WO2023185122A1 - 一种检测心律的方法和电子设备 - Google Patents

一种检测心律的方法和电子设备 Download PDF

Info

Publication number
WO2023185122A1
WO2023185122A1 PCT/CN2022/140421 CN2022140421W WO2023185122A1 WO 2023185122 A1 WO2023185122 A1 WO 2023185122A1 CN 2022140421 W CN2022140421 W CN 2022140421W WO 2023185122 A1 WO2023185122 A1 WO 2023185122A1
Authority
WO
WIPO (PCT)
Prior art keywords
trajectory
parameters
standard deviation
parameter
preset condition
Prior art date
Application number
PCT/CN2022/140421
Other languages
English (en)
French (fr)
Inventor
李丹洪
邸皓轩
张晓武
马瑞青
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP22899622.9A priority Critical patent/EP4275591A1/en
Publication of WO2023185122A1 publication Critical patent/WO2023185122A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02405Determining heart rate variability
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/366Detecting abnormal QRS complex, e.g. widening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/721Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches

Definitions

  • the present application relates to the field of terminal technology, and specifically, to a method and electronic device for detecting heart rhythm.
  • Arrhythmias may include atrial fibrillation (which may be referred to as atrial fibrillation), premature beats, etc.
  • Atrial fibrillation (or atrial fibrillation for short) is a common heart disease. Early identification of atrial fibrillation can help patients detect heart abnormalities in time. Premature beats are a common cardiac arrhythmia.
  • PPG photoplethysmography
  • this application provides a method, electronic device, computer-readable storage medium and computer program product for detecting heart rhythm, which can improve the accuracy of arrhythmia detection and greatly improve user experience.
  • a method for detecting heart rhythm is provided.
  • the method is applied to an electronic device.
  • the method includes:
  • the difference between each two adjacent heart rates is determined based on the plurality of heart rate values, and the difference between each two adjacent heart rates is used to generate a heart rate difference trajectory graph;
  • the parameters of the heart rate difference trajectory are obtained based on the heart rate difference trajectory graph, and the parameters of the heart rate difference trajectory include one or more of the following parameters: angle, number, angle standard deviation, distance standard deviation;
  • the heart rhythm type of the first PPG signal is determined, and the heart rhythm type includes any of the following: premature beats, atrial fibrillation, sinus rhythm, ventricular tachycardia, bigeminy, tripartite law;
  • the above method may be performed by an electronic device or a chip in the electronic device.
  • the parameters of the trajectory including but not limited to: angle, number, angle standard deviation
  • the embodiment of the present application performs heart rhythm type identification based on parameters derived from heart rate difference trajectories, which can improve the accuracy of arrhythmia detection.
  • the embodiment of the present application performs heart rate identification based on the heart rate of a segment of the signal (that is, the PPG signal of the first preset duration), which can Improve the accuracy of identifying premature beats or atrial fibrillation, reduce the probability of identifying premature beats as atrial fibrillation, and improve user experience.
  • the method further includes:
  • determining the heart rhythm type of the first PPG signal according to the parameters of the heart rate difference trajectory includes:
  • the heart rhythm type of the first PPG signal is determined according to the first parameter and the parameters of the heart rate difference trajectory.
  • determining the first parameter based on the PPG signal of the first preset duration includes: extracting multiple RRIs based on the peaks of the PPG signal of the first preset duration; calculating the difference between each two adjacent RRIs based on the multiple RRIs, The difference between each two adjacent RRIs is used to determine the first parameter.
  • the comparison of the magnitude relationship between the first parameter and the first threshold is for preliminary atrial fibrillation identification. If the first parameter is greater than or equal to the first threshold, then the probability of occurrence of atrial fibrillation is greater than the probability of non-atrial fibrillation, and the first identification process is entered. If the first parameter is less than the first threshold, then the probability of occurrence of atrial fibrillation is less than the probability of non-atrial fibrillation, and the second identification process is entered.
  • the advantage of this is that the data flow can be diverted to save the subsequent judgment process, thereby saving the power consumption of the electronic device. For example, if it is a non-atrial fibrillation identification window, then the subsequent process may involve the process of determining whether bigeminy or tripomy has occurred, but the judgment process in the atrial fibrillation identification window will not be involved.
  • determining the heart rhythm type of the first PPG signal according to the first parameter and the parameters of the heart rate difference trajectory includes:
  • a first identification process is performed based on the parameters of the heart rate difference trajectory to determine the heart rhythm type of the first PPG signal.
  • the heart rhythm type includes any of the following: Premature contractions, atrial fibrillation, sinus rhythm, ventricular tachycardia;
  • a second identification process is performed based on the parameters of the heart rate difference trajectory to determine the heart rhythm type of the first PPG signal.
  • the heart rhythm type includes any of the following: Premature beats, atrial fibrillation, sinus rhythm, ventricular tachycardia, bigeminy, triponym.
  • the heart rate difference trajectory includes: a first trajectory and a second trajectory; parameters of the first trajectory and the When the parameters of the second trajectory meet the first preset condition, the heart rhythm type is premature beat;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy a first preset condition, including: the sum of the number parameters of the first trajectory and the number parameters of the second trajectory is greater than or equal to a first quantitative threshold, and both the angular standard deviation parameter of the first trajectory and the angular standard deviation parameter of the second trajectory are less than or equal to the first angular standard deviation threshold.
  • the following describes multiple implementations of determining the heart rhythm type based on parameters of the heart rhythm difference trajectory and related preset conditions.
  • the heart rate difference trajectory includes: a first trajectory and a second trajectory; parameters of the first trajectory and parameters of the second trajectory satisfy When the second preset condition is met and the first probability parameter meets the third preset condition, the heart rhythm type is atrial fibrillation;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy the second preset condition, including: the sum of the number parameters of the first trajectory and the number parameters of the second trajectory is greater than or equal to a first quantitative threshold, and at least one of the angular standard deviation parameter of the first trajectory and the angular standard deviation parameter of the second trajectory is greater than the first angular standard deviation threshold;
  • the first probability parameter satisfies a third preset condition, including: the first probability parameter is less than a first probability threshold.
  • the heart rate difference trajectory includes: a first trajectory and a second trajectory; parameters of the first trajectory and parameters of the second trajectory satisfy a second preset condition, and, When a probability parameter does not meet the third preset condition, the heart rhythm type is sinus rhythm;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy the second preset condition, including: the sum of the number parameters of the first trajectory and the number parameters of the second trajectory is greater than or equal to a first quantitative threshold, and at least one of the angular standard deviation parameter of the first trajectory and the angular standard deviation parameter of the second trajectory is greater than the first angular standard deviation threshold;
  • the first probability parameter does not satisfy the third preset condition, including: the first probability parameter is not less than the first probability threshold.
  • the heart rate difference trajectory includes: a first trajectory, a second trajectory, a third trajectory and a fourth trajectory;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy the fourth preset condition, and the parameters of the first trajectory and the parameters of the third trajectory satisfy the fifth preset condition; or, the parameters of the first trajectory
  • the parameters of the second trajectory and the parameters of the second trajectory satisfy a fourth preset condition, the parameters of the second trajectory and the parameters of the fourth trajectory meet a sixth preset condition, and the heart rhythm type is ventricular tachycardia;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy a fourth preset condition, including: the sum of the number parameters of the first trajectory and the number parameters of the second trajectory is less than the first quantity threshold;
  • the parameters of the first trajectory and the parameters of the third trajectory satisfy the fifth preset condition, including: the sum of the number parameters of the first trajectory and the number parameters of the third trajectory is greater than or equal to A second quantitative threshold, the angular standard deviation parameter of the first trajectory and the angular standard deviation parameter of the third trajectory are both less than or equal to the second angular standard deviation threshold, and the angular mean parameter of the first trajectory is less than the third The angular mean parameter of the trajectory;
  • the parameters of the second trajectory and the parameters of the fourth trajectory satisfy a sixth preset condition, including: the sum of the number parameters of the second trajectory and the number parameters of the third trajectory is greater than or equal to A second quantitative threshold, the angular standard deviation parameter of the second trajectory and the angular standard deviation parameter of the third trajectory are both less than or equal to the second angular standard deviation threshold, and the angular mean parameter of the second trajectory is less than the Angular mean parameter of the fourth trajectory.
  • the heart rate difference trajectory includes: a first trajectory and a second trajectory; parameters of the first trajectory and parameters of the second trajectory satisfy The fourth preset condition, and when the first probability parameter meets the seventh preset condition, the heart rhythm type is atrial fibrillation;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy a fourth preset condition, including: the sum of the number parameters of the first trajectory and the number parameters of the second trajectory is less than the first quantity threshold;
  • the first probability parameter satisfies a seventh preset condition, including: the first probability parameter is less than a second probability threshold.
  • the heart rate difference trajectory includes: a first trajectory and a second trajectory; parameters of the first trajectory and parameters of the second trajectory satisfy When the fourth preset condition is met and the first probability parameter does not meet the seventh preset condition, the heart rhythm type is sinus rhythm;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy a fourth preset condition, including: the sum of the number parameters of the first trajectory and the number parameters of the second trajectory is less than the first quantity threshold;
  • the first probability parameter does not satisfy the seventh preset condition, including: the first probability parameter is not less than the second probability threshold.
  • the heart rate difference trajectory includes: a first trajectory and a second trajectory; parameters of the first trajectory and parameters of the second trajectory satisfy The second preset condition is that the heart rhythm type is atrial fibrillation;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy the second preset condition, including: the sum of the number parameters of the first trajectory and the number parameters of the second trajectory is greater than or equal to a first quantitative threshold, and at least one of the angular standard deviation parameter of the first trajectory and the angular standard deviation parameter of the second trajectory is greater than the first angular standard deviation threshold.
  • the heart rate difference trajectory includes: a fifth trajectory and a sixth trajectory; parameters of the fifth trajectory and parameters of the sixth trajectory satisfy The eighth preset condition, and the distance standard deviation parameter of the fifth trajectory and the distance standard deviation parameter of the sixth trajectory satisfy the ninth preset condition, and the heart rhythm type is bigeminy;
  • the parameters of the fifth trajectory and the parameters of the sixth trajectory satisfy an eighth preset condition, including: the minimum value among the number parameters of the fifth trajectory and the number parameter of the sixth trajectory is greater than or equal to the third quantitative threshold, and both the angular standard deviation parameter of the fifth trajectory and the angular standard deviation parameter of the sixth trajectory are less than or equal to the third angular standard deviation threshold;
  • the distance standard deviation parameter of the fifth trajectory and the distance standard deviation parameter of the sixth trajectory satisfy the ninth preset condition, including: the distance standard deviation parameter of the fifth trajectory is less than or equal to the first distance standard deviation. threshold, the distance standard deviation parameter of the sixth trajectory is less than or equal to the first distance standard deviation threshold.
  • the heart rate difference trajectory includes: a fifth trajectory and a sixth trajectory; parameters of the fifth trajectory and parameters of the sixth trajectory satisfy The eighth preset condition, and the distance standard deviation parameter of the fifth trajectory and the distance standard deviation parameter of the sixth trajectory do not meet the ninth preset condition, and the heart rhythm type is a triplet rhythm;
  • the parameters of the fifth trajectory and the parameters of the sixth trajectory satisfy an eighth preset condition, including: the minimum value among the number parameters of the fifth trajectory and the number parameter of the sixth trajectory is greater than or equal to the third quantitative threshold, and both the angular standard deviation parameter of the fifth trajectory and the angular standard deviation parameter of the sixth trajectory are less than or equal to the third angular standard deviation threshold;
  • the distance standard deviation parameter of the fifth trajectory and the distance standard deviation parameter of the sixth trajectory do not meet the ninth preset condition, including: the distance standard deviation parameter of the fifth trajectory is greater than the first distance standard deviation threshold. , the distance standard deviation parameter of the sixth trajectory is greater than the first distance standard deviation threshold.
  • the triplet rhythm can be accurately identified and the user experience can be improved.
  • the heart rate difference trajectories include: a first trajectory, a second trajectory, a seventh trajectory, an eighth trajectory, a ninth trajectory and a tenth trajectory;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy the second preset condition, and the parameters of the seventh trajectory, the parameters of the eighth trajectory, the parameters of the ninth trajectory and the parameters of the third trajectory are When the parameters of the tenth trajectory meet the tenth preset condition, the heart rhythm type is premature beat;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy the second preset condition, including: the sum of the number parameters of the first trajectory and the number parameters of the second trajectory is greater than or equal to the first a quantity threshold, and at least one of the angular standard deviation parameter of the first trajectory and the angular standard deviation parameter of the second trajectory is greater than the first standard deviation threshold;
  • the parameters of the seventh trajectory, the parameters of the eighth trajectory, the parameters of the ninth trajectory and the parameters of the tenth trajectory satisfy the tenth preset condition, including: the angle standard of the seventh trajectory
  • the maximum value among the difference parameter, the angle standard deviation parameter of the eighth trajectory, the angle standard deviation parameter of the ninth trajectory, and the angle standard deviation parameter of the tenth trajectory is less than or equal to the fourth angle standard deviation threshold.
  • the heart rate difference trajectories include: a first trajectory, a second trajectory, a seventh trajectory, an eighth trajectory, a ninth trajectory and a tenth trajectory;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy the second preset condition, and the parameters of the seventh trajectory, the parameters of the eighth trajectory, the parameters of the ninth trajectory and the parameters of the third trajectory are When the parameters of the ten trajectories do not satisfy the tenth preset condition, and the first probability parameter satisfies the eleventh preset condition or the first quantity satisfies the twelfth preset condition, the heart rhythm type is atrial fibrillation;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy the second preset condition, including: the sum of the number parameters of the first trajectory and the number parameters of the second trajectory is greater than or equal to a first quantitative threshold, and at least one of the angular standard deviation parameter of the first trajectory and the angular standard deviation parameter of the second trajectory is greater than the first standard deviation threshold;
  • the parameters of the seventh trajectory, the parameters of the eighth trajectory, the parameters of the ninth trajectory and the parameters of the tenth trajectory do not meet the tenth preset condition, including: the angle of the seventh trajectory
  • the maximum value among the standard deviation parameter, the angle standard deviation parameter of the eighth trajectory, the angle standard deviation parameter of the ninth trajectory, and the angle standard deviation parameter of the tenth trajectory is greater than the fourth angle standard deviation threshold;
  • the first probability parameter satisfies the eleventh preset condition, including: the first probability parameter is less than the third probability threshold;
  • the first quantity satisfies a twelfth preset condition, including: the first quantity is greater than or equal to a fourth quantity threshold;
  • the heart rate difference trajectories include: a first trajectory, a second trajectory, a seventh trajectory, an eighth trajectory, a ninth trajectory and a tenth trajectory;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy the second preset condition, and the parameters of the seventh trajectory, the parameters of the eighth trajectory, the parameters of the ninth trajectory and the parameters of the third trajectory are When the parameters of the ten trajectories do not meet the tenth preset condition, and the first probability parameter does not meet the eleventh preset condition or the first quantity does not meet the twelfth preset condition, the heart rhythm type is sinus rhythm;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy the second preset condition, including: the sum of the number parameters of the first trajectory and the number parameters of the second trajectory is greater than or equal to a first quantitative threshold, and at least one of the angular standard deviation parameter of the first trajectory and the angular standard deviation parameter of the second trajectory is greater than the first standard deviation threshold;
  • the parameters of the seventh trajectory, the parameters of the eighth trajectory, the parameters of the ninth trajectory and the parameters of the tenth trajectory do not meet the tenth preset condition, including: the angle standard deviation of the seventh trajectory
  • the maximum value among the parameters, the angle standard deviation parameter of the eighth trajectory, the angle standard deviation parameter of the ninth trajectory, and the angle standard deviation parameter of the tenth trajectory is greater than the fourth angle standard deviation threshold;
  • the first probability parameter does not satisfy the eleventh preset condition, including: the first probability parameter is not less than the third probability threshold;
  • the first quantity does not satisfy the twelfth preset condition, including: the first quantity is less than a fourth quantity threshold.
  • the method further includes:
  • obtaining the first PPG signal of the first preset duration includes:
  • the electronic device If the electronic device is in a stationary state within a third preset time period, the first PPG signal of the first preset time period is obtained, and the third preset time period is less than or equal to the second preset time period.
  • the obtaining the first PPG signal of the first preset duration includes:
  • the first PPG signal of a preset duration includes a plurality of PPG signals of a fourth preset duration, the fourth preset duration is less than the first preset duration ;
  • the electronic device If the electronic device is not always in motion during the fifth preset time period, continue to acquire the PPG signal and ACC signal of the fourth preset time period until the acquisition time period meets the first preset time period.
  • the method further includes:
  • prompt information is displayed to the user, and the prompt information is used to notify the user of abnormal heart rhythm.
  • a prompt message can be sent to the user so that the user can be informed of the risk of abnormal heart rhythm in time.
  • an electronic device including a unit for performing any one of the methods in the first aspect.
  • the electronic device may be a wearable device (such as a smart watch or a bracelet), or it may be a chip in the wearable device (such as a smart watch or a bracelet).
  • the electronic device includes an input unit, a display unit and a processing unit.
  • the processing unit may be a processor
  • the input unit may be a communication interface
  • the display unit may be a graphics processing module and a screen
  • the wearable device may also include a memory for Computer program code is stored, and when the processor executes the computer program code stored in the memory, the wearable device is caused to perform any method in the first aspect.
  • the processing unit may be a logical processing unit inside the chip, the input unit may be an output interface, pin or circuit, etc., and the display unit may be a graphics processing unit inside the chip.
  • the chip may also include a memory, which may be a memory within the chip (for example, a register, a cache, etc.), or a memory located outside the chip (for example, a read-only memory, a random access memory, etc.);
  • the memory is used to store computer program code.
  • the processor executes the computer program code stored in the memory, the chip performs any method of the first aspect.
  • the processing unit is configured to obtain a first PPG signal of a first preset duration
  • the difference between each two adjacent heart rates is determined based on the plurality of heart rate values, and the difference between each two adjacent heart rates is used to generate a heart rate difference trajectory graph;
  • the parameters of the heart rate difference trajectory are obtained based on the heart rate difference trajectory graph, and the parameters of the heart rate difference trajectory include one or more of the following parameters: angle, number, angle standard deviation, distance standard deviation;
  • the heart rhythm type of the first PPG signal is determined, and the heart rhythm type includes any of the following: premature beats, atrial fibrillation, sinus rhythm, ventricular tachycardia, bigeminy, Law of triplets.
  • the display unit is used to display the heart rhythm type of the first PPG signal.
  • processing unit is also used to:
  • the heart rhythm type of the first PPG signal is determined according to the first parameter and the parameters of the heart rate difference trajectory.
  • the processing unit used to determine the first parameter based on the PPG signal of the first preset duration specifically includes: extracting multiple RRIs based on the peaks of the PPG signal of the first preset duration; calculating each adjacent RRI based on the multiple RRIs. The difference between two RRIs, the difference between each two adjacent RRIs is used to determine the first parameter.
  • the processing unit is configured to determine the heart rhythm type of the first PPG signal according to the first parameter and the parameters of the heart rate difference trajectory, specifically including:
  • a first identification process is performed based on the parameters of the heart rate difference trajectory to determine the heart rhythm type of the first PPG signal.
  • the heart rhythm type includes any of the following: Premature contractions, atrial fibrillation, sinus rhythm, ventricular tachycardia;
  • a second identification process is performed based on the parameters of the heart rate difference trajectory to determine the heart rhythm type of the first PPG signal.
  • the heart rhythm type includes any of the following: Premature beats, atrial fibrillation, sinus rhythm, ventricular tachycardia, bigeminy, triponym.
  • the heart rate difference trajectory includes: a first trajectory and a second trajectory; parameters of the first trajectory and the When the parameters of the second trajectory meet the first preset condition, the heart rhythm type is premature beat;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy a first preset condition, including: the number parameter of the first trajectory and the number parameter of the second trajectory are greater than a first quantity threshold. , and both the angle standard deviation parameter of the first trajectory and the angle standard deviation parameter of the second trajectory are less than or equal to the first angle standard deviation threshold.
  • the heart rate difference trajectory includes: a first trajectory and a second trajectory; parameters of the first trajectory and parameters of the second trajectory satisfy When the first preset condition is met, and the first probability parameter meets the third preset condition, the heart rhythm type is atrial fibrillation;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy a first preset condition, including: the number parameter of the first trajectory and the number parameter of the second trajectory are greater than a first quantity threshold. , and, the angle standard deviation parameter of the first trajectory and the angle standard deviation parameter of the second trajectory are both less than or equal to the first angle standard deviation threshold;
  • the first probability parameter satisfies a third preset condition, including: the first probability parameter is less than a first probability threshold.
  • the heart rate difference trajectory includes: a first trajectory and a second trajectory; parameters of the first trajectory and parameters of the second trajectory satisfy a second preset condition, and, When a probability parameter does not meet the third preset condition, the heart rhythm type is sinus rhythm;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy the second preset condition, including: the sum of the number parameters of the first trajectory and the number parameters of the second trajectory is greater than or equal to a first quantitative threshold, and at least one of the angular standard deviation parameter of the first trajectory and the angular standard deviation parameter of the second trajectory is greater than the first angular standard deviation threshold;
  • the first probability parameter does not satisfy the third preset condition, including: the first probability parameter is not less than the first probability threshold.
  • the heart rate difference trajectory includes: a first trajectory, a second trajectory, a third trajectory and a fourth trajectory;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy the fourth preset condition, and the parameters of the first trajectory and the parameters of the third trajectory satisfy the fifth preset condition; or, the parameters of the first trajectory
  • the parameters of the second trajectory and the parameters of the second trajectory satisfy a fourth preset condition, the parameters of the second trajectory and the parameters of the fourth trajectory meet a sixth preset condition, and the heart rhythm type is ventricular tachycardia;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy a fourth preset condition, including: the sum of the number parameters of the first trajectory and the number parameters of the second trajectory is less than the first quantity threshold;
  • the parameters of the first trajectory and the parameters of the third trajectory satisfy the fifth preset condition, including: the sum of the number parameters of the first trajectory and the number parameters of the third trajectory is greater than or equal to A second quantitative threshold, the angular standard deviation parameter of the first trajectory and the angular standard deviation parameter of the third trajectory are both less than or equal to the second angular standard deviation threshold, and the angular mean parameter of the first trajectory is less than the third The angular mean parameter of the trajectory;
  • the parameters of the second trajectory and the parameters of the fourth trajectory satisfy a sixth preset condition, including: the sum of the number parameters of the second trajectory and the number parameters of the third trajectory is greater than or equal to A second quantitative threshold, the angular standard deviation parameter of the second trajectory and the angular standard deviation parameter of the third trajectory are both less than or equal to the second angular standard deviation threshold, and the angular mean parameter of the second trajectory is less than the Angular mean parameter of the fourth trajectory.
  • the heart rate difference trajectory includes: a first trajectory and a second trajectory; parameters of the first trajectory and parameters of the second trajectory satisfy The fourth preset condition, and when the first probability parameter meets the seventh preset condition, the heart rhythm type is atrial fibrillation;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy a fourth preset condition, including: the sum of the number parameters of the first trajectory and the number parameters of the second trajectory is less than the first quantity threshold;
  • the first probability parameter satisfies a seventh preset condition, including: the first probability parameter is less than a second probability threshold.
  • the heart rate difference trajectory includes: a first trajectory and a second trajectory; parameters of the first trajectory and parameters of the second trajectory satisfy When the fourth preset condition is met and the first probability parameter does not meet the seventh preset condition, the heart rhythm type is sinus rhythm;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy a fourth preset condition, including: the sum of the number parameters of the first trajectory and the number parameters of the second trajectory is less than the first quantity threshold;
  • the first probability parameter does not satisfy the seventh preset condition, including: the first probability parameter is not less than the second probability threshold.
  • the heart rate difference trajectory includes: a first trajectory and a second trajectory; parameters of the first trajectory and parameters of the second trajectory satisfy The second preset condition is that the heart rhythm type is atrial fibrillation;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy the second preset condition, including: the sum of the number parameters of the first trajectory and the number parameters of the second trajectory is greater than or equal to a first quantitative threshold, and at least one of the angular standard deviation parameter of the first trajectory and the angular standard deviation parameter of the second trajectory is greater than the first angular standard deviation threshold.
  • the heart rate difference trajectory includes: a fifth trajectory and a sixth trajectory; parameters of the fifth trajectory and parameters of the sixth trajectory satisfy The eighth preset condition, and the distance standard deviation parameter of the fifth trajectory and the distance standard deviation parameter of the sixth trajectory satisfy the ninth preset condition, and the heart rhythm type is bigeminy;
  • the parameters of the fifth trajectory and the parameters of the sixth trajectory satisfy an eighth preset condition, including: the minimum value among the number parameters of the fifth trajectory and the number parameter of the sixth trajectory is greater than or equal to the third quantitative threshold, and both the angular standard deviation parameter of the fifth trajectory and the angular standard deviation parameter of the sixth trajectory are less than or equal to the third angular standard deviation threshold;
  • the distance standard deviation parameter of the fifth trajectory and the distance standard deviation parameter of the sixth trajectory satisfy the ninth preset condition, including: the distance standard deviation parameter of the fifth trajectory is less than or equal to the first distance standard deviation. threshold, the distance standard deviation parameter of the sixth trajectory is less than or equal to the first distance standard deviation threshold.
  • the heart rate difference trajectory includes: a fifth trajectory and a sixth trajectory; parameters of the fifth trajectory and parameters of the sixth trajectory satisfy The eighth preset condition, and the distance standard deviation parameter of the fifth trajectory and the distance standard deviation parameter of the sixth trajectory do not meet the ninth preset condition, and the heart rhythm type is a triplet rhythm;
  • the parameters of the fifth trajectory and the parameters of the sixth trajectory satisfy an eighth preset condition, including: the minimum value among the number parameters of the fifth trajectory and the number parameter of the sixth trajectory is greater than or equal to the third quantitative threshold, and both the angular standard deviation parameter of the fifth trajectory and the angular standard deviation parameter of the sixth trajectory are less than or equal to the third angular standard deviation threshold;
  • the distance standard deviation parameter of the fifth trajectory and the distance standard deviation parameter of the sixth trajectory do not meet the ninth preset condition, including: the distance standard deviation parameter of the fifth trajectory is greater than the first distance standard deviation threshold. , the distance standard deviation parameter of the sixth trajectory is greater than the first distance standard deviation threshold.
  • the heart rate difference trajectories include: a first trajectory, a second trajectory, a seventh trajectory, an eighth trajectory, a ninth trajectory and a tenth trajectory;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy the second preset condition, and the parameters of the seventh trajectory, the parameters of the eighth trajectory, the parameters of the ninth trajectory and the parameters of the third trajectory are When the parameters of the tenth trajectory meet the tenth preset condition, the heart rhythm type is premature beat;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy the second preset condition, including: the sum of the number parameters of the first trajectory and the number parameters of the second trajectory is greater than or equal to the first a quantity threshold, and at least one of the angular standard deviation parameter of the first trajectory and the angular standard deviation parameter of the second trajectory is greater than the first standard deviation threshold;
  • the parameters of the seventh trajectory, the parameters of the eighth trajectory, the parameters of the ninth trajectory and the parameters of the tenth trajectory satisfy the tenth preset condition, including: the angle standard of the seventh trajectory
  • the maximum value among the difference parameter, the angle standard deviation parameter of the eighth trajectory, the angle standard deviation parameter of the ninth trajectory, and the angle standard deviation parameter of the tenth trajectory is less than or equal to the fourth angle standard deviation threshold.
  • the heart rate difference trajectories include: a first trajectory, a second trajectory, a seventh trajectory, an eighth trajectory, a ninth trajectory and a tenth trajectory;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy the second preset condition, and the parameters of the seventh trajectory, the parameters of the eighth trajectory, the parameters of the ninth trajectory and the parameters of the third trajectory are When the parameters of the ten trajectories do not satisfy the tenth preset condition, and the first probability parameter satisfies the eleventh preset condition or the first quantity satisfies the twelfth preset condition, the heart rhythm type is atrial fibrillation;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy the second preset condition, including: the sum of the number parameters of the first trajectory and the number parameters of the second trajectory is greater than or equal to a first quantitative threshold, and at least one of the angular standard deviation parameter of the first trajectory and the angular standard deviation parameter of the second trajectory is greater than the first standard deviation threshold;
  • the parameters of the seventh trajectory, the parameters of the eighth trajectory, the parameters of the ninth trajectory and the parameters of the tenth trajectory do not meet the tenth preset condition, including: the angle of the seventh trajectory
  • the maximum value among the standard deviation parameter, the angle standard deviation parameter of the eighth trajectory, the angle standard deviation parameter of the ninth trajectory, and the angle standard deviation parameter of the tenth trajectory is greater than the fourth angle standard deviation threshold;
  • the first probability parameter satisfies the eleventh preset condition, including: the first probability parameter is less than the third probability threshold;
  • the first quantity satisfies a twelfth preset condition, including: the first quantity is greater than or equal to a fourth quantity threshold;
  • the heart rate difference trajectories include: a first trajectory, a second trajectory, a seventh trajectory, an eighth trajectory, a ninth trajectory and a tenth trajectory;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy the second preset condition, and the parameters of the seventh trajectory, the parameters of the eighth trajectory, the parameters of the ninth trajectory and the parameters of the third trajectory are When the parameters of the ten trajectories do not meet the tenth preset condition, and the first probability parameter does not meet the eleventh preset condition or the first quantity does not meet the twelfth preset condition, the heart rhythm type is sinus rhythm;
