WO2020077967A1 - 一种多水平深井降温及地热利用系统及工艺 - Google Patents

一种多水平深井降温及地热利用系统及工艺 Download PDF

Info

Publication number
WO2020077967A1
WO2020077967A1 PCT/CN2019/083211 CN2019083211W WO2020077967A1 WO 2020077967 A1 WO2020077967 A1 WO 2020077967A1 CN 2019083211 W CN2019083211 W CN 2019083211W WO 2020077967 A1 WO2020077967 A1 WO 2020077967A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
pipeline
water
deep well
level
Prior art date
Application number
PCT/CN2019/083211
Other languages
English (en)
French (fr)
Inventor
李猛
张吉雄
孟国豪
张强
曹鑫
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to CA3082709A priority Critical patent/CA3082709C/en
Priority to AU2019359836A priority patent/AU2019359836B2/en
Priority to US16/763,788 priority patent/US20210172319A1/en
Priority to RU2020116872A priority patent/RU2743008C1/ru
Publication of WO2020077967A1 publication Critical patent/WO2020077967A1/zh
Priority to ZA2020/05965A priority patent/ZA202005965B/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling, insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F3/00Cooling or drying of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/15Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/20Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Definitions

  • the invention belongs to the technical field of deep resource mining in coal mines, and particularly relates to a multi-level deep well cooling and geothermal utilization system and process.
  • the present invention provides a multi-level deep well cooling and geothermal utilization system and process, which is a system for deep mine multi-level cooling and geothermal utilization of the mine, the system has equipment It has the advantages of low operating cost, wide cooling range, significant cooling effect, high geothermal utilization rate, low unit energy consumption, safety and reliability.
  • a multi-level deep well cooling and geothermal utilization system which includes a deep well heat recovery system, a shallow heat exchange system and a high temperature water lifting system in order from bottom to top of the deep well;
  • the deep well heat extraction system is located at the deep level of the mine and collects heat at the deep well; it includes a heat absorption pipe, a heat transfer fluid delivery pipe connected to the inlet end of the heat absorption pipe, and a heat pipe connected to the heat absorption pipe A heat conduction fluid lifting pipeline at the outlet end; a water pump is provided on the heat conduction fluid lifting pipeline;
  • the shallow heat exchange system is located at the shallow level of the mine, and uses the heat collected by the deep well heating system to heat the water; it includes a heat storage pool and a heat dissipation pipe provided therein to heat the heat dissipation pipe.
  • the inlet end is connected to the heat-conducting fluid lifting pipeline, the outlet end of the heat-radiating pipeline is connected to the heat-conducting fluid delivery pipeline; the heat storage pool is a closed space, and an inlet pump and inlet are provided outside the inlet end Water valve
  • the high-temperature water lifting system is connected to the ground surface and the shallow heat exchange system up and down, and the hot water heated in the shallow heat exchange system is lifted to the surface; including the outlet valve and the high-temperature water lifting pipeline provided outside the heat storage pool,
  • the water outlet valve is connected with a water outlet pump arranged outside the heat storage pool;
  • the ground surface is connected with a hot water utilization system.
  • the deep part of the mine is located below 2000 m below the surface, and the shallow part of the mine is located between 800-1000 m below the surface.
  • the heat-absorbing pipe is a closed pipe, and the heat-conducting fluid in the pipe is water as a diversion medium, and the microparticles of the phase-change material are used as the heat-absorbing material.
  • the phase-change material is determined according to the deep ground temperature conditions The phase change temperature is 5 to 10 ° C lower than the ground temperature at the deep horizontal position of the mine, the diameter of the phase change material microparticles is concentrated at 1 to 5 ⁇ m, and the concentration in the heat transfer fluid is 50 to 60%.
  • a flow meter is provided on the heat transfer fluid delivery pipeline.
  • a temperature sensor is provided on the heat absorption pipe.
  • a temperature sensor and a liquid level meter are provided in the heat storage pool.
  • the water outlet valve is connected with a flow meter provided inside the heat storage pool.
  • the deep well heat extraction system is applied to the deep well roadway cement filling working face, the heat absorbing pipe route is fixed to the straight section in the center of the roof of the recovery roadway, and the reciprocating section arranged at the roadway cement filling working face connects the center of the roadway roof It is composed of the connecting section that connects the pipelines in the connecting lanes of the two working faces close to the coal wall; the distance between the pipelines in the connecting lanes of the two working faces depends on the coal mining technology of cement filling, and the general spacing is 20-40m.
  • the heat dissipation pipeline is arranged at the bottom of the heat storage pool, 0.5 m away from the bottom of the pool, and the pipelines are arranged in an "S" ring shape with a spacing of 10 m.
  • the size of the specific heat dissipation pipe is related to the size of the heat storage pool, and it can be determined according to how much heat is required in the actual situation.
  • the process flow includes the following steps:
  • the deep well heat extraction system is applied to the deep well roadway cemented filling working face. After the deep well roadway cemented filling working face is connected to the roadway, the heat absorption pipeline is installed with the support, and the heat absorption pipe is arranged on the working face In the center of the roof of the connecting lane, after the mining of the connecting lanes of the two adjacent working faces is completed, the heat absorption pipes in the two connecting lanes are connected;
  • the present invention provides a multi-level deep well cooling and geothermal utilization system and process, compared with the prior art, has the following advantages:
