WO2023124252A1 - 一种ppg控制方法、装置和电子设备 - Google Patents
一种ppg控制方法、装置和电子设备 Download PDFInfo
- Publication number
- WO2023124252A1 WO2023124252A1 PCT/CN2022/118962 CN2022118962W WO2023124252A1 WO 2023124252 A1 WO2023124252 A1 WO 2023124252A1 CN 2022118962 W CN2022118962 W CN 2022118962W WO 2023124252 A1 WO2023124252 A1 WO 2023124252A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- emitting device
- emitting
- ppg
- module
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 78
- 238000005259 measurement Methods 0.000 claims abstract description 263
- 210000004369 blood Anatomy 0.000 claims abstract description 37
- 239000008280 blood Substances 0.000 claims abstract description 37
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 35
- 239000001301 oxygen Substances 0.000 claims abstract description 35
- 230000007958 sleep Effects 0.000 claims abstract description 28
- 238000005070 sampling Methods 0.000 claims description 60
- 230000010354 integration Effects 0.000 claims description 58
- 238000004590 computer program Methods 0.000 claims description 24
- 238000003860 storage Methods 0.000 claims description 18
- 238000013186 photoplethysmography Methods 0.000 claims description 9
- 230000003068 static effect Effects 0.000 claims description 8
- 238000012545 processing Methods 0.000 description 42
- 238000010586 diagram Methods 0.000 description 14
- 230000006870 function Effects 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 239000000047 product Substances 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 4
- 238000013480 data collection Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 102000001554 Hemoglobins Human genes 0.000 description 2
- 108010054147 Hemoglobins Proteins 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 235000019800 disodium phosphate Nutrition 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000009532 heart rate measurement Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013486 operation strategy Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000003860 sleep quality Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02416—Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02416—Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
- A61B5/02427—Details of sensor
- A61B5/02433—Details of sensor for infrared radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02438—Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1118—Determining activity level
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1123—Discriminating type of movement, e.g. walking or running
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1126—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/14551—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/14551—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
- A61B5/14552—Details of sensors specially adapted therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4806—Sleep evaluation
- A61B5/4809—Sleep detection, i.e. determining whether a subject is asleep or not
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
- A61B5/681—Wristwatch-type devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0204—Operational features of power management
- A61B2560/0209—Operational features of power management adapted for power saving
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0242—Operational features adapted to measure environmental factors, e.g. temperature, pollution
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0242—Operational features adapted to measure environmental factors, e.g. temperature, pollution
- A61B2560/0247—Operational features adapted to measure environmental factors, e.g. temperature, pollution for compensation or correction of the measured physiological value
- A61B2560/0257—Operational features adapted to measure environmental factors, e.g. temperature, pollution for compensation or correction of the measured physiological value using atmospheric pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0242—Operational features adapted to measure environmental factors, e.g. temperature, pollution
- A61B2560/0247—Operational features adapted to measure environmental factors, e.g. temperature, pollution for compensation or correction of the measured physiological value
- A61B2560/0261—Operational features adapted to measure environmental factors, e.g. temperature, pollution for compensation or correction of the measured physiological value using hydrostatic pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0219—Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0247—Pressure sensors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- the present application relates to the field of measurement technology, and in particular to a photoplethysmography (photoplethysmography, PPG) control method, device and electronic equipment.
- a photoplethysmography photoplethysmography, PPG
- wearable products such as smart watches
- need to use photoplethysmography photoplethysmography, PPG
- human health characteristics such as heart rate, respiration rate, and blood oxygen.
- the current common PPG implementation method is to arrange a PPG module on the back of the smart watch.
- the PPG module includes a light-emitting diode (light-emitting diode, LED) and a photodiode (Photo-Diode, PD).
- the light emitted by the LED is reflected after it hits the skin, and the reflected light is collected by the PD. Calculate and measure human characteristics.
- Wearable products are usually powered by batteries. Therefore, in order to prolong the battery life of wearable products, it is necessary to reduce the power consumption of the PPG module as much as possible. Moreover, in order to obtain accurate human body characteristic parameters as much as possible, it is also necessary to ensure the measurement accuracy of the PPG module on the wearable product. Therefore, a PPG control method is needed to reduce the power consumption of the PPG module on the premise of ensuring the measurement accuracy of the PPG module.
- the application provides a PPG control method, device and electronic equipment.
- a computer readable storage medium is also provided.
- the present application provides a PPG control method, which is applied to electronic equipment, and the electronic equipment includes a PPG module including a light emitting module.
- the realization of the PPG control method provided by the application at least includes the following process steps:
- the measurement environment includes exercise, quiet and sleep, and the measurement target includes heart rate and blood oxygen;
- the light emitting mode of the light emitting module is determined according to the current measurement environment and/or measurement target.
- using different PPG control schemes according to different measurement environments and/or measurement objectives can avoid waste of power consumption under the premise of ensuring that the measurement accuracy requirements are met, thereby ensuring the measurement of the PPG module Reduce the power consumption of the PPG module under the premise of accuracy.
- the PPG module can measure heart rate based on green light. Because under the same power consumption, green light measures the heart rate effect of red light, that is, when the same measurement effect is achieved, the power consumption of emitting green light is less than that of red light. light power consumption.
- the light emitting module includes a first light emitting device, a second light emitting device and a third light emitting device, the first light emitting device is used to emit green light, and the second light emitting device The device is used for emitting red light, and the third light emitting device is used for emitting infrared light.
- determining the light emitting mode of the light emitting module according to the current measurement environment and/or measurement target determining the light emitting mode of the light emitting module according to the measurement target, wherein: when the measurement target is heart rate, enable the first light emitting device; when the measurement target When it is blood oxygen, the second light emitting device and the third light emitting device are activated.
- the LED light intensity required in the motion state is higher than that required in the quiet or sleeping state.
- the light emitting module includes a plurality of light emitting devices, and the plurality of light emitting devices support emitting the same light.
- the execution process of determining the light emitting mode of the light emitting module according to the current measurement environment and/or measurement target determining the light emitting mode of the light emitting module according to the measurement environment, wherein: when the measurement environment is moving, all the light emitting devices of the light emitting module are enabled; When the measurement environment is quiet or sleeping, some light-emitting devices of the light-emitting module are enabled.
- the light emitting module includes a fourth light emitting device and a fifth light emitting device, the fourth light emitting device is used for emitting visible light, and the fifth light emitting device is used for emitting infrared light ;
- the fourth light emitting device is used for emitting visible light
- the fifth light emitting device is used for emitting infrared light ;
- the light emitting module includes a sixth light emitting device and a seventh light emitting device, the sixth light emitting device is used for emitting red light, and the seventh light emitting device is used for emitting red light.
- Infrared light in the process of determining the light-emitting mode of the light-emitting module according to the current measurement environment and/or measurement target: determining the light-emitting mode of the light-emitting module according to the measurement target, wherein: when the measurement target is blood oxygen, alternately enable the sixth light-emitting device and a seventh light emitting device.
- the light-emitting module includes an eighth light-emitting device, a ninth light-emitting device, a tenth light-emitting device, and an eleventh light-emitting device, and the eighth light-emitting device
- the light emitting device and the ninth light emitting device are used for emitting green light
- the tenth light emitting device and the eleventh light emitting device are used for emitting red light and infrared light
- the eighth light-emitting device and the ninth light-emitting device When the measurement environment is sports and the measurement target is heart rate, enable the eighth light-emitting device and the ninth light-emitting device to emit green light;
- the eighth light-emitting device or the ninth light-emitting device When the measurement environment is static and the measurement target is heart rate, enable the eighth light-emitting device or the ninth light-emitting device to emit green light;
- the tenth light-emitting device or the eleventh light-emitting device When the measurement environment is sleep and the measurement target is heart rate, enable the tenth light-emitting device or the eleventh light-emitting device to emit infrared light;
- the tenth light-emitting device and the eleventh light-emitting device When the measurement environment is sports and the measurement target is blood oxygen, enable the tenth light-emitting device and the eleventh light-emitting device to alternately emit red light and infrared light;
- the tenth light emitting device or the eleventh light emitting device is enabled to alternately emit red light and infrared light.
- the method further includes:
- the first sampling rate is 100 Hz
- the second sampling rate is 25 Hz.
- the method further includes:
- the first integration time is 79us
- the second integration time is 39us.
- the present application provides a PPG control device, the device is applied to electronic equipment, the electronic equipment includes a PPG module, the PPG module includes a light emitting module, and the device includes:
- An acquisition module which is used to confirm the current measurement environment and/or measurement target, the measurement environment includes exercise, quiet and sleep, and the measurement target includes heart rate and blood oxygen;
- the control module is used for determining the light emitting mode of the light emitting module according to the current measurement environment and/or measurement target.
- the present application provides an electronic device, the electronic device includes a memory for storing computer program instructions and a processor for executing the computer program instructions, wherein when the computer program instructions are executed by the processor, the electronic device is triggered Execute the method steps as in the first aspect.
- the present application provides a computer-readable storage medium, in which a computer program is stored, and when running on a computer, the computer executes the method according to the first aspect or the second aspect.
- Fig. 1 shows a flowchart of a PPG control method according to an embodiment of the present application
- Fig. 2 is a schematic diagram of a PPG control system according to an embodiment of the present application.
- FIG. 3 is a schematic diagram of the back of a smart watch according to an embodiment of the present application.
- FIG. 4 is a schematic diagram of a display interface of a smart watch according to an embodiment of the present application.
- FIG. 5 is a schematic diagram of a PPG module according to an embodiment of the present application.
- FIG. 6 is a schematic diagram of a display interface of a smart watch according to an embodiment of the present application.
- the workflow of the photoplethysmography (photoplethysmography, PPG) module usually includes: the light-emitting diode (light-emitting diode, LED) in the PPG module emits light;
- the photodiode (Photo-Diode, PD) collects and obtains the reflected light data.
- the PPG control scheme includes the operation mode and operation parameters of each device in the PPG module.
- the PPG control scheme may include any one or a combination of multiple items in the following content.
- the light-emitting frequency of the LED in the PPG module will cause power consumption. Therefore, the higher the LED lighting frequency, the higher the power consumption of the PPG module.
- the luminous intensity of the LED in the PPG module LED light will lead to power consumption, the higher the LED luminous intensity, therefore, the higher the power consumption of the PPG module.
- the reflected light collection frequency of the PD in the PPG module that is, the PPG sampling rate.
- the PPG sampling rate is usually consistent with the light-emitting frequency of the LED in the PPG module. That is, when the LED in the PPG module emits light, the PD in the PPG module collects reflected light; the reflected light collected by the PD will cause power consumption. Therefore, The higher the PPG sampling rate, the higher the power consumption of the PPG module.
- Integral time of PD in PPG module When the PD collects reflected light, the process of acquiring reflected light data is not an instantaneous process. PD needs to collect reflected light data for a specific duration, and integrate the data collected within the specific duration to obtain effective reflected light data. This specific duration is called the integration time. Reflected light collection by PDs will result in power consumption. Therefore, the longer the integration time, the higher the power consumption of the PPG module.