  • the parameters of the first trajectory and the parameters of the second trajectory satisfy the second preset condition, including: the sum of the number parameters of the first trajectory and the number parameters of the second trajectory is greater than or equal to a first quantitative threshold, and at least one of the angular standard deviation parameter of the first trajectory and the angular standard deviation parameter of the second trajectory is greater than the first standard deviation threshold;
  • the parameters of the seventh trajectory, the parameters of the eighth trajectory, the parameters of the ninth trajectory and the parameters of the tenth trajectory do not meet the tenth preset condition, including: the angle standard deviation of the seventh trajectory
  • the maximum value among the parameters, the angle standard deviation parameter of the eighth trajectory, the angle standard deviation parameter of the ninth trajectory, and the angle standard deviation parameter of the tenth trajectory is greater than the fourth angle standard deviation threshold;
  • the first probability parameter does not satisfy the eleventh preset condition, including: the first probability parameter is not less than the third probability threshold;
  • the first quantity does not satisfy the twelfth preset condition, including: the first quantity is less than a fourth quantity threshold.
  • processing unit is also used to:
  • the electronic device If the electronic device is in a stationary state within a third preset time period, the first PPG signal of the first preset time period is obtained, and the third preset time period is less than or equal to the second preset time period.
  • the processing unit is configured to obtain a first PPG signal of a first preset duration, specifically including:
  • the first PPG signal of a preset duration includes a plurality of PPG signals of a fourth preset duration, the fourth preset duration is less than the first preset duration ;
  • the electronic device If the electronic device is not always in motion during the fifth preset time period, continue to acquire the PPG signal and ACC signal of the fourth preset time period until the acquisition time period meets the first preset time period.
  • processing unit is also used to:
  • the display unit is called to display prompt information to the user, and the prompt information is used to notify the user of abnormal heart rhythm.
  • a computer-readable storage medium stores computer program code.
  • the computer program code When the computer program code is run by an electronic device, it causes the electronic device to execute any of the aspects of the first aspect. a way.
  • a computer program product includes: computer program code.
  • the computer program code When the computer program code is run by an electronic device, it causes the electronic device to perform any method in the first aspect.
  • Figure 1 is an example diagram of an application scenario according to the embodiment of the present application.
  • Figure 2 is a schematic flow chart of a method for detecting heart rhythm according to an embodiment of the present application
  • Figure 3 is a schematic flow chart of a method for determining a heart rhythm type according to an embodiment of the present application
  • Figure 4 is a schematic diagram of the heart rate difference trajectory of premature beats according to the embodiment of the present application.
  • Figure 5 is a schematic diagram of the heart rate difference trajectory of normal atrial fibrillation according to an embodiment of the present application.
  • Figure 6 is a schematic diagram of the heart rate difference trajectory of rapid atrial fibrillation according to the embodiment of the present application.
  • Figure 7 is a schematic diagram of the heart rate difference trajectory of sinus rhythm according to an embodiment of the present application.
  • Figure 8 is a schematic diagram of the heart rate difference trajectory of ventricular tachycardia according to the embodiment of the present application.
  • Figure 9 is a schematic diagram of the heart rate difference trajectory of premature beats accompanied by bigeminy in an embodiment of the present application.
  • Figure 10 is a schematic diagram of the heart rate difference trajectory of premature beats accompanied by triplet according to the embodiment of the present application.
  • Figure 11 is an example diagram of an interface for detecting heart rhythm according to an embodiment of the present application.
  • Figure 12 is an example interface diagram of a risk prompt according to an embodiment of the present application.
  • Figure 13 is a schematic diagram of the software system applied in the embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a device suitable for embodiments of the present application.
  • Embodiments of the present application are applicable to electronic devices, which may be smart watches, smart bracelets, wristbands, helmets, headbands, glasses or other wearable devices that can be used to detect heart rhythm or monitor heart rate, medical detection equipment, etc. .
  • the electronic device uses photoplethysmograph (PPG) technology to measure the user's pulse or heart rate.
  • PPG photoplethysmograph
  • the electronic device can wirelessly communicate with other terminals through various wireless methods.
  • terminals include but are not limited to mobile phones, tablet computers, wireless communication devices, remote terminals, mobile devices, user terminals, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices equipment and terminal equipment in future 5G or 6G networks, etc.
  • LEDs light-emitting diodes
  • the principle of using PPG technology to measure pulse or heart rate is as follows: light-emitting diodes (LEDs) are used to emit light of a specific color wavelength into the human body, and then the attenuated light reflected and absorbed by the human blood vessels and tissues is measured, and the blood vessels are traced.
  • the pulsation state is used to achieve the purpose of detecting pulse signals.
  • a heart rate sensor such as a PPG sensor or PPG module
  • the smart watch collects the PPG signal through the heart rate sensor and obtains the user's instantaneous heart rate based on the PPG signal.
  • the embodiments of the present application do not specifically limit the type of the heart rate sensor.
  • the heart rate sensor includes a reflective photoelectric heart rate sensor, a transmissive photoelectric heart rate sensor, etc.
  • the smart watch can detect the heart rhythm type based on the obtained PPG signal, thereby knowing whether the heart rhythm is a normal heart rhythm or an abnormal (or aberrant) heart rhythm. It can be understood that the above description only takes a smart watch as an example, but the embodiments of the present application are not limited thereto.
  • the embodiments of the present application can also be applied to terminals.
  • the terminal obtains the PPG signal measured by the watch through the smart watch.
  • the method of the embodiment of the present application can also be used to determine the heart rhythm type.
  • Figure 1 shows a schematic diagram of a smart watch and a smart bracelet in a wearing state.
  • the smart watch includes a dial 11 and a watch band 12.
  • the smart watch is in the wearing state as shown in (2) in Figure 1.
  • the user can wear the smart watch on the wrist through the watch band 12 so that the back of the dial 11 can fit the skin.
  • the user can adjust the tightness of the watch strap 12 by adjusting it.
  • the smart bracelet includes a dial 21 and a watch strap 22.
  • the smart bracelet is shown in (4) in Figure 1 when worn.
  • Figure 1 only schematically illustrates an application scenario of the present application, which does not limit the embodiments of the present application, and the present application is not limited thereto.
  • embodiments of the present application provide a method and electronic device for detecting heart rhythm.
  • the embodiment of the present application obtains the parameters of the trajectory (including but not limited to: angle, number, angle standard deviation, distance standard deviation) based on the change trajectory of the heart rate difference of the PPG signal of the first preset duration, and then based on the parameters of the trajectory Determining the type of heart rhythm can improve the accuracy of identifying premature beats or atrial fibrillation, avoid identifying premature beat signals as atrial fibrillation signals, and improve user experience.
  • Heart rate refers to the number of heartbeats per minute.
  • Heart rhythm refers to the regularity of the heartbeat. Heart rhythm can be divided into normal heart rhythm and abnormal heart rhythm (or arrhythmia).
  • a normal heart rhythm originates from the sinus node and has a frequency of 60-100 beats per minute, also called sinus rhythm.
  • Arrhythmias occur when any of the origins of the heart rhythm, heart rate and rhythm, and impulse conduction are abnormal.
  • an arrhythmia can manifest as bradycardia (eg, a heart rate of less than 60 beats per minute) or tachycardia (eg, a heart rate of more than 100 beats per minute).
  • the heart rhythm type may include the following situations: sinus rhythm, premature beats, bigeminy, triplet, atrial fibrillation, ventricular tachycardia, etc.
  • Premature beats also called premature contractions
  • Premature contractions can occur occasionally or frequently, and can occur irregularly or regularly after every or every few normal beats.
  • Premature contractions are a common arrhythmia that can occur in normal people, but are more likely to occur in patients with cardiac neurosis and structural heart disease.
  • Bigeminy is a premature contraction after each sinus beat.
  • the triadic rhythm refers to the occurrence of a premature contraction after every two normal beats.
  • Atrial fibrillation is the most common sustained cardiac arrhythmia. Atrial fibrillation has an irregular heartbeat rate. Atrial fibrillation is a common heart disease.
  • Ventricular tachycardia is a common cardiac arrhythmia with a heart rate of more than 100 beats.
  • the method for detecting heart rhythm may include the following three stages: the first stage is used to decide whether to enter atrial fibrillation premature beat detection based on the ACC signal; the second stage is used to obtain the first preset duration the first PPG signal; the third stage is used to determine the heart rhythm type based on the first PPG signal of the first preset duration.
  • the ACC signal before entering the atrial fibrillation premature beat detection, can be obtained to determine the status of the electronic device to determine whether to enter the atrial fibrillation premature beat detection process. It should be understood that the ACC signal is used as an example for explanation here, and the embodiments of the present application are not limited thereto. In fact, the ACC signal can also be replaced by other information or signals used to determine the status of the electronic device.
  • the first stage can be implemented through the following steps 0 to 3.
  • Step 0 Obtain the ACC signal of the second preset duration.
  • the second preset duration may consist of n time units, (n is an integer greater than or equal to 1).
  • time unit may be hours, minutes, seconds, microseconds, milliseconds and other time units.
  • n time units may be n seconds.
  • the acquisition of the ACC signal here may be active acquisition or passive acquisition, which is not specifically limited in the embodiment of the present application.
  • the application can receive a user's operation (for example, the operation is used to trigger the function of continuously measuring heart rate).
  • the application includes premature atrial fibrillation beat detection functionality.
  • applications include but are not limited to heart rate, activity recording, exercise, health monitoring and other applications.
  • heart rate monitoring for example, sports monitoring, continuous measurement, etc. in the UI interface.
  • the ACC signal can be obtained first to determine whether to trigger based on the ACC signal. Atrial fibrillation premature beat detection function.
  • the application can send a trigger action to the system, so that the system calls the acceleration sensor (accelerometer) to collect data (such as ACC signal) and detect the status of the watch.
  • the acceleration sensor is used as an example for description here, and the embodiments of the present application are not limited thereto.
  • Step 1 Determine the status of the watch based on the ACC signal of the second preset duration.
  • the status of the watch may be stationary or in motion.
  • the resting state refers to the state when the user's arms are not swinging when wearing the watch.
  • the motion state refers to the state of the watch swinging with the arm. For example, when the user's arm wearing the watch swings greatly, the watch is in motion.
  • the ACC signal can be 3-axis (generally x-axis, y-axis, and z-axis) data.
  • 3-axis data can be obtained through the acceleration sensor, and then the status of the watch per second is calculated based on the 3-axis data.
  • One possible implementation method is to determine the status of the watch by setting a threshold of motion data (such as an acceleration threshold).
  • a threshold of motion data such as an acceleration threshold
  • the acceleration value of the watch can be calculated through 3-axis data. If the acceleration value is greater than or equal to the acceleration threshold, it is determined that the watch is in a moving state; if the acceleration value is less than the acceleration threshold, it is determined that the watch is in a stationary state.
  • Step 2 Determine whether there is a third preset duration in the second preset duration, and the watch is in a stationary state.
  • step 3 that is, quit collecting ACC signals in order to wait for the next cycle or the next collection of ACC signals; if there is a third preset duration and the watch is in a still state status, go to step 4.
  • the third preset duration is the cumulative duration.
  • the third preset time length is close to the second preset time length. For example, when the difference between the second preset duration and the third preset duration is small enough, for example, less than a certain threshold (the threshold can be flexibly selected based on specific implementation), the two can be considered to be relatively close.
  • step 2 can also be expressed as: determine (or count) whether there are n 1 time units accumulated in n time units, and the watch is in a stationary state.
  • the duration composed of n 1 time units is close to the duration composed of n time units.
  • n 1 is less than or equal to n.
  • the third preset time period may be composed of n 1 time units. It should be noted that n 1 here is obtained cumulatively. In other words, n 1 time units may be continuous time units or discontinuous time units, which are not specifically limited in the embodiment of the present application.
  • n time units and n 1 time units may be the same or different, and there is no specific limitation on this.
  • the time unit of n is minutes, and n time units are 1 minute; the time unit of n 1 is seconds, and n 1 time unit is 58 seconds.
  • the time units of both are seconds, n time units are 60 seconds, and n 1 time units are 58 seconds.
  • the atrial fibrillation premature beat algorithm detection will be entered and the second stage of the process will be executed.
  • step 2 can also be expressed in another way: if there are nn 1 seconds within n seconds, and the watch is detected to be in motion, exit ACC signal collection, or stop collecting ACC signals, and wait for the next time or next cycle to collect ACC. The signal then determines the status. Among them, nn 1 second can be continuous or discontinuous.
  • the watch After the first stage, if the watch is in a stationary state for n 1 time units, it can enter the second stage to collect PPG signals. Therefore, it is possible to avoid continuously acquiring the PPG signal to detect the heart rhythm type, which helps to save the power consumption of the electronic device.
  • Step 3 Exit collecting (or collecting) ACC signals.
  • the second stage can be implemented through the following steps 4 to 9.
  • Step 4 Obtain the PPG signal and ACC signal of the fourth preset duration.
  • the fourth preset duration may be composed of L1 time units.
  • the description of the time unit refers to the previous description and will not be repeated here.
  • the fourth preset duration consists of L1 seconds.
  • PPG signals are collected to prepare for subsequent analysis of heart rhythm types. While collecting the PPG signal, the ACC signal also needs to be collected. It should be noted that the purpose of collecting ACC signals here is to assist the collection of PPG signals. If it is determined through the ACC signal that the watch has been in motion within the fifth preset time period (for example, the arm wearing the watch continues to swing with a large amplitude), then the atrial fibrillation premature beat detection process can be exited at this time, or the PPG signal can be exited and ACC signal collection.
  • One possible implementation method is to collect PPG signals through PPG sensors.
  • One possible implementation method is to collect the ACC signal through an acceleration sensor.
  • the PPG signal of the fourth preset duration can be filtered to remove interference signals (such as interference caused by the user's breathing) or noise, and the filtered PPG signal is obtained. PPG signal.
  • the filtering process includes low-pass filtering and high-pass filtering.
  • Step 5.1 extract the features of the PPG signal (for example, wave peaks).
  • the peaks can be extracted based on the filtered PPG signal.
  • Step 5.2 determine the status of the watch based on the ACC signal.
  • Determining the status of the watch here is similar to step 1 above. You can refer to the relevant description above and will not go into details here.
  • Step 6 Determine whether the mobile phone has been in motion for a fifth preset time period.
  • step 7 If the fifth preset time period has been accumulated and the vehicle has been in motion, step 7 is performed; if the fifth preset time period has not been accumulated and the vehicle has been in motion, step 8 is performed.
  • the fifth preset duration consists of L2 time units. Wherein, the fifth preset time length is longer than the first preset time length. The fifth preset time length is longer than the second preset time length.
  • the time unit can refer to the previous description and will not be repeated here. Taking the time unit as seconds as an example, if the watch has been in motion for L2 seconds, perform step 7 (exit atrial fibrillation premature beat detection). If not, obtain the PPG signal and ACC signal of the fourth preset duration until the acquisition duration meets the first preset duration, and perform step 8.
  • L2 seconds can be greater than nn 1 seconds in step 2.
  • Step 7 Jump out of atrial fibrillation premature beat detection.
  • Jumping out of the atrial fibrillation premature beat detection process stops the collection of PPG signals and ACC signals and waits for the next judgment of the ACC signal.
  • Step 8 Determine whether the collection duration meets the first preset duration.
  • the first preset duration refers to the cumulative duration of collecting PPG signals when it is determined that the watch is not always in motion during the fifth preset duration.
  • the first preset time period is longer than the fourth preset time period.
  • the first preset duration is 1 minute
  • the fourth preset duration is 10 seconds.
  • step 9 If the collection duration meets the first preset duration, stop acquiring the PPG signal and ACC signal, and perform step 9; if the collection duration does not meet the first preset duration, return to step 4.
  • Step 9 Obtain the first PPG signal of the first preset duration.
  • the first preset time period may be composed of L3 time units.
  • the time unit can refer to the previous description and will not be repeated here.
  • the features of multiple PPG signals of the fourth preset duration are spliced together in chronological order (or sorted in chronological order) to obtain the first preset duration. of the first PPG signal.
  • the first preset duration is 1 minute
  • the fourth preset duration is 6 seconds.
  • splicing together the first PPG signal features of the first preset duration means: combining multiple PPG signals of the fourth preset duration together.
  • the first PPG signal of the first preset duration is composed of multiple segments of PPG signals, and the duration of each segment of the PPG signal is the fourth preset duration.
  • each segment of the PPG signal may be a filtered PPG signal.
  • each segment of the PPG signal may also be an unfiltered PPG signal, but may be uniformly filtered after multiple segments of PPG signals are spliced together. This is not limited in the embodiments of the present application.
  • the first PPG signal of the first preset duration does not include the PPG signal collected when the atrial fibrillation premature beat detection jumps out (continues to be in motion for the fifth preset duration).
  • an effective PPG signal can be obtained, thus providing preparation for subsequent heart rhythm type detection.
  • the first PPG signal of the first preset duration can be obtained.
  • the third stage can be entered, that is, the heart rhythm type is determined based on the first PPG signal of the first preset duration.
  • first stage and second stage may be optional steps, and are not specifically limited in the embodiments of this application.
  • the third stage step 10, determine the heart rhythm type based on the first PPG signal of the first preset duration.
  • Heart rhythm types include: premature beats, atrial fibrillation, sinus rhythm, ventricular tachycardia, bigeminy, triplen rhythm, etc.
  • Step 11 output the results.
  • step 11 The output result of step 11 is the heart rhythm type obtained through step 10.
  • results can be displayed in some form on the display of your phone, watch or bracelet.
  • One possible implementation is to display the heart rhythm type.
  • the watch can display the number of abnormal heart rhythms.
  • One possible implementation method is that the user can check the heart rhythm results on a terminal connected to the watch or bracelet.
  • the user can check the statistical abnormalities in the statistical details in the APP.
  • the number of heart rhythms is a parameter that specifies the heart rhythm results on a terminal connected to the watch or bracelet.
  • step 2 you can also first determine whether the wearer of the watch is alive, or detect whether the watch is worn by the user. For example, infrared detection technology and a living body wearing algorithm can be combined to detect whether the wearer of the watch is alive. When the user wears a watch, there will be a need for heart rate monitoring to analyze the heart rhythm type.
  • Figure 3 shows a schematic flow chart of a method for determining a heart rhythm type according to an embodiment of the present application. It should be understood that the method in Figure 3 can be used in combination with the process in Figure 2 or can be used independently, which is not specifically limited in the embodiments of the present application. As shown in Figure 3, the method includes:
  • Step 301 Determine multiple heart rate (HR) values according to the first PPG signal of the first preset duration.
  • the first PPG signal of the first preset duration may be composed of multiple segments of PPG signals, and the duration of each segment of the PPG signal is the fourth preset duration.
  • the multiple heart rate values here are: the heart rate values determined based on the multiple segments of PPG signals. For example, assuming that the first preset duration is 1 minute and the fourth preset duration is 10 seconds, then the multiple heart rate values refer to: the first 10-second PPG signal, the second 10-second PPG signal..., the sixth Multiple heart rate values are obtained by segmenting the PPG signal consisting of 10-second PPG signals.
  • One implementation method is to extract the pulse interval (R-R interval, RRI) based on the peak of the first PPG signal of the first preset duration, and then calculate the heart rate based on each RRI.
  • RRI refers to the time interval between two adjacent wave peaks. Among them, RRI can be understood as the interval between two R waves.
  • R wave is a concept in electrocardiography, which refers to a wave with an upward trend in the electrocardiogram. It can also be understood as a wave containing a crest.
  • the heart rate can be calculated using the following formula:
  • HR represents the heart rate value and RRI represents the interval.
  • Step 302 Determine the difference between every two adjacent heart rates based on the plurality of heart rate values, and the difference between every two adjacent heart rates is used to generate a heart rate difference trajectory map.
  • the heart rate difference can be expressed as ⁇ HR. It can be understood that the heart rate difference may be a positive value or a negative value.
  • multiple heart rate differences and heart rate difference thresholds are used to draw a heart rate difference trajectory graph to achieve the purpose of analyzing arrhythmia types.
  • the heart rate difference threshold may be a priori value, for example, the heart rate difference threshold is set to 6 or -6.
  • the heart rate difference trajectory chart is a scatter distribution chart, which reflects the distribution characteristics of the trajectories composed of each heart rate difference.
  • the heart rate difference trajectory chart uses a Poincaré plot.
  • An implementation method uses the heart rate difference to generate a Poincaré plot. For example, if n+1 heart rate differences are obtained (respectively: ⁇ HR 1 ,..., ⁇ HR n+1 ), use the n+1 heart rate differences to draw a Poincaré plot, with ⁇ HR n as the ordinate, ⁇ HR n+ 1 is the abscissa to draw the Poincaré plot, with the origin as the center, the origin in the four directions up, down, left and right, with the heart rate difference threshold as the boundary, and the Poincaré plot is divided into 9 areas, marked as: Area 0, Area 1 , Area 2, Area 3...Area 8. The following will be described with reference to specific drawings.
  • Step 303 Obtain the parameters of the heart rate difference trajectory based on the heart rate difference trajectory map.
  • the parameters of the heart rate difference trajectory include one or more of the following parameters: angle, number, angle standard deviation, and distance standard deviation.
  • the relevant parameters of each heart rate difference trajectory in the figure can be calculated, including but not limited to the following parameters: the angle of the trajectory, the number of trajectories falling in the corresponding area, and the angle standard deviation of the trajectory , the distance standard deviation of the trajectory.
  • the heart rate difference trajectory graph includes multiple different trajectory types.
  • the heart rate difference trajectory can be represented by the area number of the Poincaré plot.
  • the trajectory of the heart rate difference can be represented as a triangle consisting of the heart rate difference falling in area A, the heart rate difference falling in area B, and the heart rate difference falling in area C.
  • the trajectory is represented by A-B-C.
  • the area mentioned here can specifically be the area divided in the Poincaré plot mentioned above.
  • the angle of the trajectory of the heart rate difference refers to the angle of ⁇ ABC in the above triangle, and the vertex of this angle is the heart rate difference falling in area B.
  • Trajectory 1-2-3 indicates that the line connecting the heart rate difference passes through area 1, area 2, and area 3.
  • the heart rate difference a falling in area 1 is connected to the heart rate difference b falling in area 2
  • the heart rate difference b falling in area 2 is connected to the heart rate difference c falling in area 3.
  • the obtained trajectory is trajectory 1-2-3, in which the heart rate difference a, heart rate difference b and heart rate difference c are sorted in time order.
  • the angle of trajectory 1-2-3 is expressed as ⁇ 123 .
  • ⁇ 123 is the angle of ⁇ 123, and ⁇ 123 represents the angle with the heart rate difference falling in area 2 as the vertex.
  • the number of heart rate difference trajectories refers to the number of heart rate differences falling in the corresponding area.
  • the number of trajectories A-B-C refers to the number of heart rate differences that fall near area A and area C.
  • the number of trajectories A-B-C refers to the number of heart rate differences falling near area A, area B, and area C.
  • the number of trajectories 1-2-3 can be expressed as num 123 .
  • Num 123 refers to the number of heart rate differences falling near area 1 and area 3.
  • the angular standard deviation of the heart rate difference refers to the standard deviation of the angle.
  • the standard deviation of an angle is calculated based on the mean and standard values of the angles.
  • the calculation method of standard deviation can refer to the existing description.
  • SD 123 can be calculated using the following formula:
  • the trajectory of the heart rate difference can also be expressed as a line connecting the heart rate difference falling in area E and the heart rate difference falling in area F, that is, straight line E-F.
  • the angle of the heart rate difference trajectory can be understood as the corresponding angle when the straight line E-F is used as the slope.
  • the standard deviation of the distance of the heart rate difference trajectory refers to the standard deviation of the distance from the origin (0,0) to the straight line.
  • sd_d 24 represents the standard deviation of the distance from the origin to the straight line 2-4.
  • the heart rate difference trajectories may have the following situations: the first trajectory (1-2-3), the second trajectory (6-4-5), the third trajectory (1-0-3), the fourth trajectory ( 6-0-5), the fifth trajectory (2-4), the sixth trajectory (4-2), the parameters of the seventh trajectory (1-2), the eighth trajectory (2-3), the ninth trajectory (6 -4) and the tenth trajectory (4-5).
  • the angle parameter of the first trajectory is expressed as ⁇ 123 .
  • the angle parameter of the second trajectory is expressed as ⁇ 645 .
  • the angle parameter of the third trajectory is expressed as ⁇ 103 .
  • the angle parameter of the fourth trajectory is expressed as ⁇ 605 .
  • the angle parameter of the fifth trajectory is expressed as ⁇ 24 .
  • the angle parameter of the sixth trajectory is expressed as ⁇ 42 .
  • the angle parameter of the seventh trajectory is expressed as ⁇ 12 .
  • the angle parameter of the eighth trajectory is expressed as ⁇ 23 .
  • the angle parameter of the ninth trajectory is expressed as ⁇ 64 .
  • the angle parameter of the tenth trajectory is expressed as ⁇ 45 .
  • the number parameter of the first trajectory is expressed as num 123 .
  • the number parameter of the second trajectory is expressed as num 645 .
  • the number parameter of the third trajectory is expressed as num 103 .
  • the number parameter of the fourth trajectory is expressed as num 605 .
  • the number parameter of the fifth trajectory is expressed as num 24 .
  • the number parameter of the sixth trajectory is expressed as num 42 .
  • the number parameter of the seventh trajectory is expressed as num 12 .
  • the number parameter of the eighth trajectory is expressed as num 23 .
  • the number parameter of the ninth trajectory is expressed as num 64 .
  • the number parameter of the tenth trajectory is expressed as num 45 .
  • the angle standard deviation parameter of the first trajectory is expressed as sd 123 .
  • the angular standard deviation parameter of the second trajectory is expressed as sd 645 .
  • the angle standard deviation parameter of the third trajectory is expressed as sd 103 .
  • the angle standard deviation parameter of the fourth trajectory is expressed as sd 605 .
  • the angular standard deviation parameter of the fifth trajectory is expressed as sd 24 .
  • the angular standard deviation parameter of the sixth trajectory is expressed as sd 42 .
  • the angle standard deviation parameter of the seventh trajectory is expressed as sd 12 .
  • the angle standard deviation parameter of the eighth trajectory is expressed as sd 23 .
  • the angle standard deviation parameter of the ninth trajectory is expressed as sd 64 .
  • the angular standard deviation parameter of the tenth trajectory is expressed as sd 45 .
  • the standard deviation parameter of the distance from the origin (0,0) to the fifth trajectory (2-4) is expressed as sd_d 24 .
  • the standard deviation parameter of the distance from the origin (0,0) to the sixth trajectory (4-2) is expressed as sd_d 42 .
  • the parameters of the heart rate difference trajectory also include a first probability parameter and a first number.
  • the first probability parameter refers to the parameter of the probability of falling in area 0.
  • the first probability parameter is expressed as r zero .
  • the first quantity refers to the number falling outside the area 0.
  • the first quantity is expressed as num outside .
  • the embodiment of the present application can determine which type of heart rhythm the PPG signal of the first preset duration belongs to by combining the parameters of each heart rate difference trajectory mentioned above.
  • step 304 determine the first parameter according to the first PPG signal of the first preset duration, and determine whether the first parameter is greater than or equal to the first threshold.
  • the comparison of the magnitude relationship between the first parameter and the first threshold is for preliminary atrial fibrillation identification. If the first parameter is greater than or equal to the first threshold, then the probability of atrial fibrillation is greater than the probability of non-atrial fibrillation, and the atrial fibrillation identification window is entered. If the first parameter is less than the first threshold, then the probability of atrial fibrillation is less than the probability of non-atrial fibrillation, and the non-atrial fibrillation identification window is entered.
  • the advantage of this is that the data flow can be shunted to save the subsequent judgment process, thereby saving the power consumption of the electronic device. For example, if it is a non-atrial fibrillation identification window, then the subsequent process may involve the process of determining whether bigeminy or tripomy has occurred, but the judgment process in the atrial fibrillation identification window will not be involved.
  • the atrial fibrillation identification window is entered, it does not necessarily mean that the heart rhythm type is atrial fibrillation. Further judgment needs to be made based on the parameters of the heart rate difference trajectory to determine the heart rhythm type. Similarly, even if the non-atrial fibrillation identification window is entered, it does not necessarily mean that the heart rhythm type is non-atrial fibrillation. Further judgment needs to be made based on the parameters of the heart rate difference trajectory to determine the heart rhythm type, thereby improving accuracy.
  • determining the first parameter based on the PPG signal of the first preset duration includes: extracting multiple RRIs based on the peaks of the PPG signal of the first preset duration; calculating the difference between each two adjacent RRIs based on the multiple RRIs, The difference between each two adjacent RRIs is used to determine the first parameter.
  • the difference between two adjacent RRIs (which may be referred to as the RRI difference for short) may be expressed as ⁇ RRI.
  • the root mean square and sample entropy can be calculated based on multiple ⁇ RRIs, and then the first parameter is determined based on the root mean square and sample entropy.
  • a possible implementation method is to calculate the first parameter using the following formula:
  • Comb represents the first parameter
  • w represents the weight value
  • RMSSD is the root mean square of the RRI difference
  • SampEn is the sample entropy of RRI. 0 ⁇ W ⁇ 1.
  • the value of RMSSD is larger than that of SampEn, so the weight of RMSSD is smaller than that of SampEn.
  • RMSSD can be calculated using the following formula:
  • N represents the number of ⁇ RRI
  • ⁇ RRI represents the difference between adjacent RRIs.
  • Sample entropy is a measure of the complexity of RRI sequences. Sample entropy measures the complexity of the RRI sequence by measuring the probability that the RRI sequence generates new patterns. The greater the probability that new patterns are generated, the greater the complexity of the sequence.
  • sample entropy can be calculated by calling the SampEn function.
  • Matlab code example is as follows:
  • SampEn function can be defined based on specific implementation, and is not specifically limited in the embodiments of this application.
  • step 304 may be an optional step. As a possible implementation, step 304 may not be needed, that is, the heart rhythm type of the first PPG signal can be determined by using the parameters of the heart rate difference trajectory.
  • Step 305.1 When the first parameter is greater than or equal to the first threshold, perform a first identification process based on the parameters of the heart rate difference trajectory (or enter the atrial fibrillation label window for identification processing), and determine the first PPG
  • the heart rhythm type of the signal which includes any of the following: premature beats, atrial fibrillation, sinus rhythm, ventricular tachycardia.
  • the atrial fibrillation label window for identification processing when entering the atrial fibrillation label window for identification processing, it can be judged whether the parameters of different trajectories meet the corresponding preset conditions (for example, judging the relationship between the parameters and the corresponding thresholds) to identify the heart rhythm type.
  • the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) meet the first preset condition, and the heart rhythm type is premature beat.
  • the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) satisfy the first preset condition, including: the number parameter of the first trajectory and the number parameter of the second trajectory.
  • the sum of the number parameters is greater than or equal to the first number threshold, and both the angle standard deviation parameter of the first trajectory and the angle standard deviation parameter of the second trajectory are less than or equal to the first angle standard deviation threshold.
  • sd 123 and sd 645 are both less than or equal to the threshold Th_sd1, it is a premature beat signal.
  • FIG. 4 shows a schematic diagram of the heart rate difference trajectory of premature beats.
  • a Poincaré plot is drawn with ⁇ HR n as the ordinate and ⁇ HR n+1 as the abscissa.
  • the origin is the center, and the origin is in the four directions of up, down, left and right.
  • the thresholds of the heart rate difference are The boundary divides the Poincaré plot into 9 areas, namely: area 0, area 1, area 2...area 8. It should be understood that the drawing principles of FIGS. 5 to 10 are similar to those of FIG. 4 , and reference may be made to the description here, which will not be described again.
  • the trajectory of premature beats is like a triangle with overlap.
  • Premature beats are identified based on sd 123 , sd 645 , num 123 , and num 645 .
  • the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) satisfy the second preset condition, and the first probability parameter satisfies the third preset condition.
  • the heart rhythm type is atrial fibrillation.
  • the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) satisfy the second preset condition, including: the number parameter of the first trajectory and the number parameter of the second trajectory.
  • the sum of the number parameters is greater than or equal to the first number threshold, and at least one of the angle standard deviation parameter of the first trajectory and the angle standard deviation parameter of the second trajectory is greater than the first standard deviation threshold.
  • the first probability parameter satisfies the third preset condition, including: the first probability parameter is less than the first probability threshold.