  • the heat-conducting fluid is water as the diversion medium, and the phase-change material microparticles as the heat-absorbing material. Compared with water or ice alone, the heat-absorbing fluid has large heat absorption and higher efficiency, and can fully absorb deep well geothermal heat;
  • phase change material dissipates heat in the underground pool without mechanical cooling, which significantly reduces the cooling cost
  • the heat absorption pipeline is installed following the roadway cemented filling working face.
  • the pipeline layout is simple, the coverage is wide, and the pipeline wear is small. Even after the working face is completed, the system can be used for a long time.
  • Figure 1 is a schematic diagram of the overall framework of the system of the present invention.
  • FIG. 2 is a schematic diagram of the overall structure of the system of the present invention.
  • Figure 3 is a schematic diagram of the deep well heat production system of the present invention.
  • the invention discloses a multi-level deep well cooling and geothermal utilization system and process.
  • the system includes a deep well heat extraction system, a shallow heat exchange system and a high temperature water lifting system.
  • the deep well heat recovery system includes a heat absorption pipeline, a heat conduction fluid lifting pipeline, a heat conduction fluid delivery pipeline, a water pump, and a temperature sensor
  • the shallow heat exchange system includes a heat radiation pipeline, a heat storage pool, an inlet pump, and an inlet A water valve, a temperature sensor, and a liquid level meter.
  • the high-temperature water lifting system includes a water outlet pump, a flow meter, a water outlet valve, and a high-temperature water lifting pipeline.
  • the heat conduction fluid uses water as a flow guide medium and a phase change material as a heat absorbing material, which significantly improves the heat extraction efficiency and heat extraction.
  • the system of the invention has a simple structure, can be used for a long time, and utilizes the multi-level continuous cooling of the mine, which has a significant effect, a wide cooling range, a high geothermal utilization rate, and low unit energy consumption.
  • the staff provides a comfortable working environment.
  • a multi-level deep well cooling and geothermal utilization system includes a deep well heat recovery system 1, a shallow heat exchange system 2 and a high temperature water lifting system 3;
  • the deep well heating system 1 is located at the deep level of the mine, and is 2000m below the surface; it includes a heat absorption pipe 5, a heat transfer fluid delivery pipe 6-1 connected to its inlet end, and a heat conduction fluid lift pipe 6-2 connected to its outlet end ,
  • the heat absorption pipeline is provided with temperature sensors 7-1 and 7-2, the heat transfer fluid delivery pipeline 6-1 is provided with a flow meter 8-1, and the heat transfer fluid lifting pipeline is provided with a water pump 9 ;
  • the shallow heat exchange system 2 is located at the shallow level of the mine, with a depth of 800-1000m below the surface; it includes a heat storage pool 10 and a heat dissipation pipe 11 for heating it.
  • the heat storage pool 10 is a closed space with a water inlet There is an inlet pump 12-1 and an inlet valve 13-1, and a temperature sensor 7-3 and a liquid level gauge 14 are provided in the pool;
  • the high-temperature water lifting system 3 connects the shallow heat exchange system 2 and the surface 4, including a water outlet valve 13-2 and a high-temperature water lifting pipeline 15, the water outlet valve 13-2 is connected with a flow meter 8-2 and a water outlet pump 12 -2, the surface 4 is connected with a hot water utilization system.
  • the heat-absorbing pipe 5 is a closed pipe, in which the heat-conducting fluid uses water as a diversion medium and phase change material micro-particles as a heat-absorbing material.
  • the phase-change material is determined according to the deep horizontal temperature conditions at the location. The temperature at the deeper part of the variable temperature is 5-10 ° C lower than the horizontal temperature.
  • the diameters of the microparticles of the phase change material are distributed in a range of 1 to 5 ⁇ m, and the concentration in the heat transfer fluid is 50 to 60%.
  • the deep well heat recovery system 1 is applied to the deep well roadway cement filling working face.
  • the heat absorption pipeline 5 is composed of a straight section fixed at the center of the roof of the recovery roadway and a reciprocating section arranged at the roadway cement filling working face to connect the center of the roadway roof It is composed of the connecting section of the pipeline connecting the working face closely to the coal wall.
  • the distance between the pipelines in the connecting roadway of the two working faces depends on the cementing and filling coal mining process, and the general spacing is 20-40m.
  • the heat dissipation pipeline 11 is arranged at the bottom of the heat storage pool, 0.5 m away from the bottom of the pool, and the pipelines are arranged in an "S" ring shape with a spacing of 10 m.
  • the heat transfer fluid delivery pipeline 6-1, the heat transfer fluid lift pipeline 6-2, and the high temperature water lift pipeline 15 are made of heat-insulating materials to reduce heat loss during fluid transportation.
  • the process flow includes the following steps:
  • the deep well heat extraction system 1 is applied to the deep well roadway cementation filling working face. After the deep roadway roadway cementation workface is connected to the mining roadway, the heat absorption pipeline 5 is installed with the support, and the heat absorption pipeline 5 is arranged. In the center of the roof of the contact roadway of the working face, after the mining of the adjacent roadway of the two adjacent working faces is completed, the heat absorption pipelines in the two connecting roadways are connected;
  • the heat absorption pipeline 5 absorbs heat at the deep level.
  • the temperature sensors 7-1, 7-2 monitor the temperature of the heat transfer fluid in the pipeline. After a period of heat absorption, the temperature rises to the set value, and the water pump 9 is started to circulate, and the heat transfer fluid heated in the heat absorption pipeline 5 Circulate to the heat dissipation pipeline 11 in the heat storage pool 10, and the heat conduction fluid cooled in the heat dissipation pipeline 11 circulates to the heat absorption pipeline 5;