- the number of groups of reflected light data collected by PD When the PPG module is measuring, the PD will continuously collect multiple sets (for example, 100 sets) of reflected light data, and form the reflected light data curve according to the multiple sets of reflected light data; calculate the reflected light data curve, and determine the peak value of the curve (algorithm finding Peak), the measurement result is calculated according to the peak value of the curve.
- the reflected light collection by the PD will result in power consumption. Therefore, the more reflected light data sets that the PD needs to collect, the higher the power consumption of the PPG module.
- the measurement environment is not static. For example, the intensity of ambient light changes.
- different measurement environments have different requirements for PPG performance indicators.
- a first measurement environment is usually pre-designed when configuring the PPG control scheme of the PPG module. Performance indicators require the highest measurement environment.
- the PPG control scheme (first PPG control scheme) of the PPG module is configured with reference to the first measurement environment to ensure that the PPG module can obtain accurate measurement data in the first measurement environment. In this way, theoretically, when the PPG module operates under the first PPG control scheme, measurement accuracy can be ensured in all expected operating scenarios. For example, when considering the impact of external light on PD acquisition, the LED luminous intensity is configured with reference to the sunlight intensity at noon. In this way, the LED luminous intensity will meet the sunlight intensity in other periods at the same time.
- the power consumption of PPG modules under different PPG control schemes is different.
- different PPG control schemes have different LED luminous intensity configurations, and the power consumption of LEDs is also different.
- the first measurement environment is the measurement environment with the highest requirements for PPG performance indicators in the expected operation scenario, therefore, for the measurement environment with lower performance indicators requirements, when the PPG module runs under the first PPG control scheme, the PPG module’s
- the property index will exceed the performance index required to ensure the accuracy of the measurement.
- the PPG module has a waste of power consumption.
- this application provides a PPG control method.
- the measurement environment and measurement target determine the PPG control scheme of the PPG module, so that the PPG module can meet the measurement accuracy requirements in the current measurement environment and avoid power consumption waste, so as to ensure the measurement accuracy of the PPG module Reduce the power consumption of the PPG module.
- a PPG module is installed on the portable device.
- the portable device detects the current measurement environment and the measurement target (heart rate and/or blood oxygen), calls the corresponding PPG control scheme according to the current measurement environment, and generates the PPG module according to the called PPG control scheme.
- Group control command send the PPG module control command to the PPG module.
- the portable device may be any electronic device that can be installed with a PPG module.
- the portable device can be a portable electronic device such as a smart watch or a smart bracelet.
- the PPG module of the portable device is close to the user's skin to realize the measurement operation;
- the user puts the PPG module of the portable device close to the skin when measurement is required.
- the portable device may be an independent electronic device, which includes a data processing module, and the measurement data collected by the PPG module is processed by the portable device to generate a measurement result (for example, a smart watch).
- Portable devices can also be part of the measurement system.
- the portable device does not contain a data processing module for processing measurement data.
- the function of the portable device in the measurement system is only to collect measurement data.
- the portable device is composed of other electronic devices (such as mobile phones) with data processing modules. measuring system. The user wears a portable device. After the PPG module of the portable device collects the measurement data, the measurement data is sent to other devices in the measurement system for data processing to obtain measurement results.
- FIG. 1 is a flowchart of a PPG control method according to an embodiment of the present application.
- the portable device executes the following steps as shown in FIG. 1 to control the PPG module.
- S200 Determine a current measurement environment and a measurement target, where the measurement target includes measuring heart rate and measuring blood oxygen.
- using different PPG control schemes according to different measurement environments and measurement objectives can avoid power consumption waste on the premise of ensuring that the measurement accuracy requirements are met, thereby ensuring the measurement accuracy of the PPG module Under the premise of reducing the power consumption of the PPG module.
- one or more measurement environment parameters can be identified to confirm one or more types of characteristics of the measurement environment, thereby
- the PPG control scheme of the PPG module can be determined in a targeted manner.
- the relative position between the portable device and the human skin is often in a dynamic state; while when the human body is in a static state, the relative position between the portable device and the human skin is often in a static state.
- the PPG module needs to collect the reflected light emitted by the light-emitting device after being reflected by the skin, in order to ensure the measurement accuracy of the PPG module, when the human body is in motion, the requirements for the light-emitting parameters of the light-emitting device of the PPG module are the same as those of the human body. The requirements for the lighting parameters of the PPG module lighting devices are different when they are in motion.
- the user status is identified. For example, identifying whether the user state is an exercise state or a non-exercise state.
- the default user state is the non-exercise state, and the user can manually click to enter the exercise mode to change the user state to the exercise state.
- the user state when the user state is a non-exercise state, the user may be working, reading, or sleeping. Therefore, in order to accurately identify the current measurement environment, in another implementation of S200, when identifying the user state, when the user state is in a non-exercise state, it is also identified whether the user is in a sleep state, and distinguishes whether the user is in a quiet state or sleep state. For example, identifying whether the user state is an exercise state, a quiet state, or a sleep state.
- the portable device can judge the user status according to the measurement data of the accelerometer (ACC) and the barometer configured by itself. For example, through the watch's built-in ACC (acceleration sensor), determine the movement of the watch in the three directions of X Y Z, combined with the model analysis of the user's movement, after a period of continuous tracking (at least 5min) to determine whether the user is exercising ( It can judge walking, pace running, cycling); another example, through the built-in ACC (acceleration sensor) of the watch, determine the movement of the watch in the three directions of X Y Z, combined with the user's heart rate data (the heart rate will become lower during sleep ) after a period of continuous tracking (at least 10 minutes) to determine whether the user has fallen asleep.
- ACC accelerometer
- the barometer configured by itself. For example, through the watch's built-in ACC (acceleration sensor), determine the movement of the watch in the three directions of X Y Z, combined with the model analysis of the user's movement, after a period of
- Fig. 2 is a schematic diagram of a PPG control system according to an embodiment of the present application.
- the ACC/barometer 410 collects acceleration/air pressure data, and sends the data collection result to the processor MCU420 .
- the MCU420 identifies the current measurement environment according to the acceleration/air pressure data collection results.
- the MCU420 determines the PPG control scheme according to the current measurement environment and measurement objectives, and generates corresponding control instructions.
- the MCU420 sends the control command to the control unit AFE430 of the PPG module, and the AFE430 controls the light emitting device LED440 and the photoelectric conversion device PD450 of the PPG module according to the received control command.
- a corresponding PPG control scheme can be generated according to the current measurement environment and measurement target; or before S210, a plurality of different PPG control schemes can be pre-generated for different measurement environments and/or measurement targets.
- S210 Call the PPG control scheme that matches the current measurement environment and measurement target among the pre-generated PPG control schemes.
- FIG. 3 is a schematic diagram of the back of a smart watch according to an embodiment of the present application.
- a PPG module is installed on the smart watch 500 shown in FIG. 3 , and the light emitting device and the photoelectric conversion device of the PPG module are installed on the back of the smart watch 500 .
- the light emitting devices of the PPG module are LED511 and LED512. Both LED511 and LED512 are three-in-one LEDs. Both LED511 and LED512 can emit green light, red light and infrared light.
- the PPG module can control the light emitting types of LED511 and LED512 according to the input control command.
- the photoelectric conversion device of the PPG module is PD521-528.
- the charging PLN is the charging interface of the smart watch 500 .
- the smart watch 500 can identify the current measurement environment (user state: exercise state, quiet state or sleep state) (the display of the exercise state recognition result on the smart watch 500 is shown in FIG. 4 ) and the measurement target (heart rate or blood oxygen).
- the smart watch 500 can invoke one of multiple pre-configured PPG control schemes according to different user states and measurement targets.
- the smart watch 500 controls the operation of the PPG module based on the invoked PPG control scheme.
- the following example illustrates the specific implementation of smart watch 500 controlling the operation of the PPG module according to the current measurement environment and measurement target.
- the PPG control scheme invoked by the smart watch 500 includes the activated light-emitting device (LED511 and/or LED512), the light-emitting type of the light-emitting device (green light, or red light, or infrared light), PPG sampling rate, PPG integral Time and the number of groups of reflected light data that need to be collected for each round of measurement.
- the number of light emitting devices activated in the PPG control scheme invoked by the smart watch 500 matches the specific user status.
- the user's state is exercise state, in order to ensure the measurement accuracy, the luminous intensity is enhanced as much as possible, and LED511 and LED512 are enabled to emit light at the same time.
- the user state is quiet or sleep state, in order to reduce power consumption, enable one of LED511 and LED512 to emit light.
- the number of activated light-emitting devices is changed to achieve different emitted light intensities.
- different emitted light intensities may be realized in other ways according to the specific configuration of the PPG module light emitting device. For example, the intensity of light emitted by the LED can be changed by changing the driving voltage/current of the LED.
- FIG. 5 is a schematic diagram of a PPG module according to an embodiment of the present application.
- the light emitting/lighting unit of the PPG module includes an infrared light emitting diode (IR LED), a red light emitting diode (Red LED) and a phototransistor.
- IR LED infrared light emitting diode
- Red LED red light emitting diode
- phototransistor The infrared light emitted by the IR LED is collected by the phototransistor after being reflected by the skin, and the red light emitted by the Red LED is collected by the phototransistor after being reflected by the skin.
- the PPG module can also measure heart rate based on light other than red light and infrared light. Specifically, when measuring heart rate, compared with red light, the signal obtained by using green light as a light source is better.
- blood absorbs green light more easily. Blood is red because of the hemoglobin in red blood cells. Compared with red light, green light can be absorbed by hemoglobin. The red light will be absorbed by the moisture on the skin, which will affect the measurement results. Therefore, under the premise of the same power consumption, the measurement accuracy of using green light is higher than that of using red light; it can also be said that under the premise of the same measurement accuracy, the power consumption of using green light is lower.
- the light emitting type of the light-emitting device activated in the PPG control scheme invoked by smart watch 500 matches the measurement target.
- the measurement target is heart rate
- LED511 and/or LED512 emit green light, thereby improving measurement accuracy
- LED511 and/or LED512 emit red light and infrared light.
- the LED of the PPG module needs to emit red light and infrared light
- the PD of the PPG module needs to collect the reflected light data of red light and infrared light respectively. Therefore, in this embodiment, when the measurement target is blood oxygen, LED511 and/or LED512 alternately emit red light and infrared light to avoid mutual interference between red light and infrared light, thereby greatly improving reflection Accuracy of light data collection.
- the PD's emission light collection frequency matches the red light and infrared light alternate emission frequency, which can greatly improve the effective utilization rate of LED light emission.
- the PPG sampling rate is the frequency at which the PD measures reflected light when the PPG module is running.
- the distance between the PPG module and the user's skin changes more frequently than in the non-exercise state.
- the PPG module needs to adopt a higher PPG sampling rate in the motion state than in the non-motion state.