  • Figure 5 shows a schematic diagram of the heart rate difference trajectory of normal atrial fibrillation.
  • Figure 6 shows a schematic diagram of the heart rate difference trajectory of rapid atrial fibrillation.
  • Figures 5 and 6 are schematic diagrams of the heart rate difference trajectory of atrial fibrillation. As can be seen from Figures 5 and 6, the trajectory of atrial fibrillation is random, disorganized, and rarely overlaps, so sd 123 and sd 645 are relatively large.
  • the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) satisfy the second preset condition, and the first probability parameter does not satisfy the third preset condition.
  • the heart rhythm type is sinus rhythm.
  • the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) satisfy the second preset condition, including: the number parameter of the first trajectory and the number parameter of the second trajectory.
  • the sum of the number parameters is greater than or equal to the first number threshold, and at least one of the angle standard deviation parameter of the first trajectory and the angle standard deviation parameter of the second trajectory is greater than the first angle standard deviation threshold.
  • the first probability parameter does not meet the third preset condition, including: the first probability parameter is not less than the first probability threshold, or the first probability parameter is greater than or equal to the first probability threshold.
  • Figure 7 shows a schematic diagram of the heart rate difference trajectory of sinus rhythm. It can be seen from Figure 7 that the points of sinus rhythm are mainly concentrated in area 0. Sinus rhythm can be identified based on r zero . In addition, sinus rhythm can also be identified based on num outside . For example, in the implementation of the second identification process described later, the related implementation of sinus rhythm can be identified based on num outside . Relevant constraints will be described in detail later.
  • the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) satisfy the fourth preset condition, and the first trajectory (1-2-3) ) and the parameters of the third trajectory (1-0-3) satisfy the fifth preset condition; or, the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5)
  • the fourth preset condition is met, the parameters of the second trajectory (6-4-5) and the parameters of the fourth trajectory (6-0-5) meet the sixth preset condition, and the heart rhythm type is ventricular tachycardia.
  • the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) satisfy the fourth preset condition, including: the number parameter of the first trajectory and the number parameter of the second trajectory.
  • the sum of the number parameters is less than the first number threshold.
  • the parameters of the first trajectory (1-2-3) and the parameters of the third trajectory (1-0-3) satisfy the fifth preset condition, including: the number parameter of the first trajectory and the number parameter of the third trajectory.
  • the sum of the number parameters is greater than or equal to the second quantity threshold, the angle standard deviation parameter of the first trajectory and the angle standard deviation parameter of the third trajectory are both less than or equal to the second angle standard deviation threshold, and the angle mean parameter of the first trajectory is less than Angular mean parameter of the third trajectory.
  • the parameters of the second trajectory (6-4-5) and the parameters of the fourth trajectory (6-0-5) satisfy the sixth preset condition, including: the number parameter of the second trajectory and the number parameter of the third trajectory.
  • the sum of the number parameters is greater than or equal to the second quantity threshold, the angle standard deviation parameter of the second trajectory and the angle standard deviation parameter of the third trajectory are both less than or equal to the second angle standard deviation threshold, and the angle mean parameter of the second trajectory is less than Angular mean parameter of the fourth trajectory.
  • FIG 8 shows a schematic diagram of the heart rate difference trajectory of ventricular tachycardia. From (1) in Figure 8, it can be seen that the trajectories of ventricular tachycardia are concentrated at '1-2-3' and '1-0-3'. Ventricular tachycardia can be identified based on ⁇ 123 , ⁇ 103 , num 123 , num 103 , sd 123 , and sd 103 . It can be seen from (2) in Figure 8 that the trajectories of ventricular tachycardia are concentrated at '6-4-5' and '6-0-5'. Ventricular tachycardia can be identified based on ⁇ 645 , ⁇ 605 , num 645 , num 605 , sd 645 , and sd 605 .
  • the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) satisfy the fourth preset condition, and the first probability parameter satisfies the seventh preset condition.
  • the heart rhythm type is atrial fibrillation.
  • the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) satisfy the fourth preset condition, including: the number parameter of the first trajectory and the number parameter of the second trajectory.
  • the sum of the number parameters is less than the first number threshold.
  • the first probability parameter satisfies the seventh preset condition, including: the first probability parameter is less than the second probability threshold.
  • the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) satisfy the fourth preset condition, and the first probability parameter does not satisfy the seventh preset condition.
  • the heart rhythm type is sinus rhythm.
  • the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) satisfy the fourth preset condition, including: the number parameter of the first trajectory and the number parameter of the second trajectory.
  • the sum of the number parameters is less than the first number threshold.
  • the first probability parameter does not satisfy the seventh preset condition, including: the first probability parameter is not less than the second probability threshold, or in other words, the first probability parameter is greater than or equal to the second probability threshold.
  • Step 305.2 When the first parameter is less than the first threshold, perform a second identification process based on the parameters of the heart rate difference trajectory (or enter a non-atrial fibrillation label window for identification processing), and determine the first The heart rhythm type of the PPG signal.
  • the heart rhythm type includes any of the following: premature beats, atrial fibrillation, sinus rhythm, ventricular tachycardia, bigeminy, and triplen rhythm.
  • the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) meet the first preset condition, and the heart rhythm type is premature beat.
  • the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) satisfy the first preset condition, including: the number parameter of the first trajectory and the number parameter of the second trajectory.
  • the sum of the number parameters is greater than or equal to the first number threshold, and both the angle standard deviation parameter of the first trajectory and the angle standard deviation parameter of the second trajectory are less than or equal to the first angle standard deviation threshold.
  • the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) satisfy the second preset condition, and the heart rhythm type is atrial fibrillation.
  • the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) satisfy the second preset condition, including: the number parameter of the first trajectory and the number parameter of the second trajectory.
  • the sum of the number parameters is greater than or equal to the first number threshold, and at least one of the angle standard deviation parameter of the first trajectory and the angle standard deviation parameter of the second trajectory is greater than the first angle standard deviation threshold.
  • the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) satisfy the fourth preset condition
  • the first trajectory (1-2-3) ) and the parameters of the third trajectory (103) satisfy the fifth preset condition
  • the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) satisfy the fourth preset condition.
  • the heart rhythm type is ventricular tachycardia.
  • the conditions for determining ventricular tachycardia here may be the same as the conditions for determining ventricular tachycardia at step 305.1.
  • the conditions for determining ventricular tachycardia at step 305.1 may be the same as the conditions for determining ventricular tachycardia at step 305.1.
  • One possible implementation is that the parameters of the fifth trajectory (2-4) and the parameters of the sixth trajectory (4-2) meet the eighth preset condition, and the distance standard deviation of the fifth trajectory (2-4) The distance standard deviation parameter between the parameter and the sixth trajectory (4-2) satisfies the ninth preset condition, and the heart rhythm type is bigeminy.
  • the parameters of the fifth trajectory (2-4) and the parameters of the sixth trajectory (4-2) satisfy the eighth preset condition, including: among the number parameters of the fifth trajectory and the number parameters of the sixth trajectory, The minimum value of is greater than or equal to the third quantity threshold, and both the angle standard deviation parameter of the fifth trajectory and the angle standard deviation parameter of the sixth trajectory are less than or equal to the third angle standard deviation threshold.
  • the distance standard deviation parameter of the fifth trajectory (2-4) and the distance standard deviation parameter of the sixth trajectory (4-2) satisfy the ninth preset condition, including: the distance standard deviation parameter of the fifth trajectory is less than or is equal to the first distance standard deviation threshold, and the distance standard deviation parameter of the sixth trajectory is less than or equal to the first distance standard deviation threshold.
  • Figure 9 shows a schematic diagram of the heart rate difference trajectory of premature beats accompanied by bigeminy. It can be seen from Figure 9 that there is overlap in bigeminy, mainly concentrated in the '2-4' and '4-2' regions.
  • the bigeminy can be identified based on ⁇ 24 , ⁇ 42 , num 24 , num 42 , sd 24 , sd 42 , sd_d 24 , sd_d 42 .
  • One possible implementation is that the parameters of the fifth trajectory (2-4) and the parameters of the sixth trajectory (4-2) meet the eighth preset condition, and the distance standard deviation of the fifth trajectory (2-4) The distance standard deviation parameter between the parameter and the sixth trajectory (4-2) does not meet the ninth preset condition, and the heart rhythm type is a triplet rhythm.
  • the distance standard deviation parameter of the fifth trajectory (2-4) and the distance standard deviation parameter of the sixth trajectory (4-2) do not meet the ninth preset condition, including: the distance standard deviation parameter of the fifth trajectory is greater than The first distance standard deviation threshold, the distance standard deviation parameter of the sixth trajectory is greater than the first distance standard deviation threshold.
  • Figure 10 shows a schematic diagram of the heart rate difference trajectory of premature beats accompanied by trigeminal rhythm. It can be seen from Figure 10 that the triadic trajectories also overlap, mainly concentrated in the '2-4' and '4-2' regions.
  • the triplet law can be identified based on ⁇ 24 , ⁇ 42 , num 24 , num 42 , sd 24 , sd 42 , sd_d 24 , sd_d 42 .
  • the triplet rhythm can be accurately identified and the user experience can be improved.
  • One possible implementation is that the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) meet the second preset condition, and the parameters of the seventh trajectory (1-2) , when the parameters of the eighth trajectory (2-3), the parameters of the ninth trajectory (6-4) and the parameters of the tenth trajectory (4-5) meet the tenth preset condition, the heart rhythm type is premature beat.
  • the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) satisfy the second preset condition, including: the number parameter of the first trajectory and the number parameter of the second trajectory.
  • the sum of the number parameters is greater than or equal to the first number threshold, and at least one of the angle standard deviation parameter of the first trajectory and the angle standard deviation parameter of the second trajectory is greater than the first standard deviation threshold.
  • the parameters of the seventh trajectory (1-2), the parameters of the eighth trajectory (2-3), the parameters of the ninth trajectory (6-4) and the parameters of the tenth trajectory (4-5) satisfy the tenth
  • the preset conditions include: the maximum value among the angle standard deviation parameter of the seventh trajectory, the angle standard deviation parameter of the eighth trajectory, the angle standard deviation parameter of the ninth trajectory, and the angle standard deviation parameter of the tenth trajectory is less than or equal to the fourth Angle standard deviation threshold.
  • One possible implementation is that the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) meet the second preset condition, and the parameters of the seventh trajectory (1-2) , the parameters of the eighth trajectory (2-3), the parameters of the ninth trajectory (6-4) and the parameters of the tenth trajectory (4-5) do not meet the tenth preset condition, and the first probability parameter meets the tenth preset condition.
  • the heart rhythm type is atrial fibrillation.
  • the parameters of the seventh trajectory (1-2), the parameters of the eighth trajectory (2-3), the parameters of the ninth trajectory (6-4) and the parameters of the tenth trajectory (4-5) do not satisfy the Ten preset conditions, including: the maximum value among the angle standard deviation parameter of the seventh trajectory, the angle standard deviation parameter of the eighth trajectory, the angle standard deviation parameter of the ninth trajectory, and the angle standard deviation parameter of the tenth trajectory, is greater than the fourth Angle standard deviation threshold.
  • the first probability parameter satisfies the eleventh preset condition, including: the first probability parameter is less than the third probability threshold.
  • the first quantity satisfies a twelfth preset condition, including: the first quantity is greater than or equal to a fourth quantity threshold.
  • Th_num4 when (num 123 + num 645 ) ⁇ Th_num1, at least one of sd 123 and sd 645 is greater than the threshold Th_sd1, and max (sd 12 , sd 23 , sd 64 , sd 45 ) > Th_sd4, and r zero ⁇ When Th_r3 or num outside ⁇ Th_num4, it is atrial fibrillation.
  • One possible implementation is that the parameters of the first trajectory (1-2-3) and the parameters of the second trajectory (6-4-5) meet the second preset condition, and the parameters of the seventh trajectory (1-2) , the parameters of the eighth trajectory (2-3), the parameters of the ninth trajectory (6-4) and the parameters of the tenth trajectory (4-5) do not meet the tenth preset condition, and the first probability parameter does not meet the tenth preset condition.
  • the heart rhythm type is sinus rhythm.
  • the parameters of the seventh trajectory (1-2), the parameters of the eighth trajectory (2-3), the parameters of the ninth trajectory (6-4) and the parameters of the tenth trajectory (4-5) do not satisfy the For possible implementation methods of the ten preset conditions, please refer to the above description and will not be repeated here.
  • the first probability parameter does not meet the eleventh preset condition, including: the first probability parameter is not less than the third probability threshold, or in other words, the first probability parameter is greater than or equal to the third probability threshold.
  • the first quantity does not satisfy the twelfth preset condition, including: the first quantity is less than a fourth quantity threshold.
  • the embodiment of the present application by acquiring the PPG signal of the first preset duration, and based on the change trajectory of the heart rate difference of the PPG signal of the first preset duration, the parameters of the trajectory (including but not limited to: angle, number, Angle standard deviation, distance standard deviation), and then determine the type of heart rhythm based on the parameters of the trajectory.
  • the embodiment of the present application identifies based on the heart rate of a segment of the signal (that is, the PPG signal of the first preset duration), which can improve the identification of premature beats or heart beats.
  • the accuracy of atrial fibrillation reduces the probability of identifying premature beats as atrial fibrillation and improves user experience.
  • Figure 11 is an example diagram of an interface for detecting heart rhythm according to an embodiment of the present application.
  • the user can click the heart rate application in the watch interface while wearing the watch.
  • the Heart Rate app can perform continuous heart rate measurements. It should be understood that the interface (1) in Figure 11 only shows icons of some applications, such as weather and blood oxygen saturation, which does not limit the embodiment of the present application.
  • the watch when the watch is connected to a mobile phone, the user can enable the option of continuously measuring heart rate through the mobile phone. After turning on the option of continuous heart rate measurement, the watch will monitor the user's heart rate 24 hours a day and can display the 24-hour heart rate curve and resting heart rate.
  • the watch interface can be as shown in (2) in Figure 11.
  • the watch can present the heart rate curve, resting heart rate and the number of abnormal heart rhythms in a certain period of time to the user.
  • the statistical details of the heart rate can also be displayed through the mobile phone.
  • the mobile phone interface can be shown in (3) in Figure 11.
  • the user can be shown the 24-hour heart rate curve, average heart rate, the number of irregular heart rhythms, the number of no abnormalities, and the statistics of the proportion of irregular heart rhythms. Pictures and other information.
  • Figure 12 shows a schematic diagram of the risk prompt interface.
  • a prompt message can be sent to the user so that the user can be informed of the risk of abnormal heart rhythm in time.
  • the interface of the bracelet can issue a prompt box 901 (or prompt window) to the user, and the prompt box 901 displays "You are currently at risk of atrial fibrillation!. After seeing the prompt box 901, the user can click 902 to close the prompt box 901.
  • the mobile phone when the mobile phone is connected to a watch or bracelet, the mobile phone can also send a prompt message to the user.
  • a prompt box 903 can also be sent to the user in the interface of the mobile phone, and the prompt box 903 displays "You are currently at risk of atrial fibrillation!. After seeing the prompt box 903, the user can click 904 to close the prompt box 903.
  • Figure 13 is a schematic diagram of the software system applied in the embodiment of the present application.
  • a software system using a layered architecture is divided into several layers, and each layer has clear roles and division of labor.
  • the layers communicate through software interfaces.
  • the software system can be divided into six layers, from top to bottom: application layer, system service layer, algorithm library (library), hardware abstraction layer HAL, kernel layer (kernel) and driver layer (driver). .
  • the application layer includes watch faces, exercise records, calls, and exercises.
  • the application program layer may also include other application programs, which is not limited in this application.
  • the application layer also includes information, alarm clock, weather, stopwatch, compass, timer, flashlight, calendar, Alipay and other applications.
  • the system service layer includes step counting, heart rate services, calories, heart health, etc.
  • An algorithm library can include multiple algorithm modules.
  • the algorithm library includes atrial fibrillation detection algorithm modules, sleep algorithms, wearing algorithms, etc.
  • the atrial fibrillation detection algorithm module is used to determine the type of heart rhythm to accurately identify atrial fibrillation or premature beats. As a possible implementation manner, the atrial fibrillation detection algorithm module is used to execute the method shown in Figure 3 above.
  • the wearing algorithm is used to detect the wearing status of the watch.
  • the hardware abstraction layer includes C++ libraries, storage, display, touch, etc.
  • the C++ library is used to provide system resources for algorithm libraries.
  • the hardware abstraction layer shown in Figure 13 is only part of the content.
  • the hardware abstraction layer HAL can also include other content, such as a Bluetooth module, a GPS module, etc.
  • the kernel layer includes the OS kernel.
  • the OS kernel is used for execution management and scheduling.
  • the driver layer is used to drive hardware resources. Multiple driver modules can be included in the driver layer. As shown in Figure 13, the drive layer includes PPG drive, LCD drive and motor, etc.
  • a user can click on a workout app. While the user is exercising, the exercise app can display the user's heart rate in real time through the interface.
  • the process of detecting heart rhythm according to the embodiment of the present application is described below with reference to FIG. 13 .
  • the application layer receives the user's operation and calls the heart rate service in the system service layer.
  • the OS kernel schedules the ACC driver so that the ACC sensor collects the ACC signal to determine whether to enter the atrial fibrillation detection process.
  • the OS kernel schedules the PPG driver so that the PPG sensor lights up to collect data (or PPG signal).
  • the PPG driver can return the collected data to the OS kernel.
  • the OS kernel sends the collected data to the algorithm library to perform relevant calculations.
  • the wearing algorithm module in the algorithm library detects whether it is worn based on the PPG signal and reports the wearing result to the OS kernel. If it is detected that the user is wearing a watch, the OS kernel triggers the execution of the heart rate monitoring service.
  • the OS kernel sends the PPG signal collected by the PPG sensor to the atrial fibrillation detection algorithm module.
  • the atrial fibrillation detection algorithm module calculates the heart rate based on the PPG signal, and the confidence level of the heart rate.
  • the atrial fibrillation detection algorithm module returns the heart rhythm type to the OS kernel.
  • the OS kernel reports the heart rhythm type to the application layer.
  • the application layer displays the heart rhythm type reported by the OS kernel on the UI interface.
  • Figure 14 shows a schematic structural diagram of a device 500 suitable for embodiments of the present application.
  • the device 500 may be a watch, a wristband, a wearable electronic device, or other wearable device for measuring heart rate, etc.
  • the embodiment of the present application does not place any restrictions on the specific type of the device 500 .
  • the device 500 may include a radio frequency circuit (radio frequency, RF) 210, a memory 220, other input devices 230, a touch screen 240, a PPG module 251, a buzzer 252, an acceleration sensor 253, and an audio circuit 260. /0 subsystem 270, processor 280, and power supply 290 and other components.
  • RF radio frequency
  • the structure shown in Figure 14 does not constitute a specific limitation on the device 500.
  • the device 500 may include more or less components than those shown in FIG. 14 , or the device 500 may include a combination of some of the components shown in FIG. 14 , or the device 500 may include a combination of some of the components shown in FIG. 14 .
  • 500 may include subcomponents of some of the components shown in FIG. 14 .
  • the components shown in Figure 14 may be implemented in hardware, software, or a combination of software and hardware.
  • the RF circuit 210 can be used to send and receive information, or to receive and send signals during a call. For example, after receiving the downlink information of the base station, it is processed by the processor 280, and the uplink data is sent to the base station.
  • RF circuits include, but are not limited to, antennas, at least one amplifier, transceivers, couplers, low noise amplifiers (LNA), duplexers, etc. Additionally, RF circuitry 210 may communicate with networks and other devices through wireless communications.
  • the wireless communication can use any communication standard or protocol, including but not limited to global system of mobile communication (GSM), general packet radio service (GPRS), code division multiple access (code division multiple access (CDMA), wideband code division multiple access (WCDMA), long term evolution (LTE), email, short messaging service (SMS), etc.
  • GSM global system of mobile communication
  • GPRS general packet radio service
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • email short messaging service
  • SMS short messaging service
  • the memory 220 may be used to store software programs, and the processor 280 executes the software programs stored in the memory 220 to perform various functions of the device 500 .
  • the memory 220 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), etc.; the storage data area may store a program according to Data maintained by the use of the device 500 (such as audio data, phone book, etc.), etc.
  • the memory 220 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • Other input devices 230 may be used to receive input numeric or character information and to generate key signal inputs related to user settings and functional controls of the device 500 .
  • other input devices 230 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, joysticks, and optical mice (an optical mouse is a touch-sensitive device that does not display visual output). surface, or an extension of a touch-sensitive surface formed by a touch screen), etc.
  • Other input devices 230 are connected to other input device controllers 271 of the I/O subsystem 270 and perform signal interaction with the processor 280 under the control of the other input device controllers 271 .
  • the touch screen 240 may be used to display information input by or provided to the user as well as various menus of the device 500, and may also accept user input.
  • the specific touch screen 240 may include a display panel 241 and a touch panel 242.
  • the display panel 241 can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), or an active-matrix organic light-emitting diode (AMOLED). , flexible light-emitting diode (FLED), mini light-emitting diode (Mini LED), micro light-emitting diode (Micro LED), micro OLED (Micro OLED) or quantum Quantum dot light emitting diodes (QLED).
  • the touch panel 242 also known as a display screen, a touch-sensitive screen, etc., can collect the user's contact or non-contact operations on or near it (for example, the user uses a finger, stylus, or any other suitable object or accessory to operate on the touch panel 242
  • Operations on or near the touch panel 242 may also include somatosensory operations; the operations include single-point control operations, multi-point control operations and other types of operations), and drive corresponding connection devices according to preset programs.
  • the touch panel 242 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's gesture, that is, the touch orientation and posture, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device and converts it into information that can be processed by the processor, and then sent to the processor 280, and can receive commands sent by the processor 280 and execute them.
  • the touch panel 242 can be implemented using various types such as resistive, capacitive, infrared, and surface acoustic wave, or any technology developed in the future can be used to implement the touch panel 242 .
  • the touch panel 242 can cover the display panel 241, and the user can click on the display panel 241 according to the content displayed on the display panel 241 (the display content includes but is not limited to: soft keyboard, virtual mouse, virtual keys, icons, etc.).
  • An operation is performed on or near the covered touch panel 242. After the touch panel 242 detects the operation on or near it, it is transmitted to the processor 280 through the I/O subsystem 270 to determine the user input. Then the processor 280 determines the user input according to the user input. Inputs are provided via I/O subsystem 270 to provide corresponding visual output on display panel 241 .
  • the touch panel 242 and the display panel 241 are used as two independent components to implement the input and input functions of the device 500 , in some embodiments, the touch panel 242 and the display panel 241 can be integrated. And realize the input and output functions of the device 500.
  • the display panel 241 can provide prompt information on the wearing method, wearing status, etc., and historical information in the form of visual (numbers, tables, graphics) or audible (synthesized voice or tones) of the detected heart rate under the program control of the processor 280 .
  • a visual graph may be displayed showing each time period during a previous fixed time interval (eg, 1 hour) or after the exercise period has ended (as determined by the user's indication thereof). Heart rate calculated over 5 minutes. Average heart rate information or heart rate statistical information during a previous time period or multiple time periods may also be provided on the display panel 241 under the control of the processor 280 .
  • the current heart rate value may be provided on display panel 241 as a "real-time" heart rate value that is displayed to the user periodically (eg, every second) during the course of an ongoing exercise program.
  • the PPG module includes a light emitter and a light sensor. Measuring heart rate through the PPG module is based on the principle of light absorption by substances.
  • the light emitter in the PPG module of the electronic device irradiates the blood vessels of the skin, and the light sensor receives the light coming from the skin. Since different volumes of blood in blood vessels absorb green light differently, when the heart beats, the blood flow increases, and the amount of green light absorbed will increase accordingly; when the heart beats, the blood flow will decrease, and the absorbed green light will also increase. Then it decreases. Therefore, heart rate can be measured based on the absorbance of the blood.
  • the light emitter may transmit a light beam to the user's skin, and the light beam may be reflected by the user's skin and received by the light sensor.
  • a light sensor can convert this light into an electrical signal that indicates its intensity.
  • the electrical signal may be in analog form and may be converted to digital form by an analog-to-digital converter.
  • the digital signal from the analog-to-digital converter may be a time domain PPG signal fed to processor 280.
  • the output of the accelerometer can also be converted to digital form using an analog-to-digital converter.
  • the processor 280 can receive digitized signals from the light sensor and digitize the accelerometer output signals of the accelerometer, and can process these signals to provide heart rate or wearing status output signals to a storage device, visual display, audible annunciator, touch screen, or other output indicators.
  • Device 500 may also include at least one sensor, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor.
  • the ambient light sensor may adjust the brightness of the display panel 241 according to the brightness of the ambient light.
  • the proximity sensor may close the display panel 241 when the device 500 moves to the ear. /or the backlight of the touch panel 242 .
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes).
  • the device 500 can detect the magnitude and direction of gravity when stationary, and can be used for vibration identification related functions (such as pedometers, taps, etc.) ), etc.; as for other sensors that the device 500 can also be configured with, such as a gyroscope, barometer, hygrometer, thermometer, infrared sensor, etc., they will not be described again here.
  • the device 500 may also include a buzzer 252 that may generate vibrations according to instructions from the processor 280 .
  • Audio circuitry 260 may provide an audio interface between a user and device 500 .
  • the audio circuit 260 can transmit the converted signal of the received audio data to the speaker 261, and the speaker 261 converts it into a sound signal for output; on the other hand, the microphone converts the collected sound signal into a signal, which is received and converted by the audio circuit 260.
  • the audio data is then output to the RF circuit 210 for sending to, for example, a mobile phone, or the audio data is output to the memory 220 for further processing.
  • the I/O subsystem 270 is used to control input and output external devices, and may include other input device controllers 271 , sensor controllers 272 , and display controllers 273 .
  • one or more other input device controllers 271 receive signals from and/or send signals to other input devices 230, which may include physical buttons (press buttons, rocker buttons, etc.), Dials, slide switches, joysticks, click wheels, optical mice (an optical mouse can be a touch-sensitive surface that does not display visual output, or an extension of the touch-sensitive surface formed by a touch screen). It is worth noting that other input device controllers 271 can be connected to any one or more of the above devices.
  • the display controller 273 in the I/O subsystem 270 receives signals from and/or sends signals to the touch screen 240 . After the touch screen 240 detects user input, the display controller 273 converts the detected user input into interaction with user interface objects displayed on the touch screen 240 , that is, human-computer interaction is implemented.
  • Sensor controller 272 may receive signals from and/or send signals to one or more sensors 251 .
  • the processor 280 is the control center of the device 500, using various interfaces and lines to connect various parts of the entire mobile phone, by running or executing software programs and/or modules stored in the memory 220, and calling data stored in the memory 220, Execute various functions of the device 500 and process data.
  • processor 280 may include one or more processing units.
  • the processor 110 may include at least one of the following processing units: an application processor (application processor, AP), a modem processor, a graphics processing unit (GPU), an image signal processor (image signal processor) , ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, neural network processing unit (NPU).
  • different processing units can be independent devices or integrated devices.
  • processor 280 may integrate an application processor and a modem processor.
  • the application processor mainly handles the operating system, user interface and application programs, etc.;
  • the modem processor mainly handles wireless communications. It can be understood that the above modem processor may not be integrated into the processor 280 .
  • Device 500 also includes a power source 290 (such as a battery) to power various components.
  • a power source 290 such as a battery
  • the power supply can be logically connected to the processor 280 through a power management system, so that functions such as charging, discharging, and power consumption can be managed through the power management system.
  • the device 500 may also include a camera, a Bluetooth module, etc., which will not be described again here.
  • the modules stored in the memory 220 may include: operating system, contact/motion module, graphics module, application program, etc.
  • the contact/motion module is used to detect the contact of an object or finger with the touch screen 240 or the click touch wheel, capture the speed (direction and size) and acceleration (change in size or direction) of the contact, and determine the type of contact event.
  • various contact event detection modules sometimes combine gestures with elements in the user interface to implement some operations: finger squeezing/expanding (pinching/depinching), etc.
  • the graphics module is used to render and display graphics, including web pages, icons, digital images, videos, and animations, on a touch screen or other display.
  • Applications may include contacts, phone calls, video conferencing, email clients, instant messaging, personal sports, cameras, image management, video players, music players, calendars, plug-ins (e.g., weather, stocks, calculators, clocks , dictionary), custom plug-ins, search, notes, maps, online videos, etc.
  • plug-ins e.g., weather, stocks, calculators, clocks , dictionary
  • custom plug-ins search, notes, maps, online videos, etc.
  • connection relationship between the modules shown in FIG. 14 is only a schematic illustration and does not constitute a limitation on the connection relationship between the modules of the device 500.
  • each module of the device 500 may also adopt a combination of various connection methods in the above embodiments.
  • the embodiment of the present application obtains the first PPG signal of the first preset duration, then determines the heart rate difference based on the first PPG signal, and uses the heart rate difference to generate a scatter distribution diagram to obtain the change trajectory of the heart rate difference. , determine the heart rhythm type based on the parameters derived from the change trajectory of the heart rate difference (including but not limited to: angle, number, angle standard deviation, distance standard deviation), which can accurately identify the heart rhythm type and improve the accuracy of identifying premature beats or atrial fibrillation. , to avoid identifying premature beat signals as atrial fibrillation signals and improve user experience.
  • This application also provides a computer program product, which, when executed by a processor, implements the method described in any method embodiment in this application.
  • the computer program product can be stored in the memory and finally converted into an executable object file that can be executed by the processor after preprocessing, compilation, assembly and linking.
  • This application also provides a computer-readable storage medium on which a computer program is stored.
  • a computer program When the computer program is executed by a computer, the method described in any method embodiment of this application is implemented.
  • the computer program may be a high-level language program or an executable object program.
  • the computer-readable storage medium may be volatile memory or non-volatile memory, or may include both volatile memory and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • the disclosed systems, devices and methods can be implemented in other ways. For example, some features of the method embodiments described above may be omitted, or not performed.
  • the device embodiments described above are only illustrative, and the division of units is only a logical function division. In actual implementation, there may be other division methods, and multiple units or components may be combined or integrated into another system.
  • the coupling between units or the coupling between components may be direct coupling or indirect coupling, and the above-mentioned coupling includes electrical, mechanical or other forms of connection.
  • the size of the sequence numbers of each process does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • system and “network” are often used interchangeably herein.
  • the term “and/or” in this article is just an association relationship describing related objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist simultaneously, alone There are three situations B.
  • the character "/" in this article generally indicates that the related objects are an "or” relationship.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种检测心律的方法和电子设备,该方法包括:获取第一预设时长的第一PPG信号;基于第一PPG信号确定多个心率值(301);基于多个心率值确定每两个相邻心率的差值,每两个相邻心率的差值用于生成心率差值轨迹图(302);基于心率差值轨迹图获取心率差值轨迹的参数,心率差值轨迹的参数包括以下一项或多项参数:角度、个数、角度标准差、距离标准差(303);根据心率差值轨迹的参数,确定第一PPG信号的心律类型,心律类型包括以下任一项:早搏、房颤、窦性心律、室性心动过速、二联律、三联律;显示第一PPG信号的心律类型,能够提高识别早搏或房颤的准确性,降低将早搏识别为房颤的概率,提升用户体验。