Abstract

一种多水平深井降温及地热利用系统及工艺,该系统包括深井采热系统(1)、浅部换热系统(2)及高温水提升系统(3)。所述深井采热系统(1)包括吸热管路(5)、导热流体提升管路(6-2)、导热流体下送管路(6-1)、温度传感器(7-1、7-2) 、水泵(9),所述浅部换热系统包括散热管路(11)、蓄热水池(10)、进水泵(12-1)、进水阀门(13-1)、温度传感器(7-3)、液位仪(14),所述高温水提升系统包括出水泵(12-2)、流量计(8-2)、出水阀门(13-2)、高温水提升管路(15)。该系统结构简单,可长期使用,利用矿井多水平持续降温、效果显著,降温范围广,地热利用率高,单位能耗低,有效解决了深井采煤工作面温度过高的问题,为井下工作人员提供舒适的作业环境。

Description

一种多水平深井降温及地热利用系统及工艺 技术领域
本发明属于煤矿深部资源开采技术领域,具体涉及一种多水平深井降温及地热利用系统及工艺。
背景技术
随着我国浅部煤矿资源的衰竭,深部矿产资源的开采势在必行。但随煤矿开采深度的增加,地温越来越高。矿井深度超过1000m以后,地温普遍超过50℃,高地温产生的热害问题严重影响了煤矿工人的身心健康,并制约着煤矿的安全高效生产。
目前矿井深部降温,主要采用两种方式:一是在地面建立大型降温系统,通过专用管道向井下输送冷水或冰块,在采场进行热交换后,再输送回地表进行重复冷却使用,以此降低采场范围内的温度,但是该方法系统庞大,设备投资高,矿井深度大,提升运输困难,运营成本高,且使用水作热交换介质,热交换效率低,不足以满足大型矿井的需求;二是采用局部降温措施,通过优化采区布置、通风方式,增加局部冷却设施等进行降温,但是该方法效率低,降温效果不明显,仅适用于采场范围较小的条件。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种多水平深井降温及地热利用系统及工艺,这是一种利用深井多水平进行矿井降温和地热利用的系统,该系统具有设备运营成本低、降温范围广、降温效果显著、地热利用率高、单位能耗低、安全可靠等优点。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种多水平深井降温及地热利用系统,从深井由下往上依次包括深井采热系统、浅部换热系统及高温水提升系统;
所述深井采热系统位于矿井深部水平,在深井处进行热量采集;包括吸热管路,以及连接所述吸热管路的进口端的导热流体下送管路、连接所述吸热管路的出口端的导热流体提升管路;所述导热流体提升管路上设置有水泵;
所述浅部换热系统位于矿井浅部水平,利用深井采热系统采集的热量对水进行加热;包括蓄热水池和其内部设置的对其进行加热的散热管路,所述散热管路的进口端与所述导热流体提升管路相连,所述散热管路的出口端与所述导热流体下送管路相连;所述蓄热水池为密闭空间,进水端外部设有进水泵与进水阀门;
所述高温水提升系统上下分别连接地表与浅部换热系统,将浅部换热系统中加热后的热水提升至地表;包括设置在蓄热水池外部的出水阀门和高温水提升管路,所述出水阀门连接有设置在蓄热水池外部的出水泵;地表连接有热水利用系统。
进一步的,所述矿井深部水平位于地表下2000m以深,所述矿井浅部水平位于地表下800~1000m深度。
进一步的,所述吸热管路为密闭管路,其内导热流体为利用水作导流介质、相变材料微颗粒作吸热材料,所述相变材料根据所处深部水平地温条件而定,相变温度较所述矿井深部水平位置的地温低5~10℃,所述相变材料微颗粒直径集中分布于1~5μm,在导热流体中浓度为50~60%。
进一步的,所述导热流体下送管路上设置有流量计。
进一步的,所述吸热管路上设置有温度传感器。
进一步的,所述蓄热水池内设有温度传感器和液位仪。
进一步的,所述出水阀门连接有设置在蓄热水池内部的流量计。
进一步的,所述深井采热系统应用于深井逐巷胶结充填工作面,所述吸热管路由固定在回采巷道顶板中央的直线段、布置在逐巷胶结充填工作面联络巷顶板中央的往复段和紧贴煤壁连接两工作面联络巷内管路的连接段组成;两工作面联络巷内管路间隔距离视胶结充填采煤工艺而定,一般间距20~40m。
进一步的,所述散热管路布置在蓄热水池底部,距离水池底0.5m,管路呈“S”环形布置,间距10m。具体散热管路的尺寸,与蓄热水池的尺寸有关,可以根据实际情况需要多少热量具体而定。
上述的一种多水平深井降温及地热利用系统,其工艺流程包括以下步骤:
1)所述深井采热系统应用于深井逐巷胶结充填工作面,在深井逐巷胶结充填工作面联络巷回采后,随支护的进行安装吸热管路,吸热管路布置在工作面联络巷顶板中央,相邻两个工作面联络巷回采完毕后,连通两个联络巷内的吸热管路;
2)根据逐巷胶结充填工艺,待工作面内第一个循环联络巷回采完毕后,将吸热管路(5)的进口端与导热流体下送管路、出口端与导热流体提升管路相连接,导热流体下送管路与导热流体提升管路的上端与浅部换热系统)蓄热水池内的散热管路相连接,构成闭合回路;
3)根据深部水平实际地温条件,选择合适相变温度的相变材料,配置成一定浓度 的导热流体,添加到整条管路内,吸热管路在深部水平进行吸热,利用设置的温度传感器监测管路内导热流体温度,经过一段时间的吸热,温度升高到设定值,启动水泵进行循环,将吸热管路内加热后的导热流体循环至蓄热水池内散热管路,散热管路内冷却的导热流体循环至吸热管路;
4)通过设置的温度传感器监测蓄热水池内水温,待散热管路将蓄热水池内的水加热至一定温度后,启动出水泵,经高温水提升系统将热水提至地表,供地表热水利用系统利用,蓄热水池内水位由液位仪监测,待水位降低至下限,启动进水泵,为蓄热水池供给凉水;
5)重复步骤3)~4),可以通过深部矿井的多个水平,将地热能转化为水的热能,从而进行长期利用。
有益效果:本发明提供的一种多水平深井降温及地热利用系统及工艺,与现有技术相比,具有以下优势:
(1)利用矿井多个水平,将地热转化为水的热能,降低设备成本和提升运输困难,方便井上利用;
(2)相比于地表来说,在井下建造热交换水池,储热保温效果好,热量损失少;
(3)导热流体为水作导流介质、相变材料微颗粒作吸热材料,相比于单纯用水或冰来说,吸热量大,效率更高,能充分吸收深井地热;
(4)相变材料在井下水池进行散热,无需采用机械降温,显著减少降温成本;
(5)吸热管路跟随逐巷胶结充填工作面回采而安装,管路布置简单,覆盖范围广,且对管路磨损小,即使工作面回采完毕,该系统也可以长期利用。
附图说明
图1是本发明系统的整体框架示意图;
图2是本发明系统的整体结构示意图;
图3是本发明深井采热系统示意图;
图中:1、深井采热系统,2、浅部换热系统,3、高温水提升系统,4、地表,5、吸热管路,6-1、导热流体下送管路,6-2、导热流体提升管路,7-1、温度传感器,7-2、温度传感器,7-3、温度传感器,8-1、流量计,8-2、流量计,9、水泵,10、蓄热水池,11、散热管路,12-1、进水泵,12-2、出水泵,13-1、进水阀门,13-2、出水阀门,14、液位仪,15、高温水提升管路。
具体实施方式
本发明公开了一种多水平深井降温及地热利用系统及工艺,该系统包括深井采热系统、浅部换热系统及高温水提升系统。所述深井采热系统包括吸热管路、导热流体提升管路、导热流体下送管路、水泵、温度传感器,所述浅部换热系统包括散热管路、蓄热水池、进水泵、进水阀门、温度传感器、液位仪,所述高温水提升系统包括出水泵、流量计、出水阀门、高温水提升管路。所述导热流体利用水作导流介质、相变材料作吸热材料,显著提高了采热效率及采热量。本发明系统结构简单,可长期使用,利用矿井多水平持续降温、效果显著,降温范围广,地热利用率高,单位能耗低,有效解决了深井采煤工作面温度过高的问题,为井下工作人员提供舒适的作业环境。
下面结合附图和实施例对本发明作更进一步的说明。
如图1所示,一种多水平深井降温及地热利用系统,包括深井采热系统1、浅部换热系统2及高温水提升系统3;
所述深井采热系统1位于矿井深部水平,地表下2000m以深;包括吸热管路5,连接其进口端的导热流体下送管路6-1、连接其出口端的导热流体提升管路6-2,所述吸热管路上设置有温度传感器7-1和7-2,所述导热流体下送管路6-1上设置有流量计8-1、所述导热流体提升管路上设置有水泵9;
所述浅部换热系统2位于矿井浅部水平,地表下800~1000m深度;包括蓄热水池10和对其进行加热的散热管路11,所述蓄热水池10为密闭空间,进水端设有进水泵12-1与进水阀门13-1,水池内设有温度传感器7-3和液位仪14;
所述高温水提升系统3连接浅部换热系统2与地表4,包括出水阀门13-2和高温水提升管路15,所述出水阀门13-2连接有流量计8-2与出水泵12-2,地表4连接有热水利用系统。
所述吸热管路5为密闭管路,其内导热流体为利用水作导流介质、相变材料微颗粒作吸热材料,所述相变材料根据所处深部水平地温条件而定,相变温度较深部水平地温低5~10℃,所述相变材料微颗粒直径集中分布于1~5μm,在导热流体中浓度为50~60%。