- the PPG sampling rate in the PPG control scheme invoked by the smart watch 500 matches the specific user state, and the PPG sampling rate for the exercise state is greater than that for the non-exercise state.
- the PPG sampling rate is 100HZ (first sampling rate); when the user state is a non-exercise state, the PPG sampling rate is 25HZ (second sampling rate).
- the PPG integration time is the measurement time for the PD to measure the reflected light each time when the PPG module is running.
- the distance between the PPG module and the user's skin changes more frequently than in the non-exercise state.
- the PPG module needs to use a higher PPG integration time in the motion state than in the non-motion state.
- the PPG integration time in the PPG control scheme invoked by the smart watch 500 matches the specific user state, and the PPG integration time for the exercise state is greater than the PPG integration time for the non-exercise state.
- the PPG integration time is 79us (first integration time); when the user state is non-exercise state, the PPG integration time is 39us (second integration time).
- the portable device emits visible light (for example, red light or green light) when the user is sleeping, it may disturb the user's sleep. Therefore, in this embodiment, the light emitting type of the light emitting device in the PPG control scheme invoked by the smart watch 500 matches the state of the user.
- the light emitting type of the light emitting device in the PPG control scheme invoked by the smart watch 500 matches the state of the user.
- enable LED511 and/or LED512 to emit infrared light when measuring heart rate
- enable LED511 and/or LED512 to emit green light when measuring heart rate when the user is in an exercise or quiet state.
- Embodiment 1 when the measurement target is the heart rate and the user's state is the exercise state, the smart watch 500 simultaneously activates the LED 511 and the LED 512 to emit green light.
- PD521-528 uses 100HZ sampling rate and 79us integration time to collect 100 sets of data and upload them to the data processing module (the data processing module of the smart watch 500 or the data processing unit of the PPG module itself) for algorithmic peak finding.
- the display of the measurement results on the smart watch 500 is shown in Figure 6; in Figure 6, the current heart rate measurement result of 128 beats/minute shown above, since the user's state is currently in an exercise state, the smart watch 500 calls the quiet heart rate recorded in the history.
- the heart rate results measured in the state (67 beats/min at rest) are shown in the lower part of Fig. 6 .
- the smart watch 500 starts the LED 511 or the LED 512 to emit green light (starting one LED).
- PD521-528 uses 25HZ sampling rate, 39us integration time, collects 100 sets of data and uploads them to the data processing module for algorithmic peak finding.
- the smart watch 500 starts LED511 or LED512 to emit infrared light.
- PD521-528 uses 25HZ sampling rate, 39us integration time, collects 100 sets of data and uploads them to the algorithm for peak finding.
- the smart watch 500 When the measurement target is blood oxygen and the user status is exercise status, the smart watch 500 simultaneously activates LED 511 and LED 512 to alternately emit red light and infrared light.
- PD521-528 uses 100HZ sampling rate, 79us integration time, collects 100 sets of data and uploads them to the data processing module for algorithmic peak finding.
- smart watch 500 starts LED511 or LED512 to alternately emit red light and infrared light (start one LED).
- PD521-528 uses 25HZ sampling rate, 39us integration time, collects 100 sets of data and uploads them to the data processing module for algorithmic peak finding.
- the smart watch 500 When the measurement target is the heart rate and the user's state is the exercise state, the smart watch 500 simultaneously activates the LED 511 and the LED 512 to emit green light.
- PD521-528 uses 100HZ sampling rate and 79us integration time to collect 100 sets of data and upload them to the data processing module (the data processing module of the smart watch 500 or the data processing unit of the PPG module itself) for algorithmic peak finding.
- the smart watch 500 starts the LED 511 or the LED 512 to emit green light (starting one LED).
- PD521-528 uses 25HZ sampling rate, 79us integration time, collects 100 sets of data and uploads them to the data processing module for algorithmic peak finding.
- the smart watch 500 starts LED511 or LED512 to emit infrared light.
- PD521-528 uses 25HZ sampling rate, 79us integration time, collects 100 sets of data and uploads them to the algorithm for peak finding.
- the smart watch 500 When the measurement target is blood oxygen and the user status is exercise status, the smart watch 500 simultaneously activates LED 511 and LED 512 to alternately emit red light and infrared light.
- PD521-528 uses 100HZ sampling rate, 79us integration time, collects 100 sets of data and uploads them to the data processing module for algorithmic peak finding.
- smart watch 500 starts LED511 or LED512 to alternately emit red light and infrared light (start one LED).
- PD521-528 uses 25HZ sampling rate, 79us integration time, collects 100 sets of data and uploads them to the data processing module for algorithmic peak finding.
- the activated light-emitting device LED511 and/or LED512
- the light-emitting type of the light-emitting device green light, or red light, or infrared light
- PPG sampling rate PPG sampling rate
- the PPG integration time is matched to the current measurement environment and measurement target. That is, according to different measurement environments and measurement objects, the PPG module of the smart watch 500 will activate the corresponding light-emitting device, adopt the corresponding light-emitting type, adopt the corresponding PPG sampling rate, and adopt the corresponding PPG integration time during operation. Moreover, for different measurement environments and measurement targets, the PPG module of the smart watch 500 adopts a unified number of groups (100 groups) of reflected light data to be collected for each round of measurement.
- the activated light-emitting device LED511 and/or LED512
- the light-emitting type of the light-emitting device green light, or red light, or infrared light
- the PPG sampling rate and The current measurement environment and measurement target match. That is, according to different measurement environments and measurement targets, the PPG module of the smart watch 500 will enable corresponding light-emitting devices, adopt corresponding light-emitting types, and adopt corresponding PPG sampling rates during operation.
- the PPG module of the smart watch 500 adopts a unified PPG integration time (79us) and the number of groups of reflected light data to be collected for each round of measurement (100 groups).
- the PPG control scheme invoked by the smart watch 500 may choose a configuration scheme different from that of Embodiment 1 and Embodiment 2.
- the PPG module of the smart watch 500 adopts different numbers of groups of reflected light data that need to be collected for each round of measurement (when the user is in the exercise state, the PPG module collects 100 groups of data and then uploads to algorithmic peak-seeking; when the user is in a quiet or sleeping state, the PPG module collects 80 sets of data and uploads them to algorithmic peak-finding).
- the PPG control method of the present application can be applied to other application scenarios different from the application scenario shown in FIG. 4 .
- Those skilled in the art can perform the PPG control method of the present application according to the specific structure of the PPG module, and/or the specific functional configuration of the control device of the PPG module, and/or the specific functional configuration of the measurement system to which the control device of the PPG module belongs.
- Adaptive adjustment The following uses a specific application scenario as an example to illustrate.
- the light emitting device of the PPG module includes LED611 and LED612, both of which are two-in-one LEDs. Both LED611 and LED612 can emit red light and infrared light, but cannot emit green light.
- the control device of the PPG module (for example, a smart watch) can identify the current measurement environment (user state: exercise state, quiet state or sleep state) and the measurement target (heart rate or blood oxygen).
- the PD of the PPG module uses a sampling rate of 100HZ and an integration time of 79us. After collecting 100 sets of data, it is uploaded to the data processing module for algorithmic peak finding.
- the LED611 or the LED612 is activated to emit red light.
- the PD of the PPG module uses a sampling rate of 25HZ and an integration time of 79us. After collecting 100 sets of data, it is uploaded to the data processing module for algorithmic peak finding.
- LED611 or LED612 is activated to emit infrared light.
- the PD of the PPG module uses a sampling rate of 25HZ and an integration time of 79us. After collecting 100 sets of data, it is uploaded to the algorithm for peak finding.
- LED611 and LED612 are simultaneously activated to emit red light and infrared light alternately.
- the PD of the PPG module uses a sampling rate of 100HZ and an integration time of 79us. After collecting 100 sets of data, it is uploaded to the data processing module for algorithmic peak finding.
- LED611 or LED612 is activated to alternately emit red light and infrared light (one LED is activated).
- the PD of the PPG module uses a sampling rate of 25HZ and an integration time of 79us. After collecting 100 sets of data, it is uploaded to the data processing module for algorithmic peak finding.
- the light-emitting device of the PPG module only includes LED711, which is a two-in-one LED. LED711 can emit red light and infrared light, but cannot emit green light.
- LED711 is activated to emit red light.
- the PD of the PPG module uses a sampling rate of 100HZ and an integration time of 79us. After collecting 100 sets of data, it is uploaded to the data processing module for algorithmic peak finding.
- the LED711 When the measurement target is heart rate and the user state is quiet, the LED711 is activated to emit red light.
- the PD of the PPG module uses a sampling rate of 25HZ and an integration time of 79us. After collecting 100 sets of data, it is uploaded to the data processing module for algorithmic peak finding.
- LED711 is activated to emit infrared light.
- the PD of the PPG module uses a sampling rate of 25HZ and an integration time of 79us. After collecting 100 sets of data, it is uploaded to the algorithm for peak finding.
- LED711 is activated to alternately emit red light and infrared light.
- the PD of the PPG module uses a sampling rate of 100HZ and an integration time of 79us. After collecting 100 sets of data, it is uploaded to the data processing module for algorithmic peak finding.
- LED711 When the measurement target is blood oxygen and the user state is quiet or sleep state, LED711 is activated to alternately emit red light and infrared light (one LED is activated).
- the PD of the PPG module uses a sampling rate of 25HZ and an integration time of 79us. After collecting 100 sets of data, it is uploaded to the data processing module for algorithmic peak finding.
- the light emitting device of the PPG module includes LED811 and LED812. Both LED811 and LED812 are three-in-one LEDs. Both LED811 and LED812 can emit green light, red light and infrared light.
- the control device of the PPG module (for example, a smart watch) can identify the current measurement environment (user state: exercise state or non-exercise state) and the measurement target (heart rate or blood oxygen). However, the control device (for example, a smart watch) of the PPG module cannot further identify the non-exercise state, and cannot distinguish between a quiet state and a sleeping state.
- the PD of the PPG module uses a sampling rate of 100HZ and an integration time of 79us. After collecting 100 sets of data, it is uploaded to the data processing module for algorithmic peak finding.
- LED811 or LED812 is activated to emit green light.
- the PD of the PPG module uses a sampling rate of 25HZ and an integration time of 79us. After collecting 100 sets of data, it is uploaded to the data processing module for algorithmic peak finding.
- the PD of the PPG module uses a sampling rate of 100HZ and an integration time of 79us. After collecting 100 sets of data, it is uploaded to the data processing module for algorithmic peak finding.
- LED811 or LED812 is activated to alternately emit red light and infrared light (one LED is activated).
- the PD of the PPG module uses a sampling rate of 25HZ and an integration time of 79us. After collecting 100 sets of data, it is uploaded to the data processing module for algorithmic peak finding.
- this application also proposes a PPG control device.
- the device is applied to an electronic device (for example, a smart watch), and the electronic device includes a PPG module (for example, a PPG module with a structure as shown in Figure 3 or Figure 5), the PPG module includes a light-emitting module, and the device includes:
- An acquisition module which is used to confirm the current measurement environment and/or measurement target, the measurement environment includes exercise, quiet and sleep, and the measurement target includes heart rate and blood oxygen;
- the control module is used for determining the light emitting mode of the light emitting module according to the current measurement environment and/or measurement target.