Description

一种检测心律的方法和电子设备
本申请要求于2022年03月31日提交国家知识产权局、申请号为202210335776.3、申请名称为“一种检测心律的方法和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,并且具体地,涉及一种检测心律的方法和电子设备。
背景技术
随着心脏病的发病年龄逐渐趋于年轻化、常态化,心脏健康越来越引起人们的重视。心律失常可以包括心房颤动(可以简称为房颤)、早搏等。心房颤动(可以简称为房颤)是一种普遍的心脏疾病。早期的房颤识别可以帮助患者及时发现心脏异常。早搏是一种常见的心律失常。
医学上一般采用Holter采集24小时动态心电图。但是这种检测方法需要专业人员辅助,操作复杂,且成本较高,尤其阵发性房颤和偶发性室性早搏发作时间短,且时机不确定,很容易造成“检测时未发病、发病时未检测”的漏检。为了节约成本,方便用户操作,通常采用光电容积脉搏波描记法(photoplethysmograph,PPG)技术实现对心律失常的测量。比如,用户可通过智能手表对心律失常进行检测。
但是在实际应用中,基于PPG信号容易出现误识别的情形(比如,将早搏信号识别为房颤信号),无法准确识别出房颤或早搏等,影响用户体验。
发明内容
有鉴于此,本申请提供了一种检测心律的方法、电子设备、计算机可读存储介质和计算机程序产品,能够提高对心律失常检测的准确性,极大提升用户体验。
第一方面,提供了一种检测心律的方法,所述方法应用于电子设备,该方法包括:
获取第一预设时长的第一PPG信号;
基于所述第一PPG信号确定多个心率值;
基于所述多个心率值确定每两个相邻心率的差值,所述每两个相邻心率的差值用于生成心率差值轨迹图;
基于所述心率差值轨迹图获取心率差值轨迹的参数,所述心率差值轨迹的参数包括以下一项或多项参数:角度、个数、角度标准差、距离标准差;
根据所述心率差值轨迹的参数,确定所述第一PPG信号的心律类型,所述心律类型包括以下任一项:早搏、房颤、窦性心律、室性心动过速、二联律、三联律;
显示所述第一PPG信号的心律类型。
上述方法可以由电子设备或电子设备中的芯片执行。基于上述方案,通过获取第一预设时长的PPG信号,根据第一预设时长的PPG信号的心率差值的变化轨迹,获得轨迹的参数 (包括但不限于:角度、个数、角度标准差、距离标准差),然后基于轨迹的参数确定心律的类型,并将心律类型呈现给用户。本申请实施例基于心率差值轨迹衍生出的参数进行心律类型识别,能够提高对心律失常检测的准确性。另外,相比于根据每个心率(或者说心搏的波形形态)进行心律识别,本申请实施例是基于一段信号的心率(即第一预设时长的PPG信号)进行心率识别的,这样能够提高识别早搏或房颤的准确性,降低将早搏识别为房颤的概率,提升用户体验。
在一种可能的实现方式中,所述方法还包括:
根据所述第一预设时长的第一PPG信号确定第一参数,并且确定所述第一参数是否大于或等于第一阈值;
其中,所述根据所述心率差值轨迹的参数,确定所述第一PPG信号的心律类型,包括:
根据所述第一参数、所述心率差值轨迹的参数,确定所述第一PPG信号的心律类型。
可选地,根据第一预设时长的PPG信号确定第一参数包括:根据第一预设时长的PPG信号的波峰提取多个RRI;根据多个RRI计算每相邻两个RRI的差值,所述每相邻两个RRI的差值用于确定第一参数。
此处比较第一参数与第一阈值的大小关系在于进行初步房颤识别。如果第一参数大于或等于第一阈值,那么此时发生房颤的概率大于非房颤的概率,则进入第一识别处理。如果第一参数小于第一阈值,那么此时发生房颤的概率小于非房颤的概率,则进入第二识别处理。这样做的好处在于可以将数据流分流,以节省后续判断流程,从而节省电子设备的功耗。比如,如果是非房颤识别窗口,那么后续可能会涉及到判断是否发生了二联律或三联律的流程,而房颤识别窗口中的判断流程则不会涉及。
在一种可能的实现方式中,所述根据所述第一参数、所述心率差值轨迹的参数,确定所述第一PPG信号的心律类型,包括:
在所述第一参数大于或等于第一阈值时,基于所述心率差值轨迹的参数进行第一识别处理,确定所述第一PPG信号的心律类型,所述心律类型包括以下任一项:早搏、房颤、窦性心律、室性心动过速;
在所述第一参数小于所述第一阈值时,基于所述心率差值轨迹的参数进行第二识别处理,确定所述第一PPG信号的心律类型,所述心律类型包括以下任一项:早搏、房颤、窦性心律、室性心动过速、二联律、三联律。
在一种可能的实现方式中,在所述第一识别处理或所述第二识别处理中,所述心率差值轨迹包括:第一轨迹和第二轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第一预设条件时,所述心律类型为早搏;
其中,所述第一轨迹的参数和所述第二轨迹的参数满足第一预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和大于或等于第一数量阈值,且,所述第一轨迹的角度标准差参数和所述第二轨迹的角度标准差参数都小于或等于第一角度标准差阈值。
以下描述基于心律差值轨迹的参数以及相关预设条件,确定心律类型的多个实现方式。
在一种可能的实现方式中,在所述第一识别处理中,所述心率差值轨迹包括:第一轨迹和第二轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,且第一概率参数满足第三预设条件时,所述心律类型为房颤;
其中,所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和大于或等于第一数量阈值,且,所述第一轨 迹的角度标准差参数和所述第二轨迹的角度标准差参数至少有一个大于第一角度标准差阈值;
其中,所述第一概率参数满足第三预设条件,包括:第一概率参数小于第一概率阈值。
在一种可能的实现方式中,所述心率差值轨迹包括:第一轨迹和第二轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,且,第一概率参数不满足第三预设条件时,所述心律类型为窦性心律;
其中,所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和大于或等于第一数量阈值,且,所述第一轨迹的角度标准差参数和所述第二轨迹的角度标准差参数至少有一个大于第一角度标准差阈值;
其中,所述第一概率参数不满足第三预设条件,包括:第一概率参数不小于第一概率阈值。
在一种可能的实现方式中,在所述第一识别处理或所述第二识别处理中,所述心率差值轨迹包括:第一轨迹、第二轨迹、第三轨迹和第四轨迹;
所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,所述第一轨迹的参数和第三轨迹的参数满足第五预设条件;或者,所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,所述第二轨迹的参数和所述第四轨迹的参数满足第六预设条件,所述心律类型为室性心动过速;
其中,所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和小于第一数量阈值;
其中,所述第一轨迹的参数和所述第三轨迹的参数满足第五预设条件,包括:所述第一轨迹的个数参数和所述第三轨迹的个数参数之和大于或等于第二数量阈值,所述第一轨迹的角度标准差参数和第三轨迹的角度标准差参数都小于或等于第二角度标准差阈值,且所述第一轨迹的角度均值参数小于所述第三轨迹的角度均值参数;
其中,所述第二轨迹的参数和所述第四轨迹的参数满足第六预设条件,包括:所述第二轨迹的个数参数和所述第三轨迹的个数参数之和大于或等于第二数量阈值,所述第二轨迹的角度标准差参数和所述第三轨迹的角度标准差参数都小于或等于第二角度标准差阈值,且所述第二轨迹的角度均值参数小于所述第四轨迹的角度均值参数。
在一种可能的实现方式中,在所述第一识别处理中,所述心率差值轨迹包括:第一轨迹和第二轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,且第一概率参数满足第七预设条件时,所述心律类型为房颤;
其中,所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和小于第一数量阈值;
其中,所述第一概率参数满足第七预设条件,包括:所述第一概率参数小于第二概率阈值。
在一种可能的实现方式中,在所述第一识别处理中,所述心率差值轨迹包括:第一轨迹和第二轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,且第一概率参数不满足第七预设条件时,所述心律类型为窦性心律;
其中,所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和小于第一数量阈值;
其中,第一概率参数不满足第七预设条件,包括:所述第一概率参数不小于第二概率阈值。
在一种可能的实现方式中,在所述第二识别处理中,所述心率差值轨迹包括:第一轨迹和第二轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,所述心律类型为房颤;
其中,所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和大于或等于第一数量阈值,且,所述第一轨迹的角度标准差参数和所述第二轨迹的角度标准差参数至少有一个大于第一角度标准差阈值。
在一种可能的实现方式中,在所述第二识别处理中,所述心率差值轨迹包括:第五轨迹和第六轨迹;所述第五轨迹的参数和所述第六轨迹的参数满足第八预设条件,且所述第五轨迹的距离标准差参数和所述第六轨迹的距离标准差参数满足第九预设条件,所述心律类型为二联律;
其中,所述第五轨迹的参数和所述第六轨迹的参数满足第八预设条件,包括:所述第五轨迹的个数参数和所述第六轨迹的个数参数中的最小值大于或等于第三数量阈值,且所述第五轨迹的角度标准差参数和所述第六轨迹的角度标准差参数都小于或等于第三角度标准差阈值;
其中,所述第五轨迹的距离标准差参数和所述第六轨迹的距离标准差参数满足第九预设条件,包括:所述第五轨迹的距离标准差参数小于或等于第一距离标准差阈值,所述第六轨迹的距离标准差参数小于或等于第一距离标准差阈值。
因此,基于本申请实施例的检测心律的方法,可以准确识别出二联律,提升用户体验。
在一种可能的实现方式中,在所述第二识别处理中,所述心率差值轨迹包括:第五轨迹和第六轨迹;所述第五轨迹的参数和所述第六轨迹的参数满足第八预设条件,且所述第五轨迹的距离标准差参数和所述第六轨迹的距离标准差参数不满足第九预设条件,所述心律类型为三联律;
其中,所述第五轨迹的参数和所述第六轨迹的参数满足第八预设条件,包括:所述第五轨迹的个数参数和所述第六轨迹的个数参数中的最小值大于或等于第三数量阈值,且所述第五轨迹的角度标准差参数和所述第六轨迹的角度标准差参数都小于或等于第三角度标准差阈值;
其中,所述第五轨迹的距离标准差参数和所述第六轨迹的距离标准差参数不满足第九预设条件,包括:所述第五轨迹的距离标准差参数大于第一距离标准差阈值,所述第六轨迹的距离标准差参数大于第一距离标准差阈值。
因此,基于本申请实施例的检测心律的方法,可以准确识别出三联律,提升用户体验。
在一种可能的实现方式中,在所述第二识别处理中,所述心率差值轨迹包括:第一轨迹、第二轨迹、第七轨迹、第八轨迹、第九轨迹和第十轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,且所述第七轨迹的参数、所述第八轨迹的参数、所述第九轨迹的参数和所述第十轨迹的参数满足第十预设条件时,所述心律类型为早搏;
其中,所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,包括:所述第一轨迹的个数参数和第二轨迹的个数参数之和大于或等于第一数量阈值,且,所述第一轨迹的角度标准差参数和所述第二轨迹的角度标准差参数至少有一个大于第一标准差阈值;
其中,所述第七轨迹的参数、所述第八轨迹的参数、所述第九轨迹的参数和所述第十轨迹的参数满足第十预设条件,包括:所述第七轨迹的角度标准差参数、所述第八轨迹的角度标准差参数、第所述九轨迹的角度标准差参数和所述第十轨迹的角度标准差参数中的最大值, 小于或等于第四角度标准差阈值。
在一种可能的实现方式中,在所述第二识别处理中,所述心率差值轨迹包括:第一轨迹、第二轨迹、第七轨迹、第八轨迹、第九轨迹和第十轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,且所述第七轨迹的参数、所述第八轨迹的参数、所述第九轨迹的参数和所述第十轨迹的参数不满足第十预设条件,且,第一概率参数满足第十一预设条件或者第一数量满足第十二预设条件时,所述心律类型为房颤;
其中,所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和大于或等于第一数量阈值,且,所述第一轨迹的角度标准差参数和所述第二轨迹的角度标准差参数至少有一个大于第一标准差阈值;
其中,所述第七轨迹的参数、所述第八轨迹的参数、所述第九轨迹的参数和所述第十轨迹的参数不满足第十预设条件,包括:所述第七轨迹的角度标准差参数、所述第八轨迹的角度标准差参数、所述第九轨迹的角度标准差参数和所述第十轨迹的角度标准差参数中的最大值,大于第四角度标准差阈值;
其中,所述第一概率参数满足第十一预设条件,包括:第一概率参数小于第三概率阈值;
其中,所述第一数量满足第十二预设条件,包括:第一数量大于或等于第四数量阈值;
在一种可能的实现方式中,在所述第二识别处理中,所述心率差值轨迹包括:第一轨迹、第二轨迹、第七轨迹、第八轨迹、第九轨迹和第十轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,且所述第七轨迹的参数、所述第八轨迹的参数、所述第九轨迹的参数和所述第十轨迹的参数不满足第十预设条件,且,第一概率参数不满足第十一预设条件或者第一数量不满足第十二预设条件时,所述心律类型为窦性心律;
其中,所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和大于或等于第一数量阈值,且,所述第一轨迹的角度标准差参数和所述第二轨迹的角度标准差参数至少有一个大于第一标准差阈值;
其中,所述第七轨迹的参数、所述第八轨迹的参数、所述第九轨迹的参数和第十轨迹的参数不满足第十预设条件,包括:所述第七轨迹的角度标准差参数、所述第八轨迹的角度标准差参数、所述第九轨迹的角度标准差参数和所述第十轨迹的角度标准差参数中的最大值,大于第四角度标准差阈值;
其中,所述第一概率参数不满足第十一预设条件,包括:所述第一概率参数不小于第三概率阈值;
其中,所述第一数量不满足第十二预设条件,包括:所述第一数量小于第四数量阈值。
在一种可能的实现方式中,所述方法还包括:
获取第二预设时长的ACC信号;
基于所述第二预设时长的ACC信号确定所述电子设备的状态;
其中,获取所述第一预设时长的第一PPG信号,包括:
如果在第三预设时长内所述电子设备都处于静止状态,则获取所述第一预设时长的第一PPG信号,所述第三预设时长小于或等于所述第二预设时长。
因此,在开始采集PPG信号之前,可以先通过采集ACC信号判断电子设备的状态,并在电子设备处于静止状态时才进入房颤早搏检测算法,为后续获取PPG信号提供准备。
在一种可能的实现方式中,所述获取第一预设时长的第一PPG信号,包括:
获取第四预设时长的PPG信号和ACC信号,所述第一预设时长的PPG信号包括多个第 四预设时长的PPG信号,所述第四预设时长小于所述第一预设时长;
确定在所述第五预设时长内所述电子设备是否一直处于运动状态;
如果在所述第五预设时长所述电子设备未一直处于运动状态,则继续获取第四预设时长的PPG信号和ACC信号,直到采集时长满足所述第一预设时长。
这里,在采集PPG信号的同时还可以采集ACC信号,并基于ACC信号判断电子设备的状态,有助于获取有效的PPG信号。
在一种可能的实现方式中,所述方法还包括:
在所述心律类型为房颤时,向用户显示提示信息,所述提示信息用于通知用户心律异常。
因此,当检测到异常心律时,可以向用户发出提示信息,以便用户能够及时获知心律异常的风险。
第二方面,提供了一种电子设备,包括用于执行第一方面中任一种方法的单元。该电子设备可以是可穿戴设备(比如,智能手表或手环),也可以是可穿戴设备(比如智能手表或手环)内的芯片。该电子设备包括输入单元、显示单元和处理单元。
当该电子设备是可穿戴设备时,该处理单元可以是处理器,该输入单元可以是通信接口,该显示单元可以是图形处理模块和屏幕;该可穿戴设备还可以包括存储器,该存储器用于存储计算机程序代码,当该处理器执行该存储器所存储的计算机程序代码时,使得该可穿戴设备执行第一方面中的任一种方法。
当该电子设备是可穿戴设备内的芯片时,该处理单元可以是芯片内部的逻辑处理单元,该输入单元可以是输出接口、管脚或电路等,该显示单元可以是芯片内部的图形处理单元;该芯片还可以包括存储器,该存储器可以是该芯片内的存储器(例如,寄存器、缓存等),也可以是位于该芯片外部的存储器(例如,只读存储器、随机存取存储器等);该存储器用于存储计算机程序代码,当该处理器执行该存储器所存储的计算机程序代码时,使得该芯片执行第一方面的任一种方法。
可选地,在一种实现方式中,所述处理单元用于获取第一预设时长的第一PPG信号;
基于所述第一PPG信号确定多个心率值;
基于所述多个心率值确定每两个相邻心率的差值,所述每两个相邻心率的差值用于生成心率差值轨迹图;
基于所述心率差值轨迹图获取心率差值轨迹的参数,所述心率差值轨迹的参数包括以下一项或多项参数:角度、个数、角度标准差、距离标准差;
根据所述心率差值轨迹的参数,确定所述第一PPG信号的心律类型,所述心律类型包括以下任一项:早搏、房颤、窦性心律、室性心动过速、二联律、三联律。
所述显示单元用于显示所述第一PPG信号的心律类型。
在一种可能的实现方式中,所述处理单元还用于:
根据所述第一预设时长的第一PPG信号确定第一参数,并且确定所述第一参数是否大于或等于第一阈值;
根据所述第一参数、所述心率差值轨迹的参数,确定所述第一PPG信号的心律类型。
可选地,所述处理单元用于根据第一预设时长的PPG信号确定第一参数具体包括:根据第一预设时长的PPG信号的波峰提取多个RRI;根据多个RRI计算每相邻两个RRI的差值,所述每相邻两个RRI的差值用于确定第一参数。
在一种可能的实现方式中,所述处理单元用于根据所述第一参数、所述心率差值轨迹的 参数,确定所述第一PPG信号的心律类型,具体包括:
在所述第一参数大于或等于第一阈值时,基于所述心率差值轨迹的参数进行第一识别处理,确定所述第一PPG信号的心律类型,所述心律类型包括以下任一项:早搏、房颤、窦性心律、室性心动过速;
在所述第一参数小于所述第一阈值时,基于所述心率差值轨迹的参数进行第二识别处理,确定所述第一PPG信号的心律类型,所述心律类型包括以下任一项:早搏、房颤、窦性心律、室性心动过速、二联律、三联律。
在一种可能的实现方式中,在所述第一识别处理或所述第二识别处理中,所述心率差值轨迹包括:第一轨迹和第二轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第一预设条件时,所述心律类型为早搏;
其中,所述第一轨迹的参数和所述第二轨迹的参数满足第一预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数大于第一数量阈值,且,所述第一轨迹的角度标准差参数和所述第二轨迹的角度标准差参数都小于或等于第一角度标准差阈值。
在一种可能的实现方式中,在所述第一识别处理中,所述心率差值轨迹包括:第一轨迹和第二轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第一预设条件,且第一概率参数满足第三预设条件时,所述心律类型为房颤;
其中,所述第一轨迹的参数和所述第二轨迹的参数满足第一预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数大于第一数量阈值,且,所述第一轨迹的角度标准差参数和所述第二轨迹的角度标准差参数都小于或等于第一角度标准差阈值;
其中,所述第一概率参数满足第三预设条件,包括:第一概率参数小于第一概率阈值。
在一种可能的实现方式中,所述心率差值轨迹包括:第一轨迹和第二轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,且,第一概率参数不满足第三预设条件时,所述心律类型为窦性心律;
其中,所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和大于或等于第一数量阈值,且,所述第一轨迹的角度标准差参数和所述第二轨迹的角度标准差参数至少有一个大于第一角度标准差阈值;
其中,所述第一概率参数不满足第三预设条件,包括:第一概率参数不小于第一概率阈值。
在一种可能的实现方式中,在所述第一识别处理或所述第二识别处理中,所述心率差值轨迹包括:第一轨迹、第二轨迹、第三轨迹和第四轨迹;
所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,所述第一轨迹的参数和第三轨迹的参数满足第五预设条件;或者,所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,所述第二轨迹的参数和所述第四轨迹的参数满足第六预设条件,所述心律类型为室性心动过速;
其中,所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和小于第一数量阈值;
其中,所述第一轨迹的参数和所述第三轨迹的参数满足第五预设条件,包括:所述第一轨迹的个数参数和所述第三轨迹的个数参数之和大于或等于第二数量阈值,所述第一轨迹的角度标准差参数和第三轨迹的角度标准差参数都小于或等于第二角度标准差阈值,且所述第一轨迹的角度均值参数小于所述第三轨迹的角度均值参数;
其中,所述第二轨迹的参数和所述第四轨迹的参数满足第六预设条件,包括:所述第二轨迹的个数参数和所述第三轨迹的个数参数之和大于或等于第二数量阈值,所述第二轨迹的角度标准差参数和所述第三轨迹的角度标准差参数都小于或等于第二角度标准差阈值,且所述第二轨迹的角度均值参数小于所述第四轨迹的角度均值参数。
在一种可能的实现方式中,在所述第一识别处理中,所述心率差值轨迹包括:第一轨迹和第二轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,且第一概率参数满足第七预设条件时,所述心律类型为房颤;
其中,所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和小于第一数量阈值;
其中,所述第一概率参数满足第七预设条件,包括:所述第一概率参数小于第二概率阈值。
在一种可能的实现方式中,在所述第一识别处理中,所述心率差值轨迹包括:第一轨迹和第二轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,且第一概率参数不满足第七预设条件时,所述心律类型为窦性心律;
其中,所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和小于第一数量阈值;
其中,第一概率参数不满足第七预设条件,包括:所述第一概率参数不小于第二概率阈值。
在一种可能的实现方式中,在所述第二识别处理中,所述心率差值轨迹包括:第一轨迹和第二轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,所述心律类型为房颤;
其中,所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和大于或等于第一数量阈值,且,所述第一轨迹的角度标准差参数和所述第二轨迹的角度标准差参数至少有一个大于第一角度标准差阈值。
在一种可能的实现方式中,在所述第二识别处理中,所述心率差值轨迹包括:第五轨迹和第六轨迹;所述第五轨迹的参数和所述第六轨迹的参数满足第八预设条件,且所述第五轨迹的距离标准差参数和所述第六轨迹的距离标准差参数满足第九预设条件,所述心律类型为二联律;
其中,所述第五轨迹的参数和所述第六轨迹的参数满足第八预设条件,包括:所述第五轨迹的个数参数和所述第六轨迹的个数参数中的最小值大于或等于第三数量阈值,且所述第五轨迹的角度标准差参数和所述第六轨迹的角度标准差参数都小于或等于第三角度标准差阈值;
其中,所述第五轨迹的距离标准差参数和所述第六轨迹的距离标准差参数满足第九预设条件,包括:所述第五轨迹的距离标准差参数小于或等于第一距离标准差阈值,所述第六轨迹的距离标准差参数小于或等于第一距离标准差阈值。
在一种可能的实现方式中,在所述第二识别处理中,所述心率差值轨迹包括:第五轨迹和第六轨迹;所述第五轨迹的参数和所述第六轨迹的参数满足第八预设条件,且所述第五轨迹的距离标准差参数和所述第六轨迹的距离标准差参数不满足第九预设条件,所述心律类型为三联律;
其中,所述第五轨迹的参数和所述第六轨迹的参数满足第八预设条件,包括:所述第五 轨迹的个数参数和所述第六轨迹的个数参数中的最小值大于或等于第三数量阈值,且所述第五轨迹的角度标准差参数和所述第六轨迹的角度标准差参数都小于或等于第三角度标准差阈值;
其中,所述第五轨迹的距离标准差参数和所述第六轨迹的距离标准差参数不满足第九预设条件,包括:所述第五轨迹的距离标准差参数大于第一距离标准差阈值,所述第六轨迹的距离标准差参数大于第一距离标准差阈值。
在一种可能的实现方式中,在所述第二识别处理中,所述心率差值轨迹包括:第一轨迹、第二轨迹、第七轨迹、第八轨迹、第九轨迹和第十轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,且所述第七轨迹的参数、所述第八轨迹的参数、所述第九轨迹的参数和所述第十轨迹的参数满足第十预设条件时,所述心律类型为早搏;
其中,所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,包括:所述第一轨迹的个数参数和第二轨迹的个数参数之和大于或等于第一数量阈值,且,所述第一轨迹的角度标准差参数和所述第二轨迹的角度标准差参数至少有一个大于第一标准差阈值;
其中,所述第七轨迹的参数、所述第八轨迹的参数、所述第九轨迹的参数和所述第十轨迹的参数满足第十预设条件,包括:所述第七轨迹的角度标准差参数、所述第八轨迹的角度标准差参数、第所述九轨迹的角度标准差参数和所述第十轨迹的角度标准差参数中的最大值,小于或等于第四角度标准差阈值。
在一种可能的实现方式中,在所述第二识别处理中,所述心率差值轨迹包括:第一轨迹、第二轨迹、第七轨迹、第八轨迹、第九轨迹和第十轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,且所述第七轨迹的参数、所述第八轨迹的参数、所述第九轨迹的参数和所述第十轨迹的参数不满足第十预设条件,且,第一概率参数满足第十一预设条件或者第一数量满足第十二预设条件时,所述心律类型为房颤;
其中,所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和大于或等于第一数量阈值,且,所述第一轨迹的角度标准差参数和所述第二轨迹的角度标准差参数至少有一个大于第一标准差阈值;
其中,所述第七轨迹的参数、所述第八轨迹的参数、所述第九轨迹的参数和所述第十轨迹的参数不满足第十预设条件,包括:所述第七轨迹的角度标准差参数、所述第八轨迹的角度标准差参数、所述第九轨迹的角度标准差参数和所述第十轨迹的角度标准差参数中的最大值,大于第四角度标准差阈值;
其中,所述第一概率参数满足第十一预设条件,包括:第一概率参数小于第三概率阈值;
其中,所述第一数量满足第十二预设条件,包括:第一数量大于或等于第四数量阈值;
在一种可能的实现方式中,在所述第二识别处理中,所述心率差值轨迹包括:第一轨迹、第二轨迹、第七轨迹、第八轨迹、第九轨迹和第十轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,且所述第七轨迹的参数、所述第八轨迹的参数、所述第九轨迹的参数和所述第十轨迹的参数不满足第十预设条件,且,第一概率参数不满足第十一预设条件或者第一数量不满足第十二预设条件时,所述心律类型为窦性心律;
其中,所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和大于或等于第一数量阈值,且,所述第一轨迹的角度标准差参数和所述第二轨迹的角度标准差参数至少有一个大于第一标准差阈值;
其中,所述第七轨迹的参数、所述第八轨迹的参数、所述第九轨迹的参数和第十轨迹的 参数不满足第十预设条件,包括:所述第七轨迹的角度标准差参数、所述第八轨迹的角度标准差参数、所述第九轨迹的角度标准差参数和所述第十轨迹的角度标准差参数中的最大值,大于第四角度标准差阈值;
其中,所述第一概率参数不满足第十一预设条件,包括:所述第一概率参数不小于第三概率阈值;
其中,所述第一数量不满足第十二预设条件,包括:所述第一数量小于第四数量阈值。
在一种可能的实现方式中,所述处理单元还用于:
获取第二预设时长的ACC信号;
基于所述第二预设时长的ACC信号确定所述电子设备的状态;
如果在第三预设时长内所述电子设备都处于静止状态,则获取所述第一预设时长的第一PPG信号,所述第三预设时长小于或等于所述第二预设时长。
在一种可能的实现方式中,所述处理单元用于获取第一预设时长的第一PPG信号,具体包括:
获取第四预设时长的PPG信号和ACC信号,所述第一预设时长的PPG信号包括多个第四预设时长的PPG信号,所述第四预设时长小于所述第一预设时长;
确定在所述第五预设时长内所述电子设备是否一直处于运动状态;
如果在所述第五预设时长所述电子设备未一直处于运动状态,则继续获取第四预设时长的PPG信号和ACC信号,直到采集时长满足所述第一预设时长。
在一种可能的实现方式中,所述处理单元还用于:
在所述心律类型为房颤时,调用所述显示单元向用户显示提示信息,所述提示信息用于通知用户心律异常。
第三方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序代码,当所述计算机程序代码被电子设备运行时,使得该电子设备执行第一方面中的任一种方法。
第四方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被电子设备运行时,使得该电子设备执行第一方面中的任一种方法。
附图说明
图1是本申请实施例的应用场景的一个示例图;
图2是根据本申请实施例的一个检测心律的方法的示意性流程图;
