solidify.
  • the energy storage material can also be a low-temperature sensible heat storage system composed of a novel inorganic mixture, which has a lower freezing point (up to -37 ° C), and a low temperature sensible heat storage system has a suitable and stable use temperature (-20 -120 ° C), because the new heat storage material has a freezing point lower than water and has a wider temperature range than water, high heat storage efficiency and low heat storage cost; compared with phase change materials, material cost is greatly reduced, and temperature interval Broad, just covering the heating and cooling temperature requirements, not only can be used as heat storage materials, but also can be used as cold storage materials, a set of energy storage system can achieve the dual functions of winter heating and summer cooling (especially applicable to the northern environment), In case, the electric heater should ensure that the temperature inside the tank is maintained above -20 °C.
  • the side of the electric heater is installed in the space of the tank wall within 1 m from the bottom of the tank, and should be jacketed for inspection.
  • four 100KW electric heaters are set to ensure that the temperature inside the tank is balanced, which is higher than -20 °C to prevent solidification of the low-temperature sensible heat storage system.
  • the heat exchange medium is preferably water, which has a wide range of water sources and low cost.
  • the heat exchange medium may also be other fluid materials that are thermally conductive.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种储能换热一体化系统,包括储能换热罐(1)和承载所述储能换热罐(1)的地基装置(2);所述储能换热罐(1)包括用于盛装储能材料的罐体(11),所述罐体(11)设置有加料口(113)和排污口(114),所述罐体(11)顶端设置有伸入所述储能材料中以使所述储能材料内循环扰流的循环泵(12),所述循环泵(12)的泵体位于所述储能材料的液面以下;所述罐体(11)内设置有加热器(13)和换热器(14),所述换热器(14)连接有用于输送外界换热介质的换热介质进口(111)和换热介质出口(112),所述换热介质进口(111)和所述换热介质出口(112)位于所述罐体(11)侧壁上;所述地基装置(2)包括沿所述储能换热罐(1)重力方向依次设置的底部衬板(21)、底部保温层(22)和底部钢筋混凝土层(23)。该储能换热一体化系统与现有技术相比,其换热效果更好,成本更低,操控更简单。