- each module is only a division of logical functions.
- each The functions of the modules are implemented in the same or more software and/or hardware.
- the devices proposed in the embodiments of the present application may be fully or partially integrated into a physical entity during actual implementation, and may also be physically separated.
- these modules can all be implemented in the form of software called by the processing element; they can also be implemented in the form of hardware; some modules can also be implemented in the form of software called by the processing element, and some modules can be implemented in the form of hardware.
- the detection module may be a separately established processing element, or may be integrated into a certain chip of the electronic device for implementation.
- the implementation of other modules is similar.
- all or part of these modules can be integrated together, and can also be implemented independently.
- each step of the above method or each module above can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
- the above modules may be one or more integrated circuits configured to implement the above method, for example: one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC), or, one or more digital signal processors ( Digital Singnal Processor, DSP), or, one or more Field Programmable Gate Arrays (Field Programmable Gate Array, FPGA), etc.
- ASIC Application Specific Integrated Circuit
- DSP Digital Singnal Processor
- FPGA Field Programmable Gate Array
- these modules can be integrated together and implemented in the form of a device-on-a-chip (System-On-a-Chip, SOC).
- An embodiment of the present application also proposes an electronic device (for example, a smart watch), the electronic device includes a memory for storing computer program instructions and a processor for executing the program instructions, wherein, when the computer program instructions are processed When the controller is executed, the electronic device is triggered to execute the method steps described in the embodiments of the present application.
- an electronic device for example, a smart watch
- the electronic device includes a memory for storing computer program instructions and a processor for executing the program instructions, wherein, when the computer program instructions are processed When the controller is executed, the electronic device is triggered to execute the method steps described in the embodiments of the present application.
- the above-mentioned one or more computer programs are stored in the above-mentioned memory, and the above-mentioned one or more computer programs include instructions.
- the above-mentioned instructions are executed by the above-mentioned device, the above-mentioned device executes the The method step described in embodiment.
- the processor of the electronic device may be a device-on-chip SOC, and the processor may include a central processing unit (Central Processing Unit, CPU), and may further include other types of processors.
- the processor of the electronic device may be a PWM control chip.
- the processors involved may include, for example, CPUs, DSPs, microcontrollers, or digital signal processors, and may also include GPUs, embedded neural network processors (Neural-network Process Units, NPUs) ) and an image signal processor (Image Signal Processing, ISP), the processor may also include necessary hardware accelerators or logic processing hardware circuits, such as ASIC, or one or more integrated circuits for controlling the execution of the program of the technical solution of this application wait.
- the processor may have the function of operating one or more software programs, which may be stored in the storage medium.
- the memory of the electronic device may be a read-only memory (read-only memory, ROM), other types of static storage devices that can store static information and instructions, random access memory (random access memory) memory, RAM) or other types of dynamic storage devices that can store information and instructions, or electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory, CD-ROM) or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can also be used for portable or Any computer-readable medium that stores desired program code in the form of instructions or data structures and that can be accessed by a computer.
- ROM read-only memory
- RAM random access memory
- EEPROM electrically erasable programmable read-only memory
- CD-ROM compact disc read-only memory
- optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
- the processor and the memory can be combined into a processing device, and more commonly they are components independent of each other, and the processor is used to execute the program code stored in the memory to implement the method described in the embodiment of the present application .
- the memory may also be integrated in the processor, or be independent of the processor.
- the devices, devices, and modules described in the embodiments of the present application may be implemented by computer chips or entities, or by products with certain functions.
- the embodiments of the present application may be provided as methods, devices, or computer program products. Accordingly, the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein.
- any function is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
- the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
- an embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is run on a computer, the computer executes the method provided in the embodiment of the present application.
- An embodiment of the present application further provides a computer program product, the computer program product includes a computer program, and when running on a computer, causes the computer to execute the method provided in the embodiment of the present application.
- These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
- the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
- At least one refers to one or more, and “multiple” refers to two or more.
- “And/or” describes the association relationship of associated objects, indicating that there may be three kinds of relationships, for example, A and/or B may indicate that A exists alone, A and B exist simultaneously, or B exists alone. Among them, A and B can be singular or plural.
- the character “/” generally indicates that the contextual objects are an “or” relationship.