图3是根据本申请实施例的确定心律类型的方法的示意性流程图;
图4是本申请实施例的早搏的心率差值轨迹的示意图;
图5是本申请实施例的正常房颤的心率差值轨迹的一个示意图;
图6是本申请实施例的快速房颤的心率差值轨迹的一个示意图;
图7是本申请实施例的窦性心律的心率差值轨迹的一个示意图;
图8是本申请实施例的室性心动过速的心率差值轨迹的一个示意图;
图9是本申请实施例的早搏伴有二联律的心率差值轨迹的一个示意图;
图10是本申请实施例的早搏伴有三联律的心率差值轨迹的示意图;
图11是本申请实施例的检测心律的一个界面示例图;
图12是根据本申请实施例的风险提示的一界面示例图;
图13是本申请实施例应用的软件系统的一个示意图;
图14是一种适用于本申请实施例的装置的结构示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例适用于电子设备,该电子设备可以为智能手表、智能手环、腕带、头盔、头带、眼镜或其他能够用来检测心律或监测心率的可穿戴设备、医疗检测设备等等。该电子设备采用光电容积脉搏波描记法(photoplethysmograph,PPG)技术测量用户的脉搏或心率。该电子设备可以通过各种无线方式与其他终端进行无线通信。其中,终端包括但不限于手机、平板电脑、无线通信设备、远程终端、移动设备、用户终端、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及未来5G或6G网络中的终端设备等。
采用PPG技术测量脉搏或心率的原理如下:通过发光二极管(light-emitting diode,LED)发射特定颜色波长的光进入人体,然后测量经过人体血管和组织反射、吸收后的衰减光,通过描记出血管的搏动状态来达到检测脉搏信号的目的。
示例性地,以电子设备是智能手表为例,智能手表中可设置心率传感器(比如,PPG传感器,或PPG模组)。智能手表通过心率传感器采集PPG信号,并基于PPG信号获得用户的瞬时心率。本申请实施例对心率传感器的类型不作具体限定,比如,心率传感器包括反射式光电心率传感器、透射式光电心率传感器等。在本申请实施例中,智能手表可以基于获得的PPG信号进行心律类型的检测,从而得知心律是正常心律还是异常(或失常)心律。可以理解,上述只是以智能手表为例进行描述,但是本申请实施例并不限于此。
本申请实施例的也可应用于终端中。比如,终端通过智能手表获取手表测量的PPG信号。可选地,当终端获得智能手表测量的PPG信号后,也可以采用本申请实施例的方法确定心律类型。
参考图1,图1示出了智能手表和智能手环在佩戴状态下的示意图。
如图1中(1)所示的智能手表,该智能手表包括表盘11和表带12。该智能手表在佩戴状态下如图1中(2)所示。用户通过表带12可以将智能手表佩戴在腕部,使得表盘11的背面可以贴合皮肤。用户通过调节表带12可调节佩戴的松紧程度。
如图1中(3)所示的智能手环,该智能手环包括表盘21和表带22。该智能手环在佩戴状态下如图1中(4)所示。
应理解,图1只是示意性说明本申请的一个应用场景,这并不对本申请实施例构成限定,本申请并不限于此。
为了准确识别出心律的类型,本申请实施例提供了一种检测心律的方法和电子设备。本申请实施例根据第一预设时长的PPG信号的心率差值的变化轨迹,获得轨迹的参数(包括但不限于:角度、个数、角度标准差、距离标准差),然后基于轨迹的参数确定心律的类型,能够提高识别早搏或房颤的准确性,避免将早搏信号识别为房颤信号,提升用户体验。
为了便于理解,在介绍本申请实施例之前,对本申请实施例涉及的部分术语进行简单介绍。
心率是指每分钟心跳的次数。心律是指心跳的规律。心律可以分为正常心律和异常心律 (或者说心律失常)。
一般而言,正常心律起源于窦房结,频率为每分钟60-100次,也称作窦性心律。当心律起源部位、心搏频率与节律以及冲动传导等任一项发生异常时,就会发生心律失常。一种表述方式,心律失常可以表现为心动过缓(比如,每分钟心率小于60次)或心动过速(比如,每分钟心率超过100次)。
示例性地,心律类型可能存在以下情形:窦性心律、早搏、二联律、三联律、房颤、室性心动过速等。
早搏(过早搏动)也称为期前收缩,可偶发或频发,可以不规则或规则地在每一个或每数个正常搏动后发生。早搏是一种常见的心律失常,可发生于正常人,但是心脏神经官能症与器质性心脏病患者更易发生。
二联律是指每一个窦性搏动后出现一个期前收缩。三联律是指每两个正常搏动后出现一个期前收缩。
房颤(心房颤动)是最常见的持续性心律失常。房颤的心跳频率不规则。房颤一种普遍的心脏疾病。
室性心动过速是一种常见的心律失常,其心跳频率一般超过100次。
参考图2,以下结合图2中的流程描述本申请实施例的检测心律的方法。为便于描述,以下以电子设备是手表为例进行描述。
如图2所示,本申请实施例的检测心律的方法可以包括以下三个阶段:第一阶段用于基于ACC信号决定是否进入房颤早搏检测;第二阶段用于获取第一预设时长的第一PPG信号;第三阶段用于基于第一预设时长的第一PPG信号确定心律类型。
一种可能的实现方式,在进入房颤早搏检测之前,可以先获取ACC信号判断电子设备的状态,以决定是否进入房颤早搏检测流程。应理解,此处是以ACC信号为例进行说明,本申请实施例并不限于此。事实上,ACC信号也可以替换为其他用于判断电子设备的状态的信息或信号。
示例性地,可以通过以下步骤0-步骤3实现第一阶段。
步骤0,获取第二预设时长的ACC信号。
可选地,第二预设时长可以由n个时间单位组成,(n是大于或等于1的整数)。
应理解,本申请实施例对时间单位的类型不作具体限定,比如,时间单位可以是小时、分钟、秒、微秒、毫秒等时间单位。举例来说,n个时间单位可以是n秒。
还应理解,此处获取ACC信号可以是主动获取,也可以是被动获取,本申请实施例不作具体限定。
一种可能的示例中,应用程序可以接收用户的操作(比如,该操作用于触发连续测量心率的功能)。所述应用程序包含房颤早搏检测功能。例如,应用程序包括但不限于心率、运动记录、锻炼、健康监测等应用程序。举例来说,用户点击UI界面中的某个应用程序进行心率监测(比如,UI界面中的运动监测、连续测量等),在心率监测过程中可先获取ACC信号,以基于ACC信号决定是否触发房颤早搏检测功能。
在一个可能的示例中,应用程序在接收到用户的操作后,可以向系统发送触发动作,以使得系统调用加速度传感器(accelerometer)采集数据(比如ACC信号),检测手表的状态。应理解,此处是以加速度传感器为例进行说明,本申请实施例并不限于此。
步骤1,基于第二预设时长的ACC信号确定手表的状态。
手表的状态可能是静止状态,也可能是运动状态。静止状态是指用户在佩戴手表时,手臂未摆动时的状态。运动状态是指手表随着手臂摆动的状态。例如,用户佩戴手表的手臂大幅度摆动时,手表处于运动状态。
一种可能的实现方式,ACC信号可以是3轴(一般为x轴、y轴和z轴)数据。可选地,可以通过加速度传感器获得3轴数据,然后基于3轴数据计算每秒手表的状态。
一种可能的实现方式,可以通过设置运动数据的阈值(比如加速度阈值)来确定手表的状态。比如,可通过3轴数据计算手表的加速度值,如果加速度值大于或等于加速度阈值,则确定手表是运动状态;如果是加速度值小于加速度阈值,则确定手表是静止状态。
步骤2,判断第二预设时长中是否存在第三预设时长,手表都处于静止状态。
如果不存在第三预设时长,手表都处于静止状态,则执行步骤3,即退出收集ACC信号,以便等待下一个周期或者下次ACC信号的收集;如果存在第三预设时长手表都处于静止状态,则执行步骤4。
第三预设时长是累计时长。其中,第三预设时长接近于第二预设时长。示例性地,当第二预设时长与第三预设时长的差值足够小,比如,小于某一阈值(该阈值可以基于具体实现灵活选取)时,可以认为二者比较接近。
以时间单位表征预设时长进行表述,步骤2也可以表述为:判断(或者说统计)n个时间单位中是否累计有n 1个时间单位,手表都处于静止状态。n 1个时间单位组成的时长接近于n个时间单位组成的时长,在二者采用相同的时间单位表示时,n 1小于或等于n。
第三预设时长可以由n 1个时间单位组成。需要说明的是,此处的n 1是累计得到。换句话说,n 1个时间单位可以是连续的时间单位,也可以是不连续的时间单位,本申请实施例对此不作具体限定。
可以理解,n个时间单位与n 1个时间单位的最小时间单元可以相同,也可以不同,对此不做具体限定。比如,n的时间单位取分钟,n个时间单位是1分钟;n 1的时间单位是秒,n 1个时间单位58秒。又比如,二者的时间单位都是秒,n个时间单位是60秒,n 1个时间单位58秒。
以时间单位是秒为例进行说明,如果n秒中累计有n 1秒,检测到手表均是静止状态,则进入房颤早搏算法检测,执行第二阶段的流程。
上述步骤2还可以换另一种表述:如果在n秒内有n-n 1秒,检测到手表是运动状态,则退出ACC信号收集,或者说停止收集ACC信号,等待下一次或下一个周期收集ACC信号再判断状态。其中,n-n 1秒可以是连续的,也可以是不连续的。
经过第一阶段,如果在n 1个时间单位手表都处于静止状态,则可以进入第二阶段收集PPG信号。因此,可以避免持续获取PPG信号检测心律类型,有助于节省电子设备的功耗。
步骤3,退出收集(或者说采集)ACC信号。
示例性地,可以通过以下步骤4-步骤9实现第二阶段。
步骤4,获取第四预设时长的PPG信号和ACC信号。
第四预设时长可由L1个时间单位组成。时间单位的描述参考前文描述,此处不再赘述。比如,第四预设时长由L1秒组成。
这里通过采集PPG信号为后续分析心律类型提供准备。在采集PPG信号的同时,还需要采集ACC信号。需要说明的是,此处采集ACC信号的目的在于辅助PPG信号的采集。如果通过ACC信号确定出手表在第五预设时长内一直处于运动状态(例如,佩戴手表的手臂持 续在摆动,幅度较大),则此时可退出房颤早搏检测流程,或者说退出PPG信号和ACC信号的采集。
一种可能的实现方式,通过PPG传感器采集PPG信号。
一种可能的实现方式,通过加速度传感器采集ACC信号。
可选地,在采集到第四预设时长的PPG信号后,可对第四预设时长的PPG信号进行滤波处理,以便去除干扰信号(比如用户呼吸引起的干扰)或者噪声,得到滤波处理后的PPG信号。
可选地,滤波处理包括低通滤波和高通滤波。
步骤5.1,提取PPG信号的特征(比如,波峰)。
比如,可以基于滤波处理后的PPG信号提取波峰。
步骤5.2,基于ACC信号确定手表的状态。
此处确定手表的状态与前文步骤1类似,可以参考上文的相关描述,这里不再赘述。
步骤6,判断是否累计有第五预设时长一直处于运动状态。
如果累计有第五预设时长一直处于运动状态,则执行步骤7;如果累计没有第五预设时长一直处于运动状态,则执行步骤8。
第五预设时长由L2个时间单位组成。其中,所述第五预设时长大于所述第一预设时长。所述第五预设时长大于所述第二预设时长。
时间单位可以参考前文描述,此处不再赘述。以时间单位是秒为例描述,如果累计持续L2秒手表一直处于运动状态,则执行步骤7(跳出房颤早搏检测)。如果不是,则获取第四预设时长的PPG信号和ACC信号,直到采集时长满足所述第一预设时长,并执行步骤8。可选地,L2秒可以大于步骤2中的n-n 1秒。
步骤7,跳出房颤早搏检测。
跳出房颤早搏检测流程即停止PPG信号和ACC信号的收集,等待下一次ACC信号的判断。
步骤8,判断采集时长是否满足第一预设时长。
所述第一预设时长是指:在判断出第五预设时长内手表并非一直处于运动状态时,累计采集PPG信号的时长。所述第一预设时长大于所述第四预设时长。比如,第一预设时长是1分钟,第四预设时长是10秒。
如果采集时长满足第一预设时长,则停止获取PPG信号和ACC信号,并执行步骤9;如果采集时长不满足第一预设时长,则返回继续执行步骤4。
步骤9,获取第一预设时长的第一PPG信号。
第一预设时长可由L3个时间单位组成。时间单位可以参考前文描述,此处不再赘述。
具体地,在采集时长满足第一预设时长时,将多个第四预设时长的PPG信号的特征按照时间顺序拼接(或者说按照时间先后顺序进行排序)在一起,得到第一预设时长的第一PPG信号。比如,第一预设时长为1分钟,第四预设时长为6秒。
这里,将第一预设时长的第一PPG信号特征拼接在一起是指:将多个第四预设时长的PPG信号组成在一起。或者说,第一预设时长的第一PPG信号由多段PPG信号组成,每段PPG信号的时长为第四预设时长。可选地,每段PPG信号可以是经过滤波处理后的PPG信号。或者,每段PPG信号也可以是未滤波处理的PPG信号,而是在多段PPG信号拼接在一起后统一进行滤波处理,本申请实施例对此不作限定。
需要说明的是,此处的第一预设时长的第一PPG信号,不包括(持续第五预设时长一直处于运动状态)跳出房颤早搏检测时采集的PPG信号。
通过第二阶段,可以获得有效的PPG信号,从而为后续进行心律类型的检测提供准备。
综上,通过上述第一阶段和第二阶段,可获得第一预设时长的第一PPG信号。然后,可以进入第三阶段,即根据第一预设时长的第一PPG信号确定心律类型。
应理解,上述第一阶段与第二阶段可以是可选步骤,本申请实施例不作具体限定。
第三阶段:步骤10,根据第一预设时长的第一PPG信号确定心律类型。
心律类型包括:早搏、房颤、窦性心律、室性心动过速、二联律、三联律等。
后文会结合图3详细描述如何基于第一预设时长的第一PPG信号确定心律类型。
步骤11,输出结果。
步骤11输出的结果即通过步骤10获得的心律类型。
可以理解,结果可以某种形式显示在手机、手表或手环的显示屏上。
一种可能的实现方式,显示所述心律类型。比如,如图11中(2)所示的界面,手表中可以显示异常心律的次数。
一种可能的实现方式,用户可以在与手表或手环连接的终端上查看心律结果,比如,如图11中(3)所示的界面,用户可以在APP中的统计详情中查看统计的异常心律的次数。
可选地,图2中还可以包括其他流程。比如,在步骤0之前,还可以先确定手表的佩戴者是否为活体,或者说检测手表是否被用户佩戴。比如,可以结合红外检测技术以及活体佩戴算法,检测手表的佩戴者是否为活体。在用户佩戴了手表的情况下,会有心率监测需求,从而分析心律类型。
应理解,图2中的流程也只是示例性描述,并不对本申请实施例构成限定。
参考图3,以下结合图3详细描述第三阶段的具体过程。
图3示出了根据本申请实施例的确定心律类型的方法的示意性流程图。应理解,图3中的方法可以与图2中的流程组合使用,也可以独立使用,本申请实施例对此不作具体限定。如图3所示,所述方法包括:
步骤301,根据第一预设时长的第一PPG信号确定多个心率(heart rate,HR)值。
由前文可知,第一预设时长的第一PPG信号可由多段PPG信号组成,每段PPG信号的时长为第四预设时长。相应的,此处的多个心率值即为:基于该多段PPG信号确定的心率值。比如,假设第一预设时长是1分钟,第四预设时长是10秒,那么该多个心率值是指:第一段10秒PPG信号、第二段10秒PPG信号….、第六段10秒PPG信号组成的PPG信号,得到的多个心率值。
一种实现方式,基于第一预设时长的第一PPG信号的波峰提取脉搏间隔(R-R interval,RRI),然后根据每个RRI计算心率。RRI是指两个相邻波峰的时间间隔。其中,RRI可以理解为两个R波之间的间隔。R波是心电图学的概念,指心电趋势为向上的波,也可以理解为包含波峰的一种波。
示例性地,心率可采用以下公式计算:
Figure PCTCN2022140421-appb-000001
其中,HR表示心率值,RRI表示间隔。
应理解,此处计算心率的方式只是举例描述,本申请实施例并不限于此,也可以有其他计算心率的方式。
步骤302,根据所述多个心率值确定每两个相邻心率的差值,所述每两个相邻心率的差值用于生成心率差值轨迹图。
心率差值可以表示为ΔHR。可以理解,心率差值可能是正值,也可能是负值。
在本申请实施例中,利用多个心率差值以及心率差值阈值绘制心率差值轨迹图,以达到分析心律失常类型的目的。
可选地,所述心率差值阈值可为先验值,比如,心率差值的阈值设定为6或-6。
心率差值轨迹图是散点分布图,反应了各个心率差值组成的轨迹的分布特点。比如,心率差值轨迹图采用潘凯图(或称作庞卡莱图)(Poincaré plot)。
一种实现方式,利用心率差值生成Poincaré plot图。比如,若得到n+1个心率差值(分别为:ΔHR 1,…,ΔHR n+1),利用该n+1个心率差值绘制Poincaré plot图,以ΔHR n为纵坐标,ΔHR n+1为横坐标画Poincaré plot图,以原点为中心,原点在上下左右四个方向分别以心率差值的阈值为边界,将Poincaré plot图划分为9个区域,分别标识为:区域0、区域1、区域2、区域3…区域8。后文将会结合具体附图进行描述。
步骤303,基于所述心率差值轨迹图获取心率差值轨迹的参数,所述心率差值轨迹的参数包括以下一项或多项参数:角度、个数、角度标准差、距离标准差。
具体地,在得到心率差值轨迹图后,可以计算图中各个心率差值轨迹的相关参数,包括但不限于以下参数:轨迹的角度、轨迹落在相应区域的个数、轨迹的角度标准差、轨迹的距离标准差。
所述心率差值轨迹图中包括有多个不同的轨迹类型。心率差值轨迹可通过Poincaré plot图的区域编号表示。
一种可能的实现方式,心率差值的轨迹可以表示为落在区域A的心率差值、落在区域B的心率差值和落在区域C的心率差值组成的三角形。比如,轨迹表示为A-B-C。此处提到的区域具体可以是前文提到的Poincaré plot图中划分的区域。
心率差值的轨迹的角度是指上述三角形中∠ABC的角度,该角度的顶点是落在区域B中的心率差值。
以轨迹1-2-3为例进行说明(后续其他轨迹的解释可以参考此处的描述理解),轨迹1-2-3表示心率差值的连线经过区域1、区域2和区域3。比如,落在区域1中的心率差值a,与落在区域2中的心率差值b连线,随后落在区域2中的心率差值b与落在区域3中的心率差值c进行连线,得到的轨迹即为轨迹1-2-3,其中,心率差值a、心率差值b和心率差值c是按照时间先后顺序排序。
轨迹1-2-3的角度表示为θ 123。θ 123是∠123的角度,∠123表示以落在区域2的心率差值为顶点的角度。
心率差值的轨迹的个数是指心率差值落在相应区域的数量。比如,轨迹A-B-C的个数是指:心率差值落在区域A和区域C附近的数量。又比如,轨迹A-B-C的个数是指:心率差值落在区域A、区域B和区域C附近的数量。
举例来说,轨迹1-2-3的个数可表示为num 123。num 123是指落在区域1和区域3附近的心率差值的个数。
心率差值的角度标准差指的是角度的标准差。角度的标准差是基于角度的平均值和标准值进行计算得到的。标准差的计算方式可参考现有描述。
举例来说,上述轨迹1-2-3的角度标准差表示为sd 123。sd 123可以采用下式计算:
Figure PCTCN2022140421-appb-000002
其中,
Figure PCTCN2022140421-appb-000003
是序列x 1,x 2,…,x n的均值。可以理解,如果是计算角度的标准差,则上式中x代入角度的取值;如果计算距离的标准差,则上式中x代入距离的取值。
一种可能的实现方式,心率差值的轨迹也可以表示为落在区域E的心率差值、落在区域F的心率差值是连线,即直线E-F。
对于心率差值的轨迹是直线的情形,心率差值轨迹的角度可以理解为将直线E-F作为斜率时对应的角度。
对于心率差值的轨迹是直线的情形,心率差值轨迹的距离标准差是指:原点(0,0)到直线的距离的标准差。
举例来说,sd_d 24表示原点到直线2-4的距离的标准差。
示例性地,心率差值轨迹可能存在以下情形:第一轨迹(1-2-3)、第二轨迹(6-4-5)、第三轨迹(1-0-3)、第四轨迹(6-0-5)、第五轨迹(2-4)、第六轨迹(4-2)、第七轨迹(1-2)的参数、第八轨迹(2-3)、第九轨迹(6-4)和第十轨迹(4-5)。
示例性地,第一轨迹的角度参数表示为θ 123。第二轨迹的角度参数表示为θ 645。第三轨迹的角度参数表示为θ 103。第四轨迹的角度参数表示为θ 605。第五轨迹的角度参数表示为θ 24。第六轨迹的角度参数表示为θ 42。第七轨迹的角度参数表示为θ 12。第八轨迹的角度参数表示为θ 23。第九轨迹的角度参数表示为θ 64。第十轨迹的角度参数表示为θ 45
示例性地,第一轨迹的个数参数表示为num 123。第二轨迹的个数参数表示为num 645。第三轨迹的个数参数表示为num 103。第四轨迹的个数参数表示为num 605。第五轨迹的个数参数表示为num 24。第六轨迹的个数参数表示为num 42。第七轨迹的个数参数表示为num 12。第八轨迹的个数参数表示为num 23。第九轨迹的个数参数表示为num 64。第十轨迹的个数参数表示为num 45
示例性地,第一轨迹的角度标准差参数表示为sd 123。第二轨迹的角度标准差参数表示为sd 645。第三轨迹的角度标准差参数表示为sd 103。第四轨迹的角度标准差参数表示为sd 605。第五轨迹的角度标准差参数表示为sd 24。第六轨迹的角度标准差参数表示为sd 42。第七轨迹的角度标准差参数表示为sd 12。第八轨迹的角度标准差参数表示为sd 23。第九轨迹的角度标准差参数表示为sd 64。第十轨迹的角度标准差参数表示为sd 45
示例性地,原点(0,0)到第五轨迹(2-4)的距离的标准差参数表示为sd_d 24。原点(0,0)到第六轨迹(4-2)的距离的标准差参数表示为sd_d 42
可选地,所述心率差值轨迹的参数还包括第一概率参数和第一数量。第一概率参数是指落在区域0中的概率的参数,比如,第一概率参数表示为r zero。第一数量是指落在区域0以外的个数,比如,第一数量表示为num outside
需要说明的是,不同的心律类型,其心率差值轨迹的特点是不同的,或者说有各自的规律。本申请实施例结合上述各个心率差值轨迹的参数,可以判定第一预设时长的PPG信号属于哪种类型的心律。
可选地,步骤304,根据第一预设时长的第一PPG信号确定第一参数,并且确定所述第一参数是否大于或等于第一阈值。
此处比较第一参数与第一阈值的大小关系在于进行初步房颤识别。如果第一参数大于或等于第一阈值,那么此时发生房颤的概率大于非房颤的概率,则进入房颤识别窗口。如果第一参数小于第一阈值,那么此时发生房颤的概率小于非房颤的概率,则进入非房颤识别窗口。 这样做的好处在于可以将数据流分流,以节省后续判断流程,从而节省电子设备的功耗。比如,如果是非房颤识别窗口,那么后续可能会涉及到判断是否发生了二联律或三联律的流程,而房颤识别窗口中的判断流程则不会涉及。
当然,即使进入了房颤识别窗口,并非代表心律类型一定就是房颤,还需结合心率差值轨迹的参数进行进一步判断,以确定心律类型。类似地,即使进入了非房颤识别窗口,并非代表心律类型一定就是非房颤,还需结合心率差值轨迹的参数进行进一步判断,以确定心律类型,从而提高准确性。
可选地,根据第一预设时长的PPG信号确定第一参数包括:根据第一预设时长的PPG信号的波峰提取多个RRI;根据多个RRI计算每相邻两个RRI的差值,所述每相邻两个RRI的差值用于确定第一参数。
为便于描述,可将相邻两个RRI的差值(可以简称为RRI差值)表示为ΔRRI。
举例来说,可以基于多个ΔRRI计算均方根和样本熵,然后基于均方根、样本熵确定第一参数。
一种可能的实现方式,第一参数采用下式计算:
Comb=w×RMSSD+(1-w)×SampEn
其中,Comb表示第一参数,w表示权重值,RMSSD为RRI差值的均方根,SampEn为RRI的样本熵。0≤W≤1。通常,RMSSD的值大于SampEn,所以RMSSD的权重小于SampEn的权重。
一种实现方式,RMSSD可以采用下式计算:
Figure PCTCN2022140421-appb-000004
其中,N表示ΔRRI的个数,ΔRRI表示相邻RRI的差值。
样本熵是用于衡量RRI序列复杂性的指标。样本熵通过度量RRI序列产生新模式的概率大小,来衡量RRI序列的复杂性。新模式产生的概率越大,序列的复杂性就越大。
示例性地,在Matlab中,可以通过调用SampEn函数计算样本熵。Matlab代码示例如下:
function SampEnVal=SampEn(data,m,r)
可以理解,上述SampEn函数的定义可以基于具体实现进行定义,本申请实施例不作具体限定。
应理解,上述关于均方根和样本熵的描述只是示例性描述,本申请实施例并不限于此。
可以理解,步骤304可以是可选步骤。作为一种可能的实现方式,也可以不需要步骤304,即利用心率差值轨迹的参数确定第一PPG信号的心律类型即可。
步骤305.1,在所述第一参数大于或等于第一阈值时,基于所述心率差值轨迹的参数进行第一识别处理(或者说进入房颤标签窗口进行识别处理),确定所述第一PPG信号的心律类型,所述心律类型包括以下任一项:早搏、房颤、窦性心律、室性心动过速。
换句话说,在进入房颤标签窗口进行识别处理时,可以判断不同轨迹的参数是否满足相应的预设条件(比如,判断参数与相应阈值的关系),以识别心律类型。
以下描述关于第一识别处理的各种实现方式。
一种可能的实现方式,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第一预设条件,所述心律类型为早搏。
可选地,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第一预设条件,包括: 第一轨迹的个数参数和第二轨迹的个数参数之和大于或等于第一数量阈值,且,第一轨迹的角度标准差参数和第二轨迹的角度标准差参数都小于或等于第一角度标准差阈值。
举例来说,当(num 123+num 645)≥Th_num1,sd 123、sd 645都小于或等于阈值Th_sd1,则为早搏信号。
图4示出了早搏的心率差值轨迹的示意图。如图4所示,在图4中,以ΔHR n为纵坐标,ΔHR n+1为横坐标画Poincaré plot图,以原点为中心,原点在上下左右四个方向分别以心率差值的阈值为边界,将Poincaré plot图划分为9个区域,分别为:区域0、区域1、区域2…区域8。应理解,后文图5至图10的绘制原则与图4类似,可以参考此处的描述,下文将不再赘述。
从图4可知,早搏轨迹像个三角形,有重叠。早搏是根据sd 123、sd 645、num 123、num 645进行识别的。
一种可能的实现方式,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第二预设条件,且,第一概率参数满足第三预设条件时,所述心律类型为房颤。
可选地,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第二预设条件,包括:第一轨迹的个数参数和第二轨迹的个数参数之和大于或等于第一数量阈值,且,第一轨迹的角度标准差参数和第二轨迹的角度标准差参数至少有一个大于第一标准差阈值。
可选地,第一概率参数满足第三预设条件,包括:第一概率参数小于第一概率阈值。
举例来说,当(num 123+num 645)≥Th_num1,sd 123、sd 645有至少一个大于阈值Th_sd1,且,r zero<Th_r1,则为房颤。
图5示出了正常房颤的心率差值轨迹的一个示意图。图6示出了快速房颤的心率差值轨迹的一个轨迹示意图。
上述图5与图6均为房颤的心率差值轨迹的示意图。从图5和图6可知,房颤的轨迹比价随机,杂乱无章,很少重叠,因此sd 123、sd 645比较大。
一种可能的实现方式,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第二预设条件,且,第一概率参数不满足第三预设条件时,所述心律类型为窦性心律。
可选地,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第二预设条件,包括:第一轨迹的个数参数和第二轨迹的个数参数之和大于或等于第一数量阈值,且,第一轨迹的角度标准差参数和第二轨迹的角度标准差参数至少有一个大于第一角度标准差阈值。
可选地,第一概率参数不满足第三预设条件,包括:第一概率参数不小于第一概率阈值,或者说第一概率参数大于或等于第一概率阈值。
举例来说,当(num 123+num 645)≥Th_num1时,如果sd 123、sd 645有至少一个大于阈值Th_sd1时,且,r zero大于或等于Th_r1,则为窦性心律。
图7示出了窦性心律的心率差值轨迹的一个示意图。从图7可知,窦性心律的点主要集中在区域0处。窦性心律可以根据r zero进行识别。另外,窦性心律也可以根据num outside进行识别。比如,在后文第二识别处理的实现方式中,窦性心律的相关实现方式可以根据num outside进行识别。后面将会详细描述相关约束条件。
一种可能的实现方式,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第四预设条件,所述第一轨迹(1-2-3)的参数和第三轨迹(1-0-3)的参数满足第五预设条件;或者,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第四预设条件,第二轨迹(6-4-5)的参数和第四轨迹(6-0-5)的参数满足第六预设条件,所述心律类型为室性心动过速。
可选地,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第四预设条件,包括:第一轨迹的个数参数和第二轨迹的个数参数之和小于第一数量阈值。
可选地,第一轨迹(1-2-3)的参数和第三轨迹(1-0-3)的参数满足第五预设条件,包括:第一轨迹的个数参数和第三轨迹的个数参数之和大于或等于第二数量阈值,第一轨迹的角度标准差参数和第三轨迹的角度标准差参数都小于或等于第二角度标准差阈值,且第一轨迹的角度均值参数小于第三轨迹的角度均值参数。
可选地,第二轨迹(6-4-5)的参数和第四轨迹(6-0-5)的参数满足第六预设条件,包括:第二轨迹的个数参数和第三轨迹的个数参数之和大于或等于第二数量阈值,第二轨迹的角度标准差参数和第三轨迹的角度标准差参数都小于或等于第二角度标准差阈值,且第二轨迹的角度均值参数小于第四轨迹的角度均值参数。
举例来说,当(num 122+num 645)<Th_num1时:当(num 123+num 103)≥Th_num2,且sd 123、sd 103都小于或等于阈值Th_sd2,且meanθ 123<meanθ 103,或者当(num 645+num 605)≥Th_num2,且sd 645、sd 605都小于或等于阈值Th_sd2,且meanθ 645<meanθ 605,则为室性心动过速。其中,mean表示求平均值。
图8示出了室性心动过速的心率差值轨迹的示意图。从图8中(1)可知,室性心动过速的轨迹集中在‘1-2-3’、‘1-0-3’。室性心动过速可根据θ 123、θ 103、num 123、num 103、sd 123、sd 103识别。从图8中(2)可知,室性心动过速的轨迹集中在‘6-4-5’、‘6-0-5’。室性心动过速可根据θ 645、θ 605、num 645、num 605、sd 645、sd 605进行识别。