所述深井采热系统1应用于深井逐巷胶结充填工作面,所述吸热管路5由固定在回采巷道顶板中央的直线段、布置在逐巷胶结充填工作面联络巷顶板中央的往复段和紧贴煤壁连接两工作面联络巷内管路的连接段组成。两工作面联络巷内管路间隔距离视胶结充填采煤工艺而定,一般间距20~40m。
所述散热管路11布置在蓄热水池底部,距离水池底0.5m,管路呈“S”环形布置,间距10m。
所述导热流体下送管路6-1、导热流体提升管路6-2、高温水提升管路15均为隔热材料制成,以减少流体在输送过程中的热量损失。
本发明的一种多水平深井降温及地热利用系统,工艺流程包括以下步骤:
1)所述深井采热系统1应用于深井逐巷胶结充填工作面,在深井逐巷胶结充填工作面联络巷回采后,随支护的进行安装吸热管路5,吸热管路5布置在工作面联络巷顶板中央,相邻两个工作面联络巷回采完毕后,连通两个联络巷内的吸热管路;
2)根据逐巷胶结充填工艺,待工作面内第一个循环联络巷回采完毕后,将吸热管路(5)的进口端与导热流体下送管路6-1、出口端与导热流体提升管路6-2相连接,导热流体下送管路6-1与导热流体提升管路6-2的上端与浅部换热系统2蓄热水池10内的散热管路11相连接,构成闭合回路;
3)根据深部水平实际地温条件,选择合适相变温度的相变材料,配置成一定浓度的导热流体,添加到整条管路内,吸热管路5在深部水平进行吸热,利用设置的温度传感器7-1、7-2监测管路内导热流体温度,经过一段时间的吸热,温度升高到设定值,启动水泵9进行循环,将吸热管路5内加热后的导热流体循环至蓄热水池10内散热管路11,散热管路11内冷却的导热流体循环至吸热管路5;
4)通过设置的温度传感器7-3监测蓄热水池10内水温,待散热管路11将蓄热水池10内的水加热至一定温度后,启动出水泵12-2,经高温水提升系统3将热水提至地表4,供地表热水利用系统利用,蓄热水池10内水位由液位仪14监测,待水位降低至下限,启动进水泵12-1,为蓄热水池10供给凉水;
5)重复步骤3)~4),可以通过深部矿井的多个水平,将地热能转化为水的热能,从而进行长期利用。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种多水平深井降温及地热利用系统,其特征在于:从深井由下往上依次包括深井采热系统(1)、浅部换热系统(2)及高温水提升系统(3);
    所述深井采热系统(1)位于矿井深部水平,在深井处进行热量采集;包括吸热管路(5),以及连接所述吸热管路(5)的进口端的导热流体下送管路(6-1)、连接所述吸热管路(5)的出口端的导热流体提升管路(6-2);所述导热流体提升管路(6-2)上设置有水泵(9);
    所述浅部换热系统(2)位于矿井浅部水平,利用深井采热系统(1)采集的热量对水进行加热;包括蓄热水池(10)和其内部设置的对其进行加热的散热管路(11),所述散热管路(11)的进口端与所述导热流体提升管路(6-2)相连,所述散热管路(11)的出口端与所述导热流体下送管路(6-1)相连;所述蓄热水池(10)为密闭空间,进水端外部设有进水泵(12-1)与进水阀门(13-1);
    所述高温水提升系统(3)上下分别连接地表(4)与浅部换热系统(2),将浅部换热系统(2)中加热后的热水提升至地表(4);包括设置在蓄热水池(10)外部的出水阀门(13-2)和高温水提升管路(15),所述出水阀门(13-2)连接有设置在蓄热水池(10)外部的出水泵(12-2);地表(4)连接有热水利用系统。
  2. 根据权利要求1所述的一种多水平深井降温及地热利用系统,其特征在于:所述矿井深部水平位于地表下2000m以深,所述矿井浅部水平位于地表下800~1000m深度。
  3. 根据权利要求1所述的一种多水平深井降温及地热利用系统,其特征在于:所述吸热管路(5)为密闭管路,其内导热流体为利用水作导流介质、相变材料微颗粒作吸热材料,所述相变材料根据所处深部水平地温条件而定,相变温度较所述矿井深部水平位置的地温低5~10℃,所述相变材料微颗粒直径集中分布于1~5μm,在导热流体中浓度为50~60%。
  4. 根据权利要求1所述的一种多水平深井降温及地热利用系统,其特征在于:所述导热流体下送管路(6-1)上设置有流量计(8-1)。
  5. 根据权利要求1所述的一种多水平深井降温及地热利用系统,其特征在于:所述吸热管路(5)上设置有温度传感器(7-1、7-2)。
  6. 根据权利要求1所述的一种多水平深井降温及地热利用系统,其特征在于:所述蓄热水池(10)内设有温度传感器(7-3)和液位仪(14)。
  7. 根据权利要求1所述的一种多水平深井降温及地热利用系统,其特征在于:所述出水阀门(13-2)连接有设置在蓄热水池(10)内部的流量计(8-2)。