- “At least one of the following” and similar expressions refer to any combination of these items, including any combination of single items or plural items.
- At least one of a, b, and c can represent: a, b, c, a and b, a and c, b and c or a and b and c, where a, b, c can be single, or Can be multiple.
- the term “comprising”, “comprising” or any other variant thereof is intended to cover a non-exclusive inclusion, so that a process, method, commodity or device comprising a series of elements not only includes those elements, but also includes Other elements not expressly listed, or elements inherent in the process, method, commodity, or apparatus are also included.
- an element defined by the phrase “comprising a " does not exclude the presence of additional identical elements in the process, method, article or apparatus comprising said element.
- program modules include routines, programs, objects, components, data structures, etc. that perform particular tasks or implement particular abstract data types.
- the application may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
- program modules may be located in both local and remote computer storage media including storage devices.
- each embodiment in the present application is described in a progressive manner, the same and similar parts of each embodiment can be referred to each other, and each embodiment focuses on the differences from other embodiments.
- the description is relatively simple, and for relevant parts, please refer to part of the description of the method embodiment.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Anesthesiology (AREA)
- Pulmonology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
本申请实施例提供一种PPG控制方法、装置和电子设备。方法应用于电子设备,所述电子设备包含PPG模组,所述PPG模组包括发光模块,所述方法包括:确认当前的测量环境和/或测量目标,所述测量环境包括运动、安静以及睡眠,所述测量目标包括心率以及血氧;根据当前的所述测量环境和/或所述测量目标确定所述发光模块的发光模式。根据本申请实施例的方法,可以在确保PPG模组的测量准确性的前提下降低PPG模组的功耗。
Description
本申请涉及测量技术领域,特别涉及一种光电体积描记法(photoplethysmography,PPG)控制方法、装置和电子设备。
在现有技术的应用场景中,穿戴产品,例如智能手表,有利用光电体积描记法(photoplethysmography,PPG)测量人体心率、呼吸率、血氧等人体健康特征的需求。
以智能手表为例,目前通用的PPG实现方式是在智能手表的背部布置PPG模组。PPG模组包含发光二极管(light-emitting diode,LED)以及光电二极管(Photo-Diode,PD),LED发射的光照射到皮肤后被反射,反射光被PD采集,通过对PD采集的光信号进行计算从而测量人体特征。
穿戴产品通常以电池供电,因此,为了延长穿戴产品的续航,需要尽可能的降低PPG模组的功耗。并且,为了尽可能的获取准确的人体特征参数,也需要确保穿戴产品上PPG模组的测量准确性。因此,需要一种PPG控制方法,以在确保PPG模组的测量准确性的前提下,降低PPG模组的功耗。
发明内容
针对现有技术下如何确保光电体积描记法(photoplethysmography,PPG)模组的测量准确性并降低PPG模组的功耗的问题,本申请提供了一种PPG控制方法、装置和电子设备,本申请还提供一种计算机可读存储介质。
本申请实施例采用下述技术方案:
第一方面,本申请提供一种PPG控制方法,该方法应用于电子设备,该电子设备包含包括发光模块的PPG模组。本申请提供的PPG控制方法的实现至少包括以下流程步骤:
确认当前的测量环境和/或测量目标,测量环境包括运动、安静以及睡眠,测量目标包括心率以及血氧;
根据当前的测量环境和/或测量目标确定发光模块的发光模式。
根据本申请实施例的方法,根据不同的测量环境和/或测量目标使用不同的PPG控制方案,可以在确保满足测量准确性要求的前提下,避免功耗浪费,从而在确保PPG模组的测量准确性的前提下降低PPG模组的功耗。
在实际运行场景中,PPG模组可以基于绿光进行心率测量,由于在同等功耗下,绿光测量心率的效果红光,即,在达成同等测量效果时,发射绿光的功耗小于红光功耗。
因此,为了降低功耗,在上述第一方面的一种实现方式中,发光模块包括第一发光器件、第二发光器件以及第三发光器件,第一发光器件用于发绿光,第二发光器件用于发红光,第三发光器件用于发红外光。在根据当前的测量环境和/或测量目标确定发光模块的发光模式的执行过程中:根据测量目标确定发光模块的发光模式,其中:当测量目标为心率时,启用第一发光器件;当测量目标为血氧时,启用第二发光器件以及第三发光器件。
在实际运行场景中,在达成同样的测量效果的前提下,运动状态下所需的LED光强大于安静或睡眠状态下所需的LED光强。
因此,为降低功耗,在上述第一方面的一种实现方式中,发光模块包括多个发光器件,多个发光器件支持发射同一种光线。在根据当前的测量环境和/或测量目标确定发光模块的发光模式的执行过程中:根据测量环境确定发光模块的发光模式,其中:当测量环境为运动时,启用发光模块的全部发光器件;当测量环境为安静或睡眠时,启用发光模块的部分发光器件。
在实际运行场景中,用户睡眠时,可见光会干扰用户睡眠质量。
因此,为提高用户体验,在上述第一方面的一种实现方式中,发光模块包括第四发光器件以及第五发光器件,第四发光器件用于发可见,第五发光器件用于发红外光;在根据当前的测量环境和/或测量目标确定发光模块的发光模式的过程中:根据测量环境确定发光模块的发光模式,其中:当测量环境为运动或安静时,启用第四发光器件;当测量环境为睡眠时,启用第五发光器件。
在实际运行场景中,在测量血氧时,红光和红外光同时发光会互相干扰,影响测量准确率。
因此,为提高测量准确率,在上述第一方面的一种实现方式中,发光模块包括第六发光器件以及第七发光器件,第六发光器件用于发红光,第七发光器件用于发红外光;在根据当前的测量环境和/或测量目标确定发光模块的发光模式的过程中:根据测量目标确定发光模块的发光模式,其中:当测量目标为血氧时,交替启用第六发光器件以及第七发光器件。
综合上述第一方面对发光模块的控制方案,在上述第一方面的一种实现方式中,发光模块包括第八发光器件、第九发光器件、第十发光器件以及第十一发光器件,第八发光器件以及第九发光器件用于发绿光,第十发光器件以及第十一发光器件用于发红光和红外光;
根据当前的测量环境和/或测量目标确定发光模块的发光模式,包括:
当测量环境为运动,测量目标为心率时,启用第八发光器件以及第九发光器件发绿光;
当测量环境为静止,测量目标为心率时,启用第八发光器件或第九发光器件发绿光;
当测量环境为睡眠,测量目标为心率时,启用第十发光器件或第十一发光器件发红外光;
当测量环境为运动,测量目标为血氧时,启用第十发光器件以及第十一发光器件交替发红光以及红外光;
当测量环境为静止或睡眠,测量目标为血氧时,启用第十发光器件或第十一发光器件交替发红光以及红外光。
在实际运行场景中,PPG采样率越高,PPG功耗越高。
因此,为降低功耗,在上述第一方面的一种实现方式中,方法还包括:
根据当前的测量环境确定PPG模组的采样率,其中:当测量环境为运动时,采用第一采样率;当测量环境为安静或睡眠时,采用第二采样率;第一采样率大于第二采样率。
具体的,在一应用场景中,第一采样率为100HZ,第二采样率为25HZ。
在实际运行场景中,PPG积分时间越高,PPG功耗越高。
因此,为降低功耗,在上述第一方面的一种实现方式中,方法还包括:
根据当前的测量环境确定PPG模组的积分时间,其中:当测量环境为运动时,采用第一积分时间;当测量环境为安静或睡眠时,采用第二积分时间;第一积分时间大于第二积分时间。
具体的,在一应用场景中,第一积分时间为79us,第二积分时间为39us。
第二方面,本申请提供一种PPG控制装置,装置应用于电子设备,电子设备包含PPG模组,PPG模组包括发光模块,装置包括:
采集模块,其用于确认当前的测量环境和/或测量目标,测量环境包括运动、安静以及睡眠,测量目标包括心率以及血氧;
控制模块,其用于根据当前的测量环境和/或测量目标确定发光模块的发光模式。
第三方面,本申请提供一种电子设备,电子设备包括用于存储计算机程序指令的存储器和用于执行计算机程序指令的处理器,其中,当计算机程序指令被该处理器执行时,触发电子设备执行如第一方面的方法步骤。
第四方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行如第一方面或第二方面的方法。
图1所示为根据本申请一实施例的PPG控制方法流程图;
图2所示为根据本申请一实施例的PPG控制系统示意图;
图3所示为根据本申请一实施例的智能手表背面示意图;
图4所示为根据本申请一实施例的智能手表显示界面示意图;
图5所示为根据本申请一实施例的PPG模组示意图;
图6所示为根据本申请一实施例的智能手表显示界面示意图。
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
光电体积描记法(photoplethysmography,PPG)模组的工作流程通常包含:PPG模组中的发光二极管(light-emitting diode,LED)的发光;光线照射到人体皮肤后反射;反射光由PPG模组中光电二极管(Photo-Diode,PD)采集,获取反射光数据。
在运行时,需要根据配置好的PPG控制方案(运行策略)控制PPG模组的运行,该PPG控制方案包括PPG模组中各个器件的运行方式、运行参数。例如,PPG控制方案可以包含下述内容中的任意一项或多项的组合。
PPG模组中LED的发光频率。LED发光会导致功耗,因此,LED发光频率越高,PPG模组功耗越高。
PPG模组中LED的发光强度。LED发光会导致功耗,LED发光强度越高,因此,PPG模组功耗越高。
PPG模组中PD的反射光采集频率,即,PPG采样率。PPG采样率通常与PPG模组中的LED的发光频率一致,即,在PPG模组中的LED发光时,PPG模组中PD进行反射光采集;PD进行反射光采集会导致功耗,因此,PPG采样率越高,PPG模组功耗越高。
PPG模组中PD的积分时间。PD在对反射光进行采集时,获取反射光数据的过程并不是一个瞬时过程。PD需要对反射光进行一个持续特定时长的数据采集,对该特定时长内采集到的数据进行积分计算才能获取到有效的反射光数据,该特定时长被称为积分时间。PD进行反射光采集会导致功耗,因此,积分时间越长,PPG模组功耗越高。
PD采集反射光数据的组数。在PPG模组进行测量时,PD会连续采集多组(例如,100组)反射光数据,根据多组反射光数据构成反射光数据曲线;针对反射光数据曲线进行计算,确定曲线峰值(算法寻峰),根据曲线峰值计算测量结果。PD进行反射光采集会导致功耗,因此,PD需要采集的反射光数据组数越多,PPG模组功耗越高。
对于PPG测量,最重要的技术指标之一是测量准确性。为了确保测量准确性,在 配置PPG模组的PPG控制方案时需要考虑测量环境对测量准确性的影响。例如,在测量设备的PPG模组与人体皮肤之间存在空隙时,外界光线会对PD的采集产生影响。为了确保PD采集到准确的反射光数据,在配置PPG控制方案中的LED发光强度时,就需要考虑到外界光线的干扰因素。最终配置的LED发光强度就会高于不考虑外界光线的干扰因素时的发光强度。
在PPG模组的实际测量场景中,测量环境并不是一成不变的。例如,外界光线强度会发生变化。在确保测量准确性的前提下,不同测量环境对PPG性能指标的要求是不同的。为了在不同的测量环境下均能确保测量准确性,在配置PPG模组的PPG控制方案时通常会预先设计一个第一测量环境,该第一测量环境为PPG模组的预期运行场景中对PPG性能指标要求最高的测量环境。参照该第一测量环境配置PPG模组的PPG控制方案(第一PPG控制方案),确保在该第一测量环境下PPG模组可以获取到准确的测量数据。这样,理论上,PPG模组运行在第一PPG控制方案下时,在所有的预期运行场景中均能确保测量准确性。例如,在考虑外界光线对PD采集的影响时,参考正午时的阳光强度来配置LED发光强度。这样,LED发光强度就会同时满足其他时段的阳光强度。
PPG模组在不同的PPG控制方案下的功耗是不同的,例如,不同PPG控制方案中对LED发光强度配置不同,LED的功耗也就不同。由于第一测量环境是预期运行场景中对PPG性能指标要求最高的测量环境,因此,对于性能指标要求较低的测量环境,当PPG模组运行在第一PPG控制方案下时,PPG模组的性质指标就会超出确保测量准确性所需的性能指标。此时,对于确保测量准确性这一目标来说,PPG模组存在功耗浪费。
为了避免功耗浪费,在确保PPG模组的测量准确性的前提下降低PPG模组的功耗,本申请提供了一种PPG控制方法,在本申请的方法中,根据随身设备当前所处的测量环境以及测量目标,确定PPG模组的PPG控制方案,使得PPG模组在当前的测量环境下可以满足测量准确性要求,避免出现功耗浪费,从而在确保PPG模组的测量准确性的前提下降低PPG模组的功耗。
具体的,随身设备上安装有PPG模组。当需要启动PPG模组进行测量时,随身设备检测当前的测量环境以及测量目标(心率和/或血氧),根据当前的测量环境调用对应的PPG控制方案,根据调用的PPG控制方案生成PPG模组控制指令,将PPG模组控制指令发送到PPG模组。