一种可能的实现方式,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第四预设条件,且第一概率参数满足第七预设条件时,所述心律类型为房颤。
可选地,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第四预设条件,包括:第一轨迹的个数参数和第二轨迹的个数参数之和小于第一数量阈值。
可选地,第一概率参数满足第七预设条件,包括:第一概率参数小于第二概率阈值。
举例来说,当(num 123+num 645)<Th_num1时,且,r zero<Th_r2,则为房颤。
一种可能的实现方式,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第四预设条件,且第一概率参数不满足第七预设条件时,所述心律类型为窦性心律。
可选地,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第四预设条件,包括:第一轨迹的个数参数和第二轨迹的个数参数之和小于第一数量阈值。
可选地,第一概率参数不满足第七预设条件,包括:第一概率参数不小于第二概率阈值,或者说,第一概率参数大于或等于第二概率阈值。
举例来说,当(num 123+num 645)<Th_num1时,且,r zero≥Th_r2,则为窦性心律。
步骤305.2,在所述第一参数小于所述第一阈值时,基于所述心率差值轨迹的参数进行第二识别处理(或者说进入非房颤标签窗口进行识别处理),确定所述第一PPG信号的心律类型,所述心律类型包括以下任一项:早搏、房颤、窦性心律、室性心动过速、二联律、三联律。
换句话说,在进入非房颤标签窗口进行识别处理时,可以判断不同轨迹的参数是否满足相应的预设条件(比如,判断参数与相应阈值的关系),以识别心律类型。
以下描述关于第二识别处理的各种实现方式。
一种可能的实现方式,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第一预设条件,所述心律类型为早搏。
可选地,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第一预设条件,包括:第一轨迹的个数参数和第二轨迹的个数参数之和大于或等于第一数量阈值,且,第一轨迹的角度标准差参数和第二轨迹的角度标准差参数都小于或等于第一角度标准差阈值。
举例来说,当(num 123+num 645)≥Th_num1时,如果sd 123、sd 645都小于或等于阈值Th_sd1,则为早搏信号。
一种可能的实现方式,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第二预设条件,所述心律类型为房颤。
可选地,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第二预设条件,包括:第一轨迹的个数参数和第二轨迹的个数参数之和大于或等于第一数量阈值,且,第一轨迹的角度标准差参数和第二轨迹的角度标准差参数至少有一个大于第一角度标准差阈值。
举例来说,当(num 123+num 645)≥Th_num1,sd 123、sd 645有至少一个大于阈值Th_sd1,则为房颤。可以看到,当(num 123+num 645)≥Th_num1时,此处判断房颤的条件与步骤305.1处判断房颤的条件的区别在于:此处无需结合第一概率参数来判断。
一种可能的实现方式,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第四预设条件,所述第一轨迹(1-2-3)的参数和第三轨迹(103)的参数满足第五预设条件;或者,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第四预设条件,第二轨迹(6-4-5)的参数和第四轨迹(6-0-5)的参数满足第六预设条件,所述心律类型为室性心动过速。
可选地,此处判断室性心动过速的条件与步骤305.1处判断室性心动过速的条件可以相同,具体描述可以参考前文描述。
举例来说,当(num 123+num 645)<Th_num1时:如果(num 123+num 103)≥Th_num2,且sd 123、sd 103都小于或等于阈值Th_sd2,且meanθ 123<meanθ 103,或者如果(num 645+num 605)≥Th_num2,且sd 645、sd 605都小于或等于阈值Th_sd2,且meanθ 645<meanθ 605,则为室性心动过速。
一种可能的实现方式,第五轨迹(2-4)的参数和第六轨迹(4-2)的参数满足第八预设条件,且所述第五轨迹(2-4)的距离标准差参数和所述第六轨迹(4-2)的距离标准差参数满足第九预设条件,所述心律类型为二联律。
可选地,第五轨迹(2-4)的参数和第六轨迹(4-2)的参数满足第八预设条件,包括:第五轨迹的个数参数和第六轨迹的个数参数中的最小值大于或等于第三数量阈值,且第五轨迹的角度标准差参数和第六轨迹的角度标准差参数都小于或等于第三角度标准差阈值。
可选地,第五轨迹(2-4)的距离标准差参数和第六轨迹(4-2)的距离标准差参数满足第九预设条件,包括:第五轨迹的距离标准差参数小于或等于第一距离标准差阈值,第六轨迹的距离标准差参数小于或等于第一距离标准差阈值。
举例来说,当min(num 24,num 42)≥Th_num3,sd 24≤Th_sd3,sd 42≤Th_sd3,如果sd_d 24≤Th_d1,sd_d 42≤Th_d1,则为二联律。
图9示出了早搏伴有二联律的心率差值轨迹的示意图。从图9中可知,二联律有重叠,主要集中在‘2-4’、‘4-2’区域。二联律可以根据θ 24、θ 42、num 24、num 42、sd 24、sd 42、sd_d 24、sd_d 42识别。
因此,基于本申请实施例的检测心律的方法,可以准确识别出二联律,提升用户体验。
一种可能的实现方式,第五轨迹(2-4)的参数和第六轨迹(4-2)的参数满足第八预设条件,且所述第五轨迹(2-4)的距离标准差参数和所述第六轨迹(4-2)的距离标准差参数不满足第九预设条件,所述心律类型为三联律。
可选地,第五轨迹(2-4)的参数和第六轨迹(4-2)的参数满足第八预设条件的可能实施方式,可以参考上文判断心律类型为二联律时的描述,此处不再赘述。
可选地,第五轨迹(2-4)的距离标准差参数和第六轨迹(4-2)的距离标准差参数不满足第九预设条件,包括:第五轨迹的距离标准差参数大于第一距离标准差阈值,第六轨迹的距离标准差参数大于第一距离标准差阈值。
举例来说,当min(num 24,num 42)≥Th_num3,sd 24≤Th_sd3,sd 42≤Th_sd3,如果sd_d 24>Th d1,sd_d 42>Th_d1,则为三联律。
图10示出了早搏伴有三联律的心率差值轨迹的示意图。从图10中可知,三联律轨迹也有重叠,主要集中在‘2-4’、‘4-2’区域。三联律可以根据θ 24、θ 42、num 24、num 42、sd 24、sd 42、sd_d 24、sd_d 42识别。
因此,基于本申请实施例的检测心律的方法,可以准确识别出三联律,提升用户体验。
一种可能的实现方式,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第二预设条件,且第七轨迹(1-2)的参数、第八轨迹(2-3)的参数、第九轨迹(6-4)的参数和第十轨迹(4-5)的参数满足第十预设条件时,所述心律类型为早搏。
可选地,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第二预设条件,包括:第一轨迹的个数参数和第二轨迹的个数参数之和大于或等于第一数量阈值,且,第一轨迹的角度标准差参数和第二轨迹的角度标准差参数至少有一个大于第一标准差阈值。
可选地,第七轨迹(1-2)的参数、第八轨迹(2-3)的参数、第九轨迹(6-4)的参数和第十轨迹(4-5)的参数满足第十预设条件,包括:第七轨迹的角度标准差参数、第八轨迹的角度标准差参数、第九轨迹的角度标准差参数和第十轨迹的角度标准差参数中的最大值小于或等于第四角度标准差阈值。
举例来说,当(num 123+num 645)≥Th_num1,sd 123、sd 645有至少一个大于阈值Th_sd1,且max(sd 12,sd 23,sd 64,sd 45)≤Th_sd4,则为早搏信号。
一种可能的实现方式,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第二预设条件,且第七轨迹(1-2)的参数、第八轨迹(2-3)的参数、第九轨迹(6-4)的参数和第十轨迹(4-5)的参数不满足第十预设条件,且,第一概率参数满足第十一预设条件或者第一数量满足第十二预设条件时,所述心律类型为房颤。
可选地,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第二预设条件的可能实施方式,可以参考上文描述,此处不再赘述。
可选地,第七轨迹(1-2)的参数、第八轨迹(2-3)的参数、第九轨迹(6-4)的参数和第十轨迹(4-5)的参数不满足第十预设条件,包括:第七轨迹的角度标准差参数、第八轨迹的角度标准差参数、第九轨迹的角度标准差参数和第十轨迹的角度标准差参数中的最大值,大于第四角度标准差阈值。
可选地,第一概率参数满足第十一预设条件,包括:第一概率参数小于第三概率阈值。
可选地,第一数量满足第十二预设条件,包括:第一数量大于或等于第四数量阈值。
举例来说,当(num 123+num 645)≥Th_num1,sd 123、sd 645有至少一个大于阈值Th_sd1,且max(sd 12,sd 23,sd 64,sd 45)>Th_sd4,且,r zero<Th_r3或者num outside≥Th_num4时,则为房颤。
一种可能的实现方式,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第二预设条件,且第七轨迹(1-2)的参数、第八轨迹(2-3)的参数、第九轨迹(6-4)的参数和第十轨迹(4-5)的参数不满足第十预设条件,且,第一概率参数不满足第十一预设条件或者第 一数量不满足第十二预设条件时,所述心律类型为窦性心律。
可选地,第一轨迹(1-2-3)的参数和第二轨迹(6-4-5)的参数满足第二预设条件的可能实施方式,可以参考上文描述,此处不再赘述。
可选地,第七轨迹(1-2)的参数、第八轨迹(2-3)的参数、第九轨迹(6-4)的参数和第十轨迹(4-5)的参数不满足第十预设条件的可能实施方式,可以参考上文描述,此处不再赘述。
可选地,第一概率参数不满足第十一预设条件,包括:第一概率参数不小于第三概率阈值,或者说,第一概率参数大于或等于第三概率阈值。
可选地,第一数量不满足第十二预设条件,包括:第一数量小于第四数量阈值。
举例来说,当(num 123+num 645)≥Th_num1,sd 123、sd 645有至少一个大于阈值Th_sd1,且max(sd 12,sd 23,sd 64,sd 45)>Th_sd4,且r zero≥Th_r3或者num outside<Th_num4时,为窦性心律。
此处作统一说明,上面关于各个预设条件的可能实现方式或者举例并不对本申请实施例构成限定。
应理解,各个实现方式中关于“等于”情形的划分,只是示例性描述,不对本申请实施例的保护范围构成限定。举例来说,在某些情况下,“等于”的情形与“大于”情形属于一类,事实上作为另一种实现方式,也可以将“等于”的情形划分到“小于”的情形,本申请实施例对此不作具体限定。比如,上文中的(num 123+num 645)≥Th_num1只是一种可能的实现方式,作为另一种实现方式,“(num 123+num 645)=Th_num1”的情形也可以划分到“(num 123+num 645)<Th_num1”的情形中。
在本申请实施例中,通过获取第一预设时长的PPG信号,根据第一预设时长的PPG信号的心率差值的变化轨迹,获得轨迹的参数(包括但不限于:角度、个数、角度标准差、距离标准差),然后基于轨迹的参数确定心律的类型。相比于根据每个心率(或者说心搏的波形形态)进行识别,本申请实施例是基于一段信号的心率(即第一预设时长的PPG信号)进行识别的,这样能够提高识别早搏或房颤的准确性,降低将早搏识别为房颤的概率,提升用户体验。
为了便于理解,以下结合图11和图12中的界面进行描述。
图11是根据本申请实施例的检测心律的一个界面示例图。
如图11中(1)所示,用户在佩戴手表的状态下,可以点击手表界面中的心率应用程序。心率应用程序可以执行连续心率测量。应理解,图11中(1)的界面只是示出了部分应用程序的图标,比如,天气,血氧饱和度,这并不对本申请实施例构成限定。
在一种可能的实现方式中,在手表与手机连接的情况下,用户可以通过手机开启连续测量心率的选项。在开启连续心率测量的选项后,手表会24小时执行用户心率监测,可以显示24小时的心率曲线以及静息心率。
在连续测量心率的情况下,手表界面可以如图11中(2)所示。在图11中(2)中所示的界面,手表可以向用户呈现某一时间段的心率曲线、静息心率以及异常心律的次数。
作为一个可能的实施例,还可以通过手机显示心率的统计详情。手机界面可以如图11中(3)所示,在统计详情界面中,可以向用户展示24小时的心率曲线、平均心率、不规则心律的次数、未见异常的次数、不规则心律比例的统计图等信息。
可以理解,图11中的各个界面只是示例性描述,本申请实施例并不限于此。
图12示出了风险提示的界面示意图。作为一种可能的实现方式,当检测到异常心律时, 可以向用户发出提示信息,以便用户能够及时获知心律异常的风险。如图12中(1)所示,手环的界面中可以向用户发出提示框901(或提示窗口),提示框901中显示“您当前有房颤风险!”。用户在看到提示框901后,可以点击902关闭该提示框901。
作为一种可能的实现方式,当手机与手表或手环连接时,手机也可以向用户发出提示信息。类似地,如图12中(2)所示,手机的界面中也可以向用户发出提示框903,提示框903中显示“您当前有房颤风险!”。用户在看到提示框903后,可以点击904关闭该提示框903。
可以理解,图12中的界面只是示例性描述,本申请实施例并不限于此。
以下结合图13和图14描述分别本申请实施例应用的软件系统和硬件架构。
图13是本申请实施例应用的软件系统的一个示意图。如图13所示,采用分层架构的软件系统分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,软件系统可以分为六层,从上至下分别为应用程序层、系统服务层、算法库(library)、硬件抽象层HAL、内核层(kernel)以及驱动层(driver)。
如图13所示,应用程序层包括表盘、运动记录、通话、锻炼。
可以理解,图13中示出的是部分应用程序,事实上应用程序层还可以包括其他应用程序,本申请对此不作限定。比如应用程序层还包括信息、闹钟、天气、秒表、指南针、计时器、手电筒、日历、支付宝等应用程序。
如图13所示,系统服务层包括计步、心率服务、卡路里、心脏健康等。
算法库可以包括多个算法模块。比如,如图13所示,算法库包括房颤检测算法模块、睡眠算法、佩戴算法等。
房颤检测算法模块用于确定心律类型,以便准确识别房颤或早搏。作为一种可能的实现方式,所述房颤检测算法模块用于执行前文图3中所示的方法。
佩戴算法用于检测手表的佩戴状态。
如图13所示,硬件抽象层包括C++库、存储、显示、触控等。C++库用于为算法库提供系统资源。
可以理解,图13中示出的硬件抽象层是部分内容,事实上硬件抽象层HAL还可以包括其他内容,比如蓝牙模块、GPS模块等。
如图13所示,内核层包括OS kernel。OS kernel用于执行管理和调度。
驱动层用于驱动硬件资源。驱动层中可以包括多个驱动模块。如图13所示,驱动层包括PPG驱动、LCD驱动和马达等。
举例来说,用户可以点击锻炼应用程序。在用户运动时,锻炼应用程序可以通过界面向用户实时显示心率。以下结合图13描述本申请实施例检测心律的过程。当用户点击心率应用程序时,应用程序层接收到用户的操作后,调取系统服务层中的心率服务。OS kernel调度ACC驱动,以使ACC传感器采集ACC信号,以确定是否进入房颤检测流程。OS kernel调度PPG驱动,以使PPG传感器亮灯采集数据(或者说PPG信号)。PPG驱动可以将采集的数据返回给OS kernel。OS kernel将采集到的数据送到算法库中,以便执行相关计算。算法库中的佩戴算法模块基于PPG信号检测是否佩戴,并将佩戴结果上报给OS kernel。如果检测到用户佩戴手表,则OS kernel触发执行心率监测服务。OS kernel将PPG传感器采集的PPG信号发送给房颤检测算法模块。房颤检测算法模块基于PPG信号计算心率,以及,心率的置信度。房颤检测算法模块将心律类型返回给OS kernel。OS kernel将心律类型上报给应用程序层。应用程序层将OS kernel上报的心律类型显示在UI界面。
图14示出了一种适用于本申请实施例的装置500的结构示意图。装置500可以是手表、腕带、可穿戴电子设备或其他用于测量心率的可穿戴设备等等,本申请实施例对装置500的具体类型不作任何限制。
如图14所示,装置500可以包括射频电路(radio frequency,RF)210、存储器220、其他输入设备230、触摸屏240、PPG模组251、蜂鸣器252、加速度传感器253、音频电路260、I/0子系统270、处理器280、以及电源290等部件。
需要说明的是,图14所示的结构并不构成对装置500的具体限定。在本申请另一些实施例中,装置500可以包括比图14所示的部件更多或更少的部件,或者,装置500可以包括图14所示的部件中某些部件的组合,或者,装置500可以包括图14所示的部件中某些部件的子部件。图14示的部件可以以硬件、软件、或软件和硬件的组合实现。
RF电路210可用于收发信息,或通话过程中信号的接收和发送。示例性地,将基站的下行信息接收后,给处理器280处理,以及,将上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,RF电路210还可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、长期演进(long term evolution,LTE)、电子邮件、短消息服务(short messaging service,SMS)等。
存储器220可用于存储软件程序,处理器280通过运行存储在存储器220的软件程序,从而执行装置500的各种功能。存储器220可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据装置500的使用所维护的数据(比如音频数据、电话本等)等。此外,存储器220可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
其他输入设备230可用于接收输入的数字或字符信息,以及产生与装置500的用户设置以及功能控制有关的键信号输入。具体地,其他输入设备230可包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)等中的一种或多种。其他输入设备230与I/O子系统270的其他输入设备控制器271相连接,在其他输入设备控制器271的控制下与处理器280进行信号交互。
触摸屏240可用于显示由用户输入的信息或提供给用户的信息以及装置500的各种菜单,还可以接受用户输入。具体的触摸屏240可包括显示面板241,以及触控面板242。其中显示面板241可以采用液晶显示屏(liquid crystal display,LCD)、有机发光二极管(organic light-emitting diode,OLED)、有源矩阵有机发光二极体(active-matrix organic light-emitting diode,AMOLED)、柔性发光二极管(flex light-emitting diode,FLED)、迷你发光二极管(mini light-emitting diode,Mini LED)、微型发光二极管(micro light-emitting diode,Micro LED)、微型OLED(Micro OLED)或量子点发光二极管(quantum dot light emitting diodes,QLED)。
触控面板242,也称为显示屏、触敏屏等,可收集用户在其上或附近的接触或者非接触操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板242上或在触控面板242 附近的操作,也可以包括体感操作;该操作包括单点控制操作、多点控制操作等操作类型),并根据预先设定的程序驱动相应的连接装置。可选地,触控面板242可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的手势,也就是触摸方位、姿势,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成处理器能够处理的信息,再送给处理器280,并能接收处理器280发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板242,也可以采用未来发展的任何技术实现触控面板242。进一步的,触控面板242可覆盖显示面板241,用户可以根据显示面板241显示的内容(该显示内容包括但不限于:软键盘、虚拟鼠标、虚拟按键、图标等等),在显示面板241上覆盖的触控面板242上或者附近进行操作,触控面板242检测到在其上或附近的操作后,通过I/O子系统270传送给处理器280以确定用户输入,随后处理器280根据用户输入通过I/O子系统270在显示面板241上提供相应的视觉输出。虽然在图14中,触控面板242与显示面板241是作为两个独立的部件来实现装置500的输入和输入功能,但是在某些实施例中,可以将触控面板242与显示面板241集成而实现装置500的输入和输出功能。
在显示面板241上可以在处理器280的程序控制下提供佩戴方式、佩戴状态等的提示信息,检测的心率的视觉(数字、表格、图形)或可听(合成语音或音调)形式的历史信息。作为一个非限制例子,可以显示视觉曲线图,该视觉曲线图示出在先前的固定时间间隔(例如,1小时)期间或者在锻炼时间段已经结束(如由来自用户的其指示确定)之后每5分钟计算的心率。在显示面板241上还可以在处理器280的控制下提供先前的一个时间段或多个时间段期间的平均心率信息或心率的统计信息。作为另一例子,在显示面板241上可以将当前心率值提供为在进行中的锻炼计划的过程期间周期性地(例如,每一秒)显示给用户的“实时”心率值。
PPG模组251,该PPG模组包括光发射器和光传感器。通过PPG模组测量心率是基于物质对光的吸收原理,电子设备的PPG模组中的光发射器照射皮肤的血管,光传感器接收从皮肤透出来的光线。由于血管内不同容积的血液对绿光吸收不同,在心脏跳动时,血液流量增多,绿光的吸收量会随之变大;处于心脏跳动的间隙时血流会减少,吸收的绿光也会随之降低。因此,根据血液的吸光度可以测量心率。在操作中,光发射器可以将光束传送到用户的皮肤,并且该光束可以被用户的皮肤反射并且被光传感器接收。光传感器可以将该光转换为指示其强度的电信号。该电信号可以是模拟形式,并且可以被模/数转换器转换为数字形式。来自模/数转换器的数字信号可以是馈送给处理器280的时域PPG信号。加速度计的输出还可以使用模/数转换器被转换为数字形式。处理器280可以从光传感器接收数字化的信号,并且数字化加速度计的加速度计输出信号,并且可以处理这些信号以将心率或佩戴状态输出信号提供给存储设备、视觉显示器、可听信号器、触摸屏、或其它输出指示器。
装置500还可包括至少一种传感器,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板241的亮度,接近传感器可在装置500移动到耳边时,关闭显示面板241和/或触控面板242的背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于振动识别相关功能(比如计步器、敲击)等;至于装置500还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
装置500还可包括蜂鸣器252,该蜂鸣器252根据处理器280的指示可以产生振动。
音频电路260可提供用户与装置500之间的音频接口。音频电路260可将接收到的音频数据转换后的信号,传输到扬声器261,由扬声器261转换为声音信号输出;另一方面,麦克风将收集的声音信号转换为信号,由音频电路260接收后转换为音频数据,再将音频数据输出至RF电路210以发送给比如手机,或者将音频数据输出至存储器220以便进一步处理。
I/O子系统270用来控制输入输出的外部设备,可以包括其他输入设备控制器271、传感器控制器272、显示控制器273。可选地,一个或多个其他输入设备控制器271从其他输入设备230接收信号和/或者向其他输入设备230发送信号,其他输入设备230可以包括物理按钮(按压按钮、摇臂按钮等)、拨号盘、划动开关、操纵杆、点击滚轮、光鼠(光鼠可以是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)。值得说明的是,其他输入设备控制器271可以与任一个或者多个上述设备连接。所述I/O子系统270中的显示控制器273从触摸屏240接收信号和/或者向触摸屏240发送信号。触摸屏240检测到用户输入后,显示控制器273将检测到的用户输入转换为与显示在触摸屏240上的用户界面对象的交互,即实现人机交互。传感器控制器272可以从一个或者多个传感器251接收信号和/或者向一个或者多个传感器251发送信号。
处理器280是装置500的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器220内的软件程序和/或模块,以及调用存储在存储器220内的数据,执行装置500的各种功能和处理数据。可选地,处理器280可包括一个或多个处理单元。例如,处理器110可以包括以下处理单元中的至少一个:应用处理器(application processor,AP)、调制解调处理器、图形处理器(graphics processing unit,GPU)、图像信号处理器(image signal processor,ISP)、控制器、视频编解码器、数字信号处理器(digital signal processor,DSP)、基带处理器、神经网络处理器(neural-network processing unit,NPU)。其中,不同的处理单元可以是独立的器件,也可以是集成的器件。
可选地,处理器280可集成应用处理器和调制解调处理器。其中,应用处理器主要处理操作系统、用户界面和应用程序等;调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器280中。
装置500还包括给各个部件供电的电源290(比如电池)。可选地,电源可以通过电源管理系统与处理器280逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗等功能。应理解,尽管未示出,装置500还可以包括摄像头、蓝牙模块等,在此不再赘述。
其中,存储器220存储的模块可以包括:操作系统、接触/运动模块、图形模块以及应用程序等等。
接触/运动模块用于检测物体或手指与触摸屏240或点击式触摸转盘的接触,捕捉接触的速度(方向和大小)、加速度(大小或方向的变化),判断接触事件类型。例如,多种接触事件检测模块,有时手势和用户界面中的元素相结合实现一些操作:手指挤压/扩大(pinching/depinching)等等。
图形模块用于在触摸屏或其他显示器上渲染和显示图形,图形包括网页、图标、数字图像、视频和动画。
应用程序可以包括联系人、电话、视频会议、电子邮件客户端、即时通信、个人运动、相机、图像管理、视频播放器、音乐播放器、日历、插件(例如,天气、股票、计算器、时钟、词典)、自定义插件、搜索、笔记、地图以及在线视频等等。
可以理解,图14所示的各模块间的连接关系只是示意性说明,并不构成对装置500的各模块间的连接关系的限定。可选地,装置500的各模块也可以采用上述实施例中多种连接方式的组合。
由上可知,本申请实施例通过获取第一预设时长的第一PPG信号,然后基于第一PPG信号确定心率差值,并利用心率差值生成散点分布图,得到心率差值的变化轨迹,基于心率差值的变化轨迹衍生出的参数(包括但不限于:角度、个数、角度标准差、距离标准差)确定心律类型,能够准确识别心律类型,提高识别早搏或房颤的准确性,避免将早搏信号识别为房颤信号,提升用户体验。
本申请还提供了一种计算机程序产品,该计算机程序产品被处理器执行时实现本申请中任一方法实施例所述的方法。
该计算机程序产品可以存储在存储器中,经过预处理、编译、汇编和链接等处理过程最终被转换为能够被处理器执行的可执行目标文件。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现本申请中任一方法实施例所述的方法。该计算机程序可以是高级语言程序,也可以是可执行目标程序。
该计算机可读存储介质可以是易失性存储器或非易失性存储器,或者,可以同时包括易失性存储器和非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和设备的具体工作过程以及产生的技术效果,可以参考前述方法实施例中对应的过程和技术效果,在此不再赘述。
在本申请所提供的几个实施例中,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的方法实施例的一些特征可以忽略,或不执行。以上所描述的装置实施例仅仅是示意性的,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,多个单元或组件可以结合或者可以集成到另一个系统。另外,各单元之间的耦合或各个组件之间的耦合可以是直接耦合,也可以是间接耦合,上述耦合包括电的、机械的或其它形式的连接。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示: 单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (21)

  1. 一种检测心律的方法,其特征在于,所述方法应用于电子设备,所述方法包括:
    获取第一预设时长的第一光电容积脉搏波描记法PPG信号;
    基于所述第一PPG信号确定多个心率值;
    基于所述多个心率值确定每两个相邻心率的差值,所述每两个相邻心率的差值用于生成心率差值轨迹图;
    基于所述心率差值轨迹图获取心率差值轨迹的参数,所述心率差值轨迹的参数包括以下一项或多项参数:角度、个数、角度标准差、距离标准差;
    根据所述心率差值轨迹的参数,确定所述第一PPG信号的心律类型,所述心律类型包括以下任一项:早搏、房颤、窦性心律、室性心动过速、二联律、三联律;
    显示所述第一PPG信号的心律类型。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述第一预设时长的第一PPG信号确定第一参数,并且确定所述第一参数是否大于或等于第一阈值;
    其中,所述根据所述心率差值轨迹的参数,确定所述第一PPG信号的心律类型,包括:
    根据所述第一参数、所述心率差值轨迹的参数,确定所述第一PPG信号的心律类型。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第一参数、所述心率差值轨迹的参数,确定所述第一PPG信号的心律类型,包括:
    在所述第一参数大于或等于第一阈值时,基于所述心率差值轨迹的参数进行第一识别处理,确定所述第一PPG信号的心律类型,所述心律类型包括以下任一项:早搏、房颤、窦性心律、室性心动过速;
    在所述第一参数小于所述第一阈值时,基于所述心率差值轨迹的参数进行第二识别处理,确定所述第一PPG信号的心律类型,所述心律类型包括以下任一项:早搏、房颤、窦性心律、室性心动过速、二联律、三联律。
  4. 根据权利要求3所述的方法,其特征在于,在所述第一识别处理或所述第二识别处理中,所述心率差值轨迹包括:第一轨迹和第二轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第一预设条件时,所述心律类型为早搏;
    其中,所述第一轨迹的参数和所述第二轨迹的参数满足第一预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和大于或等于第一数量阈值,且,所述第一轨迹的角度标准差参数和所述第二轨迹的角度标准差参数都小于或等于第一角度标准差阈值。
  5. 根据权利要求3或4所述的方法,其特征在于,在所述第一识别处理中,所述心率差值轨迹包括:第一轨迹和第二轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,且第一概率参数满足第三预设条件时,所述心律类型为房颤;
    其中,所述第一轨迹的参数和所述第二轨迹的参数满足第一预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和大于或等于第一数量阈值,且,所述第一轨迹的角度标准差参数和所述第二轨迹的角度标准差参数中至少有一个大于第一角度标准差阈值;
    其中,所述第一概率参数满足第三预设条件,包括:第一概率参数小于第一概率阈值。
  6. 根据权利要求3至5中任一项所述的方法,其特征在于,所述心率差值轨迹包括:第一轨迹和第二轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,且,第一概率参数不满足第三预设条件时,所述心律类型为窦性心律;
    其中,所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和大于或等于第一数量阈值,且,所述第一轨迹的角度标准差参数和所述第二轨迹的角度标准差参数至少有一个大于第一角度标准差阈值;
    其中,所述第一概率参数不满足第三预设条件,包括:第一概率参数不小于第一概率阈值。
  7. 根据权利要求3至6中任一项所述的方法,其特征在于,在所述第一识别处理或所述第二识别处理中,所述心率差值轨迹包括:第一轨迹、第二轨迹、第三轨迹和第四轨迹;
    所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,所述第一轨迹的参数和第三轨迹的参数满足第五预设条件;或者,所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,所述第二轨迹的参数和所述第四轨迹的参数满足第六预设条件,所述心律类型为室性心动过速;
    其中,所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和小于第一数量阈值;
    其中,所述第一轨迹的参数和所述第三轨迹的参数满足第五预设条件,包括:所述第一轨迹的个数参数和所述第三轨迹的个数参数之和大于或等于第二数量阈值,所述第一轨迹的角度标准差参数和第三轨迹的角度标准差参数都小于或等于第二角度标准差阈值,且所述第一轨迹的角度均值参数小于所述第三轨迹的角度均值参数;
    其中,所述第二轨迹的参数和所述第四轨迹的参数满足第六预设条件,包括:所述第二轨迹的个数参数和所述第三轨迹的个数参数之和大于或等于第二数量阈值,所述第二轨迹的角度标准差参数和所述第三轨迹的角度标准差参数都小于或等于第二角度标准差阈值,且所述第二轨迹的角度均值参数小于所述第四轨迹的角度均值参数。
  8. 根据权利要求3至7中任一项所述的方法,其特征在于,在所述第一识别处理中,所述心率差值轨迹包括:第一轨迹和第二轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,且第一概率参数满足第七预设条件时,所述心律类型为房颤;
    其中,所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和小于第一数量阈值;
    其中,所述第一概率参数满足第七预设条件,包括:所述第一概率参数小于第二概率阈值。
  9. 根据权利要求3至8中任一项所述的方法,其特征在于,在所述第一识别处理中,所述心率差值轨迹包括:第一轨迹和第二轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,且第一概率参数不满足第七预设条件时,所述心律类型为窦性心律;
    其中,所述第一轨迹的参数和所述第二轨迹的参数满足第四预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和小于第一数量阈值;
    其中,第一概率参数不满足第七预设条件,包括:所述第一概率参数不小于第二概率阈值。
  10. 根据权利要求3至9中任一项所述的方法,其特征在于,在所述第二识别处理中,所述心率差值轨迹包括:第一轨迹和第二轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,所述心律类型为房颤;
    其中,所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和大于或等于第一数量阈值,且,所述第一轨迹的角度标准差参数和所述第二轨迹的角度标准差参数至少有一个大于第一角度标准差阈值。
  11. 根据权利要求3至10中任一项所述的方法,其特征在于,在所述第二识别处理中,所述心率差值轨迹包括:第五轨迹和第六轨迹;所述第五轨迹的参数和所述第六轨迹的参数满足第八预设条件,且所述第五轨迹的距离标准差参数和所述第六轨迹的距离标准差参数满足第九预设条件,所述心律类型为二联律;
    其中,所述第五轨迹的参数和所述第六轨迹的参数满足第八预设条件,包括:所述第五轨迹的个数参数和所述第六轨迹的个数参数中的最小值,大于或等于第三数量阈值,且所述第五轨迹的角度标准差参数和所述第六轨迹的角度标准差参数都小于或等于第三角度标准差阈值;
    其中,所述第五轨迹的距离标准差参数和所述第六轨迹的距离标准差参数满足第九预设条件,包括:所述第五轨迹的距离标准差参数小于或等于第一距离标准差阈值,所述第六轨迹的距离标准差参数小于或等于第一距离标准差阈值。
  12. 根据权利要求3至11中任一项所述的方法,其特征在于,在所述第二识别处理中,所述心率差值轨迹包括:第五轨迹和第六轨迹;所述第五轨迹的参数和所述第六轨迹的参数满足第八预设条件,且所述第五轨迹的距离标准差参数和所述第六轨迹的距离标准差参数不满足第九预设条件,所述心律类型为三联律;
    其中,所述第五轨迹的参数和所述第六轨迹的参数满足第八预设条件,包括:所述第五轨迹的个数参数和所述第六轨迹的个数参数中的最小值大于或等于第三数量阈值,且所述第五轨迹的角度标准差参数和所述第六轨迹的角度标准差参数都小于或等于第三角度标准差阈值;
    其中,所述第五轨迹的距离标准差参数和所述第六轨迹的距离标准差参数不满足第九预设条件,包括:所述第五轨迹的距离标准差参数大于第一距离标准差阈值,所述第六轨迹的距离标准差参数大于第一距离标准差阈值。
  13. 根据权利要求3至12中任一项所述的方法,其特征在于,在所述第二识别处理中,所述心率差值轨迹包括:第一轨迹、第二轨迹、第七轨迹、第八轨迹、第九轨迹和第十轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,且所述第七轨迹的参数、所述第八轨迹的参数、所述第九轨迹的参数和所述第十轨迹的参数满足第十预设条件时,所述心律类型为早搏;
    其中,所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,包括:所述第一轨迹的个数参数和第二轨迹的个数参数之和大于或等于第一数量阈值,且,所述第一轨迹的角度标准差参数和所述第二轨迹的角度标准差参数至少有一个大于第一标准差阈值;
    其中,所述第七轨迹的参数、所述第八轨迹的参数、所述第九轨迹的参数和所述第十轨迹的参数满足第十预设条件,包括:所述第七轨迹的角度标准差参数、所述第八轨迹的角度标准差参数、第所述九轨迹的角度标准差参数和所述第十轨迹的角度标准差参数中的最大值,小于或等于第四角度标准差阈值。
  14. 根据权利要求3至13中任一项所述的方法,其特征在于,在所述第二识别处理中,所述心率差值轨迹包括:第一轨迹、第二轨迹、第七轨迹、第八轨迹、第九轨迹和第十轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,且所述第七轨迹的参数、所述第八轨迹的参数、所述第九轨迹的参数和所述第十轨迹的参数不满足第十预设条件,且,第一概率参数满足第十一预设条件或者第一数量满足第十二预设条件时,所述心律类型为房颤;
    其中,所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,包括:所述第一 轨迹的个数参数和所述第二轨迹的个数参数之和大于或等于第一数量阈值,且,所述第一轨迹的角度标准差参数和所述第二轨迹的角度标准差参数至少有一个大于第一标准差阈值;
    其中,所述第七轨迹的参数、所述第八轨迹的参数、所述第九轨迹的参数和所述第十轨迹的参数不满足第十预设条件,包括:所述第七轨迹的角度标准差参数、所述第八轨迹的角度标准差参数、所述第九轨迹的角度标准差参数和所述第十轨迹的角度标准差参数中的最大值,大于第四角度标准差阈值;
    其中,所述第一概率参数满足第十一预设条件,包括:第一概率参数小于第三概率阈值;
    其中,所述第一数量满足第十二预设条件,包括:第一数量大于或等于第四数量阈值。
  15. 根据权利要求3至14中任一项所述的方法,其特征在于,在所述第二识别处理中,所述心率差值轨迹包括:第一轨迹、第二轨迹、第七轨迹、第八轨迹、第九轨迹和第十轨迹;所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,且所述第七轨迹的参数、所述第八轨迹的参数、所述第九轨迹的参数和所述第十轨迹的参数不满足第十预设条件,且,第一概率参数不满足第十一预设条件或者第一数量不满足第十二预设条件时,所述心律类型为窦性心律;
    其中,所述第一轨迹的参数和所述第二轨迹的参数满足第二预设条件,包括:所述第一轨迹的个数参数和所述第二轨迹的个数参数之和大于或等于第一数量阈值,且,所述第一轨迹的角度标准差参数和所述第二轨迹的角度标准差参数至少有一个大于第一标准差阈值;
    其中,所述第七轨迹的参数、所述第八轨迹的参数、所述第九轨迹的参数和第十轨迹的参数不满足第十预设条件,包括:所述第七轨迹的角度标准差参数、所述第八轨迹的角度标准差参数、所述第九轨迹的角度标准差参数和所述第十轨迹的角度标准差参数中的最大值,大于第四角度标准差阈值;
    其中,所述第一概率参数不满足第十一预设条件,包括:所述第一概率参数不小于第三概率阈值;
    其中,所述第一数量不满足第十二预设条件,包括:所述第一数量小于第四数量阈值。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述方法还包括:
    获取第二预设时长的ACC信号;
    基于所述第二预设时长的ACC信号确定所述电子设备的状态;
    其中,所述获取所述第一预设时长的第一PPG信号,包括:
    如果在第三预设时长内所述电子设备都处于静止状态,则获取所述第一预设时长的第一PPG信号,所述第三预设时长小于或等于所述第二预设时长。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,所述获取第一预设时长的第一PPG信号,包括:
    获取第四预设时长的PPG信号和ACC信号,所述第一预设时长的PPG信号包括多个第四预设时长的PPG信号,所述第四预设时长小于所述第一预设时长;
    确定在第五预设时长内所述电子设备是否一直处于运动状态;
    如果在所述第五预设时长所述电子设备未一直处于运动状态,则继续获取第四预设时长的PPG信号和ACC信号,直到采集时长满足所述第一预设时长。
  18. 根据权利要求1至17中任一项所述的方法,其特征在于,所述方法还包括:
    在所述心律类型为房颤时,向用户显示提示信息,所述提示信息用于通知用户心律异常。
  19. 一种电子设备,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述存储器用于存储计算机程序,当所述计算机程序被所述处理器执行时,使得 所述电子设备执行权利要求1至18中任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被处理器执行时,使得所述处理器执行权利要求1至18中任一项所述的方法。
  21. 一种芯片,其特征在于,包括处理器,当所述处理器执行指令时,所述处理器执行如权利要求1至18中任一项所述的方法。
PCT/CN2022/140421 2022-03-31 2022-12-20 一种检测心律的方法和电子设备 WO2023185122A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22899622.9A EP4275591A1 (en) 2022-03-31 2022-12-20 Heart rhythm detection method and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210335776.3 2022-03-31
CN202210335776.3A CN116919371A (zh) 2022-03-31 2022-03-31 一种检测心律的方法和电子设备

Publications (1)

Publication Number Publication Date
WO2023185122A1 true WO2023185122A1 (zh) 2023-10-05

Family

ID=87930116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140421 WO2023185122A1 (zh) 2022-03-31 2022-12-20 一种检测心律的方法和电子设备

Country Status (3)

Country Link
EP (1) EP4275591A1 (zh)
CN (1) CN116919371A (zh)
WO (1) WO2023185122A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117814809B (zh) * 2024-03-05 2024-05-03 纳龙健康科技股份有限公司 一种房性心动过速事件批量识别方法、终端设备及介质
CN117898692B (zh) * 2024-03-20 2024-05-14 河北网新数字技术股份有限公司 一种用于心率监测系统的数据处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040092836A1 (en) * 2002-11-11 2004-05-13 Medtronic, Inc. Algorithms for detecting atrial arrhythmias from discriminatory signatures of ventricular cycle lengths
US20110301480A1 (en) * 2010-06-03 2011-12-08 Medtronic, Inc. System and method for assessing a likelihood of a patient to experience a cardiac arrhythmia
CN105816163A (zh) * 2016-05-09 2016-08-03 安徽华米信息科技有限公司 检测心率的方法、装置及可穿戴设备
CN106037701A (zh) * 2015-04-17 2016-10-26 精工爱普生株式会社 生物体信息处理系统和装置、及解析结果信息的生成方法
CN109069050A (zh) * 2016-03-30 2018-12-21 美敦力公司 用于通过基于心率变异性的分类来检测房性快速性心律失常的医疗系统
CN110960203A (zh) * 2019-12-13 2020-04-07 心核心科技(北京)有限公司 一种心血管特性参数检测方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040092836A1 (en) * 2002-11-11 2004-05-13 Medtronic, Inc. Algorithms for detecting atrial arrhythmias from discriminatory signatures of ventricular cycle lengths
US20110301480A1 (en) * 2010-06-03 2011-12-08 Medtronic, Inc. System and method for assessing a likelihood of a patient to experience a cardiac arrhythmia
CN106037701A (zh) * 2015-04-17 2016-10-26 精工爱普生株式会社 生物体信息处理系统和装置、及解析结果信息的生成方法
CN109069050A (zh) * 2016-03-30 2018-12-21 美敦力公司 用于通过基于心率变异性的分类来检测房性快速性心律失常的医疗系统
CN105816163A (zh) * 2016-05-09 2016-08-03 安徽华米信息科技有限公司 检测心率的方法、装置及可穿戴设备
CN110960203A (zh) * 2019-12-13 2020-04-07 心核心科技(北京)有限公司 一种心血管特性参数检测方法及装置

Also Published As

Publication number Publication date
CN116919371A (zh) 2023-10-24
EP4275591A1 (en) 2023-11-15

Similar Documents

Publication Publication Date Title
WO2023185122A1 (zh) 一种检测心律的方法和电子设备
US20200275842A1 (en) System and method for obtaining bodily function measurements using a mobile device
CN105930631B (zh) 用于测量生物信号的方法及其可穿戴电子设备
US20160367202A1 (en) Systems and Methods for Wearable Sensor Techniques
US9044150B2 (en) Biometric monitoring device with heart rate measurement activated by a single user-gesture
Shabaan et al. Survey: smartphone-based assessment of cardiovascular diseases using ECG and PPG analysis
US9042971B2 (en) Biometric monitoring device with heart rate measurement activated by a single user-gesture
JP6239385B2 (ja) 統合した生体測定のセンシングおよび表示のデバイス
TWI610657B (zh) 藉由心跳相關訊號評估個人心臟健康之穿戴式裝置及其訊號處理方法
WO2021052362A1 (zh) 数据显示方法及电子设备
WO2023116062A1 (zh) 一种心率监测的方法和装置
US20160331315A1 (en) Systems and Methods for Wearable Health Monitoring
CN109222927A (zh) 一种基于健康状态的处理方法、智能穿戴设备及存储介质
TWI645834B (zh) 用於機會性測量及處理使用者的情境的裝置、方法及非暫態計算裝置可讀取媒體
WO2019047428A1 (zh) 脉搏监测装置及系统
US10932715B2 (en) Determining resting heart rate using wearable device
CN112168155A (zh) 一种血压检测方法、可穿戴设备以及计算机可读存储介质
CN109833037B (zh) 一种监测血压状态的设备和计算机可读存储介质
US20210121077A1 (en) Physical parameter measuring devices
US20230190170A1 (en) Premature beat detection method, electronic device and medium
US10849514B2 (en) Information processing device and information processing method
CN114388122A (zh) 参数融合处理方法、装置、可穿戴设备及存储介质
CN114652268A (zh) 信号采集方法、装置、存储介质及电子设备
CN117084644B (zh) 一种检测用户生理特征指标的方法、装置及可穿戴设备
US11963748B2 (en) Portable monitor for heart rate detection

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18266673

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022899622

Country of ref document: EP

Effective date: 20230608