  8. 根据权利要求1所述的一种多水平深井降温及地热利用系统,其特征在于:所述深井采热系统(1)应用于深井逐巷胶结充填工作面,所述吸热管路(5)由固定在回采巷道顶板中央的直线段、布置在逐巷胶结充填工作面联络巷顶板中央的往复段和紧贴煤壁连接两工作面联络巷内管路的连接段组成;两工作面联络巷内管路间隔距离为20~40m。
  9. 根据权利要求1所述的一种多水平深井降温及地热利用系统,其特征在于:所述散热管路(11)布置在蓄热水池底部,距离水池底0.5m,管路呈“S”环形布置,间距10m。
  10. 根据权利要求1至9任一所述的一种多水平深井降温及地热利用系统,其特征在于:工艺流程包括以下步骤:
    1)所述深井采热系统(1)应用于深井逐巷胶结充填工作面,在深井逐巷胶结充填工作面联络巷回采后,随支护的进行安装吸热管路(5),吸热管路(5)布置在工作面联络巷顶板中央,相邻两个工作面联络巷回采完毕后,连通两个联络巷内的吸热管路;
    2)根据逐巷胶结充填工艺,待工作面内第一个循环联络巷回采完毕后,将吸热管路(5)的进口端与导热流体下送管路(6-1)、出口端与导热流体提升管路(6-2)相连接,导热流体下送管路(6-1)与导热流体提升管路(6-2)的上端与浅部换热系统(2)蓄热水池(10)内的散热管路(11)相连接,构成闭合回路;
    3)根据深部水平实际地温条件,选择相应的相变温度的相变材料,配置成对应浓度的导热流体,添加到整条管路内,吸热管路(5)在深部水平进行吸热,利用设置的温度传感器(7-1、7-2)监测管路内导热流体温度,经过吸热,温度升高到设定值,启动水泵(9)进行循环,将吸热管路(5)内加热后的导热流体循环至蓄热水池(10)内散热管路(11),散热管路(11)内冷却的导热流体循环至吸热管路(5);
    4)通过设置的温度传感器(7-3)监测蓄热水池(10)内水温,待散热管路(11)将蓄热水池(10)内的水加热至设定温度后,启动出水泵(12-2),经高温水提升系统(3)将热水提至地表(4),供地表热水利用系统利用,蓄热水池(10)内水位由液位仪(14)监测,待水位降低至下限,启动进水泵(12-1),为蓄热水池(10)供给凉水;
    5)重复步骤3)~4),通过深部矿井的多个水平,将地热能转化为水的热能,进行 长期利用。
PCT/CN2019/083211 2018-10-15 2019-04-18 一种多水平深井降温及地热利用系统及工艺 WO2020077967A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3082709A CA3082709C (en) 2018-10-15 2019-04-18 Multilevel deep well cooling and geothermal utilization system and process
AU2019359836A AU2019359836B2 (en) 2018-10-15 2019-04-18 Multilevel deep well cooling and geothermal utilization system and process
US16/763,788 US20210172319A1 (en) 2018-10-15 2019-04-18 Multilevel deep well cooling and geothermal utilization system and process
RU2020116872A RU2743008C1 (ru) 2018-10-15 2019-04-18 Система и процесс многоуровневого охлаждения глубокой скважины и геотермального использования
ZA2020/05965A ZA202005965B (en) 2018-10-15 2020-09-28 Multilevel deep well cooling and geothermal utilization system and process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811195212.4A CN109339849B (zh) 2018-10-15 2018-10-15 一种多水平深井降温及地热利用系统及工艺
CN201811195212.4 2018-10-15