在本申请实施例中,随身设备可以为任意可以安装PPG模组的电子设备。例如,随身设备可以是智能手表、智能手环等可以随身携带的电子设备,在用户佩戴随身设备时,随身设备的PPG模组贴近用户皮肤以实现测量操作;又例如,随身设备也可以是安装有PPG模组的非随身携带的电子设备,用户在需要进行测量时将随身设备的PPG模组贴近皮肤。
进一步的,随身设备可以是独立的电子设备,其包含数据处理模块,PPG模组采集到的测量数据经由随身设备处理后生成测量结果(例如,智能手表)。
随身设备也可以是测量系统的一部分。例如,随身设备中并不包含用于处理测量数据的数据处理模块,随身设备在测量系统中的功能仅为测量数据采集,随身设备与其他具备数据处理模块的电子设备(例如,手机)共同组成测量系统。用户佩戴随身设备,随身设备的PPG模组采集到测量数据后,测量数据被发送到测量系统中的其他设备上进行数据处理以获取测量结果。
具体的,图1所示为根据本申请一实施例的PPG控制方法流程图。随身设备执行如图1所示的下述步骤以实现对PPG模组的控制。
S200,确定当前的测量环境以及测量目标,测量目标包括测量心率和测量血氧。
S210,根据当前的测量环境以及测量目标确定对应的PPG控制方案。
S220,根据S210确定的PPG控制方案生成对应的控制指令,将控制指令发送到PPG模块。
根据本申请实施例的方法,根据不同的测量环境以及测量目标使用不同的PPG控制方案,可以在确保满足测量准确性要求的前提下,避免功耗浪费,从而在确保PPG模组的测量准确性的前提下降低PPG模组的功耗。
在实际应用场景中,本领域的技术人员可以根据具体的应用需求设计S200-S220的具体实现方式,本申请对此不做具体限制。以下举例说明S200-S220的具体实现方式。
在实际应用场景中,很多环境因素会对PPG模组的造成影响,因此,在S200中,可以针对一种或多种测量环境参数进行识别,以确认测量环境的一类或多类特征,从而后续可以有针对性的确定PPG模组的PPG控制方案。
具体的,在实际应用场景中,人体处于运动状态时,随身设备与人体皮肤的相对位置往往处于动态变化的状态;而人体处于静止状态时,随身设备与人体皮肤的相对位置往往处于静止状态。由于PPG模组需要采集的是发光器件发射的光线经皮肤反射后的反射光,因此,为确保PPG模组的测量准确性,人体处于运动状态时对于PPG模组发光器件的发光参数要求与人体处于运动状态时对于PPG模组发光器件的发光参数要求是不同的。
因此,在S200的一种实现方式中,识别用户状态。例如,识别用户状态是运动状态或是非运动状态。
具体的,在S200的一种实现方式中,默认用户状态是非运动状态,用户可以通过手动点击进入运动模式,将用户状态更改为运动状态。
进一步的,一般的,在用户状态为非运动状态时,用户可能在办公、读书,也可 能在睡眠。因此,为准确识别当前的测量环境,在S200的另一种实现方式中,在识别用户状态时,在用户状态为非运动状态时,还识别用户是否处于睡眠状态,区分用户处于安静状态或是睡眠状态。例如,识别用户状态是运动状态、或是安静状态、或是睡眠状态。
进一步的,在用户状态为运动状态时,还可以进行进一步识别,区分运动剧烈程度,例如大幅剧烈运动、小幅度运动。
具体的,在S200的一种实现方式中,随身设备可以根据自身配置的加速度计(ACC)和气压计的测量数据,判断用户状态。例如,通过手表内置的ACC(加速度传感器),判定手表X Y Z三个方向的上的运动情况,结合对用户运动的模型分析,持续跟踪一段时间后(至少5min)判断出用户是否在运动(可判断走路、配速跑、骑行);又例如,通过手表内置的ACC(加速度传感器),判定手表X Y Z三个方向的上的运动情况,结合用户心率数据(睡眠时心率会变低)持续跟踪一段时间后(至少10min)判断用户是否进入睡眠。
图2所示为根据本申请一实施例的PPG控制系统示意图。如图2所示,ACC/气压计410进行加速度/气压数据采集,将数据采集结果发送到处理器MCU420。MCU420根据加速度/气压数据采集结果识别当前的测量环境。MCU420根据当前的测量环境以及测量目标确定PPG控制方案,生成对应的控制指令。MCU420将控制指令发送到PPG模块的控制单元AFE430,AFE430根据接收到的控制指令控制PPG模块的发光器件LED440以及光电转换器件PD450。
在S210中,可以根据当前的测量环境以及测量目标生成对应的PPG控制方案;也可以在S210之前,针对不同的测量环境和/或测量目标预先生成多个不同的PPG控制方案,在S210中,调用预先生成的PPG控制方案中,与当前的测量环境以及测量目标匹配的PPG控制方案。
在实际应用场景中,本领域的技术人员可以根据实际需求,针对不同的测量环境和/或测量目标配置对应的PPG控制方案,本申请对具体的PPG控制方案内容不做具体限制。以下通过具体实施例举例说明PPG控制方案的具体内容。
图3所示为根据本申请一实施例的智能手表背面示意图。在如图3所示的智能手表500上安装有PPG模块,PPG模块的发光器件以及光电转换器件安装在智能手表500的背面。
PPG模块的发光器件为LED511以及LED512。LED511以及LED512均为三合一LED。LED511以及LED512均可以发出绿光、红光以及红外光。PPG模块可以根据输入的控制指令控制LED511以及LED512的发光种类。PPG模块的光电转换器件为PD521-528。充电PLN为智能手表500的充电接口。
智能手表500可以识别当前的测量环境(用户状态:运动状态、安静状态或睡眠状态)(运动状态识别结果在智能手表500上的显示如图4所示)以及测量目标(心率或血氧)。
智能手表500可以根据用户状态以及测量目标的不同,调用预先配置的多个PPG控制方案中的一个。智能手表500基于调用的PPG控制方案控制PPG模块的运行。以下举例说明智能手表500根据当前的测量环境以及测量目标控制PPG模块的运行的具体实现。
实施例1
在S210中,智能手表500调用的PPG控制方案中包含启动的发光器件(LED511和/或LED512)、发光器件的发光种类(绿光、或者红光、或者红外光)、PPG采样率、PPG积分时间以及每轮测量需要采集的反射光数据的组数。
具体的,智能手表500调用的PPG控制方案中启动的发光器件的数量与具体的用户状态相匹配。当用户状态为运动状态时,为确保测量准确性,尽可能的增强发光强度,同时启用LED511以及LED512发光。当用户状态为安静或睡眠状态时,为降低功耗,启用LED511和LED512中的一个发光。
这里需要说明的是,本实施例中,根据用户状态启动不同数量的发光器件,其目的是根据用户状态采用不同的发射光强度,使得相对于用户状态为运动状态,在用户状态为安静或睡眠状态时采用较低的发射光强度。
由于智能手表500的PPG模块配置有LED511以及LED512两个功能相同的发光器件,因此,在本实施例中采用变化启动的发光器件的数量的方式来实现不同的发射光强度。在根据本申请方法的其他实施例中,可以根据PPG模块发光器件的具体配置来采用其他的方式实现不同的发射光强度。例如,通过改变LED的驱动电压/电流来改变LED的发射光强度。
进一步的,PPG模组通常配置有红光发光二极管以及红外光发光二极管,使用红光以及红外光实现心率以及血氧的测量。例如,图5所示为根据本申请一实施例的PPG模组示意图。如图5所示,PPG模组的发光/采光单元包含红外光发光二极管(IR LED)、红光发光二极管(Red LED)以及光电晶体管。IR LED发出的红外光经皮肤反射后被光电晶体管采集,Red LED发出的红光经皮肤反射后被光电晶体管采集。
在实际应用场景中,PPG模组还可以基于红光和红外光以外的光线测量心率。具体的,在测量心率时,相较于红光,绿光作为光源得到的信号更好。其中一个原因是血液更容易吸收绿光,血液由于红细胞里面的血色素而呈现红色,相比红光,绿光能被血红蛋白吸收。而红光会被皮肤上的水分吸收掉一些,从而对测量结果产生影响。因此,在功耗相同的前 提下,使用绿光的测量准确性要高于使用红光;也可以说,在测量准确性相同的前提下,使用绿光的功耗较低。
因此,在本实施例中,为提高心率的测量准确性,降低发射光功耗,智能手表500调用的PPG控制方案中启动的发光器件的发光类型与测量目标相匹配,当测量目标为心率时,LED511和/或LED512发绿光,从而提高测量准确性;当测量目标为血氧时,LED511和/或LED512发红光以及红外光。
进一步的,在测量目标为血氧时,PPG模组的LED需要发射红光以及红外光,PPG模组的PD需要分别采集红光以及红外光的反射光数据。因此,在本实施例中,当测量目标为血氧时,LED511和/或LED512采用交替发射红光以及红外光发光的方式,以避免红光与红外光之间出现相互干扰,从而大大提高反射光数据采集的准确性。并且,为确保反射光数据采集的准确性,PD在进行反射光数据采集时,同一时刻只针对红光或红外光中的一种的反射光进行反射光数据采集,采用红光和红外光交替发光的方式,PD的发射光采集频率与红光和红外光交替发光频率相匹配,可以大大提高LED发光的有效利用率。
进一步的,PPG采样率是PPG模组运行时PD测量反射光的频率。在运动状态下,PPG模组与用户皮肤的间距变化频率远大于非运动状态。为了确保测量准确性,相较于非运动状态,运动状态下PPG模组需要采用更高的PPG采样率。
PPG采样率越高,PPG模组运行时功耗越高。为了降低功耗,需要将PPG采样率维持在与确保测量准确性所需的PPG性能参数相匹配的程度,避免PPG采样率过高。因此,在本实施例中,智能手表500调用的PPG控制方案中的PPG采样率与具体的用户状态相匹配,针对运动状态的PPG采样率大于针对非运动状态的PPG采样率。当用户状态为运动状态时,PPG采样率为100HZ(第一采样率);当用户状态为非运动状态时,PPG采样率为25HZ(第二采样率)。
这里需要说明的是,本申请对PPG采样率的具体数值不做具体限定,在其他实施例中,本领域的技术人员可以根据实际需求配置PPG采样率的具体数值。
进一步的,PPG积分时间是PPG模组运行时PD每次测量反射光的测量时间。在运动状态下,PPG模组与用户皮肤的间距变化频率远大于非运动状态。为了确保测量准确性,相较于非运动状态,运动状态下PPG模组需要采用更高的PPG积分时间。
PPG积分时间越高,PPG模组运行时功耗越高。为了降低功耗,需要将PPG积分时间维持在与确保测量准确性所需的PPG性能参数相匹配的程度,避免PPG积分时间过高。因此,在本实施例中,智能手表500调用的PPG控制方案中的PPG积分时间与具体的用户状态相匹配,针对运动状态的PPG积分时间大于针对非运动状态的 PPG积分时间。当用户状态为运动状态时,PPG积分时间为79us(第一积分时间);当用户状态为非运动状态时,PPG积分时间为39us(第二积分时间)。
这里需要说明的是,本申请对PPG积分时间的具体数值不做具体限定,在其他实施例中,本领域的技术人员可以根据实际需求配置PPG积分时间的具体数值。
进一步的,在实际应用场景中,在用户睡眠时,如果随身设备发出可见光(例如,红光或绿光),有可能会干扰到用户睡眠。因此,在本实施例中,智能手表500调用的PPG控制方案中发光器件的发光类型与用户状态相匹配。当用户处于睡眠状态时,在测量心率时,启用LED511和/或LED512发红外光;当用户处于运动或安静状态时,在测量心率时,启用LED511和/或LED512发绿光。
综上,在实施例1中,当测量目标为心率,用户状态为运动状态时,智能手表500同时启动LED511以及LED512发绿光。PD521-528使用100HZ采样率,79us积分时间,采集满100组数据后上传至数据处理模块(智能手表500的数据处理模块或者PPG模块自身的数据处理单元)进行算法寻峰。测量结果在智能手表500上的显示如图6所示;图6中,上方显示的128次/分为当前的心率测量结果,由于用户状态当前为运动状态,智能手表500调用历史中记录的安静状态下测量的心率结果(静息67次/分)在图6中的下方显示。
当测量目标为心率,用户状态为安静状态时,智能手表500启动LED511或LED512发绿光(启动一个LED)。PD521-528使用25HZ采样率,39us积分时间,采集满100组数据后上传至数据处理模块算法寻峰。
当测量目标为心率,用户状态为睡眠状态时,智能手表500启动LED511或LED512发红外光。PD521-528使用25HZ采样率,39us积分时间,采集满100组数据后上传至算法寻峰。
当测量目标为血氧,用户状态为运动状态时,智能手表500同时启动LED511以及LED512交替发射红光以及红外光。PD521-528使用100HZ采样率,79us积分时间,采集满100组数据后上传至数据处理模块进行算法寻峰。
当测量目标为血氧,用户状态为安静或睡眠状态时,智能手表500启动LED511或LED512交替发射红光以及红外光(启动一个LED)。PD521-528使用25HZ采样率,39us积分时间,采集满100组数据后上传至数据处理模块算法寻峰。
实施例2
当测量目标为心率,用户状态为运动状态时,智能手表500同时启动LED511以及LED512发绿光。PD521-528使用100HZ采样率,79us积分时间,采集满100组数据后上传至数据处理模块(智能手表500的数据处理模块或者PPG模块自身的数据处 理单元)进行算法寻峰。
当测量目标为心率,用户状态为安静状态时,智能手表500启动LED511或LED512发绿光(启动一个LED)。PD521-528使用25HZ采样率,79us积分时间,采集满100组数据后上传至数据处理模块算法寻峰。
当测量目标为心率,用户状态为睡眠状态时,智能手表500启动LED511或LED512发红外光。PD521-528使用25HZ采样率,79us积分时间,采集满100组数据后上传至算法寻峰。
当测量目标为血氧,用户状态为运动状态时,智能手表500同时启动LED511以及LED512交替发射红光以及红外光。PD521-528使用100HZ采样率,79us积分时间,采集满100组数据后上传至数据处理模块进行算法寻峰。
当测量目标为血氧,用户状态为安静或睡眠状态时,智能手表500启动LED511或LED512交替发射红光以及红外光(启动一个LED)。PD521-528使用25HZ采样率,79us积分时间,采集满100组数据后上传至数据处理模块算法寻峰。
在实施例1中,智能手表500调用的PPG控制方案中,启动的发光器件(LED511和/或LED512)、发光器件的发光种类(绿光、或者红光、或者红外光)、PPG采样率、PPG积分时间与当前的测量环境以及测量目标相匹配。即,根据不同的测量环境以及测量目标,智能手表500的PPG模块运行时会启用相对应的发光器件、采用相对应的发光种类、采用相对应的PPG采样率、采用相对应的PPG积分时间。并且,不同的测量环境以及测量目标,智能手表500的PPG模块采用统一的每轮测量需要采集的反射光数据的组数(100组)。
在实施例2中,智能手表500调用的PPG控制方案中,启动的发光器件(LED511和/或LED512)、发光器件的发光种类(绿光、或者红光、或者红外光)、PPG采样率与当前的测量环境以及测量目标相匹配。即,根据不同的测量环境以及测量目标,智能手表500的PPG模块运行时会启用相对应的发光器件、采用相对应的发光种类、采用相对应的PPG采样率。并且,针对不同的测量环境以及测量目标,智能手表500的PPG模块采用统一的PPG积分时间(79us)以及每轮测量需要采集的反射光数据的组数(100组)。