Description

储能换热一体化系统 技术领域
本实用新型属于储能设备技术领域,更具体地说,是涉及一种储能换热一体化系统。
背景技术
熔融盐(简称为熔盐),是盐的熔融态液体,通常说的熔盐是指无机盐的熔融体,例如碱金属、碱土金属的卤化物、硝酸盐、硫酸盐的熔融体。常用的高温蓄热材料可分为显热式和潜热式。显热式高温蓄热材料具有性能稳定、价格便宜等优点,但其蓄热密度低,蓄热装置体积庞大;潜热式高温蓄热材料虽然存在着高温腐蚀、价格较高等问题,但其蓄热密度高,蓄热装置结构紧凑,而且吸热-放热过程近似等温,易于运行控制和管理。高温熔盐作为潜热蓄热相变材料的一种,同时又能形成离子液体,具有许多低温蓄热材料所没有的特点,因而引起人们极大的关注。
熔盐储能系统可以有效增加可再生能源或工业余热输出的稳定性。通常储能换热系统是储能罐和盐水换热器两套装置,系统复杂,布置空间要求大,而新型供暖能源站项目一般设置在老城镇或新型工业园区,其可利用的建设面积非常受限。
技术问题
本实用新型的目的在于提供一种储能换热一体化系统,以解决现有储能系统结构复杂、布置空间要求大,致使成本高的技术问题。
技术解决方案
为实现上述实用新型目的,本实用新型采用的技术方案如下:
一种储能换热一体化系统,包括储能换热罐和承载所述储能换热罐的地基装置;
所述储能换热罐包括用于盛装储热材料的罐体,所述罐体设置有加料口和排污口,所述罐体顶端设置有伸入所述储热材料中以使所述储热材料内循环扰流的循环泵,所述循环泵的泵体位于所述储热材料的液面以下;所述罐体内设置有加热器和换热器,所述换热器连接有用于输送外界换热介质的换热介质进口和换热介质出口,所述换热介质进口和所述换热介质出口位于所述罐体侧壁上;
所述地基装置包括沿所述储能换热罐重力方向依次设置的底部衬板、底部保温层和底部钢筋混凝土层。
进一步地,所述底部衬板为45#钢衬板,且所述底部衬板的形状与所述储能换热罐的底部形状相同。
进一步地,所述循环泵设置有的泵入管和泵出管,所述泵出管四周设置有喷射孔。
进一步地,所述罐体上设置有伸入所述罐体内且用于检测所述储热材料的温度的温度计。
进一步地,所述罐体顶端设置有安全阀。
进一步地,所述加料口位于所述罐体的顶端,所述排污口位于所述罐体的侧壁且靠近所述罐体底端的位置。
进一步地,所述换热器位于所述罐体内的正中间位置。
进一步地,所述换热器为固定管板式换热器。
进一步地,所述加热器为电加热器。
进一步地,所述换热介质为水。
有益效果
本实用新型提供的储能换热一体化系统,储能时通过加热器加热储能,换热时直接通过外部换热介质流经罐体内的换热器换热,并配有循环泵增加储热材料内循环扰流,以提高换热效率。如此设计,换热装置与储能罐优化为一体,整个储能换热形成一体化,简化了换热系统,换热布置可操作空间大,换热面积大,且供暖专用储热材料一直仅在罐体内储能放能,并通过控制外部换热介质流量能连续、稳定、安全地实现储能换热;同时,通过地基装置承载储能换热罐,既可以支撑储能换热罐的重量,又可以阻止罐体中储存的能量向外扩散,减少能量损耗,与传统储能+换热两套系统比较,本实用新型的储能换热一体化系统的换热效果更好,成本更低,操控更简单。
附图说明
为了更清楚地说明本实用新型实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本实用新型实施例提供的储能换热一体化系统的示意图;
其中,图中各附图标记:
1-储能换热罐;11-罐体;111-换热介质入口;112-换热介质出口;113-加料口;114-排污口;12-循环泵;121-泵入管;122-泵出管;13-加热器;14-换热器;15-温度计;16-安全阀;
2-地基装置;21-底部衬板;22-底部保温层;23-底部钢筋混泥土层。
本发明的实施方式
为了使本实用新型要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图和实施例,对本实用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。
请一并参阅图1,现对本实用新型实施例提供的储能换热一体化系统进行说明。该储能换热一体化系统包括储能换热罐1和承载所述储能换热罐储能换热罐1的地基装置2;储能换热罐1包括用于盛装储热材料的罐体11,罐体11设置有加料口113和排污口114,罐体11顶端设置有伸入储能材料以使储能材料内循环扰流的循环泵12,循环泵12的泵体位于储能材料的液面以下;罐体11内设置有加热器13和换热器14,换热器14连接有用于输送外界换热介质的换热介质进口111和换热介质出口112,换热介质进口111和换热介质出口112位于罐体1侧壁上;地基装置2包括沿储能换热罐1重力方向依次设置的底部衬板21、底部保温层22和底部钢筋混凝土层23。
本实用新型实施例提供的储能换热一体化系统,储能时通过加热器13加热储能,换热时直接通过外部换热介质流经罐体11内的换热器14换热,并配有循环泵12增加储能材料内循环扰流,以提高换热效率。如此设计,换热装置与储能罐优化为一体,整个储能换热形成一体化,简化了换热系统,换热布置可操作空间大,换热面积大;且供暖专用储能材料一直仅在罐体11内储能放能,并通过控制外部换热介质流量能连续、稳定、安全地实现储能换热;同时,通过地基装置2承载储能换热罐1,既可以支撑储能换热罐11的重量,又可以阻止罐体中储存的能量向外扩散,减少能量损耗,与现有技术中的传统储能+换热两套系统比较,本实用新型的储能换热一体化系统换热效果更好,成本更低,操控更简单。
进一步地,作为本实用新型提供的储能换热一体化系统的一种具体实施方式,罐体11材质的选取主要是从罐体11的强度、耐温性、焊接性、耐腐蚀性以及成本等几方面考虑。根据储能材料的运行工况和保证其运行的安全性,罐体11需要足够的强度和耐腐蚀性,所以罐体11选择低合金结构钢Q345R。储能换热罐1设计温度为12℃,设计压力为-0.004/0.002MPa(此压力为储能换热罐1内部储能材料液体上方气体压力)。储能换热罐1采用平底拱顶结构型式,罐体11内部分布设置支撑结构,为便于检修作业,人工检修口开在顶部,高低温罐侧面布置加热器13。另外,如填装储热材料为熔盐,可以将熔盐装填系数取0.9。
进一步地,作为本实用新型提供的储能换热一体化系统的一种具体实施方式,储能换热罐1底部的地基装置2的底部衬板21、底部保温层22和底部钢筋混凝土层23都有各自设计的要求。底部衬板21主要作用是承受整个罐体以及储热材料的重力,并且可以避免罐底部直接受到剪切力作用,并可以保证罐底在受热膨胀时自由伸缩。为了降低费用,在底部半径较大的罐体中,可以将底部环形墙设置为内外两个环墙,可以在高度不变时,降低底部衬板受到的最大应力,从而降低底部衬板21厚度,降低费用。
更进一步地,底部衬板21的使用可以减少罐底部钢板的厚度,并增加安全裕度,底部衬板21的形状与储能换热罐1底部的形状相同,为实心圆板,底部衬板21不需要接触有腐蚀性的硝酸盐,可选择抗压和抗剪切能力强的材料,本设计选择45#钢衬板。为保证罐底和衬板能够在受热情况下实现自由伸缩,可在底部衬板21下铺层干沙。底部保温层22的材料可选择耐火砖和保温砖,耐火砖直接与底部衬板21相连,而保温砖在耐火砖下面布置。底部和罐体接触部分采用两种保温材料,这样做的原因是靠近罐底的保温材料采用耐热性材料,可对下面的材料进行保护及提升基础强度。底部钢筋混凝土层23的作用是支撑罐体重量,最底部是钢筋混凝土结构,是整个系统的地基,且地基装置2保温面的平整度<2mm。
进一步地,作为本实用新型提供的储能换热一体化系统的一种具体实施方式,地基装置2内还设置有底部循环系统(图未标注),其主要采用呼吸管空冷设计,该底部循环系统主要防止底部基础部分过热,防止底部混凝土层23过热破裂及强度降低,造成罐体倾斜。
进一步地,作为本实用新型提供的储能换热一体化系统的一种具体实施方式,循环泵12包括泵入管121和泵出管122。泵入管121中的叶轮转动,将罐体11内的储能材料泵入循环泵12的泵体内,然后从泵出管122泵出,如此循环工作,对罐体11内的储能材料不断地内循环扰流,使储能材料温度均匀,从而显著提高换热效率。更进一步地,泵出管122四周设置有喷射孔(图未标注)。以此设计,可促进储能材料系统内部搅动,进一步增加扰流提高换热效率。
进一步地,作为本实用新型提供的储能换热一体化系统的一种具体实施方式,罐体11上设置有伸入罐体11内且用于检测储能材料的温度的温度计15。具体地,温度计15伸入罐体11内并插入储能材料中,这样通过该温度计15可以实时监控储能材料温度,让工作人员可以实时有效地知晓储能材料的实时温度,进而可以进一步控制加热器13和换热器14的工作状态,实现控制储能材料在需要设定的温度范围内。
进一步地,作为本实用新型提供的储能换热一体化系统的一种具体实施方式,罐体11顶端设置有安全阀16。安全阀16可使储能换热一体化系统安全有效工作。
进一步地,作为本实用新型提供的储能换热一体化系统的一种具体实施方式,加料口113位于罐体11的顶端,排污口114位于罐体11的侧壁且靠近罐体11底端的位置。加料口113用于向罐体11内加入储能材料,设置于罐体11顶端更有利于加料;同时,罐体11内如有故障,工作人员也可从此加料口113进入便于维修。排污口114位于罐体11的侧壁且靠近罐体11底端的位置底端更有利于罐体11内的污染物排出。
进一步地,作为本实用新型提供的储能换热一体化系统的一种具体实施方式,换热器14位于罐体11内的正中间位置。如此设置,合理利用罐体11内的空间,而且对储能材料的换热效果更好。
进一步地,作为本实用新型提供的储能换热一体化系统的一种具体实施方式,换热器14为固定管板式换热器。固定管板式换热器通过管板换热,效果更好。
进一步地,作为本实用新型提供的储能换热一体化系统的一种具体实施方式,加热器13为电加热器。
本实用新型实施例提供的储能换热一体化系统中,储能材料可以采用低熔点熔盐,总有效蓄热容量为1.8MWh,熔盐需求量为32吨。系统采用单管储能换热罐,其中最低工作温度为60℃,最高工作温度为100℃,内部设置换热盘管,减少初步投资。冷罐体内蓄热工质设计温度为150℃,热罐体内蓄热工质设计温度为400℃,蓄热器平均热效率为98%,罐体直径3.0m,高3m,储能换热罐1采用平底拱顶结构型式,常压设计。如果系统长时间停止运行,要为其提供散热损失的能量,以保持熔盐处于相对稳定的温度。系统设计电加热,在出现极端天气时,通过储存谷电提供空气源热泵出力不足的热量。储能时通过谷电加热熔盐达到储能目的,换热时,直接通过外部换热介质流经储罐内换热管换热后输出供外界使用。同时,储能换热一体化系统中可以设置高、低温罐,都安装电加热器,高温罐的电加热器主要作用是用于储能加热,低温罐的电加热器的主要作用是防止由于长期运行时罐底、罐壁、罐顶等部位因热传导、对流、热辐射等引起热量损失而导致熔盐凝固的现象发生。
当然,储能材料还可以为新型的无机混合物构成的低温显热储热体系,具有更低的凝固点(可达-37℃),低温显热储热体系有合适且稳定的使用温度(-20-120℃),因新型储热材料凝固点低于水,并比水有更宽的使用温度范围,储热效率高,储热成本低廉;与相变材料相比,材料成本大大下降,且温度区间宽泛,恰好覆盖了供暖及制冷的温度需求,不仅可做储热材料,同时可做蓄冷材料,一套储能系统即可实现冬季供暖及夏季供冷的双重功能(特别适用北方环境),该情况下,电加热器需保证罐体内的温度维持在-20℃以上,电加热器侧面安装在罐壁离罐底1m内的空间内,且应带夹套,以利于检修。在冷温罐中,设置4个100KW电加热器,保证整个罐内温度均衡,都高于-20℃,防止低温显热储热体系凝固。
本实施例中,换热介质优选为水,水来源广泛,成本低。当然,在其他实施例中,换热介质还可以是其他易导热的流体物质。
以上所述仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型的保护范围之内。

Claims (10)

  1. 一种储能换热一体化系统,其特征在于,包括储能换热罐和承载所述储能换热罐的地基装置;
    所述储能换热罐包括用于盛装储能材料的罐体,所述罐体设置有加料口和排污口,所述罐体顶端设置有伸入所述储能材料中以使所述储能材料内循环扰流的循环泵,所述循环泵的泵体位于所述储能材料的液面以下;所述罐体内设置有加热器和换热器,所述换热器连接有用于输送外界换热介质的换热介质进口和换热介质出口,所述换热介质进口和所述换热介质出口位于所述罐体侧壁上;
    所述地基装置包括沿所述储能换热罐重力方向依次设置的底部衬板、底部保温层和底部钢筋混凝土层。
  2. 如权利要求1所述的储能换热一体化系统,其特征在于:所述底部衬板为45#钢衬板,且所述底部衬板的形状与所述储能换热罐的底部形状相同。
  3. 如权利要求1所述的储能换热一体化系统,其特征在于:所述循环泵包括泵入管和泵出管,所述泵出管四周设置有喷射孔。
  4. 如权利要求1所述的储能换热一体化系统,其特征在于:所述罐体上设置有伸入所述罐体内且用于检测所述储能材料的温度的温度计。
  5. 如权利要求1所述的储能换热一体化系统,其特征在于:所述罐体的顶端设置有安全阀。
  6. 如权利要求1所述的储能换热一体化系统,其特征在于:所述加料口位于所述罐体的顶端,所述排污口位于所述罐体的侧壁且靠近所述罐体底端的位置。
  7. 如权利要求1所述的储能换热一体化系统,其特征在于:所述换热器位于所述罐体内的正中间位置。
  8. 如权利要求1-7任一项所述的储能换热一体化系统,其特征在于:所述换热器为固定管板式换热器。
  9. 如权利要求1-7任一项所述的储能换热一体化系统,其特征在于:所述加热器为电加热器。
  10. 如权利要求1-7任一项所述的储能换热一体化系统,其特征在于:所述换热介质为水。
PCT/CN2018/111265 2017-10-25 2018-10-22 储能换热一体化系统 WO2019080808A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721396535.0 2017-10-25
CN201721396535.0U CN207395547U (zh) 2017-10-25 2017-10-25 储能换热一体化系统

Publications (1)

Publication Number Publication Date
WO2019080808A1 true WO2019080808A1 (zh) 2019-05-02

Family

ID=62326766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111265 WO2019080808A1 (zh) 2017-10-25 2018-10-22 储能换热一体化系统

Country Status (2)

Country Link
CN (1) CN207395547U (zh)
WO (1) WO2019080808A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207395547U (zh) * 2017-10-25 2018-05-22 深圳市爱能森科技有限公司 储能换热一体化系统
CN207395546U (zh) * 2017-10-25 2018-05-22 深圳市爱能森科技有限公司 储能换热一体化装置
CN108758586B (zh) * 2018-07-18 2024-02-27 深圳市爱能森设备技术有限公司 一种清洁能源储能蒸汽发生系统
CN110440467B (zh) * 2019-07-31 2021-01-12 浙江中控太阳能技术有限公司 一种电加热、换热、储热一体式结构的熔盐储罐

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201126323Y (zh) * 2007-08-20 2008-10-01 高秀明 相变蓄能罐
US20150060008A1 (en) * 2013-08-30 2015-03-05 The Regents Of The University Of California High-density, high-temperature thermal energy storage and retrieval
CN205505814U (zh) * 2015-12-18 2016-08-24 九格能源科技(天津)有限公司 地埋储热罐
CN106052160A (zh) * 2016-07-11 2016-10-26 江苏爱能森科技有限公司 一种智能熔盐加热系统
CN206131834U (zh) * 2015-11-03 2017-04-26 百吉瑞(天津)新能源有限公司 一种提高有效蓄热容积的熔盐储能装置
CN206281206U (zh) * 2016-08-09 2017-06-27 天津滨海储能技术有限公司 带单管式换热器的熔盐储能换热装置
CN206424915U (zh) * 2016-12-21 2017-08-22 深圳市爱能森科技有限公司 一种熔盐化盐储盐系统
CN207395547U (zh) * 2017-10-25 2018-05-22 深圳市爱能森科技有限公司 储能换热一体化系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201126323Y (zh) * 2007-08-20 2008-10-01 高秀明 相变蓄能罐
US20150060008A1 (en) * 2013-08-30 2015-03-05 The Regents Of The University Of California High-density, high-temperature thermal energy storage and retrieval
CN206131834U (zh) * 2015-11-03 2017-04-26 百吉瑞(天津)新能源有限公司 一种提高有效蓄热容积的熔盐储能装置
CN205505814U (zh) * 2015-12-18 2016-08-24 九格能源科技(天津)有限公司 地埋储热罐
CN106052160A (zh) * 2016-07-11 2016-10-26 江苏爱能森科技有限公司 一种智能熔盐加热系统
CN206281206U (zh) * 2016-08-09 2017-06-27 天津滨海储能技术有限公司 带单管式换热器的熔盐储能换热装置
CN206424915U (zh) * 2016-12-21 2017-08-22 深圳市爱能森科技有限公司 一种熔盐化盐储盐系统
CN207395547U (zh) * 2017-10-25 2018-05-22 深圳市爱能森科技有限公司 储能换热一体化系统

Also Published As

Publication number Publication date
CN207395547U (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
WO2019080808A1 (zh) 储能换热一体化系统
WO2020077967A1 (zh) 一种多水平深井降温及地热利用系统及工艺
CN204901906U (zh) 一种谷电相变储热式采暖热水系统
CN206583343U (zh) 一种夹套式多通道相变储热装置
CN107559930B (zh) 熔盐单罐电加热蓄热供暖系统及使用方法
CN206583344U (zh) 一种多仓式换热相变储热装置
CN104236360A (zh) 一种模块化框架承载储能装置
CN106225253A (zh) 一种节能节水型太阳能热水装置
Velraj Sensible heat storage for solar heating and cooling systems
CN103090455B (zh) 一种多功能移动蓄放热方法及移动供热装置
CN103900141B (zh) 混合能源远程智能控制供热供暖系统
CN103000922B (zh) 一种集成换热功能的电解液储罐及其控制方法
CN106402995A (zh) 固体蓄热单元及电蓄能加热设备
CN110388684A (zh) 无机相变蓄热式电采暖炉及采暖方法
JP2013525736A (ja) 熱駆動される自己循環する流体の加熱および貯留のタンクおよびシステム
CN110359972A (zh) 超临界co2为工质的熔盐电蓄热发电装置
CN108019983A (zh) 新型太阳能单罐相变蓄热吸收式热泵
CN209840238U (zh) 一种低温相变蓄、放热一体式取暖器
CN101539382A (zh) 一种蓄能装置
CN206222445U (zh) 固体蓄热单元及电蓄能加热设备
CN205843060U (zh) 换热器及相变蓄热式热水器
CN103983029A (zh) 一种具有防过热功能的太阳能热水器的水箱
CN202352354U (zh) 非能动自然循环铅铋换热装置
WO2019080806A1 (zh) 储能换热一体化装置
CN211734376U (zh) 一种太阳能沼气工程加热系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18871286

Country of ref document: EP

Kind code of ref document: A1