Publications (1)

Publication Number Publication Date
WO2020077967A1 true WO2020077967A1 (zh) 2020-04-23

Family

ID=65310055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083211 WO2020077967A1 (zh) 2018-10-15 2019-04-18 一种多水平深井降温及地热利用系统及工艺

Country Status (7)

Country Link
US (1) US20210172319A1 (zh)
CN (1) CN109339849B (zh)
AU (1) AU2019359836B2 (zh)
CA (1) CA3082709C (zh)
RU (1) RU2743008C1 (zh)
WO (1) WO2020077967A1 (zh)
ZA (1) ZA202005965B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3117196A1 (fr) * 2020-12-08 2022-06-10 IFP Energies Nouvelles Système d’échange de chaleur entre un bâtiment et le sous-sol terrestre comprenant la circulation en circuit fermé de matériaux à changement de phase
FR3121740A1 (fr) * 2021-04-13 2022-10-14 IFP Energies Nouvelles Système et procédé de refroidissement d’un bâtiment par froid radiatif
CN116446939A (zh) * 2023-03-21 2023-07-18 冀中能源峰峰集团有限公司 一种地面制冷穿越复杂深地层输冷矿井降温系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109339849B (zh) * 2018-10-15 2019-08-20 中国矿业大学 一种多水平深井降温及地热利用系统及工艺
CN109883074B (zh) * 2019-03-29 2020-07-14 中国矿业大学 一种采空区充填体提取地热能的系统及其工作方法
CN113464092A (zh) * 2020-03-31 2021-10-01 中国石油天然气股份有限公司 一种防蜡装置及采油防蜡管柱
CN111997612B (zh) * 2020-07-24 2021-07-06 中国矿业大学 一种深部矿山地热能与煤炭资源流态化协同开采方法
CN112901262B (zh) * 2021-02-01 2022-05-31 中国矿业大学 一种充填体内采热管路预留系统及设计方法
CN113404480A (zh) * 2021-05-20 2021-09-17 东北大学 一种地热与矿产资源共采方法
CN113432322B (zh) * 2021-07-02 2022-07-19 山东科技大学 采煤塌陷区地表水、采空区、地热综合利用方法及试验设备
TW202346239A (zh) * 2022-03-25 2023-12-01 美商地熱解決方案股份有限公司 具有高熱傳導率的地熱水泥系統
CN115030775A (zh) * 2022-06-16 2022-09-09 中国矿业大学 一种矿山地热循环利用协同热害治理系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5078544A (en) * 1989-08-10 1992-01-07 Siemag Transplan Gmbh Arrangement for the changeover of liquids when transported by means of a three chamber tube feeder
CN101240714A (zh) * 2008-01-29 2008-08-13 何满潮 矿井涌水为冷源的深井降温系统
CN105649668A (zh) * 2016-04-03 2016-06-08 河南理工大学 巷帮截流式矿井降温方法及降温系统
CN106150539A (zh) * 2016-08-25 2016-11-23 辽宁工程技术大学 一种高温采掘工作面液态co2相变制冷降温装置及方法
CN206220990U (zh) * 2016-11-17 2017-06-06 北京科技大学 基于封装相变材料微单元的深井降温系统
CN107023294A (zh) * 2017-06-06 2017-08-08 西安科技大学 矿床与地热协同开采方法及系统
CN207740028U (zh) * 2017-12-27 2018-08-17 山东东山新驿煤矿有限公司 一种矿井余热回收再利用系统
CN109339849A (zh) * 2018-10-15 2019-02-15 中国矿业大学 一种多水平深井降温及地热利用系统及工艺

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1170159A1 (ru) * 1983-05-13 1985-07-30 Институт горного дела Севера Якутского филиала СО АН СССР Охлаждающа установка
SU1183684A1 (ru) * 1983-11-15 1985-10-07 Ленинградский Ордена Ленина,Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Горный Институт Им.Г.В.Плеханова Способ комплексного тепло-хладоснабжени глубоких шахт и рудников
RU73392U1 (ru) * 2007-12-26 2008-05-20 Государственное образовательное учреждение высшего профессионального образования "Московский энергетический институт (технический университет)" (ГОУВПО "МЭИ (ТУ)") Геотермальный теплообменник для энергоснабжения потребителей
US9435175B2 (en) * 2013-11-08 2016-09-06 Schlumberger Technology Corporation Oilfield surface equipment cooling system
ES2698431T3 (es) * 2014-09-18 2019-02-04 Carrier Corp Sistema de transferencia de calor con composición de cambio de fase
CN105715291B (zh) * 2016-04-03 2017-11-14 河南理工大学 高位巷联通钻孔循环水式矿井降温系统及矿井降温方法
CN106705720A (zh) * 2017-01-19 2017-05-24 中国科学院广州能源研究所 一种回路型热管开采中浅层水热型地热的系统
CN106869864A (zh) * 2017-02-27 2017-06-20 中国地质大学(武汉) 一种干热岩地热开采方法和装置
CN107339118B (zh) * 2017-06-30 2018-05-08 西安科技大学 一种利用深井地热的矿井降温系统及方法
CN108087013B (zh) * 2017-12-11 2019-12-17 中国矿业大学 一种矿井降温与热害利用系统
CN109026121B (zh) * 2018-08-02 2020-03-06 北京建筑大学 浅层冷能循环矿井降温除湿及废热利用系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5078544A (en) * 1989-08-10 1992-01-07 Siemag Transplan Gmbh Arrangement for the changeover of liquids when transported by means of a three chamber tube feeder
CN101240714A (zh) * 2008-01-29 2008-08-13 何满潮 矿井涌水为冷源的深井降温系统
CN105649668A (zh) * 2016-04-03 2016-06-08 河南理工大学 巷帮截流式矿井降温方法及降温系统
CN106150539A (zh) * 2016-08-25 2016-11-23 辽宁工程技术大学 一种高温采掘工作面液态co2相变制冷降温装置及方法
CN206220990U (zh) * 2016-11-17 2017-06-06 北京科技大学 基于封装相变材料微单元的深井降温系统
CN107023294A (zh) * 2017-06-06 2017-08-08 西安科技大学 矿床与地热协同开采方法及系统
CN207740028U (zh) * 2017-12-27 2018-08-17 山东东山新驿煤矿有限公司 一种矿井余热回收再利用系统
CN109339849A (zh) * 2018-10-15 2019-02-15 中国矿业大学 一种多水平深井降温及地热利用系统及工艺

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3117196A1 (fr) * 2020-12-08 2022-06-10 IFP Energies Nouvelles Système d’échange de chaleur entre un bâtiment et le sous-sol terrestre comprenant la circulation en circuit fermé de matériaux à changement de phase
WO2022122384A1 (fr) * 2020-12-08 2022-06-16 IFP Energies Nouvelles Systeme d'echange de chaleur entre un batiment et le sous-sol terrestre comprenant la circulation en circuit ferme de materiaux a changement de phase
FR3121740A1 (fr) * 2021-04-13 2022-10-14 IFP Energies Nouvelles Système et procédé de refroidissement d’un bâtiment par froid radiatif
CN116446939A (zh) * 2023-03-21 2023-07-18 冀中能源峰峰集团有限公司 一种地面制冷穿越复杂深地层输冷矿井降温系统
CN116446939B (zh) * 2023-03-21 2023-09-22 冀中能源峰峰集团有限公司 一种地面制冷穿越复杂深地层输冷矿井降温系统

Also Published As

Publication number Publication date
AU2019359836B2 (en) 2021-06-17
CA3082709C (en) 2021-10-19
CA3082709A1 (en) 2020-04-23
ZA202005965B (en) 2023-11-29
RU2743008C1 (ru) 2021-02-12
CN109339849B (zh) 2019-08-20
CN109339849A (zh) 2019-02-15
AU2019359836A1 (en) 2020-06-11
US20210172319A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
WO2020077967A1 (zh) 一种多水平深井降温及地热利用系统及工艺
CN206478882U (zh) 一种u型井深层地热热传导系统
CN106225253A (zh) 一种节能节水型太阳能热水装置
WO2019080808A1 (zh) 储能换热一体化系统
CN205154229U (zh) 高温矿井巷道壁面贴附水膜板热换器降温装置
CN112923592A (zh) 一种中深层无干扰地热能高效同轴换热装置
CN107477895A (zh) 中深层地热井内换热器
CN209054794U (zh) 一种多井连通封闭循环地层冷热交换系统
CN209042497U (zh) 一种锚式多井平行封闭循环供暖供冷生活热水系统
CN206637706U (zh) 地埋重力热管直接供暖装置
CN109798683A (zh) 基于地下水流系统的浅层地热能利用装置
CN207194865U (zh) 一种用于深层地热开采的大跨度水平对接u型井
CN207113273U (zh) 一种中深层地热能直接供热系统
CN206113409U (zh) 一种高效中深层地热井下取热系统
CN213480633U (zh) 一种干热岩换热装置
CN104406438A (zh) 一种基于辐射式热管的废水余热回收装置
CN204830951U (zh) 强化换热的地下深层岩层换热系统
CN211714597U (zh) 基于脉动热管的混凝土冷却系统
CN207797439U (zh) 一种热管式干热岩高效换热装置
CN218764043U (zh) 一种闭环热管式井下换热器
CN105386785A (zh) 高温矿井巷道壁面贴附水膜板热换器降温系统
CN110439507B (zh) 一种矿井工作面降温系统
CN204854431U (zh) 热管式岩层换热器
CN207081230U (zh) 一种双管双u增强型300米以上地热封闭换热装置
CN217110066U (zh) 迷宫式微动力地温液体环保自压循环器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3082709

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873195

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019359836

Country of ref document: AU

Date of ref document: 20190418

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873195

Country of ref document: EP

Kind code of ref document: A1