在本申请其他实施例中,智能手表500调用的PPG控制方案中可以选用与实施例1以及实施例2不同的配置方案。例如,针对不同的测量环境以及测量目标,智能手表500的PPG模块采用不同的每轮测量需要采集的反射光数据的组数(当用户状态为运动状态时,PPG模块采集满100组数据后上传至算法寻峰;当用户状态为安静或睡眠状态时,PPG模块采集满80组数据后上传至算法寻峰)。
进一步的,本申请的PPG控制方法可以应用于与图4所示应用场景不同的其他应 用场景。本领域的技术人员可以根据PPG模块的具体结构、和/或PPG模块的控制设备的具体功能配置、和/或PPG模块的控制设备所属的测量系统的具体功能配置,对本申请的PPG控制方法进行适应性调整。以下通过具体的应用场景进行举例说明。
实施例3
PPG模块的发光器件包含LED611以及LED612,LED611以及LED612均为二合一LED。LED611以及LED612均可以发出红光以及红外光,但不能发射绿光。PPG模块的控制设备(例如,智能手表)可以识别当前的测量环境(用户状态:运动状态、安静状态或睡眠状态)以及测量目标(心率或血氧)。
当测量目标为心率,用户状态为运动状态时,LED611以及LED612被同时启动发红光。PPG模块的PD使用100HZ采样率,79us积分时间,采集满100组数据后上传至数据处理模块进行算法寻峰。
当测量目标为心率,用户状态为安静状态时,LED611或LED612被启动发红光。PPG模块的PD使用25HZ采样率,79us积分时间,采集满100组数据后上传至数据处理模块算法寻峰。
当测量目标为心率,用户状态为睡眠状态时,LED611或LED612被启动发红外光。PPG模块的PD使用25HZ采样率,79us积分时间,采集满100组数据后上传至算法寻峰。
当测量目标为血氧,用户状态为运动状态时,LED611以及LED612被同时启动交替发射红光以及红外光。PPG模块的PD使用100HZ采样率,79us积分时间,采集满100组数据后上传至数据处理模块进行算法寻峰。
当测量目标为血氧,用户状态为安静或睡眠状态时,LED611或LED612被启动交替发射红光以及红外光(启动一个LED)。PPG模块的PD使用25HZ采样率,79us积分时间,采集满100组数据后上传至数据处理模块算法寻峰。
实施例4
PPG模块的发光器件仅包含LED711,LED711为二合一LED。LED711可以发出红光以及红外光,但不能发射绿光。
当测量目标为心率,用户状态为运动状态时,LED711被启动发红光。PPG模块的PD使用100HZ采样率,79us积分时间,采集满100组数据后上传至数据处理模块进行算法寻峰。
当测量目标为心率,用户状态为安静状态时,LED711被启动发红光。PPG模块的PD使用25HZ采样率,79us积分时间,采集满100组数据后上传至数据处理模块算法寻峰。
当测量目标为心率,用户状态为睡眠状态时,LED711被启动发红外光。PPG模块 的PD使用25HZ采样率,79us积分时间,采集满100组数据后上传至算法寻峰。
当测量目标为血氧,用户状态为运动状态时,LED711被启动交替发射红光以及红外光。PPG模块的PD使用100HZ采样率,79us积分时间,采集满100组数据后上传至数据处理模块进行算法寻峰。
当测量目标为血氧,用户状态为安静或睡眠状态时,LED711被启动交替发射红光以及红外光(启动一个LED)。PPG模块的PD使用25HZ采样率,79us积分时间,采集满100组数据后上传至数据处理模块算法寻峰。
实施例5
PPG模块的发光器件包含LED811以及LED812。LED811以及LED812均为三合一LED。LED811以及LED812均可以发出绿光、红光以及红外光。PPG模块的控制设备(例如,智能手表)可以识别当前的测量环境(用户状态:运动状态或非运动状态)以及测量目标(心率或血氧)。但是,PPG模块的控制设备(例如,智能手表)无法对非运动状态进行进一步识别,无法区分安静状态以及睡眠状态。
当测量目标为心率,用户状态为运动状态时,LED811以及LED812被同时启动发绿光。PPG模块的PD使用100HZ采样率,79us积分时间,采集满100组数据后上传至数据处理模块进行算法寻峰。
当测量目标为心率,用户状态为非运动状态时,LED811或LED812被启动发绿光。PPG模块的PD使用25HZ采样率,79us积分时间,采集满100组数据后上传至数据处理模块算法寻峰。
当测量目标为血氧,用户状态为运动状态时,LED811以及LED812被同时启动交替发射红光以及红外光。PPG模块的PD使用100HZ采样率,79us积分时间,采集满100组数据后上传至数据处理模块进行算法寻峰。
当测量目标为血氧,用户状态为非运动状态时,LED811或LED812被启动交替发射红光以及红外光(启动一个LED)。PPG模块的PD使用25HZ采样率,79us积分时间,采集满100组数据后上传至数据处理模块算法寻峰。
根据本申请提出的PPG控制方法,本申请还提出了一种PPG控制装置。装置应用于电子设备(例如,智能手表),电子设备包含PPG模组(例如,如图3或图5所示结构的PPG模组),PPG模组包括发光模块,装置包括:
采集模块,其用于确认当前的测量环境和/或测量目标,测量环境包括运动、安静以及睡眠,测量目标包括心率以及血氧;
控制模块,其用于根据当前的测量环境和/或测量目标确定发光模块的发光模式。
在本申请实施例的描述中,为了描述的方便,描述装置时以功能分为各种模块分 别描述,各个模块的划分仅仅是一种逻辑功能的划分,在实施本申请实施例时可以把各模块的功能在同一个或多个软件和/或硬件中实现。
具体的,本申请实施例所提出的装置在实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块以软件通过处理元件调用的形式实现,部分模块通过硬件的形式实现。例如,检测模块可以为单独设立的处理元件,也可以集成在电子设备的某一个芯片中实现。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个数字信号处理器(Digital Singnal Processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,这些模块可以集成在一起,以片上装置(System-On-a-Chip,SOC)的形式实现。
本申请一实施例还提出了一种电子设备(例如,智能手表),电子设备包括用于存储计算机程序指令的存储器和用于执行程序指令的处理器,其中,当该计算机程序指令被该处理器执行时,触发电子设备执行如本申请实施例所述的方法步骤。
具体的,在本申请一实施例中,上述一个或多个计算机程序被存储在上述存储器中,上述一个或多个计算机程序包括指令,当上述指令被上述设备执行时,使得上述设备执行本申请实施例所述的方法步骤。
具体的,在本申请一实施例中,电子设备的处理器可以是片上装置SOC,该处理器中可以包括中央处理器(Central Processing Unit,CPU),还可以进一步包括其他类型的处理器。具体的,在本申请一实施例中,电子设备的处理器可以是PWM控制芯片。
具体的,在本申请一实施例中,涉及的处理器可以例如包括CPU、DSP、微控制器或数字信号处理器,还可包括GPU、嵌入式神经网络处理器(Neural-network Process Units,NPU)和图像信号处理器(Image Signal Processing,ISP),该处理器还可包括必要的硬件加速器或逻辑处理硬件电路,如ASIC,或一个或多个用于控制本申请技术方案程序执行的集成电路等。此外,处理器可以具有操作一个或多个软件程序的功能,软件程序可以存储在存储介质中。
具体的,在本申请一实施例中,电子设备的存储器可以是只读存储器(read-only memory,ROM)、可存储静态信息和指令的其它类型的静态存储设备、随机存取存储器(random access memory,RAM)或可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何计算机可读介质。
具体的,在本申请一实施例中,处理器可以和存储器可以合成一个处理装置,更常见的是彼此独立的部件,处理器用于执行存储器中存储的程序代码来实现本申请实施例所述方法。具体实现时,该存储器也可以集成在处理器中,或者,独立于处理器。
进一步的,本申请实施例阐明的设备、装置、模块,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。
本领域内的技术人员应明白,本申请实施例可提供为方法、装置、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质上实施的计算机程序产品的形式。
在本申请所提供的几个实施例中,任一功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
具体的,本申请一实施例中还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行本申请实施例提供的方法。
本申请一实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序,当其在计算机上运行时,使得计算机执行本申请实施例提供的方法。
本申请中的实施例描述是参照根据本申请实施例的方法、设备(装置)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
还需要说明的是,本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a和b,a和c,b和c或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本申请中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本领域普通技术人员可以意识到,本申请实施例中描述的各单元及算法步骤,能够以电子硬件、计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,任何熟悉本技术领域的技术人员在本申请公开的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以所述权利要求的保护范围为准。
Claims (13)
- 一种光电体积描记法PPG控制方法,其特征在于,所述方法应用于电子设备,所述电子设备包含PPG模组,所述PPG模组包括发光模块,所述方法包括:确认当前的测量环境和/或测量目标,所述测量环境包括运动、安静以及睡眠中的至少一项,所述测量目标包括心率、血氧中的至少一项;根据当前的所述测量环境和/或所述测量目标确定所述发光模块的发光模式。
- 根据权利要求1所述的方法,其特征在于,所述发光模块包括第一发光器件、第二发光器件以及第三发光器件,所述第一发光器件用于发绿光,所述第二发光器件用于发红光,所述第三发光器件用于发红外光;所述根据当前的所述测量环境和/或所述测量目标确定所述发光模块的发光模式,包括:根据所述测量目标确定所述发光模块的发光模式,其中:当所述测量目标为心率时,启用所述第一发光器件;当所述测量目标为血氧时,启用所述第二发光器件以及第三发光器件。
- 根据权利要求1所述的方法,其特征在于,所述发光模块包括多个发光器件,所述多个发光器件支持发射同一种光线;所述根据当前的所述测量环境和/或所述测量目标确定所述发光模块的发光模式,包括:根据所述测量环境确定所述发光模块的发光模式,其中:当所述测量环境为运动时,启用所述发光模块的全部发光器件;当所述测量环境为安静或睡眠时,启用所述发光模块的部分发光器件。
- 根据权利要求1所述的方法,其特征在于,所述发光模块包括第四发光器件以及第五发光器件,所述第四发光器件用于发可见,所述第五发光器件用于发红外光;所述根据当前的所述测量环境和/或所述测量目标确定所述发光模块的发光模式,包括:根据所述测量环境确定所述发光模块的发光模式,其中:当所述测量环境为运动或安静时,启用所述第四发光器件;当所述测量环境为睡眠时,启用所述第五发光器件。
- 根据权利要求1所述的方法,其特征在于,所述发光模块包括第六发光器件以及第七发光器件,所述第六发光器件用于发红光,所述第七发光器件用于发红外光;所述根据当前的所述测量环境和/或所述测量目标确定所述发光模块的发光模式,包括:根据所述测量目标确定所述发光模块的发光模式,其中:当所述测量目标为血氧时,交替启用所述第六发光器件以及第七发光器件。
- 根据权利要求1所述的方法,其特征在于,所述发光模块包括第八发光器件、第 九发光器件、第十发光器件以及第十一发光器件,所述第八发光器件以及所述第九发光器件用于发绿光,所述第十发光器件以及所述第十一发光器件用于发红光和红外光;所述根据当前的所述测量环境和/或所述测量目标确定所述发光模块的发光模式,包括:当所述测量环境为运动,所述测量目标为心率时,启用所述第八发光器件以及所述第九发光器件;当所述测量环境为静止,所述测量目标为心率时,启用所述第八发光器件或所述第九发光器件;当所述测量环境为睡眠,所述测量目标为心率时,启用所述第十发光器件或所述第十一发光器件发红外光;当所述测量环境为运动,所述测量目标为血氧时,启用所述第十发光器件以及所述第十一发光器件交替发红光以及红外光;当所述测量环境为静止或睡眠,所述测量目标为血氧时,启用所述第十发光器件或所述第十一发光器件交替发红光以及红外光。
- 根据权利要求1-6中任一项所述的方法,其特征在于,所述方法还包括:根据当前的所述测量环境确定所述PPG模组的采样率,其中:当所述测量环境为运动时,采用第一采样率;当所述测量环境为安静或睡眠时,采用第二采样率;所述第一采样率大于所述第二采样率。
- 根据权利要求7所述的方法,其特征在于,所述第一采样率为100HZ,所述第二采样率为25HZ。
- 根据权利要求1-6中任一项所述的方法,其特征在于,所述方法还包括:根据当前的所述测量环境确定所述PPG模组的积分时间,其中:当所述测量环境为运动时,采用第一积分时间;当所述测量环境为安静或睡眠时,采用第二积分时间;所述第一积分时间大于所述第二积分时间。
- 根据权利要求9所述的方法,其特征在于,所述第一积分时间为79us,所述第二积分时间为39us。
- 一种PPG控制装置,其特征在于,所述装置应用于电子设备,所述电子设备包含PPG模组,所述PPG模组包括发光模块,所述装置包括:采集模块,其用于确认当前的测量环境和/或测量目标,所述测量环境包括运动、安静以及睡眠,所述测量目标包括心率以及血氧;控制模块,其用于根据当前的所述测量环境和/或所述测量目标确定所述发光模块的发光模式。
- 一种电子设备,其特征在于,所述电子设备包括用于存储计算机程序指令的存储器和用于执行计算机程序指令的处理器,其中,当所述计算机程序指令被该处理器 执行时,触发所述电子设备执行如权利要求1-10中任一项所述的方法步骤。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行如权利要求1-10中任一项所述的方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22859508.8A EP4226848A4 (en) | 2021-12-30 | 2022-09-15 | PPG CONTROL METHOD AND APPARATUS, AND ELECTRONIC DEVICE |
US18/025,378 US20240215827A1 (en) | 2021-12-30 | 2022-09-15 | Ppg control method and apparatus, and electronic device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111654810 | 2021-12-30 | ||
CN202111654810.5 | 2021-12-30 | ||
CN202210042886.0A CN114983353B (zh) | 2021-12-30 | 2022-01-14 | 一种ppg控制方法、装置和电子设备 |
CN202210042886.0 | 2022-01-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023124252A1 true WO2023124252A1 (zh) | 2023-07-06 |
Family
ID=83024063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/118962 WO2023124252A1 (zh) | 2021-12-30 | 2022-09-15 | 一种ppg控制方法、装置和电子设备 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240215827A1 (zh) |
EP (1) | EP4226848A4 (zh) |
CN (2) | CN116763271B (zh) |
WO (1) | WO2023124252A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116763271B (zh) * | 2021-12-30 | 2024-07-23 | 荣耀终端有限公司 | 一种ppg控制方法、装置和电子设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200054219A1 (en) * | 2016-11-02 | 2020-02-20 | Huawei Technologies Co., Ltd. | Smart Wearable Device |
CN112741626A (zh) * | 2020-09-09 | 2021-05-04 | 华为技术有限公司 | 一种多光电探测器并联的血氧检测方法及装置 |
CN112998671A (zh) * | 2021-02-23 | 2021-06-22 | 浙江清华柔性电子技术研究院 | Ppg信号采集方法、装置、电子设备和存储介质 |
CN113440102A (zh) * | 2020-03-27 | 2021-09-28 | 华为技术有限公司 | 电子设备的睡眠呼吸暂停监测方法和介质 |
CN114983353A (zh) * | 2021-12-30 | 2022-09-02 | 荣耀终端有限公司 | 一种ppg控制方法、装置和电子设备 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9241676B2 (en) * | 2012-05-31 | 2016-01-26 | Covidien Lp | Methods and systems for power optimization in a medical device |
US10667690B2 (en) * | 2016-04-02 | 2020-06-02 | Intel Corporation | Compressive sensing sparse sampling photoplethysmogram (PPG) measurement |
US20170281027A1 (en) * | 2016-04-05 | 2017-10-05 | Silicon Laboratories Inc. | Optical Arrangement For Power-Efficient, Low Noise Photoplethysmographic Sensor Module |
WO2018184175A1 (zh) * | 2017-04-06 | 2018-10-11 | 华为技术有限公司 | 终端的控制方法及装置 |
CN108606801B (zh) * | 2018-05-18 | 2021-03-05 | 无锡商业职业技术学院 | 一种ppg技术多光谱肤色标定与功耗优化装置及工作方法 |
US10874352B2 (en) * | 2018-11-05 | 2020-12-29 | General Electric Company | Systems and methods for low power pulse oximetry |
US10696305B2 (en) * | 2018-11-15 | 2020-06-30 | XMotors.ai Inc. | Apparatus and method for measuring physiological information of living subject in vehicle |
CN109589095B (zh) * | 2019-01-31 | 2024-07-02 | 深圳市爱都科技有限公司 | 一种穿戴式设备 |
CN111493846B (zh) * | 2019-01-31 | 2023-03-21 | 深圳市爱都科技有限公司 | 一种血氧饱和度和心率值的计算方法和穿戴设备 |
US11191466B1 (en) * | 2019-06-28 | 2021-12-07 | Fitbit Inc. | Determining mental health and cognitive state through physiological and other non-invasively obtained data |
CN112806972B (zh) * | 2019-11-18 | 2023-04-07 | Oppo广东移动通信有限公司 | Ppg测量电路和方法、可穿戴电子设备 |
CN113069089B (zh) * | 2020-01-06 | 2022-08-26 | 华为技术有限公司 | 电子设备 |
CN111722241B (zh) * | 2020-05-18 | 2023-09-05 | 深圳奥锐达科技有限公司 | 一种多线扫描距离测量系统、方法及电子设备 |
CN113521485B (zh) * | 2021-06-25 | 2024-05-17 | 荣耀终端有限公司 | 一种睡眠辅助方法、电子设备和真无线立体声耳机 |
CN113819620B (zh) * | 2021-09-13 | 2023-03-21 | 青岛海尔空调器有限总公司 | 用于控制空调的方法及装置、空调、存储介质 |
-
2022
- 2022-01-14 CN CN202310743045.7A patent/CN116763271B/zh active Active
- 2022-01-14 CN CN202210042886.0A patent/CN114983353B/zh active Active
- 2022-09-15 WO PCT/CN2022/118962 patent/WO2023124252A1/zh active Application Filing
- 2022-09-15 EP EP22859508.8A patent/EP4226848A4/en active Pending
- 2022-09-15 US US18/025,378 patent/US20240215827A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200054219A1 (en) * | 2016-11-02 | 2020-02-20 | Huawei Technologies Co., Ltd. | Smart Wearable Device |
CN113440102A (zh) * | 2020-03-27 | 2021-09-28 | 华为技术有限公司 | 电子设备的睡眠呼吸暂停监测方法和介质 |
CN112741626A (zh) * | 2020-09-09 | 2021-05-04 | 华为技术有限公司 | 一种多光电探测器并联的血氧检测方法及装置 |
CN112998671A (zh) * | 2021-02-23 | 2021-06-22 | 浙江清华柔性电子技术研究院 | Ppg信号采集方法、装置、电子设备和存储介质 |
CN114983353A (zh) * | 2021-12-30 | 2022-09-02 | 荣耀终端有限公司 | 一种ppg控制方法、装置和电子设备 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4226848A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN116763271A (zh) | 2023-09-19 |
US20240215827A1 (en) | 2024-07-04 |
CN116763271B (zh) | 2024-07-23 |
CN114983353A (zh) | 2022-09-02 |
EP4226848A1 (en) | 2023-08-16 |
CN114983353B (zh) | 2023-07-18 |
EP4226848A4 (en) | 2024-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023124252A1 (zh) | 一种ppg控制方法、装置和电子设备 | |
WO2023185122A1 (zh) | 一种检测心律的方法和电子设备 | |
CN111083022A (zh) | 一种移动终端及其控制方法、计算机存储介质 | |
CN118140271A (zh) | 基于位置的活动跟踪 | |
US11937905B2 (en) | Techniques for leveraging data collected by wearable devices and additional devices | |
US20230190201A1 (en) | Techniques for multiple wearable devices | |
US20240122548A1 (en) | Techniques for adaptive sensors of a wearable device | |
US20240122550A1 (en) | Techniques for optimal parameter tuning for a wearable device | |
US20230277074A1 (en) | Techniques for heart rate detection | |
US12074637B2 (en) | Configurable photoplethysmogram system | |
US20240364420A1 (en) | Configurable photoplethysmogram system | |
US20240206804A1 (en) | Techniques for managing sleep | |
US20240203585A1 (en) | Techniques for leveraging data collected by wearable devices and additional devices | |
US20240094821A1 (en) | Techniques for gesture recognition using wearable device data | |
US20230380776A1 (en) | Measuring impact of environmental factors on physiological data collected from a wearable | |
US20230107454A1 (en) | Techniques for heart rate detection | |
US20230210468A1 (en) | Techniques for using data collected by wearable devices to control other devices | |
US20240219237A1 (en) | Techniques for measuring skin tone using a wearable device | |
US20240180498A1 (en) | Techniques for generating alerts based on a relative location of a wearable device | |
US20240000328A1 (en) | Asymmetric sensors for ring wearable | |
US20220192529A1 (en) | Pulse recognition and blood oxygen saturation systems and methods | |
US20240237904A1 (en) | Techniques for measurement path multiplexing for a wearable device | |
US20240164724A1 (en) | Techniques for storing and transferring data collected by a wearable device | |
US20240096463A1 (en) | Techniques for using a hybrid model for generating tags and insights | |
US20230079736A1 (en) | Wearing detection techniques for wearable devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 18025378 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2022859508 Country of ref document: EP Effective date: 20230228 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22859508 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |